
Evolutionary Optimisation Methods
for Template Based Image Registration

Lukasz A Machowski

School of Electrical and Information Engineering
University of Witwatersrand, Johannesburg, South Africa.

l.machowski@ee.wits.ac.za

Abstract
This paper investigates the use of evolutionary
optimisation techniques to register a template with a
scene image. An error function is created to measure the
correspondence of the template to the image. The
problem presented here is to optimise the horizontal,
vertical and scaling parameters that register the template
with the scene. The Genetic Algorithm, Simulated
Annealing and Particle Swarm Optimisations are
compared to a Nelder-Mead Simplex optimisation with
starting points chosen in a pre-processing stage. The
paper investigates the precision and accuracy of each
method and shows that all four methods perform
favourably for image registration. SA is the most precise,
GA is the most accurate. PSO is a good mix of both and
the Simplex method returns local minima the most. A
pre-processing stage should be investigated for the
evolutionary methods in order to improve performance.
Discrete versions of the optimisation methods should be
investigated to further improve computational
performance.

1. Introduction
Image registration has great practical application in the
field of computer vision, medicine, remote sensing and
image watermarking [1][2]. Being able to determine how
best the template image fits into the scene poses several
problems that have to be overcome. The registration
process may involve shifting, scaling, rotation,
perspective projection or other non-linear
transformations. The shear number of possible
transformations makes it difficult to automate the process
and usually requires a person to verify the results
manually. This paper presents findings on the use of
evolutionary optimisation methods for automating the
template matching of 2-dimensional intensity images.

1.1 Image Registration
Image registration is the process by which a template is
oriented in such a way as to match an entire, or a portion
of, a given scene [1][2]. The template is transformed in
such a way as to match the scene as closely as possible.

There are four main steps required for registration of an
image. These are feature detection, feature matching,
transform model estimation and image transformation [1].
Feature based detection makes it easier to determine the
orientation of the template with respect to the scene. Area
based detection methods are much more computationally
expensive due to the amount of data that needs to be
processed. Since the area based detection methods depend
on the appearance of the images, they are intolerant of
changes in illumination and ambient conditions [1][2].
The feature based detection methods do not suffer from
this but it is more difficult to automatically extract the
features for any general image. It is common to combine
the advantages from both methods to form a hybrid
approach to the registration process [2].

Correlation-like methods are typically used for area-based
detection methods where a correlation surface is
calculated for the template and the maximum point is
found and interpreted as the best fit for the template [1].
This method is adversely affected by self similarity in the
image and it is characterised by high computational
complexity. It also does not allow much variance in
template rotation or other more complex transformations.
This approach, is still however attractive for real-time
object tracking [1][3].

An alternative to cross correlation is to use optimisation
to find the best fit for the template in the scene [4]. The
advantage of this approach is that one can apply more
complex transformations to the templates, and thus make
the method robust when compared to cross correlation.
This method also requires less computation because the
entire correlation surface does not have to be determined.

In this paper, we investigate the use of a Genetic
Algorithm (GA), Simulated Annealing (SA) and Particle
Swarm Optimisation (PSO) to register a template with a
given scene. These methods are also compared to the
Nelder-Mead Simplex method. For simplicity, only three
transformation parameters are defined. These are
horizontal translation, vertical translation and uniform
scaling.

mailto:l.machowski@ee.wits.ac.za

1.2 Evolutionary Optimisation
The term “evolutionary” refers to the fact that the
optimum solution gradually evolves from a population of
individuals that share information and have group
dynamics [5]. This is in contrast to the non-evolutionary
or classical optimisation methods which always try to
travel in the best direction. Typically, the evolutionary
concept is linked with GA alone but in this paper, we
group GA, SA and PSO into the subset. All evolutionary
optimisation methods have the following operations [5]:

• Evaluation
• Selection
• Alteration

An initial population of individuals is initialised, covering
the parameter space and the objective function is
evaluated for each individual. From this data, a subset of
individuals is selected and altered to form new
individuals. The degree to which each of these operations
is performed in GA, SA and PSO varies from algorithm
to algorithm.

To find the optimal registration parameters for template
matching, it is important to construct a multivariate cost
function that represents how well the template matches
the scene [6]. The traditional techniques for optimisation
make use of the objective function value, first derivative
or its second derivative [6][7]. The general approach for
all non-evolutionary optimisation methods is to select an
initial guess for the registration parameters and travel in a
direction as to improve the objective function. Once a
suitable direction is found, it is possible to make either
fixed or varying successive steps towards the local
optimum.

