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Abstract

Nitrides of late transition metals possess interesting properties leading to different technological

applications, yet, due to many factors, synthesis and reliable characterization of the physical

properties of these materials constitute a big challenge. In this work, we present a detailed first-

principles investigation of the structural, the electronic and the optical properties of the bulk

crystalline MNx (where M = Pd, Pt, Cu, Ag or Au; and x = 1/3, 1 or 2) and ZnN.

The studied structural properties include energy-volume equation of state (EOS), equilibrium

lattice structural parameters, cohesive and formation energies, relative phase stabilities, bulk

modulus and its pressure derivative. By means of the enthalpy-pressure EOS, some possible

pressure-induced structural phase transitions are carefully examined. Electronic properties of the

energetically most stable phases are investigated via the analysis of their band structure and

their total and partial densities of states (DOSs). The frequency-dependent optical constants

(absorption coefficient, reflectivity, refractive index, and energy-loss spectrum) of some phases

are derived from the calculated frequency-dependent microscopic dielectric tensor.

Our calculations of the structural and the electronic properties are based on density functional the-

ory (DFT) within the projector-augmented wave (PAW) formulation and the generalised-gradient

approximation (GGA) to the exchange-correlation functional. In order to improve the calculated

electronic structure, and to investigate the optical spectra, we carry out expensive GW0 calcula-

tions within the the random-phase approximation (RPA) to the dielectric tensor.

Obtained results are discussed within the employed theoretical methods of calculations. When-

ever possible, our obtained results are compared with experiment and with previous theoretical

studies. We report the discovery of some possible low-energy competitive phases which are more

stable at zero pressure than the synthesized and than other hypothetical structural phases. To

the best of our knowledge, our calculated optical spectra may be considered as the first, and

thus, the most accurate, calculations within the many-body perturbation GWA calculations, so

far.

iii



iv



Contents

Dedication i

Declaration ii

Abstract iii

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Ab initio Methods and Materials Design and Modeling . . . . . . . . . . 1

1.1.2 Late Transition-Metal Nitrides (TMNs) . . . . . . . . . . . . . . . . . . 1

1.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Theoretical Methods 12

2 The Basic Many-Body Problem of Solids 14

2.1 The Basic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 The Atomic Structure of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 The Electronic Structure of Solids . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 The Electronic Density . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Density Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Exchange and Correlation (XC) . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Density-Functional Theory (DFT) 38

3.1 Thomas-Fermi-Dirac Approximation . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 The Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 The Constrained Search Formulation of DFT . . . . . . . . . . . . . . . . . . . 42

3.4 Kohn-Sham Approach to DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Spin Density-Functional Theory (SDFT) . . . . . . . . . . . . . . . . . . . . . 50

3.6 Solving Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.1 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



3.6.2 k-Space and Brillouin-Zone Integrations . . . . . . . . . . . . . . . . . 56

3.6.3 Exchange and Correlation Functionals . . . . . . . . . . . . . . . . . . . 65

3.6.4 Pseudopotentials and PAW Methods . . . . . . . . . . . . . . . . . . . 71

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 The GWA Approach 80

4.1 Excited States in KS-DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Quasi-Particles (QP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 The Self-Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 The GW Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 The Quasi-Particle Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Further Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

II Calculation and Characterization Methods 85

5 Chemical Formulas and Crystal Structures 87

5.1 Stoichiometries and Chemical Formulas . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Crystal Structure Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 M3N structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 MN structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.3 MN2 structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Re-Posing the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Electronic Relaxation Details 98

6.1 Convergence Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Plane-wave cut-off convergence . . . . . . . . . . . . . . . . . . . . . . 98

6.1.2 k-points convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 XC Functional and PAW Potentials . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Numerical Optimization Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Calculations of Structural Properties 103

7.1 Cohesive Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Bulk Modulus B and its Pressure Derivative B′ . . . . . . . . . . . . . . . . . . 104

7.3 Forces on Ions and Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

vi



7.4 Equation of State (EOS) and Lattice Constants . . . . . . . . . . . . . . . . . 106

7.5 Formation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.6 Pressure-Induced Structural Phase Transitions . . . . . . . . . . . . . . . . . . 109

7.7 Phase Stabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Calculations of Electronic Properties 111

8.1 Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Density of States (DOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.3 Partial (Projected) Density of States (PDOS) . . . . . . . . . . . . . . . . . . . 114

9 Calculations of Optical Properties 117

9.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.2 Dynamical Linear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.2.1 The Density Response Function (χ) . . . . . . . . . . . . . . . . . . . . 118

9.2.2 The Exchange-Correlation Kernel (fxc) . . . . . . . . . . . . . . . . . . 119

9.2.3 Random Phase Approximation (RPA) . . . . . . . . . . . . . . . . . . . 120

9.2.4 Explicit Forms of χ and χKS . . . . . . . . . . . . . . . . . . . . . . . . 120

9.2.5 Periodic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.3 The Dielectric Function (ε) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.3.1 Macroscopic Dielectric Function (εmac) . . . . . . . . . . . . . . . . . . 122

9.3.2 Microscopic Dielectric Function (εmic) . . . . . . . . . . . . . . . . . . . 123

9.3.3 Relation Between εmac and εmic . . . . . . . . . . . . . . . . . . . . . . 124

9.3.4 Local Field Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3.5 Longitudinal and Transversal ε . . . . . . . . . . . . . . . . . . . . . . 125

9.3.6 Derivation of ε from Band Diagrams . . . . . . . . . . . . . . . . . . . 126

9.3.7 Imaginary and Real Parts of ε . . . . . . . . . . . . . . . . . . . . . . . 127

9.4 The GW0 Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.5 Calculations of Optical Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 129

III Results, Discussions and Conclusions 130

10 Results and Discussions 131

10.1 Reference Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.1.1 Isolated Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.1.2 Molecular Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vii



10.1.3 Elemental Crystalline Metals . . . . . . . . . . . . . . . . . . . . . . . . 132

10.2 Palladium Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10.2.1 EOS and Relative Stabilities . . . . . . . . . . . . . . . . . . . . . . . . 137

10.2.2 Volume per Atom and Lattice Parameters . . . . . . . . . . . . . . . . . 139

10.2.3 Pressure-Induced Phase Transitions . . . . . . . . . . . . . . . . . . . . 139

10.2.4 Bulk Modulus and its Pressure Derivative . . . . . . . . . . . . . . . . . 140

10.2.5 Thermodynamic Stability . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.2.6 Electronic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.2.7 Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.3 Platinum Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.3.1 EOS and Relative Stabilities . . . . . . . . . . . . . . . . . . . . . . . . 148

10.3.2 Volume per Atom and Lattice Parameters . . . . . . . . . . . . . . . . . 151

10.3.3 Bulk Modulus and its Pressure Derivative . . . . . . . . . . . . . . . . . 152

10.3.4 Formation Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10.3.5 Electronic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10.3.6 Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10.3.7 PtN versus PtN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.4 Copper Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10.4.1 Relative Stability: Cohesive Energy . . . . . . . . . . . . . . . . . . . . 163

10.4.2 Volume per Atom and Lattice Parameters . . . . . . . . . . . . . . . . . 165

10.4.3 Bulk Modulus and its Pressure Derivative . . . . . . . . . . . . . . . . . 166

10.4.4 Relative Stability: Formation Energy . . . . . . . . . . . . . . . . . . . 168

10.4.5 More Comparison with Experiment and with Theory . . . . . . . . . . . 169

10.4.6 Electronic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.4.7 Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.5 Silver Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.5.1 EOS and Relative Stabilities . . . . . . . . . . . . . . . . . . . . . . . . 180

10.5.2 Volume per Atom and Lattice Parameters . . . . . . . . . . . . . . . . . 183

10.5.3 Bulk Modulus and its Pressure Derivative . . . . . . . . . . . . . . . . . 184

10.5.4 Formation Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.5.5 Electronic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.5.6 Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.6 Gold Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

10.6.1 EOS and Relative Stabilities . . . . . . . . . . . . . . . . . . . . . . . . 198

viii



10.6.2 Pressure-induced phase transitions . . . . . . . . . . . . . . . . . . . . 199

10.6.3 Volume per Atom and Lattice Parameters . . . . . . . . . . . . . . . . . 199

10.6.4 Bulk Modulus and its Pressure Derivative . . . . . . . . . . . . . . . . . 200

10.6.5 Thermodynamic Stability . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.6.6 Electronic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

10.6.7 Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

10.7 Hypothetical ZnN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

11 Conclusions and Future Work 210

11.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

11.1.1 Palladium Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

11.1.2 Platinum Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

11.1.3 Copper Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

11.1.4 Silver Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

11.1.5 Gold Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

11.1.6 Zinc Nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

11.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

IV Appendices 217

A Crystal Structure of Solids 218

B Bloch’s Theorem and Band-Structure 222

C The k vector and the Brillouin zone 224

D Classical Electrodynamics of Solids 227

D.1 Electromagnetic Waves in Linear Macroscopic Media . . . . . . . . . . . . . . . 227

D.2 Optical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

E Functionals and Functional Derivatives 237

E.1 What is a Functional? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

E.2 Functional Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

E.3 Properties of Functional Derivative . . . . . . . . . . . . . . . . . . . . . . . . 238

E.4 Higher-Order Functional Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 238

E.5 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

ix



F Crystal Structures: Numerical Data 239

G Presentations and Activities 247

List of Publications 250

Bibliography 250

Acknowledgements 277

x



1. Introduction

1.1 Motivations

1.1.1 Ab initio Methods and Materials Design and Modeling

There are many reasons for why we need to employ ab initio methods:

1. Ab initio calculations can be employed to predict the properties of materials when ex-

periments are very difficult to establish (e.g. due to poor stability of the material under

consideration) [8].

2. Ab initio calculations are used for understanding of the properties of materials [9] and

mechanism of different reactions [8] at a fundamental level.

3. Ab initio calculations are used for designing new materials for different possible potential

applications.

4. Different Ab initio methods themselves need to be justified and tested against experiment

[8].

5. Compared to experiment, first-principles calculations are cheap and quick when no direct

experimental data are available. [10].

And much more.

1.1.2 Late Transition-Metal Nitrides (TMNs)

Because of their unique unusual combination of physical and chemical properties, transition-metal

nitrides continue to be a subject of growing interest. They posses outstanding mechanical (e.g.

high hardness and good corrosion resistance), thermal (e.g. high melting points and good thermal

conductivity), optical, electrical (e.g. good electrical conductivity) and magnetic properties and

chemical stability that make them very important in both fundamental science and technological

applications [11–17].

1
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These d-block elements nitrides can be used in many applications such as coatings to protect

mechanical tools [18], corrosion resistants, optical coatings, electrical contacts, diffusion barriers

and superconductors; as well as catalysts, electrode materials for batteries and fuel-cells [15].

They can also be used as materials for magnetic storage devices [19].

In fact, the small number of transition-metal nitrides, compared with the large number of the cor-

responding oxides, is because of the much more challenging techniques required to prepare nitride

phases. Accordingly, computational techniques are believed to be very promising in searching for

and characterizing new transition-metal nitrides [19].

Palladium Nitrides

In 2007, Crowhurst et al. [20] reported the synthesis of the new palladium nitride compound and

argued for its PdN2 stoichiometry and pyrite (C2) structure. However, many transition-metal

nitrides (TMNs) are known to form more than one nitride [21], and first-principles methods are

commonly employed to search for possible stable phases.

Platinum Nitrides

Platinum is known to form simple binary compounds with other elements (e.g. PtF4, PtI2, PtO

and PtS) [22]. However, platinum had not been known to form crystalline solid nitride, but other

forms of platinum nitrides (e.g. PtN [22,23], PtN2 [22], (PtN)2 [22,23] and Pt2N [23]) had been

observed.

In January 2004, Soto [24] reported the preparation of platinum thin films containing up to

∼ 14 at. % nitrogen. The study concluded that platinum can form an incipient nitride phase

with composition near to Pt6N. Few months later, in May 2004, Gregoryanz and co-workers [22]

published the discovery and characterization of solid crystalline platinum mono-nitride for the first

time. The synthesis was carried out above 45 GPa and 2000 K but with complete recovery of the

product at room pressure and temperature. The produced samples have a very high bulk modulus

leading to important implications in high-pressure physics and technology. The 1:1 stoichiometry

was assigned to the new nitride, and according to their XRD measurements, Gregoryanz et al.

proposed three structures: B1, B3 and B17 (for description of the structures see Sec. 5.2 and
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App. F), all based on the Pt fcc sub-lattice. Due to some considerations, B1 and B17 were ruled

out and B3 was assigned to the new product.

In addition to the well-crystallized and highly ordered regions, a common feature in the synthe-

sized platinum nitrides is the presence of sub- or/and super-stoichiometric phases containing N or

Pt vacancies and residual non-stoichiometric material distributed throughout the samples [22,25].

The work of Gregoryanz et al. [22] has stimulated many further theoretical studies [26–28] as

expected by Gregoryanz and co-workers [22] themselves. However, theoretical works showed that

PtN(B3) is elastically and thermodynamically unstable (see Sec. 10.3). Accordingly, claiming that

large errors are generally inevitable in the used experimental characterization methods [27, 29],

and due to other paradoxical facts [30] in the original experiment by Gregoryanz et al. [22], the-

oreticians questioned the chemical stoichiometry and the crystal structure of this new material

and started to investigate other possibilities [29–31]. Moreover, the experimentally reported [22]

high bulk modulus of the platinum nitride has not been reproduced by any reliable calculations

and its mechanism is still an unclear open problem [26, 30, 31].

These investigations led to a kind of consensus that the compound does not crystallize in the

proposed PtN(B3) phase [25], but the true stoichiometry and the true crystal structure have

become now a matter of debate [27, 30].

In an apparent attempt to respond to this debate, Crowhurst et al. [25] managed, in 2006, to

reproduce and characterize platinum nitride. Combining theory with their own observed Raman

spectrum, they came up with a conclusion to propose PtN2(C2) and rejected PtN(B3), proposed

by the first platinum nitride synthesizers [22], and PtN2(C1), proposed in some theoretical works.

Like the first proposed structures [22], C1 [29] and C2 [25] structures have the fcc sub-lattice of

the metal.

Despite the considerable number of the subsequent theoretical studies, the discrepancy between

theory and experiment in the structural and the physical properties of this nitride is not yet

satisfactorily understood. Nevertheless, many transition metals can form more than one nitride
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[21]. Thus, it is of interest to know if platinum can form nitrides with different stoichiometries

and/or crystal structures other than those proposed by the first platinum nitride synthesizers and

other researchers.

Copper Nitrides

In 1939, Juza and Hahn succeeded to produce Cu3N [32] for the first time [33–35]. Since then,

copper nitride has been prepared in various techniques [34,36–38], its properties and applications

have been researched, both theoretically and experimentally, and it may now be considered as

the most accessible among the noble metal nitrides [35].

Synthesis and reliable characterization of the properties of a stoichiometric copper nitride con-

stitute a big challenge because it is thermally unstable material [34]. However, this low thermal

stability results in promising applications in optical memories and laser writing [35, 37].

The viability of using the simple cubic stoichiometric Cu3N films for write-once optical data

storage has been widely explored and confirmed [39–41], superior to other toxic and unstable ma-

terials in air at room temperature which are used for the same purpose [40]. Also, the feasibility

of using Cu3N as a coating to generate metal lines by maskless laser writing has been studied;

where conducting lines of a few micron in width could be generated with resistivities within an

order of magnitude of the bulk Cu metal [42]. This interesting material has been suggested for

usage in a number of nano-electronic and nano-photonic devices [38].

Depending on the total sputtering pressure and on the content of nitrogen gas, Hayashi et al. [43]

prepared four categories of sputter-deposited Cu–N films: metallic Cu–rich Cu3N, semiconducting

Cu-rich Cu3N, semiconducting stoichiometric Cu3N and semiconducting N–rich Cu3N films. In

general, it has been reported that it is possible to achieve sub-, over- and stoichiometric copper

nitrides [44,45], and the effect of the nitrogen to copper ratio on the physical properties has been

studied by many researchers [36, 44–46].

The structural properties of Cu3N in the experimentally reported cubic anti-ReO3 phase are in-

teresting on their own. This structure has many vacant interstitial sites like WO3. The latter
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could be made into a conductor by doping it with some metal ions [47]. This is very suggestive,

since one may be able to engineer the physical properties of such technologically important ma-

terial [18,46]. In fact, the study of possible intercalated copper nitride alloys has been an active

subject of research on its own (cf. Ref. [36] and references therein).

Although copper nitride possesses interesting properties leading to different technological ap-

plications, there is still a large discrepancy in the formation mechanism and inconsistency in

the experimentally reported and in the theoretically predicted physical properties of copper ni-

trides [34,36,38,46,48]. These differences and contradictions are stemming mainly from the unsta-

ble nature (i.e. the metastability and low decomposition temperature) of copper nitride [34,38,49],

the experimental conditions [46], the experimental analysis methods [34], the non-stoichiometry

of the prepared samples [43] or the lack of knowledge of the real stoichiometry of the prepared

samples [38]; and from the different theoretical calculation methods and approximations [46].

Thus, the emerging potential technological applications of copper nitride are faced by the incon-

sistency in its basic physical properties. This may explain the tremendously increasing interest in

further studying this material, especially within first-principles quantum mechanical approaches.

Moreover, concerning its optical properties, only a few experiments are available in the litera-

ture [50] and there are very few theoretical studies.

To the best of our knowledge, the only experimentally reported stoichiometries of copper nitride

are Cu3N [32, 44, 51] and Cu4N [44, 51, 52], while CuN and CuN2 have not been observed yet.

However, many transition-metal nitrides (TMNs) are known to form more than one nitride [21, p.

835]. Our interest in the latter two nitride stoichiometries is based on the fact that for other late

transition metals close to Cu in the periodic table these 1:1 and 1:2 nitrides have been reported.

Silver Nitrides

Since Juza and Hahn [32] succeeded to synthesize Cu3N in 1939, copper nitrides have been pro-

duced through various techniques and their properties and applications have been the subject of

many theoretical and experimental published works [3]. Due to its early discovery, copper nitride
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may now be considered as the most investigated among the late TMNs [35].

On the other hand, the nitride of silver, the next element to copper in group 11 of the periodic

table, has been known for more than two centuries [53,54]. However, despite its earlier discovery,

silver nitride may be the least theoretically studied solid in the late TMNs family. Experimental

efforts to investigate structural [54, 55], electronic [54] and formation [53, 55–57] properties of

silver nitrides have been made by some researchers.

In 1949, Hahn and Gilbert [55] carried out the first [54] structural study on the reported stoi-

chiometry, Ag3N. They claimed an fcc structure with a = 4.369 Å and Z = 4/3 (i.e. 4 Ag atoms

in the unit cell). A long time later in 1982, Haisa [58] suggested that the Ag atoms are located

at the corners and face centers of the unit cell, while the N atoms, which may be statistically

distributed in the octahedral interstices, were given no definite positions [58].

According to the calculated N radius, Ag3N can be described as an ionic compound, and recent

ab initio calculations on the proposed structure revealed insulating characteristics with a funda-

mental band gap close to 1.35 eV . On the other hand, due to the similar lattice of the parent Ag

and the easily separated N as N2, it can also be argued that this compound is a metal, supporting

its black color [54].

