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Abstract

Continued fractions have been extensively studied in number theoretic ways. In this text we
will consider continued fraction expansions with partial quotients that are in \Z = {\z : x €
Z} and where \ = 2 COS(%), g > 3 and with 1 < A < 2. These continued fractions are expressed
as the composition of Mobius maps in PSL(2,R), that act as isometries on H?, taken at co. In
particular the subgroups of PSL(2,R) that are studied are the Hecke groups G,. The Modular
group is the case for ¢ = 3 and A = 1. In the text we show that the Hecke groups are triangle
groups and in this way derive their fundamental domains. From these fundamental domains we
produce the v-cell (IPy) that is an ideal g-gon and also tessellate H? under G. This tessellation
is called the A\-Farey tessellation. We investigate various known A-continued fractions of a real
number. In particular, we consider a geodesic in H? cutting across the A\-Farey tessellation
that produces a “cutting sequence” or path on a A-Farey graph. These paths in turn give
a rise to a derived A-continued fraction expansion for the real endpoint of the geodesic. We
explore the relationship between the derived A-continued fraction expansion and the nearest -
integer continued fraction expansion (reduced A-continued fraction expansion given by Rosen,
[25]). The geometric aspect of the derived A-continued fraction expansion brings clarity and

illuminates the algebraic process of the reduced A-continued fraction expansion.
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CHAPTER 1

Introduction

1. Historical background

Mathematicians have studied general continued fractions of the form,

ai
bo + K(Gn‘bn) = bo +

a2
b1 +
as
by +

b3_|_...

where {a;};>1 and {b;};>0 are sequences of non-zero integers or natural numbers [17],[24].

More generally, continued fractions are given as by+K(a;|b;) with non-zero complex sequences

{az‘}z‘zl and {bz‘}z‘20~

Continued fractions have been used in mathematics, mainly as a tool for evaluating or ap-
proximating real numbers. Mathematicians found approximations for real numbers such as
VT where x is non-square integer. Writing x = a® + b where a? is the largest square integer

less than x, we see:

1
Ve=va:+b=a+ 2 eg VIT=v42+1=4+ i
20 + ———— S+ —
b 1
20+ 5——— 8+
ot .

where /z = a + - f\/g is equivalent to x = a® +b.

7



8 1. INTRODUCTION

The regular continued fraction expansion of e, the base of natural logarithms as a continued

fraction was found by Euler [31] to be:

2+

1+
2+

1+

or a sequence of partial quotients given as [2;1,2,1,1,4,1,1,6,1,1,...,2k,1,1...] where k € Z.

The first recorded study of a general theory of continued fractions appeared in John Wallis’
Opera Mathematica in 1695, and introduced the term ‘continued fraction’. Many well known
mathematicians have added their knowledge to the subject. In particular, the first paper in
which continued fractions were properly considered was written by Euler in his exposition

from 1737, ‘De Fractionibus Continuis dissertatio’.

These mathematicians were primarily interested in the number theory properties of continued
fractions. These continued fractions were defined by recurrence relationships: A, = b, 4,1+

anA,_o and B, = b,B,_1 + a,B,,_» for n > 0 with initial conditions A_; =1, Ag = by, B_1 =
An bnAnf nAnf . . .

0,Bp=1. So — = Lra 2. Most number theoretic results on continued fractions
Bn ann—l + aan—Q

have been proven by considering the behavior of the solutions of these recurrence relation

equations.

The continued fraction can be represented as a composition of a sequence of complex Mobius
maps evaluated at 0 or co. Isenkrache (1888), Netto (1892), Schur (1917) and Hamel (1918),
used a geometric approach to study continued fraction. This geometrical approach followed
the paper by J. F. Paydon and H. S. Wall, “The continued fraction as a sequence of linear

transformation” in (1942).
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As noted, mathematicians studied continued fractions with {a;};>1 and {b;};>0 being sequences
of non-zero integers. If a; = 1 for all ¢ and b; € Z for all i, we call the continued fractions,
the integer continued fractions. The integer continued fraction by + K(1|b;), when b; € Z*
for ¢ > 1 with by € Z is called a simple integer continued fraction or just simple continued

fraction.

DEFINITION 1. The continued fraction by + K(a,|b,) is said to converge classically to a value

a if the sequence

a a
bo,bo—i-b—l,bo—*——l@,bo‘i'
! by + — b1 +

of partial quotients converge to o, where o € C or o = oo. The partial quotients are called

the convergents, or approximates, of the finite or infinite continued fraction.

From [24], we examine the recurrence relations and convergents given above more closely,

where a; = 1 and {b;};>¢ are sequences of real numbers or complex numbers.

Let A 1 =1, B 1 =0, Ay = by and By = 1. Then the sequence of convergents may be given

as:
AO Al 1 2 1
— =b — =by+—, —=0b
By 0 B B 0,1
by
A_
Since @ —— = = , we have
-1
A_l A() 1 b 1 bo
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Ay Ay bo boby +1 1 by 0 1
= = andAoBl—BoAle—lz—lz
By B 1 by
1 by 0 1
det = det

and AlBQ—BlAQ =

A A boby + 1 bobiby + by + bg) 0 1 0 1

Bl BQ bl b1b2 +1 1 bl 1 bQ
1 by 0 1 0 1
0+1=1=det = det det det
0 1 1 b 1 by
In general,
An—l An 1 bO 0 1
=1 ] and ‘An_an — Bn—lAnl =1.
B, B, 0 1 1 b,

We note from using the association of Mdbius maps with matrices as in [14], [3], the ma-

0 1 1
trix corresponds to the Mébius map, ¢, : Co, — C., given by t,(z) = for
b, + z
1 b,
n > 1 and to(z) = z + by. So if T,,(2) = toty...... tn(z) then the matrix of T,, corresponds
An—l An A A
to . That is, Ta(z) = 2= il A, 1B, — By 1A,| — 1. Thus, the

anl Bn Bn—lz * Bn

convergents of the continued fractions could be expressed in terms of the recurrence quotients

A
as above and expressed by fractions of the form  —=". These convergents can in turn be
n

A, A, _ A,
expressed in terms of T, and 7,4, with 7,,(0) = Tpy1(00) = — . If Land == are

Bn anl Bn
successive convergents of the continued fraction then |A, 1B, — B,_1A,| = 1. We may say

An n—1 n Anfl
— 1is adjacent to and write — ~
B, %4 B, , newHe g~ g

We note that these convergents can also be expressed in terms of the following Mobius trans-

(7

formation:
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Let s,(z) =b,+1/z and S, = sps1...... s, form=0,1,...
1
So b() = to(O) = 80(00) ) bo + b_ = totl(O) = 8081(00)
1
b() + 1 = totth(O) = 508182(()0) etc.
b+ —
by

Thus, S,41(0) = Sp(o0) = T,,(0) = T,,11(0c0). Hence, we can establish an alternate definition

of convergence of continued fraction with the following lemma.

LEMMA 1. The continued fraction by + K(1|b,) converges classically to « if and only if

lim 7),11(00) = lim 7,,(0) = a or lim S,41(0) = lim S,(o0) =«

n—0o0 n—oo n—oo n—oo

where T,(0) = T, (tn41(00)) = Thi1(00) and S,(00) = Sy (sp41(0)) = Spt1(0).

In the sequel we will consider a; = 1 for all ¢ and {b;};>0 as a sequence of “M-integers” in
M, where \ = QCOS(§)7 g > 3 is an integer. These continued fractions are referred to as -
continued fractions. We note if ¢ = 3 then A = 1 and the A\-integers, A\Z are just the integers

7Z. Since A € R these M\-continued fractions are real continued fractions.

2. Hyperbolic plane

The hyperbolic plane is the upper half-plane

H? ={z€C:Im(z) >0}

A/ 2 2
in C together with the metric induced from the differential, ds = % = % with z =

x + 1y. Similarly we define the 3-dimensional hyperbolic space as

H?={z+tj:2€C,t>0}
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+dy? + di?
t

dx?
in R? together with the metric ds = \/ . We note that R, is the boundary of

H? and C, is the boundary of H?.

DEFINITION 2. Let E C H? and z € C. The hyperbolic area of E, u(E) is given as

W(E) = [ [, 72,

if the integral exists.

DEFINITION 3. The hyperbolic metric or distance is the map ¢ : H? x H? — RT U {0} between
two points z and w in H? is defined by the formula: ((z,w) = inf h(y) where the infimum is

taken over all smooth paths ~y joining z to w in H?.

Hyperbolic — lines or geodesics in H? (and H3) are vertical Euclidean lines or semi—circles
all in H? (or H?) orthogonal to R, (or C4,). The geodesic v with end points v and 8 on R,
is denoted by 7,5 where 7,3 = 75. The positive imaginary axis is the geodesic Iy = 7 o

and is called the fundamental geodesic.

DEFINITION 4. The horodisc, H is an open FEuclidean disc in H? which is tangent to R at a
point w. A horocycle in H? is the boundary of a horodisc H in H2. A horodisc at oo is defined

to be {(z,y) € M? :y >k }, k > 0 and its associated horocycle is the line y = k.

DEFINITION 5. A transformation ¥ : H? — H? that preserves distance in H? is an isometry.
That is, ((9(z),9(w)) = ((z,w) for z,w € H2 The group of isometries of any set E is

denoted by Isom(E).

DEFINITION 6. Let v be a geodesic in H?. A hyperbolic reflection in v is a hyperbolic isometry

other than the identity which fixes each point of ~.
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The geodesic 7 is either a Euclidean line or circle. The reflections in these geodesics are either

Euclidean reflections in lines or inversions in circles.

DEFINITION 7. [14] If S; and Sy are surfaces in R3 then we say the differentiable map f :
S1 — Sy is conformal if it preserves angles. That is, whenever two differentiable curves cq
and ¢ on Sy meet at a point w with angle §, then f(c1) and f(cy) meet at f(w) with the same
angle 0. This map may be directly conformal (orientation preserving) or indirectly conformal

(orientation reversing).

We note from [2], that the following facts are easily established. There is a unique geodesic
through any two distinct points of the hyperbolic plane; the distinct geodesics have at most a
single point of intersection in H? and the reflection in a geodesic is an isometry. Also through
any point p € H? not on a geodesic v € H?, we can find infinitely many geodesics in H? through
p not intersecting v in H?, [8]. We further specifically note the following trigonometric identity
which allows us to more easily access ((z,w). This identity has many equivalences found in

[2].

THEOREM 1. [2]

Let ¢ be the hyperbolic metric as given above and let z,w € H?. Then
|2 — w
2(Im[z]Im[w])z

sinh 1¢(z,w) =

DEFINITION 8. [14] A hyperbolic n-gon is a simply connected open set bounded by n hyperbolic
line segments in H?. A point where two bounding line segment intersect is called a vertex of
the n-gon. The vertex may or may not lie on Ry,. If all the vertices of an n-gon lie on Ry,
then n-gon is called an ideal n-gon. The angles of an n-gon are the angles between intersecting
line segments. The angles of an ideal n-gon are all zero. The n-gon may be referred to by

listing its n vertices. A hyperbolic triangle is a hyperbolic 3-gon.
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THEOREM 2. (Gauss-Bonnet),[14].
Let T be a hyperbolic triangle with angles o, 5 and 6. Then the hyperbolic area of T is given

by u(T)=nm—a—pF—24.

3. Mobius maps

We recall the set

az—l—b'
cz+d’

PGL(2,C):{Z»—> a,b,c,dé@,ad—bc#O}

is the group of Mébius transformations, named in honor of August Ferdinand Md&bius (1790-

1868), with underlying matrix group GL(2,C). By convention we may associate a map

g € PGL(2,C), the projective linear group, with its underlying matrix “ or multiple
c d
az+b :
thereof. Let g(z) = ot d ad—bc#0, a,b,c,d € Cand A = ad—be € C. Since VA € C for
- vEE T \/LZ a d b c A :
all A # 0 we can re-write g as g(z) = R where -7 — 2 —= = 3 = 1. The matrix
VA VA

a_ b

associated with g represented in this way is A VA With trace \/LZ(CH— d). When g is rep-
5 5

resented in this way we say it is normalised. Since all g in PGL(2,C), may be normalised, we
az+b

cz+d :
underlying matrix group SL(2,C). Our study of Mébius transformations will be restricted to

have PGL(2,C) = PSL(2,C) =M = {Z — a,b,c,d € C,ad — bc = 1}, with the
using only the group of real Mdbius transformations, PSL(2,R) where a, b, c,d € R, ad—bc = 1
and PSL(2,R) is a subgroup of PSL(2,C), [14]. We recall [2], the fact that each Mobius
transformation can be represented by composition of even number of reflections of geodesics.
We note that the concept of inversions in hyper-spheres exists in R™ for n > 1. The use of
Mobius transformations to represent continued fractions can be used to address the problem

of generalising continued fraction to higher dimensions. We will see that restricting ourself to
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specific subgroups of the group of Mobius transformations also gives rise to alternate continued

fractions expansions.

DEFINITION 9. Two elements g and h in any group are conjugate if there is some f in the

group with h = fgf~1.

The relation of conjugacy on PSL(2,C) is an equivalence relation and the equivalence classes
are called the conjugacy classes. Thus, PSL(2,C) is partitioned into distinct, disjoint conju-
gacy classes. Conjugate Mcbius maps have similar properties, both algebraic and geometric,
so Mobius maps in the same conjugacy class need not be distinguished when applying such
properties. Conjugacy of Mobius maps plays a pivotal role in the classification of Mobius

transformations.

Mobius maps can be categorized in the conjugacy classes of parabolic, elliptic and loxodromic

elements as follows:

DEFINITION 10. Let tr(g) be the trace of associated normalised matriz of g in SL(2,C). Let
g be a Mobius map other than 1,,q,. Then

(i) g is parabolic if tr*(g) = 4;

(i1) g is elliptic if tr*(g) € [0,4);

(ii1) g is lozodromic if tr*(g) & [0,4]

The following theorem characterise the different conjugacy classes.

THEOREM 3. [2] Let g be a Mdébius map other than 1,,,,. Then the following are equivalent:
(al) g is parabolic;

(a2) g is conjugate to a translation z — z + 1;
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(a83) g has ezxactly one fixed point w and g" — w point-wise on Cu.

The following are equivalent:

(b1) g is elliptic;

(b2) g conjugate to a Euclidean rotation z — ¢z, where e # 1;

(b3) g has two fized points, and g"(z) converges if and only if z is a fixed point of g.

The following are equivalent;

(c1) g is loxodromic;

(c2) g is conjugate to a map z — kz, where |k| # 0, 1;

(c3) g has two fixed points u and v which can be chosen so that if z # v then ¢"(z) — u as

n — o0.

Note if ¢ € PSL(2,R) and g is loxodromic then ¢r?(g) > 4. In this case g is often called
hyperbolic with fixed points u,v € Ry. If z # v and ¢"(z) — u, u is called the attracting
fixed point and v is called the repelling fixed point. Further the parabolic and hyperbolic

fixed points are in R,,. Hence, if g(v) = v and v € R, then v is an elliptic fixed point.

PROPOSITION 1. [14]
(i) PSL(2,R) leaves Ry, and H? invariant.
(ii) PSL(2,R) acts transitively on geodesics in H?. Thus, the geodesics in H? are the orbit of

the fundamental geodesic Iy under PSL(2,R).

THEOREM 4. [2]
Let Isom(H?) = G* be a group of isometries of H2. Then G* = PSL(2,R) U PSL(2,R)w
where w(z) = —Z. Further, the group of isometries is generated by reflections in hyperbolic

lines. PSL(2,R) is the group of orientation preserving conformal isometries of H2. The group
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of orientation preserving conformal isometries is generated by an even number of reflections

of hyperbolic lines.

The Hecke groups that underly the A-continued fractions are discrete subgroups of the PSL(2,R)

and hence are groups of orientation preserving conformal isometries on H? (Section 2.2).

We close this introduction with the definition of isometric circles in C. These circles can be

used in establishing the fundamental regions of subgroups of PSL(2,R), [30].

+5b o
DEFINITION 11. Let g(z) = az+ g C £ 0, be a real Mdbius map that does not fix co. The
cz
isometric circle of g is given by I, : |cz+d| =1 or |z + 4| = I_il where ¢ # 0.

—d
We have that [, is a Euclidean circle with center — € R (since d,c # 0 € R) and radius
c

1

o We note that |g(z) — g(w)| = |z — w]| for z and w on I,. From Ford [7], we know g
c
maps [, onto I,-1 and maps the interior of I, to the exterior of I,-1. If 2 lies within I, then
|z + 4| < ﬁ and |¢'(z)] > 1. If 2 lies outside I, then |¢'(z)| < 1. This circle is the locus of

points in the neighborhood of which lengths and areas are unchanged by the transformation

g € PSL(2,R).

Finally, it can be noted that g € PSL(2,R) maps generalised circles to generalised circles in
Cw, but may map exterior of C to the interior of ¢(C) and vice versa where C is a Euclidean

circle in C, [14].






CHAPTER 2

The Hecke groups as triangle groups

1. The groups G, = (), )

We recall that the group of real Mobius transformations acting on C, is given by

b
PSL(2,R) = {z CH0 abedeR ad—be= 1}.
cz+d
We consider the groups G generated by transformations ¢ and 7,. Here ¢(z) = —1/z is

an elliptic generator and 7,(z) = z + A is a parabolic generator where A = 2008(%), q is an
integer > 3 with A < 2. We write G\ = (1), ) = (Tn, ¢ : (Tap)? = (SOT)\_I)q = ¢* = Lyap). SO
each element ¢ in G is a word in 7, and ¢. That is, g = 7,°¢7,'¢ - - - p7 "¢ where r; € Z for
1 > 0 but only ry and rp may be zero . We say ¢ is of length k + 1 if 7, # 0 even if rqg = 0.
We will show that these groups are the triangle groups known as the Hecke groups. Certainly

Gy < PSL(2,R).
We see that if ¢ = 3 then A = 1, if ¢ = 4 then A = v/2 and if ¢ = 6 then A = /3. Further

considering the diagram below and using the cosine rule we see that if ¢ =5 then A = %5

FIGURE 1. Isosceles triangle.

19
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Let AABC be an isosceles triangle with angle 7/5 at A and sides AB = AC' = 1. Then
B=C= 27/5. Bisect B to cut AC at D. Then BDC = 27/5 and so BD = BC = r.
Further since ADAB is isosceles we have that AD = BD = r. Since AABC|||ABDC we
and so 72 +7 — 1 = 0. Therefore r = ﬂ Since r > 0, r = ﬂ

r 2 2
Using the cosine rule in AABC' we see that

1—
have o !

r? =1+1—2cos(Z) or

2
—1+J5> 1445
2 2

)\:2cos(%):2—r2:2—<

When A =1 (¢ = 3), G, is the modular group. In the sequel we will consider the cases when

g > 3 is an integer and omit cases where A > 2.