Evolutionary Optimisation methods, however, do not
make use of any other information but the objective
function values themselves. This eliminates the
evaluation of gradients which may be expensive and
misleading for image registration. Evolutionary methods
typically sample the search space significantly more than
the non-evolutionary techniques but this improves the
probability of the algorithm finding the global optimum
point. The evolutionary algorithms are typically based on
the processes which occur in the natural world, such as
genetics, the swarming behaviour of bees and the
annealing of metals. Various data structures are used to
simulate these [5].

A brief review of the methods suitable for image
registration is given below:

1.2.1 Simplex Method
This is a non-evolutionary (classical) method. A simplex
is a geometric figure that has one more vertex than the
number of dimensions in the parameter space (a triangle
in two dimensions, as shown in Figure 1). The objective

function is sampled at each vertex and the one that has the
worst value gets removed from the simplex. A new vertex
is then created by reflecting the simplex about the
remaining points. Depending on whether the fitness of the
new point improves or not, the simplex is expanded or
contracted to look for a more precise solution. In this
manner, the algorithm steps its way towards the local
optimum point. This method is relatively robust when
used for discontinuous objective functions [8].

Figure 1 A simplex in two dimensions, showing a

reflection.

1.2.2 Simulated Annealing
Simulated Annealing is a Monte Carlo Technique [5] and
is based on the analogy of metals cooling slowly to form
a crystalline structure with low energy.

The SA introduces a probability of acceptance of a new
sample point for a hill-climbing process. The probability
of accepting the new point is based on a control variable
called the temperature. The higher the temperature, the
more likely it is for a worse point to be accepted. This
allows the algorithm to escape from local optima [5][9].
This algorithm is commonly referred to as Metropolis
after its founder.

The SA technique used in this paper modifies the simplex
method described above to allow the simplex to accept a
worse vertex with a probability distribution that is based
on the temperature. If the change in energy is negative
(we have a better point) then the new point will always be
chosen. If the change in energy is positive (the point is
worse) then the probability of accepting it is given by:

 Tk
E

Bep .
∆−

= (1)

where ∆E is the change in energy, kB is Boltzmann’s
constant and T is the current temperature. The cooling
schedule (how many iterations to spend at each
temperature) is an important factor in the success of the
algorithm.

x1

x2

Reflected
Vertex

1.2.3 Genetic Algorithm
Based on the theory of genetics, the GA encodes each
individual in the population with a chromosome [5][10].
This encoding represents the parameters for the objective
function being optimised. There are several different
techniques for encoding parameters, performing the
selection, and the alteration stages of the algorithm. The
alteration stage is separated into Crossover and Mutation.
The method used in this paper selects a random sample of
parents from the population with a specified probability.
An arithmetic crossover is then performed on these
individuals which creates children based on a linear
interpolation of the two parents. This is shown in Figure
2.

Figure 2 One Dimensional Arithmetic crossover

operator.

A multi-non-uniform mutation is performed which
modifies the parent parameters with a binomial
distribution which narrows as the number of generations
gets larger. More details of the individual techniques are
given in [5].

1.2.4 Particle Swarm Optimisation
PSO is based on the swarming behaviour of bees,
flocking of birds, schooling of fish and social relations of
humans [11]. A population of particles is randomly
initialised within the parameter space and each one is
given an initial velocity. At each iteration of the
algorithm, the particle position is updated and a new
velocity is calculated, taking the best position for the
particle and the group into account. There are different
ways of grouping the particles together. The method used
in this paper creates a social grouping where each particle
has n logical neighbours (referenced by adjacent index
numbers). This means that particles can be neighbours
even though they are not close to each other spatially.
This method also tends to produce better global
exploration by the particles since there are many more
attractors. The velocity of each particle is calculated as:

 (2)
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−+

−+=+

))(.(
))(.(

)(.
)1(

,

,

txp
txp

tv
tv

ddgg

ddiid

β
β

α

where vd(t+1) is the next velocity for particle d, α is an
acceleration constant, βi is an attraction constant for the
individual best position, βg is an attraction constant for
the group best position, pi,d is the best individual position
for particle d, pi,g is the best group position for particle d’s
neighbourhood and xd(t) is the current position for
particle d. The position of each particle is then calculated
for each iteration as:

)1()()1(++=+ tvtxtx ddd (3)

The various components that make up the velocity for
each particle are shown in Figure 3.

Figure 3 Various components making up the new

velocity.

