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ABSTRACT 

 

Excess adiposity may increase the risk of heart failure through interactions with 

conventional risk factors.  As cardiomyocyte apoptosis may be an important mechanism 

responsible for the development of heart failure the aim of the present study was to 

determine whether obesity enhances a) the increased cardiomyocyte apoptosis that 

accompanies pressure-overload hypertrophy and b) sympathetic-induced cardiomyocyte 

apoptosis. The impact of dietary-induced obesity on cardiomyocyte apoptosis was studied 

in elderly spontaneously hypertensive rats (SHR) and age-matched (8-9 months of age at 

the beginning of the study) Wistar Kyoto rats (WKY) after a 5 month feeding period and 

in young WKY rats  (1 month of age at the beginning of the study) receiving either 

isoproterenol (ISO) or the vehicle (saline) for 5 days at the end of the feeding period.  To 

induce obesity rats were fed a diet that promotes hyperphagia.  At the end of the feeding 

period echocardiography was performed. Cardiac myocyte apoptosis was assessed using a 

TUNEL staining technique. Rats receiving the obesity-inducing diet had increases in body 

weight and visceral fat content.  No further changes in systolic blood pressure were 

observed in rats during the feeding period.  SHRs on the obesity-inducing diet had an 

increased left ventricular end-diastolic diameter and a decreased endocardial fractional 

shortening. As compared to lean rats, dietary-induced obesity resulted in an increase in 

the percentage of cardiomyocytes that were apoptotic in SHRs (3.4±0.5%, p<0.005 vs all 

other groups) and in WKYs receiving ISO (0.35±0.05%, p<0.05 vs Control-ISO and 

p<0.01 vs Control-saline and Diet-saline groups). In conclusion, obesity was associated 

with cardiomyocyte apoptosis through an interaction with pressure-overload hypertrophy 
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and excessive sympathetic activation.  These findings provide insights into the potential 

mechanisms through which obesity may promote the development of heart failure.   
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PREFACE 

 

The prevalence of obesity is increasing in both developed and developing 

countries. There is therefore an urgent need to determine the mechanisms related to 

obesity-induced cardiovascular disease. Although epidemiological studies have shown 

that obesity may have adverse effects on the myocardium independent of conventional 

cardiovascular risk factors, whether these effects are truly independent of the myocardial 

effects of hypertension and sympathetic nervous system activation, which coincide with 

obesity, needs further elucidation.     

The present dissertation was designed to determine whether obesity enhances the 

increased cardiomyocyte apoptosis that accompanies pressure-overload hypertrophy and 

sympathetic activation.  In this dissertation I report on the effects of a 5 month exposure 

to an obesity-inducing diet in the spontaneously hypertensive rat on cardiomyocyte 

apoptosis.  I also explored the interaction between obesity and enhanced adrenergic 

activity induced by isoproterenol, a beta-adrenergic agonist administered for 5 days to 

obese rats.  The outcomes of the current dissertation suggest that although dietary-

induced obesity has no impact on systolic blood pressure or glycosylated haemoglobin, it 

could enhance the detrimental effects of hypertension and sympathetic activation on the 

heart.  These data therefore provide insights into the mechanisms of the deleterious 

effects of obesity on cardiac structure and function.   

In the introductory chapter to this dissertation I have described the evidence that 

supports an adverse effect of obesity on cardiac structure and function in clinical and 

animal studies.  Furthermore, I have reviewed the literature on hypertension and 



 xv 

sympathetic nervous system activation as risk factors associated with obesity and the 

potential detrimental effects associated with hypertensive hypertrophy and sympathetic 

activation including cardiomyocyte apoptosis. I have subsequently described the 

methodology employed and the results of this dissertation in chapters 2 and 3 

respectively.  In the final chapter of this dissertation I have summarized the findings of 

the present research and outlined the study limitations.  Furthermore I have suggested 

potential mechanisms which may play a role in the outcomes of the present findings.   
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Chapter 1 

 

Obesity and the heart: Critical review of the potential role of 

obesity in promoting the development of heart failure. 
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1.0 Introduction 

 

Traditionally, heart failure is considered to occur as a consequence of myocardial 

ischaemia and/or infarction, sustained haemodynamic overloads (through afterload 

[hypertension] or preload [renal failure, thiamine deficiencies, etc] effects), myocardial 

inflammation (myocarditis), valvular heart disease, pericardial disease, endocrine 

disorders, as well as a variety of hereditary disorders affecting the myocardium and 

ultimately producing a decline in the pump capacity (Kannel 1989) or an impaired filling 

(diastolic heart failure) (Setaro et al 1990, Davies et al 1992, Kono et al 1992).  Heart 

failure is a disorder that can affect up to 20/1000 people in the general population 

(Schocken et al 1992) and 80/1000 people older than 65 years of age (Mair et al 1996). It 

is a progressive condition that contributes to a substantial proportion of morbidity and 

mortality (Cowie et al 2000, Mosterd et al 2001) and from the time of diagnosis, survival 

rates are comparable with those of malignancies (Lenfant 1994, Stewart et al 2001, 

Hobbs 2004). Heart failure is a condition that impairs quality of life more than any other 

chronic disease (Hobbs et al 2002). Thus, there is no question that novel mechanisms 

responsible for heart failure should continue to be sought and as a consequence novel 

therapeutic approaches that reduce morbidity, mortality and improve the quality of life of 

patients with heart failure will continue to emerge. 

The past decade has heralded an impressive increase in research attempting to 

elucidate the pathophysiological mechanisms responsible for the progressive decline in 

cardiac function in heart failure, mechanisms which have culminated in novel therapeutic 

approaches (Hunt et al 2001). However, there are still many aspects of heart failure and 



 3 

causes of heart failure where the pathophysiological mechanisms still require further 

elucidation. One potential cause of heart failure, the pathophysiological effects of which 

remain obscure, is obesity. In this regard there is now substantial evidence to indicate that 

independent of conventional cardiovascular risk factors, and in the absence of obvious 

causes of myocardial damage, such as myocardial infarction; excess adiposity, as indexed 

by body mass index (BMI), is associated with an increased risk of heart failure (Hubert et 

al 1983, Kenchaiah et al 2002). These data are of great concern, as the prevalence of 

obesity has achieved epidemic proportions in both developed and in developing countries 

(Bourne et al 2002, Flegal et al 2002, Ogden et al 2006). In the United States of America, 

the prevalence of obesity in 2004 was ~32% and in South Africa, the prevalence of 

obesity prior to 2002 was estimated to be 7.5% in men and 30.0% in women (Puoane et 

al 2002, Ogden et al 2006). Although these figures may not represent trends at the present 

time, it is likely that prevalence rates are increasing rather than decreasing and hence that 

these figures may under- rather than overestimate the prevalence of obesity. 

Consequently, the emerging epidemic of obesity could translate into an increasing 

prevalence of obesity-mediated heart failure. In response to this, it may be argued that 

there is an urgent need to better understand the mechanisms responsible for the 

relationship between obesity and heart failure.  

In the present dissertation I have hypothesized that the adverse effects of excess 

adiposity may increase the risk of heart failure through myocardial effects that occur 

through interactions, or synergistic effects with conventional cardiovascular risk factors. 

In this dissertation, I explored whether obesity interacts with hypertensive left ventricular 

hypertrophy to promote further hypertrophy and hence excessive cardiomyocyte 
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apoptosis, a well recognized mechanism which may be responsible for cardiac 

dysfunction in heart failure (Cheng et al 1996, Abbate et al 2003, Olivetti et al 1997, 

Frustaci et al 1999, Kocher et al 2001, Li et al 1997). Thus, in the introductory chapter to 

the present dissertation, I will first critically review the evidence to suggest that obesity 

promotes myocardial dysfunction in-part independent of conventional cardiovascular risk 

factors. I will subsequently describe the evidence that supports a hypothesis that 

interactions between excess adiposity and hypertensive cardiac hypertrophy may promote 

excessive myocardial damage. 

 

2.0 Can obesity-associated heart failure be attributed to adverse effects on the 

myocardium that are independent of conventional cardiovascular risk 

factors? 

  

From an epidemiological perspective, although BMI is associated with heart 

failure independent of conventional cardiovascular risk factors such as hypertension, 

diabetes mellitus or dyslipidaemia or independent of coronary artery events (Kenchaiah 

et al 2002), a role for these risk factors or for coronary artery disease is not excluded by 

this evidence. Indeed, assessments of these risk factors or of coronary artery events in an 

epidemiological context does not necessarily account for temporal variations in risk 

factors over time or for sub-clinical coronary artery changes. 

Importantly, there is substantial evidence to indicate that excess adiposity is a risk 

factor for the development of hypertension, diabetes mellitus or dyslipidaemia (Colditz et 

al 1995, Perry et al 1995, Mokdad et al 2003, Skarfors et al 1991, Huang et al 1998) and 
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hence when obesity occurs, it is difficult to segregate the impact of these risk factors from 

direct myocardial effects of obesity when assessing the role of obesity in heart failure. 

Indeed, hypertension and diabetes mellitus may produce primary cardiomyopathies that 

may progress to congestive heart failure (Tsotetsi et al 2001, Norton et al 1996, Norton et 

al 1997, Norton et al 2002, Forcheron et al 2009).  Alternatively obesity-induced risk 

factors may promote the development of coronary artery disease, which in-turn could 

result in an underlying cardiomyopathy of ischaemic origin. In this regard, the role of 

hypertension, diabetes mellitus and dyslipidaemia in mediating coronary atheroma and 

ischaemic heart disease is well recognized (Megnien et al 1996, Jensen et al 2000, 

Jeppesen et al 1998, Galla et al 2007, Moreno et al 2000, Barrett-Connor et al 1991). 

Hence obesity-induced coronary atheromatous changes may promote the development of 

an ischaemic cardiomyopathy through a number of cardiovascular risk factors. 

Alternatively, obesity may promote the development of coronary heart disease 

independent of blood pressure and cholesterol effects (Lakka et al 2002, Kim et al 2006) 

by increasing the chances of endothelial dysfunction, a major pathophysiological change 

responsible for coronary atherosclerosis (Al Suwaidi et al 2001). The mechanisms of this 

effect remain obscure. Importantly, however the risk of myocardial infarction and 

ischaemic heart disease increases with an increasing BMI (Yusuf et al 2005, Chen et al 

2006). 

Despite the difficulties in segregating the potential role of conventional 

cardiovascular risk factors or sub-clinical coronary artery disease from obesity-induced 

direct myocardial effects, there is nevertheless emerging evidence to indicate that obesity 

is capable of producing myocardial changes that are independent of either conventional 
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cardiovascular risk factors or underlying coronary artery disease. Hence obesity-induced 

myocardial changes could promote the development of heart failure. This evidence shall 

be reviewed in subsequent sections. 

 

2.1 Obesity induces cardiac enlargement which may promote the development of 

heart failure. 

 

There is unequivocal clinical evidence to indicate that obesity promotes cardiac 

chamber enlargement and hypertrophy. In this regard, there is also some evidence to 

suggest that cardiac chamber enlargement and hypertrophy may antedate the 

development of cardiac dysfunction or heart failure. The following describes the evidence 

to support these notions. 

With respect to the impact of excess adiposity on heart size, body size is the most 

consistent factor associated with left ventricular mass (LVM) (Lauer et al 1991, Lauer et 

al 1992, de Simone et al 1992, Gottdiener et al 1994, Urbina et al 1995, Gardin et al 

1995, Sherif et al 2000, Lorber et al 2003, Fox et al 2004). The prevailing hypothesis is 

that increases in body size augment heart size through changes in loading conditions on 

the heart. Indeed, increases in blood volume associated with excess adiposity result in an 

enhanced cardiac output and stroke volume (Stoddard et al 1992, Messerli et al 1983). 

The chronic volume overload mediated by obesity results in an increase in LV filling 

volumes and thus an enhanced preload and myocardial oxygen demand on the heart 

(Peterson et al 2004a). The compensatory change that occurs is thus cardiomyocyte 

growth which is intended to reduce wall stress and myocardial oxygen demand by 
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increasing the wall thickness of the heart. If wall thickness does not increase in keeping 

with increments in filling volumes, LV wall stress may increase (Alpert et al 1995a, 

Berkalp et al 1995, Zarich et al 1991, Nakajima et al 1985), the consequence potentially 

being a failing myocardium. 

There is no doubt that severe obesity is associated with a cardiomyopathy 

attributed to chronic volume overload which is characterized by LV dilatation, an 

increased LV wall stress, and compensatory LV hypertrophy (Alpert et al 2001). 

Nevertheless, there is considerable dispute as to whether the cardiac enlargement noted in 

less severe forms of obesity is associated with increases in wall thickness which are 

considered to be out of keeping or in keeping with the dimension changes in the heart. 

This is an important concept as excessive increases in wall thickness may also contribute 

to an increased myocardial oxygen demand and thus predispose to excessive 

cardiovascular events. Indeed, an increased wall thickness to internal dimension ratio, 

which is called concentric hypertrophy, is associated with a greater mortality than cardiac 

hypertrophy where the increased wall thickness change is in-keeping with the internal 

dimension change (eccentric hypertrophy) (Krumholz et al 1995, Koren et al 1991). What 

is the evidence to support the notion that concentric or eccentric LV hypertrophy occurs 

in obesity? 

Earlier studies suggest that the predominant effect of obesity on LV structure is 

eccentric LV hypertrophy (LV end diastolic diameter increases in proportion to wall 

thickness with no change in relative wall thickness) (Messerli et al 1983, Messerli et al 

1982, Lauer et al 1992, Gottdiener et al 1994, de Simone et al 1994). This notion has 

been supported by some recent studies also showing a lack of impact of body size on 
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relative wall thickness despite an increase in LVM (Kizer et al 2004, Fox et al 2004). 