Under ordinary conditions [53], it was found that silver can form Ag3N
1 from ammoniacal

solutions of silver oxide [53,54]. The black metallic-looking solid outcome, Ag3N, is an extremely

sensitive explosive compound [53, 59]. It may explode due to the slightest touch, even from the

impact of a falling water droplet [59], but it is relatively easy to handle under water or ethanol [54].

The explosive power is due to the energy released during the decomposition reaction:

2Ag3N −→ 6Ag + N2 . (1.1.2)

1Ag3N, formerly termed fulminating silver by its discoverers, can be formed from ammoniacal solutions of
silver oxide according to the following reaction

3Ag2O+ 2NH
(aq)
3 −→ 2Ag3N+ 5H2O. (1.1.1)

It can also be formed by means of other reactions [53, 54].
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Even in storage at room temperature, this solid compound decomposes slowly according to Eq.

1.1.2 above [54, 59]. From a thermochemical point of view, it was found that there is no stable

intermediate stage in this decomposition, but there may be a metastable intermediate species

(phase) with a remarkably low decomposition rate [53]. At this point, it may be worth mentioning

that the thermochemistry of silver nitride systems is not fully documented in standard handbook

data [53].

In their 1991 work, Shanley and Ennis [53] stated: “Many of the samples ... did not survive

the minimum handling required to move them, container and all, to the X-ray stage. ... More

vigorously explosive samples propagated throughout their mass leaving no visible residue. Even

among supersensitive materials, silver nitride is a striking example of a compound “teetering on

the edge of existence”. Under the circumstances, we did not succeed in developing data on the

proportion of silver nitride required for explosive behavior in these mixtures.”

Thus, beside the potential hazard to lab workers due to its sensitive explosive behavior, char-

acterization of silver nitride is hindered by its extremely unstable (endothermic) nature [53, 54],

and we are presented with an incomplete picture of structural, electronic and optical properties

of this material. Surprisingly, this lack of detailed knowledge of many physical properties of silver

nitride stimulated only very few published ab initio studies.

Gold Nitrides

In 2002, Šiller and co-workers [60] at the University of Newcastle2 reported direct observation

of the formation of an AuxN compound for the first time. Since then, single crystal and poly-

crystalline gold nitrides have been prepared with different methods [61, 62], and many theoreti-

cal [63–66] and experimental [12, 17, 61, 63, 67, 68] investigations on the structural and physical

properties of gold nitride have been published. It turned out that gold nitride possesses interesting

properties which may lead to potential practical applications [68].

2 See http://research.ncl.ac.uk/nanoscale/research/goldnitride.html,
http://news.bbc.co.uk/2/hi/uk_news/england/tyne/3205959.stm

and http://physicsworld.com/cws/article/news/2003/oct/27/gold-plating-on-the-cheap.

http://research.ncl.ac.uk/nanoscale/research/goldnitride.html
http://news.bbc.co.uk/2/hi/uk_news/england/tyne/3205959.stm
http://physicsworld.com/cws/article/news/2003/oct/27/gold-plating-on-the-cheap
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So far, the most significant finding may be that of Šiller et. al [12] who, in 2005, reported the

production of metallic large area gold nitride films which are ∼ 50% harder than pure gold films

produced under similar conditions, making the gold nitride ideal for use in large-scale applications

in coatings and in electronics. Moreover, the possibility of patterning gold nitride film surfaces

by electron/photon beam lithography was confirmed [68].

From their experimental observations and ab initio calculations, Krishnamurthy et al. [63] sug-

gested the possibility of formation of more than one gold nitride phase. Although theoretical

calculations have predicted several possible structures for AuN, AuN2 and Au3N, none of these

agrees with experiment [61].

Zinc Nitrides

Zinc nitride was first synthesized by Juza and Hahn [69] in 1940. However, like silver nitride,

despite its earlier discovery, zinc nitride remained a relatively unstudied compound for over 50

years, and only little work has been done on it. Furthermore, most properties of this material

have not been fully understood or even known. In particular, the optical band gap of zinc nitride

has remained a controversial subject for quite long time. As a member of late TMNs family, zinc

nitride is expected to exhibit excellent electric and optical properties. Therefore, further intensive

investigation is required [70].

As most of the transition metals, different formulas of zinc nitride have been reported: Zn3N2,

ZnN2, α-ZnN6 and β-ZnN6; each with its own crystal structure [71]. However, it is a common

practice in first-principles calculations to study phases that have not been synthesized yet (cf.

Refs. [72,73]). Therefore, it is interesting to investigate zinc nitride in two modifications that are

obtained from the replacement of sulfur ion in the well-known ZnS(B3) and ZnS(B4) with an N

ion, and perform ab initio calculations to study the stability, structural and electronic properties

of these hypothetical ZnN(B3) and ZnN(B4) phases; and, as always, to investigate the effect of

nitridation on the elemental zinc metal.
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1.2 Aims

Motivated by the facts in the previous section, our main objectives of the present work are:

1. Investigate stability, structural and electronic properties of Pd, Pt, Cu, Ag, Au, and Zn

nitrides within density functional theory.

2. To investigate the structure preference and identify the most likely candidates for the true

stoichiometry and the true crystal structure.

3. To investigate the effect of nitridation on the elemental transition metals.

4. To investigate some possible pressure-induced phase transformations.

5. To sort out the reported discrepancies of previous works.

6. To determine the possible structures and physical properties of those nitrides which have

not yet been synthesized.

7. To calculate optical properties and excitation energies of the most stable modifications

of these target transition-metal nitrides within the many-body GW approximation; and

compare our obtained spectra with the available experimental observations.

8. The obtained results will be used to investigate regularities and trends (if any), and to

search for possible transition-metal nitrides for use in electronic devices that can replace

pure gold.

9. The results may be used to evaluate to which extent the current different theoretical ap-

proaches, computational schemes and codes are capable of describing such kind of electronic

systems. (e.g. to what extent DFT and GW methods and VASP package can generate and

reproduce the already-reported properties).

10. One of the objectives of the present work is to serve as a reference source for meaningful

comparisons which may be made among the largely different calculations, with the view

of making results from experiment and from previous calculations available in a single

document for any further study.
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11. Chapters on theoretical background and calculation methods, namely Part I and Part II,

will be flavored with some pedagogical features to serve as a reference source for beginners

to learn the use of some of the electronic structure calculations methods and codes, and

to deepen the understanding of the most important technical and theoretical aspects.

Obtained results will be discussed within the introduced theoretical framework. However, deep

understanding of the concepts and rigorous definitions of the physical quantities that are going

to be calculated are basic in analyzing results. On the other hand, comparison with experiment

and/or with previous (theoretical) studies is a crucial justifying tool. Success in this work will

contribute to fundamental understanding of these technologically important materials as well

as benefit their practical applications. Thus, our goal is to provide some transparent physical

interpretation for the properties of these materials on the microscopic level and come up with

some useful suggestions about how these properties can be further improved.

1.3 Thesis Outline

The Thesis is divided into an introduction and four parts. Part I is devoted to the theoretical

methods employed in the calculations. We start this part by defining the general many-body

problem of condensed matter physics (Ch. 2). Then, we introduce two solution methods to

the problem, namely the density functional theory (Ch. 3) and the so-called GW approximation

scheme (Ch. 4).

Part II is devoted to the description of the practical calculations and to the methods of deter-

mining and extracting physical properties of solids from first-principles calculations. This part

starts with description of the chemical formulas and crystal structures of the materials under

investigation (Ch. 5). This is followed by describing the scheme that is employed to solve the

electronic problem using density functional theory (Ch. 6). The rest of this Part is devoted to

the definitions of, and the methods of calculating the structural (Ch. 7), the electronic (Ch. 8)

and the optical (Ch. 9) properties.
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Obtained results are presented and analysed in Ch. 10 of Part III, followed by Ch. 11 in which

we conclude the whole work and propose directions for future work.

Appendices in Part IV are devoted for some necessary background from basic solid-state theory,

classical electromagnetism and mathematics. At the very end of the Thesis, a list of formulated

articles out of the present work is presented.



Part I

Theoretical Methods

12



“The general theory of quantum mechanics is now almost complete, ... . The

underlying physical laws necessary for the mathematical theory of a large part of

physics and the whole of chemistry are thus completely known, and the

difficulty is only that the exact application of these laws leads to equations

much too complicated to be soluble. It therefore becomes desirable that

approximate practical methods of applying quantum mechanics should be

developed, which can lead to an explanation of the main features of complex

atomic systems without too much computation.”

Paul A. M. Dirac [74].

http://en.wikipedia.org/wiki/Paul_Dirac


2. The Basic Many-Body Problem of

Solids

The description of matter at the atomic scale requires the use of quantum mechanics. In this

chapter, we introduce the many-body Schrödinger equation of condensed matter, and we show

that this problem can be simplified and decomposed into two subproblems: the nuclear problem

and the electronic problem. Each of these two sub-problems is a many-body problem on its own.

The solution methods of the latter constitute the field which is known as the electronic structure

calculations. Mindful of the big picture, our goal in this chapter is to establish the basis for

the succeeding chapters. The discussion and notations here follow closely the presentation in

Refs. [75, 76].

2.1 The Basic Hamiltonian

A bulk condensed phase of matter can be looked at as an ensemble of atomic nuclei and electrons

that glue the nuclei together and neutralize their electric charge. These positive nuclei and the

negative electrons interact with themselves and with each other, giving rise to a clear quantum

many-body problem. The time-dependent non-relativistic Schrödinger equation that describes

such a coupled system can be written as

i~
∂

∂t
Ψ(R, r; t) = ĤΨ(R, r; t) . (2.1.1)

Here Ψ(R, r; t) is the many-body wave function of the electron-ion system, with R = {RI , I =

1, 2, 3, ...} and r = {ri, i = 1, 2, 3, ...} being the spatial coordinates of the nuclei and the

electrons, respectively. In the absence of external fields, the time-independent Hamiltonian Ĥ is

14
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generally given by [75, 77–79]

Ĥ = − ~
2

2me

∑

i

∇2
i

︸ ︷︷ ︸
T̂e

+
e2

2

∑

i

∑

j 6=i

1

|ri − rj|
︸ ︷︷ ︸

V̂ee

−
∑

i,I

ZIe
2

|ri −RI |
︸ ︷︷ ︸

V̂en

−
∑

I

~
2

2MI

∇2
I

︸ ︷︷ ︸
T̂n

+
e2

2

∑

I

∑

J 6=I

ZIZJ

|RI −RJ |
︸ ︷︷ ︸

V̂nn

,

(2.1.2)

where me and e are the electronic mass and charge, respectively; and MI and ZI are the mass

and the charge of the I th nucleus, respectively. In general, we denote electrons by lower case

subscripts, while nuclei are denoted by upper case subscripts.

The terms in Ĥ above are the electronic kinetic energy operator T̂e = − ~
2

2me

∑

i

∇2
i , the nuclear

potential acting on electrons V̂en = −
∑

I

∑

i

ZIe
2

|ri −RI |
, the electron-electron repulsion interac-

tion operator V̂ee =
e2

2

∑

i

∑

j 6=i

1

|ri − rj |
, the nuclear kinetic energy operator T̂n = −

∑

I

~
2

2MI

∇2
I ,

and the nuclear-nuclear repulsion interaction operator Vnn =
e2

2

∑

I

∑

J 6=I

ZIZJ

|RI −RJ |
.

If the system contains P nuclei and N electrons, then this is an equation with 3(P +N) coupled

spatial degrees of freedom. Neither analytic nor exact numerical solution is possible. Thus, ap-

proximations may be made to lead to a soluble problem, reasonable amount of calculations effort,

and should be valid for a wide range of problems of interest [75, 77, 80]. In the next section, we

will present such approximations and may discuss their limitations and validity.

2.2 Born-Oppenheimer Approximation

Grouping the terms in the Hamiltonian 2.1.2 as

Ĥ = Ĥe + ĤI = (T̂e + V̂ee + V̂en) + (T̂n + Vnn) , (2.2.1)
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one can propose1 a solution Ψ(R, r; t) to Eq. 2.1.1 in the form

Ψ(R, r; t) =
∑

n

Θn(R; t)Φn(R, r) , (2.2.2)

where the time-independent bases Φn(R, r) are assumed to satisfy the electronic Schrödinger

equation

Ĥe Φn(R, r) = En(R)Φn(R, r) (2.2.3)

for any given nuclear configuration R. That is, the nuclear coordinates R enter Eq. 2.2.3 above

only as parameters.

Substituting Eqs. 2.2.2 and 2.2.3 into Eq. 2.1.1, multiplying from the left by Φq(R, r), integrating

over all the electronic coordinates r and rearranging the terms, it is straightforward to find the

following infinite set of equations

(
i~
∂

∂t
+
∑

I

~
2

2MI

∇2
I − Vnn − Eq(R)

)
Θq(R; t) =

−
∑

I

∑

n

~
2

2MI

〈
Φq

∣∣∇2
I

∣∣Φn

〉
Θq(R; t)− 2

∑

I

∑

n

~
2

2MI
(∇IΘq(R; t)) 〈Φq|∇I |Φn〉 . (2.2.4)

The presence of the off-diagonal elements in Eq. 2.2.4 above reveals the fact that along the time

evolution electronic states Φn will be mixed (i.e. excited) due to the nuclear dynamics. In the

so-called “adiabatic approximation”, these terms are ignored. The validity of this approximation

is based on the significant difference (three to five orders of magnitude) in mass between nuclei

and electrons [79], leading to a huge difference in the time (or energy) scale associated with the

motion of nuclei and electrons [75]. Thus, while nuclei are moving slowly in the configuration

space, electrons respond instantaneously to any nuclear motion and adjust themselves to remain

in the stationary states of Ĥe, i.e. without undergoing transitions between these stationary states.

Within the adiabatic approximation, the last term in Eq. 2.2.4 vanishes due to the normalization

requirement 〈Φn|Φn〉 = 1. Hence, one can write the adiabatic Schrödinger equation for the

1No approximation here. Mathematically speaking, this is always possible.
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nuclear subsystem as

i~
∂

∂t
Θq(R; t) =

(
−
∑

I

~
2

2MI
∇2

I + Vnn(R) + Ṽq(R)

)
Θq(R; t) , (2.2.5)

where

Ṽq(R) = Eq(R) +
∑

I

∑

n

~
2

2MI

〈
Φq

∣∣∇2
I

∣∣Φq

〉
. (2.2.6)

The diagonal correction to the electronic energy levels (the last term in Eq. 2.2.6 above) is due

to the remaining coupling between the nuclear and the electronic degrees of freedom, and is

found to be proportional to me/M . The negligence of this term, known as “Born-Oppenheimer

approximation” [81], leads to the following Schrödinger equation for the nuclear subsystem

i~
∂

∂t
Θq(R; t) =

(
−
∑

I

~
2

2MI

∇2
I + Vnn(R) + Eq(R)

)
Θq(R; t) . (2.2.7)

2.3 The Atomic Structure of Solids

Consider an observable O, the time derivative of its expectation value 〈O〉 is given by [75, 82]

d

dt
〈O〉 = 1

i~
〈[O, Ĥ]〉+

〈
∂O
∂t

〉
. (2.3.1)

In particular

d

dt
〈R〉 = 1

i~
〈[R, Ĥ]〉+

〈
∂R

∂t

〉
=

1

M
〈p̂〉 , (2.3.2)

and

d

dt
〈p̂〉 = 1

i~
〈[p̂, Ĥ]〉+

〈
∂p̂

∂t

〉
= 〈−∇V̂ 〉 ; (2.3.3)
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where p̂ is the momentum and V̂ is the potential of the Hamiltonian Ĥ. Combining Eqs. 2.3.2

and 2.3.3 above yields

M
d2

dt2
〈R〉 = 〈−∇V̂ 〉 , (2.3.4)

which is a Newtonian equation of motion for the position mean value 〈R〉. In the so-called “clas-

sical nuclei approximation”, the quantum mean value 〈R〉 is approximated by spatial coordinates

of the classical particle.

M
d2

dt2
R = −∇V = F , (2.3.5)

where R is now the classical particle position, and F is the force on that particle.

Now, if we apply the classical nuclei approximation to the Born-Oppenheimer nuclear subsystem

(Eq. 2.2.5), we obtain

M
d2

dt2
R = −∇V̂ = −∇ [Eq(R) + Vnn(R)] , (2.3.6)

where Eq(R), called the qth adiabatic potential energy surface (PES), is given by Eq. 2.2.3.

Considering the I th nucleus, and applying the so-called Hellman-Feynman force theorm [78,83–85]

∂Eq(λ)

∂λ
=

〈
Φq(R)

∣∣∣∣∣
∂Ĥe(λ)

∂λ

∣∣∣∣∣Φq(R)

〉
, (2.3.7)

where λ is any external parameter coupled to the electronic degrees of freedom, Eq. 2.3.6 above

reads

MI
d2

dt2
RI = −

〈
Φq(R)

∣∣∣∣∣
∂Ĥe(R)

∂RI

∣∣∣∣∣Φq(R)

〉
− ∂Vnn
∂RI

, (2.3.8)

The ground-state atomic geometrical structure of a solid is found by solving

〈
Φq(R)

∣∣∣∣∣
∂Ĥe(R)

∂RI

∣∣∣∣∣Φq(R)

〉
+
∂Vnn
∂RI

= 0 , (2.3.9)
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and the procedure is known as ab initio or first-principles “geometry optimization”. Every time

the nuclear spatial configuration R changes, one has to obtain the new PES by solving Eq. 2.2.3.

This integration of Eq. 2.3.8 is known as molecular dynamics [75, 86] .

2.4 The Electronic Structure of Solids

Whether the aim is to investigate structural (i.e. solve Eq. 2.3.9), dynamic (i.e. numerically

integrate Eq. 2.3.8) or electronic properties, one has to find the adiabatic potential hyper sur-

face E(R). That is, one has to solve the Born-Oppenheimer non-relativistic2 time-independent

Schrödinger equation (Eq. 2.2.3) of the electronic subsystem [75, 86–88]. The solution to Eq.

2.2.3 is known as the “electronic structure calculations” [87].

Eq. 2.2.3 involves 3N spatial degrees of freedom. To reduce the number of degrees of freedom,

one may consider those inner electrons which do not participate effectively in the chemical bonding

to be moving rigidly with the nuclei to form the so-called ion core [77]. i.e. one redefines MI and

ZI . This is the essence of the so-called pseudopotential which will be discussed briefly in Subsec-

tion 3.6.4. So, from now on we use the term ion instead of nucleus to refer to this approximation.

Mathematically, the two-particle feature of the Coulomb operator Vee does not allow for the

separation of Eq. 2.2.3. Physically, due to the repulsive nature of Vee, the probability of finding

an electron at a position r depends on the positions of the other N − 1 electrons; that is each

electron is affected by the motion of every other electron in the system. This property is known

as correlation [75, 79]. One of its implications is that, any exact solution Φn(R, r) of Eq. 2.2.3

must contain two-particle degrees of freedom [75].

Moreover, if two electrons of the same spin interchange positions, Φ must change sign; that

is any solution Φn(R, r) to Eq. 2.2.3 must be antisymmetric with respect to the exchange

of the electronic spatial coordinates 3. This quantum correlation phenomenon is known as ex-

2 For now, we are not including relativistic, spin, magnetic fields or quantum electrodynamic effects. Some of
these will enter our discussion later at different stages. cf. Sec. 3.5 and the very last part of Subsec. 3.6.4 of
this Thesis.