2. Method

2.1 Objective Function
In order to perform optimisation, it is necessary to define
an objective function that captures the essence of the
problem at hand. In image registration, one wants to
maximise correspondence between the scene image and
the template posed at its current position. The
correspondence can be measured as the sum-squared
difference between the intensities of overlapping pixels.
This can be expressed as an error function where a value
of zero represents a perfect match. The parameters to be
optimised in this problem are horizontal translation (x),
vertical translation (y) and uniform scaling (s). The
objective function used when there are overlapping pixels
between the template and the scene image is given by:

)()(2 AnumelTAerror ∑ −= (3)

where A is the scene image, T is the template, the 2 refers
to element-wise squaring and the summation is over each
element of the resultant matrix. This error is then
normalised with the number of pixels that are overlapping
between both images.

It is also important to interpolate sub-pixel values for the
optimisation algorithm to be able to function correctly.
Linear interpolation is used because it was found that
similar results are achieved when using spline or cubic
methods. Interpolation allows the traditional optimisation
algorithms to be run unchanged and also allows it to be
compared to other general optimisation algorithms.

x

pi pg

x1

x2

Vd(t)

x

p1

p2

c2

c1

eg: Mix = 0.6

c1 = p1.(mix) + p2.(1-mix)
c2 = p1.(1-mix) + p2.(mix)

It is necessary to penalise the error function when there
are template pixels that do not lie within the image. This
error component is added to the existing value calculated
above. The penalised error then becomes:
 (4) cOutPixelserrorerrorp ×+=
where error is from equation (3), OutPixels is the number
of template pixels that do not lie in the image, and c is a
penalisation constant which should be large (~1000). This
penalisation has the effect of constraining the x and y
parameters back into range when the images no longer
overlap. It is necessary to hard-limit the scale parameter
because the optimisation algorithms might try
ridiculously high values which require extremely large
amounts of memory. Very seldom does a template match
a scene at very high scaling values. Similarly, if the
template gets scaled to one pixel in size, then a fit can be
found nearly anywhere in the scene.

2.2 Test Image
The test image used is the familiar picture of Lena, which
has a good mix of various image features and provides
several local minima for registration. The template is a
cut-out of Lena’s face and is shown in Figure 4. The
image scene is 256x256 pixels and the template is
170x138 pixels taken from the coordinates (151.5, 151.5)
with a scale of 2.0. This means that the global optimum
for our objective function is at the coordinates (151.5,
151.5, 0.5) with an error value of 0.

Figure 4 a) Test Image b) Template for registration.

2.3 Optimisation
This section describes implementation details for each of
the optimisation algorithms. All routines are implemented
in Matlab R13. The implementation details for each
algorithm are given below:

2.3.1 Simplex Method
Matlab’s Optimisation Toolbox is used to perform the
Nelder-Mead simplex optimisation [8]. The function used
is fminsearch.m. A simple pre-processing algorithm is
used to choose initial starting points.

2.3.2 Simulated Annealing
The SA algorithm used in this paper is based on the code
given in [12] and is extended to include restarts. The code
is abstracted into a higher level in order to take advantage
of Matlab’s matrix arithmetic capabilities. The following
is a high level description of the algorithm used:

x = RandomStartingSimplex();
y = EvaluateSimplex(S);
for each temperature in cooling schedule:
 for number of iterations:
 yFluc = AddFluctuation(y);
 sort(yFluc);
 ReflectSimplex;
 If better than best then
 ExpandSimplex(x)
 Else if worse than 2nd highest:
 ContractSimplex(x);
 If still bad then:
 ContractOtherVerices(x);
 End
 End
 If SimplexIsStuck() then:
 % Restart, keeping best point:
 x = RandomStartingSimplex();
 KeepBestPoint(x);
 End
 End for each iteration
End for each temperature

The restart allows the algorithm to oscillate at a local
minimum for only a limited number of iterations. After
this, it is restarted with the best point as one of the
vertices. This behaviour is justified because it is
recommended in [12] that the algorithm be re-run in the
same fashion once a solution is found. This merely allows
the simplex to further explore the parameter space.

2.3.3 Genetic Algorithm
The Genetic Optimization Toolbox (GAOT) [13] is used
for the implementation of the GA. This is an extensive
toolbox with many functions for the encoding, selection,
crossover and mutation operators. The following
operators were used for the optimisation:

• normGeomSelect.m, with the probability of
selecting the best, set to 0.6.

• arithXover.m, with 10 crossovers per generation
• multiNonUnifMutation.m, with 20 mutations per

generation.
The particular selection operator used gives a good mix of
exploration and precision. The arithmetic crossover is
very useful in this problem since it assists in finding more
precise parameters for the objective function. It is
important to use the given mutation operator so that a
sufficient amount of exploration occurs. The nature of the
image registration problem creates an objective function
with many local minima so it is important to mutate out
of these valleys. Since the GAOT maximises an objective
function, we merely multiply our original objective
function by a factor of -1 to perform the minimisation.