However, other recent studies indicate that adiposity may be associated with a relatively 

greater increase in LV wall thickness as compared to LV end diastolic diameter with an 

increased relative wall thickness (concentric LV remodeling and concentric LV 

hypertrophy) being the primary consequence (Mensah et al 1999, Gutin et al 1998, 

Avelar et al 2007, Peterson et al 2004, Wong et al 2004, Woodiwiss et al 2008). The 

uncertainty as to whether overweight or obesity promotes primarily eccentric or 

concentric LV hypertrophy in these studies may relate in some studies to the use of small 

study samples (Messerli et al 1983, Messerli et al 1982, Mensah et al 1999, Gutin et al 

1998, Peterson et al 2004, Wong et al 2004), non-random recruitment approaches 

(Messerli et al 1983, Messerli et al 1982, Gottdiener et al 1994, de Simone et al 1994), 

the assessment of study groups with a limited blood pressure range (Lauer et al 1991, 

Lauer et al 1992), the use of a high proportion of previously treated participants (~44-

90% of participants) (Gottdiener et al 1994, Kizer et al 1994, Fox et al 1994), the 

assessment of adiposity indices employed as discrete traits (Messerli et al 1983, Messerli 

et al 1982, Lauer et al 1991, Lauer et al 1992, Gottdiener et al 1994, de Simone et al 

1994, Fox et al 2004, Avelar et al 2007, Peterson et al 2004, Wong et al 2004), and the 

recruitment of patients with severe obesity (body mass index>35 kg/m
2
) only (Avelar et 

al 2007). Further, in some studies showing relations between excess adiposity and 

relative wall thickness, adjustments were not made for confounders (Mensah et al 1999, 

Gutin et al 1998, Peterson et al 2004). Thus, there are many reasons to explain the 

uncertainty that exists regarding the impact of obesity on LV geometry. Nevertheless, 

more recent evidence obtained by our group, evidence which addresses all of the 
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preceding concerns indicates that obesity is indeed associated with concentric LV 

remodeling and hypertrophy (Woodiwiss et al 2008).  However, it is also possible that 

obesity promotes the progression from concentric LV hypertrophy to chamber dilatation 

and increases in LV chamber diameters. What is the evidence that either LV hypertrophy 

or chamber dilatation could promote the development of heart failure? 

There is now some evidence to indicate that an increase in cardiac chamber 

dimensions (cardiac dilatation) in people without clinical evidence of heart failure is a 

precursor of LV dysfunction and clinical heart failure (Gaudron et al 1993, Pfeffer et al 

1993, Vasan et al 1997). These data are based on the notion that cardiac dilatation may 

increase myocardial wall stress and reduce pump function if appropriate increases in wall 

thickness do not accompany the increases in chamber dimensions. Furthermore, there is 

some evidence to suggest that LV hypertrophy is a risk factor for heart failure. Indeed, in 

the Cardiovascular Health Study, LV hypertrophy at baseline was associated with a 

decrease in LV systolic chamber function as indexed by ejection fraction, and a decrease 

in LV diastolic function, as indexed by transmitral velocity measurements. Importantly, 

these associations were independent of conventional cardiovascular risk factors, 

including conventional blood pressure, as assessed over a 5 year follow-up period 

(Drazner et al 2004). Thus, LV hypertrophy predicts the transition to cardiac dysfunction. 

What is not clear from any of these studies (Gaudron et al 1993, Pfeffer et al 1993, Vasan 

et al 1997, Drazner et al 2004) nevertheless, is to what extent the increases in cardiac 

chamber dimensions and LV hypertrophy could be attributed to obesity. Indeed, if 

obesity is associated with concentric LV hypertrophy then it is unlikely that obesity-

induced increases in LV chamber dimensions will promote the transition to heart failure. 
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However, if concentric LV hypertrophy prevails, the possibility that excessive increases 

in wall thickness predispose to increases in myocardial oxygen demand need to be 

considered. Thus, at present it is uncertain whether obesity-induced increases in LV 

chamber dimensions or LV hypertrophy can promote the progression to cardiac 

dysfunction. Nevertheless, there is some direct evidence to indicate that obesity can 

promote chamber or myocardial dysfunction independent of conventional cardiovascular 

risk factors. Both clinical and pre-clinical evidence is available to support these notions. 

 

2.2 Obesity and cardiac dysfunction in clinical studies 

 

The question of whether excess adiposity promotes cardiac dysfunction 

independent of conventional cardiovascular risk factors has attracted considerable 

interest. A number of clinical studies have reported on the adverse effects of obesity on 

diastolic cardiac function (Pascual et al 2003, Scaglione et al 1992, Chakko et al 1998, 

Zarich et al 1991, de Divitiis et al 1981, Stoddard et al 1992, Alpert et al 1995a, Alpert et 

al 1995b, Sasson et al 1996, Mureddu et al 1996, Mureddu et al 1998). In addition 

diastolic dysfunction has been reported to occur in uncomplicated obesity i.e. 

independent of diabetes, hypertension and dyslipidaemia (Iacobellis et al 2002, Iacobellis 

et al 2004). Evidence suggests that one potential cause for diastolic dysfunction in obesity 

may be an increase in epicardial fat (Iacobellis et al 2007). Obesity has been shown to be 

associated with an increase in epicardial fat thickness and weight loss may significantly 

reduce epicardial fat thickness (Iacobellis et al 2003, Iacobellis et al 2007, Iacobellis et al 

2008). Thus epicardial fat may be a cardiovascular risk factor and has indeed been 
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associated with impaired diastolic filling (Iacobellis et al 2007). However the role of 

epicardial fat is not supported by all studies (Fox et al 2009). Furthermore these authors 

suggest that visceral adipose tissue (and other anthropometric measures of obesity) may 

be a more precise correlate of cardiac structure and function (Fox et al 2009). 

However, with the exception of a few studies (Alpert et al 1995a, Scaglione et al 

1992), early studies using load-dependent assessments of cardiac chamber function, 

failed to report on an adverse effect of excess adiposity on cardiac systolic chamber 

function. In this regard, a number of studies, using indices of chamber rather than 

myocardial function, indicate that systolic cardiac function is either preserved in obesity 

(Pascual et al 2003, Zarich et al 1991, Stoddard et al 1992, de Simone et al 1996, 

Mureddu et al 1996, Berkalp et al 1995), or reduced only as a consequence of increases in 

cardiac loading conditions (Alpert et al 1995a). Furthermore, weight loss may have no 

apparent impact on measures of systolic chamber function (Willens et al 2005), although 

some studies suggest otherwise (Karason et al 1998). 

However, more recent clinical studies employing sophisticated technology to 

study myocardial function (load-independent tissue Doppler indices of myocardial 

function), have reported on reductions in both systolic and diastolic myocardial function 

in overweight people even after adjustments for blood pressure, age, gender and LV mass 

(Peterson et al 2004, Wong et al 2004). Moreover, weight loss mediated by either gastric 

bypass surgery (Willens et al 2005) or lifestyle intervention (Wong et al 2006) has been 

demonstrated to result in improvements in myocardial function as assessed using tissue 

Doppler measurements of myocardial function. However, the use of sophisticated 

technology to study the effects of weight loss on myocardial function have revealed 
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discrepant data with respect to the impact of weight loss on cardiac systolic function 

(Wong et al 2006, Skilton et al 2007). Whilst one study demonstrated beneficial effects of 

weight loss on systolic myocardial function (Wong et al 2006), the other failed to show 

similar outcomes (Skilton et al 2007). 

 

2.3 Obesity and cardiac dysfunction in pre-clinical studies 

 

A number of pre-clinical studies have provided evidence to suggest that 

cardiomyocyte dysfunction occurs in insulin-resistant or obese states. Indeed, the 

function of the sarcoplasmic reticular Ca
2+

 ATPase enzyme, which is responsible for Ca
2+

 

sequestration during relaxation, is impaired in insulin resistant animals (Wold et al 2005). 

These data provide an explanation for the impaired diastolic function which may occur in 

obese patients without diabetes mellitus, hypertension or underlying coronary artery 

disease. Further, decreases in myocardial adrenergic-induced contractile responsiveness 

may occur in dietary-induced obese animals (Carroll et al 1997). Reduced cardiomyocyte 

contractile function may occur in dietary-induced obese animals (Relling et al 2006), and 

in leptin deficient animals with obesity (Dong et al 2006). A decreased cardiomoycyte 

contractile response to insulin and insulin-like growth factor-1 has been reported on in 

genetically obese rats (Ren et al 2000). All of these studies would support potential 

mechanisms for obesity-induced myocardial contractile disturbances. Despite these data 

however, when assessed in vivo, animal models of obesity nevertheless have a preserved 

pump function (Carroll et al 2006, du Toit et al 2008) even if the same model of obesity 

produces an impaired pump function as assessed ex vivo. 
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What could explain the impaired contractile function as determined ex vivo in 

animal models of excess adiposity whilst in the same animal models systolic function 

may be maintained in vivo? One potential explanation is that obesity may indeed be 

associated with myocardial alterations that impair contraction, but at least in the early 

stages of obesity, compensatory myocardial changes may occur that preserve function. In 

this respect, obesity is associated with increased circulating fatty acid concentrations and 

an elevated myocardial fatty acid oxidation (Aasum et al 2008, Mazumder et al 2004). An 

increased fatty acid availability in the presence of an enhanced fatty acid oxidation, may 

improve myocardial performance. Indeed, the inclusion of fatty acids in the perfusion 

media has been shown to improve cardiac performance in the ob/ob mice model of 

obesity (Mazumder et al 2004). This finding may explain a reduced systolic function 

noted in isolated cardiac myocytes or hearts when assessed in the absence of fatty acids 

as an energy source in animal models of obesity without hypertension or diabetes 

mellitus (Dong et al 2006, Relling et al 2006, Ren et al 2000, du Toit et al 2005), 

although cardiac systolic function as assessed in vivo in the presence of circulating fatty 

acids may be preserved (Carroll et al 2006). 

 

2.4        Obesity and cardiomyocyte apoptosis 

 

There is increasing evidence that cardiomyocyte apoptosis (programmed cell 

death in the myocardium) may be an important change that contributes toward cardiac 

dysfunction and heart failure. In this regard, cell loss may precede an impaired 

ventricular pump function (Olivetti et al 1994). Further, in pressure-overload 
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hypertrophy, an increased cardiomyocyte apoptosis occurs in decompensated as 

compared to compensated hearts (Condorelli et al 1999). Evidence of myocyte cell loss 

(Olivetti et al 1994) and cardiomyocyte apoptosis (Yamamoto et al 2000) is noted in 

hypertensive patients and an increased cardiomyocyte apoptosis occurs in transgenic 

models of heart failure (Sarkar et al 2004). Moreover, inhibitors of the caspase enzyme, 

an enzyme that is central to mediating the apoptotic process, have been demonstrated to 

reduce cardiomyocyte apoptosis and attenuate the reduction in left ventricular pump 

dysfunction that accompanies the transition from compensated LV hypertrophy to heart 

failure (Hayakawa et al 2003, Engel et al 2004). 

What is the evidence to suggest that obesity could promote cardiomyocyte 

apoptosis? In this regard, an increase in the percentage cardiomyocyte apoptosis has been 

observed in the myocardium of the Zucker Diabetic Fatty (ZDF) rat and in the ob/ob 

mouse (Zhou et al 2000, Barouch et al 2006). However, whether obesity per se or other 

factors mediate excessive cardiomyocyte apoptosis in these animal models of obesity 

(Zhou et al 2000, Barouch et al 2006), is unclear. First, as these are genetic models of 

excess obesity, it is difficult to assess whether the genetic modifications increase the 

susceptibility of the myocardium to excessive cardiomyocyte apoptosis or whether 

obesity per se is responsible for these changes (Zhou et al 2000, Barouch et al 2006). 

Second, the role of blood pressure changes in mediating excessive cardiomyocyte 

apoptosis in the ZDF rat needs to be considered. In this respect, it is well recognized that 

hypertension is associated with an increased cardiomyocyte apoptosis in both animal 

models (Li et al 1997, Diez et al 1997, Liu et al 2000, Hamet et al 1995, Fortuno et al 

1998) and in human hypertension (Gonzalez et al 2002) and that the ZDF rat has an 
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increased blood pressure (Carlson et al 2000, Nagao et al 2003). Although the ob/ob 

mouse does not have elevated blood pressures and hence excessive cardiomyocyte 

apoptosis cannot be attributed to blood pressure effects in this model (Mark et al 1999b, 

Christoffersen et al 2003), both the ZDF and the ob/ob mouse models of obesity are 

associated with diabetes mellitus (Coleman 1978, Corsetti et al 2000). As with 

hypertension, diabetes mellitus is also associated with increases in cardiomyocyte 

apoptosis (Bäcklund et al 2004, Ghosh et al 2005, Cai et al 2006). In summary therefore, 

it is uncertain whether an increased cardiomyocyte apoptosis in animal models of obesity 

is related to the genetic defects and associated changes produced by these defects, or the 

effects of blood pressure or diabetes mellitus rather than obesity per se. Importantly, no 

study has reported on the effects of dietary-induced obesity on cardiomyocyte apoptosis. 

Moreover, no study has excluded the potential role of conventional cardiovascular risk 

factors in mediating obesity-associated increases in cardiomyocyte apoptosis. 

Consequently, as part of the present dissertation I assessed the impact of dietary-induced 

obesity on cardiomyocyte apoptosis in a model of obesity that our group has previously 

shown to produce no increase in blood pressure and no effect on glycaemic control (du 

Toit et al 2008). 

 

3.0 Interactions between excess adiposity and conventional cardiovascular risk 

factors could account for obesity-induced adverse effects on the heart. 

 

As indicated in the introduction to this chapter, obesity is a major determinant of 

an increased blood pressure and an increased blood pressure could still account for the 
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relationships between obesity and heart failure in epidemiological studies. What is the 

evidence to suggest that obesity is a major role player in influencing blood pressure and 

what evidence could favour a role for hypertension in promoting obesity-induced cardiac 

dysfunction? 

With respect to a role for obesity in mediating increases in blood pressure, there is 

now substantial evidence from population-based studies, with large study samples 

(n=10969-15063) in favour of obesity being a major determinant of conventional blood 

pressure and the development of hypertension (Zhu et al 2005, Harris et al 2000). Indeed, 

the odds of developing hypertension are ~1.7-3.4 times greater in obese individuals as 

compared to lean individuals (Harris et al 2000). Further, there is substantial evidence to 

indicate that weight reduction results in decreases in blood pressure. Indeed, in a meta-

analysis of a number of weight reduction studies, with a total sample size of 4874 

participants, it is estimated that a decrease in 4.4 mmHg of systolic blood pressure and 

3.6 mmHg of diastolic blood pressure will occur for every 5.1 kg of weight loss over 16.5 

months (Neter et al 2003). Furthermore, in an alternative study involving 3245 

participants, a ~1.4-2.0 fold chance of hypertension remission was reported to occur for 

every 1 kg decrease in body weight over 9 years (Juhaeri et al 2003). 