2. Triangle groups

In this section we introduce triangle groups of type <mL1’ mlz, mls) with mll + m% + ml3 < 7. In
Section 2.3 we show that the groups G\ = (7, ) are the triangle groups of the type (%, o 0),

A= 2COS(§). Since triangle groups are composed of reflections in the sides of the given

triangles, we first establish the following proposition.

PROPOSITION 2. Let v be any geodesic in H2. Then the hyperbolic reflection in ~ is an

orientation reversing isometry of H? of order 2 that fizes each point of .

Proof

Let v = Iy be the fundamental geodesic, then R; : z — —Z is the Euclidean reflection in I

and R (ia) = —(—ia) = ia for all a > 0. So R; fixes [ point-wise. To establish that R; is an
a2
isometry of H?, we use the identity sinh? %C (z,w) = M , (Theorem 1, page 13). Let
AImzImw

21 = x1 + 1y; and 29 = x5 + iy be in H2. Then
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_Ri(z) —Ru(=)? _ |—a - (2) _ [a—af _|a—wnl
4Imzy Imzy 4192 4192 4192

sinh?® £ (21, 22), since Im(R;(2)) = Imz.

sinh? TC(R1(21), Ri(22))

Therefore ((R1(21), R1(22)) = ((z1, 22), so Ry is an isometry. R is a reflection of order two

and thus Ry ¢ PSL(2,R) since it is orientation reversing.

Recall that PSL(2,R) acts transitively on the geodesics of H?, (Proposition 1, page 16).
Let v be any geodesic in H?. We can find ¢ € PSL(2,R) such that v = g(I). Since g is
an orientation preserving hyperbolic isometry, gR;g~! is orientation reversing and fixes each
point of ~.

That is, for z € v we can find ¢! € PSL(2,R) such that g~!(z) € Iy and since R; fixes
Iy, we have Ri(g~'(2)) = g '(z) Thus, gR1g '(2) = z. Finally since R} = 1,,,, we have

(gng_1)2 = 1map-|:|

DEFINITION 12. G* of isometries of the hyperbolic plane is said to be of type («, 3,6) if and
only if G* is generated by the reflections across the sides of some hyperbolic triangle with

angles o, B and 6.
Such groups exist if and only if o, § and ¢ are non-negative and satisfy

O0<a+pB+0<m,

because this is the necessary and sufficient conditions for the existence of the triangle with

those angles. From [2] we know that the group of type («, ,0) is discrete if and only if

it is also of some type (mll, . m%), m; € Ziso. Suppose m; € Zs for i = 1,2,3 such that
1 1 1

— + — + — < 1. Then - + - + T < By Gauss-Bonnet Theorem (Theorem
my mo ms mq mo ms

2, page 14), the area of a hyperbolic triangle 7" with angles l, T oand = is u(T) =
mi Mo ms

m— (l + - + l) > (. Thus, a hyperbolic triangle T" with angles T for i = 1,2,3

)
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1
exist if — + — + — < 1. Note if m; = 2, my = ¢, mg = oo then for ¢ > 3 we have
1 mq mo ms

5 +-+0< 5 + 5= 1. Thus, hyperbolic triangle 7" having vertices ¢, v and oo with angles
q

™ T . . . T N s

24 and 0 respectively exists, with v = cos(%) +dsin(7).

In the sequel we restrict our attention to discrete conformal groups and use the terminology

from Katok. [15].

DEFINITION 13. G = G*N PSL(2,R) is a (my, ma, m3)-triangle group and is the subgroup of

orientation preserving isometries in G*.

DEFINITION 14. An open region D C H? is fundamental region of group G if
(i)
U g(D) =m

geG

and

(ii) DN g(D) =0 for all g # 1y in G.

The family {g(D) : g € G} is called a tessellation of H? by images of D, where D is the

closure of D in H?2.

DEFINITION 15. A set {Ga : a € A} of subsets of H? indexed by elements of a set A is called

locally finite if for any compact subset K C H?, Ma N K = 0 for only finitely many a € A.

DEFINITION 16. A group G acts properly discontinuously on H? if the G-orbit of any point

2 € H? is locally finite.

Katok [15], states that a group G acts properly discontinuously on H? if and only if each orbit
is discrete and the order of the stabilizer of each point is finite. In fact, the discreteness of all

orbits already implies the discreteness of the group.
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DEFINITION 17. A subgroup G of PSL(2,R) is called discrete if the induced topology on G is
a discrete topology, i.e. if G is a discrete set in the toplogical space PSL(2,R). A Fuchsian

group 1is a discrete subgroup of PSL(2,R).

THEOREM 5. [15] Let G be a subgroup of PSL(2,R). Then G is a Fuchsian group if and only

if G acts properly continues on H?Z.

It has been shown by Hecke [10] that G is Fuchsian if and only if A = 2cos(T) where ¢ > 3
is an integer, (1 < X\ < 2) and for every real A > 2. In our study we will only be interested
in the cases where A = 2cos(%), 1 < A < 2. From [14] and [15], we explore the proof of the

following result.

THEOREM 6. Let T' be a hyperbolic triangle with vertices vy, vo and vy where the angles w/my,
m/msy and m/ms are at these vertices respectively, with sides My, My and Msz opposite these
vertices. Let G* be the group generated by reflections Ry, Ry and Rs in sides My, My and
Mj; respectively. Then G has representation giwen as (Z,ZY : Z"3 = Y™ = (ZY )™ = lap)

where G = G* N PSL(2,R), Z = RiRy and Y = RyR3.

V]

FI1GURE 2. Hyperbolic triangle 7'.
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Proof

Let R; be the hyperbolic reflection in the geodesic containing sides M; for i = 1,2, 3 respec-
tively and also let G* be the group generated by Ry, Rs and R3. Since R; ¢ PSL(2,R) for
i =1,2,3, G* is not a Fuchsian group. Consider G = G* N PSL(2,R). Then G* is the union
of disjoint right cosets of G* modulo G. That is, G*/G = {G,GR,} or G* = GU GR; where
|G* : G| = 2. The image of T" under R; is the hyperbolic triangle with sides R;(M;) = M,

R1 (Mz) and Rl(Mg)

Ficure 3. Hyperbolic 4-gon T'U RyT.

We note that Ry Ry Ry ' (R1(Ms)) = Ri(Ms) so RiRy Ryt = Ry Ry Ry is the reflection in the side
Ry (M,). By this reflection, R, (T) is transformed to Ry Ry Ry ' (R1(T)) = Ry Ry(T). Continuing
to reflect in the sides of the transformed triangles with vertex vs, we generated a chain of
hyperbolic triangles 7', Ry(T), RiRo(T'), RiR2R1(T),....... (R1R3)™ 'Ry(T). We know that
the product of reflections is a rotation so Ry Rs is a rotation, through 377; about the vertex vs.
Thus, (RyR2)™® is a rotation about vs through mg(i—z) = 27m. Hence, (R1R2)™(T) = T and

(R1R2)™ = Lynap-

Each g € G* expressed as a “word” in the reflections Ry, Ry and Rs. Clearly we see that R? =

R} = R = 1,,4p. From above, we also see that (R;R2)™ = (RoR3)™ = (R1R3)™ = Lyap.
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Since G = G* N PSL(2,R), G consist of orientation preserving isometries in G*. Thus, G is
generated by pairs of products of Ry, Ry and R3. We note if Z = R;Ry; and Y = Ry R3 then
"M =Y"™ = (ZY)™ = ly,, where ZY = RiRyRyR3 = Ry R3. If we set P, =T U Ry(T)
this polygon has vertices vy, ve, Ri(v1) and vg with sides M3, Ry(Ms), My and Ry(Mj3). The
presentation of G is (Z,ZY : Z™3 = Y™ = (ZY )™ = l,,4,) and G is the triangle group of

type (s =, o). O

m3

In [19], Magnus shows that A = {g(T) : g € G*} tessellates H? in that no two G* images
of T overlap and every point of H? belongs to some G* image of T. We also note that the
sides of P, = T'U Ry(T') are paired by the generators Z and ZY of G. That is, Ry (M) =
(R1RoRy)(Ri(Ms)) = RiRy(My) = Z(Ms) and similarly Ry (Msz) = (RiR3Ry)(Ri(M3)) =
Ry R3(Ms) = ZY (Ms). The Poincare Theorem [2], then gives G as a discrete group and P is
a fundamental polygon for G. Poincare’s theorem in fact gives everything, including Theorem

6. We have thus established:

THEOREM 7. The triangle group G of type (mil, g mls) given above is generated by Z = Ry Ry
and ZY = RiRs. The group has presentation (Z,ZY : Z™ = Y™ = (ZY )™ = lyap).
Furthermore P; = TU R;(T) is a fundamental polygon of G fori =1,2,3 and H? is tessellated

by P; under G.

3. The Hecke groups

We now consider the triangle groups of type (7, %, 0) where ¢ > 3 is an integer.

DEFINITION 18. Let T' be a hyperbolic triangle having vertices i, v = COS(%) + isin(%) and

oo with angles 3, 7 and 0 respectively. The (2, q, 00)-triangle group is called the Hecke group

H(X), where A =2cos(%) and g > 3 is an integer.
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F1GURE 4. Hyperbolic triangle T'.

Using the construction of triangle group in Section 2.2, we find H* to be the group generated
by reflections in the sides of triangle T. H(\) = H* N PSL(2,R) is the (2, ¢, co)-triangle
group. Since H? is tessellated by T under H*, the images under H* of any point z in H? form

a discrete set. The following results follow directly from Theorem 7.

THEOREM 8. A fundamental region of the triangle group H(\) of type (3, o 0) is given by
D ={z € Cw: |Re(2)| < 5 and |z| > 1} where A = 2c0s(7), q = 3 is finite integer. Certainly
D = T U R,T where Ry is reflection in the side of T opposite the vertex v. Furthermore

H(\) is generated by compositions Ry Ry and Ry Rs where Ry(z) = —Z, Ra(z) = —(Z+ ) and
1

R =—.

3(2) = 2

We note that T'U RyT or T'U R3T are also fundamental regions of H(\) in H?.

THEOREM 9. G = (T, ¢) = H(\).

Proof

Let Ry, Ry and Rj3 be reflections as in Theorem 8 above then R1Ry = 7y, RiR3 = ¢ and

RyR3 = Typ. So the two groups G and H(\) are the same and have the same fundamental
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region. That is, G is the Hecke group and is the triangle group of type (5,%,0) with A =

q?
2cos(7) where ¢ > 3 is an integer. [J

In what follows we will represent the Hecke group H(\) by Gy, A = 2008(%) and ¢ > 3 is an

integer.

® —®
" U "
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FIGURE 6. T U R,T.
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We note if D = T U RyT where Ry(z) = —% + A then the union of the g-images of D under
(Tap) is an ideal g-gon, because this map is a hyperbolic rotation by 27/q about the point v.

Here the vertex v = cos(%) + isin(7).

DEFINITION 19. The union

DU T)\gp(ﬁ) Us“eonne U (T/\Sp)q_l(b) = U(TA@)i(E)

=0

is called the v-cell and denoted by N,(v) where ¢ > 3 is an integer.

DEFINITION 20. Stab(w,Gy) = {g € Gy : g(w) = w} < Gy.

We note that the fundamental domain D = TUR,T has exactly one vertex v = cos(7)+isin()
that does not lie on a vertical geodesic. Vulakh [30] (page 2299) notes that in such a case

N,(v) is a fundamental domain of some subgroup of G, with index equal to |Stab(oco, G,).

If w = oo then Stab(co, G) = (7). Since v = cos(7) +isin(7) is in H?, it is an elliptic fixed
point for any g € Stab(v, G,). For g € Stab(v,G)), (g) is a cyclic group that fixes v and is a

subgroup of G, a Fuchsian group. Thus, (g) is a finite elliptic cyclic group, [15].

Following Haas and Series [9], we establish that Stab(v, Gy) = (p), where p = T\¢.

THEOREM 10. Let T'y be the subgroup of Gy generated by elements plop™ = ; for i =
0,---,q— 1 with p = Taxp. Then I'y < Gy of index q, G5/T'x = (p) and Ty has fundamental

region Ny(v). The vertices of N,(v) are p'(c0) fori =0,1---q—1. Further Stab(v,G,) = (p).

We will prove Theorem 10 by Propositions 3 to 8 that follow. Recall G = (7y, ), p = Tap
with p? = 1,,4p. We consider the elements ¢; = p'pp~ for i = 0,1,---q — 1.

Set X ={p; :i=0,---q— 1} and let T, = (X) be the group generated by the elements ;.
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The group, I'y is the smallest subgroup of G containing X. We note ¢y = ¢ so ¢ € I') and

Pg = Png = Yo = @ for n € Z.

PROPOSITION 3. 'y < G,.

Proof

Since I'y < G, by definition, we need only show that I'y is closed under conjugation by
elements in G,. In particular, we need only show that I'y is closed under conjugation by the
generators of GG). Specifically, only conjugation of the generators ¢; of I'y by the generators,

@ and 7, of G need to be considered. Firstly note that

Ty = Taep(me){ (1) to(Tap) " Hmap) Tyt
= (1@)(Tap) H1a @) { (1) o) " Hma) T2 (Tap) (o) ™

= p1pir11 € L'y,

Further 75 'p;imy = 73 (@) {(1a) L o(ma) 7 H ) 7

= o{plpp "V}

= p;_1p € I'y.

Thus, since I'y = (X) we have that T)lng)\_k eIy for all g € T'y where k € Z. So the group, Iy

is closed under conjugation by 73, r € Z.

Secondly, pp; 101 € Ty since @, p; € T'x. So Ty is closed under conjugation by . Therefore

<G, O

Since I'y < Gy, G,/T') is a group where elements are cosets of GG, modulo I'y. Certainly,

ot € Gy /Ty for 0 <i < g where p = T\ € G).

PROPOSITION 4. 75 € T'\p' for some 0 <1i < q where r € Z and T'\p" = {gp' : g € s}
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Proof

If r = 0 then 1) = Liap = pY and Linap € I'y since I'y is a group. Assume 0 < r < ¢ is an

integer. We note that o192 -+ @.p" = (pp)" = (Tapp)” = 75. Therefore 7{ € T'yp".

If r = q then 7§ = ©100- - 0up? = P12+ g1 € Iy = Typ?. If r > g then r = ng + ry,
0 <1y <gq Now pips---p, € I'y and (p1p2---¢,)" € I'x. Thus, if r = ng + r¢ then
TR =Ty Ty = g1gap™ € D™ since g1, 92 € Ty, g1 =77, g2 = P12 o, and 0 < 1p < g If
r < 0then —r > 0so 7, " € ['\p™* where 0 < k < q. So7," = (192 - )" (P12 - Pry ) P°
by the division algorithm. Thus, 7{ = p™"(@ry@ro—1 - ©1) (P12 - @g) " € p L'\ =Ty\p™

since I'y <t G. Therefore 75 € I'yp™™ = ' p? "™ where 0 < g —1y < ¢q. U

PROPOSITION 5. For each g € Gy, g € T'\p* for exactly one 0 < i < q.

Proof

Let g € Gy with g = 7°p7y' - o7 "¢ where r; € Z — {0}, ro and 7, may be zero. By
Proposition 4, 71° € Typ* for some 0 < ky < ¢. Now 7% = hptop = hpropphopko =
h(pfopp=o)pko € Typko where 0 < ky < ¢, h € Ty < Gy. Also 7°p7t = hypfophypht =
hip™phop=ho pFo gkt = hy{pFophyp=Fo} pFotkt € Ty pF where hy, ho € Ty, 0 < k = ko + k1 mod q

and I'y < G. Therefore inductively, g € I'yp’ for some 0 < i < g.

Suppose [yp' N Typ? # 0 with hyp' = hop’ where hy,hy € T'y,0 < i,5 < g and i # j. Then
hythy = pP~" € T'y. Let k = j — i then I'ypF = I'y where k # 0. Since p* € T'y, (map)* € Ty
and we have 7% € Ty, conjugating by 7, repeatedly. But 7% € T'\p' for 0 <t < q. Sot =0
and k =ngq, thatis j—i=k=ngfor 0 <t <gq. Sot=0and k =ng, thatis j —i =k = nq

or j =1 mod q. But we assumed that 0 < 1,5 < ¢ and so ¢ = 7 which is a contradiction. [J
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PROPOSITION 6. G is partitioned into q distinct, disjoint cosets modulo I'y and

q—1

Gr= T’
=0

with Taxp' NTzp? =0 if i # j and hence G /Tx = (p).

Proof
'\ <Gy so G, /Ty is a group. Cosets in G, /I"y are {I'\g : g € G} and I'\g; = I')¢» if and only
if g1g, ' € I'y. We know if g € G\ then g € T'yp’ where 0 < i < ¢. That is, Tyg = ['\hp' = T'\p’
where h € Ty and 0 < i < gq. By above I\p' NTyp/ # 0 for 0 < 4,5 < g and 7 # j. Thus,
G)\/F,\ = {F)\pz -0 §Z< Q} and

q—1

G)\ == U F)\pi.

i=0

Note that |G : I'y] = ¢. Thus, ') is a subgroup of index ¢ in I'y. Certainly G, /Ty = (p)

where I'yp’ is mapped to p! for 0 <i < ¢. O

PROPOSITION 7. A fundamental region for I'y is the open set N, (v) — ON,(v) where
qg—1
Ny(v) = J /(D)
i=0
ONy(v) is its boundary and D is a fundamental region of Gx. This is an ideal g—gon with

vertices {p'(c0) :i=0,1---q— 1}.

Proof

We have that the v-cell,

is the union of images of D by powers of p. We recall that ¢; = p'pp~" and note that

trip; = tri(piop") = trip = 0. Each ¢; is of order 2 and is elliptic. From Section 2.3,
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D =T U RyT and is bounded by the curves, Re(z) =0, Re(z) = A, |[z] =1 and |z — A| = 1.
The vertex v = cos(%) + isin(%) is fixed by p = Tap. We have seen that for i = 1,0,---¢ — 1
the images of D under p* are copies of D with common vertex v and p°(D) = p?(D) = D. The
union of images of D under p' is a g-gon with vertices {p’(0c0) : i =0,1---¢—1}. Thus, a side
of this g-gon is a geodesic with end points o; = p'(00) and a;_1 = p"1(00) O Yoy 1.0; = Si-

i

Then p;(cw) = (p'pp™")(p'(00)) = plp(00) = plp(13 ! (20)) = p'~*(00) = a1

Also pi(ai-1) = (p'pp™")(p"H(00)) = pi(pp~"(00)) = p'p(pry ')(00)) = p'(00) = ;. That is,
©i(s;) = s;. So each side is fixed by a generator of I'y. Further ¢; has a single fixed point
corresponding to the fixed point of ¢ on Iy. So N,(v) — IN,(v) is a fundamental region of I'y

by Theorem 7. []

PROPOSITION 8. Stab(v,Gy) = (n\p) = (73 '), a cyclic group of order q.