(b)

(a)

2.3.4 Particle Swarm Optimisation
After evaluating the performance of a free PSO toolbox,
and getting poor results, it was decided to write a custom
PSO routine based on the method described in the
previous section. The high level description of the
algorithm is given below:

Swarm = CreateRandomSwarm();
While we have more iterations to go:
 EvaluateObjectiveFunction(Swarm);
 If Swarm.BestValue<GlobalBestValue then
 GlobalBestValue = Swarm.BestValue;
 GlobalBestPosition=Swarm.BestPosition;
 End
 UpdateIndividualAndGroupBestValues(Swarm);
 CalculateParticleVelocities(Swarm);
 UpdateParticlePositions(Swarm);
End While loop
Output GlobalBestPosition;

The initial swarm is created with random particles
between the bounds of the parameter space. A record is
kept of each particle’s best value that it has sampled.
Similarly, a group-best is maintained for a social
neighbourhood size of 3 particles to either side of the
current particle. Modulo indexing is used. The α
parameter (described in the previous section) is set to
0.99 so that the swarm does not become unstable and
diverge. Both β parameters are set to 0.01 in order that
the particles approach the best locations gradually. This
samples the objective function many times along the
trajectory of the particle.

3. Results

3.1 Optimisation
In order to be able to compare the algorithms, the
maximum number of function evaluations for each
method is set to 1000. The algorithms are stopped as
close to this value as possible (since the number of
function evaluations may vary from run to run). The
amount of time taken by each algorithm is not a good
measure of its performance in this case because the
amount of processing in the objective function is highly
dependent on the parameter values being sampled. All
four algorithms described in this paper ultimately
approach the global optimum so a suitable measure for
their performance is to investigate their precision and
accuracy. Each algorithm is run 50 times and an accuracy
histogram is calculated for how close and how
consistently the algorithm reached the global optimum of
(151.5, 151.5, 0.5). The distance is measured
geometrically by the following equation:

 222)()()(iGiGiGi ssyyxxd −+−+−= (5)

where di is the distance for the ith run, (xG, yG, sG) are the
global optimum parameters and (xi, yi, si) are the
optimum parameters as calculated in the ith run. The

histogram is divided into 10 equal bins so that the last bin
has a distance which is 10 units away from the global
optimum. The accuracy histograms for the various
methods are given in Figure 5 and the results are analysed
below. Higher counts towards bin zero are better. The last
bin (11) in the histogram shows the cumulative
convergences exceeding 10 units from the global
optimum and not convergence counts at 11 units.

1 2 3 4 5 6 7 8 9 10111
0

10

20

30

40

1 2 3 4 5 6 7 8 9 10111
0

5

10

15

20

Figure 5 Accuracy Histograms.

3.1.1 Simplex Method
This method is especially robust for functions that have
peculiar gradients or that are discontinuous, as is common
in image registration. The method of travel by the
simplex acts as a pseudo-gradient that plays a similar role
as in the gradient methods. The success of this algorithm
is attributed to the pre-processing stage of the algorithm
which selects suitable starting points for the Nelder-Mead
optimisation. The histogram shows that when the
algorithm is near the global optimum, it is reasonably
precise. It does however, find local minima quiet often.

3.1.2 Simulated Annealing
It is expected that this algorithm performs better than the
Simplex Method described above due to the Metropolis
method that it employs. It was found that the performance
of the algorithm is significantly improved by restarting
when the simplex becomes stuck. Without this behaviour,
the algorithm tries oscillatory values which waste
precious computation time since the samples do not
advance the simplex at all. The histogram shows that the
algorithm is the least accurate (repeatable) algorithm of
the four but is precise (finds values near to the global
optimum many times).

3.1.3 Genetic Algorithm
The performance of the GA can be attributed to the
number of mutations that take place. This is important for
image registration because the objective function has

Simplex SA

1 2 3 4 5 6 7 8 9 1011
0

10

20

30

1 2 3 4 5 6 7 8 9 1011
0

10

20

30

GA PSO

many local optima that vary in shallowness. It is more
important for the algorithm to explore the parameter
space than it is to improve the precision (using the
arithmetic crossover). It was also observed that the
mutation rate is more important than the initial population
size (which randomly explores the parameter space),
since sufficient mutations will explore the space more
wisely. The histogram shows a clear binomial distribution
near the global optimum. This shows that the GA
produces reasonably accurate (consistent) results.