What evidence could favour a role for hypertension in promoting obesity-induced 

cardiac dysfunction? Although the majority of studies describing an adverse impact of 

obesity on myocardial function have attempted to exclude the impact of blood pressure or 

hypertension by selecting normotensive participants or accounting for blood pressure 

effects in multivariate adjusted regression models, these approaches still do not 

necessarily exclude a role for hypertension in mediating obesity-induced myocardial 
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dysfunction. One possibility that has not been given due consideration is whether obesity 

interacts with hypertension to promote myocardial dysfunction. Under these 

circumstances much lower levels of blood pressure may be required to promote adverse 

effects on the heart in patients whom are overweight or obese, effects which may not be 

accounted for in multivariate adjusted models. Is there evidence that obesity interacts 

with hypertension to promote adverse effects on the heart? 

Recent evidence in severe obesity (body mass index>35 kg/m
2
) suggests that LV 

hypertrophy is mediated by an enhanced impact of blood pressure on LV growth (Avelar 

et al 2007). Furthermore, in a large cross-sectional population study conducted in South 

Africa, the first evidence has emerged to indicate that even mild-to-moderate forms of 

excess adiposity enhance the impact of conventional or ambulatory blood pressure, and 

of arterial stiffness (considered as continuous traits) on LV mass index (Norton et al 

2009, in press). In contrast to these studies (Avelar et al 2007, Norton et al 2009, in 

press), in a predominantly middle-aged population sample (Fox et al 2004), and in a 

randomly selected Framingham sample (Lauer et al 1992), interactions between discrete 

categories of BMI (lean, overweight and obese) and blood pressure (normal, high-normal 

and hypertensive) failed to predict LV mass index. In this regard the assessment of blood 

pressure as a discrete trait could potentially reduce the sensitivity of detecting an 

interactive effect. Furthermore, in contrast to the South African study (Norton et al 2009, 

in press), where ~22% of subjects were receiving antihypertensive therapy and ~19% 

were hypertensive but not receiving therapy, in one study (Fox et al 2004) ~50% of 

subjects (the majority of hypertensives) were receiving antihypertensive therapy, thus 

potentially modifying the effects of blood pressure on LV mass index. Further, in the 
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Framingham Heart Study, by excluding treated hypertensives from the analysis, a very 

narrow range of blood pressure values was obtained in the participants (Lauer et al 1992), 

thus potentially limiting the sensitivity of detecting an interactive effect. Thus, there is 

clinical evidence to suggest that obesity could, at least enhance the adverse impact of 

blood pressure on cardiac size. Is there evidence to indicate that obesity could promote 

the deleterious effects of an increased blood pressure on cardiac function?  

In this regard although this hypothesis has previously been posed with respect to 

changes in diastolic function in the heart (Lavie et al 1987, Grossman et al 1991) and for 

the risk of developing congestive heart failure and cardiac arrythmias (Zhang et al 2000, 

Morse et al 2005), few studies with small study sample sizes have addressed this 

question. In this regard, one study has demonstrated that obese hypertensives may have a 

lower left ventricular pump function (endocardial fractional shortening) than non-obese 

hypertensives (Grossman et al 1991), but another study suggests that the presence of 

obesity does not worsen myocardial function associated with hypertension (de Simone et 

al 1996). Thus, considerably more evidence is required to test the hypothesis that obesity 

enhances the adverse impact of conventional cardiovascular risk factors on the 

myocardium. In this regard, in the present dissertation, based on the findings that obesity 

enhances the impact of blood pressure on cardiac hypertrophy, I hypothesized that 

obesity could potentiate the development of LV hypertrophy and thus increase the 

deleterious effects of hypertensive hypertrophy that ultimately mediate the progression to 

heart failure.  In this regard, in the present dissertation I studied the impact of obesity on 

myocardial apoptosis in hypertensive hypertrophy. Thus, in the subsequent discussion I 

will review the evidence to indicate that hypertensive cardiac hypertrophy is associated 
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with excessive cardiomyocyte apoptosis, and the evidence to indicate that cardiomyocyte 

apoptosis is an important mediator of the progression to heart failure. 

 

4.0 Cardiomyocyte apoptosis in hypertensive hypertrophy: Presence and 

potential role in contributing to heart failure. 

 

 There is ample evidence to suggest that excessive cardiomyocyte apoptosis occurs 

in pressure-overload hypertrophy. In this regard, it is well recognized that hypertension is 

associated with an increased cardiomyocyte apoptosis in both animal models (Li et al 

1997, Diez et al 1997, Liu et al 2000, Hamet et al 1995, Fortuno et al 1998) and in human 

hypertension (Gonzalez et al 2002, Yamamoto et al 2000) even prior to the onset of heart 

failure.  Left ventricular hypertrophy is accompanied by cardiomyocyte upregulation of 

the proapoptotic gene bax in chronic pressure-overload in rats (Condorelli et al 1999) and 

is associated with Gq activation (a class of GTP-binding proteins) which promotes 

hypertrophic growth and has been shown to induce cardiomyocyte apoptosis (Hirotani et 

al 2002, Adams et al 1998, Adams et al 2000). As suggested in section 2.4 above, there is 

increasing evidence that cardiomyocyte apoptosis may be an important change that 

contributes toward cardiac dysfunction in hypertensive hypertrophy. Indeed, in pressure-

overload hypertrophy, a greater degree of cardiomyocyte apoptosis occurs in 

decompensated as compared to compensated hearts (Condorelli et al 1999). Moreover, 

inhibitors of the caspase enzyme, an enzyme that is central to mediating the apoptotic 

process, have been demonstrated to reduce cardiomyocyte apoptosis and attenuate the 

reduction in left ventricular pump dysfunction that accompanies the transition from 
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compensated LV hypertrophy to heart failure (Hayakawa et al 2003, Engel et al 2004). 

What are the potential mechanisms that mediate increases in cardiomyocyte apoptosis in 

the hypertrophic heart in pressure-overload states? Furthermore, could obesity promote 

these mechanisms? 

 

5.0 Potential mechanisms that mediate cardiomyocyte apoptosis in pressure-

overload hypertrophy: Potential interactions with excess adiposity. 

 

A number of mechanisms have been suggested to mediate excessive 

cardiomyocyte apoptosis in pressure-overload cardiac hypertrophy, mechanisms that 

could be enhanced by obesity. In this regard, from the perspective of the present 

dissertation there are two major hypotheses that need to be considered. First, pressure-

overload states increase myocardial wall stress and thus activate a number of downstream 

pathways that mediate apoptosis. If obesity increases cardiac cavity dimensions in a 

manner that exceeds the compensatory increase in wall thickness, then these stress-

activated pro-apoptotic pathways could be excessively activated and an interaction 

between hypertension and obesity may contribute toward cardiomyocyte apoptosis. 

Second, a major mechanism that is hypothesized as being responsible for the 

transition to heart failure in pressure-overload hypertrophy is through sympathetic 

activation, and obesity is well recognized as promoting sympathetic effects. Thus, in the 

following discussion I will first highlight the cellular pathways responsible for stress-

activated cardiomyocyte apoptosis. Second, in subsequent sections I will describe the 

evidence to suggest that sympathetic activation occurs in pressure-overload states and 
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that this change may mediate the progression to heart failure through cardiomyocyte 

apoptosis. Third, I will review the evidence to indicate that sympathetic activation may 

be further promoted by the presence of excess adiposity. 

 

5.1       Stress-activated cardiomyocyte apoptosis. 

 

Stress effects on the myocardium may be a key factor in the development of 

myocardial dysfunction in hypertensive heart disease, and this effect may be mediated 

through an impact on cardiomyocyte apoptosis. Systemic hypertension does indeed result 

in oxidative stress and the generation of reactive oxygen species (ROS) in the 

cardiovascular system including in the heart. This effect has been noted in both animal 

models (Dhalla et al 1996, Suzuki et al 1995, Schnackenberg et al 1999, Nakazono et al 

1991, Dobrian et al 2001) and in human hypertension (Russo et al 1998). The generation 

of ROS in the myocardium may be an important determinant of the development of heart 

failure as the transition from compensated LV hypertrophy to heart failure is associated 

with an increase in oxidative stress (Li et al 2002, Singal et al 1982, Singal et al 1993). 

What is the evidence that the generation of ROS in the myocardium translates into 

increases in cardiomyocyte apoptosis? In this regard, mechanical stretch of papillary 

muscles, in association with an increase in superoxide anions (O2
-
), induces 

cardiomyocyte apoptosis (Cheng et al 1995). Moreover, an increased intracellular ROS in 

cardiomyocytes is associated with an increase in apoptosis (Siwik et al 1999). 
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5.2 Sympathetic activation occurs in pressure-overload states and may mediate                

the progression to heart failure through cardiomyocyte apoptosis. 

 

As indicated in the aforementioned discussion, an alternative mechanism that 

could account for excessive cardiomyocyte apoptosis in pressure-overload hypertrophy is 

through activation of the sympathetic nervous system. Indeed there is now increasing 

evidence in support of a notion that the sympathetic nervous system is critical in the 

progression from compensated hypertrophy to heart failure and that this effect may be 

mediated by cardiomyocyte apoptosis. 

What is the evidence to suggest that the sympathetic nervous system is critical in 

the progression from compensated hypertrophy to heart failure?  First, increased 

myocardial norepinephrine concentrations are noted in the coronary sinus in patients with 

hypertensive hypertrophy prior to the development of heart failure (Agabiti-Rosei et al 

1987, Kelm et al 1996, Schlaich et al 2003) and in spontaneously hypertensive rats prior 

to the development of heart failure (Veliotes et al 2005). The mechanism of excessive 

myocardial norepinephrine release in hypertensive hypertrophy appears to be because of 

a reduced norepinephrine re-uptake as well as an increased sympathetic nervous system 

activity (Esler et al 1986, Schlaich et al 2003, Rumantir et al 2000). Second, transgenic 

animal models with a decreased adrenergic activation are protected against the 

development of heart failure when exposed to pressure-overloads (Esposito et al 2002). 

Third, in compensated hypertensive hypertrophy excessive adrenergic activation is 

associated with downregulation of β-adrenergic systems (Limas and Limas 1978, 

Castellano et al 1993, Böhm et al 1994, Böhm et al 1995), changes that could promote 
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the development of contractile dysfunction. Fourth, chronic sympathetic activation 

mediated by exogenous administration of a β-adrenoreceptor agonist promotes the 

transition from compensated cardiac hypertrophy to pump dysfunction in hypertension 

(Badenhorst et al 2003, Gibbs et al 2004, Veliotes et al 2005). Last, blockade of β-

adrenoreceptors prevents the transition from cardiac hypertrophy to heart failure in 

hypertension, an effect that occurs independent of blood pressure changes (Chan et al 

2004). Based on these lines of evidence it is apparent that hypertensive hypertrophy is 

associated with excessive myocardial or systemic sympathetic activation; and that 

attenuation of sympathetic activation in pressure-overload states prevents the transition to 

heart failure. In addition, further promotion of excessive sympathetic activation in 

pressure-overload states hastens the transition to pump dysfunction. 

What is the evidence that activation of the sympathetic nervous system in 

pressure-overload states could promote cardiomyocyte apoptosis? Although there is no 

direct evidence to suggest that this change occurs in pressure-overload states, there is 

ample evidence to indicate that excessive cardiomyocyte apoptosis may occur in any 

situation associated with sympathetic activation. Indeed, sympathetic-induced 

cardiomyocyte apoptosis is a well recognized change (Communal et al 1998, Qin et al 

2001, Osadchii et al 2007), an effect that occurs through β-adrenoreceptor activation 

(Shizukuda and Buttrick 2001, Communal et al 1998). 
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5.3      Sympathetic activation in obesity. 

 

As indicated in the aforementioned discussion, in the present dissertation I have 

tested the hypothesis that obesity may interact with pressure-overload cardiac 

hypertrophy to promote cardiomyocyte apoptosis. This hypothesis is based in-part on the 

notion that obesity augments pressure-overload hypertrophy and hence potentially 

enhances the adverse effects on the myocardium that are often associated with pressure-

overload states. One such adverse effect of pressure-overload hypertrophy is 

cardiomyocyte apoptosis. I have also hypothesized in the aforementioned discussion that 

this adverse effect in pressure-overload states is mediated in-part by sympathetic 

activation in these states and that obesity could thus, in-part, augment cardiomyocyte 

apoptosis in pressure-overload states by enhancing sympathetic effects. However, what is 

the evidence for an impact of obesity on the sympathetic nervous system?     

 There is now substantial evidence to indicate that an increased sympathetic 

nervous system activity accompanies either an increased energy intake, a well recognized 

cause of obesity, and that sympathetic nervous system activity increases in obesity itself 

irrespective of energy intake. Previously it was thought that sympathetic nervous system 

activity is reduced with increases in energy intake or with obesity, thus predisposing 

individuals to weight gain (Peterson et al 1988). However, other studies have dispelled 

this notion. Indeed, with respect to energy intake, Young and Landsberg (1977) have 

demonstrated that two days of fasting reduced and overfeeding increased sympathetic 

nervous system activity. Moreover, O‟dea et al (1982) demonstrated that noradrenaline 

spillover rate and noradrenaline clearance rates increased with an increased energy 
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intake. Furthermore, muscle sympathetic nervous system activity may increase after oral 

carbohydrate administration to human subjects (Berne et al 1989). With respect to 

obesity, there is considerable evidence to suggest that the sympathetic nervous system is 

activated in this condition (Haynes et al 1997, Haynes et al 1998,  Casto et al 1998, 

Wofford and Hall 2004, Tentolouris et al 2006, Yang and Barouch 2007, Mark et al 

1999a). Importantly, noradrenaline spillover and microneurographic techniques (Vaz et al 

1997, Grassi et al 1998a) as well as measurements of plasma concentrations and urinary 

excretion rates of noradrenaline (Troisi et al 1991, Masuo et al 2000) have clearly 

demonstrated that sympathetic nervous system activity is augmented in obese adults. 