Proof

Let p = Ty and since p(v) = v where v = cos(7) + isin(%) we have (p) C Stab(v,G)). By
Proposition 6, GG, is partitioned into distinct, disjoint cosets modulo I'y. So G, =T\ UT'\p U
Cyp?U--- U\t L If g € Stab(v,Gy) then g(v) = v. Suppose g = ¢; for some 0 < t < ¢
then g(v) = ¢s(v) = plop~t(v) = v. From this equation we see that pp~*(v) = p~*(v). Thus,
p~(v) =i, the only fixed point of ¢ in H2. But p~*(v) = v so v = i which is a contradiction
since ¢ # 2. Hence, if g € T’ then g = 1,,4,. By Proposition 5, g € I'yp" for some 0 < k < q.
Let g = hp” with g(v) = v. Then hp*(v) = v or h(v) = v for h € T'y. So h = 1,,,4p and g = pF,

0 < k < gq. Therefore Stab(v, Gy) = (Tap) = (p), as required. [
It is immediate now that Theorem 10 holds as a result of Proposition 3-8.

Hence, as in [9], that G,/T'\ = (p) = Stab(v,G,). We explore Stab(v,G,) and N,(v) for

g =3,4,5 and 6 in the following example.
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EXAMPLE 1. (i) A = 1 when ¢ = 3. From Theorem 8 (page 26) above, we have fundamental
regions Dy = {z € Cw : |Re(2)| < 5 and |z| > 1} while Dy = {TUR,T'} where Ry(z) = —Z+1.
Then Figure 7 displays N3(v) as the union of 3 images of D, under (11¢). The triangle group

G, is the modular group generated by 7 = z 4+ 1 and ¢(z) = —1/z. It is the Hecke group of

type (3, 5,0).

FIGURE 7. Nj(v) for g = 3.

(i4) A = v/2 when ¢ = 4. From Theorem 8 above, the fundamental region

Dy ={z € Cy : |Re(2)] < ‘/75 and |z| > 1}. The triangle group G, is the Hecke group

generated by ¢(2) = —1/z and 7, = z+ /2 where A = v/2. It is Hecke group of type (%, %, 0).

Ny4(v) is the union of 4 images of Dy, Dy = T U RyT where Ry = —% + /2.

(1ii) A = @ when ¢ = 5. From Theorem 8 above, the fundamental region

D, = {z € Cx : |Re(2)] < @ and |z| > 1}. The triangle group G, is the Hecke group

generated by ¢(z) = _71 and 7, = z + @ It is Hecke group of type (3, §,0). Ns(v) is the

union of 5 images of Dy, Dy = T'U RyT where Ry = —% + @

(iv) A = /3 when ¢ = 6. From Theorem 8 above, the fundamental regions

D) ={z € Cy :|Re(2)| < \/75 and |z| > 1} or Dy = T'U RyT where Ry(z) = —% + /3. Then
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Figure 8 below displays Ng(v) as the union of 6 images of D, under (7,¢). The triangle group
G is the Hecke group generated by 7y = z ++/3 and ¢(z) = —1/2. It is Hecke group of type

(5,

,0).

SE]

FIGURE 8. Ng(v) for ¢ = 6.



CHAPTER 3

A-fractions
1. M-continued fractions and elements of G

In what follows we assume ¢ > 3 is an integer with A = 2 cos(%) and treat A\ as an indetermi-

nate. The development follows Rosen [25].

DEFINITION 21. The set XZ = {\x : © € Z} is called the set of A-integers. In fact \Z is a

commutative ring with no zero divisors.

A finite A-continued fraction is of the form:

T‘Q/\—
7"1)\—

1

N -
"2 TR

where r; € Z — {0} for all 1 <i <k, ry and 7, may be zero. These A-continued fractions can
be expressed as follows:

Let 7\ (2) = 2+ A and ¢(z) = —1/z then

35
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DEFINITION 22. A finite A-continued fraction (as above) is called a A—rational or A-fraction.

In particular, if r; = 1 for all 7, we have the A-fraction of the form

where p = T\p(c0) and r € ZT.
Theorem 11 and 12 follow from Rosen [25] with slight adjustments in the proofs.

az+b

THEOREM 11. [25] If an element g(z) = d belongs to Gy then a/c = g(c0) is a finite
cz
A-fraction. Conversely if a rational a/c is a finite A\-fraction, we can find b/d such that if
az+0b
= th G.
9(z) = —— then g € G,

Proof

Let g € G\ = (1, ) with 7\(2) = 2+ X and p(2) = —1/2z. The map ¢ is a word in 7, and

@ given by g = 1,°¢1\ ¢ - - - o7 " where 1; € Z — {0} for 1 <i < k, 79 and ry may be zero.

Thus,
70 T1 Tk 1
g(oo) =afc=T1"p1\ -+ ©T\*p(00) = 1A — i
7’1)\ — 1
rA=
R
That is, a/c is a A-fraction. Also
70 1 Tk—1 1
g(0) =b/d=1"p1'¢p- - o1,  p(00) = 1o\ — T
7’1)\ - 1
AN —
"2 T

Thus, g(co) = a/c and ¢(0) = b/d are consecutive convergents of a A-continued fraction, with

g(00) succeeding ¢(0) and ad — bc = 1 as given.
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Conversely, if a/c is a A-fraction then we can find a finite set of A-integers such that

ajc=ro\ — i =T"p7 T F(00) = T pTy e - - - T F(0).
7”1)\ — 1

Y

’I"g)\ -

Let b/d = ro\ — =707 0 -+ T 'p(o0). Then a/c is the k™ con-

7“1)\ —

1

Y
vergent of a A-continued fraction where b/d is the (k— 1) convergent of the same \-continued

7"2)\ —

fraction. We then know that consecutive convergents of any real continued fraction are adja-
cent and |ad — be| = 1. Let g be the word in 7, and ¢ given by g(z) = 7\°¢1' ¢ -+ T\"¢(2)
where 7, # 0. Then g(c0) = a/c, g(0) = b/d and |ad — be| = 1. Since G\ = (7, ), g € G, as

required.[]

b
COROLLARY 1. Let g = 17,°p7y'p -+ T\'p € Gy, where g(z) = azid and the \-fractions
cz

Tk T T1 Tk a
g(oo) = 1°p1tp -+ T (o) = a/c and g(0) = 1\°p7y -+ T\"p(0) = b/d. Then o=
Ap1(A?) b pa(A\?) a  pi(\?) b Ap(A\?)
and — = or— = and — = where p1(A2), pa(N?), 1 (N\?), ¢2(\?) €
q1(/\2) d )\QQ()\Q) c )\6]1(/\2) d q2()\2) P1( ) p2( ) Q1( ) CI2( )

ZIN?] for k even or odd respectively. Here Z[\?] is a ring of polynomials over \* with coefficient

in Z. We may write p for p(A?) for simplicity in the sequel.

Proof

Let afc = 1°p7y -+ Ty Fp(00) and b/d = 7,°p7 ¢ -+ T,"p(0). We prove the results using

induction on k& > 0 where (k + 1) is the length of the word in G,. If &k = 0 (even) then
Ap(\?)
g(N?
where p(A?) = 1 and ¢(A\?) = 0, the zero polynomial. If k¥ = 1 (odd) then

o . 1 Nrgr—1 A2
ajc =700 p(00) = (A1) = Arg— prol 0)\;1 = fq(()\Q)) where p(A?) = Aror;—1

a/c = 1,°p(00) = Arg = with p(A?) = ro and q(\?) = 1. Also b/d = 7°p(0) =

vy _ P(Y%)
W=

~—
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Ap(X?)
9(3?)
p(A?) = rg and ¢(A\?) = 1 are in Z[)\?]. Thus, result holds for k£ = 0 (even) and k¥ = 1 (odd).

and ¢(A?) = ry are in Z[N?}]. Also b/d = 1,7 ¢(0) = 1,°(0) = Arg = where

Tk

Assume results hold for expansion of length ¢ < k where k € Z*. Thena/c = 1,°¢7'¢ -+ 7\ p(00) =

o (1 . o [ AP(N? o [ PN
oe{Tie s Te(o0)t = TA090< ( )) or 7,° ( )

) for k£ even or odd respectively,

%) )
. . . 1 q(A A rop(A7) — q(A
by induction hypothesis. Thus, a/c = Arg — W = Arg — )\p(()\?)) — 0 ()\p())\2> (
1 Ag(\? A A?) — q(\?
ATy — ——5— = Arg — a(\) = (rop(A°) — (A7) as required for ro = 0 or g # 0. Thus, the
vy pO¥) pO%)
result holds for an expansion of length k& + 1. Hence, result holds for all k.
b_p A
From above, g € G so gp € G and gp(c0) = ¢(0) = b/d. So from above i v Thus,
q

Ap1(A)z + pa(N?) p1(A%)z + Apa(A?)
if g € G the th \? - =1o =
19 € e 2 = ey g, M A Tt = Lo 00 = G 00)
with p1ga — Npeqy = 1. O

a1 AP
LEMMA 2. For p,q € Z[N\*], — and )\— are \-fractions.
q
Proof
Let p,q € Z[)] and ay = AP € R. Since R is tessellated by the interval [0, A] under
q

Stab(oo, G)) = (7a), we can find an integer ng such that ngA < ag < (ng + 1)A or ng <
ag/N < ng+ 1. Let myg = [ap/A] be the nearest integer to ap/A. Then % = mg + &y where

2
- >1 1< A<2.
)\’50’ = > 1 since <

1 A
|0g] < 3 Thus, ag = Amg + doA, where [pA| < = and

1
Write oy = 5 € R. Repeating the above process we can find m; and d; such that
0
1 1
ar = miA + (A = A + — = muA + — where my € Z, |ag| > 1. Thus, ag = Amg +
— Qg
(3P

1 A
. Since we know oy = —p, a finite A\-fraction, we can repeat this process only a
q

)\ml—l——

finite number of times. That is, we can find a finite set of integers r; for « = 0, ...., k such that



1. -CONTINUED FRACTIONS AND ELEMENTS OF G 39

040:)\7’0— 1 =

1 Ap
/\7’1 — q

. Thus, ag is a A-fraction. Similarly if o = )\ﬁ we can
q

1
Y

/\T’Q —

show « is A\-fraction. U
We know that Stab(oo,Gy) = (7\) with 7¢(2) = z + nA. Then 7(c0) = oo = 1/0 and

(0) = nA.

Ap(A?
LEMMA 3. If a = 1,°¢7'p--- T\"p(o0) = p<1 ) where k is even then p(\?) € Z. If

1
a="T"er g T\"p(o0) = SVES] where k is odd then q(\?) € Z.

Proof

Let a be a A-fraction so there exist finite integers r;, ¢ = 0,--- , k such that

o = 7«0)\ _ 1 = 7')7:0 ...... QD’T;:kQO(OO)
7"1)\ —

N -
"2 TR

where rg and rj, may be zero with A = 2cos(%) € R — Q.

If ¥k =0 (k even) then @ = 79\ and p(\?) = ry € Z as required. If k = 1 (k odd) then
2 _ 2
a:ro/\—izrorl)\ 1 p(A%)

A A Ag(A2)
assumption. Thus, deg(\, Q) < 2. So deg(A, Q) = 2 since A ¢ Q. Since this is not always

Thus, ¢(A\?) = r; and p(A\?) = reriA? — 1 = 1, by

true, [1] (page 7018), either ro = 0 or ry = 0. If ro = 0 then o =

as required. If r; =0

then we revert k£ = 0 case. Thus, the result holds for £k =0 and k& = 1.

1
Inductively, assume that if o = Tp or — is a A-fraction of length k& + 1 where k is even or
q

odd respectively, the results hold.

Thus, consider

a=T"p1 @ o1 (00)
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with length k& + 1.

Ap(A?)
1

So B = @1, (@) = o7, " (Ap(A?))

Assume k is even, then o =
B -1 B 1

(A2 = A A(ro — p(A?))
k where k — 1 is odd. By induction hypothesis 1o — p(\?) € Z, and so p(\?) € Z for k even,

is a A-fraction of length

as required.

1
Let k be odd (k + 1 is even) with a = 0T (Corollary 1 above). Then fy = Tap(a) =
q
AL = q(A?)
1
and the above case, 1 — q(\?) € Z and so ¢(\?) € Z. O

and it is a A\-fraction of length k+2 where k41 is even. By induction hypothesis

DEFINITION 23. A-fractions a/c and b/d are said to be A-Farey neighbors if |ad — bc| = 1. If

ad —bc =1 then g(z) = Zjiz is in Gx. If ad — be = —1 then g(z) = :(cljidb is in Gy. We
te L0
write — ~ —.

DEFINITION 24. If a/c and b/d are A-Farey neighbors then the geodesics Ya b in H? is a

A-Farey geodesic.

We note from Lemma 3 that all A-integers (An) have 1/0 = co as a A-Farey neighbor. The
A-Farey geodesic between these A-Farey neighbors is a Euclidean vertical line 7,5 . The

geodesic Ya b is thus g(Ip) where g € G and Iy = vy .

LEMMA 4. The A-Farey geodesics in H? are the orbit of Iy under G. Certainly the image

under G of any A-Farey geodesic is again a A-Farey geodesic. Also if a/c and b/d are A-Farey

neighbors then h(a/c) is a A-Farey neighbor of h(b/d) for any h € G.

Proof

az+b
cz+d

Certainly g(oco) = a/c and ¢(0) = b/d and v = g(Vx,0) as required. If ad — bc = —1 then

Let the A-Farey geodesic v = Ya b and assume ad — bc = 1. Then ¢(z) = and g € G,.

(Corollary 1 above). Let 81 = o1, () = 7y ¢ -+ - pTy*p(00

).
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— b
g(z) = —Zid and g € G. Once again 7 = Yap =Yba = 9(700,0) as required. Let h € G
a b —az+b
and el with g(z) = Ep——1 g € Gy. We know gh € G,. Then h(vg’%) = Tn(2)h(k) =
hg(7Vs00) and h(a/c) = hg(1/0) while h(b/d) = hg(0/1). So h(a/c) ~ h(b/d). The result
—az+b
foll imilarly if = .
ollows similarly if g(z) p—
b A b b A
From Corollary 1, if 22 and d= ﬂ, then = = 22 Also if £ = PL then = = 222
c cq d  Ag bc A1 d ¢
where py,ps, q1 and go are all in Z[N\?]. We note that if g(z) = azj_—d, g € G then a/c is in
cz
A
the orbit of co under G,. Note, a/c is a A-fraction of the form 71) or )% where p, q € Z[\?].

The M-fractions, a/c and b/d are consecutive convergents of a A-continued fraction. Following

Rosen [25], we have the following equivalence for A-rationals.

THEOREM 12. a/c is in the orbit of co under Gy if and only if a/c is a parabolic fized point

of some h € Gj.

Proof

b
Let g € Gy be given by g(z) = — ’
(674

a Ap
and g(co) = a/c. Assume o« = — = — where p,q €
d g(c0) = a/ e = g Vherep.g

A
. Certainly o = P ¢ R since A p,q € R. Thus, s € PSL(2,R)
q

Z[N?], and let =
[A?], and let s(z) o
with s(a) = 0o and s7'(0c0) = a. Further « is fixed by s~ !7ys since s 'm\s(a) = s71(c0) = a.

Since 7, is parabolic in PSL(2,R) so too is the conjugate s~'7\s = h parabolic in PSL(2,R).

We now show that s € G,.

1 1 Apz — A
s(z) = =3 -7 a and s71(z) = ARG _AP 1/z , therefore
a—z ?”—z Ap—qz —qz+M\p qz q

A
s o0) = 2P yhere p,q € Z[\?] C R. By Lemma 2, this is a A-fraction and by Theorem 11,
q

s71 € Gy so s € Gy. Thus, a is a parabolic fixed point of h = s~ !1ys € G.

Conversely, assume « = a/c is a parabolic fixed point of some h € G. Let @ = 0 or a = 0.

Then since 7, (00) = 0o and ¢(0o) = 0 both 0 and oo are in the orbit of co under G,. Assume
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A A
a # 0 or oo with @ = h(«) for h € G. Then h(z) = P12+ P2 or 2% + p27 by Corollary 1.
Gz + A2 A1z + ¢

So (Apra+ps) = a(qa+Ag) or (pra+Aps) = a(Aqra+¢). Then a?q +a(Ag2—Ap1) —p2 = 0

or a?(Aq1) + a(qz — p1) — Apa = 0.

Case (7).
Assume o?q; + a(Ag — Ap1) —p2 = 0 and ¢ = 0. Then a = P2 = P2
Ag2 —Apt Mgz —p1)

where py, pa, q1, G2, @2 — p1 € Z[N?]. Then by Lemma 2 « is A-fraction. Then by Theorem 11,

Case (7).
A=A AL — o —
If g # 0 then o = A=A _ A=) o —Ae-p)
QQ1 2Q1 2(]1

and hence an orbit of co under G,.

is a A-fraction (Lemma 2)

Similarly, results hold if a?(Aq1) + a(gz — p1) — Ape = 0. O

Hence, we have established the following equivalent statements:

b
(1) g € Gy, g(2) = Zj—i—i—_d where ad — bc = 1 and a,b,c,d € R.

(1) a/c and b/d are finite A-continued fractions (A-fractions) with a/c = g(o0) and b/d = ¢(0)
for g € G,.

A A
(17i) a/c and b/d are of the form 2P and 22 o PLoang 222

G2 A A 2

(1v) a/c is parabolic fixed point.

Hence, M\-fractions are parabolic fixed points of some h € GG and are in the orbit of oo under

G,. Further a/c and b/d are A\-Farey neighbors.

PROPOSITION 9. \-Farey geodesics cannot intersect in H?.

Proof
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Let v = ’y{ﬂ 5 } and vy = 7{102 n } be two distinct A-Farey geodesics. Assume v, Ny, # 0.
a1’ qy a2’ qy

Pz + Dy

=, g€ Gy and [pig) — pyq1| = 1. Thus, g7'(71) = Iy (Lemma 4, page 40).
@1z +q

a b
b = vz intersects Iy at a point t € . Thus, — <0 < 7
7d C

Let g(2) =

Let g7 (2) =

ole

i D0 b/d

FIGURE 1. Similar triangles.