3 This antisymmetry nature of the N -electron total wave function Φn(R, r) is the fundamental manifistation
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change [75, 79]4.

In general, it is evident that regardless of what simplifications one introduces, the nature of the

electrons makes the issue of solving Eq. 2.2.3 for Φ an extremely difficult task. Consequently,

the complexity of the electronic problem invokes many approximations, this in turn leads to

different theoretical methods [79]. In the present section, the exchange-correlation problem will

be formally addressed, and the electronic Hamiltonian Ĥe will be rewritten in terms of the density

of electrons.

2.4.1 The Electronic Density

For a given ionic configuration R(t), the many-body wave function of N electrons (Eq. 2.2.3)

can be written as

|Φ〉 = Φ(r1σ1, r2σ2, ... rNσN ) , (2.4.1)

where the spin degrees of freedom σ have been included explicitly5. The product

Φ∗(r1σ1, r2σ2, ... rNσN )Φ(r1σ1, r2σ2, ... rNσN)

determines the probability that the variables of the first electron lie in spatial volume element

dr1 with spin coordinates σ1, those of the second simultaneously in dr2 with spin coordinates σ2,

etc. [76,94]. To find nσ(r)dr, the average number of the electrons of spin σ in volume dr around

r, one needs to calculate the probability of finding electrons of spin σ at r, i.e. the electronic

of the well-known Pauli exclusion principle [89]. In fact, the original Pauli principle of the year 1925 [90] claims
that for identical fermions (particles with half-integer spin [82]) the occupation number for any quantum state
cannot exceed the value 1. Later, in 1926, Dirac [91] and Heisenberg [92] showed that the Pauli principle is a
consequence of a much deeper statement: the antisymmetry of the many-fermion wave function [93].

4 Exchange and correlation will be discussed in more details in Subsections 2.4.3 and 3.6.3. However, it may
be worth mentioning here that the solution of the nuclear problem Θq(R; t) must, in principle, be symmetric
or antisymmetric depending on the species and on the spins of the nuclei. Nevertheless, if the classical nuclei
approximation is applied, Θq(R; t) can be represented by a product of Dirac δ-functions [75], i.e. no overlap.

5 Note that, the subscripts 1 · · ·N refer merely to different volume elements while their places, which in
principle indicate the particles referred to, are arbitrary owing to the symmetry [94].
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density nσ(r) [78]. If |Φ〉 are6 normalized, it is straightforward to show that

nσ(r) ≡ n(r, σ) = 〈Φ|n̂σ(r)|Φ〉

= N

σN∑

σj=σ2

∫
dr2dr3 ... drN |Φ(rσ, r2σ2, r3σ3, ... rNσN )|2 , (2.4.2)

with the density operator

n̂σ(r) =
N∑

k=1

δ(rk − r)δ(σk − σ) , (2.4.3)

and

∑

σ

∫
dr nσ(r) =

∫
dr (n↑(r) + n↓(r)) = N (2.4.4)

must be satisfied.

One can also define the joint electronic density by

nσσ′(r, r′) ≡ n(rσ, r′σ′) = 〈Φ|n̂σσ′(r, r′)|Φ〉

=

〈
Φ

∣∣∣∣∣
∑

j<k

δ(rj − r)δ(σj − σ)δ(rk − r)δ(σk − σ)

∣∣∣∣∣Φ
〉

=
N(N − 1)

2

σN∑

σj=σ3

∫
dr3dr4 ... drN |Φ(rσ, r′σ′, r3σ3, ... rNσN )|2 ,

(2.4.5)

which represents the probability of finding electrons of spin σ at r and electrons of spin σ′ at r′.

Its integration

∑

σσ′

∫
drdr′ nσσ′(r, r′) =

N(N − 1)

2
(2.4.6)

6 Because electrons are Fermions, there are N ! distinct electronic configurations. The formula 2.4.2 is true also
if one considers the ensemble of these N ! states if they are equally probable. Nevertheless, following Refs. [94,95],
here and in what follows, we consider |Φ〉 to be a pure state. A straightforward generalization to ensemble case
can be found in Chapter 2 of Ref. [76].
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gives the number of electron pairs [76, 78, 79, 95, 96].

The definitions above are crucial and have many important consequences. For example the

correlation phenomenon, that is introduced in Sec. 2.4, can be quantified in terms of nσ(r) and

nσσ′(r, r′) by

∆nσσ′(r, r′) = nσσ′(r, r′)− nσ(r)nσ′(r′) , (2.4.7)

where, the product represents the joint density of uncorrelated particles [78]. Dividing Eq. 2.4.7

above by nσ(r)nσ′(r′) yields

∆nσσ′(r, r′)

nσ(r)nσ′(r′)
=

nσσ′(r, r′)

nσ(r)nσ′(r′)
− nσ(r)nσ′(r′)

nσ(r)nσ′(r′)

hσσ′(r, r′) = gσσ′(r, r′) − 1 . (2.4.8)

Here, gσσ′(r, r′) is the so-called pair-correlation function (or pair-correlation distribution) which is

nothing but a normalized version of the joint density nσσ′(r, r′) [75,78]. The normalized correction

hσσ′(r, r′) ≡ ∆nσσ′(r,r′)

nσ(r)nσ′(r′)
represents what is known as the exchange correlation hole [76,78]. More

about g and h will be discussed in Subsec. 2.4.3. However, in consideration of local, non-local,

one-particle, and two-particle operators, a more formal treatment of these densities based on

density matrices is to be utilized. This is the subject of the next subsection.

2.4.2 Density Matrices

In fact, nσ(r) of Eq. 2.4.2 is the diagonal of the first order (or one-particle) reduced density

matrix; while nσσ′(r, r′) of Eq. 2.4.5 is the the second order (or two-particle) reduced density

matrix. The reduced density matrix of the pth order is defined by [76, 95]

γp(r
′
1σ

′
1, r

′
2σ

′
2, · · · r′pσ′

p, r1σ1, r2σ2, · · · rpσp) =(
N

p

) σN∑

σj=σp+1

∫
drp+1 · · · drN γN(r

′
1σ

′
1, · · · r′pσ′

p, rp+1σp+1, · · · rNσN , r1σ1, · · · rpσp, · · · rNσN )

,(2.4.9)
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where
(
N
p

)
is the binomial coefficient and the integrand γN is the coordinate representation of

the density operator

γ̂N = |Φ〉〈Φ| . (2.4.10)

That is

γN = 〈r1σ1, · · · rNσN |γ̂N |r′1σ′
1, · · · r′Nσ′

N 〉 (2.4.11)

= 〈r1σ1, · · · rNσN |Φ〉〈Φ|r′1σ′
1, · · · r′Nσ′

N 〉 (2.4.12)

= Φ(r1σ1, · · · rNσN )Φ∗ (r′1σ
′
1, · · · r′Nσ′

N ) (2.4.13)

From the definitions 2.4.10 and 2.4.11 above, it is clear that

diagonal element of (γN) ≡ Φ (r1σ1, · · · rNσN )Φ∗ (r1σ1, · · · rNσN ) , (2.4.14)

and

trace (γ̂N) =

σN∑

σj

∫
dr1 ... drNΦ (r1σ1, · · · rNσN) Φ∗ (r1σ1, · · · rNσN ) = 1 . (2.4.15)

According to definition 2.4.9, the first-order (or one-particle) and the second-order (or two-

particle) reduced density matrices are given by

γ1(r
′
1σ

′
1, r1σ1) = N

σN∑

σ2

∫
dr2 ... drN Φ (r′1σ

′
1, r2σ2, · · · rNσN) Φ∗ (r1σ1, · · · rNσN ) ,(2.4.16)

and

γ2(r
′
1σ

′
1, r

′
2σ

′
2, r1σ1, r2σ2) =

N(N − 1)

2

σN∑

σ3

∫
dr3 · · ·drN Φ (r′1σ

′
1, r

′
2σ

′
2, r3σ3, · · · , rNσN) Φ∗ (r1σ1, · · · , rNσN ) . (2.4.17)
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It is also evident that γ1 and γ2 integrate to the number of electrons and number of electron

pairs, respectively

trace(γ1(r
′
1σ

′
1, r1σ1)) =

∑

σ1

∫
dr1 γ1(r1σ1, r1σ1) = N , (2.4.18)

trace(γ2(r
′
1σ

′
1, r

′
2σ

′
2, r1σ1, r2σ2)) =

∑

σ1,σ2

∫
dr1dr2 γ2(r1σ1, r2σ2, r1σ1, r2σ2) =

N(N − 1)

2
.

(2.4.19)

Moreover

γ1(r
′
1σ

′
1, r1σ1) =

2

N − 1

∑

σ2

∫
dr2 γ2(r

′
1σ

′
1, r2σ2, r1σ1, r2σ2) . (2.4.20)

Operators

The major significance of γ̂1 (or nσ(r)) and γ̂2 (or nσσ′(r, r′)) lies in the fact that they allow to

determine all the expectation values of one-particle and two-particles operators, respectively [95].

To show this, we first notice that for any observable Ô, one can straightforwardly show that

〈
Ô
〉
= trace

(
Ôγ̂N

)
= trace

(
γ̂NÔ

)
(2.4.21)

Accordingly, the expectation value of a one-electron operator

Ô1 =
N∑

i=1

O(riσi, r
′
iσ

′
i) (2.4.22)

is given by

〈
Ô1

〉
= trace(Ô1γN) =

∑

σ′

1,σ1

∫
dr′1dr1 O(r1σ1, r

′
1σ

′
1)γ1(r

′
1σ

′
1, r1σ1) . (2.4.23)

If Ô1 is local7, then Eqs. 2.4.22 and 2.4.23 above read

Ô1 =
N∑

i=1

O1(riσi) (2.4.24)

7 An operator Ô is local if Ô(r, r′) = Ô(r)δ(r − r′) [76].
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〈
Ô1

〉
= trace(Ô1γN) =

∑

σ1

∫
dr1 [O1(r1σ1)γ1(r

′
1σ

′
1, r1σ1)]r′1σ′

1=r1σ1
. (2.4.25)

For a local two-electron operator

Ô2 =

N∑

i<j

O2(riσi, rjσj) , (2.4.26)

the expectation value reads

〈
Ô2

〉
= trace(Ô2γN) =

∑

σ1,σ2

∫
dr1dr2 [O2(r1σ1, r2σ2)γ2(r

′
1σ

′
1, r

′
2σ

′
2, r1σ1, r2σ2)]r′1σ′

1=r1σ1,r′2σ
′

2=r2σ2
. (2.4.27)

The Electronic Hamiltonian

We rewrite the N -electron Hamiltonian Ĥe as

Ĥe =
N∑

i=1

(
− ~

2

2me

∇2
i + vext(ri)

)
+

N∑

i=1

N∑

j 6=i

e2

2|ri − rj|
, (2.4.28)

where8

vext(ri) ≡ −
P∑

I=1

ZIe
2

|ri −RI |
. (2.4.29)

The expectation value of Ĥe is given by

〈
Φ
∣∣∣Ĥe

∣∣∣Φ
〉
≡ E =

〈
Φ
∣∣∣T̂e + V̂ext + V̂ee

∣∣∣Φ
〉
=
〈
Φ
∣∣∣T̂e
∣∣∣Φ
〉
+
〈
Φ
∣∣∣V̂ext

∣∣∣Φ
〉
+
〈
Φ
∣∣∣V̂ee
∣∣∣Φ
〉
.

(2.4.30)

8 The subscript “ext”, stands for “external”, refers to the fact that the ionic subsystem is considered to be
external to the electronic subsystem. cf. Ref. [89, p. 338]. As we will shortly see, the last Vee term will be
decomposed into Hartree, exchange and correlation contributions, that is Vee = VHartree + VX + VC , and some
authors (cf. [78, p. 54]) refer to it as Vint, where the subscript “int” stands for “internal”.
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From Eq. 2.4.28 above, it is clear that T̂e and V̂ext are one-particle operators, while V̂ee is a

two-body operator. Thus, using Eqs. 2.4.21, 2.4.25 and 2.4.27, one obtains

Te =
〈
Φ
∣∣∣T̂e
∣∣∣Φ
〉
= − ~

2

2me

N∑

i=1

〈
Φ
∣∣∇2

i

∣∣Φ
〉
= − ~

2

2me

∑

σ1

∫
dr1

[
∇2

1γ1(r
′
1σ

′
1, r1σ1)

]
r′1σ

′

1=r1σ1

(2.4.31)

Vext =
〈
Φ
∣∣∣V̂ext

∣∣∣Φ
〉
=

〈
Φ

∣∣∣∣∣

N∑

i=1

vext(ri)

∣∣∣∣∣Φ
〉

=
∑

σ1

∫
dr1 [vext(r1)γ1(r

′
1σ

′
1, r1σ1)]r′1σ′

1=r1σ1

(2.4.32)

Vee =
〈
Φ
∣∣∣V̂ee

∣∣∣Φ
〉
=

1

2

N∑

i=1

N∑

j 6=i

〈
Φ

∣∣∣∣
e2

|ri − rj |

∣∣∣∣Φ
〉

=
∑

σ1,σ2

∫
dr1dr2

[
e2

2|r1 − r2|
γ2(r

′
1σ

′
1, r

′
2σ

′
2, r1σ1, r2σ2)

]

r′1σ
′

1=r1σ1,r′2σ
′

2=r2σ2

(2.4.33)

Putting all these together, the expectation value of the N -electron Hamiltonian Ĥe reads [76,95]

E = trace(Ĥeγ̂N) =
∑

σ1

∫
dr1

[(
− ~

2

2me
∇2

1 + vext(r1)

)
γ1(r

′
1σ

′
1, r1σ1)

]

r′1σ
′

1=r1σ1

+
∑

σ1,σ2

∫
dr1dr2

[
e2

2|r1 − r2|
γ2(r

′
1σ

′
1, r

′
2σ

′
2, r1σ1, r2σ2)

]

r′1σ
′

1=r1σ1,r′2σ
′

2=r2σ2

(2.4.34)

Comparing the form of Ĥe in Eqs. 2.4.28 and 2.4.34, one notices the significant reduction of the

dimensions involved in Ĥe from 4N variables9 to 8 coordinates (r1σ1, r2σ2)
10. Noting that the

operators in the Ĥe do not involve spin coordinates, it is possible to further reduce γ1(r
′
1σ

′
1, r1σ1)

(Eq. 2.4.16) and γ2(r
′
1σ

′
1, r

′
2σ

′
2, r1σ1, r2σ2) (Eq. 2.4.17) by introducing the spinless density matrix

via the integration over the spin coordinates [76].

9 3N spatial + N spin coordinates.
10 Yet, one needs to evaluate γ2 from Φ.
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Spin-Free Density Matrices

The first- and the second-order spin-free density matrices are defined by

n1(r
′
1, r1) =

∑

σ1

γ1(r
′
1σ1, r1σ1)

= N

σN∑

σ1

∫
dr2 · · ·drN Φ (r′1σ1, r2σ2, · · · rNσN )Φ∗ (r1σ1, · · · rNσN ) (2.4.35)

and

n2(r
′
1, r

′
2, r1, r2) =

∑

σ1,σ2

γ2(r
′
1σ1, r

′
2σ2, r1σ1, r2σ2)

=
N(N − 1)

2

σN∑

σ1

∫
dr3 · · ·drN Φ (r′1σ1, r

′
2σ2, r3σ3, · · · , rNσN) Φ∗ (r1σ1, · · · , rNσN ) .(2.4.36)

Accordingly, the expectation values of Eqs. 2.4.25 and 2.4.27 now read for spin-independent

operators

〈
Ô1

〉
=

∫
dr1 [O1(r1)n1(r

′
1, r1)]r′1=r1

(2.4.37)

and

〈
Ô2

〉
=

∫
dr1dr2 [O2(r1, r2)n2(r

′
1r

′
2, r1r2)]r′1=r1,r′2=r2

. (2.4.38)

The Electronic Hamiltonian Revisited

Using Eqs. 2.4.21, 2.4.37 and 2.4.38, the expectation values of the Ĥe components read [75,76]

Te =
〈
Φ
∣∣∣T̂e
∣∣∣Φ
〉
= − ~

2

2me

N∑

i=1

〈
Φ
∣∣∇2

i

∣∣Φ
〉
= − ~

2

2me

∫
dr1

[
∇2

r1
n1(r

′
1, r1)

]
r′1=r1

, (2.4.39)

Vext =
〈
Φ
∣∣∣V̂ext

∣∣∣Φ
〉
=

〈
Φ

∣∣∣∣∣

N∑

i=1

vext(ri)

∣∣∣∣∣Φ
〉

=

∫
dr1 [vext(r1)n1(r

′
1, r1)]r′1=r1

, (2.4.40)
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and

Vee =
〈
Φ
∣∣∣V̂ee
∣∣∣Φ
〉
=

1

2

N∑

i=1

N∑

j 6=i

〈
Φ

∣∣∣∣
e2

|ri − rj|

∣∣∣∣Φ
〉

=

∫
dr1dr2

[
n2(r

′
1r

′
2, r1r2)

|r1 − r2|

]

r′1=r1, r′2=r2

.

(2.4.41)

Putting all these together, the expectation value of the N -electron Hamiltonian Ĥe reads [76,95]

E = E [n1(r
′
1, r1), n2(r1, r2)] = E [n2(r1, r2)]

= − ~
2

2me

∫
dr
[
∇2

rn1(r
′, r)
]
r′=r

+

∫
dr vext(r)n(r) +

∫
dr1dr2

n2(r1, r2)

|r1 − r2|
(2.4.42)

Here, the shorthand notations n1(r1) = n(r) and n2(r1, r2) were used for the diagonal elements

of n1(r
′
1, r1) and n2(r

′
1r

′
2, r1r2), respectively 11. The square brackets indicate the functional

dependence12 of E on n1 and n2. The dependence of E on n2 alone is evident because

n1(r
′
1, r1) =

2

N − 1

∫
dr2 n2(r

′
1r

′
2, r1r2) =⇒ n(r1) =

2

N − 1

∫
dr2 n2(r1, r2) (2.4.43)

as can readily be obtained from Eq. 2.4.20 [75, 76]. Moreover, Eq. 2.4.42 above involves only

n(r), a three coordinates function, and n1(r
′, r) and n2(r1, r2), six coordinates functions. In

addition, with the form of Eq. 2.4.29 for vext, the second term of Eq. 2.4.42 above may be

written as [75]

Vext =
〈
Φ
∣∣∣V̂ext

∣∣∣Φ
〉
=

P∑

I=1

〈
Φ

∣∣∣∣∣

N∑

i=1

vI(|ri −RI |)
∣∣∣∣∣Φ
〉

=

P∑

I=1

∫
dr n(r)vI(|r−RI |) . (2.4.44)

2.4.3 Exchange and Correlation (XC)

If the two-body Vee were purely classical, then the last term in Eq. 2.4.42 would have taken the

classical form

J [n] =
1

2

∫
dr1dr2

n(r1)n(r2)

|r1 − r2|
(2.4.45)

11 The diagonal element of n1(r
′
1, r1) = n1(r1) = n(r) is just the electronic density defined by Eq. 2.4.2, while

the diagonal element of n2(r
′
1r

′
2, r1r2) = n2(r1r2, r1r2) = n2(r1, r2) is the joint density of Eq. 2.4.5, regardless

of the spin of the electrons in both cases.
12 For a compact description of functionals and functional derivatives, cf. Ref. [97], Ref. [75, Subsec. 4.1.1],

Ref. [76, Appendix A] and Ref. [78, Appendix A].
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known as Hartree term or contribution. The prefactor 1
2
here is to prevent double counting.