Furthermore, dietary-induced weight gain is associated with an increase in sympathetic 

nervous system activity (Gentile et al 2007) and reductions in body weight have been 

shown to result in a decrease in sympathetic nervous system overactivity in obese 

subjects (Grassi et al 1998b, Straznicky et al 2005). 

 A number of mechanisms may explain obesity-related increases in sympathetic 

nervous system activity. Importantly, sympathetic nervous system activation in obesity 

may in-part be attributed to the compensatory hyperinsulinaemia that occurs in response 

to insulin resistance (Hall et al 1996). Because insulin-mediated glucose uptake within 

central hypothalamic neurons regulates sympathetic activity in response to dietary intake, 

hyperinsulinemia is thought to provoke sympathetic nervous system stimulation (Young 

& Landsberg 1980, Landsberg & Young 1982). Indeed, mean urinary noradrenaline 

excretion is positively correlated with serum insulin concentrations (Troisi et al 1991).   

Alternatively, hyperleptinaemia associated with obesity may also mediate 

excessive sympathetic nervous system activation. Leptin is a peptide hormone produced 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Wofford%20MR%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Hall%20JE%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Yang%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Barouch%20LA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus
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and secreted primarily by adipocytes. It is found in excess in obesity (Eikelis et al 2004, 

Van Dielen et al 2002, Frederich et al 1995) and is present in concentrations in the 

plasma in proportion to the percentage of body fat (Considine et al 2005, Schwartz et al 

1996a). Leptin binds to receptors mainly in the hypothalamus to regulate body weight by 

reducing appetite and increasing metabolic rate (Mistry et al 1997, Schwartz et al 1996b, 

Mercer et al 1996). In addition to the role of leptin in the control of food intake and 

metabolic rate, leptin also increases sympathetic nervous system activity. In this regard, 

leptin infusion causes an increase in sympathetic nervous system activity via its actions 

on the ventromedial and dorsomedial hypothalamic regions (Marsh et al 2003).  An 

infusion of leptin increases sympathetic nervous system activity to brown adipose tissue, 

the kidneys, the hindlimb and the adrenal gland in rats (Haynes et al 1997). In obesity, 

chronic leptin infusion also increases sympathetic nervous system activity (Rahmouni et 

al 2005, Corriea et al 2002). However, it is now widely accepted that obese individuals 

are resistant to the effects of leptin (Münzberg & Myers 2005), including the anorexic 

and body weight reducing effects of leptin (Rahmouni et al 2005).  Although obesity is 

associated with leptin resistance, leptin may nevertheless induce increases in sympathetic 

nervous system activity in the obese state.  This may be explained by selective leptin 

resistance i.e. leptin resistance to appetite or weight reducing effects (Rahmouni et al 

2005, Correia et al 2002, Münzberg et al 2004, Rahmouni et al 2002), whilst sympathetic 

nervous system activation may be sustained (Dunbar et al 1997). Indeed, dietary-induced 

obese mice are resistant to the reductions in food intake and body weight induced by 

intraperitoneal and intra-cerebroventricular administration of leptin whilst leptin still 

increases sympathetic nervous system activity (Rahmouni et al 2005). 
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Although there is considerable evidence for a role for leptin in mediating an 

increased sympathetic nervous system activity, most of the studies have focused on 

sympathetic activation to areas such as the kidneys or the hindlimb. If obesity were to 

augment the adverse effects of pressure-overload hypertrophy on myocardial tissue 

through sympathetic effects, then evidence for obesity-induced cardiac sympathetic 

neuronal overactivation needs to be sought. Evidence in favour of this notion is that 

plasma leptin concentrations are positively correlated with heart rate (Hirose et al 1998) 

and that even in the presence of increased blood pressures, which would be expected to 

produce a compensatory decrease in heart rate, a chronic leptin infusion in rats increases 

heart rate (Carlyle et al 2002). Furthermore, adrenergic blockade abolishes the increase in 

heart rate that occurs in response to chronic leptin infusion (Carlyle et al 2002). Whether 

these changes in heart rate in association with leptin are because sympathetic neuronal 

activation to the heart increases, or whether sympathetic neuronal activation of the 

adrenal gland occurs, is uncertain. Irrespective of the mechanism involved, obesity is 

associated with cardiac effects which reflect an enhanced sympathetic nervous system 

stimulation of the myocardium, and hence through excessive sympathetic neuronal 

activation, could potentially promote the deleterious effects of pressure-overload 

hypertrophy on the heart. 

 

6.0 Summary of hypothesis 

 

 As indicated in the aforementioned discussion the mechanisms responsible for the 

strong epidemiological evidence to indicate that obesity induces heart failure, are unclear. 
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Although some recent studies provide evidence to suggest that obesity may reduce 

cardiac systolic function independent of conventional cardiovascular risk factors, the 

possibility that conventional cardiovascular risk factors play a major role in mediating the 

relationship between obesity and heart failure cannot be excluded. As our group has 

recently demonstrated that even mild-to-moderate obesity enhances the impact of blood 

pressure on cardiac hypertrophy (Norton et al 2009, in press), a finding supported by 

published data in severe obesity (Avelar et al 2007), I hypothesized that obesity could 

enhance the extent of cardiac hypertrophy in hypertension, a change that ultimately 

mediates the progression to heart failure. In this regard, in the present dissertation I 

hypothesized that one potential detrimental effect of hypertensive hypertrophy that could 

be enhanced by obesity is cardiomyocyte apoptosis. I also hypothesized that obesity may 

augment the cardiomyocyte apoptosis that occurs in hypertensive hypertrophy by 

enhancing the impact of sympathetic-induced cardiomyocyte apoptosis. 
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7.0 Aims 

 

The aim of the present dissertation was therefore to determine whether obesity 

enhances a) the increased cardiomyocyte apoptosis that accompanies pressure-overload 

hypertrophy and b) sympathetic-induced cardiomyocyte apoptosis. 
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Chapter 2 

 

Methods. 
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2.1 Study groups 

 

The studies described in the present dissertation were approved by the University 

of the Witwatersrand Animal Ethics Screening Committee (approval numbers: 

2006/59/04 and 2006/99/03) and comply with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals. To assist the reader figure 2.1 summarizes the 

overall study design employed to assess the impact of excess adiposity on the adverse 

effects of pressure-overload hypertrophy or adrenergic activation. These studies are 

described in sections 2.1.1 and 2.1.2.  

 

2.1.1 Model to assess the impact of excess adiposity on cardiomyocyte apoptosis in 

pressure-overload hypertrophy. 

 

To assess the impact of obesity on cardiomyocyte apoptosis in pressure-overload 

hypertrophy, I studied the effect of dietary-induced obesity on cardiomyocyte apoptosis 

in spontaneously hypertensive rats (SHR) (Figure 2.1). The SHR model was selected as 

an appropriate model of cardiomyocyte apoptosis associated with pressure-overload 

hypertrophy, as our group has previously demonstrated marked increases in 

cardiomyocyte apoptosis as well as norepinephrine concentrations in the coronary 

effluent of isolated, perfused hearts at 18.5 months of age in SHR as compared to 

normotensive Wistar Kyoto control rats (WKY) (Veliotes et al 2005). Furthermore, the 

SHR has previously been shown to be associated with marked cardiomyocyte apoptosis 

by alternative groups (Li et al 1997, Liu et al 2000, Hamet et al 1995, Diez et al 1997).  
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Figure 2.1. Study designs employed to assess the impact of excess adiposity on the adverse 

effects of pressure overload hypertrophy and sympathetic activation in rats. WKY- Wistar 
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Thus, 8-9 month old SHR (an age when compensatory LV hypertrophy occurs)(Tsotetsi 

et al 2001) and age-matched WKY rats were assigned to receive either an obesity-

inducing or a control diet for 5 months as described in a subsequent section (section 

2.2)(du Toit et al 2008). The myocardium of rats was subsequently studied in rats at 13-

14 months of age. 

 

2.1.2 Model to assess the impact of excess adiposity on sympathetic-induced 

cardiomyocyte apoptosis. 

 

In order to evaluate the impact of obesity on sympathetic (adrenergic)-induced 

cardiomyocyte apoptosis, I studied the effect of dietary-induced obesity on 

cardiomyocyte apoptosis provoked by five days of β-adrenoreceptor activation in intact 

normotensive WKY rats (Figure 2.1). This model of β-adrenoreceptor-mediated 

cardiomyocyte apoptosis has previously been established in our laboratory (Osadchii et al 

2007). Importantly, excessive cardiomyocyte apoptosis does not occur with single doses 

of isoproterenol, but rather requires repeated administration to induce a measurable 

cardiomyocyte apoptotic effect (Osadchii et al 2007). We have also demonstrated that 

this model of β-adrenoreceptor activation, if continued for prolonged periods (five 

months or more), results in marked cardiac dilatation and pump dysfunction (Woodiwiss 

et al 2001, Osadchii et al 2007), without inducing cardiomyocyte necrosis (Woodiwiss et 

al 2001). In this model of cardiomyocyte apoptosis, chronic β-adrenoreceptor activation 

is induced by daily injections of the β-adrenoreceptor agonist, isoproterenol for five days 

(0.01mg/kg/day for 3 days and 0.02mg/kg/day for 2 days). Isoproterenol (Sigma-Aldrich, 
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South Africa) was constituted in sterile saline (0.9% NaCl) in order that each rat would 

receive subcutaneous injections of ~0.1-0.2 ml volumes daily. Control rats received daily 

injections of sterile saline at the same volume. In this study, dietary-induced obesity was 

produced by feeding 150-200 g WKY rats the diet described in a subsequent section 

(section 2.2) for five months. At the end of the five month feeding period, experimental 

diet-fed rats and age-matched dietary controls were subsequently assigned to receive 

either daily isoproterenol injections or the saline vehicle (see Figure 2.1). 

 

2.2 Obesity-inducing diet and the assessment of the degree of adiposity  

 

Rats were obtained from the Central Animal Services at the University of the 

Witwatersrand where they were in temperature controlled rooms with appropriate light-

dark cycles.  Animals were allowed free access to food and water 24 hours a day. 

Standard rat food was supplied by EPOL, South Africa and the experimental diet 

employed in the present study contained normal rat food, elevated carbohydrates and fats 

and resembles a Western-type diet (Cordain et al 2005). The experimental diet was 

produced by soaking 1.32 kg of normal rat food in 812 ml of water to which 280g of 

sugar and four tins (385g each) of condensed milk (Nestlé, South Africa) were added. 

The dietary ingredients were then mixed to form a paste and the diet was made up weekly 

and stored at 4
o
C. 

The experimental diet consisted of weight/weight, 65% carbohydrates derived 

from maize and simple carbohydrates (sugar), 19% protein derived from soya and fish, 

and 16% fat derived from milk products and fish. In comparison, the control diet 



 35 

consisted of 60% carbohydrates derived from maize, 30% protein derived from soya and 

fish, and 10% fat derived from fish without milk products (du Toit et al 2008). The 

experimental diet consisted of weight/weight 7.8% saturated fats, 5.5% polyunsaturated 

fats and 2.6% monounsaturated fats. In contrast, the control diet consisted of 

weight/weight 1.9% saturated fats, 5.8% polyunsaturated fats and 2.6% monounsaturated 

fats.  This diet is designed to induce hyperphagia (Pickavance et al 1999). Our group has 

previously shown that differences in micronutrient (vitamins and minerals) intake, 

produced by dilution of the diet by addition of carbohydrates and fats, does not modify 

either body size or cardiac function (du Toit et al 2008). 

To assess the efficacy of the obesity-inducing diet, body weights were recorded in 

rats before the start of feeding and then once a week at the same time on the same day of 

each week until the end of the study. At the end of the study, visceral fat weight was 

determined post-mortem. To weigh visceral fat, fat was removed from the retroperitoneal 

space on the posterior wall of the abdominal cavity and from the omentum. To account 

for intrinsic differences in body size between WKY rats and SHRs in the model to assess 

the impact of excess adiposity on cardiomyocyte apoptosis in pressure-overload 

hypertrophy, body weight was also expressed per tibial length at the end of the study. 

 

2.3 Blood pressure measurements 

 

Tail artery systolic blood pressures were measured in SHR and WKY rats at the 

beginning of the study and at the end of the feeding period and were recorded at the same 

time of day for each rat on both occasions. A non-invasive tail-cuff technique was used to 
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measure systolic blood pressure in conscious, restrained rats (Norton et al 1993, Tsotetsi 

et al 2001). Rats were initially habituated to the restrainers and to the procedure (Norton 

et al 1993). In order to achieve habituation, rats were placed in restrainers for two hours a 

day on two separate days, their tails warmed and the tail-cuffs inflated to 200 mmHg for 

30 seconds at regular periods five times per day. To obtain measurements of tail artery 

systolic blood pressures, rats were housed in restrainers for 20 minutes and the tail pre-

heated to vasodilate the tail artery. A photoelectric diode model 29 pulse amplifier was 

used to detect a pulse in the rat tail artery (Figure 2.2). A tail-cuff, coupled to a pressure 

transducer was placed proximal to the photoelectric diode and inflated until the pulse 

disappeared. The cuff was then slowly deflated until the pulse reappeared. Whilst 

deflating the cuff, cuff pressures and the tail pulse were simultaneously recorded on a 

model R511A recorder, Beckman, USA (Figure 2.2). The cuff pressure at which the 

pulse was again detected on deflation of the tail-cuff was taken as systolic blood pressure 

(Figure 2.2). The tail artery systolic blood pressure was measured three times on each 

occasion and the mean of three measurements was used as the recording for that day. 
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Figure 2.2. Photograph of the experimental setup used to measure tail artery systolic 

blood pressures in rats (left panel) and an example of a recording obtained (right panel). 