Since ADAB|||ABAC|||ADBC and by Pythagoras’ theorem we have that t* = |AD||DC| =

la/c|[b/d|.
2 b al’ 2 2
=((a/c—=0)*+ (t—0)?) + (b/d — 0)* + (t — 0)?
=a%/c* + b /d* + 2t*
Thus, |2 = 2] = 21202 4 2laellb/d) = (& + 2 " Theretore (- @) (@40
us, E E = a"/c a/c = - d . ererore d - = - d .

b
If (g - 2) = (g + E) then 2a/c = 0, so a = 0. This is impossible since a/c < 0. If
c c
b a a b . . .
7 2) =2 + p then 2b/d = 0 and b = 0. This is not possible since b/d > 0. Thus,
c c

the two geodesics v; and 7, cannot intersect. [






CHAPTER 4

The \-Farey tessellation of H?
1. Tesselation of H? by a fundamental region under G

We have seen in Section 2.3 that D; = T'U R;T tessellates H? under G, for i = 1,2,3. We

have proved the following results, (Theorem 8, page 26).

™

The triangle group H(A) of type (3, 7,0) is generated by 7y\(z) = z + A and ¢(z) = —1/z.
The group has presentation (7a, ¢ : ¢* = (a9)? = lygp). Further, D; = T U R;T is the
fundamental polygon of the group H(A) for i = 1,2,3 where Ry(z) = =%, Ra(2) = —(Z+ A)

1
and R3(z) = = We also established that H(\) = G,.

From Vulukh [30], we note that the fundamental regions could alternately be determined

using isometric circles of elements in G as follows.

We know oo is the parabolic fixed point of 7). We have seen that Stab(co,Gy) = (7). Let

B = [, 4] be a Dirichlet interval of Stab(co,G,) and let By, = {(z,t) € H* : x € B}. We

b
recall that g € G, with g(z) = azi—d and ad — bc = 1 has isometric circle |cz 4+ d| = 1 if
cz
a(cz+d) — c(az +b) 1 1
0. So ¢'(2) = = d |¢ = ——70. If|¢ <1
¢ # 0. Sog'(2) (2 1 d)° e rae M@l = g )

then |cz 4+ d| > 1 and z lies outside the isometric circle. Note that the isometric circle of

—1
= -— 1 = 1_
p(x) = —is |2

Thus, D = {z € C : |Re(2)| < 5 and |z| > 1} = T U R, T, can be written as the intersection
of By, and the exterior of all isometric circles of G. That is, D = B,,N{z € H?: |¢'(x)| < 1,

g € G1}. We note the closure of D is D = {z € C : |Re(z)| < 5 and |z| > 1}.

45
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FIGURE 1. Tessellation of H? by D under modular group, A = 1.

2. M-Farey tessellation and ¢-gons

In this section we show that the v-cell N,(v) introduced in Definition 19 (page 28), tessellates

H? under G,.

DEFINITION 25. Let K = K(00) = (13)(D), the union of the orbit of D under Stab(oo, G).

We note K has a vertex at co. We may note that if K(g(o0)) := g(K(00)) then K(g(o0)) has

a vertex at g(0o). Since g(00) is a A-fraction, K(g(co0)) has a vertex at a A-fraction.

Let OK be the boundary of K. We say that 0K N D is the floor of D where
OKND={2€C:|z|=1and |Re(z)| < 3}.

Recall that v = cos(7) + isin(7) and Stab(v, Gx) = (7ayp), (Proposition 8, page 32).
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[ ' |

cos(w /q) -I! isin{m/q)

. N
2eos(m/q)

FIGURE 2. K(o0).

In what follows we will consider D = T'U RyT" as in Section 2.3, Figure 6 (page 27).

We have seen for ¢ > 3, v-cell N,(v) is defined as

N,(v) = DUTyp(D) U (13p)4(D) ... U (1) Y(D) = UIZs ()" D.

Further, the v-cell N, (v) is a ¢-gon with vertices on R.,. From Proposition 7 (page 31), the

vertices of N,(v) are the orbit of co under (7\¢) being

{00, p(00), p*(00), -+, p7~1(00)} = {00,077} (00),077%(00), - -, 0 (00) }

where p = Typ = 077, p? = 1,0p-

LEMMA 5. The vertices of a v-cell Ny(v), can be written as

1 1 1

A ——— ... =

)\7 )\_17 7)\7 }
A

{00, \, A —

and are all parabolic fixed points of G\ and hence they are \-fractions. Consecutive vertices

are A-Farey neighbors. Every edge or side of N,(v) is a A-Farey geodesic.
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Proof

The set of vertices of the v-cell N,(v) is given by {(mag)"(c0) : 7 =0,--- ,¢— 1} or alternately
as {(¢75y ) (00) : 7 = 0,-++ ,q — 1} where ¢(2) = —1/z and 7)(2) = 2z + A. Evaluating the
vertices for r = 0,1,--- ,q — 1, we get the vertices 7, '(00) = 0 ; (75 ')?(00) = (13, 1)(0) =
P = 3 (0 Pl00) = (e 1/ = 9l=A+ 1/N) = s+ (o)) =

(Ta) " (Ta)9(00) = (Tag)(00) = A.

Thus, the vertices are all A-fractions and are consecutive convergents of a A-continued fraction
expansion of o!(co) where ¢ = 2I(I > 2) or ¢ = 21 — 1(I > 3). If 0"(c0) and " 1(00)
are consecutive vertices of N,(v) then 0"(00) = 0" (7, 1) (00) = 0" Hp(c0)) = o"71(0),
o™t € Gy where 1 <r <[ for both ¢ = 2] and ¢ = 2] — 1. Thus, consecutive vertices of the
g-gon are \-Farey neighbors and the geodesics between them are the A-Farey geodesics given

by g(Iy), where g = 0"t € G,. O

Note that the v-cell tessellates H? under G, since D is a fundamental region of G\ and each
v-cell is the union of g-images of D under (1yp) = Stab(v,G,). Further B = [22; 3] tessellates

R, under (7,) = Stab(oco, G)).

We have noted that N,(g(v)) is defined as g(N,(v)). The vertices of the g(v)-cell N,(g(v)) are
just {go"(00) : 0 =ptr=0,---,q— 1} since {o"(c0) : 0 = p~t,r =0,--- ,q— 1} are the
vertices of Py = N,(v). We may write N,(g(v)) = ¢g(Py), g € Gi. From now we will denote

the v-cell N,(v) by Py and use them interchangeably.
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DEFINITION 26. The tessellation of H? by the v-cells will be called the \-Farey tessellation

1

of H? associated with Gy. The ordered set [0, 1/, X_—1/x DY e

-, A\, 00] is called the \-Farey

subdivision of the interval [0, oo].

DEFINITION 27. We call the v-cell Py, the fundamental \-Farey q-gon. That is, Py, the closed
1
A—1/\

fundamental \-Farey q-gon for A = 2 cos(%) where ¢ > 3 1s an integer.

convez hull given by the vertices in the set {oo, A, A — 1/A A — ;oo /X 0}, is the

In the following example we will use the triangle T = {i,v, 00} (Definition 18, page 25), to

explore Py for ¢ = 3,4,5 and 6.

EXAMPLE 2. (i) ¢ = 3 then 73(2) = 2+ A = 241 where A = 2cos(%) = 1 and (1\¢)* = Lyyap-

The 3-gon with vertices {00,0, 1} is the fundamental A-Farey 3-gon or Farey triangle with

A=1. Then v = 1+2\/§Z.

FIGURE 3. The v-cell : N5(v).

(i1) ¢ = 4 then 7y(2) = 24+ A = 2+ V2, A = 2cos(Z) and (12¢)* = l4p. The 4-gon with

vertices {00, 0, L27 v/2} is the fundamental A-Farey 4-gon with A\ = v/2. Then v = 1—\;;
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ol -

FIGURE 4. The v-cell : Ny(v).

(i) ¢ = 5 then 7y(2) = 2 + A = 2 + 5 where \ = 2cos(%) and (73¢)® = lyep. Note that

A2 —)X—1 = 0. The 5-gon with vertices {00, 0, \/32_1, 1, @} is the fundamental A\-Farey 5-gon

. 2_ 2(v/5—1 _
with A = # Here we note \A—1/A =2~ =2 =1land ; = “é*/g = \/52+1 = (571 ) — ‘/52 L
Then v = cos(%) +isin().

2

(]

FIGURE 5. The v-cell : N5(v).

(iv) ¢ = 6 then 7)(2) = 2+ A = 2z 4+ V/3 where A = 2cos(%) and (73¢)® = Linap. The 6-gon

with vertices {00, 0, %3, ‘/73, \%, V/3} is the fundamental A-Farey 6-gon with A\ = v/3. Here we

1 XX-1 3-1 2 1 1 3 3+1
note A — — = = — and A — —\/§—T:£.Thenv:\/_+z.

A X V33 A—L 0 2
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1
LEMMA 6. Let p(z) = —1/z, ¢(2) = — and u(z) = —z. Then {1, ¢, ¢, u} is Klein 4-group in
z

PSL(2,C) and ¢(p*) = p~*¢ = o*¢ where p = 1o = 071

Proof

It is easy to see that {1,p,,u} is a Klein 4-group, since p¢ = ¢ = p and p? = ¢ =

1 = lpap. Note that ¢ = @ = pp and pry = 75 ', Thus, ¢p* = ¢pp*~! = ¢(map)p"! =

k—

p(pm)ppt ™ = o toppt Tt = - = (e g = 0h g = phe. O

LEMMA 7. (a) If q is even with ¢ = 2, then the q vertices of the fundamental \-Farey q-
gon that form the v-cell can be written as {p**(cc) : t = 0,--- ,1}. That is, each vertex has
inverse in the set. Further o'(o00) = p'(o0) = A/2 and o't (c0) = p=1(co) = 2/\ where
A2 <1<2/A

(b) If q is odd with g = 2l — 1, then the q vertices of the fundamental \-Farey q-gon can be
written as {p*'(co0) : t = 0,---,1 — 1}. That is, each vertex has inverse in the set. Further
f(50) = 1= ol(c0).

In both cases we see that 0" (00) and p"(c0) have the same denominators in their representation

as \-fractions for 1 <r <[ —1.

Proof

The ¢ vertices of Py are the set {00, p(c0), - - - , p7~1(00)} or {0, 0(0), - , 091 (c0)} where
o=pL

(a) Let ¢ = 21, 0% = Luey and 0! = p'. Then ¢(p'(00)) = 0'd(00) = o*(0) = o' (0(c0)) =
o"*1(00) where t = 0,---,1. Therefore ¢(p'(c0)) = @(d'(x0)) = 1/0%(00) = o'+ (00) =
o(0'(50)) = 2(0'(00) = 3) = 55
(5) Let g = 20— 1, 01 = L, and again 6(p!(o0)) = o'6(0c) = 0'(0) = o'(o(00)) =

. S0 A —ol(0) = ol(00) = N/2.
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o't1(00). Thus, ¢(p'1(o0)) = 1/p"(c0) = o!(c0). Therefore {o'(c0)}? = 1 and hence

ol(00) = p=(0) = 1.

We see that o"(00) = ! i with r — 1 appearance of A while
A 1
A 1
)
p(00) = A— ! i with r appearance of X\. So p"(c0) = A—0"(00). If 0" (c0) = %
Am—1— 1
A 1
D)
then p"(00) = % So p"(c0) and ¢ (c0) have the same denominators. [J
1

3. M-Ford circles and their tessellation of H?

In this section, following Vulakh [30] , we introduce the A-Ford discs and explore these \-Ford
discs together with the associated mesh polygons that tessellate H? under G for ¢ = 4 and
5. For A = 1 (¢ = 3), we know that the closed Ford discs together with the mesh triangles
“tessellate” H? under modular group, [6]. We build an analogous description of this type of
tessellation for ¢ > 4 using [30].

az+b

cz+d
is I, : |cz + d| = 1 with radius » = 1/|¢|. From Vulakh [30] (page 2296), we define k¢, to

Recall for g(z) =

where a,b,c,d € R, ad — bc = 1, ¢ # 0, the isometric circle of g

be the largest value of k such that the connected parts of D lying below the line y = k/2

are pyramidal regions bounded by the edges of D that meet vertex v. We know that the

non-vertical edges of D are segments of the isometric circles |z| = 1 and |z — A| = 1 where
V4 — N2

v = cos(7) + usin(%) or B) + — We see that kg, =2 and y = 1 in all our cases.

From Vulakh [30] (page 2300), consider any g € G. For any k > 0, let R(g, k) be a horodisc

in H? tangent to R, at g(co) having radius r*/k where r is the radius of an isometric circle,
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1

;s (see Definition 4, page 12). That is, 7 = 1/|c|. When k = 2 = kg, , the radius of R(g, 2) is

and the horodisc R(g, k) = R(g,2) is called a A\-Ford disk and it’s boundary (horocycle)

2|c[?
is the A\-Ford circle, denoted by Cy(ooy. We may write R(g,2) = Ry() Or just Ry. If ¢ =0,

the isometric circle is undefined for g. We define R, to beliney =1or z =2+, x € R.

DEFINITION 28. The horocycles Cyooy for g € G, are called X\-Ford circles at g(oo). The

A-Ford circle at oo, Co s the line y = 1 and is called the fundamental \-Ford circle.

In the following example the A-Ford circles are at the vertices of v-cell (Py).

az+b
cz +

EXAMPLE 3. Assume g € G, g(2) = where a,b,c,d € R, ¢ # 0 and ad — bec = 1.

(1) Consider ¢ = 4. The fundamental A-Farey 4-gon is given by the vertices

{00,073 (00), (¢73 1) (20), (973 1)*(20)} = {00, 0(00),0%(00),0%(00)} or {00,0, 3, A} with

—1
o(z) = o1 '(2) = Y We consider the A-Ford circles Cuo, Co(oo); Co2(o0) and Cys(oc) Of

each vertex. The A-Ford circle, C is the line y = 1; Cy (o) = Cp is the horocycle center (0, %),
Co2(00) = C§ is horocycle with center (%, ﬁ), Co3(s0) = Cy is horocycle with center (A, %) The
V/2-Ford circle at 1 / v/2 has radius 1 /4 and the horocycles at 0 and V/2 has radius 1 /2. See

figure below.

(17) Let ¢ = 5 and A = 1+2\/5. The fundamental A\-Farey 5-gon is given by the vertices
-1
z2—A

We consider the A-Ford circles at each of these vertices i.e Coo, Co(o0)s Co2(00), Cod (o) AN Cit (o0

{00, 0(00), 0%(00), 03(00), 0% (c0)} = {00, 0, 1, A, 1} or {00, 0, 1+«/5’ 1+2‘/5, 1} witho(z) =

Cw is the line y = 1; Cy(o0) = Co is the horocycle with center (0, %), Co2(00) = C% is the horocy-

cle with center (%, 3+1\/5); Co3(oc) = C1 is the horocycle with center (1, ﬁ), Cot(sc) = Cy is the

). Thus, for ¢ =5 and A\ = H‘[ , the A\-Ford circles at {0, +,1,\}

horocycle with center (A, o b

1
2

have radii
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1 1 1 1 1 1 1 1 tivel
27 2X2 '35 -7 1 .
272)\2’2()\2_1)272)\2<2_)\2)2 0 2’3+\/§’3+\/5’2 espectively.

See figure below.

DEFINITION 29. The parts of H? exterior to all the \-Ford circles consist of an infinite number
of circular arc polygons to which the name of “mesh polygons” is given. Any two sides of a

mesh polygon that share a vertex lie on A-Ford circles at A-Farey neighbors.

The following proposition is an adaption of a similar proposition for the modular group, [5].

v

]
—_

-

FIGURE 6. A-Ford circles for ¢ = 4.

0 2 1 145
1+/5 2

Fi1GURE 7. A-Ford circle for ¢ = 5.
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PROPOSITION 10. For g € G, Cy(oo) = 9(Css). That is, the A\-Ford circles are the orbit of Cs

under G .

Proof

We may assume that if g(co) = a/c then ¢ > 0. The A-Ford circle Ci = Cx is the line
y = 1. This is a generalised circle in C,, that passes through oco. In fact it is the boundary
of a horodisc tangent to R, at co. Let g € G, with g(co) = a/c. Since g € M, g(Cs) is
a circle or generalised circle in C,, that passes through a/c and preserves H?, [14]. Thus,
9(Cs) is a circle tangent to Ry, at a/c in H2. Certainly g(Co.) = {g(x + 1) : * € R }. The

Euclidean diameter is thus the supremum of Im{g(x + i) : € Ry }. Further Img(z +1i) =
Im ax+az+b' —Im ((ax +b) + ai)((cx + d) — ci) _ 1 '
(cx +d) + ci (cx +d)? + ¢? (cx + d)? + 2

) 1
} = - Thus, radius of (Cw) is 5. So

1

Therefore diameter of ¢(Cx) is Sup {w
cx c

g(Coo) = Cg(oo). D

PROPOSITION 11. A-Ford circles Cri and Cr2 are externally tangential if and only if

q1 a2
" pz

P12 — paqu| = 1 or — -
q1 q2

Proof
. . D1 1 1

Let Ce1 be the A-Ford circle tangent to R at A given by |z — | — +i-— Let sz

q1 q1 2% 2(]1

1 1
be the A\-Ford circle tangent to R at B given by |z — (]2 + z—2> = Assume Cr1 and
42 2¢5 2(12 a

Cr2 are externally tangential and meet at a + ¢b where a,b € R. Then

a2

1 1)? 262 +2¢2\ 2
CDR = (= +-— ] = 241+ 203 (1)
2q7 2q5 4Q1Q2

and by Pythagoras’ theorem

11\’ 222 —2¢2\? — ?
ICD|? = L) (k) (2B (D% T DG - (2)
5.2 2
2¢7  2¢3 G G 4q7qo2 0192
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Therefore

2¢2 — 243 ) *4¢g 1 .

—5 | = = . That is, (p1g2 — paq1)* = 1, thus |p1g2 — paqu| = 1.
( 44343 (2¢i63)* i

Conversely, assume |p;qa — pag1| = 1. Then (p1ga — p2q1)* = 1. From (2)

NN L1y . |
|CD|* = e + peye = % + 52) as required. Therefore C% OC% = g(i) where

z
_PEtk since Coj1 N Ciyo = {i}. Since Cex and Cre are distinct A-Ford circles, they
1z +q2 a1 a2

cannot be internally tangential. [

9(2)

1
Note that since nA ~ g with n € Z, the A\-Ford circles C,, and C,, are tangent for all

A-integers.