Rewriting Eq. 2.4.8 as

n(r)n(r′)g(r, r′) = n(r, r′) = n(r)n(r′) [1 + h(r, r′)] (2.4.46)

and reading it together with Eqs. 2.4.41 and 2.4.45 may be suggestive to separate Vee into two

terms [75, 76]:

Vee =

∫
dr′dr

n2(r, r
′)

|r− r′|

=
1

2

∫
dr′dr

n(r)n(r′)

|r− r′| +
1

2

∫
dr′dr

n(r)n(r′)

|r− r′| [g(r, r′)− 1]

=
1

2

∫
dr′dr

n(r)n(r′)

|r− r′| +
1

2

∫
dr′dr

n(r)n(r′)

|r− r′| [h(r, r′)] . (2.4.47)

Substituting the right hand side of Eq. 2.4.46 for n(r, r′) in Eq. 2.4.43 and rearranging the terms

yield ∫
dr′ n(r′)h(r, r′) = −1 . (2.4.48)

The integrand of the sum rule above defines the so-called exchange-correlation hole (or exchange-

correlation charge) [76]:

nxc(r, r
′) = n(r′)h(r, r′) =⇒

∫
dr′ nxc(r, r

′) = −1 . (2.4.49)

That is, the integral of the hole density nxc(r, r
′) over all r′ is exactly one missing electron per

electron at any point r [78]. Eq. 2.4.47 in terms of nxc(r, r
′) now reads

Vee =
1

2

∫
dr′dr

n(r)n(r′)

|r− r′| +
1

2

∫
dr′dr

n(r)

|r− r′| nxc(r, r
′) . (2.4.50)

In the so-called Hartree approximation [98], the exchange-correlation potential, i.e. the sec-

ond term of Eq. 2.4.47 and 2.4.50 is neglected altogether, and electrons are considered to be

completely uncorrelated. This is equivalent to take g(r, r′) = 1 in Eq. 2.4.47 [75].
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Exchange in the Hartree-Fock Approximation

To exactly include the exchange interaction, the N -electron wave function Φ can be approximated

by a properly antisymmetrized product of N orthonormal one-electron spin-orbitals ϕi(rjσj) in

the form of Slater determinant [99–101]

Φ ≡ ΦHF (r
′
1σ1, r2σ2, · · · rNσN ) =

1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1σ1) ϕ2(r1σ1) · · · ϕN(r1σ1)

ϕ1(r2σ2) ϕ2(r2σ2) · · · ϕN(r2σ2)
...

...
. . .

...

ϕ1(rNσn) ϕ2(rNσN ) · · · ϕN(rNσN )

∣∣∣∣∣∣∣∣∣∣∣∣

, (2.4.51)

where the ith orbital ϕi associated with the jth electron is given as a product of spin and spatial

components

ϕi(rjσj) = ψ
σj

i (rj)αi(σj) . (2.4.52)

This is called the Hartree-Fock (HF) approximation [76, 78, 98, 100]. The expectation value of

Ĥe (as defined by Eq. 2.4.28) in this scheme is given by [76, 78]

EHF =
〈
ΦHF

∣∣∣Ĥe

∣∣∣ΦHF

〉
=

N∑

i=1

hii +
1

2

N∑

i=1

N∑

j=1

(Jij −Kij) , (2.4.53)

where

hii =
∑

σ

∫
dr ϕ∗

i (rσ)

(
− ~

2

2me
∇2

r + vext(rσ)

)
ϕi(rσ) , (2.4.54)

Jij =
∑

σ1

∑

σ2

∫
dr1dr2 ϕi(r1σ1)ϕ

∗
i (r1σ1)

1

|r1 − r2|
ϕ∗
j(r2σ2)ϕj(r2σ2) , (2.4.55)

Kij =
∑

σ1

∑

σ2

∫
dr1dr2 ϕ∗

i (r1σ1)ϕj(r1σ1)
1

|r1 − r2|
ϕi(r2σ2)ϕ

∗
j(r2σ2) δσ1σ2 . (2.4.56)

Here, hii are the single-electron expectation values of the so-called core Hamiltonian

ĥ(riσi) = − ~
2

2me
∇2

ri
+ vext(riσi) (2.4.57)
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which neglects the interaction of the single electron with other electrons. The direct integral

Jij is the same as the one defined by Eq. 2.4.45 which corresponds to the classical Coulomb

interaction between two charge distributions. The term Kij , known as the exchange integral, has

no classical correspondence [75,76,82]. Mathematically, the minus sign arises from the fact that

the Kij terms correspond to odd permutations in the Slater determinant (Eq. 2.4.51). Physically,

this can be seen as a reduction in the Coulomb interaction13 Jij because spin-like electrons are

prohibited by the of Pauli’s principle from being too close to each other [75]14.

Notice that the diagonal terms, Jii and Kii, are counted in the summations 2.4.55 and 2.4.56,

respectively. However, these unphysical self-interactions exactly cancel out in Eq. 2.4.53 due to

the clear fact that [75, 76, 78]15

Jii = Kii . (2.4.58)

With the restrictions of Eq. 2.4.51, the minimization of EHF (Eq. 2.4.53) with respect to all

electronic degrees of freedom leads to the so-called Hartree-Fock equations [75, 76, 78]16:

F̂ϕi(rσ) =

(
ĥ+

N∑

j=1

(Ĵj − K̂j)

)
ϕi(rσ) = εiϕi(rσ) , (2.4.59)

where F̂ is known as the Fock operator, and the Coulomb Ĵj and the exchange K̂j operators are

defined by

Ĵj ϕi(r2σ2) =

(
∑

σ1

∫
dr1 ϕ∗

j(r1σ1)
1

|r1 − r2|
ϕj(r1σ1)

)
ϕi(r2σ2) , (2.4.60)

K̂j ϕi(r2σ2) =

(
∑

σ1

∫
dr1 ϕ∗

j(r1σ1)
1

|r1 − r2|
ϕi(r1σ1)

)
ϕi(r2σ2) . (2.4.61)

Since the solutions ϕi(riσi) to Eqs. 2.4.59 are part of the operator F̂ itself, one must solve Eq.

2.4.59 iteratively. Thus, the HF approach is a self-consistent-field (SCF) method.

13 Indeed, with respect to the unphysical case where electrons are completely uncorrelated [75].
14 In terms of the HF exchange density nxc (Eq. 2.4.71), the lowering in the direct Coulomb interaction can

be seen as the interaction of each electron with a positive nxc that surrounds it [78].
15 Note that the case i = j does not correspond to any permutation in the Slater determinant (Eq. 2.4.51) [75].
16 In fact, Eqs. 2.4.59 are termed as the canonical representation of the HF equations. For details, readers are

referred to, e.g., Refs. [75, 76].
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The total electronic energy expectation value E in terms of the Fock operator eigenvalues17

εi = hii +
N∑

j=1

(Jij −Kij) (2.4.62)

now reads [75, 76]

EHF =

N∑

i=1

εi −
1

2

N∑

i=1

N∑

j=1

(Jij −Kij) , (2.4.63)

To restate the HF method in terms of density matrices (Subsec. 2.4.2), we start by considering

the single determinant of Eq. 2.4.51. It is straightforward to show that the pth order reduced

density matrix is [76]

γp(r
′
1σ

′
1, r

′
2σ

′
2, · · · r′pσ′

p, r1σ1, r2σ2, · · · rpσp) =

1

p!

∣∣∣∣∣∣∣∣∣∣∣∣

γ1(r
′
1σ

′
1, r1σ1) γ1(r

′
1σ

′
1, r2σ2) · · · γ1(r

′
1σ

′
1, rpσp)

γ1(r
′
2σ

′
2, r1σ1) γ1(r

′
2σ

′
2, r2σ2) · · · γ1(r

′
2σ

′
2, rpσp)

...
...

. . .
...

γ1(r
′
pσ

′
p, r1σ1) γ1(r

′
pσ

′
p, r2σ2) · · · γ1(r

′
pσ

′
p, rpσp)

∣∣∣∣∣∣∣∣∣∣∣∣

,

(2.4.64)

where the first order reduced density matrix

γ1(r
′
1σ

′
1, r1σ1) =

N∑

i=1

ϕi(r
′
1σ

′
1)ϕ

∗
i (r1σ1) , (2.4.65)

known as Fock-Dirac density matrix, can be written in the operator form as [76]18

γ̂1 =
N∑

i=1

|ϕi〉〈ϕi| . (2.4.66)

17 Sometimes the Fock operator eigenvalues are called “orbital energies”. cf. Ref. [76].
18 It is easy to see that γ̂1 is a projector onto the space that is spanned by the N occupied HF orbitals ϕi.
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In particular

γ2(r
′
1σ

′
1, r

′
2σ

′
2) =

1

2!

∣∣∣∣∣∣
γ1(r

′
1σ

′
1, r1σ1) γ1(r

′
1σ

′
1, r2σ2)

γ1(r
′
2σ

′
2, r1σ1) γ1(r

′
2σ

′
2, r2σ2)

∣∣∣∣∣∣

=
1

2
[γ1(r

′
1σ

′
1, r1σ1)γ1(r

′
2σ

′
2, r2σ2)− γ1(r

′
1σ

′
1, r2σ2)γ1(r

′
2σ

′
2, r1σ1)] . (2.4.67)

Inserting 2.4.67 above in Eq. 2.4.34, the expectation value of the N -electron Hamiltonian Ĥe

reads [76]

EHF[γ1] =
∑

σ1

∫
dr1

[(
− ~

2

2me
∇2

1 + vext(r1σ1)

)
γ1(r

′
1σ

′
1, r1σ1)

]

r′1σ
′

1=r1σ1

+
1

2

∑

σ1,σ2

∫
dr1dr2 e

2

[
γ1(r1σ1, r1σ1)γ1(r2σ2, r2σ2)

|r1 − r2|
− γ1(r1σ1, r2σ2)γ1(r2σ2, r1σ1)

|r1 − r2|

]

(2.4.68)

Eq. 2.4.68 above is to be compared with Eq. 2.4.53.

To express EHF in terms of the spin-free density matrices (Subsec. 2.4.2) one uses the definitions

2.4.35, 2.4.36, 2.4.37, and 2.4.37, and it is straightforward (cf. Ref. [76, p. 39]) to rewrite the

expectation value of the N -electron Hamiltonian Ĥe (Eq. 2.4.42) in the HF picture as [76]

EHF[n1] =

∫
dr1

[
− ~

2

2me
∇2

1n1(r
′
1, r1)

]

r′1=r1︸ ︷︷ ︸
Te[n1]

+

∫
dr vext(r)n(r)

︸ ︷︷ ︸
Ven[n]

+
1

2

∫
dr1dr2 e

2 n(r1)n(r2)

|r1 − r2|︸ ︷︷ ︸
J [n]

− 1

2

∫
dr1dr2 e

2

[
nαα
1 (r1, r2)n

αα
1 (r2, r1)

|r1 − r2|
+
nββ
1 (r1, r2)n

ββ
1 (r2, r1)

|r1 − r2|

]

︸ ︷︷ ︸
K[n1]

= Te[n1] + Ven[n] + J [n]−K[n1] , (2.4.69)

where the n1 matrices in the last integral have been resolved into components which arise from

different spins [76]

n1(ri, rj) = nαα
1 (ri, rj) + nββ

1 (ri, rj) (2.4.70)
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The exchange-correlation hole nxc in the HF approximation can be obtained by comparing the

electron-electron interaction terms in Eq. 2.4.69 above with Eq. 2.4.50

nHF
xc (r1, r2) = nHF

x (r1, r2) = −1

2

|n1(r1, r2)|2
n(r1)

, (2.4.71)

and the pair correlation function (Eq. 2.4.49) reads [76]

hHF
xc (r1, r2) = hHF

x (r1, r2) = −1

2

|n1(r1, r2)|2
n(r1)n(r2)

. (2.4.72)

It is evident from the foregoing discussion (cf. the K[n1] term in Eq. 2.4.69) that the only

correlation included in the HF scheme is the exchange interaction among the spin-like electrons.

In this sense, the term “correlation” is reserved for further corrections beyond the HF method,

excluding the exchange contribution [89]. That is [76]

EHF
c = Eexact − EHF . (2.4.73)

Thus, while the exact expression for the exchange hole nx(r, r
′) can be derived [76], the basic

shortcoming of this scheme is that correlation effects, due to the two-electron Coulomb interac-

tions, are not taken into account [75, 102]. Nevertheless, The HF method introduces the idea

of separation of interaction effects into exchange and correlation nxc(r, r
′) = nx(r, r

′) +nc(r, r
′)

[102].

In first-principles electronic structure calculations, a large amount of work has been devoted to

calculations of exchange and correlation, since it turns out that the XC contribution is crucial for

describing many physical properties and phenomena. Several methods which can treat correlation

with a high accuracy exist. Details about some of these methods and further formal properties

of nx(r, r
′) will be given in Subsec. 3.6.3 19.

19 At this stage, one can go no further beyond this point, simply because the XC energy is considered as the
correction to the energy obtained by any approximate method; i.e. Exc = Eexact − Eapproximate. Moreover, there
is still a correlation piece that stems from the (approximated) kinetic energy [95] which we have not considered
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2.5 Summary

Substituting Eq. 2.4.50 into Eq. 2.4.42, the energy of the electronic subsystem reads

E(R) = 〈Ĥe〉 =− ~
2

2me

∫
dr
[
∇2

rn1(r
′, r)
]
r′=r

+

∫
dr n(r)vext(r;R)

+
1

2

∫
dr′dr

n(r)n(r′)

|r− r′| +
1

2

∫
dr′dr

n(r)

|r− r′| nxc(r, r
′) . (2.5.1)

It is this form of 〈Ĥe〉 which we are going to consider and treat in the rest of the present thesis.

Within the assumption that the nuclear and the electronic degrees of freedom can be decoupled,

and regardless of the electronic structure calculations method, once the ground-state E(R) of

Eq. 2.5.1 above (i.e. the solution of Schrödinger equation of the electrons 2.2.3) is obtained, all

physical properties are, in principle, now accessible. For example, one can:

• optimize the geometry (i.e. find the equilibrium structural parameters) by solving the

stationary problem of Eq. 2.3.9 (more in Ch. 7);

• apply a varying isotropic pressure to study the energy-volume and enthalpy-pressure equa-

tion of states (more in Sections 7.4 and 7.6);

• apply non-isotropic strain to calculate elastic properties (cf. Ref. [103]);

• obtain the eigenstate states from the solution of Eq. 2.2.3 and calculate the electronic

properties; e.g. band diagrams (more in Sec. 8.1), density of states (more in Sec. 8.2) and

chemical bonds (cf. Ref. [104]);

• or integrate Eq. 2.2.3 to study the dynamical and thermal properties (cf. Ref. [105]).

• Moreover, excitation20 spectra can be calculated by applying perturbation techniques on

top of the obtained ground-state (more in Ch. 4.5).

This idea is depicted schematically in Fig. 2.1. Moreover, it is becoming clear that the electronic

density plays a major role in the electronic structure calculations. Using the density matrix

yet.
20 At this stage it may be worth to mention that it is crucial to distinguish between ground and excited states.

Some properties at first sight may be considered as excited states while they are purely ground-state properties [78].
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The nuclear-electronic many-body problem of solids

i~ ∂
∂t
Ψ(R, r; t) = ĤΨ(R, r; t)

��

Apply the Born-Oppenheimer approximation

ĤΨ(R, r; t) =
(
Ĥe + ĤI

)∑

n

Θn(R; t)Φn(R; r)

��

Electronic structure calculations
Ĥe Φq(R, r) = Eq(R)Φq(R; r)

-- Geometry optimization
∇ [Eq(R) + Vnn(R)] = 0

��

mm

All physical
properties

Figure 2.1: A schematic mind mapping of the big picture of the electronic structure calculations.
The loop indicated in the Figure refers to changing ionic configurations (and not to changing electronic
densities and wavefunctions). See the text.

formalism, the components of the exact (Eq. 2.5.1) and of the approximate (Eq. 2.4.69)

total electronic energy were written as functionals of the electronic density and of the first-order

density matrix. In addition, the canonical representation of the HF equations (Eqs. 2.4.59)

and the corresponding total electronic energy (Eq. 2.4.63) may suggest that one can develop a

many-electron theory starting from an independent-electron approximation.

A major strategy in the field of electronic structure calculations introduced by the HF method has

been developed through out the present chapter. The idea is to resolve the electron-electron in-

teraction term Vee of the original electronic Hamiltonian Ĥe into three components of decreasing

energetic contributions [75,102]21 and of decreasing importance: (i) The far largest contribution

and the exactly known Hartree classical electrostatic Coulomb interaction. (ii) The second large

contribution is the exchange term. In principle, it can be calculated exactly, at least in the HF

formalism, but it is computationally expensive. (iii) The last and the smallest contribution comes

21 In atoms and molecules, the exchange energies are found to be an order of magnitude or more bigger than
the correlation energies [76].
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from the correlation term, and represents the correction to the total electronic energy obtained

by any approximate method.

Bearing the foregoing picture in mind, the most widely used ground-state electronic structure

calculations approach, density functional theory [76, 106–109], is described in the next chapter,

followed by a chapter on the GW approximation [80, 110], a successful approximation for deter-

mination of excited states.



3. Density-Functional Theory (DFT)

In Sec. 2.4, we formally addressed the electronic problem of matter and introduced some notions,

concepts and methods. In particular the electronic density, the single-electron core Hamiltonian,

the one electron contribution to the total electronic energy (orbital energy), the exchange and

the correlation interactions, and the self-consistent field methods. In the present chapter, we con-

sider an in principle exact solution to the problem, the Density-Functional Theory (DFT) method.

Due to its unique combination of reasonable accuracy and low computational cost, DFT may

be considered as the most successful and the most widely used theoretical method in the field

of electronic structure calculations [87, 111, 112]. In fact, many of the successes of modern

condensed-matter physics and chemistry are connected with the development of DFT [113].

Together with the Hellmann-Feynman force theorem (see Sec. 2.3), structural, electronic and

dynamic properties can be investigated simultaneously, giving rise to a profound impact on the

materials characterization [87]. Within the introduced many-electron problem of the previous

chapter, the goal of the present chapter is to undertake a brief review of the DFT approach.

3.1 Thomas-Fermi-Dirac Approximation

The original idea of density functional theory was the proposal of Thomas [114] and Fermi [115]

who, independently, suggested that the many-electron wave function can be replaced by the (non-

interacting) electrons density n(r) as the fundamental quantity. In the original Thomas-Fermi

model, exchange and correlation were neglected, but the former was introduced into the picture

later by Dirac [116]. The total energy E in this Thomas-Fermi-Dirac (TFD) model is then given

by (compare with Eq. 2.5.1)

ETFD[n(r)] = Ck

∫
dr n(r)5/3 +

∫
dr n(r)vext(r) +

1

2

∫
dr′dr

n(r)n(r′)

|r− r′| − CX

∫
dr n(r)4/3 .