A - A syringe is coupled to the pressure transducer and tail-cuff.  The syringe is used to 

inflate the tail-cuff; B - The photoelectric diode is used to detect the tail pulse (upper 

right) and tail-cuff to occlude the tail artery; C - The pressure transducer is used to record 

the pressure in the tail-cuff (lower right). 
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2.4 Echocardiography 

 

To determine the impact of obesity on left ventricular dimensions and systolic 

chamber or myocardial function in anaesthetized SHR and WKY rats, echocardiography 

was performed at the end of the study using previously described methods (Norton et al 

2002, Woodiwiss et al 2001). In rats receiving isoproterenol, echocardiography was 

performed immediately before and then again 15 minutes after the last dose of 

isoproterenol. The last dose of isoproterenol was administered 24-hours after the 

preceding dose. This approach was adopted to determine whether any differences in 

cardiomyocyte aopoptosis noted between groups could be attributed to differences in 

haemodynamic responses to isoproterenol. A pilot study established that the 

isoproterenol-induced increase in systolic function was no different at 5 minutes, 15 

minutes or 30 minutes after subcutaneous isoproterenol administration. 

In the study to assess the impact of obesity in young WKY rats, 8 rats from each 

of the saline-treated groups and 10 rats from each of the ISO-treated groups were 

randomly selected. To perform echocardiography rats were anaesthetized with 50mg/kg 

of ketamine (Bayer, Edms, Isando, South Africa) and 3mg/kg of xylazine (Bayer, Edms, 

Isando, South Africa) to ensure immobility during the procedure as previously described 

(Norton et al 2002). As ketamine increases sympathetic nervous system activity and 

xylazine decreases sympathetic nervous system activity the overall effect of the 

anaesthetic on echocardiography measurements is negligible. A high resolution ultrasonic 

probe (7 MHz paediatric probe) was used to obtain two-dimensional guided M-mode 

images of the rat left ventricle using an approach previously described (Chung et al 1998,  
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Figure 2.3. Upper panel illustrates the echocardiogram used to assess left ventricular 

structure and function in rats and the lower panel shows a representative M-mode image 

used to determine left ventricular structure and function.  AB - left ventricular end 

diastolic diameter; CD - left ventricular end systolic diameter; E - left ventricular end 

diastolic posterior wall thickness; F - left ventricular end systolic posterior wall thickness. 
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Norton et al 2002) (Figure 2.3) on an Accuson echocardiograph (Siemens Medical 

Division USA, Inc). Care was taken to ensure that an M-mode image was obtained at the 

level of the papillary muscles. As the right ventricular cavity was difficult to visualize in 

concentrically remodelled SHR, septal wall thickness values were not determined. 

However, left ventricular end diastolic and end systolic internal diameter and posterior 

wall thickness values were determined (Figure 2.3). Left ventricular internal dimensions 

during systole and diastole were measured using the American Society for 

Echocardiography's (Sahn et al 1978) leading edge method (Norton et al 2002). 

Measurements were made from 3 consecutive beats. Left ventricular chamber and 

myocardial systolic function were determined from endocardial (FSend) and midwall 

(FSmid) fractional shortening respectively, as previously described (Norton et al 2002) 

using the following equations: 

 

FSend = EDD-ESD/EDD x 100 

 

FSmid = [(EDD+ED PWT)/2-(ESD+ES PWT)/2]      x 100 

                  (EDD+ED PWT)/2 

  

where EDD = end diastolic diameter, ESD = end systolic diameter, ED PWT = end 

diastolic posterior wall thickness and ES PWT = end systolic posterior wall thickness.  

The calculation of midwall diameter at either end diastole or end systole is based on an 

assumption that PWT = septal wall thickness, and hence that half of PWT = half of septal 

wall thickness. 
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2.5 Blood analysis 

 

Immediately after the last echocardiogram was obtained the thoracic cavity was 

opened under anaesthesia and the hearts immediately removed. To determine the impact 

of the model of obesity on percentage glycosylated haemoglobin (HbA1c), blood samples 

were obtained from the thoracic cavity immediately after extirpation of the heart. HbA1c 

measurements were determined immediately (using non-frozen blood) using HBA1C II 

Tina-quant kit (Cobas-Roche Diagnostics). 

 

2.6 Assessment of the degree of ventricular hypertrophy 

 

The heart was rinsed in saline and the large vessels and atria carefully dissected 

free from the ventricles. The ventricles were then weighed. The right ventricular free wall 

was then separated from the left ventricle and its septum and the right ventricular free 

wall weighed. The left ventricle with the septum intact was then weighed. The heart 

weight and left ventricular weight were then expressed as absolute weights as well as 

heart or ventricular weight per 100 g body weight or per tibial length. Heart and left 

ventricular weight were expressed per 100g body weight to account for differences in 

overall body size, including differences in growth between SHRs and WKY and 

differences on the degree of adiposity produced by dietary intervention. Heart and left 

ventricular weight were expressed per tibial length to account for differences in growth 

between SHRs and WKY without adjusting for the impact of adiposity on heart size. 
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2.7 Cardiomyocyte fibrosis and apoptosis  

 

After weighing heart tissue, a longitudinal slice of the left ventricle from the apex 

to the base through the left ventricular free wall was obtained from all rats for histology. 

Left ventricular tissue was stored in 10% buffered formaldehyde for subsequent 

histology. Buffered formaldehyde consists of 10.4 ml of 37-40% formaldehyde 

(Associated Chemical Enterprises, South Africa) to which 89.6 ml phosphate buffered 

saline (PBS) is added. The solution is then buffered to pH 7.4. The PBS solution consists 

of sodium chloride (137mM), potassium chloride (2.68mM), potassium dihydrogen 

orthophosphate (1.47 mM) and disodium hydrogen orthophosphate (8.1mM) (Merck, 

South Africa) which are added to distilled water and then buffered to pH 7.4. Myocardial 

tissue was subsequently processed by dehydration in graded alcohol, cleared in 

chloroform, embedded in paraffin wax and cut into sections. Left ventricular tissue was 

processed routinely for light microscopy and 50 μm-thick sections of the long axis 

circumference were cut through the full thickness of the left ventricular wall. Ten slices 

were obtained at 1-mm intervals and stained with van Gieson‟s stain and with 

haemotoxylin and eosin (H & E). To stain with H & E sections were dewaxed, hydrated 

and stained with haemotoxylin (consisting of ammonium alum, haemotoxylin, chloral 

hydrate, citric acid, sodium iodate, distilled water). The slides were then washed in 

running tap water and stained with eosin (consisting of eosin, erythrosin, distilled water, 

calcium chloride). The sections were then rinsed in tap water, dehydrated and 

subsequently mounted with permanent mounting medium (Entellan, Merck KGaA, 

Germany). To stain with van Gieson‟s stain, sections were dewaxed, hydrated and stained 
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with Wigerts haemotoxylin (consisting of haemotoxylin, distilled water, hydrochloric 

acid and ferric chloride).  After washing in running tap water the sections were stained 

with van Geison‟s solution (consisting of picric acid, acid fuchsin), blotted dry, 

dehydrated and subsequently mounted using permanent mounting medium (Entellan, 

Merck KGaA, Germany). The reagents used in H&E and van Geison‟s stain were 

obtained from Merck, South Africa. After staining a pathological grade was assigned, 

where 0 indicates no damage; 1 and 2, patchy fibrosis in less than or more than 20% of 

the field respectively; 3 and 4, diffuse contiguous subendocardial fibrosis in less than or 

more than 50% of the field respectively and 5 and 6, full thickness fibrosis in less than or 

more than 50% of the field respectively (Teerlink et al 1994, Woodiwiss et al 2001). The 

grading results were confirmed by a second observer. Representative slides are illustrated 

in Figure 2.4. 

The degree of apoptosis was quantified on myocardial tissue sections obtained 

from the same tissue blocks used to assess the pathological score. For each tissue block, 

50 μm thick sections were stained and evaluated. Nuclear deoxyribonucleic acid (DNA) 

fragments in the tissue sections were detected using a non-radioactive in situ apoptotic 

cell death detection kit (DeadEnd
TM

 Colorimetric TUNEL system, Promega, Madison, 

WI, USA), where terminal deoxynucleotidyl transferase (TdT) was used to incorporate 

biotinylated nucleotide at the 3‟-OH DNA ends. Horseradish-peroxidase-labeled 

streptavidin binds to biotinylated nucleotides, which subsequently stain dark brown in 

response to hydrogen peroxide and diaminobenzidine (Agarwala and Kalil 1998). Both 

positive (DNase treated) and negative (no addition of TdT) control tissue sections were 

incorporated into each assay. A separate Coplin jar was used for the positive slide due to 
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Figure 2.4. Histological images obtained using light microscopy from cross-sections of 

myocardial tissue stained with van Gieson‟s stain. The slides show portions of the heart 

with evidence of tissue fibrosis following cell death (upper panels) as compared to 

normal portions of the heart (lower panels).  Arrow indicates fibrosis (stained pink). 
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 DNase I activity from the positive control which may affect the experimental slides by 

staining non-apoptotic cells. 

To identify apoptotic nuclei, all procedures were carried out at room temperature 

except where otherwise stated. Paraffin embedded sections were first immersed in xylene 

for 5 minutes to de-paraffinize the tissue sections. The tissue sections were then washed 

by immersing the slides in 100% ethanol for 5 minutes and again for 3 minutes. The 

sections were then rehydrated by immersing the slides through graded ethanol washes 

(95%, 85%, 70% and 50%) for 3 minutes each. The slides were then washed in 0.85% 

NaCl solution for 5 minutes and in PBS for 5 minutes. The tissue sections were then 

fixed by immersing the slides in 4% paraformaldehyde solution for 15 minutes. The 

slides were then immersed in PBS for 5 minutes. The liquid was then dried from the 

tissue sections and the slides were placed on a flat surface. A 20μg/ml protein kinase K 

solution was prepared from the 10μg/ml Proteinase K stock solution by diluting it with 

PBS. 100μl of the proteinase K solution was then added to the slides to cover each tissue 

section. The slides were then incubated for 30 minutes at room temperature to allow the 

proteinase K to increase the permeability of the cells. The tissue sections were then 

washed by immersing the slides in PBS for 5 minutes and re-fixed by immersing in 4% 

paraformaldehyde solution and washed again in PBS for 5 minutes. At this point the 

positive control slide was treated with DNase I to cause DNA fragmentation whilst the 

experimental slides remained in a PBS solution. 100μl of DNase I buffer was added to 

the positive control slide to cover the tissue sections and incubated at room temperature 

for 5 minutes. The DNase I buffer liquid was then tapped off the tissue sections and 

DNase I buffer containing DNase was added to cover the tissue sections. The slides were 
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then incubated for 10 minutes at room temperature. The excess liquid was removed by 

tapping the slides. The positive control slide was then washed 4 times in distilled water 

and in PBS for 5 minutes. After DNase treatment the positive control slide was again 

processed with the experimental slides. The excess liquid was removed by tapping the 

slides and the tissue sections were then covered with Equilibration Buffer for 8 minutes. 

Whilst the sections were equilibrating, 10μl of Biotinylated Nucleotide Mix and 10μl of 

rTDT Enzyme were added to 980μl of Equilibration Buffer for the reaction mix. A 

control incubation buffer was prepared for the negative control slide by adding 1μl of 

Biotinylated Nucleotide Mix and 1μl of distilled water to 98μl of Equilibration buffer. 

After equilibration the slides were blotted with tissue paper to remove excess liquid and 

100μl of the rTDT reaction mix was then added to each tissue section. The sections were 

then covered with plastic cover slips and incubated at 37˚C for 60 minutes inside a 

humidified chamber to allow the end-labeling reaction to occur. After 60 minutes the 

slides were removed from the incubator and the plastic cover slips were removed. 20X 

saline-sodium citrate (SSC, supplied with the TUNEL kit) was diluted 1:10 with distilled 

water. The rTDT reaction was terminated by immersing the slides in 20X SSC solution 

for 15 minutes. This procedure was repeated. The tissue sections were subsequently 

washed in PBS twice for 5 minutes each to remove unicorporated biotinylated 

nucleotides. The slides were then immersed in 0.3% hydrogen peroxide for 5 minutes to 

block the endogenous peroxides and washed with PBS for 5 minutes. Streptavidin HRP 

was diluted in PBS. 100μl was added to each slide to cover the tissue sections and the 

slides were incubated at room temperature for 30 minutes. The slides were then washed 

with PBS for 5 minutes. 50μl of DAB Substrate 20X Buffer, 50μl of DAB 20X 
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Chromogen and 50μl of Hydrogen Peroxide 20X were added to 950μl of distilled water.  

100μl of the DAB solution was then added to each slide to cover the tissue sections for 8 

minutes at room temperature. The slides were then rinsed 4 times with distilled water, 

dehydrated by immersing the slides in graded ethanol washes (50%, 70%, 85% and 95%) 

and immersed in xylene. The slides were subsequently mounted using permanent 

mounting medium (Entellan, Merck KGaA, Germany). 

The number of apoptotic cardiomyocyte nuclei and the total number of 

cardiomyocyte nuclei (haematoxylin and eosin stain) in each slide were counted on ten 

evenly spaced fields from the apex to the base using a computer-based image acquisition 

and analysis system at 400 times magnification (Axiovision 3, Carl Zeiss, Gottingen, 

Germany). Apoptotic cardiomyocyte nuclei were expressed as a percentage of the total 

number of cardiomyocyte nuclei. Representative examples of stained sections for the 

samples assessed and from positive and negative controls and from an SHR are illustrated 

in Figure 2.5. All sections were coded and a single observer “blinded” to the identity of 

the rat from which the section was obtained recorded the number of apoptotic nuclei, and 

counted the total number of cardiac myocyte nuclei from the H & E slides. 

 

2.8 Data analysis 

 

As 5 days of ISO administration had no effect on heart or left ventricular weight, 

data for experimental-diet groups were pooled and compared to pooled data for control-

diet fed groups. The effects of the experimental-diet on heart and left ventricular weight, 

and on left ventricular dimensions was then assessed using an unpaired t-test. 
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Figure 2.5. Histological sections of the myocardium stained for apoptotic nuclei. The 

upper panels illustrate sections obtained from a positive (left) and a negative (right) 

control (20X magnification) and the lower panel a section from the myocardium of a 

heart showing apoptotic cardiomyocyte nuclei (arrow) (40X magnification). Note the 

numerous apoptotic nuclei in the positive control section. 
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In the model to assess the impact of excess adiposity on cardiomyocyte apoptosis 

in pressure-overload hypertrophy, differences in body weight and tail-cuff systolic blood 

pressure between obese SHR, SHR and age-matched WKY control rats were assessed 

using a repeated measures two-way ANOVA. Cardiac morphometry, LV dimensions 

andfunction, glycosylated haemoglobin and the percentage of cardiomyocyte apoptosis 

between obese SHR, SHR and age-matched WKY control rats, were assessed using two-

way ANOVA.   