PROPOSITION 12. If Cr1 is externally tangential to Cra and Crs is externally tangential to Crey
a1 a2

q3 q1

then Cr2 cannot overlap Cers .
a2 P3

Proof
Assume 2 ~ 22 with Cr externally tangent to Cz2. Assume we have a A-rational p3/gs with
Q1 q2 a1 a2
. D1z + D2 1
Crs externally tangent to Cex but overlapping Crz. Let g(z) = ———= then ¢~ *(Cr1) = Cw
as a1 a2 g1z + Qs a1

and g71(Cr2) = Cy. Since Crs is tangent to Cs 50 too must g~ !(Crs) be tangent to Coo. So
q2 a3

a3

AN

A B

F1cURE 8. Tangent A\-Ford circles.
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g1 (ps/qs) must be a M\integer. If g71(Crs) = A the A-Ford circle Cy cannot meet C, since
a3

1 < X < 2 and radius of Cy is 1/2 as is the radius of Cy. Similarly if g~*(ps3/q3) = —\. Hence,

there cannot be any overlapping of A-Ford circles. [J

We have seen (Lemma 7) that 0" (c0) and p”(oc0) have the same denominators for 1 < r <[—1.

Hence, the A-Ford circles at this points have the same radius.

PROPOSITION 13. Distinct A-Ford circles cannot overlap.

Proof

Let Ca and C 5 be two distinct A-Ford circles with |ad — be| # 1. We can find g € G, such

that g~'(Ca) = C. Assume that g‘l(C%) Ng '(Ce) # 0. That is, Co12yNCo # (). Thus,
1
the denominator q of ¢g7'(b/d) = p/q is greater that 1, since the radius of Cg—l(g) is 207 and
q
1 1
202 > 5 Now we can find n € Z such that nA < b < (n+ 1)A. We shall show in Theorem
q q

15 and 16 that the denominators of the cusps of Py are non-decreasing as they tend to o'(o0),

1 1
forq =2l or g =2l — 1. So g > 1. Thus, 202 < 7 Hence, Cg,l(%) can at most touch C,, but

e
b a

cannot intersect Co,. Therefore Ca cannot intersect C s if p ot —. 0O
g c

PO, Py /s Py jedy

FIGURE 9. The A-Ford circles.
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The A-Ford circles and the A-Farey geodesics have a dual relationship. The A-Ford circles
corresponds to parabolic fixed points (A-rationals) and the A-Farey geodesic corresponding
to tangency points between adjacent A-Ford circles. The parabolic fixed points are the orbit
of oo under G, while the tangency points of the A-Ford circles are the orbit of ¢ under G).
Further more, the A\-Ford circles are the orbit of C,, under G\ and the A-Farey geodesics are
the orbit of ) under GG. Consequently, there is a duality between results about \-Ford circles

and about A\-Farey geodesics.

e ——

- g ————— ———

FiGURE 10. The dual relationship of A-Ford circles and A-Farey geodesics for

q=4.



CHAPTER 5

A-continued fractions

In this chapter we introduce special A-continued fraction expansions. Firstly, we consider
“minus” or backward A-continued fractions as introduced by Ressler, [23], following Schmidt
and Sheingorn, [27]. In this case we show that every real number « can be expressed as an
infinite A-continued fraction. Further, every A-continued fraction of this form, called an ad-
missible A-continued fraction, will converge. In the case of a being a A-rational the admissible

A-continued fraction is periodic and klim g*(2) = X\ where g is the generator of the period.
—00

Secondly, we consider the “nearest A-integer” continued fraction expansion of any real number,
a. Following Rosen [25], we will choose an option that creates a unique expansion for each
real number. Thirdly, we consider the “A-integer part” (the floor) continued fraction where

each a € R can be expressed as 7,°p7,'¢ - - - T\"p(ay) where r; € Z~ for i > 1.

Finally we introduce Rosen’s reduced A-continued fractions. We note that Rosen, [25] has
shown that the expansion of & € R using the nearest M-integer algorithm, satisfies the condition

of being a reduced A\-continued fraction and that every reduced A-continued fraction converges.

1. Minus or backward A-continued fractions

We consider G = (1), ¢) with generators 7\(z) = z 4+ A and ¢(z) = —1/z where A = 2cos()
and ¢ > 3 is a finite integer. Since the minus A-continued fractions are known for the case
A =1 (¢ = 3), [16], we now consider ¢ > 4. We have also seen that the fundamental g-

gon is given with vertices {00, 0(00),02(c0), -+, 097 (00)} where 0 = 7y !, 07 = 1,4, and

59
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~1. We recall that a finite A-continued fraction (A-fraction) can be

expressed as Tj(00) = 7,°p7y ¢ - - T\*p(00) where r; € Z,i > 0 and only ry and r, may be

zero, while an infinite A-continued fraction has terms T (00) as its convergents.

From Ressler [23]|, we expand any finite real number « as a unique A-continued fraction
according to the next-multiple-of-A algorithm. Let ap = . For j > 0 define r; = |a;/A| +1

where |z] is the greatest integer less than or equal to z. We call a1 = o7, () = ¢(a; —

1
Arj) = P the j + 1" complete quotient or j + 1™ tail of oy = . Since | /A| < /A,
ri —
we know that |a; /AN < a; and so A\r; — o = Ao /A +1) —a; = Aoy /A + X —a; < A
1 1 1
Therefore aj;1 = ——— > — > 0forall 7 > 0 and r; > 1 for all j. Then o; = ;A —
/\Tj — Ozj A aj+1

for j > 0 where a = ag = 1,07y 0 - - - T (g 11).

Following Ressler [23], we define an admissible A-continued fraction of a finite real number.

DEFINITION 30. The A-continued fraction expansion of o € R is called admissible A-continued
1
fraction if o = 1\°p7 - T\ Fp(gt1) and g > X with r; > 1 for all j > 1 and ajq are

the complete quotients or tails of the A-continued fraction expansion.

LEMMA 8. [23]

Fiz g > 4 with A\ = 2 cos(%). Then every admissible \-continued fraction converges.

Proof

Consider an admissible A-continued fraction given as 7,°p7y'¢ -« 7y @(agy1) where r; > 1
1 1
> N > 0. Thus, \rp — ap > 0 with

e > . Let Ty = 1%07 - - - Ty*p(00) be the k™ convergent of the A-continued fraction.

for all j > 1 while rp € Z and a4y = ——
)\Tk — O

We show that {7}, is a decreasing sequence that is bounded below by some o € R. Let

Tm+1

T =Ty " - TP p(00) where 0 < m < k. We note T}, = 7,"p(00) = 1A > ay.
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For all k,ap > 1/A > 0 and Ty_1x = 7" orfp(o0) = 705 0(Thr) > 7 o(ar) = agy
since 7y’ () = rjA—1/z preserves order on (0, +00). Continuing, we have that T}, > a, for

all 0 <m < k. In particular T, = Ty > ap = « for all k > 0. In order to show that {7},

1
is decreasing, we fix n > 0 and note that T, = r,A > r,A — ——

\ = dnn+1, Tntl Z 1.
rn+1

Tn—1

So Ty > Tpny1. Then for alln > 0, T,1 = 7" ' 0(Thn) > 70 ' 0(Tontt) = Tnot1ni1-
Continuing we have T, , > T}, n41 for all m, 0 < m < n. In particular 7,, > T,,4; for all

n>0. O

DEFINITION 31. A A-continued fraction expansion of o € R where

1 -1 -1
a = by — 1 or following Rosen [25], a = |Xby, —, —, -
Ao — ———— Aby " Aby
Ny — - - -
is periodic if there is a positive integer k such that b, = b,y forn =0,1,--- and is pre-periodic

if there is some positive integer k such that b, = b, for all sufficiently large n.

That is, a A-continued fraction for « is pre-periodic if the sequence by, by, bo, - - - is periodic
after a finite number of initial terms have been deleted. The period k£ of the A-continued

fraction is the smallest positive integer that is the period of the sequence by, by, - -.

Suppose « has a pre-periodic A-continued fraction expansion with period k. Then we can find

h,g € Gy with h = 2p ..o and g = Tf““gp- . ng)l\)"Jrk so that

a = lim hg™(c0).

m—0o0

We call ¢g the generator of the A-continued fraction. From Ressler [23] we note that, T. A.
Schmidt and M. Sheingorn [27] (Lemma 1, 2, 3) have established a close link between pre-
periodic admissible A-continued fraction expansions, parabolic and loxodromic fixed points of

elements in GG as follows.
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LEMMA 9. [27] A real number « is a fized point of Gy if and only if o has a periodic
admissible \-continued fraction expansion. Moreover, such a number « is a parabolic fized
point (A-rational) if and only if its admissible \-continued fraction expansion has generator

g =Tip(Tap)13 = T\0% where o0 = gOT)\_l. Further o 1s hyperbolic if and only if its admissible

2

A-continued fraction expansion has a generator other than g = T\o* since p? = l,,qp.

Ap(X?) - p(N)
q(A?)  Ag(A?)
and thus will have the generator 7402 in their admissible A-fraction expression.

We recall that the A\-rationals have the form, (Theorem 8 and Corollary 1),

LEMMA 10. g = 702 is a parabolic Mobius map and has exactly one fized point \ in R. If
a is a A-rational (parabolic fized point in Gy ) with periodic admissible A-continued fraction
expansion and generator g, then we must have oy = \ for some k in the admissible continued

fraction expansion of . Here oy, is the k'™ complete quotient or tail of the \-continued fraction.

Proof

1o
Let g = 7\o? with associated matrix A = and tr?(A) = (=2)? = 4.

A =1+ )2
Thus, g is a parabolic Mobius map. We note that g(oo) = myo%(00) = 1A (1/A) = A + 1/

The admissible A-continued fraction for A is as follows:
Let A = ap with 1 < XA < 2. Consider o1, %(\) = a; or A = 72p(a;). Therefore a; =

o7 (A = 1/A = 0%(00), 1/2 < 1/A < 1. Thus, ay = @71y, (o) = 75 (75 2(\)). Therefore
—1 B 1 B
AN A=1/N

1
> Continuing, this way we have that oy, = 0¥*1(c0) and ay > X for £k > 1.

A = 1ipmap(az) = nene}(az) = Ta(07%(as)) where ap = 03(0)

_
A— 1/

When k = ¢ —1, a1 = 09(0c0) = 0o and when k = ¢ — 2, a9 = 097 (c0) = 071 (00) = \.

and

Therefore A = 137y - - - Tap(ax) = Ta(0 % (). Thus,

TATALT -+ - Tap(Qg—2) = 720 10%(N\) = Tao?(N\) = g(\) = Tap(o0) = A\ O
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Note that a = lim hg®(0o) = h lim g¥(c0) = h()) since lim g*(co) = A for all 2 € R.,.
k—o00 k—o0 k—o00

Thus, the admissible A-continued fractions have «a; = A for some k£ and the admissible \-

continued fraction expansion may be terminated with A = T yp(co0). That is, we replace

Jim (T3p(map)?2)E(N) = Jim g*(\) with A\ = 7yp(c0) and stop the expansion. Therefore

—00 —00

ap =T\ @7y - TP p(Typ(00)) and is a finite expansion.

2. Nearest M-integer continued fractions

We consider A = 2608(%), q > 4502 <)< 2 By [ul we mean the nearest integer to u,
as the unique integer such that —1/2 < [u] —u < 1/2, v € R. Thus, if v = 2 + 1/2 then
ul=x+1,z €Z.

Consider @« = ap € R and we can find ng € Z such that ng < ag/A < (ng + 1). Choose

ro = [ap/A]. Then a = ag = 7oA + €107 where ¢ = £1 and 0 < a; < A/2. If a3 = A\/2

then ¢g = —1. If a; = 0, the expansion terminates and o = g = roA = 7,°¢(00). If a3 # 0,
€1 €1 1 2 .
ap = ToA + €1a1 = 1o + =710A+ —, a; = — > —. Consider n; < ay/A < n; +1
1/a4 o ay A
€1 . 1
and let 71 = [ /A] = [1/ai\] and ag = 1o\ + with — = r A + €d), e = £1
= fou/A) = [1/and] and 0 = rod + - with o = rid +
a1
and 0 < ay < A/2. Thus, 1 = a1\ + €a1ay = a1\ + €2a9 and 0 < ap = ajay < % <
" Continui REI— YI— A+ “ Writ
—. Continuing oy = _— = —_— = rite
4 & o 0 1A + €xal 0 A+ €202 0 AL €
a1 a1/a2
aq , , , )\CLQ
ay = — = rpA +e3a5 and a; = agro + €3a2a3 = AT\ + €3az where az = azay < 9 <
a2
/\2a1 A3 , .. .
1 < 3 and 0 < a4 < A\/2. Continuing this way we find a; = a;117 41\ + €;42a,12 Where
Aaipr _ NP . .
ri = [ai41/Aaita], €100 = 1 and 0 < a;40 < < o If a; = 0 for some 7, the expansion

terminates and a = ap = 7,°G 7y 'S - - - Ty “Spy1(00) where ; = £1/z for i > 1. If a; # 0 then
a =T7,"q7y'S - Ty\*Spr1(a;_1/a;) where a;_1/a; > 2/X\. The a; = a;_1/a; are the tails of the

A-continued fraction.
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3. M-Integer part continued fractions

We may expand any real number « as a unique A-continued fraction according to the A-integer
part algorithm. Let oy = o € R. For j > 0 define r; = |a;/A] where |z] is the greatest
integer less than or equal to z. Let aj11 = o7, () = p(a; — Arj) = ﬁ < 0 where
r; < —1for j > 1, 19 € Z. That is, ap = 7,°@7y ¢ T\ (). Since r; = |a;/A], we will

terminate when 7, () = a; — Arj = 0 = p(00) or o7y 7 (aj) = o00.
4. Reduced )-continued fractions

From Rosen [25], we have the following definition of a reduced A-continued fraction for ¢ =

20— 1,1>3o0r q=2l,1>2where B(l —2) = p!"%(c0) = [\, =1/\, =1/, - -+, —1/)].

DEFINITION 32. If A = 2COS(§), q > 4, the A-continued fraction [ro), €1/mA, -], where
€ ==x1, 1, € ZT fori>1, ro may be zero, is a reduced A-continued fraction if and only if the
following properties are satisfied:

(1) The inequality r;\ + €41 < 1 is satisfied for no more than | — 2 consecutive values of 1,
i=j, 41,5+ =141, > 1

(17) If g =21 — 1, and if r;\ + €;41 < 1 is satisfied for | — 2 consecutive values of i = j, j+ 1,
J+2,-- g —=1+1, thenrjy—9 > 2.

(2ii) If g =21 — 1, and if [B(l — 2),—1/2\, —1/B(l — 2)] occurs, the succeeding sign is plus.
() If g = 21 — 1, the A-continued fraction terminates with €/B(l — 1), then e = 1.

(v) If some tail of a finite A-continued fraction has the value 2/\, then

1 1 2 1
A+ N (r+ 1A — N and r\ — 3= (r—1DA+ N We shall choose the plus sign.

We note that Rosen [25] establishes that every reduced A-continued fraction converges and

that the nearest A-continued fraction is reduced. We omit this proof but establish a variation
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of it in Chapter 8 when we introduce cutting sequences across the A-Farey tessellation. Rosen
also establishes that in a reduced A-continued fraction with convergents P,/Q, we have,

@, > 1 and @Q,, are non-decreasing with @),, — co as n — oc.

The following theorem is from Lehner, [18].

1
THEOREM 13. Let P/Q be a A-rational and oo € R — Gy(00). Suppose that o — P/Q| < 207

Then P/Q is a convergent of the nearest \-integer continued fraction of o and hence of a

reduced \-continued fraction of «.

Proof

€6
@7
and f = (aQ? — PQ) or 0 = |a@® — PQ| = |Q%a — P/Q| <

0<0<1/2¢= =+l Thatis, a—P/Q— 29— _ (QQC;ZP)Q,
1<)
20?

6 < 1/2. Expand P/Q as a nearest A-integer continued fraction which is reduced. Thus,

Write a — P/Q =

1
< 2’ therefore 0 <

P/Q = [ro\, e1/m A ea/ro), -+ €n_1/Tm_1\] where ¢, = £1. Since P/Q is a A-rational, the \-
P P,
continued fraction is finite. Call the convergents of P/Q, P;/@Q; so that @ = 0 L We define
n—1
(Pnflw + 6nPan)

where the €, are defined recursively by € = €€y -+ - €,(—1)""1.
(anlw + EnanQ) ( )

That is, when n = 1, ¢ = ¢;. When n = 2, € = €163(—1), so e = —1. When n = 3,

w by a =

€ = €169e3(—1)?%, 50 €363 = 1 and hence e3 = —1. Continuing this way we note that ¢, = —1
for all n > 2 where €; = €. Since P/Q = [ro\, €1/m1 A, €2/ro), - €n_1/Tn_1A = Pp_1/Qn_1 is
a A-continued fraction we have P, 1Q, 2 — Qn_1FP,_2 = (—1)"€1€2- - €,_1.

P o Pn—l 137
Q C)n—l7 %—1

Thus, =a—P/Q

(Pn—lw + EnPn—2) B Pn—l
(Qn—lw + 6nQn—2) Qn—l

anlpnflw + EnPananl - Pnlenflw - 6npnlenf2
B Qn—l(Qn—lw + EnQn—2)
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€n(Pr2Qn-1— Pr1Qn-2)
Qn-1(Qn-1w + €,Qn—2)
(—1)ener€n - € g(—1)"
N Qn-1(Qurw + €,Qn_2)

‘ € (_1>€n€162 e En—l(_]-)n p Q 1
Therefore, —— = and so 6 = i . Hence, w =
721—1 anl(anlw + ETLQTL*Q) anlw + Enan2
n— -0 nwn— 1 nwn— . . .
@t nCn—2 = - — €Q—2 > 0, since the denominators of a reduced A-continued frac-
0Qn—1 0  Qua

tion are non-decreasing and Thus, Q,_1 > Q,_». We have assumed that P,_1/Q,_1 has
a nearest A-integer continued fraction expansion. We have also seen that, 0 < 6§ < 1/2

and ¢, = +1. Now expand w in a nearest A-integer continued fraction algorithm. Then

W = [rpA, €ns1 /TNy €ng2/ToreA, - - -], That is, r, = [w/A] is the nearest integer to w/A.