(3.1.1)

The terms here are the kinetic, external, Hartree and exchange contribution, respectively; and Ck

and CX are constants. It is clear that the total energy and each contribution (α) is given as an

38
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explicit functional of the electronic density

Eα[n(r)] = Cα

∫
dr n(r) εα[n(r)] , (3.1.2)

where εα[n(r)] is the energy density of the α component evaluated locally1.

To find the ground-state energy and density within this model, one should minimize ETFD[n(r)]

with respect to n(r) under the constraint

∫
dr n(r) = N . (3.1.3)

Using the Lagrange multipliers method, this minimization reads

δ

δn(r)

(
ETFD[n(r)]− µ

[∫
dr n(r)−N

])
= 0 . (3.1.4)

The original TFD approach is too crude, missing essential physics and chemistry [78], and many

modifications, improvements and extensions to it exist. Details can be found in many books

and articles; e.g. Ref. [76, Sec. 3.1], Ref. [75, Sec. 4.1], Ref. [78, Sec. 6.1], and references

therein. Nevertheless, the realization that the 3N degrees of freedom in the Schrödinger wave

function can be replaced with only one variable n(r) provided the key step to an exact theory:

the Hohenberg-Kohn density functional theory [106].

3.2 The Hohenberg-Kohn Theorems

Recall Eqs. 2.4.30 and 2.4.32; and let E0 and Φ be the ground state energy and function of Ĥe

E0 =
〈
Φ
∣∣∣Ĥe

∣∣∣Φ
〉
=
〈
Φ
∣∣∣T̂e + V̂ee + V̂ext

∣∣∣Φ
〉
=
〈
Φ
∣∣∣T̂e + V̂ee

∣∣∣Φ
〉
+

∫
dr n0(r)vext(r) . (3.2.1)

1 This is the first local density approximation (LDA). Dirac formulated the LDA for the EX , i.e. the last term
in Eq. 3.1.1, which is still being used today [75, 76, 78]. The first term in Eq. 3.1.1 is the famous TF kinetic
energy functional, and one should recall that T̂e is a non-local operator as seen from Eq. 2.4.39 [76, 78].
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Also, let E ′
0 and Φ′ be the ground state energy and function of the Ĥ′

e

E ′
0 =

〈
Φ′
∣∣∣Ĥ′

e

∣∣∣Φ′
〉
=
〈
Φ′
∣∣∣T̂e + V̂ee + V̂ ′

ext

∣∣∣Φ′
〉
=
〈
Φ′
∣∣∣T̂e + V̂ee

∣∣∣Φ′
〉
+

∫
dr n0(r)v

′
ext(r) .

(3.2.2)

Here, we have assumed that [vext(r)− v′ext(r) 6= const.] but both vext(r) and v
′
ext(r) lead to the

same ground state density n0(r). From the variational principle (cf. Ref. [82, Ch. 7]), it follows

that

E0 <
〈
Φ′
∣∣∣Ĥe

∣∣∣Φ′
〉
=
〈
Φ′
∣∣∣Ĥ′

e

∣∣∣Φ′
〉
+
〈
Φ′
∣∣∣Ĥe − Ĥ′

e

∣∣∣Φ′
〉
= E ′

0 +

∫
dr n0(r) (vext(r)− v′ext(r)) ,

(3.2.3)

and

E ′
0 <

〈
Φ
∣∣∣Ĥ′

e

∣∣∣Φ
〉
=
〈
Φ
∣∣∣Ĥ
∣∣∣Φ
〉
−
〈
Φ
∣∣∣Ĥe − Ĥ′

e

∣∣∣Φ
〉
= E0 −

∫
dr n0(r) (vext(r)− v′ext(r)) .

(3.2.4)

Adding inequality 3.2.3 to inequality 3.2.4 leads to the inconsistency

E0 + E ′
0 < E0 + E ′

0 , (3.2.5)

This reductio ad absurdum argument proves the first Hohenberg-Kohn (HK) theorem [106]:

• Theorem 1 The external potential vext(r) is (up to a constant) a unique functional of

the ground state electronic density n0(r).

• Corollary Since n(r) univocally determines vext(r), and thus fully determines Ĥe,

it follows that all (ground and excited state) properties are completely determined given

n0(r) [75, 78].

Now, since Φ is a functional of n(r), let us construct a universal functional F [n(r)], which is

valid for any number of particles and for (and independent of) any external potential [106], by

F [n(r)] =
〈
Φ[n(r)]

∣∣∣T̂e + V̂ee

∣∣∣Φ[n(r)]
〉
, (3.2.6)
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where the non-negative density n(r) corresponds to some vext(r) and satisfies

∫
dr n(r) = N . (3.2.7)

Consider a system with the ground state density n0(r) and wave function Φ[n0(r)]. Using the

definition 3.2.6 above, the ground state energy of this system can be written as

E0[n0(r)] =
〈
Φ[n0(r)]

∣∣∣Ĥe

∣∣∣Φ[n0(r)]
〉
= F [n0(r)] +

∫
dr n0(r)vext(r)

= Te[n0(r)] + Vee[n0(r)] +

∫
dr n0(r)vext(r) . (3.2.8)

Consider a different density n(r) which corresponds to a different wave function Φ[n(r)]. It

follows from the variational principle that

〈
Φ[n(r)]

∣∣∣Ĥe

∣∣∣Φ[n(r)]
〉
= F [n(r)] +

∫
dr n(r)vext(r) =

E[n(r)] > E0[n0(r)] (3.2.9)

=
〈
Φ[n0(r)]

∣∣∣Ĥe

∣∣∣Φ[n0(r)]
〉
= F [n0(r)] +

∫
dr n0(r)vext(r)

The inequality 3.2.9 above defines the variational energy E[n(r)] and proves the second HK

theorem [106]:

• Theorem 2 There exists a universal functional of the density, F [n(r)], independent of

vext(r), such that the expression

E[n(r)] ≡ F [n(r)]+

∫
dr n(r)vext(r) = Te[n(r)]+Vee[n(r)]+

∫
dr n(r)vext(r) (3.2.10)

has as its global minimum value the correct ground state energy associated with vext(r),

and the density n(r) that minimizes E[n(r)] is the exact ground state density n0(r).

• Corollary The functional E[n(r)] alone is sufficient to determine the ground state

energy and density. Electronic excited states may be determined by other means [78].

The variational search for the ground state density n0(r) can be achieved by minimization of

E[n(r)] with respect to the density n(r) via the Lagrange multipliers method (compare with Eq.
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3.1.4 in TFD)
δ

δn(r)

(
EHK[n(r)]− µ

[∫
dr n(r)−N

])
= 0 , (3.2.11)

where µ is the Lagrange multiplier

µ =
δEHK[n(r)]

δn(r)
=
δF [n(r)]

δn(r)
+ vext(r) . (3.2.12)

The two Theorems above establish the mathematical basis of the Hohenberg-Kohn density func-

tional theory (DFT) [75]. However, in the spirit of Eqs. 2.5.1 and 2.4.69, we may rewrite the

HK total energy functional 3.2.10 as2

EHK[n(r)] = Te[n(r)] + Vee[n(r)] +

∫
dr n(r)vext(r)

= Te[n(r)] + J [n(r)] +

Vxc[n(r)]︷ ︸︸ ︷
Vee[n(r)]− J [n(r)]+

∫
dr n(r)vext(r)

= Te[n(r)] + J [n(r)] + Vxc[n(r)] + Vext[n(r)] . (3.2.13)

3.3 The Constrained Search Formulation of DFT

According to the variational principle, the strict inequality in Eqs. 3.2.3 and 3.2.4 is true only

for non-degenerate ground-state [76, 78, 117]. For a degenerate ground state, the ground state

density n0(r), which determines Ĥe and its eigenstate states, may correspond to different wave

functions. Moreover, the HK variational search (Eqs. 3.2.9 and 3.2.11) may readily lead to

wave functions, which all correspond to the ground state density n0(r), but they are physically

unacceptable, e.g. not antisymmetric [75].

In 1982, an alternative two-step minimization procedure, and thus an alternative definition of

the functional F [n(r)] and a reformulation of the HK DFT, was given independently [117] by

Levy [118] and Lieb [119,120]. Consider the class of the antisymmetric N -electron wave functions

Φ(R, r) of Eq. 2.2.3 that correspond to the same electronic density n(r). The total electronic

energy for each of these Φ’s is given by Eq. 2.4.30. Following the traditional Rayleigh-Ritz

2 Recall the conclusion we made in Sec. 2.5. See also [76, p.52].
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variational principle (cf. Ref. [82, Ch. 7]), the first step is to minimize the energy over this class

of wave functions Φ with the same density n(r) 3:

ELL[n] = min
Φ→n(r)

〈
Φ
∣∣∣Ĥe

∣∣∣Φ
〉
= min

Φ→n(r)

(〈
Φ
∣∣∣T̂e + V̂ee

∣∣∣Φ
〉
+

∫
dr n(r)vext(r)

)

= min
Φ→n(r)

〈
Φ
∣∣∣T̂e + V̂ee

∣∣∣Φ
〉
+

∫
dr n(r)vext(r) . (3.3.1)

Thus, ELL[n] of Eq. 3.3.1 above is the unique lowest density for that n(r) [78], and defines the

universal Levy-Lieb functional

FLL[n] ≡ min
Φ→n(r)

〈
Φ
∣∣∣T̂e + V̂ee

∣∣∣Φ
〉
. (3.3.2)

That is to say, the functional FLL[n] searches over all Φ’s that yield the input n(r) and then

delivers the minimum of
〈
Φ
∣∣∣T̂e + V̂ee

∣∣∣Φ
〉
[76]. The second step is to consider all the classes of

the wave functions Φ and sort them according to the densities n(r) to which they correspond to.

The ground state energy E0 is then found by minimizing ELL[n] over these densities [78, 117]

E0[n0(r)] = min
n(r)

ELL[n] = min
n(r)

(
min

Φ→n(r)

〈
Φ
∣∣∣T̂e + V̂ee

∣∣∣Φ
〉

+

∫
dr n(r)vext(r)

)

=
〈
Φ0[n0(r)]

∣∣∣T̂e + V̂ee

∣∣∣Φ0[n0(r)]
〉
+

∫
dr n0(r)vext(r) , (3.3.3)

under the constraint that
∫
dr n(r) = N [80].

Comparing the LL formulation to the HK one, a few remarks must be stated:

• While the HK functional (Eq. 3.2.6) applies only to ground state densities, the LL functional

(Eq. 3.3.2) considers a wider class of densities [117].

• While in the HK formalism the search is restricted to non-degenerate states, degenerate

states are automatically searched over in the LL formulation [78, 117].

• The LL functional (Eq. 3.3.2) is formally more tractable, its physical meaning is clarified,

and, in principle, can be obtained exactly [78].

3 Recall Eqs. 2.4.30, 2.4.32 and 3.2.1.
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• The LL functional is defined for any n(r) derivable from an N -electron wave function Φ

4; while the HK functional is defined only for densities n(r) that can be generated by

some external potential vext(r)
5. The existence of the former Φ’s for any n(r)’s satisfying

simple conditions is known, while the conditions of the latter n(r)’s are not known in

general [76, 78]6.

• The LL constrained search to the subspace of the antisymmetric N -electron wave functions

Φ(R, r) eliminates the possibility of considering unphysical wave functions [75].

• Weaker conditions are required to construct FLL than FHK
7.

• Recalling the definition 3.3.2, and comparing the first term in the last part of Eq. 3.3.3

with the corresponding one of inequality 3.2.9, one readily sees that

FHK[n0(r)] = min
Φ→n0(r)

〈
Φ
∣∣∣T̂e + V̂ee

∣∣∣Φ
〉
= FLL[n0(r)] (3.3.4)

That is to say, for a given vext(r), the HK functional is equal to the LL one at the minimum

total energy of the system [76, 78].

• The FLL is universal, like FHK, in the sense that it is independent of vext(r). Moreover, the

part of the total energy (e.g. as given by Eq. 3.3.3) that depends on the (atomic) structure

of a given system is
∫
dr n0(r)vext(r), but the same FLL applies to both a giant biological

molecule and a stand-alone hydrogen atom [76].

4 This is known as “N -representability” [76, 78].
5 This is known as “v-representability” [76, 78].
6 For a decent discussion of the v- and N -representability of the electronic density, readers are referred to

Ref. [76, pp. 53–56]. However, it may be worth mentioning here that, in this sense, the first HK theorem is
nothing but a one-to-one mapping between the ground state Φ’s and v-representable n(r)’s; while the second HK
theorem simply says that ∀ v-representable n(r)’s: Ev[n(r)] = FHK[n(r)] +

∫
dr n(r)vext(r) ≥ Ev[n0(r)] [76].

Nonetheless, many reasonable densities have been found to be non-v-representable [76, 118, 119].
7 A density n(r) is said to be N -representable if it can be constructed from an antisymmetric Φ. Therefore, the

N -representability condition is weaker than the v-representability condition simply because the former is necessary
for the latter.
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3.4 Kohn-Sham Approach to DFT

As we have seen in the previous two sections, HK density functional theory, and its LL reformu-

lation, established the fact that a functional F [n] can be defined, and that by minimizing this

functional it is possible, in principle, to obtain the exact ground state energy and density of the

physical many-body system [78]. It is indeed an extraordinary finding that the 3-dimensional

ground state electronic density determines all the physical properties of the ground state [76]

and replaces the 3N -dimensional electronic wave function Φ. However, other than the original

definition(s), no practical prescription has been given to find the universal functional 3.2.6 [78].

Moreover, comparing the form of the exact total electronic energy (Eq. 2.5.1) with the HK total

electronic energy functional (Eq. 3.2.8), it is clear that, in contrast to the other terms, the only

term that is not related to the electron density in any obvious way is the total electronic kinetic

energy Te term [78].

However, while the calculation of the exact total electronic kinetic energy Te of Eq. 2.5.1 invokes

the knowledge of the non-local8 Laplacian of the first order reduced density matrix ∇2
rn1(r

′, r),

the total electronic kinetic energy Te of non-interacting electrons system and of HF electrons can

be calculated exactly and easily9 [75].

Starting from this observation, in 1965 Kohn and Sham [107] showed how a practical computa-

tional method can be constructed from the density functionals of Hohenberg and Kohn [80,105].

8 A very simple way to see the non-locality nature of the Laplacian operator can be obtained by considering
a one-dimensional function f(x), and considering a grid of equally spaced discrete set of points xi with spacings
equal to h. The first order finite difference for ∇2f(x) is given by

(
∇2f(x)

)
xi

=
f(xi+1) + f(xi−1)− 2f(xi)

h2
,

Thus, the simplest evaluation of ∇2f(x) at xi requires the evaluation of the function f(x) at xi and at the
neighborhoods xi−1 and xi+1 (cf. Refs. [121, p. 962] and [75, p. 60]).

9 This is due to the fact that in both cases the N -electron wave function Φ is a product of N orthonormal
one-electron orbitals ϕi in the form of Slater determinant 2.4.51 giving rise to a simple expression for the first
order reduced density matrix

n1(r, r
′) =

∑

i

fi ϕi(r)ϕ
∗
i (r

′) , (3.4.1)

and for the kinetic energy

Te = − ~
2

2me

∑

i

fi
〈
ϕi

∣∣∇2
i

∣∣ϕi

〉
= − ~

2

2me

∑

i

fi

∫
dr |∇rϕi(r)|2 , (3.4.2)

where fi are the occupation numbers corresponding to the orbitals ϕi(riσi) [75].
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The Kohn-Sham ansatz assumes that (i) the exact ground state density n(r) can be represented

by the ground state density of an auxiliary system of non-interacting particles, and (ii) the aux-

iliary Hamiltonian is chosen to have the usual kinetic energy operator and an effective potential

vσR(r) acting on an electron of spin σ at point r [78]:

ĤR =
∑

i

[
− ~

2

2me
∇2

ri
+ vσR(ri)

]
. (3.4.3)

The auxiliary system of the non-interacting electrons is called the reference system, hence the

subscript R in the Hamiltonian 3.4.3 above. Since ĤR has no electron-electron term, its eigen-

states can be expressed in terms of Slater determinants (Eq. 2.4.51). This has important

consequences [75, 76, 78]:

• If the reference system has N = N↑ + n↓ electrons, its electronic density simply reads

n(r) =
∑

σ

n(r, σ) =
∑

σ

Nσ∑

i

|ϕi(r, σ)|2 =
N∑

i

∑

σ

|ϕi(r, σ)|2 . (3.4.4)

• The exact total kinetic energy takes the following simple form10 [122]

Ts = − ~
2

2me

N∑

i

〈
ϕi

∣∣∇2
ri

∣∣ϕi

〉
= − ~

2

2me

N∑

i

∑

σ

∫
dr ϕ∗

i (r, σ) ∇2
r ϕi(r, σ)

= − ~
2

2me

N∑

i

∑

σ

∫
dr |∇rϕi(r, σ)|2 ≡ Ts[n(r)] . (3.4.5)

It must be insisted that this is not the true kinetic energy of the physical system. The error

in Te is discussed below.

• Using the KS kinetic energy functional Ts[n(r)] of the fictitious reference system 3.4.5

10 Notice that Eqs. 3.4.4 and 3.4.5 are special case of Eqs. 3.4.1 and 3.4.2, respectively, with fi = 1 for the
first N orbitals and with fi = 0 for the rest [76].



Section 3.4. Kohn-Sham Approach to DFT Page 47

above, the HK total electronic energy functional 3.2.13 of the physical system now reads

EKS[n(r)] = Ts[n(r)] + J [n(r)] +

TC [n(r)]︷ ︸︸ ︷
Te[n(r)]− Ts[n(r)] +

Vxc[n(r)]︷ ︸︸ ︷
Vee[n(r)]−J [n(r)]︸ ︷︷ ︸

Ṽxc[n(r)]

+

∫
dr n(r)vext(r)

= Ts[n(r)] + J [n(r)] + Ṽxc[n(r)] + Vext[n(r)] ≡ EKS[{ϕi}] , (3.4.6)

where Vxc[n(r)] is the exchange-correlation energy defined and discussed in Subsec. 2.4.3,

TC [n(r)] is the kinetic correlation ignored in Ts[n(r)], and Ṽxc[n(r)] is the resulting KS

modification of Vxc[n(r)]
11. The curly brackets in the last term stand for the set of the

orbitals ϕi, while the last equality is due to 3.4.4. The functional 3.4.6 above is known as

Kohn-Sham energy functional.

• The one-particle wave functions ϕi(r, σ) that build up the Slater determinant 2.4.51 must

satisfy certain mathematical conditions: (i) For Ts[n(r)] above (Eq. 3.4.5) to be finite,

ϕi(r, σ) must be continuous. (ii) For ϕi(r, σ) to be normalizable, they must be square

integrable. (iii) Moreover, for the expression 3.4.5 to be valid, ϕi(r, σ) must be orthogonal.

That is

〈ϕi|ϕj〉 = δij (3.4.7)

Thus, it is such a set of continuous, square integrable and orthonormal functions that are

being considered.