In the model to assess the impact of excess adiposity on sympathetic-induced 

cardiomyocyte apoptosis, differences in body weight, tail-cuff systolic blood pressure and 

LV function before and after acute ISO administration between young WKY diet-ISO, 

WKY diet-vehicle, WKY control-ISO and WKY control-vehicle were assessed using a 

repeated measures two-way ANOVA. Cardiac morphometry, LV dimensions, 

glycosylated haemoglobin and the percentage of cardiomyocyte apoptosis between young 

WKY diet-ISO, WKY diet-vehicle, WKY control-ISO and WKY control-vehicle were 

assessed using a two-way ANOVA. 

The pathological score between groups was assessed using a Kruskal-Wallis test 

followed by Dunn post hoc tests (nonparametric ANOVA).  All data are expressed as 

mean ± standard error of the mean (SEM).  

 

 



 50 

 

 

 

 

 

 

 

Chapter 3 

 

Results. 
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3.1 Food intake in diet versus control rats. 

 

The experimental groups consumed a greater quantity of food and consequently, 

energy intake was enhanced in the experimental groups (31±1.28g/day; 570±23 kJ/day 

respectively) as compared to the control group (20±1.00g/day; 371±18 kJ/day 

respectively), p<0.0001.   

 

3.2 Obesity in young Wistar Kyoto rats. 

 

Figure 3.1 shows body weight changes over the 5 month study period and Figure 

3.2 shows the visceral fat weight at the end of the study in young (1 month of age at the 

beginning of the study) WKY rats receiving either the experimental diet or the control 

diet. The experimental diet resulted in an increase in body and visceral fat weight as 

compared to control diet fed rats (Figures 3.1 and 3.2). The body weight in rats receiving 

the experimental diet was significantly greater than the body weight in rats receiving the 

control diet, from the fourth month of the study (Figure 3.1). Importantly, similar dietary 

effects on body weight and visceral fat were noted in rats assigned to receive either 

isoproterenol or the vehicle for 5 days at the end of the study period (Table 3.1). 

 

3.3 Obesity in elderly Wistar Kyoto and Spontaneously Hypertensive rats. 

 

 Figure 3.3 shows body weight changes over the 5 month study period and Figure 

3.4 shows the visceral fat weight and the body weight normalized to tibial length (as an  
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Figure 3.1 Changes in body weight over time in young Wistar Kyoto (WKY) rats 

receiving a normal diet (Control) or a diet designed to increase caloric intake (Diet). 

Body weights in Diet-fed rats were significantly greater than Control rats from 4 months 

on the experimental diet. *p<0.001 vs Control group. 
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Figure 3.2 Visceral (retroperitoneal and mesenteric) fat weight in young Wistar Kyoto 

(WKY) rats receiving a normal diet (Control) or a diet designed to increase caloric intake 

(Diet). *p<0.0001 vs Control group. 
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Table 3.1 Comparison of body morphometry in Wistar Kyoto (WKY) rats fed different 

diets for 5 months and subsequently receiving either isoproterenol (ISO) or the saline 

vehicle (vehicle) for 5 days. 

                                      Final body weight      Visceral fat 

                                              (BW)(g)                      (g) 

                      WKY con-vehicle (n=16)       480±5       19.3±0.9  

                      WKY con-ISO (n=14)            482±8       20.0±1.3 

                      WKY diet-vehicle (n=16)       542±10*      32.1±1.6* 

                       WKY diet-ISO (n=14)           560±12*      34.0±1.9* 

 

Con, control diet; diet, experimental diet. *p<0.0001 versus respective Control diet-fed 

group.  
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Figure 3.3 Changes in body weight over time in spontaneously hypertensive (SHR) and 

Wistar Kyoto Control (WKY) rats receiving a normal diet (Control) or a diet designed to 

increase caloric intake (Diet). Body weights in diet-fed SHR and WKY rats were 

significantly greater than Control rats from 3 months on the experimental diet. *p<0.0001 

vs respective Control diet-fed rats. 
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Figure 3.4 Visceral (retroperitoneal and mesenteric) fat weight and body weight 

normalized to tibial length (as an index of growth) in spontaneously hypertensive  (SHR) 

and Wistar Kyoto Control (WKY) rats receiving a normal diet (Control) or a diet 

designed to increase caloric intake (Diet). *p<0.005 vs respective Control diet-fed rats, † 

p<0.0001 vs respective WKY group.     
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index of body weight changes expressed as a proportion of growth) at the end of the 

study in elderly (8-9 months of age at the beginning of the study) WKY rats and SHR 

receiving either the experimental diet or the control diet. Although SHR weighed 

considerably less than WKY rats throughout the study period, after 5 months of feeding 

in both WKY rats and SHR the experimental diet resulted in an increase in body weight 

as compared to control diet fed rats in both groups (Figure 3.3). The body weight in both 

SHR and WKY rats receiving the experimental diet was significantly greater than the 

weight in rats receiving the control diet, from the third month of the study (Figure 3.3). 

SHR developed a significant increase in body weight normalized to tibial length (Figure 

3.4), and a similar increase in visceral fat content in response to the experimental diet as 

WKY rats (Figure 3.4). 

 

3.4     Systolic blood pressure in young Wistar Kyoto Rats. 

 

Dietary-induced obesity had no effect on tail-cuff systolic BP in young (1 month 

of age at the beginning of the study) WKY rats (Experimental diet; Baseline SBP= 116±3 

mm Hg, After 5 months of the study SBP= 118±4 mm Hg; Control diet;  Baseline SBP= 

112±4 mm Hg, After 5 months of the study SBP= 119±4 mm Hg). 
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3.5     Systolic blood pressure in elderly Wistar Kyoto and Spontaneously 

Hypertensive rats.  

 

        Figure 3.5 shows the tail-cuff systolic blood pressures measured in elderly (8-9 

months of age at the beginning of the study) WKY and SHR before and after 5 months of 

feeding rats either a control or an experimental diet. Both at 1 and at 5 months of dietary 

intervention, systolic BP was markedly increased in SHR as compared to WKY rats, but 

the experimental diet failed to modify BP in either group. 

 

3.6 Impact of obesity-inducing diet on percentage glycosylated haemoglobin 

(HbA1c) in either young or elderly groups of rats. 

 

The obesity-inducing diet failed to influence the percentage glycosylated 

haemoglobin (HbA1c) in young WKY rats (Experimental diet=4.69±0.13%; Control diet= 

4.68±0.05%). Similarly, the obesity-inducing diet failed to influence the HbA1c in either 

elderly SHR or WKY rats (WKY rats; Experimental diet=4.67±0.08%; Control diet= 

4.70±0.13%, SHR; Experimental diet=4.63±0.15%; Control diet=4.7±0.18%). 
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Figure 3.5 Tail-cuff systolic blood pressures in spontaneously hypertensive (SHR) and 

Wistar Kyoto Control (WKY) rats receiving either a normal diet (Control) or a diet 

designed to increase caloric intake (Diet). *p<0.0001 vs respective WKY groups. 
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3.7 Impact of obesity and isoproterenol administration on heart weight and left 

ventricular weight in young WKY rats 

 

Table 3.2 shows heart and left ventricular weights at the end of the study in young 

(1 month of age at the beginning of the study) WKY rats receiving either the 

experimental diet or the control diet for 5 months and either daily isoproterenol or the 

vehicle for 5 days prior to termination. Isoproterenol did not modify heart weight in 

either the control or the experimental diet groups, but increased left ventricular weight in 

the experimental diet group (Table 3.2). Feeding rats the experimental diet resulted in an 

increase in heart weight [Experimental diet (n=30)=1.23±0.02g; Control diet (n=30)= 

1.14g±0.02g, p<0.005] and left ventricular weight [Experimental diet 

(n=30)=1.01±0.02g; Control diet (n=30)=0.94±0.02g, p<0.005]. As the experimental diet 

resulted in a greater increase in body weight (~15%), compared to heart (~8%) or left 

ventricular weight (~7%), a decrease in the heart and left ventricular weight-to-body 

weight ratios was noted in the experimental diet fed groups.  

 

3.8   Impact of obesity and hypertension on heart weight and left ventricular                                  

weight in elderly WKY and Spontaneously Hypertensive rats  

 

Table 3.3 shows heart and left ventricular weights at the end of the study in 

elderly (8-9 months of age at the beginning of the study) WKY rats and SHR receiving 

either the experimental diet or the control diet for 5 months. Despite having markedly  
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Table 3.2 Cardiac morphometry in Wistar Kyoto (WKY) rats fed different diets for 5 

months and subsequently receiving either isoproterenol (ISO) or the saline vehicle 

(vehicle) for 5 days. 

                             HW (g)         LVW (g)          HW/BW           LVW/BW 

 

WKY con-vehicle (n=16)        1.13±0.02      0.94±0.02         2.35±0.05         1.95±0.04  

WKY con-ISO (n=14)             1.15±0.03      0.95±0.03         2.39±0.06         1.96±0.05 

WKY diet-vehicle (n=16)    1.19±0.03      0.98±0.02         2.20±0.05         1.82±0.04** 

WKY diet-ISO (n=14)            1.26±0.03      1.04±0.02*        2.26±0.03          1.85±0.02** 

 

HW, heart weight; LVW, left ventricular weight; BW, body weight; Con, control diet; 

diet, experimental diet. *p<0.05, **p<0.01 versus respective Control diet-fed groups. 
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Table 3.3 Cardiac morphometry in elderly Wistar Kyoto (WKY) and Spontaneously 

Hypertensive (SHR) rats fed different diets for 5 months. 

 

                         HW (g)            LVW (g)         HW/BW          LVW/BW 

 

WKY con (n=10)                  1.41±0.15      1.17±0.15        2.91±0.004        2.40±0.003  

SHR con (n=10)                    1.52±0.12      1.22±0.08        4.24±0.004*      3.41±0.003* 

WKY diet (n=9)                    1.52±0.07      1.23±0.05        2.88±0.005        2.33±0.004 

SHR diet (n=10)                    1.70±0.23      1.34±0.14        3.55±0.002*      3.55±0.002* 

 

HW, heart weight; LVW, left ventricular weight; BW, body weight; Con, control 

diet; diet, experimental diet. *p<0.0001 versus respective WKY group. 
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lower body weights as compared to WKY rats throughout the study (Figure 3.3), SHR 

had similar heart and LV weights as compared to WKY rats (Table 3.3). Thus, when 

heart and left ventricular weight were normalized per 100g body weight, consistent with 

the effects of hypertension, SHR had striking increases in cardiac weight. Feeding rats 

the experimental diet resulted in a trend for an increase in heart and left ventricular 

weight in WKY rats and SHR (Table 3.3). Importantly, when LV weight was normalized 

for tibial length, SHRs having received the experimental diet exhibited striking LV 

hypertrophy as compared to the other 3 groups (Figure 3.6) (p<0.05 for an interaction 

between diet and hypertension).  

 

3.9 Impact of obesity on LV dimensions and systolic function in young WKY 

rats receiving isoproterenol. 

 

The experimental diet tended to increase left ventricular wall thickness 

[Experimental diet (n=18)=1.96±0.06mm; Control diet (n=18)=1.83±0.04mm, p=0.07] 

but did not modify left ventricular internal dimensions [Experimental diet 

(n=18)=8.54±0.12mm; Control diet (n=18)=8.44±0.17mm, p=0.65].  Table 3.4 shows LV 

internal dimensions and wall thickness at the end of the study in young (1 month of age at 

the beginning of the study) WKY rats receiving either the experimental diet or the control 

diet for 5 months and either daily isoproterenol or the vehicle for 5 days prior to 

termination. Neither the experimental diet given for 5 months, nor 5 days of isoproterenol 

administration modified either LV internal dimensions or wall thickness in young WKY 

rats. 
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Figure 3.6 Left ventricular weight normalized to tibial length in spontaneously 

hypertensive (SHR) and Wistar Kyoto Control (WKY) rats receiving a normal diet 

(Control) or a diet designed to increase caloric intake (Diet). *p<0.05 vs all other groups. 
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Table 3.4 Comparison of left ventricular diameters and wall thickness values in Wistar 

Kyoto (WKY) rats fed different diets for 5 months and subsequently receiving either 

isoproterenol (ISO) or the saline vehicle (vehicle) for 5 days. 

 

                       LVEDD                 LVESD           ED PWT             ES PWT 

                         (mm)                      (mm)        (mm)                (mm) 

 

WKY con-vehicle (n=8)       8.46±0.18            4.96±0.19    1.87±0.06       2.73±0.13  

WKY con-ISO (n=10)          8.43±0.28   4.99±0.23    1.79±0.06           2.68±0.09 

WKY diet-vehicle (n=8)       8.45±0.22   4.59±0.24    1.98±0.13       3.02±0.14 

WKY diet-ISO (n=10)          8.61±0.12   5.28±0.18    1.96±0.06       2.81±0.10 

 

LVEDD, LV end diastolic diameter; LVESD, LV end systolic diameter; ED PWT, LV 

end diastolic posterior wall thickness; ES PWT, LV end systolic posterior wall thickness 

Con, control diet; diet, experimental diet. 
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Figure 3.7 shows LV systolic chamber and myocardial function and heart rate at the end 

of the study in young (1 month of age at the beginning of the study) WKY rats receiving 

either the experimental diet or the control diet for 5 months and either daily isoproterenol 

or the vehicle for 5 days prior to termination. Moreover, Figure 3.7 shows changes in LV 

systolic chamber and myocardial function and heart rate in response to acute 

administration of isoproterenol in the different groups of rats. Neither the experimental 

diet given for 5 months, nor 5 days of isoproterenol administration modified baseline LV 

chamber or myocardial systolic function or heart rate. Moreover, neither the experimental 

diet given for 5 months, nor 5 days of isoproterenol administration modified the LV 

chamber or myocardial systolic function or heart rate response to acute isoproterenol 

administration. 