. 1 eQn—Q A . Pn—lw + EnPn—Z
Since w = = — >2—1=1> —, it follows that r, > 1. We have a =

0 Qn—l 2 Qn—lw + 6nQn—2

where [ro, €1/71A, €2/To), <+ s €n1/Tn1A] and w = [rp, €41 /Tng1 A, €nga/Tnga, -] So

a = [ro), e1/TI\, €2/Ta, - €n 1 /T 1\ €n/Tu, €ng1/TniiA, -] and w is the n'* complete

quotient or n'" tail of a. Thus, P/Q is a convergent to «, a nearest M-integer continued

fraction and hence is a convergent of a reduced A-continued fraction of .. [J

124/3

EXAMPLE 4. Let ¢ = 6 and A\ = /3 with o = B

. We find the following \-continued
fractions for a:
(7) Admissible A-continued fraction,

(17) Nearest A-integer continued fraction,

(737) Integer part A-continued fraction.
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(1) The admissible A-continued fraction expansion:

124/3
13

continued fraction. We know from Lemma 10 (page 62), that g fixes v/3. It is of infinite

= klim TAPTYPTAPTAPG" (00) where g = T3 (Tap)? is the generator of the periodic -
—00

length but it can be made finite by considering klim g*(o0) = Tp(00).
— 00

The convergents are:

144/3
15

5 13v/3 5
; TAQOT,\wTASO(OO) = T; TAQOT,\SDTAQOTA(:O(OO) =

25v/3
Tp(00) = \/33 TA¢T§90(OO) = 7;

373

TASOTi’QOTASOTASOT)%SO(OO) = T; s

(77) The nearest A-integer algorithm:

12v/3
1_\3/_ = TapTroTy 'p(00). Tt is of length 3.

The convergents are:

1 113 - 123
me(00) = V3 mpmiie(00) = V3 = om = T el (o0) =

(77) The A-integer part continued fraction:

124/3
1_\3/_ - (907;1907;1907;1907/\_2)430(00). It is of length 17.

The convergents are:

_ 1 I v3ioo 23

¢(00) = 0; 1y 'p(00) = 75 Yot to(o0) = R Yor oty Tp(o0) = =
-1 -1, -1 __-2 3v/3 123
OTy PTy pTy Ty p(00) = VR

We note that given a A-rational «, the expansion for admissible A-continued fraction is periodic
and infinite, while the A-continued fraction expansion with the nearest A-integer algorithm
yield an expansion of finite length less than or equal to the expansion with respect to the

A-integer part algorithm.






CHAPTER 6

Geometry of A-continued fraction

1. Cutting sequence across the \-Farey tesselation of H? by G,

We consider an orientated geodesic v in H? that passes through I, the fundamental polygon
Py = N,(v) = {00, o(00),- -+, 077 }(c0)} and ends at a point & € R. As v moves through I
and Py to « it cuts across copies of Py under G. Each of these polygons can be labeled as
g(Py) for g € G,. Following [11], [20], [21],[22] and [26] this chain of polygons is called the
cutting sequence of v ending at « (see Theorem 17, page 88). This chain of polygons and

their spanning intervals will be shown to converge to «, yielding a A-continued fraction for .

Following [12], we established the following preliminary results. It is obvious that I, divides
H? into two halves. The first, called the inner half, is bounded by R¥ while the other, the
outer half, is bounded by R . The inner half contains the A\-Farey subdivision of [0,00] on
its boundary. The A-Farey subdivision is the set {00, o(00), -+, 097 (0c0)} C RE and is the
vertex set of Py. The outer half contains the image of the A\-Farey subdivision under reflection

in Iy on its boundary. This set of vertices is the vertex set of ¢(IP).

S

b b
DEFINITION 33. (i) Let v be a geodesic with end points < Then [c_l’ 2} is called its
c c

spanning interval of ~y.

(i) If Pr. = g(Py) is a polygon in the A\-Farey tessellation of H? then the spanning interval of

Py is [g(0), g(o0)] = 1), where g € Gy. In particular the span of Py is given by Iy = [0, oo].
69
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Since each A-Farey geodesic v can be written as g(Iy) for ¢ € G, we immediately have the

following result.

b b
LEMMA 11. Every A-Farey geodesic v with the spanning interval [3’ g] with p < Y divides
c c

a
H? into two sections. The inner section is bounded by the open interval i while the
c

b b
outer section is bounded by R — (3, E) . Further the \-Farey sub-division of v lies in [a, g}
c c

b a
while its image with respect to reflection in v lies on R — <3, —).
c

Proof
. . . b a b a b a
Assume 7 is a A-Farey geodesic that spans the interval e on R. Thus, i~ and p < —.
c c c
b
Let g: z — azi—d in G'. Thus, g7'(7) = Iy and ¢ is a Mobius map (Lemma 4, page 40). So
cz

g(Iy) = ~v divides H? into 2 sections. The A-Farey subdivision of « is given by {g(c0) = a/c,
g(o(o0)) = g(0) =b/d, g(o*(00)), -, g(a? " (00))}.

b

Since p < 2 and g € G preserves order, we have that this subdivision lies on the boundary
c

of the inner subdivision of H? by ~. Since p{oco, 0, 1/\---, A} is the vertex set of ¢(Py) we

have that gp{oo, 0, 1/A---, A} = gp{oo, 0(0), 0(x), 02(00), -+, g(c71(c0))} lies on the

boundary of the outer subdivision of H? by ~. O

LEMMA 12. Every A-Farey geodesic vy is an edge to exactly two (adjacent) q-gons in the \-
Farey tessellation. These two q-gons are inverse of each other with respect to v. We may refer
to these g-gons as an inner subdivision and an outer subdivision of the geodesic v, determined

by the images of the inner and outer subdivision of Iy in H?2.

Proof
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b b
Let i %, and [b/d,a/c] span the A-Farey geodesic 7, with pi < %. Then ad — be = 1,
b
g(z) = Zj——i'——d with g(c0) = a/c, g(0) = b/d and g € G. Thus, g~'(v) = I,.

The imaginary geodesic I is a common geodesic between Py and ¢(IPy). Since we have assumed
b

a
p < — and g € G, preserves order, we know g maps the inner side of I to the inner side of ~.
c

Also g(¢(Pg)) and g(Py) are inverses with respect to . Finally, it is noted that the interval

with end points g(c”(o0)) and g(¢"~!(c0)) lies inside the interval [¢(0), g(c0)] = [b/d, a/c], and

thus [g("(00)) — g(o™"(00))| < lg(e(00)) — (o~ (20))] = |g(0) — g(N)] = ’é -

d ch+d
|(bec — ad) | A
_ <A2<r<q-—10
der+d)|  Jdlerra) ===

We note that these results are analogous to the results by A. L. Schmidt on the Farey triangles
[28] and Farey simplices [29], where every Farey triangle and Farey simplex has an inner and

outer subdivision.

2. The M-Farey graph

In this section we define a graph whose vertex set is the orbit of the fundamental g-gon Py,
under GG) and whose edges are the A-Farey geodesic. Ultimately we wish to establish that

paths on this graph converge to points on R.

We know that the vertices of Py are given by what we call the A\-Farey subdivision of R =
[0,00]. That is, {o"(c0) : 7 =0,---,q — 1}. Equivalently this subdivision could be expressed
as {p"(c0) : 7 =0,--- ,q — 1} where p = 0~!. Using the representations given above for the

A-Farey subdivision of [0, oo], the span of Py can also be given as:

{o"(00): =l <r<l-1,1>2} for ¢ =2l (qis even) and

{o"(c0) : =l +1<r<I1—-1,1>3} for ¢ =20 —1 (qis odd).
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1
We specifically note that 0°(c0) = 0o, o(00) =0 = p~1(00), 6%(c0) = 3= p~ (), 03(c0) =
1 A , A2 -1
= = 0 . e q—2 = — 1 = = 2 -1 = =
p(00).
az+b .
Let g(z) = e € G and ad — bc = 1. The vertices of g(Py) can be seen to be the

; a é‘a—i-)\b' 'a)\—l—b
AN @ ctad  Teat d
{b.a —al+0b .—a—i-b)\}

}. On the other hand, the vertices of g(p(Py)) are given as

¢ —ex+d U =cvadx
DEFINITION 34. Let G be a graph whose vertices are the q-gons of the \-Farey tessellation of
H? by Py under Gy. The edges of G are to be determined by the pairs of adjacent q-gons in
the tessellations. We call this graph G, the A-Farey graph. By Lemma 12, we may understand

the edges of G to be determined by the A\-Farey geodesics.

In the sequel we will call the g-gons the vertices of G while the vertices of the individual ¢g-gons

will be referred to as cusps.

THEOREM 14. G is a reqular connected q-graph with no cycles and hence G is a reqular tree.
Specifically each vertex of G can be represented in the following ways:

Since 01 = 1yap = p? and p =01,

(i) oo™ p(Py) for 0 <r; <q—1,0% =07 =1,,4p.

(1) popp - prp(Po) for 0 <y <q—1, p° = p? = lyngp.

(131) c™pa" @k p(Py) for =l <r; <1 —11if g=2l (q is even) or for =1+ 1 <r; <l —1

ifq=2l—1 (q is odd).

Proof

We know that I is adjacent to exactly two ¢g-gons namely Py and ¢(IPy), and hence each g(Iy)

for g € G is adjacent to exactly two ¢-gons. The A\-Farey tessellation is disconnected by the
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removal of Py and hence with the removal of any g(Py), g € G. Thus, G is a regular tree with
each vertex having exactly ¢ adjacent vertices. The adjacent vertices to Py can be represented
in the following ways:

(i) a°p(Po), a'p(Po), -, o7 (o)

(i) P"p(Po), p'o(Po), -+, p?~ p(Py)

(131) {o"p(Py) : =l <r <l—1} for ¢ =2l and {o"p(Py) : =1+ 1 <r <l—1} for ¢ =2 —1.

Equivalently representations exist in terms of p = o~! where p? = 6% = 1,4y,

We note that 0%~ o(IPy) = 0~ p(Po) = pip(Po) = 7,00 (Po) = 7a(Po). Thus, (p)"(P) = 75(Po)

and (0)p(Bo) = (075 No(By)) = 75 (Bo). Thus, (p0)'p(Be) = 75 ¢ (Fo), ¢ € Z*. Wo

also note that p(IPg) = o(Py) = Py and thus p'(Pg) = o*(Py) = Py for any ¢.

Inductively, let P, = gx(P) be any vertex in G with g, = 0™ o™ ¢ - - 0" ¢ where 0 < r; < g—1
for any i. Then Py = g, '(IP},). The vertices adjacent to Py are given above and thus the vertices

adjacent to P, are given as

{gr(c%(Py)), gr(a'o(Po)),- -, gr(a9 "0 (IPo)) }

or in an equivalent form.
We note that gy =0"pa" - - po™ = g.o% and that o(Py) = 75 ' (Py) = Py and 0" (Py) =
Py for all r, € Z. So

gip(Po) = "o - 1p(Po) = gi—1(Po) = Pp-1.

The adjacent vertices to P are given as 0™ @o" - - - 0" o' p(Py) where t = 0,1, 2,--- ;¢ — 1.

By above, when t = 0, P;,_; is adjacent to Py. Letting t = r;. results is proved.

Hence, each vertex in G ( any g-gon in H?) can be written as 6™ o™ ¢ - - - o™ p(Py) where

1 <r; <q—1fori > 1since if r; = 0 then the expansion will collapse. Re-writing in terms of
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p =o' we can see that any vertex can be written as p™pp - - p"r(Py) where ry € Z and
where 1 <r7; < ¢—1, 7> 1. Treating the odd and the even separately and writing o! = o'~¢,
we have for ¢ = 2l (even) each vertex can be written as Py = 0™ po™ ¢ - o™ (Py) where
—1<r;,<l—1,r, #0fori # 0,k. For ¢ = 2l — 1 (odd) each vertex can be written as

Py =0"@po™ - oo p(Py) where =1 +1<r; <l—1,r,#0fori#0,k O
Figures 1 and 2 show the initial parts of the graph of G for ¢ even and odd.

2 2 2
. eepelba) .
r"( !”[] :' pl .J_;"J:‘J"; P“( l”[] ]

s phop'o(Po) = pPpotio( Po)
a2 Py)

2 3.0
prpotio(Ih)

ol Fy)

et Fa)

o .
alp(Fy) = glip( M)

FIGURE 1. A-Farey graph for ¢ =8, [ = 4.

We note that each A-fraction or cusp of a vertex in G can be expressed as 6™ po™ ¢ - - - o™ p(00)
where -1 <7r; <l —1,r,#0ifg=2land -l +1<r;<l—1,if g=2l—1. Using p = o1,

ol = p? = 1,4p.
Further, we note the following results that follow from the above representations:
opo~ o = (p13 e(mp)e = o735 emy and 07 o = (na)p(ery e = Ty . But
(09)(op) = (¢73 )elery e = o75 *¢ and similarly (07'¢)(07"¢) = (@)e(Tap)e = 3.

Hence, words of the form ¢ pc™ ¢ - - - po™p will reduce if r; and r;,; are of the same sign, in

that the powers of 7, or 7,° ! will increase and the length of the word will decrease.
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phoptie(Fo)

)

pope(Fy)

oo o )

7 p(F) = ple(Fy)

FIGURE 2. A-Farey graph for ¢ =9, [ = 5.

75

prop'o(Fo) = proa’p(Fo)






CHAPTER 7

Convergence of \-Farey intervals

In this chapter we will show that every non A-rational, « in R is contained in a nested

P
chain of A-intervals, I; D Iy D --- where Iy = [pr/qk, Pr/Qxl, Pe Q—k are adjacent \-
dk k

rationals and such that klim Pe/ Qe = klim P./Qr = «, [12]. We note that |I;| = and
—00 —00

1
@k Qk
we will see that klim [Ix| = 0. This result can be compared to Rosen’s [25] (page 559) result

—00
that every infinite reduced A-continued fraction converges. To prove these theorems we first
establish some preliminary results, [12]. We recall from Lemma 7 (page 51) that when ¢
is even (¢ = 20 with [ > 2) o!(c0) = pl(c0) = A\/2 and o} (c0) = p'1(o0) = 2/)\ with
A2 <1 < 2/X\. When ¢ is odd with ¢ = 21 — 1, I > 3, we have p'"}(c0) = ol(0) = 1

where A\/2 < 1. In both cases 07 = p? = 1,,,4,. Finally we note from Lemma 7 (page 51) that

o™ (o0) =1/p"(c0) = {p"(0c0)}  for r =0,--- ,q— 1.

The results about the converging A-Farey intervals, leads to the interpretation of a A-continued
fraction as a path on the A\-Farey graph. Equivalently, the results can be interpreted as a -
continued fraction derived from the cutting sequence of a geodesic ending on a non-rational
a, across the \-Farey tessellation of H? under Gy. We first consider Py, when ¢ is both even
and odd, and show that the denominators of cusps of the polygon Py on either side of o!(oc0)
(¢ = 2l or ¢ = 2] — 1) are non-decreasing. We follow these results with a generalisation to a

general polygon P, = g(Pg), g € G,.

7
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1. The fundamental ¢g-gon Py and the length of its spanning intervals

LEMMA 13. [12] If ¢ = 21, | > 2 then the cusps of Py, o(00), 0%(), -+ ,0 " (c0) are
2

A

fraction while p(co), p*(c0), -+, p'"1(c0) are convergents to p'(oco) = A\/2 with respect to

convergents to o't (o0) = p(\/2) = with respect to the nearest A-integer continued
the nearest \-integer continued fraction. Further we see that |o(00) — o%(o0)| < A\/2 and
|p(00) = p*(o0)| < A/2. In general, |o7(c0) — 0"} (00)| < |o(00) — 0*(00)| and |p"(c0) —
P (00)] < |p(o0) — p*(o0)| for 1 < r <1 —1. The denominators of the cusps of Py on either

side of o'(00) = p'(00) = \/2 are non-decreasing.

Proof

For ¢ = 21,1 > 2 we have 1 < v/2 < A\ < 2 with the A-Farey subdivision of P, given

1

by the set of cusps {0"(o0) : 1 < r < g — 1} where p = 0~!. Since (Lemma 7, page 51)

1/p"(00) = 0" (00) = o(0"(x)) = 1y (07 (c0)) = m, the expansions of 0" (00)

satisfy the nearest A-integer continued fraction algorithm.

We see that |o(c0) — 0%(c0)| = [0 — 1/A| = 1/XA < A/2 since for [ > 2, 1/2 < 1/X <
1/vV2 = V2/2 < A\/2 < 1. Similarly |p(c0) — p*(00)] = A — (A = 1/A)] = 1/A < A/2.

Since each of the cusps has a nearest A-integer continued fraction representation, we have

A2 —2
that o(00), 02(00), -+ ,0'71(00) are nearest A-integer convergents of o'~!(c0) = 3 and
hence 0" (00) = p"(c0) = A/2 and similarly p(co), p?(c0),- -, p'~1(c0) are nearest A-integer

0 1 A A2 —1 _
convergents to p'(co) = A\/2. Thus, br_ -, b2 _ -, Py _ 2—,‘@ = R ,M are
@ 1 g ANag N-1 g A . =
convergents to o'*(c0). We see that p;,1 = ¢; fori =1,--- 1 — 2 and br_ 1 < P2 X <
q1 qz
A A2 —1 _ A

]E: 2 <]£:—3<---<M<—<1.Thus,qi:piﬂ<qi+1f0ri:1,---,1—2.
B N1 q A Q-2

Thus, the denominators of the convergents &, of the cusps of Py are non-decreasing. We have
i
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A A2 —1
Qi1 > Qg > =+ > qa > q = 1. Furtherif@:—>@:)\—1/)\: >%:
5 A ) nq 1 %) A ng
1 A0 — 2 my AT =3\ -1 mi—1
A— = > — = > ... > >1>M\/2, th il =Mm; > n;
1N N1 N — 2) Mt /2, then nizy =m; > n
fort=1,--- 1 — 1. So the denominators of the convergents @, of the A-continued fraction
expansion of the cusps of Py are non-decreasing for ¢ = 1,--- ,1l — 1. Thus,
» - 1 1
07 (00) — 0"+ (00)| = |Er - Pret) < = |o(00) — 02(00)| < A/2 where 1 =
qr dr+1 ‘QTQT+1 | 4192
] +1 My Myt 1 9
1,--+,1—2while |[6"(0c0) — 0" (00)| = | — — < = |o(00) — 0*(00)| < \/2 where
ny N1 ning

—l+1<7r<—1,0r |[p'(o0) — p"™0)] < |p(oo) — p?(0c0)| < A/2 where 1 <r <[—1.0

LEMMA 14. [12] Let ¢ = 21—1 forl > 3. The cusps of Py, given as o(0), 02(c0),- -+ ,0'"1(c0)
are convergents to o'~ (0o) with respect to nearest A-integer continued fraction while the cusps
p(0), p?(00), -+, p'1(c0) are convergents to p'~t(occ0) with respect to nearest A-integer con-
tinued fraction. Further |o(o0) — o2(00)| < A/2 and |p(c0) — p?(00)| < N/2 while |07 (c0) —
0"t (00)| < fo(00) = 0%(00)] < A/2 for 1 < r <1 —2 and |p"(c0) = p"(00)| < |p(00) —
pi(0)| < A/2 for 1 < r <1 —2. The denominators of the cusps of Py on either side of

ol(00) = p=1(c0) are non-decreasing.