For EKS[{ϕi}] (Eq. 3.4.6) to be minimum, one applies the variational approach, searching for

those orbitals ϕi which minimize the total energy EKS[{ϕi}] under the constrained 3.4.712. That

is [76, 124]

δ

δϕ∗
i

(
EKS[{ϕi}]−

N∑

i

N∑

j

εij 〈ϕi|ϕj〉
)

= 0 , (3.4.8)

11That is, Ṽxc[n(r)] consists of three parts: (i) the quantum potential energy of exchange, (ii) the potential
energy of correlation due to Coulomb interaction, and (iii) the kinetic energy of correlation due to the extra
swerving motion of the electrons as they avoid each other. The first two parts are negative, while the third is a
smaller positive [123].

12 Notice that the constraint 3.4.7 is equivalent to 3.4.4. Hence, it is equivalent to the TFD constraint 3.1.3,
and the derivative in 3.4.8 can be taken with respect to the density n instead of the one-particle wave functions
{ϕi}. However, in that case the Lagrange multiplier is the so-called “chemical potential” µ. It is straightforward
to show that µ has the same value in both the KS fictitious system and the true system. cf. Ref. [75, p.62].
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where εij are the Lagrange multipliers. Bearing in mind that the electronic density is given by

Eq. 3.4.4, the functional derivative δ
δϕ∗

i
of the components of EKS[{ϕi}] as given by Eq. 3.4.6

are

δTs[n(r)]

δϕ∗
i

=
δ

δϕ∗
i

(
− ~

2

2me

N∑

i

∫
dr ϕ∗

i (r, σ) ∇2
r ϕi(r, σ)

)
=

(
− ~

2

2me

∇2
r

)
ϕi(r, σ) ,

(3.4.9)

δJ [n(r)]

δϕ∗
i

=
δ

n(r)

(
1

2

∫
dr′dr

n(r)n(r′)

|r− r′|

)
δn(r)

δϕ∗
i

=

(∫
dr′

n(r′)

|r− r′|

)
ϕi(r, σ) , (3.4.10)

δṼxc[n(r)]

δϕ∗
i

=
δṼxc[n(r)]

δn(r)

δn(r)

δϕ∗
i

= ṽσxc[n(r)] ϕi(r, σ) , (3.4.11)

δVext[n(r)]

δϕ∗
i

=
δ

δn(r)

(∫
dr n(r)vext(r)

)
δn(r)

δϕ∗
i

= vext(r) ϕi(r, σ) , (3.4.12)

and
δ

δϕ∗
i

(
N∑

i

N∑

j

εij 〈ϕi|ϕj〉
)

=

N∑

j

εijϕj(r, σ) . (3.4.13)

Here, we used the chain rule δF
δϕ∗

i
= δF

δn(r)
δn(r)
δϕ∗

i
wherever the functional dependence on ϕi is not

explicit but only through n(r) 3.4.4 13. Substituting 3.4.9, 3.4.10, 3.4.11, 3.4.12 and 3.4.13 in

3.4.8, the latter reads

(
− ~

2

2me
∇2

r +

∫
dr′

n(r′)

|r− r′| + ṽσxc[n(r)] + vext(r)

)
ϕi(r, σ) =

N∑

j

εijϕj(r, σ) (3.4.15)

Note that, a unitary transformation of the wave functions ϕj(r, σ) leaves the Slater determinant

2.4.51, and hence the density 3.4.4, invariant. Thus, one can always find a new set of functions

ϕi(r, σ) =

N∑

j

Uij ϕj(r, σ) with

N∑

j

U∗
ijUjk = δik (3.4.16)

13 From Eqs. 3.2.6 and 3.4.6 we have

Ṽxc = Te[n(r)]− Ts[n(r)] + Vee[n(r)]− J [n(r)] = FHK[n(r)] − Ts[n(r)]− J [n(r)] . (3.4.14)

Since all terms in the LHS are functionals of n(r), Ṽxc must be a functional of n(r) [78].
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such that

(
− ~

2

2me

∇2
r +

∫
dr′

n(r′)

|r− r′| + ṽσxc[n(r)] + vext(r)

)
ϕi(r, σ) = εiϕi(r, σ) , (3.4.17)

where the eigenvalues εi = εii are the diagonal elements of the matrix εij [75, 76]. The con-

struction of the Hamiltonian 3.4.3 and of the N -electron wave function 2.4.51 implies that the

single-electron orbitals ϕi are the eigenfunctions of the one-body Hamiltonian operator

ĥKS ≡ − ~
2

2me
∇2

r +

∫
dr′

n(r′)

|r− r′| + ṽσxc[n(r)] + vext(r) (3.4.18)

which appears in the RHS of 3.4.17 and defines the summands of the auxiliary Hamiltonian ĤR

3.4.3 with

vσR(r) =

∫
dr′

n(r′)

|r− r′| + ṽσxc[n(r)] + vext(r) . (3.4.19)

The set of the one-particle Schrödinger-like equations 3.4.17 above is the famous Kohn-Sham

equations. However, sometimes Eqs. 3.4.4, 3.4.17 and 3.4.19, all together, are referred to as

Kohn-Sham equations to confirm the fact that these equations must be solved self-consistently.

In practice, one usually starts with a reasonable guess of n(r) , constructs vσR(r) using 3.4.19,

then solves Eqs. 3.4.17 and makes sure that the obtained density coincides with the guessed

input one [75, 76, 78].

In summary, the KS approach to the physical many-electron problem is to rewrite the HK formula

for the total electronic energy E[n(r)] 3.2.10 in the form of Eq. 3.4.6. Some ground-state

physical properties of the many-electron system are then determined from the solution of the KS

independent-electron problem [78]. Methods of solution of the latter, extensions, and related

subtleties are the subject of the rest of the present chapter.
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3.5 Spin Density-Functional Theory (SDFT)

As already indicated in the previous section (e.g. Eq. 3.4.4), the total electronic density n(r)

can be decomposed into two independent spin densities as [122, 125]

n(r) =
∑

σ

Nσ(r) =
∑

σ

Nσ∑

i

|ϕσ
i (r)|2

︸ ︷︷ ︸
nσ(r)

= n↑(r) + n↓(r) , (3.5.1)

and the total number of electrons reads [122]

N = N↑ +N↓ . (3.5.2)

Each of these densities satisfies the KS equations, and Eq. 3.4.6 becomes [122]

EKS[n
↑(r), n↓(r)] = Ts[n

↑(r), n↓(r)] + J [n(r)] + Ṽxc[n
↑(r), n↓(r)] + Vext[n(r)] , (3.5.3)

while Eqs. 3.4.17 read [122]

(
− ~

2

2me
∇2

r +

∫
dr′

n(r′)

|r− r′| + ṽσxc[n
↑, n↓] + vext(r)

)
ϕσ
i (r) = εσi ϕ

σ
i (r) , (3.5.4)

where the XC potential ṽσxc is the functional derivative of the XC energy [122]

ṽσxc[n
↑(r), n↓(r)] =

Ṽxc[n
↑(r), n↓(r)]

δnσ(r)
. (3.5.5)

This form of DFT is known as Spin Density Functional Theory (SDFT). In this scheme, one can

readily obtain the magnetization (or spin-polarization) density

ζ = n↑(r)− n↓(r) . (3.5.6)

If ζ 6= 0, one has spin-polarized system. On the other hand, if ζ 6= 0, for non-spin-polarized

systems, SDFT simply reduces to DFT [75].
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SDFT is the most widely used form of DFT [112, 126]. It is useful when one deals with systems

(atoms, molecules and solids) with magnetic order, as in finite systems with an odd total number

of electrons [78]. Beside its necessity and capability of describing the many-electron systems

in the presence of magnetic fields acting on the electronic spins [76], the main advantage of

SDFT over Hohenberg-Kohn-Sham DFT is that it allows us to build in more physics into the

approximate XC functionals with greater flexibility [76, 102]. For further detailed discussion on

SDFT, readers are referred to Ref. [76, Ch. 8]. However, some more will be said about the SDFT

formalism in the rest of the present work, especially in Subsec. 3.6.3.

3.6 Solving Kohn-Sham Equations

In the previous two sections we have seen how one can replace the 3N -dimensional many-electron

problem of solids with a problem that requires solving N coupled Kohn-Sham equations self-

consistently. Bloch theorem (App. B) shows that within such an independent-particle approach,

the many-electron problem of bulk crystalline solids is reduced to the problem of the calculation

of the wave function for a finite number of electrons in one unit cell. Hence, applying the same

symmetry argument as in Apps. B and C, the band index i in the KS Schrödinger-like equations

3.4.17 must be replaced with the crystal quantum numbers i→ i,k [78]14 to read

(
− ~

2

2me
∇2

r +

∫
dr′

n(r′)

|r− r′| + ṽσxc[n(r)] + vext(r)

)
ϕi,k(r, σ) = εi,k ϕi,k(r, σ) , (3.6.1)

and the spin KS equations 3.5.4 become

(
− ~

2

2me

∇2
r +

∫
dr′

n(r′)

|r− r′| + ṽσ,kxc [n↑, n↓] + vext(r)

)
ϕσ
i,k(r) = εσi,k ϕ

σ
i,k(r) . (3.6.2)

The above KS equations can only be solved on computer using numerical methods. To do so,

several technical choices have to be made (cf. Refs. [128] and [75, Ch. 6]). For example: (i)

The choice of a basis set to expand the KS orbitals ϕi,k(r). This is the subject of Subsec. 3.6.1.

14 This is not the only reason for reciprocal space to come into practical DFT calculations. As we will see,
many parts of the mathematical problems posed by DFT are much more convenient to solve in the k space than
in the direct space [127].
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(ii) In dealing with bulk crystalline solids, the lattice translation invariance manifests itself in the

quantum number k. As a result, eigenstates and eigenvalues depend on k [129]. Bloch’s the-

orem (App. B) shows that electronic structure calculations for bulk solids can be mapped onto

calculating the one-electron wave functions ϕi,k(r) at (a discrete set of) k points lying within

the so-called first Brillouin zone (App. C), for a number of bands imax that is of the order of the

number of electrons per unit cell. Expectation values 〈Ô〉 of quantum operators Ô, including

the density operator, are obtained by integrating over the Brillouin zone (BZ). Hence, one needs

to sample the BZ. This is discussed briefly in Subsec. 3.6.2. (iii) So far, the form of ṽσxc[n(r)]

has not been discussed. In practice one needs to choose an approximate ṽσxc[n(r)] within the so-

called “Jacob’s ladder of functionals”. This is the subject of Subsec. 3.6.3. (iv) The amount of

computational calculations can be further reduced if the interactions between the ionic core and

the valence electrons are described either by a pseudopotential or by a full-potential approach.

This is discussed in Subsec. 3.6.4. (v) The iterative scheme adopted for the calculations of the

eigenstates of the KS Hamiltonian (cf. Sec. 6.3).

In general, practical calculations involve far many more subtleties than can be covered here. In

this section, only theoretical and some practical issues closely related to the calculation methods

presented in Part II will be considered. Hence, by all means, the discussion in the present section

is not meant to be comprehensive, and, from time to time, readers are referred to the original

works and other resources for more details.

3.6.1 Basis Sets

The mathematical representation of the KS one-particle orbitals (of Eq. 3.6.1 or Eq. 3.6.2)

requires a basis set for expansion in the Hilbert space15. Thus, one expands the Kohn-Sham

eigenstates {|ϕi,k〉} in a generic basis set {|φk,β〉} as

|ϕi,k〉 =
M∑

β=1

ci,k,β |φk,β〉 , (3.6.3)

15 Basis sets are required for the expansion of KS one-particle orbitals, charge densities and potentials [128].
These, and more details about the KS orbitals, will be presented later (cf. Sec. 3.6.4).
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where 〈r|ϕi,k〉 = ϕi,k(r) and 〈r|φk,β〉 = φi,k(r) are the representations of the KS orbitals and the

basis in the real space, ci,k,β = 〈φk,β|ϕi,k〉 are the expansion coefficients, andM is the dimension

of the basis set. Now, substituting 3.6.3 into Eq. 3.6.1 and multiplying from left by 〈φk,α| , the
latter KS Schrödinger-like equations 3.6.1 become a general linear eigenvalue problem of the form

M∑

β=1

ci,k,β

(
ĥKSαβ

− εi,kSαβ

)
= 0 , (3.6.4)

where ĥKSαβ
=
〈
φk,α

∣∣∣ĥKS
∣∣∣φk,β

〉
is the Hamiltonian matrix element between two basis vectors,

and Sαβ = 〈φk,α|φk,β〉 is the overlap matrix element that takes into account any possibility of

non-orthogonality of the basis vectors.

Basis sets can be grouped into four main classes: extended, localized, mixed and augmented

basis sets [75, pp. 127–128]. Each class has advantages and disadvantages depending mostly

on the type of material (i.e. atoms, molecules or condensed phases) at which they are applied.

Falling in the first category, is the plane wave basis sets class, which will be briefly discussed below.

In dealing with crystalline solids it must be ensured that Bloch’s theorem is satisfied (see App.

B). One of the implications of the theorem is that the one-electron orbitals ϕi,k(r) can be

expanded in a plane-wave basis. Therefore, to verify the translational symmetry of the crystal,

the eigenvectors ϕi,k of Eq. 3.6.3 can be chosen to have the form of Bloch’s wave functions (Eq.

B.0.3), and the periodic part ui,k(r) can be represented by a Fourier series

〈r|ϕi,k〉 = ϕi,k(r) = ek·r ui,k(r) = ek·r

(
1√
Ω

∑

K

ci,k(K) eK·r

)
, (3.6.5)

where K are the reciprocal lattice vectors. Comparing 3.6.5 above with the generic form 3.6.3,

one can define the plane wave (PW) basis functions as

φK(r) =
1√
Ω
eK·r . (3.6.6)
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So, the KS eigenstates in this basis read

ϕi,k(r) = ek·r ui,k(r) = ek·r
∑

K

ci,k(K) φK(r) . (3.6.7)

Note that

• The k vector in the phase factor lies in the first BZ, while the sum runs over all K’s in the

reciprocal space. Only K = 0 lies in the BZ.

• The plane waves 3.6.6 are orthonormal

〈φK|φ′
K〉 =

1

Ω

∫

Ω

dr e(K−K′)·r = δK,K′ . (3.6.8)

• There is an equation of the form 3.6.4 for each k in the BZ16. These are coupled via the

electronic density (Eq. 3.6.23).

• Plane waves are the solutions of Schrödinger equation when the external potential vext is

constant. In solids, such solutions may approximate the interstitial regions between ions.

However, vext is far from constant near the ions, and the wave functions ϕi,k(r) exhibit fast

spatial variations (i.e. peaks and nodes) there. The only way to represent these features in

terms of PWs is through linear combinations as in Eq. 3.6.5 with many PW components

(i.e. with a very high Ecut, see below). This issue will be discussed further in Subsec. 3.6.4.

• The basis functions φK can be made k-dependent by incorporation of the phase factor into

the definition 3.6.6

φk,K(r) =
1√
Ω
e(k+K)·r , (3.6.9)

then 3.6.7 reads

ϕi,k(r) =
∑

K

ci,k(K) φk,K(r) . (3.6.10)

• Using PWs basis, it is straightforward to show that the Schrödinger eigenvalue problem

16 Or two equations in the case of SDFT calculations. See Sec. 3.5.
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3.6.4 becomes
∑

K′

ci,k(K
′)
(
ĥKSKK′

− εi,kSKK′

)
= 0 , (3.6.11)

where

SKK′ = δKK′ (From Eq. 3.6.8) , (3.6.12)

and, with ĥKS and vσR(r) as defined in Eqs. 3.4.18 and 3.4.19, respectively, ĥkKSKK′
read

ĥkKSKK′
=

〈
φk,K

∣∣∣∣−
~
2

2me

∇2
r + vσRKK′

(r)

∣∣∣∣φk,K′

〉

=

〈
φk,K

∣∣∣∣−
~
2

2me
∇2

r

∣∣∣∣φk,K′

〉
+ 〈φk,K|vσR(r)|φk,K′〉

= − ~
2

2me

1

Ω

∫
dr e−(k+K)·r ∇2

r e
(k+K′)·r +

1

Ω

∫
dr e−(k+K)·r vσR(r) e

(k+K′)·r

=
~
2

2me
|k+K|2δKK′ + ṽσR(K−K′) ≡ T k

KK′ + vσRKK′
(r) , (3.6.13)

where ṽσ,kR (K−K′) is the Fourier transform of vσR(r).

Now, substituting Eq. 3.6.13 above into Eq. 3.6.11, the latter reads

∑

K′

(
~
2

2me

|k+K|2δKK′ + ṽσR(K−K′)

)
ci,k(K

′) = εi,k ci,k(K
′) , (3.6.14)

• It is evident from Eq. 3.6.13 above that the kinetic matrix element is diagonal in the

reciprocal space, while the potential matrix element is diagonal in the direct space. This

is one of the advantages of the PWs expansion, since one can calculate each matrix in

the representation where it is diagonal simply by using (e.g. FFT) transformations from

reciprocal to direct space and vice versa.

• It is also evident from Eq. 3.6.13 above that the potential matrix element is independent

of k if the potential vσR(r) itself, as assumed, is local.

• In practical calculations, one has to truncate the expansion 3.6.10 at a finite number of

PWs. Fortunately, the expansion coefficients are known to decrease as |k +K| increases.
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At this stage we define the so-called PW energy cut-off Ecut as

~
2

2me

|k+K|2 < Ecut , (3.6.15)

where ~2

2me
|k+K|2 is the largest kinetic energy of the included PWs in the sum 3.6.10.

As in the case of the BZ sampling (Sec. 3.6.2), this truncation introduces an error that

can be effectively controlled by increasing Ecut, i.e. increasing the number of the included

PWs. This increases the size of the basis without changing ĥKS, implying that the total

energy E should, in principle, decrease variationaly with increasing Ecut
17.

• The usual relation between the direct and the reciprocal space ∆x Kcut = 2π, where Kcut

is the largest included reciprocal lattice vector, defines the shortest distance ∆x between

two points in the real space such that any two points closer than ∆x carry no additional

information.

• The total energy and its derivatives (i.e. forces and stress) are readily calculated in PWs

representation. Moreover, in contrast to atom-centered basis sets, the additional (Pulay)

forces arising from the derivation of the basis functions are absent.

3.6.2 k-Space and Brillouin-Zone Integrations

From Eq. 3.6.1 it is clear that expectation values 〈Q〉 of all observables Q̂ are given by integrating

the matrix elements18

Qi,k =
〈
ϕi(k)

∣∣∣Q̂
∣∣∣ϕi(k)

〉
(3.6.16)

over all the (occupied)19 bands i and, hence, over the whole BZ [129]

〈Q〉 = 1

N

∑

i

∑

k∈BZ

fi,k Qi,k =
1

N

∑

i

∑

k∈IBZ

wk fi,k Qi,k , (3.6.17)

17 Due to some other practical issues, one may not get a variational curve between E and Ecut, even if PWs
basis are used. We will return to this point in Subsec. 6.1.

18 In the eigenvector symbol we made the dependence of ϕ on k explicit to insure the fact that integration
3.6.16 is carried out in the k space.