 

3.10 Impact of obesity on LV dimensions and systolic function in elderly WKY 

and Spontaneously Hypertensive rats 

 

Figure 3.8 shows LV end diastolic diameters and LV systolic chamber (FSend) 

function and Table 3.5 shows LV internal dimensions at end systole, wall thickness, LV 

systolic myocardial function (FSmid) and end diastolic and systolic relative wall thickness 

(h/r) at the end of the study in elderly (8-9 months of age at the beginning of the study) 

WKY rats and SHR receiving either the experimental diet or the control diet for 5 

months. Consistent with a concentric LV geometry, SHR had reduced LV internal 

diameters 
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Figure 3.7 Effect of acute isoproterenol administration on left ventricular systolic 

chamber (endoocardial fractional shortening, FSend) and myocardial (midwall fractional 

shortening, FSmid) function as well as heart rate (HR) in young Wistar Kyoto control 

(WKY) rats receiving a normal diet (Control) or a diet designed to increase caloric intake 

(Diet). *p<0.0001 vs Baseline data. 
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Figure 3.8 Left ventricular end diastolic diameter (LVEDD) and systolic chamber 

function (endocardial fractional shortening-FSend) in Spontaneously hypertensive  (SHR) 

and Wistar Kyoto Control (WKY) rats receiving a normal diet (Control) or a diet 

designed to increase caloric intake (Diet). *p<0.0001 vs respective WKY groups, 

† p<0.05 vs SHR Control. 
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Table 3.5 Left ventricular dimensions and myocardial function in elderly Wistar Kyoto 

(WKY) and Spontaneously Hypertensive (SHR) rats fed different diets for 5 months. 

 

          LVESD     ED PWT      ES PWT          ED h/r        ES h/r     FSmid 

           (mm)           (mm)           (mm)             (%) 

 

WKY con (n=10)  3.89±0.16   2.00±0.10    3.07±0.05    0.54±0.04   1.61±0.09   26.6±1.2  

SHR con (n=10)   1.68±0.18
*
  2.98±0.19

*
  4.00±0.13

*
   1.13±0.12

*
  5.27±0.56

*
  33.3±1.7 

WKY diet (n=9)   3.94±0.24   2.16±0.13    3.19±0.09    0.57±0.05    1.68±0.13    27.6±1.3 

SHR diet (n=10) 2.69±0.38
*†

 2.56±0.10
*†

  3.68±0.14
*†  

0.83±0.08
*†

 3.37±0.55
*†

  29.5±2.6 

 

LVESD, left ventricular end systolic diameter; ED PWT, LV end diastolic 

posterior wall thickness; ES PWT, LV end systolic posterior wall thickness; h/r, wall 

thickness to radius ratio. FSmid, midwall fractional shortening; Con, control diet; diet, 

experimental diet. *p<0.001 versus respective WKY group, † p<0.05 vs SHR Control-

diet fed group. 

 

 

 

 

 

 

 



 70 

(Figure 3.8 and Table 3.5), a thicker posterior wall (Table 3.5), an increased LV relative 

wall thickness (h/r) (Table 3.5) and an increased systolic chamber function (FSend) as 

compared to WKY rats (Figure 3.8). No differences were noted in systolic myocardial 

function (FSmid) between the SHR and WKY rats (Table 3.5). 

The experimental diet produced an increase in LV internal diameters at end diastole 

(Figure 3.8) and at end systole (Table 3.5) in SHR, but not in WKY rats. Moreover, the 

experimental diet produced a decrease in LV posterior wall thickness at end diastole and 

at end systole in SHR, but not in WKY rats (Table 3.5). The consequence of the dietary-

induced changes in internal diameters and wall thickness in SHR was a reduced LV 

relative wall thickness (h/r) (Table 3.5). Although the dietary-induced changes in LV 

geometry in SHR failed to translate into a decreased myocardial function (FSmid) (Table 

3.5), SHR receiving the experimental diet developed a marked reduction in LV systolic 

chamber function (FSend), whilst the experimental diet failed to modify FSend in WKY 

rats (Figure 3.8). 

 

3.11 Impact of obesity on isoproterenol-induced cardiomyocyte apoptosis and 

fibrosis 

 

Figure 3.9 shows the percentage TUNEL positive stained cardiomyocytes 

(apoptosis) and the pathological score (fibrosis) at the end of the study in young (1 month 

of age at the beginning of the study) WKY rats receiving either the experimental diet or 

the control diet for 5 months and either daily isoproterenol or the vehicle for 5 days prior 

to termination. The experimental diet did not alter the degree of cardiomyocyte apoptosis  
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Figure 3.9 Percentage cardiomyocyte apoptotic nuclei and pathological score 

after 5 days of daily isoproterenol (ISO) or saline vehicle (vehicle) administration in 

young Wistar Kyoto control (WKY) rats receiving a normal diet (Control) or a diet 

designed to increase caloric intake (Diet). *p<0.05 versus Control-ISO, †p<0.01 vs 

Control-saline and Diet-saline groups.  
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in rats receiving the vehicle for 5 days. However 5 days of daily isoproterenol 

administration resulted in an increased cardiomyocyte apoptosis in the experimental diet-

fed but not the control diet-fed group. Neither isoproterenol nor the experimental diet 

influenced the degree of fibrosis. 

 

3.12 Impact of obesity on cardiomyocyte apoptosis and fibrosis in elderly Wistar 

Kyoto and Spontaneously Hypertensive rats. 

 

Figure 3.10 shows the percentage TUNEL positive stained cardiomyocytes 

(apoptosis) and the pathological score (fibrosis) at the end of the study in elderly (8-9 

months of age at the beginning of the study) WKY rats and SHR receiving either the 

experimental diet or the control diet for 5 months. The presence of hypertension (SHR) 

alone was insufficient to promote excessive cardiomyocyte apoptosis or fibrosis. 

However, SHR fed the experimental diet developed a marked increase in cardiomyocyte 

apoptosis as compared to the group of rats fed the control diet. However, the diet failed to 

promote an increase in the pathological score in SHR. 
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Figure 3.10 Percentage cardiomyocyte apoptotic nuclei and pathological score in elderly 

Wistar Kyoto Control (WKY) or Spontaneously Hypertensive (SHR) rats receiving a 

normal diet (Control) or a diet designed to increase caloric intake (Diet). *p<0.005 vs all 

other groups. 
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4.1 Summary of main findings 

 

The main findings of the present studies are as follows. An obesity-promoting diet 

given for 5 months to normotensive rats was associated with an enhanced adrenergic-

induced cardiomyocyte apoptosis. Moreover, despite producing similar degrees of 

visceral obesity, an obesity-promoting diet given for 5 months resulted in the 

development of cardiomyocyte apoptosis in SHR, but not in normotensive WKY rats. 

Further, in SHR, but not in normotensive WKY control rats, the obesity-inducing diet 

mediated the development of an exaggerated degree of LV hypertrophy, and the 

development of LV dilatation (increased internal diameters and wall thinning) and a 

reduced LV pump function.   

 

4.2 Comparison with previous studies reporting on obesity-associated 

cardiomyocyte apoptosis 

 

A few studies have provided evidence to indicate that excessive cardiomyocyte 

apoptosis occurs in animal models of obesity. In this regard, cardiomyocyte apoptosis has 

previously been reported to occur in obese Zucker Diabetic Fatty rats (ZDF, fa/fa) (Zhou 

et al 2000) and in ob/ob mice (obese due to leptin deficiency) (Barouch et al 2006). 

Importantly however, in comparison to these previous studies (Zhou et al 2000, Barouch 

et al 2006) the outcome of the present study is unique in a number of respects. First, the 

present study is the first to show excessive cardiomyocyte apoptosis in association with 

dietary-induced obesity, rather than in association with genetic models of excess 
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adiposity. In this regard it is uncertain whether an increased cardiomyocyte apoptosis in 

these previous studies (Zhou et al 2000, Barouch et al 2006) represents an associated 

genetic effect, or an impact of obesity. The present study provides clear evidence that 

dietary-induced obesity is sufficient to produce excessive cardiomyocyte apoptosis. 

Second, the excessive cardiomyocyte apoptosis noted in the present study occurred in an 

animal model of modest obesity (body weights -9 to 15% greater than non-obese control 

animals) as opposed to previous models where body weights were ~ 45 to 84% greater 

than lean control animals (Mark et al 1999b, Zhou et al 2000). In this regard therefore, 

the present study is more likely to reflect the effects of mild-to-moderate obesity, the 

predominant form of obesity that occurs at a population level, in contrast to previous 

animal studies that are more likely to reflect the impact of more severe levels of obesity 

(Zhou et al 2000, Barouch et al 2006). Third, the present study clearly shows that 

interactions between dietary-induced obesity and either hypertension or excessive 

sympathetic activation are required to mediate the dietary induced effects noted. In this 

regard, previous studies reporting on obesity associated apoptosis have not addressed the 

potential role of an interaction between either blood pressure or LV hypertrophy and 

obesity in mediating the development of increases in cardiomyocyte apoptosis (Zhou et al 

2000, Barouch et al 2006).  Last, as shall be discussed in more detail in the subsequent 

discussion, the present study provides clear data to suggest that obesity-associated 

excessive cardiomyocyte apoptosis is not mediated through obesity-induced effects on 

blood pressure or an abnormal blood glucose control, but rather through interactions with 

blood pressure or sympathetic effects. 
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4.3 Is obesity-associated cardiomyocyte apoptosis an effect mediated through 

hypertension or diabetes mellitus? 

 

As indicated in the aforementioned discussion, whether the excessive 

cardiomyocyte apoptosis noted in prior studies of obesity (Zhou et al 2000, Barouch et al 

2006) can be attributed to the effects of conventional cardiovascular risk factors such as 

increases in blood pressure or the presence of an abnormal glucose control mediated by 

diabetes mellitus, is presently unclear. Indeed, obesity is well recognized as mediating the 

development of hypertension (Wilson et al 2002, Must et al 1999, Doll et al 2002, 

Niskanen et al 2004) and type II diabetes mellitus (Must et al 1999, Hu et al 2001, 

Schienkiewitz et al 2006). What is the evidence to suggest that obesity-associated 

cardiomyocyte apoptosis may or may not be caused by increases in blood pressure or the 

development of diabetes mellitus? 

There is presently substantial evidence to indicate that hypertension or the 

associated cardiac hypertrophy may cause excessive cardiomyocyte apoptosis (Díez et al 

1997, Li et al 1997, Liu et al 2000, Hamet et al 1995, Fortuño et al 1998, Gonzalez et al 

2002, Teiger et al 1996). With respect to potential blood pressure effects explaining the 

relationship between obesity and excessive cardiomyocyte apoptosis in previous and the 

present study, obesity in the ZDF rat has indeed been shown to be associated with 

hypertension (Carlson et al 2000, Nagao et al 2003). Consequently it is uncertain whether 

excessive cardiomyocyte apoptosis in the ZDF rat can be attributed to blood pressure 

effects. In contrast however, ob/ob mice have a reduced blood pressure as compared to 

their lean counter-parts (Mark et al 1999b, Christoffersen et al 2003) and hence the 
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increase in cardiomyocyte apoptosis that occurs in this model of obesity cannot be 

attributed to increases in blood pressure. In support of the latter finding (Barouch et al 

2006), in the present study, dietary-induced obesity was associated with excessive 

cardiomyocyte apoptosis independent of further blood pressure changes. However, in the 

present study obesity only promoted excessive apoptosis in the presence of hypertension 

and hypertensive LV hypertrophy or in the presence of an adrenergic stimulus. 

Consequently, the present study suggests that conventional cardiovascular risk factors, 

such as hypertension, or alternative risk factors, such as an increased sympathetic 

stimulation are indeed required to mediate obesity-induced adverse effects on myocardial 

apoptotic damage. 

There is presently substantial evidence to indicate that diabetes mellitus may 

cause excessive cardiomyocyte apoptosis (Bäcklund et al 2004, Ghosh et al 2005, Cai et 

al 2006). With respect to potential blood glucose effects explaining the relationship 

between obesity and excessive cardiomyocyte apoptosis in previous models, obesity in 

the ZDF rat and the ob/ob mice has indeed been shown to be associated with diabetes 

mellitus (Coleman 1978, Corsetti et al 2000). Consequently it is uncertain whether 

excessive cardiomyocyte apoptosis in these animal models of obesity can be attributed to 

blood glucose effects. However, in contrast to these previous studies (Barouch et al 2006, 

Zhou et al 2000), in the present study obesity was not associated with abnormalities in 

blood glucose control as indexed by HbA1c measurements. Hence, at least in the present 

study, obesity-associated increases in cardiomyocyte apoptosis cannot be attributed to 

abnormalities in blood glucose control. 
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4.4 Obesity-associated cardiac hypertrophy and potential relationships with 

cardiomyocyte apoptosis and dysfunction 

 

In contrast to a number of studies that have demonstrated an increased heart and 

LV weight in obesity (du Toit et al 2008, Carroll et al 1997, Carroll et al 2002), in the 

present study, obesity produced a significant increase in LV weight in SHR, a modest 

increase in left ventricular weight in young WKY but no increase in elderly normotensive 

WKY rats. The most likely explanation for this apparent discrepancy in the elderly 

groups of rats studied is that in previous studies the obese animals had body weights that 

were ~18 to 48% greater than the non-obese control animals (du Toit et al 2008, Carroll 

et al 1997, Carroll et al 2002), whilst in the present study, the obese animals had body 

weights that were only ~9 % greater than the non-obese control animals.  

Importantly, with respect to the potential implications of obesity-induced LV 

hypertrophy, it is indeed noteworthy in the present study that the group of rats in which 

obesity did promote a significant increase in LV weight (the SHR group), was also the 

group which exhibited an excessive cardiomyocyte apoptosis, LV dilatation and a decline 

in LV pump function. Whether this relationship between obesity-induced LV 

hypertrophy and obesity-associated excessive cardiomyocyte apoptosis, LV dilatation 

and decline in LV pump function is a cause-effect relationship cannot be determined 

from the present study design. However, as highlighted in chapter 1, section 4.0, 

cardiomyocyte apoptosis is an important mechanism involved in the myocardial response 

to pressure-overload in cardiac hypertrophy (Teiger et al 1996, Li et al 2007). Left 

ventricular hypertrophy is accompanied by cardiomyocyte upregulation of the 



 80 

proapoptotic gene bax in chronic pressure-overload in rats (Condorelli et al 1999) and is 

associated with Gq activation (a class of GTP-binding proteins) which promotes 

hypertrophic growth and has been shown to induce cardiomyocyte apoptosis (Hirotani et 

al 2002, Adams et al 1998, Adams et al 2000). 