Proof

Let ¢ = 20 — 1,1 > 3 then V2 < A < 2. As in Lemma 13, we have that the \-Farey
subdivision for Py is given by the set of cusps {o"(c0) : 1 < r < ¢ — 1}. The representation
of the cusps is in terms of the nearest A-integer continued fraction and we have that o(00),
02(00), -+, 07 (00) are convergents to o'~!(c0) (and hance of o'(00) = p!~t(c0) = 1) while

p(00), p*(c0), -+, p'=2(00) are convergents to p!~1(c0).
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Thus, if 0/1 = p1/q1, p2/qo, "+ ,P1_2/q_o are convergents to o'~ (co) then as in Lemma 13,
Q2> q-3 > > 1. If my/ng = N1, mg/ng,--- ,my_o/n;_o are the consecutive cusps to
p'1(o0) then my_5 > my_3 > ---n; = 1. Thus,

1 1
- < = |o(00) — 0%(c0)| < A/2 where r =
|61qu+1| 4192
T ™ 1
My Mt < = |p(c0) — p?(00)| < A\/2 where
Ny Npy1 ning

Dr Pr+1
qr qr+1

17 T 7l —2and ‘pT(OO) T pr+1(00)‘ =

|07 (00) — 0" (00)| =

1<r<[-1.0

In the next section we will generalise these two lemmas to any ¢-gon Py, = g(Py),g € G, as

given in Theorem 15 and 16, [12].

2. The ¢-gon P, and the length of its spanning intervals

THEOREM 15. [12] Let g = 21,1 > 2 with 1 < A < 2. Let Py, = g(Py) with g = 0™ pc™ ¢ - o™ ¢
and where —l <r; <I1—1,r; #0 forallt=1,--- , k except ro which may be zero. If consecu-
tive cusps a/c = go'(oo) and b/d = go't!(c0) = ga'(0) of g(Py) are given then g, = go' € G

d d
and gy (00) = d/c. Furtherz>1z'f1§t§l—l andz<1if—l<t§—1.

THEOREM 16. [12] Let ¢ = 2l — 1, 1 > 3 with 1 < XA < 2. Let P, = g(Py) with g =
a0 ot where —l+1 <r; <I—=11r;#0 foralli =1,--- ,k except ro which may be zero.
If consecutive cusps a/c = go'(oo) and b/d = go'tt(o0) = ga'(0) are given then g, = go' € G

d d
and gy *(o0) = d/c. Furtherg>1z'f1§t§l—1 andg<1if—l+1<t§—1.

Lemmas 15-19 will be used in these generalisations.

LEMMA 15. [12] Let Py = g(Py) where g = 0™ ¢ @po™p, 0 < r;, < q—1, r; # 0,

fori=1,--- k and ro may be zero. If the cusps of Py are given by the A-Farey subdivision



2. THE ¢-GON P, AND THE LENGTH OF ITS SPANNING INTERVALS 81

— b
{got(c0) : 0 < t < q— 1} with g1 = got, then ¢gi1(2) = % where g1(00) = a/c and

g1(0) =b/d, and g, € Gy. Further g;'(00) =d/c.

Proof

Let P, = g(Py) where g = 0™ ¢ --po™p, 0 <r; < ¢g—1and wherer; # 0, fori =1,---  k
and ro may be zero. The A-Farey subdivision of Py is given as {go’(c0) : t = 0,---,q — 1}.
We know that for 0 <t < ¢ — 1 that o'(c0) < 0'™!(0). Since g € Gy and g preserves order,
we have got(oo) < go'*1(o0) = got(0). We note that when ¢t = 0, g(oo) and ¢(0) are bounds

of the interval spanned by P, = ¢g(Py). Let a/c = go'(oo) and go'™'(oc0) = go'(0) = b/d,
—az+0b

with a/c < b/d, be consecutive cusps of P, and let g; = go' € G,. Then ¢1(2) = Tt d
—cz

_dz—b

Ccz —a

ad —bc = —1so0 g, '(2) and g;'(c0) = d/e. O

LEMMA 16. [12] Let g = 0™ pc™ - o™ ¢ and ¢p(z) = 1/z where 0 < r; < qg—1, r; # 0, for

1=1,---,k and ro may be zero. Then ¢pg = pa™pa™ p--- o™ p = pOwp ™y - - Y *pd.

Proof

Recall in Lemma 6 (page 51) we have the results that ¢p* = p~*¢. Therefore

bg = pppTe- - pp g since o = pp. U
LEMMA 17. [12] Let ¢ = 21, 1 > 2 and g = 1i¢p' =2 where p = Tap. Then g is a lozodromic

map and X + 1 is its attracting fized point. Thus, klim g*(00) = A+ 1.
—00

Proof

Let 7a(2) = 2+ A, ¢(2) = —1/z and p = T for ¢ = 21, | > 2. Thus, g = Tipp' 2 =

T2pp72p! = (Tapry 1Pl Now pl(00) = A/2 and p'~1(c0) = 2/A. Written in A-fraction notation
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by Corollary 1 (page 37), we have either p'~'(c0) = p!(0) = A\p1/q1 or p1/Aq where pi, ¢
are polynomials in A\2. Thus, p!(c0) = p(p'~1(00)) = map(Ap1/q1) or Tap(p1/Aq1). That is,

o )\2]71 —q1 )\(pl - Ch) Ap1
= or

pl(00) . Say p'(0) = =—. Then since p' € G we may write p'(z) =
% ))‘pl \ b1 @1
—(APL— @)z + Apy _
h i -1 = p1(0) and —q;(N\*p; — q1) — (—=Ap1)(Ap1) = 1.
“Opzta " ere p'(00) < p'7(00) = p'(0) and —qi(A°p1 — q1) — (=Ap1)(Ap1)
Thus, ¢2 + A2p? = 1 + Apiqy where Ap1/q1 = p'"H(oo) = 2/X or Ap; = 2¢:/\. Thus,
Az —2
() —

(=22 =2)z+ AN\ —1)

Since g = Tpp! 2 we have g(z) = and trig = ((=A\*—2)+(\*—2))? =

—Az—2+ )\
16. So g is loxodromic in G. The fixed points of g are established by solving g(z) = z. That
202 £+ 2\
is, Az — 2(2A\%) + A(\?> = 1) = 0. Thus, 2z = N £2Y) A+ 1l Let « = A+ 1 and

2\
S = A — 1 be the fixed points. Consider s(z) = 7% Gith s(a) = 0 and s(f) = oo then

Z_
2 —4  4-2)\
—(2\+4) 22X +4

sgs~(z) = uz where sgs™!(o0) = oo, sgs71(0) = 0 and u = Thus,

4 — 2\ 4-2\x 2 1
lu| = |2)\ n 4| =14 <5=73 Therefore « is the attracting fixed point of ¢ since 0 is the

attracting fixed point of sgs™', [14]. If p'(0) = p;/Aq; the same results can be established. [J

LEMMA 18. [12]

Tipp"(00) > A+ 1 for all =1 <r <1 —2 where ¢ =21 or ¢ =21 — 1.

Proof
(1) Let ¢ = 2l and V2 < A < 2. Then p"(00) > p!=2(00) for 1 < r <[ —2. Thus,

Tep'(00) > Rpp' P (00) = TRea?pl(c0) = TRpot(V/2) = Typ(—A + A/2) = Typ(=)/2) =
A+2/X> X+ 1since 2/A > 1for V2 <\ < 2.
Ifr=—1, 78ppt(0c0) = 78(00) =00 > A+ 1.

If r =0, 7p(c0) = 2A > A + 1 since A > 1.
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(i1) Let ¢ = 20 — 1 then v/2 < A < 2. Since p'(00) = 1, Tpp’(00) = Ta(Tap’(0)) =
2 (p"(00)) > map o) = (1) =1+ X, 0<7+1<1[—1. We note that if r +1 = 0 or

r = —1 we have 7¥pp~t(o0) = 78p(0) = Ti(00) = 00 > A+ 1.

LEMMA 19. [12] 78pp" 2(A+1) > A+ 1 for 1 <r <1—1 where ¢ =2l or q =2l — 1.

Proof

Let 1 <r <l—1. Then —1 < r—2 < [—3 < 1—2. We know that 1 < v/2 < X < 2 implies that
0<2<A+1<3. Thatis, 1/3<1/(A+1)<1/2. Wenotethat0<)\—1/2</\—%+1 <
A—1/3 < A+1, With)\—)\L_i_1 = 7,¢(A +1). Thus, A_AL—H =7p(A+1) < A+1or
p(A+1) <A+1andso p*(A+1) < p(A+1) < A+ 1, since p € G preserves order. In fact
PP(A+1) < (A+1) for all k > 0. Thus, since [—r > [—(I—1) = 1, we have p!"(A+1) < A+1 and
hence p"(A+1) > p'(A+1) where 1 < r < [—1. Finally 78¢p" 2(A+1) > 70p'2(A+1) = A\ +1

foralll <r<(-1.0
The proofs of Theorems 15 and 17 can now be completed.
Proof of Theorem 15.

We do not consider the case where ¢ = 0 since g(oo) and ¢(0) are bounds of the interval
spanned by P;. The consecutive cusps of P, = g(Py) are given as a/c = go'(oo) and b/d =
go'tl(o0) = go'(0) for —1 <t <1 —1. We have o'(0) = p'(00) = p7l(c0) = A/2. The
cusps ¢! (00) is a consecutive cusp to p' (o) and cusp o!71(00). So we consider the cases for
1<t<l—1land —l+1<t<—1only. From Lemma 15 (page 80) we know ¢g; = go’ can

—az+b dz—10
—_— — be = —1 with g;* =
1 ad — bc with g; (2) p—

be expressed as ¢;(z) = and g;'(00) = d/e.

Further g7 (00) = (g0") ' (c0) = plpp™p - - pp’(00).
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We consider two cases.

Case A: 1 <t<l—1land Case B: -l +1<t< —1.
Case A: 1 <t <l—1. We show that d/c > 1.
Consider (i) 0 <1y <[l —1and (ii) =l <ry < —1.

(i) Assume that 0 < ro <[ — 1. Let r; be the first index in the expansion of g;!, checking
from the right, such that r; < —1. Thus, r; > 1 for alli =1,2,---,j7 — 1 and where ry may

be zero.

g1 (00) = plop™p - pplig - pp (o)

= plop™p - pp' (p") @+ p"pp™(00), p* = P = Limay

7"]'_1—2 7‘1—2

= plop™o- o (2 p)p(pp" 2 p) - (pp" 2 p)p(pp™ (00))
= plop - op i (pp'=2) (pep)p 2 (pp) - - - (pep)p™ 2 (pep) 0t (00)

= plop™p - op it (Tapp' 3 (T)), where

T = (pep)p™ 2 (ppp) -+ (ppp) ™~ (pipp)p™ = (00) = TRpp =1 2T+ Tipp™ ~*(A + 1), by
Lemma 18 (page 82) since —1 < ry—1 < [—2. By Lemma 19 (page 83) we see that T > A+1.

Thus,

g H(00) = plop™p- - opi T (mapp T (A + 1))
= plepp - opH(r H(TRep 2 (A + 1))
= plpp - p it I (A + 1) since T3pp " 2(A+ 1) = A + 1, Lemma 17 (page 81)
= plop™p - op it (1) > plop - pp T (N/2) > plp- - plit (pf(00))

— pt(p .. .prj (OO) since p2l = 1map and —/[ S r; S —1.

This process will continue in a way analogous to Case A(ii) (See below).

(77) Assume that —1 < ry < —1.
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g ' (00) = plop™p- - pppp™(c0), =1 <y < —1
= plpp™ o pppp(0)
= plop ™ pp pdp0(0), 1 < —rp <
= plop™p - pp pdp 0 (00) where 0 = p~i(c0) and 0 < —rg — 1 <1 — 1.
> plpp o pptpdpt Tt (00), pl(o0) = A/2 < 1 < plTH(00) = 2/A
> plpp™ - pppe(1)
= plop™p- - opH(Ta(1))
=plop e pp T A+ D)
> plopTp - pp T (A) since A+ 1 > A

= plopp™p- - pp't(00) since A = p(co)

If 1 <ry <I1—1, continue in a way analogous to Case A(i), If = < r; < —1, continue in a

way analogous to Case A(i7).

Continuing the processes through repetitions of Case A (i) or (ii) as needed, we reach one of
the following:
1. gyt (00) > plp™(00), 1), > 1 or

2. g7 (00) > phop™(00), 1y < 1.

For (1) g (00) > p'(ppp)p"™ " (00)
= p T TRe)p T (00), 0S T — 1 < 1 =2
> p (i) p' 2 (00)
= p" (A +1) by Lemma 17
> p 1 (A) = pl(00), p(oo) = A

> 1, since 1 <t <[ —1and p'(c0) > p'~(o0) = 2/A > 1.

Therefore g; *(c0) = d/c>1or d > c.
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For (2): g7 '(00) > plop™(00) = plepp™(0)
= plppp 1 (00) > plod(1) where 0 < —rp —1 <1 —1 and p'~(o0) = 2/\ > 1

=p7in (1) = p A+ 1) > pH(N) = pl(oo) > 1 since 1 <t <1 —1.

Therefore g; '(00) = d/c > 1 or d > c as required.

Case B. -l +1 <t < —1.
Let gy (00) = ptop™ @ - ppep™(00). We use Lemma 16 (page 81) to transform Case B to

Case A as follows:

Pgy (00) = p{plpp - ppop (o)}
= plop R opTT pp O P(00)

= P_tQOp_r"SD' . 'SDP_HQDP_TO_I(OO), 0= p_l(oo) and 1 < —t § I —1.

By Case A, ¢g;'(00) > 1 and so g; '(00) < 1sod/c < 1and d < ec. O
In a very similar manner we now complete Theorem 16.

Proof of Theorem 16

—az+0b
—a
—cz+d’
q=2l—1,1>3 we have p'~1(c0) = 1 = o'(c0) and g;'(00) = plpp™p---pp™(c0). Again

From Lemma 15 (page 80), g1(z) = d —bc = —1 and g; '(00) = d/c. We note for

consider the two cases: Case A: 1 <t<[—1and Case B: —[+1<¢t<—1.
Case A: 1 <t <[ —1. We show that d/c > 1.
Consider (i) 0 <1y <[l —1and (ii) =l <ry < —1.

Case A(i): We proceed exactly as in Case A(i) of Theorem 15 (page 8) to the stage where we

1

insert p?~! = 1,,,, instead of p* = 1,,4,. Then g;'(00) = plpp™p - "= (Tapp'~2(T)).

Again using Lemmas 18 and 19 (page 82) we have:
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91 ' (00)> pleppiip - ppnitIT(1)
= plop™p- - @p it (p' 7 (00)), 1 = pi7 (00)
P21

= plep™ - pop 00)

= plop o ppiTl(00) since Pt = 1, —1 <1 — 1< —1

- A—-1-1 _ -1

We note that if r; — 1 = —I then g; ' (00) > plop™p - op o

1(00) where p~t = p
The process can be continued repeating Case A(i). If r;,_; # —[, we continue in a way

analogous to Case A(ii) below.

Case A(i7): Assume that — 4+ 1 < ry < —1. Again we proceed as in Case A(#i) of Theorem

15 (page 84) to the stage:

g1 M (00)=plo - ppegp(0), 1 < —rg <1 —1
= plo - popp " (oo) where 0 = p~t(oo) and 0 < —rp—1 <1 —-2<1—1
> plo - pppdpt T (00), 1 = p'7!(0)
=plo-pp I (1a(1))

> plo -+ pp(00) as before.

Once again, continuing to repeat Case A(i) and (i7) as required, we reach the two possibilities.
1. g7 (00) > plpp™(00), 1 <71y <1 —1or

2. g7 (00) > plop (o), =1+ 1 <1y < —1

For (1), g7 '(00)> p'~ (map™ (00)) > p'~'rap! ! (00)

=77 A+ 1) > pH(A) = pl(00) 2 1 where p(oc) = Aand 1 <t <1-1.

For (2), g7 (00) > p!(pp"*(0)) = p' (w1 (00)) where 0 € —rp — 1 <1 =2 <1 — 1.

> pt=17,(1) where p~"71(00) > p!71(00) = 1 and
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=p 7 A+1) > p

=pl(oo) >1for 1 <t <1—1, p(co) =\
Hence, in Case A(i) and (i), we have g; *(c0) > 1 and thus d/c > 1 or d > c.

Case B: Assume — +1 <t < —1 and g;'(00) = plo---@p™(c0). Then as in Case B of

Theorem 15, consider

¢g; (00)= ¢{ple- - p™(c0)}
=p - pp7(0)

=pto-pp 0 (00) where p~t(c0) =0 and 1 < —t <1 — 1.

Thus, from Case A(i) and (ii) above, we have that ¢g; *(c0) > 1 or g;'(00) < 1. So d/ec < 1

and d < ¢. I

From Theorem 15 and 16 we have established that the denominators of cusps of P, are
non-decreasing. In the following theorem we show that the spanning interval of these cusps

converge to a point on R.

THEOREM 17. [12] The cutting sequence of a geodesic vy in H? ending at a non \-rational
real number o € R is an infinite path on the \-Farey graph. The sequence of vertices on
this path is a sequence of A\-Farey q-gons {Py} where each Py, = gp(Py) spans on interval I, =
[Dr/qr; Pe/ Q) containing o and where g, = a™p - - - pa™ . The sequence of spanning intervals

{Ix} form a nested chain Ij, C --- C I, converging to o with klim Pr/ar = klim P./Q) = «.
—00 —00

Proof

By Theorem 17 and 18 above, we have seen that the spanning intervals of a vertex P on

the path has end points pi/qr and Py/Qy where go'(oo) = pp/qr and go'(0) = Py/Qr. We
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have seen that if 1 < ¢ < [ —1 then Q > ¢ whileif -l +1 <t < —-1(¢g=2—-1) or

-l <t < —1(q=2l) then Qx < qx. Certainly I, C --- CI; and o € I for all k. Further
pe _ Bif_ 1

& Qk |41 Qx|
neighbors. Then |I,| < 1/¢2, where Qr > q; for 1 < ¢ <[ —1. Also |I;] < 1/Q%, where

11| = since |prQr — qxPx| = 1, the end points of the intervals are A-Farey

Qr <qpfor =l +1<t<—-1(¢g=2l—1)or =1 <t<—1(¢q=2]).