19 Usually but not always.
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where the division by the number of the crystal unit cells N denote that the average is taken

per unit cell [78]20 . The weighting factor wk and the relation between the BZ and the IBZ are

described in App. C. The factor fi,k = f(εi(k)) is the number of electrons that occupy state

i,k and known as the occupation number [75]. For spin-unpolarized insulating materials

fi,k = 2 Θ (εi,k − µ) =





2 if i ≤ N

2

0 if i > N
2

, (3.6.18)

where Θ is the step function and µ is the chemical potential21. For spin-polarized calculations

(Sec. 3.5), there will be two sets of occupation numbers fσ
i,k, one for each spin projection, and

fσ
i,k =





1 if i ≤ Nσ

0 if i > Nσ
, (3.6.19)

where Nσ is the number of electrons with spin component σ [75]22. Then Eq. 3.6.17 above

reads

〈Q〉 = 1

N

∑

i

∑

σ

∑

k∈BZ

fσ
i,k Qσ

i,k =
1

N

∑

i

∑

σ

∑

k∈IBZ

wk f
σ
i,k Qσ

i,k , (3.6.20)

where

Qσ
i,k =

〈
ϕσ
i (k)

∣∣∣Q̂σ
∣∣∣ϕσ

i (k)
〉

(3.6.21)

and

〈Qσ〉 = 1

N

Nσ∑

i

∑

σ

∑

k∈IBZ

wk f
σ
i,k Qσ

i,k . (3.6.22)

20 Or, equivalently, over the k points, since N = Nk, where Nk is the number of k points [78].
21 Compare Eqs. 3.6.18 and 3.6.19 with Eq. 3.6.30. For the relation between the chemical potential µ and the

Fermi energy EF , see Sec. 8.1.
22 The relaxation of the electronic degrees of freedom may result in unbalanced N↑ and N↓. Such a system is

said to be spin-polarized [75].
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The electronic density

The most important and the clearest example for integration over the BZ (i.e. Eq. 3.6.17) is the

electronic density (which couples Eqs. 3.6.1):

n(r) =
1

Nk

∑

i

∑

k∈BZ

fi,k ni,k(r) =
1

Nk

∑

i

∑

k∈BZ

fi,k |ϕi,k(r)|2 . (3.6.23)

Using the PWs representation 3.6.5, the ni,k(r) contributions to the density 3.6.23 above read

ni,k(r) = |ϕi,k(r)|2 =
1

Ω

∑

K

∑

K′

c∗i,k(K) ci,k(K
′) e(K

′−K)·r . (3.6.24)

For spin-polarized calculations, the electronic spin density nσ(r) (which couples Eqs. 3.6.2) is

given by

nσ(r) =
1

N

Nσ∑

i

∑

σ

∑

k∈IBZ

wk f
σ
i,k |ϕσ

i,k(r)|2 , (3.6.25)

where the index σ indicates the spin component (↑ or ↓), Nσ is the number of the occupied

single-electron eigenstates ϕσ
i,k(r) with spin projection σ at each k-point of the sampled IBZ 23.

Brillouin zone sampling

In the limit of an infinite crystal, k becomes a continuous variable (App. C), hence the sum

3.6.17 above reads [129]24

〈Q〉 = 1

ΩR

∑

i

∫

BZ

dk fi,k Qi,k =
1

ΩR

∑

i

∫

IBZ

dk wk fi,k Qi,k , (3.6.26)

23 Note that, since

∫
dr nσ(r) = Nσ, Eq. 3.6.25 implies that wk must satisfy

Nσ∑

i

∑

σ

∑

k∈IBZ

wk fσ
i,k = Nσ .

Compare this with Eq. C.0.8.
24 Indeed, one can carry out the integration 3.6.26 in the i direction first, then in the k direction, or vise versa:

〈Q〉 = 1

ΩR

∫

BZ

dk

(
∑

i

fi,k Qi,k

)

︸ ︷︷ ︸
Q̄k

=
∑

i

(
1

ΩR

∫

BZ

dk fi,k Qi,k

)

︸ ︷︷ ︸
Q̄i

.
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where ΩR is the volume of the BZ as given by Eq. C.0.5.

As discussed in Apps. B and C, the ultimate achievement of any one-electron method is to obtain

accurate expectation values using matrix elements (3.6.16 or 3.6.21) that have to be calculated

explicitly only within the first BZ. When symmetry is exploited to reduce the space of integration

further, we arrived at the irreducible wedge of the first Brilouin zone (IBZ). Nonetheless, Eq.

3.6.26 above tells us that, though restricted to the IBZ, this calculations still must be done, in

principle, at an infinite number of k points. Thus, apparently, the infinite-electrons problem has

been mapped -via Bloch theorem- to an infinite-k-points problem. However, the latter infinity

problem is less worse, since for k points that are sufficiently close in the IBZ, one expects that

the one-electron wave functions carry similar information. Therefore, a well-chosen set of a finite

number of k points in the IBZ should reproduce the desired physical properties to the required

numerical accuracy. The set of the chosen k-points is generally referred to as special points and

the procedure is known as the Brilouin zone sampling [75].

The Monkhorst-Pack special k-points method

The Monkhorst and Pack [130] sets of special k-points consist of a uniform (i.e an equispaced)

grid of points

kr1,r2,r3 =

3∑

i

ribi = r1b1 + r2b2 + r3b3 (3.6.27)

where bi are the primitive reciprocal lattice vectors (App. C), while ri are given by

ri =
2ni − qi − 1

2qi
, ni = 1, 2, 3, ..., qi , (3.6.28)

with q1 × q2 × q3 is the size of the Monkhorst-Pack mesh.

Note that, for even qi’s, the grid will be shifted off the Γ point25 but still centered around it.

This may break the symmetry in certain cell geometries, as in the case of hexagonal cells, and

symmetrization may result in a mesh of non-equally distributed k points. For odd qi’s, the mesh

25 Γ point is the point where k = 0.
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will be centered at Γ, and symmetry is preserved.

Indeed, the sampling of an integral such as 3.6.26 introduces an error which can be reduced by

using denser meshes, i.e. larger qi’s [75]. In fact, the integrand in Eq. 3.6.26 can be Fourier

expanded (compare with Eq. C.0.6)

Qi,k ≡ Qi(k) =
∑

R

Qi(R) ejk·R , (3.6.29)

where R =
3∑

i

ni ai are the translation vectors as defined by Eq. A.0.1. If the sum 3.6.29 above

is truncated, due to the exponentially decreasing contributions from terms with large R, at qiai

in each direction, then the error in sampling 3.6.26 must vanish [78].

Metallic systems

In dealing with metals, occupation numbers fσ
i,k should, in principle, be determined by the Fermi-

Dirac distribution function at zero temperature

fσ
i,k = Θ

(
εσi,k − EF

)
=





1 if εσi,k ≤ EF

0 if εσi,k > EF

, (3.6.30)

where EF is the Fermi energy (see Sec. 8.1). Due to the sharp variation of fσ
i,k from 1 to 0

in crossing the Fermi surface, a slightly different choice of a Monkhorst-Pack mesh may lead

to states (with matrix elements Qσ
i,k) that exit or enter the sum 3.6.20 depending on whether

εσi,k > EF or εσi,k < 0, respectively. A very fine dense Monkhorst-Pack grid of k points would, in

principle, solve the problem, but this is computationally impracticable [75], since the discontinuity

(i.e. the step function fσ
i,k = Θ(εσi,k − EF )) of the integrand makes the sum 3.6.20 converge

exceedingly slow with the number of k points included. To overcome this significant complication,

several practical schemes have been proposed to speed up the convergence without destroying

the accuracy of the integral [87, 127]. Some of these methods are briefly described below.
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The tetrahedron interpolation method

A widely used integration scheme which is equally applicable to insulators and metals is the

tetrahedron methods [129, 131, 132]. The main idea is that, if one knows ϕσ
i,k and εσi,k at a set

of mesh points, it is always possible to approximate the variation between the mesh points by an

interpolation method using tetrahedra [78, 129]. Therefore, in the traditional implementation of

the (linear) tetrahedron method [131,132], the IBZ is divided into and filled out with tetrahedra.

Matrix elements Qσ
i,k and eigenvalues εσi,k are calculated explicitly only for the k points at the

four vertices of each tetrahedron. Inside each tetrahedron, linear interpolations are performed.

For the details of the method, readers are referred to the original works [131,132]; however, it is

worth to mention here that in this method:

• Tetrahedra can be used to fill out the reciprocal space for any mesh of k points, even for

an irregular mesh with more points near the Fermi surface and less points far from it [78].

• Due to the (linear) approximation, the integration can be performed analytically, and, thus,

the often complicated shape of the Fermi surface and its exquisite details are taken into

account [129].

• Another important superiority of the tetrahedron method over the special k-points schemes

is that it provides spectral functions [129].

Blöchl et al. [129] introduced several improvements to the traditional (linear) tetrahedron method

for BZ integrations:

• The suggested uniform mesh of k points and tetrahedra render the obtained results for

insulators identical to those obtained with the Monkhorst-Pack pecial k-points scheme

with the same density of k points.

• Going beyond the linear approximation of the matrix elements within the tetrahedra, simple

correction formula that significantly improves the results for metals was introduced, leading,

for a required accuracy, to reduction of the k mesh density by orders of magnitude.

• Requiring only the space-group operations as input, the tetrahedra and the irreducible k

points are chosen by a fully automated procedure.
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• For a given band structure, the integration 3.6.20 effective weights fσ
i,k are calculated using

the tetrahedron method once. Therefore, the efficient use of the tetrahedron method in

plane-wave-based DFT calculations (see Sec. 3.6.1) is evident.

For accurate calculations of the total energy in bulk materials and for a smooth nice electronic

density of states (see Sec. 8.2), especially in metals, the above tetrahedron method with Blöchl

corrections is widely used. However, the method has a serious shortcoming: it is not variational

with respect to fσ
i,k, hence the calculated forces (see Sec. 2.3 and Sec. 7.3) may not be correct

for metals. In fact, for metals, the calculated forces and the stress tensor can be wrong by up to

5 to 10 %. Nevertheless, for insulators, the calculated forces are always correct, since fσ
i,k do not

vary (Eq. 3.6.18 or 3.6.19) [87].

Smearing methods

To mitigate the problem of metals, one may replace the step function 3.6.30 with another smooth

distribution function for fσ
i,k that smears out the discontinuity at the Fermi surface. Such schemes

are known as smearing methods. A practical illustrating example is the Fermi-Dirac distribution

function

fσ
i,k =

1

e(ε
σ
i,k−EF )/te + 1

, (3.6.31)

where the fictitious electronic temperature te = kBθe here has no physical meaning (at least at

0 K), but mathematically it is the smearing width of the distribution and it turns out that it

controls the speed of the convergence in a proportional manner [75].

It is easy to see that this method leads to an error in the integration [133]. In fact, smearing

schemes suffer from two main shortcomings:

• It turns out that the total energy E is no longer variational, and the calculated forces are

now the derivatives of a generalized free energy

F = E −
∑

i

∑

k∈BZ

wk te S(fi,k) . (3.6.32)

Therefore, the scheme is not the best choice for geometry optimization. However, compared

to the tetrahedron method with Blöchl corrections, the error in the calculated forces is small
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and acceptable, in general.

Despite this drawback of the scheme, it is still possible to get a physical quantity using the

formula

E (te → 0) = E0 =
1

2
(E + F ) , (3.6.33)

and obtain an accurate extrapolation for te → 0 [87].

• From practical point of view, te is treated as a convergence parameter that has to be

handled with great care, since fast convergence, i.e. large te value, may result in an

incorrect total energy E(te → 0) [75, 87] even for an extremely dense k-points mesh [87].

On the other hand, a small te requires a dense grid of k points. Thus, te can be chosen

as large as possible, as far as the difference between F and E, that is the entropy term
∑

i

∑

k∈BZ

wk te S(fi,k) in Eq. 3.6.33, is negligible26 [87].

The Methfessel-Paxton scheme

The foregoing two problems can be solved at once by employing a more sophisticated method

proposed by Methfessel and Paxton [75, 87, 133]. In their original work [133], they started by

writing the integral in 3.6.26 as 27

I =

∫

BZ

dk fk Qk =

∫

BZ

dk Θ (ε(k)− EF ) Q(k) =

∫ ∞

−∞

dε Θ (ε−EF ) Q(ε) (3.6.34)

where

Q(ε) =

∫

BZ

dk Q(k) δ (ε(k)− EF ) . (3.6.35)

Then, working with a dimensionless energy x = (ε− EF ) /te, Methfessel and Paxton searched for

successive approximations ΘN(x) to the step function Θ(x) which are smooth and for which the

26 Practically, the difference between F and E is considered to be negligible if it is less than 1 meV /atom. The
only way to obtain an optimal te value is by performing several calculations with different te values and different
k-point meshes [87]. See also Sec. 6.1.

27 Note that, since we are only after the Methfessel-Paxton form of fi,k, we dropped out the irrelevant index
i, factors and sums.
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error vanishes if Q(ε) is a polynomial with some order in the energy range that is determined by

the width te. By expanding the δ function (of Eq. 3.6.35 above) in a complete set of orthonormal

smooth functions

δ(x) =
∞∑

n=0

An H2n(x) e
−x2

, (3.6.36)

where Hm is the Hermite polynomial of the mth degree, and the coefficients Am are numbers

depend on m, the central result Methfessel and Paxton arrived at is

Θ0(x) =
1

2
(1− erf(x)) , (3.6.37)

ΘN(x) = Θ0(x) +

N∑

n=1

An H2n−1(x) e
−x2

. (3.6.38)

Note that the zero-order approximation Θ0 corresponds to the foregoing Fermi-Dirac smearing

approximation 3.6.31. Errors inherent in such scheme are corrected for by the higher order terms

(N = 1, 2, ...) of 3.6.38.

In similarity to the smearing methods, the total energy E must be replaced with a generalized

free energy F as 3.6.33. However, in contrast to the smearing methods the entropy term is

usually very small for any reasonable value of te . Therefore, to calculated forces, stress tensor

and phonon frequencies based on forces, the Methfessel-Paxton (N > 0) is recommended (see

also Sec. 7.3). Nonetheless, one still has to choose the smearing width te carefully [87].

The method results in very accurate values of the integral 3.6.26 even when small number of k

points is used [75]. It is also the choice for large super cells, especially when the tetrahedron

methods are not applicable if less than 3 k points are to be used [87].

At the end of the present subsection, we refer readers to Ref. [87] for complete discussion on the

subject.
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3.6.3 Exchange and Correlation Functionals

The problem of exchange and correlation in electronic structure calculations was carefully ad-

dressed in Subsec. 2.4.3. In Sec. 3.4, the electronic exchange-correlation potential Ṽxc[n
↑(r), n↓(r)]

has been redefined (Eq. 3.4.6) within the KS-DFT to include the kinetic correlation piece. Here,

after we give some formal properties that must be satisfied by Ṽxc, we give some examples of the

available Ṽxc approximations and concentrate on two of them.

Recall from Sec. 2.5 and Eqs. 2.4.56 and 3.4.6 that within the one-particle approaches (e.g.

Kohn-Sham DFT) the exchange contribution Vx can be calculated exactly, but it is computation-

ally expensive. Moreover, it turns out that if Vx is treated exactly, it will not compensate for the

error introduced by the approximate Vc. Therefore, in practice, both terms Vx and Vc are treated

at the same level of approximation [75].

Using Eq. 2.4.50, one can write the KS-DFT XC contribution to the total electronic energy (Eq.

3.4.6) as

Ṽxc[n(r)] =
1

2

∫
dr dr′

n(r)ñxc(r, r
′)

|r− r′| . (3.6.39)

In the sense of this equation, one can interpret Ṽxc[n(r)] as a Coulomb interaction between the

electronic density n(r) and a fictitious charge depletion ñxc(r, r
′). The latter quantity, known as

the XC hole density (Eq. 2.4.49), now includes the kinetic correlation contribution TC [75]. The

XC charge ñxc(r, r
′) is related to the XC hole h̃(r, r′) and to the pair correlation distribution

g̃(r, r′) via Eqs. 2.4.49 and 2.4.46, respectively, and it can be shown that the three quantities
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have the following properties [75, 112]

g̃(r, r′) = g̃(r′, r) , (3.6.40)
∫

dr n(r)g̃(r, r′) = N − 1 , (3.6.41)
∫

dr ñxc(r, r
′) = −1 , (3.6.42)

∫
dr ñx(r, r

′) = −1 , (3.6.43)
∫

dr ñc(r, r
′) = 0 . (3.6.44)

The first property simply says that g̃(r, r′) is symmetric under the exchange of r and r′. The

second is a normalization condition (Eq. 2.4.49). The third property, may be the most important

sum rule, shows that the XC hole contains exactly one missing electron. The exchange hole

density ñx(r, r
′) and the correlation hole density ñc(r, r

′) in the fourth and the last sum rules are

defined by

ñxc(r, r
′) = ñx(r, r

′) + ñc(r, r
′) , (3.6.45)

and integrals 3.6.42, 3.6.43 and 3.6.44 together tell us that the ṼC corresponds to the interac-

tion of the charge density with a natural charge distribution [75]. More precisely, the correlation

repulsion changes the shape of the XC hole but not its integral [134].

Approaches to construction and selection of density functional approximations to the exchange-

correlation energy have been a subject of active research. In general, XC functionals can be

constructed either non-empirically via satisfaction of known exact constraints, or semi-empirically

via adjusting parameters to a given set of experimental data [112, 128]. Attempts to improve

DFT calculations have led to the development of an entire hierarchy of exchange-correlation

functionals, which is sometimes referred to as the Jacob’s ladder [112,135]. The first four rungs

on Jacobs ladder are (i) the local density approximation (LDA), (ii) the generalized gradient

approximation (GGA), (iii) the meta-GGA, and (iv) hybrid functionals mixing DFT and exact

Hartree-Fock exchange [128] 28.

28 Users should always say which functional they used and why [112], since any reported failure of a DFT
application is in fact a failure of a given density functional approximation [123].
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The local spin density approximation (LSDA)

The main idea of the local spin density approximation (LSDA) [107, 125] is that one treats a

general inhomogeneous system as locally homogeneous 29. Then, one uses the XC hole of

the homogeneous electron gas, since the latter is known to an excellent degree of accuracy

[75]. The XC energy in the local spin density approximation (LSDA) [107, 125] is written

as [112, 122, 135, 136]

Ṽ LSDA
xc [n↑(r), n↓(r)] =

∫
dr n(r) εunifxc (n(r), ζ) =

∫
dr n(r) εunifxc (n↑(r), n↓(r))

=

∫
dr n(r)

(
εunifx (n↑(r), n↓(r)) + εunifc (n↑(r), n↓(r))

)
, (3.6.46)

where the first equality shows that Ṽxc can be equivalently written in terms of the local polariza-

tion30

ζ =
n↑(r)− n↓(r)

n(r)
, (3.6.47)

and the total density n(r). The superscript “unif” stands for “uniform” or homogeneous, and

refers to the fact that the XC energy density εxc at each point is assumed to be the same as in

the homogeneous electron gas with the same density n [78]. In other words, in LSDA, the εxc of

a real, spatially inhomogeneous system at each point r is approximated by that of a homogeneous

electron gas with spin densities equal to the local n↑(r) and n↓(r) [122].