 

4.5 Obesity-associated cardiac dysfunction and the relevance of associated 

cardiomyocyte apoptosis. 

 

Although a number of pre-clinical studies have provided evidence to suggest that 

cardiomyocyte dysfunction occurs in insulin-resistant or obese states (Wold et al 2005, 

Caroll et al 1997, Relling et al 2006, Dong et al 2006, Ren et al 2000), when assessed in 

vivo, animal models of obesity have a preserved pump function (Caroll et al 2006, du 

Toit et al 2008) even if the same model of obesity produces an impaired pump function 

ex vivo. The present study provides clear evidence to support the notion that dietary-

induced obesity is not necessarily associated with a reduced myocardial or pump function 

in normotensive rats. However, noteworthy is the finding that dietary-induced obesity did 

indeed promote pump dysfunction as assessed in vivo in the presence of hypertension, but 

not in the absence of hypertension. Thus, the present study provides the first evidence to 

indicate that obesity may indeed induce pump dysfunction even as assessed in vivo, but 

that this effect depends on the co-existence of hypertension. 

The mechanisms of the dietary-induced pump dysfunction in SHR could be 

through LV dilatation and hence an increased LV wall stress. Indeed, end systolic relative 

wall thickness was markedly reduced in obese as compared to lean SHR, an effect that 
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would increase LV end systolic wall stress for a given LV systolic pressure. The 

mechanism of the LV dilatation could in turn be attributed to excessive cardiomyocyte 

apoptosis. Alternatively, the dietary-induced cardiomyocyte apoptosis could be attributed 

to an excessive myocardial wall stress mediated by the LV dilatation. In this respect, the 

present study design did not allow me to distinguish between cause-effect relationships. 

 

4.6 Potential cellular mechanisms of obesity-associated cardiomyocyte apoptosis 

 

Irrespective of whether the dietary-induced effect on cardiomyocyte apoptosis in 

SHR noted in the present study was mediated through LV hypertrophy, or an increased 

LV wall stress (produced by cardiac dilatation), the changes that occur at a cellular level 

that are responsible for this effect, deserve consideration. In this regard, the cellular 

mechanisms of stress-induced cardiomyocyte apoptosis have been summarized in chapter 

1, (section  5.1), but in the present study these mechanisms were not explored. Further 

studies are therefore required to explore this possibility. In addition, the excessive 

cardiomyocyte aptoptosis that occurs in ob/ob mice may occur as a consequence of 

disruption of leptin signaling, as leptin treatment attenuates this effect on the myocardium 

(Barouch et al 2006). Again, this mechanism requires investigation in future studies.   

An additional cellular mechanism that may explain the obesity-associated 

cardiomyocyte apoptosis reported on in the present study is through adrenergic over-

activition. Indeed, as highlighted in Chapter 1 (Section 5.2), β-adrenergic activation 

results in an increased cardiomyocyte apoptosis (Osadchii et al 2007) and obesity may be 

associated with an enhanced sympathetic nervous system activity (Walgren et al 1987, 
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Schwartz et al 1983, Morgan et al 1995). Importantly, the mechanisms of adrenergic-

induced cardiomyocyte apoptosis may also be through cellular oxidation and the 

generation of ROS. Indeed, isoproterenol administration is associated with the 

downregulation of antioxidants in the myocardium resulting in an increase in cardiac 

oxidative stress and the generation of ROS (Zhang et al 2005, Srivastava et al 2007). 

With respect to a potential role of obesity-induced sympathetic activation 

explaining the excessive cardiomyocyte apoptosis noted in the present study, although I 

was unable to measure sympathetic nervous system activity in obese WKY or SHR, I was 

able to show that adrenergic-induced cardiomyocyte apoptosis is enhanced in obesity. 

Whether this effect can be attributed to an additional (additive) action of obesity-induced 

sympathetic activation, or whether obesity stimulates the same cellular targets as β-

adrenoreceptors, could not be determined from the present study design. Importantly, 

however, contractile (FSend and FSmid) and chronotropic responses to β-adrenoreceptor 

activation in obese rats was similar to responses noted in lean rats, suggesting that β-

adrenoreceptor-cAMP system responsiveness remained essentially unaltered in obese 

rats. 

 A further potential mechanism that could explain obesity-associated 

cardiomyocyte apoptosis in SHR in the present study is through activation of the renin-

angiotensin-aldosterone system (RAAS), a system that is well recognized as being 

stimulated in obesity (Boustany et al 2004, Engeli et al 2005, Barton et al 2000, 

Tochikubo et al 1994, Sowers et al 1983). What is the evidence to support a notion that 

the RAAS may mediate excessive cardiomyocyte apoptosis in obese SHR? First, 

angiotensin II has been shown to cause cardiomyocyte apoptosis in vitro (Kajstura et al 
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1997) and hence any situation which is associated with RAAS activation, such as obesity, 

may promote increases in cardiomyocyte apoptosis.  Second, cardiomyocytes isolated 

from SHR have an increased susceptibility to angiotensin II-induced apoptosis (Ravassa 

et al 2000) and cardiomyocyte apoptosis in SHR is accompanied by an increase in 

angiotensin-converting enzyme (ACE) activity in the left ventricle (Díez et al 1997). If 

these effects are related to the degree of LV hypertrophy, and obesity promotes LV 

hypertrophy as in the present study in SHR, obesity may mediate cardiomyocyte 

apoptosis in SHR by increasing the susceptibility of the myocardium in SHR to RAAS-

induced cardiomyocyte apoptotic effects. As I did not explore the possibility that RAAS 

activation may mediate obesity-induced cardiomyocyte apoptosis in SHR in the present 

study, further studies are therefore required to explore the possibility that the 

susceptibility of SHR to obesity-induced cardiomyocyte apoptosis occurs through RAAS 

activation. 

Obesity-induced cardiomyocyte apoptosis may also be mediated by the 

accumulation of triglycerides in the heart as reported to occur in obese ZDF rats (Zhou et 

al 2000). In this regard, a combination of lipolysis induced by catecholamines (Imura et 

al 1971) and a decrease in the expression of myocardial enzymes responsible for fatty 

acid oxidation results in the accumulation of myocardial fatty acids (Zhou et al 2000).  

The accumulation of myocardial fatty acids may result in a lipotoxic effect with increased 

levels of ceramides promoting cardiomyocyte apoptosis (Zhou et al 2000, Young et al 

2002) through caspase-3 activation (Wang et al 2000). However, whether LV 

hypertrophy in hypertension increases the susceptibility of the myocardium to obesity-

induced lipotoxic effects has not been assessed. Further studies are therefore required to 
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assess whether obesity-associated cardiomyocyte apoptosis noted to occur in SHR in the 

present study can be attributed to an increased susceptibility of the pressure-overloaded 

hypertrophic heart to myocardial lipotoxicity. 

 

4.7 Cardiomyocyte apoptosis in previous studies in SHR 

 

Excessive cardiomyocyte apoptosis has been reported to occur in SHR from 4 

(younger) to 24 months (aged) of age (Díez et al 1997, Li et al 1997).  In the present 

study the percentage cardiomyocyte apoptosis in SHR not receiving the experimental diet 

was no different to age-matched, normotensive WKY rats. These findings are not 

inconsistent with previous findings from our group in SHR (Veliotes et al 2005). 

Differences between studies in cardiomyocyte apoptosis in SHR may be attributed to the 

age of rats and the stage of the transition to heart failure when cardiomyocyte apoptosis is 

assessed. In this regard, Li et al (1997) noted excessive cardiomyocyte apoptosis in SHR 

with, but not without heart failure. Moreover, differences in the sensitivity of the 

techniques employed to detect cardiomyocyte apoptosis may account for apparent 

discrepancies in data between groups. 

 

4.8 Obesity-associated hypertension and diabetes mellitus 

 

In the present study, 5 months of feeding WKY rats and SHR a diet that promoted 

an increase in body weight did not affect systolic blood pressure or blood HbA1c. Other 

rodent models of obesity produced by diets either high in fat or moderately high in fat 
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have been associated with increases in systolic blood pressure and blood glucose 

concentrations (Boustany et al 2004, Smith et al 2006, Dobrian et al 2001, Dobrian et al 

2000, Boustany et al 2005). Moreover, obesity induced in SHR fed a sucrose-rich diet has 

been reported to result in an increased systolic blood pressure after 3 weeks on the diet 

(Preuss et al 2006).  However, not all studies support the notion that dietary-induced 

obesity is associated with increases in blood pressure (du Toit et al 2008). Moreover, 

obesity produced by feeding rats a high fructose diet may either increase or have no 

effect on systolic blood pressure (Hwang et al 1987, D‟Angelo et al 2005).  It is possible 

that blood pressure changes in rats with obesity could be a result of a heightened stress 

response associated with restraint and tail-cuff inflation involved in the technique 

(D‟Angelo et al 2005). Importantly, in the present study, the lack of blood pressure 

effects associated with dietary-induced obesity were reproduced in young and elderly 

normotensive rats and in rats with pre-existing hypertension (SHR). Whether more severe 

forms of obesity may have produced a blood pressure effect remain to be determined. 

Furthermore, whether 24 hour blood pressure monitoring using telemetric techniques 

could unveil a blood pressure effect also requires further study. 

 

4.9 Clinical implications 

 

The prevalence of obesity is increasing in both developed and developing 

countries (Bourne et al 2002, Flegal et al 2002, Ogden et al 2006). Although body weight 

is independently related to the development of heart failure (Contaldo et al 2002, 

Kenchaiah et al 2002, Ingelsson et al 2005), the mechanisms of these effects are 
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uncertain. Although reductions in cardiac systolic and diastolic function occur in 

overweight people, which persist after adjustment for blood pressure, age, gender and left 

ventricular mass (Peterson et al 2004, Wong et al 2004), more recent studies suggest that 

a reversal  of abnormalities in systolic function may not be associated with weight loss in 

obese people (Skilton et al 2007, Wong et al 2006). Furthermore, although a number of 

studies suggest that myocardial contractile disturbances may occur in animal models of 

obesity (Caroll et al 1997, Relling et al 2006, Dong et al 2006, Ren et al 2000), no study 

has been able to show an obesity-associated reduction in pump function in vivo. In 

addition, although a number of animal studies have demonstrated that obesity is 

associated with excessive cardiomyocyte apoptosis (Zhou et al 2000, Barouch et al 2006), 

these studies have not excluded the possibility that hypertension and an abnormal blood 

glucose control mediate these effects. In the present dissertation I have been able to show 

that obesity interacts with pressure-overload hypertrophy and with adrenergic activation 

to promote excessive cardiomyocyte apoptosis through effects that cannot be attributed to 

changes in blood pressure or blood glucose control. As cardiomyocyte apoptosis may 

have a causal role in the pathophysiology of ventricular dysfunction and its progression 

to cardiac failure (Cheng et al 1996, Abbate et al 2003, Olivetti et al 1997, Frustaci et al 

1999, Kocher et al 2001, Li et al 1997), the data reported on in the present dissertation 

provide direct evidence to support the notion that obesity may indeed contribute toward 

cardiac dysfunction, albeit in synergy with alternative factors such as hypertensive 

hypertrophy or sympathetic activation. 
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4.10 Limitations 

 

The limitations of the present study are as follows. First, the modest degree of 

obesity induced in elderly WKY and SHR may have limited the outcomes of the study. 

However, as indicated in the aforementioned discussion employing a model of modest as 

opposed to severe obesity is nevertheless entirely consistent with the high prevalence of 

mild-to-moderate obesity which presently exists world-wide, whilst more severe forms of 

obesity are less common (McTigue et al 2006, Davenport et al 2009, Neovius & 

Rasmussen 2008, Abdulla et al 2008, López-García et al 2008, Wattie et al 2008). Second 

the technique used to detect cardiomyocyte apoptosis (TUNEL technique) may 

overestimate the number of apoptotic nuclei, as it labels both DNA fragmentation and 

cells undergoing DNA repair. Alternative techniques such as the assessment of 

myocardial caspase-3 activity or other methods could have been employed to support the 

present outcomes. Indeed, active caspase-3 may have also been a more sensitive 

technique as it is activated during the early phases of apoptosis (Nicholson et al 1995). 

However, the assessment of myocardial caspase-3 activity requires freeze-clamped tissue, 

the collection of which would have precluded the assessment of heart and ventricular 

weights. Third, as indicated in the aforementioned discussion I have not identified a 

potential mechanism responsible for the obesity-associated increase in percentage 

cardiomyocyte apoptosis in SHR or in normotensive rats receiving a daily adrenergic 

stimulus. However, as previously outlined, there are a considerable number of potential 

mechanisms that could play a role, all of which require further study. Hence evaluating 

all of these mechanisms goes beyond the boundaries of the present dissertation. Fourth, 
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with regard to the signalling mechanisms that may induce the observed changes in 

cardiomyocyte apoptosis in the present model, Western blots would have provided 

insight. However Western blots require freeze-clamped heart tissue.  To achieve this, the 

sample size would have to be increased for additional heart tissue samples. In addition, 

the isolated perfused heart experiments do not allow for the collection of fresh tissue 

samples required for Western blots. With regard to the renin-angiotensin aldosterone 

system (RAAS), as with western blots myocardial Ang II requires freeze-clamped heart 

tissue. To achieve this, the sample size would have to be increased for additional heart 

tissue samples. In addition, the isolated perfused heart experiments do not allow for the 

collection of fresh tissue samples required to determine myocardial Ang II activity. 

Furthermore no clear blood pressure differences were observed in our study and hence it 

is unlikely that serum Ang II would be changed.  

 

4.11 Conclusion 

 

In conclusion, the results of the present study indicate that mild-to-moderate 

obesity is indeed associated with an enhanced cardiomyocyte apoptosis but through an 

interaction with pressure-overload hypertrophy and an excessive sympathetic activation. 

These findings therefore suggest possible mechanisms through which obesity may play a 

role in mediating the development of heart failure.  
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