3.1.4 Particle Swarm Optimisation
The PSO produces acceptable results because of the
group dynamics in the system. The social groups promote
exploration of the search space while the individual best
position lets each particle improve its precision. Good
parameter values were found by investigating what effect
they have on the swarm behaviour and then tweaking the
values to suite the problem domain. The behaviour of the
swarm is predictably based on the algorithm parameters
so it is relatively easy to infer good parameter values by
watching how the particles swarm in the objective
function. The histogram shows that the algorithm finds
precise results but not always accurately.

3.2 Other Sample Data
The algorithms managed to register the templates of
distorted and noisy images of Lena’s face to the image.
The various modifications to the templates that were
made include, Gaussian blurring, the addition of Gaussian
noise, vortex rotation, smudging and non-uniform
stretching. The characteristics and accuracy histograms
for each algorithm remain relatively consistent with the
results described in the previous section.

4. Recommendations
The current objective function makes use of sub-pixel
sampling to obtain a continuous parameter space. This is
very computationally intensive and unnecessary for
certain parameters in image registration such as x and y
coordinates. The algorithms presented above should be
modified so that the user can specify that certain
parameters may vary discretely whilst others
continuously. This should reduce the amount of time
taken for each function evaluation. Another improvement
would be to select regions of interest that are likely to
contain the template in a pre-processing stage. This
involves looking for higher level features in the image
and then constraining the optimisation algorithms.

5. Conclusion
This paper introduced evolutionary optimisation methods
and contextualised them in the image registration field. It
was found that the algorithms perform well in different
aspects of the image registration process. The parameters

for each method need to be tuned to suite the given image
but the behaviour of the methods presented in this paper
are intuitive and insight into how to modify parameters
can easily be gained by simulating a few initial runs.
These evolutionary optimisation methods were compared
to the non-evolutionary Nelder-Mead simplex method
with starting points selected by doing higher level pre-
processing. SA returns the most precise results, while GA
returns the most accurate results. PSO is in between these
two and it is followed by the Simplex method. Pre-
processing should be investigated for the evolutionary
methods.

6. References
[1] B. Zitova, J. Flusser. “Image registration methods: a

survey”; Elsevier B.V.; Image and Vision Computing 21
(2003) 977–1000; June 2003.

[2] X. Peng, M. Ding, C. Zhou, Q. Ma. “A practical two-
step image registration method for two-dimensional
images”; Elsevier B.V.; Information Fusion; Article in
press; 2004.

[3] S. Chien, S. Sung. “Adaptive window method with sizing
vectors for reliable correlation-based target tracking”;
Elsevier B.V.; Pattern Recognition 33 (2000) 237}249;
1999.

[4] H. Lim, S. Hossein Cheraghi. “An optimization
approach to shape matching and recognition”;
Computers & Electrical Engineering 24 (1998) 183-200;
1998.

[5] Z. Michalewicz. “Genetic Algorithms + Data Structures
= Evolution Programs 3rd Ed.”; Springer; New York;
1999.

[6] E. Chong, S. Zak. “An Introduction to Optimization, 2nd
Ed.”; Wiley; 2001.

[7] I. T. Nabney. “Netlab: Algorithms for Pattern
Recognition”; Springer; UK; 2002.

[8] “Optimization Toolbox User’s Guide V2”; The
Mathworks Inc.; 2002.

[9] C. Skiscim. “Optimisation by Simulated Annealing”;
Proceedings of the 1983 Winter Simulation Conference;
pp 523-535; 1983.

[10] C. Houck; J. Joines; M. Kay. "A Genetic Algorithm for
Function Optimization: A Matlab Implementation";
NCSU-IE TR 95-09, 1995.

[11] J. Kennedy, R. C. Eberhart. “Particle swarm
optimization”, Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp.
1942–1948. IEEE Press; 1995.

[12] W. Press, W. Vetterling, S. Teukolsky, B. Flannery.
“Numerical Recipes in C++, 2nd Ed.”; Cambridge
University Press; 2002.

[13] “Genetic Optimization Toolbox”; Last Accessed:
11/05/2004.
http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/

http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/

	Introduction
	Image Registration
	Evolutionary Optimisation
	Simplex Method
	Simulated Annealing
	Genetic Algorithm
	Particle Swarm Optimisation

	Method
	Objective Function
	Test Image
	Optimisation
	Simplex Method
	Simulated Annealing
	Genetic Algorithm
	Particle Swarm Optimisation

	Results
	Optimisation
	Simplex Method
	Simulated Annealing
	Genetic Algorithm
	Particle Swarm Optimisation

	Other Sample Data

	Recommendations
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