Thus, the denominators of the endpoints of the spanning intervals of the vertices on the path

are non-decreasing for 1 <t <[ —1landfor -[+1<t< -1 (¢g=2l—1)or -1 <t < -1

(¢ = 21). In fact, for all P, = g(IPy), the denominators of the cusp are strictly increasing on

each side of go'(c0). Thus, lim g, = oo and lim @Qj = co. Hence, we have lim |I;| = 0 with
k—o00 k—o00 k—o0

lim pi/qr = lim P,/Qr = . O

k—o0 k—o00

1243
13

geodesic ending at « across the A-Farey tessellation (path on a A-Farey graph) in the light of

EXAMPLE 5. Let ¢ = 6, A = v/3 and o = . We examine the cutting sequence of a
the following A-continued fractions of a.

(1) Admissible A-continued fraction,

(17) Nearest A-integer continued fraction,

(7ii) Integer part A-continued fraction.

In each case we introduce p and ¢ into the expansions. In the following examples assume P,
1
has a A-Farey subdivision {c0, 0, 1/v/3, ———, v/3—1/4/3, v/3} and I = [0, o] spans
Yy { / \/g 1 / \/g / } 0 [ ] p

Py on R.

124/3

(1) The admissible A-continued fraction of is given as klim TAPTYPTAPTA PG (00) Where
— 00

g = Tip(Tap)? is the generator. Re-writing the A-continued fraction in terms of p and ¢ we

have, lim propppeppptoht(co0) = propppppepe Jim h*(o0) where h = pPp = op = pto.
—00 —00
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We note that h € G, is a parabolic map with attracting fixed point 0. Thus, pp klim h*(00) =
— 00

12/3
o2p lim h*(00) = 0%(c0) = op(00). So can be expressed as p*pppppppptp(co).

k—o0

(77) The nearest A-integer continued fraction of is given as 7T, p(00). Introducing

p and o we see that this M-integer continued fraction can be written as, p?pppppppop (o)

as above.

(77i) The integer part A-continued fraction of is given as (o1 "oy Ty LTy 2)ie(00).

Again introducing p and ¢ we find that the expansion can be re-written as oo’ pa’pa’pop(cc) =

Proppppppp™ p(0o).

Thus, the A-continued fraction expansion for a derived from the cutting sequence of a geodesic
ending at « is given as p*ppppeppp to(cc). We note that when substituting p and ¢ into
the A-continued fraction above, (i) and (7i7) immediately yield the same finite expansion. In
the case of (i), when we replace ]}1_{20 h*(0o) with 0, the finite expansion for a which is the
same as case of (#i) and (4i7). We now write down the chain of nested intervals converging to

Q.

Let Iy = p*o(Io) = [p*¢(0); p*p(00)] = [map7a(0); Tap7a(00)] = [\/5 B %3 \/5} - {%’ \/3}’
5V3, /3

L, = p*ope(Io) = [p*epp(0); p*opp(co)] = { 3 — \%\/_} V3|
I3 = p*ppppe(lo) = [p*0pepe(0); p*epppp(co {\/§ \/5] = [%g; \/§]

Ly = p*oppopopp(Lo) = [p*oppppry(0); p*ppppppp(o0)] = {\/5 - 4—\1/5; \/5} = [% \/§] :
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1

4\/__—\@

Is = p*opepoppae(lo) = [PPepppepeop(0); PPepppepeop(oo)] = V3 — V3

113 12V3

T,T . ThllS, Io DIl DIQ 313 314 315 since

[o,oob[%ﬁ;\/ﬁlalw f] [M ﬁ]ﬂ%ﬂg};[%%]

12 13

. 2o R
pol) pet)

3 . 2 3 3 3 3
oo opo(Pa) X prop ol P\ Prop~2p Pl Prore(F)\) p*ope( o)







CHAPTER 8

The equivalence of reduced and derived A-continued fractions

In this chapter, following [12], we show that the reduced A-continued fraction expansion for
any « € R is equivalent to the A-continued fraction for o derived from the cutting sequence.
We note that the derived A-continued fraction expansion has a strong geometric flavor, while
the reduced A-continued fraction expansion is heavily dependent on an algebraic definition.
Thus, using the derived A-continued fraction has greater geometric advantages. From Rosen
[25], we see that a reduced A-continued fraction converges. By Theorem 17, we have shown
that a A-continued fraction derived from the cutting sequence of a geodesic will converge to

the end point of the geodesic.

We recall again, the definition of a reduced A-continued fraction (Definition 31, page 60) given

as:
Let B(1—2) = p"72(c0) = [\, =1/, =1/\,- -+, =1/ where q =21 —1,1 >3 orq=2l,1 > 2.
If \ = 2005(%), q > 4, the A-continued fraction [roX, €1/, -+ ], where ¢, = £1, r; € ZT for

1> 1, 7o may be zero, is a reduced \-continued fraction if and only if the following properties
are satisfied:

(1) The inequality r;\ + €41 < 1 is satisfied for no more than | — 2 consecutive values of 1,
1=7,7+1,74+2,---5—-1+1,5>1.

(17) If g =21 — 1, and if r;\ + €;41 < 1 is satisfied for | — 2 consecutive values of i = j, j+ 1,
J+2,- g+ 141, then rjy—o > 2.

(1ii) If g =21 — 1, and if [B(l —2),—1/2\, —1/B(l — 2)] occurs, the succeeding sign is plus.

93
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() If g =2l — 1, the A-continued fraction terminates with €/B(l — 1), then € = 1.
1
(v) If some tail of a finite A-continued fraction has the value 2/\, then r\ + T =(r+1)I—
1 2 1
27N and rA — 3= (r—1A+ 2N We shall choose the plus sign.
We note that since ¢; = %1 this definition involves the maps ¢(z) = —1/z, ¢(z) = 1/z and

T(2) = 2+ Ar for r > 1.

We also recall that if we let v be a geodesic in H? cutting through Py and ending at 3 €
R. The geodesic v yields a path in G. Each vertex P, on the path is given as g(Py) =
PP o opp(Py), =l 4+ 1 <1 <l—-1(¢q=2l—1)and =l <r; <l—1 (¢ =2l for
1 > 1 and where only ry may be zero. If g is A-rational then it is a cusp of a vertex on
the graph, so there exist k& such that 5 = p"0@p™ ¢ - pp™p(cc). If f is non-A-rational then
8= kh_{go PP - ppip(o0). In either case the expansions are A-continued fractions and

can be written in terms of ¢ and 7, where p = T\p.

DEFINITION 35. The A-continued fraction expansion for § € R derived from the cutting se-

quence of v, as described above, is called the derived A-continued fraction expansion for (.

We note that this derived expression is given in terms of p(z) = —1/z and p"(z) with p(z) =

ne(z)and =l <r<l—1(g=20)or —l+1<r<l-1(¢=20-1).

The following theorem involves converting the reduced A-reduced continued fraction expansion
to a derived A-continued fraction expansion. In this conversion the following equalities will be

used:

¢p" = o"¢ where p=T\p and p~! =0 = o1, !

PTR¢ = o7y " and pTip = O1, " ).
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We note that Rosen [25], uses the term B(t) = p’(co) in his development of reduced M-
continued fractions. We have also noted previously (page 74) that a sequence @p" pp™ ¢ will

collapse or reduce if and only if r; and ry are of the same sign.

THEOREM 18. [12] Let o € R. The derived \-continued fraction expansion for « satisfies the
conditions for a reduced \-continued fraction of a. Similarly the reduced \-continued fraction

expansion of a can be converted to a derived \-continued fraction expansion.

Proof

Assume « € R is a non-rational real number with reduced A-continued fraction expansion

€1 €9

i ChA [25], where ¢; = +1 and

given in terms of partial quotients as a = |[rgA

r; € ZT for alli > 1 and ry € Z.

Property (i) for reduced A-continued fraction states that the inequality r;A + €41 < 1 is sat-
isfied for at most [ — 2 consecutive values of ¢ where ¢ = 2[,1 > 2or g =21 — 1,1 > 3. It is
easily seen that if €;1; = 1 we have no solutions to the inequality since r; € Z* and 1 < \ < 2.
Hence, the inequality states that r; = 1 and ¢;;,; = —1 for at most [ — 2 consecutive val-

ues of ¢. Thus, in the reduced A-continued fraction expansion of o we may have a sequence
-1 -1 -1
ATXNT TN

of @ we may have a sequence 7, ' G TapTA@ - - - TapTy e where t <1 — 2, ¢, (2) = £1/2 for

B(t) = p'(c0) = |, with ¢ < [—2 partial quotients. Thus, in the expansion

m = 1,2 and r;_; and r;;; € ZT U{0}. Replacing 7y¢ with p we can rewrite the expansion

as 7y’ 'qptT Mo, Since ¢, (2) = £1/2 for m = 1,2, this expansion needs to be considered in

the cases where ¢; = ¢ and ¢ = ¢.

Case 1. Say ¢; = ¢, then
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ri-1 t-Titt o Ti=1 o ot Tt
TN SIPTY Q= TN PPTN %2

rj—1-1 it

=T, (Ta@) Pt (Tap) o7y, "¢, where ri-g—1>0and rj;, —1>0

— 7 T 207 T G where £+ 2 < L.

Hence, we see in converting a reduced A-continued fraction to an expansion in terms of p and
¢, that if p occurs then tq < I. If ¢ty = [ then p = p! = p~! for ¢ = 2l and p' = p~'*! for

g=2l—1. S0 -l <tg<l—1forg=2land —[+1 <ty <Il—1forqg=20—-1.

Case 2. Say ¢ = ¢, then

Tj+t_1

TaptT M o= opt () e T 6

Ty
X

— Tl —(t+1 Tjt—1

'I’j_l—‘rl

=T\ ¢907;1P_(t+1)¢907;j+t_1§27 ripe —120,r;0+12>2

ri—1+1 _ —(rjye—1
=7 op (t+2)(g07'>\(”t )QO)ngg

= T;j71+1(pp*(t+1)w7—;(rj+t)s0¢§2 Where —(t + 1) 2 —(l . 1) — X 1

Hence, in converting a reduced A-continued fraction expansion to a derived A-continued frac-
tion expansion we may have terms p'® where — < tqg <l—1forg=2land —[+1<ty, <Il-1
for ¢ = 21 — 1. We note that if 7\ + €;.1 < 1 is satisfied for exactly | — 2 consecutive values
of ¢ then ty may be [ — 1 and must be greater or equal to —{ + 1 and —I[ for ¢g-odd and even
respectively. Thus, each reduced A-continued fraction expansion o may be converted to a
derived A-continued fraction expansion satisfying the restriction of — < r; <1 — 1 for ¢ = 2I

and =+ 1<r, <[l—1forqg=2l—-1.

Conversely, let o be a non rational real with a sequence - - - pp™@p™2pp™3p--- in its derived

A-continued fraction expansion where r; # 0, —l <r; <l—1forg=2land —I+1<7r; <[—-1
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for ¢ = 2l — 1. We show that « will have a reduced A-continued fraction expansion when we

make the conversion from ¢ and p to 7, p, ¢ and r; > 1.

Let 7o =1 — 1 and consider the following cases;

(1) ry >1land rz3 > 1
(1) r1 < —land r3 > 1
(13i) 1 < —1l and r3 < —1

() ry > 1 and r3 < —1

Case (7): The sequence - - - pp™ pp"2pp™p--- will be written as

rg—1 r3—1

cppop! Thpptp = ppTpp R () () e = ppTipp! PR

rg —1>0and r; > 1.

Case (i1): Let 1 < —1 and r3 > 1. Then the sequence may be written as;

cpppp Trpptip = op T (o pp TR (Tap)p(Tap) P T o - -+ where g > 1, < —1

r3—1

= pp" T o1y ep P ripp g

= o Hom g P riop e

= ppp~ T Gp 27 20p™ o -+ where 13 — 1 >0 and —(r; + 1) > 0.

Case (7i7): Let 1y < —1 and r3 < —1. If ¢ = 2] — 1, the sequence may be rewritten as

1—(20-1)

cpppp Tl pprp = pppplT ppp -

= pp" o Npplp(ry p e where 1 +1 < 0 and 75+ 1 < 0.

SRR A O L et Vi

(p.--
= pp 1 R0 e )

MHer Pt oo e pr e = 01

— ... gop"‘l+1¢T;2gp¢pl_27-;2§0p_(7’3+1)(p(b P
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:"'(1590,0_

where —(r; + 1), —(r3 + 1) > 0.

We note that in the Cases (i), (i4) and (iii) the appearance of p!~2

73 when ¢ = 21— 1, thus meeting Property (i) and (i7) of Rosen’s reduced A-continued fraction

expansion definition.

Case (iv). This case results in a situation where p'~? does not appear and hence if the following

term is not 77 then there is no contradiction to Property (i) of Rosen’s reduced A-continued

fraction expansion definition.

The expansion - - - pp"pp'~tpp"

1=

cpppp Tl ppp = p

r1+1

(r1+1)

(p.--

epdTiop riep st g - -

Trep T Rpp 3 g -

can be re-written as:

—1 r3+1

Lowp!=top~tpmstly .- where r3 +1 < 0and 7 — 1 >0,

= op Y ) p(map) o 2 (pr )

71—

71—

71—

71—

Thus, sequence ppp!~lop~! leads to a sequence p'=3

(1) of the reduced A-continued fraction expansion definition.

If we now assume that ro = —[ + 1 with ¢ = 2] — 1 then a sequence - - - pp " pp"2pp™p--- can

be rewritten as:

73

o pp"ppHop

SOZSOPTI
= p"p(ppd)

ep’”

Rep'”

ep'”

Rep'”

sDo.lfl

r3+1

2 hpppritip

3(mapTy tp)ppta !

STaOTAd (0 ) - -

3romapp Tt g - - -

TBSDH'

Lopp

(p...

where 1 — 1 >0, —(r3 + 1)

TA@TA@ and does not contradict Property

occurs and is followed by

>0
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= ppp(dp ) pp - - -
= p{epoptopRptd -

where —[ 4+ 1 < s1,8 <1l —1, —1r; = s; # 0.

Using the process for 7 = [ — 1 (above), we establish that Property (i) and (i¢) of reduced

A-continued fraction holds, when ¢ = 21 — 1 (odd).

Property (7ii) for reduced A-continued fraction states that if ¢ = 2/ — 1 and if
[B(l—2),—1/2X\,—1/B(l — 2)], is in the sequence then the succeeding sign is plus. That is, if
we have a sequence (p'20)p7ip(p"™2) = p'2mapeTapp' 20 = (p'top'~1p) in the expansion,

then the subsequent map in the expansion must be ¢.

Let the following term of the expansion be p"¢ with r > 1 or r < —1.

If r = —1 then,

Pl o™ o= (0 e o) (e e
= (P2 (1) (map)p 2 0) (073 o
= PP P pdmad

= (P'7%0) (073) (P 2 0)PTa¢)

so [B(l —2),—1/2\, —1/B(l — 2)] is followed by a plus sign.
[B( , : y ap g

If r =1 then,

(P tep o) po= (P2 (Tap)(Tap) P 20) (Tag) @
= 2 mppPem,
= 0" ep P (map) e

_ 2.2 1-3_2
=pCTNPP T
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_ [—2 2 [—3 2
= (0"720) (e73) (P )Ty

where (p'2¢0)(o73)(0p!=3) is equivalent to [B(l — 2), —1/2), —1/B(l — 3)] in the sequence.

So this case does not satisfy the given requirements.

We notice if we have [B(l — 2),—1/2X\, —1/B(l — 2)] in the sequence and it is followed by a

plus sign then we have:

(P 20) () (p' 2 0) 5= 2 (Tappra)pp' gy, 7> 1
= " rpp' ey
T ()
= o' lpp! " (po) g, o = 7, ! therefore po = 7,
= o oo (pa) g

= 0" "lep' o lopT (o) g, pT! =0

So we see that if [B(l — 2),—1/2\,—1/B(l — 2)] in the sequence is followed by a plus sign
then the equivalently (p'~typp'~tp) must be followed by p~t. Thus, Property (iii) of reduced

A-continued fraction expansion holds.

Property (iv) of reduced A-continued fraction states that the expansion terminates with at

most a block B(l — 2) or p'~?(c0). Consider a cusp a on the A-Farey graph with a =

prop - ppp(o0).

0

Let rp =1 —1. Then oo = p"0p- - p'~lp(00) = p"0p - - p' 2 (Tapp(00)) = pp - - - pp~2(c0),

as required.
Let rp, = =l + 1, then

—l+1

a=pp-pptlp(co)= pp - pp tg(00), p(00) = ¢(o0)

=g ppp't(00)
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= p"p- - dppp T2 (c0)

0

=P p g (Tap)p' 2 (00)

Ifr,=—l+1and r,_; < —1, then

a= pog- - gp~ () p'~* (00)
= pop - gp~ D () p(Tap) p 3 (00), —ror = 120

= pop- - gp 122 (00), as required.

If r, =—l+1andr,_; > 1, then.

a= pop - ptppTHp(00)
= PO et pp IR (g 2T
= P00t opp! T (pip(0))
=P p T (pop)p' 3 (00)
= plp- - prtT 7200172 (00), 1y — 1 > 0, as required.

Thus, Property (iv) of a reduced A-continued fraction is satisfied by a derived A-continued

fraction expansion.

Property (v) of a reduced A-continued fraction states that if the tail of the A-continued frac-
tion is 2/X then r\ + 2/% = (r+ 1)\ — 2/% and 7\ — 2/% =(r—-DI+ 2/% That is, the
expansion 75¢(2/\) = 75 (2/)) and T5p(2/A) = 7L d(2/A) or T5(N/2) = 71T p(2/A) and
7p(2/A) = 757 1(\/2). That is, the ¢ and ¢ can easily be interchanged or the tail can be
replaced with A/2.

Assume p"pp o - - pp"-1p(2/N). Then since 2/X = o1y '¢(2/)), we have p(2/)) = 75 '¢(2/)).

Thus,
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P02/ N)= o H(2/A), 90 = Linap
= prtpog(2/A).
= pEtoplo(2/N).

= ptop~ (M/2).

That is, 2/ is replaced by p~1(A/2). Thus, the tail of 2/ can be replaced with a tail of
A/2. Property (v) of a reduced A-continued fraction is also satisfied by a derived A-continued
fraction. Thus, in general we have an equivalence of reduced A-continued fraction and a

derived A-continued fraction. O
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