While based upon approximations and numerical fittings to εunifc (n↑(r), n↓(r)), the LSDA scheme

uses explicit and exact expression for εunifx (n↑(r), n↓(r)) [78]

εunifx (n, ζ) = εx(n, 0) (εx(n, 1)− εx(n, 0))Fx(ζ) , (3.6.48)

with

Fx(ζ) =
1

2

(1 + ζ)4/3 + (1− ζ)4/3 − 2

21/3 − 1
. (3.6.49)

29 When dealing with different Ṽxc functionals, the term local refers to the case where the value of εxc at r

is determined by the electron density at r (as in the L(S)DA). When the value of εxc at r is determined by the
electron density in an infinitesimal neighborhood of r (as in the GGAs), the term semi-local is used. When dealing
with exact exchange, εx at r is determined by the electron density at a finite displacement away from r, and Ṽx

is said to be non-local [122].
30 ζ is also known as fractional spin-polarization density. Compare Eq. 3.5.6.
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Using the second equality in Eq. 3.6.46, the LSDA expression for the Kohn-Sham XC potential

ṽσxc[n(r)] (Eq. 3.4.11) can be found from

δṼ LSDA
xc [n(r)] =

∑

σ

∫
dr

[
εunifxc (n↑(r), n↓(r)) + n(r)

∂εunifxc (n↑(r), n↓(r))

∂nσ(r)

]

r,σ

δn(r, σ) ,

(3.6.50)

which means that

ṽσxc[n(r)] = ṽσxc(r) =

[
εunifxc (n↑(r), n↓(r)) + n(r)

∂εunifxc (n↑(r), n↓(r))

∂nσ(r)

]

r,σ

. (3.6.51)

The subscripts r, σ refer to the fact that the quantity in the square brackets is evaluated at

nσ = n(r, σ). While the expression for ṽσx is very simple, the expression for ṽσc depends upon the

form of εc [78].

In SDFT (Sec. Spin Density-Functional Theory (SDFT)) the external and Hartree potentials

depend only on the total electronic density n(r), and the kinetic energy splits trivially into two

spin components (Eq. 3.4.5). The only term in the KS one-electron Hamiltonian that depends

on the individual spin densities is the XC potential (Eq. 3.5.5) [75]. Open-shell and magnetics

systems are better treated with spin-polarized calculations. On the other hand, for closed-shell

and non-magnetic systems, LDA is sufficient. By simply setting n↑(r) = n↓(r) = n(r)/2, one

can obtain the LDA for unpolarized systems [78].

Electronic densities of real solid materials are not uniform, and the scheme is expected to work

better only for materials like nearly-free-electron metals31 [75,78,137]. The success of the simple

L(S)DA in practical applications to systems that lie outside the formal domain of validity (very

slowly varying densities) can be attributed to the fact that L(S)DA satisfies many formal properties

of the exact XC energy functional (as the foregoing sum rules) [122]. However, among other

obvious faults, the cancellation of the self-interaction in the Hartree term by the LDA exchange

term is only approximate (compare Eqs. 2.4.53 and 2.4.58) [75,78]. Nevertheless, comparing the

31 At some stage, most of the available DFT approximations were derived from the uniform electron gas local
density. May be this was the reason why it took the quantum chemistry community too long time before applying
DFT to atomic and molecular systems, where the density is far from homogeneous [75, 78, 112, 122].
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results of the LDA and LSDA calculations with experiment or with exact calculation methods is a

crucial justifying tool of the performance of these approximations, and any other approximation

[78]. Performance, trends and limitations of the L(S)DA can be found in many articles and books

(cf. Refs. [75, pp. 80–84], [138], [122] and [135]).

The generalized gradient approximation (GGA)

The natural way to address the issue of the inhomogeneity of the electronic density is to consider

the gradient and higher order derivatives of the density [78, 112, 122, 135]

Ṽ GE
xc [n↑(r), n↓(r)] =

∫
dr n(r) εGExc (n

↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, · · · )

≡
∫

dr n(r) εunifxc (n(r)) Fxc(n
↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, · · · ) , (3.6.52)

where εunifxc (n(r)) is the XC energy density (as in the LDA above) of the unpolarized uniform gas,

and Fxc is a dimensionless enhancement factor depends on the spin densities and their deriva-

tives [78] and modifies the LDA expression [75].

Using Eq. 3.6.52 above, the expression of the so-called generalized gradient approximation (GGA)

for the Kohn-Sham XC potential ṽσxc[n(r)] of Eq. 3.4.11 can be found from

δṼ GGA
xc [n(r)] =

∑

σ

∫
dr

[
εGGAxc + n(r)

∂εGGAxc

∂nσ(r)
+ n(r)

∂εGGAxc

∂∇nσ(r)
∇
]

r,σ

δn(r, σ) . (3.6.53)

There are in general three ways to treat the last term, one of these methods yields

ṽσxc[n(r)] =
∑

σ

∫
dr

[
εGGAxc + n(r)

∂εGGAxc

∂nσ(r)
+ n(r)

∂εGGAxc

∂∇nσ(r)
∇
]

r,σ

+
∑

σ

∫
drdr′ n(r)

[
∂εGGAxc

∂∇nσ(r)

]

r,σ

δ∇n(r′)
δn(r)

(3.6.54)

Again, the subscripts r, σ refer to the fact that the quantities in the square brackets are evaluated

at nσ = n(r, σ) [78].
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The PBE-GGA functional

There are many different forms for the GGA, each follows a different philosophy in its constructions

[122]. The Perdew-Burke-Ernzerhof (PBE) form [138–140] is probably the simplest [78] and the

most widely used GGA functional 32. Here, the enhancement factor Fx over the LDA exchange,

as defined by Eq. 3.6.52, is chosen to be [135, 138–140]

Fx(s) = 1 + κ− κ

1 + µs2/κ
, (3.6.55)

where [75, 78]:

• The dimensionless density gradient s = |∇n(r)|
2 kF n(r)

is chosen to recover the LDA: Fx(0) = 1 .

• κ = 0.804 satisfies the so-called local Lieb-Oxford bound [141].

• µ = 0.21951 is chosen to recover the linear response of the LDA.

The PBE-GGA correlation part is given by [78]

Ṽ PBE-GGA
c

[
n↑ + n↓

]
=

∫
dr n(r)

(
εunifc (rs, ζ) +H(rs, ζ, t)

)
, (3.6.56)

where the local Seitz radius rs =
(

3
4πn

)1/3
is the mean electronic distance [75, 89] and t =

|∇n(r)|
2 φ kTF n(r)

with the spin scaling factor φ = (1+ζ)2/3+(1−ζ)2/3

2
and kTF is the Thomas-Fermi screening

wave number. The additive correction term H is given by

H(rs, ζ, t) =
e2

a0
γφ3 ln

(
1 +

β

γ
t2
(

1 + At2

1 + At2 + A2t4

))
, (3.6.57)

where a0 is the Bohr radius, β = 0.066725, γ = 0.031091 [75] and [78]

A =
β

γ


e

(

−εunifc

γφ3 e2
a0

)

− 1




−1

. (3.6.58)

32 Within the Physical Review family of journals, the most-cited physics paper between 1994 and 2005 was
Ref. [139] by Perdew, Burke and Ernzerhof (From [112]).



Section 3.6. Solving Kohn-Sham Equations Page 71

Trends of L(S)DA and GGA

From the results of extensive numerical tests and the applications of the various GGAs and L(S)DA

to different systems (atoms, molecules, surfaces, and bulk solids.), the following general trends

are common

• The total atomic energies, the atomic first ionization energies and binding energies are

more accurate in GGA than in the L(S)DA [75, 137].

• The L(S)DA tends to underestimate the experimental equilibrium volume V0, while the

GGAs tend to overestimate it [137]. However, L(S)DA underestimates (probably without

exception) the lattice constant, while the PBE-GGA produces mixed results, but tend

toward overestimation of the lattice constant [135]. The PBE-GGA provides the least

overestimation in the GGA family of functionals [137].

It is believed that this error originates from the core-valence interaction, where the density

varies rapidly [122,135]. Thus, it can, in principle, be removed by constructing a potential

(see Subsec. 3.6.4) that goes beyond the level of semi-local approximations [122].

• Because the bulk modulus B0 is evaluated at V0 (see Subsec. 7.2), any error in V0 translates

into a larger error in B0. In fact uncertainties in the calculated bulk moduli can easily be

as large as 10% [135].

In general, for most bulk solid properties, the GGA is a significant improvement over the L(S)DA

[135], though the improvements are statistical and not always uniform [78,122]. Nevertheless, it

is a challenge for all functionals to perform well for both extended systems (e.g. surfaces and bulk

solids) and small systems (e.g. atoms and molecules). Some popular GGA functionals give good

results for atoms and molecules but perform poorly for surface correlation energies. However,

this challenge is often best met by those functionals which are designed to incorporate key exact

properties (e.g. PBE-GGA) [122].

3.6.4 Pseudopotentials and PAW Methods

In Subsec. 3.6.1, we mentioned that one needs to distinguish between the one-electron core wave

functions |ϕc
k〉 and the one-electron valence wave functions |ϕv

k〉. This is due to the fact that
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|ϕv
k〉 have appreciable probability in the interstitial regions between nuclei (i.e. between lattice

cites R), while |ϕc
k〉 are well localized about the lattice cites R [89]. Moreover, due to the rapid

spatial variations of |ϕv
k〉 in the core region, it is difficult to obtain convergence (see Subsections

3.6.1 and 6.1) using a small number of plane waves (PWs) to represent |ϕv
k〉 everywhere in the

space [89].

The orthogonalized plane waves (OPWs) method

With the hope to reproduce the rapid oscillatory behavior of the valence orbitals in the core

region, Herring [142] suggested that the simple plane waves (in the expansions 3.6.3, 3.6.7 and

3.6.10) should be replaced, right from the start, by a set of plane waves that made orthogonal to

the core eigenfunctions. The new basis set is known as the orthogonalized plane waves (OPWs)

and is given by [89, 142]:

|φk〉 =
∣∣∣φ̃k

〉
+
∑

c

bck |ϕc
k〉

φk(r) = 〈r|φk〉 = ejk·r +
∑

c

bck ϕ
c
k(r) . (3.6.59)

Here, the sum runs over all the core levels (hence the superscript “c”) with Bloch wave vector

k. By requiring

〈ϕc
k|φk〉 =

∫
dr ϕc∗

k (r) φk(r) = 0 (3.6.60)

one obtains

bck = −
∫

dr ϕc∗
k (r) e

jk·r . (3.6.61)

This construction of the OPWs φk(r) give them the following properties

• The OPWs φk(r) have the required rapidity in the core region. This can be seen from the

imposed condition 3.6.60 where φk(r) is orthogonal to all core wave functions ϕc
k(r).

• The second term in 3.6.59 has a small contribution in the interstitial region. This is because

the core wave functions ϕc
k(r) are localized about the lattice cites R.

• The property above implies that the OPW in the interstitial region is very close to the

single plane wave ejk·r, i.e. the first term of 3.6.59.
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• Because both ejk·r and ϕc
k(r) satisfy the Bloch condition (see App. B), so does φk(r).

In his original work, Herring discussed the rapidity of convergence of his new OPW expansion

and gave expressions for the matrix elements [142]. It turned out that the OPWs matrix element

of the potential is much smaller than the corresponding PWs one. Moreover, while it is hopeless

to get convergence using simple PWs, the convergence of the OPWs expansion turned out to be

very much faster [89].

Pseudopotentials

So far, the OPW approach may look nothing more than a method of construction of basis

functions. However, the fact is that the OPW method is the prescience to all modern pseudo

potentials and PAW methods (discussed below). To see this, we start from the last property of

the OPWs above [78]. The property suggests that one can expand the one-electron33 (Bloch or

KS) eigenstates ϕk(r) linearly in the OPW basis (compare with PWs expansion 3.6.10):

ϕk(r) =
∑

k

c(K) φk+K(r)

=
∑

k

c(K)ej(k+K)·r +
∑

k

c(K)
∑

c

(
−
∫

dr′ ϕc∗
k (r

′) ej(k+K)·r′
)
ϕc
k(r)

=
∑

k

c(K)ej(k+K)·r −
∑

c

∫
dr′ ϕc∗

k (r
′)

(
∑

k

c(K) ej(k+K)·r′

)
ϕc
k(r) ,

that is

ϕk(r) = ϕ̃k(r) −
∑

c

(∫
dr′ ϕc∗

k (r
′)ϕ̃k(r

′)

)
ϕc
k(r) , (3.6.62)

where we wrote the smooth plane wave part as

ϕ̃k(r) =
∑

k

c(K)ej(k+K)·r , (3.6.63)

and we made use of Eq. 3.6.61 in the second line.

33 In this context, the one-electron orbitals are referred to as all-electron (AE) wave functions, to distinguish
them from the so-called pseudo (PS) wave functions that will appear shortly in the discussion.
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Now, suppose that we are dealing with a valence orbital, that is ϕk(r) = ϕv
k(r), then we rewrite

Eq. 3.6.62 above as34

ϕv
k(r) = ϕ̃v

k(r)−
∑

c

(∫
dr ϕc∗

k (r)ϕ̃
v
k(r)

)
ϕc
k(r

′) . (3.6.64)

Recall that the exact one-electron valence ϕv
k(r) and core ϕc

k(r) wave functions satisfy the KS

eigenvalue equations 3.6.1:

ĥKS ϕ
v
k(r) = εvkϕ

v
k(r) and ĥKS ϕ

c
k(r) = εckϕ

c
k(r) . (3.6.65)

Accordingly,

ĥKS ϕ
v
k(r) = ĥKS ϕ̃

v
k(r)−

∑

c

(∫
dr ϕc∗

k (r)ϕ̃
v
k(r)

)
ĥKS ϕ

c
k(r

′)

εvk

(
ϕ̃v
k(r)−

∑

c

(∫
dr ϕc∗

k (r)ϕ̃
v
k(r)

)
ϕc
k(r

′)

)
= ĥKS ϕ̃

v
k(r)

−
∑

c

(∫
dr ϕc∗

k (r)ϕ̃
v
k(r)

)
εck ϕ

c
k(r

′) .

(3.6.66)

That is

ĥKS ϕ̃
v
k(r) +

∑

c

(εvk − εck)

(∫
dr ϕc∗

k (r)ϕ̃
v
k(r)

)
ϕc
k = εvk ϕ̃

v
k(r) . (3.6.67)

More compactly

(
ĥKS + vR

)
ϕ̃v
k(r) =

(
− ~

2

2me
∇2

r + vPS
)
ϕ̃v
k(r) = εvk ϕ̃

v
k(r) , (3.6.68)

34 Notice that here we trivially shifted the primes from the integrand of 3.6.62 to ϕc
k(r).
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where the potential vR is defined via

vRf =
∑

c

(εvk − εck)

(∫
dr ϕc∗

k f

)
ϕc
k , (3.6.69)

while the pseudopotential vPS is defined to be the sum of vR (Eq. 3.4.19) and vR.

Eq. 3.6.68 we arrived at is an effective Schrödinger equation satisfied by the pseudo wave func-

tions ϕ̃v
k(r), i.e. the smooth part of the wave function ϕv

k(r).

At this point, we must mention that there are many ways, other than Eq. 3.6.69, to define a

potential vR such that (ĥKS + vR) has the same valance eigenvalues as ĥKS [89]. This leads

people to search for new ideas, clever choices and constructions of the potentials [78].

The Projector Augmented Wave (PAW) Method

In the projector augmented wave (PAW) method [143–145], a sphere with radius rc (known as

core or cut-off radius and, in practice, is usually chosen to be about half the nearest-neighbor

distance [144]) is constructed around each atom in the crystal, and the term augmentation regions

Ωaug is attached to these spheres. The interstitial regions between the Ωaug’s are denoted by the

symbol Ωint. Then the true all-electron (AE) wave functions35 |ϕik〉 are derived from the Pseudo

(PS) wave functions |ϕ̃ik〉 via the following linear transformation:

|ϕik〉︸ ︷︷ ︸
AE

= |ϕ̃ik〉︸ ︷︷ ︸
PS

+
∑

β

cik,β |φβ〉
︸ ︷︷ ︸

AE on-site

−
∑

β

cik,β |φ̃β〉
︸ ︷︷ ︸

PS on-site

, (3.6.70)

As in the OPW method (Eqs. 3.6.62 and 3.6.63), the PS wave function |ϕ̃ik〉 is expanded in a

plane wave basis set. That means it is smooth in the whole space. However, the difference now

35 A true Kohn-Sham single-electron wave function |ϕik〉 will be called an all-electron (AE) wave function and
may take the superscript “AE”:

∣∣ϕAE
ik

〉
. The term is used, in this context, in contrast to the Pseudo (PS) wave

functions |ϕ̃ik〉, and must not to be confused with the many-electron wave function Φ({r}; {R}). Following
Blöchl [143], all Pseudo (PS) wave functions, and related quantities, in the present subsection are marked with a
tilde “˜”, i.e. |ϕ̃ik〉.
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is that

|ϕ̃ik〉 =
∑

k

c(K)ej(k+K)·r = |ϕik〉 in Ωint only , (3.6.71)

while the true |ϕik〉 oscillates rapidly in Ωaug. These PS wave functions, |ϕ̃ik〉, are the variational
quantities in the PAW formalism36.

The second term of the expansion 3.6.70 is added in order to take care for the rapid spatial vari-

ation of the true AE |ϕik〉 in Ωaug, The summand of this term constitutes the on-site all-electron

(AE) partial wave functions |φβ〉. These are the one-electron exact solutions to KS equations

for a reference spherical atom. Beside the principal quantum number n, the index β is used to

refer to a collection of indexes and quantum numbers: the atomic site R, atom type M , angular

momentum quantum numbers L = (l, m), and to an additional index ν that represents an atomic

energy reference Eν,l.

By now, two errors have been introduced: The error within Ωaug introduced by the smooth PS

|ϕ̃ik〉, and the error within Ωint introduced by the AE on-site |φβ〉. To get rid of both errors

simultaneously, the pseudo (PS) partial wave functions
∣∣∣φ̃β

〉
are introduced in the summand of

the subtracted term in the expansion 3.6.70. These
∣∣∣φ̃β

〉
are constructed such that

∑

β

cik,β |φ̃β〉 = |ϕ̃ik〉 within Ωaug , (3.6.72a)

∣∣∣φ̃β

〉
= |φβ〉 within Ωint , (3.6.72b)

This can be achieved by means of constructing the PS partial waves as

φ̃β=Lν(r) = 〈r|ϕ̃β〉 = YL(r−R)φ̃lν(|r−R|) , (3.6.73)

and expanding the spherical harmonics YL(r−R) in terms of Bessel functions.

36 It is this pseudo part of the wave function people really refer to when they say: “We expanded the KS wave

functions in PWs with Ecut ... ”. See Subsections 3.6.1 and 6.1.
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In order to obtain proper cancellations and matchings, the coefficients cik,β must be constructed

carefully. It turned out that these coefficients are scalar products

cik,β = 〈p̃β|ϕ̃ik〉 , (3.6.74)

where the projector functions |p̃β〉 are chosen to be localized in the Ωaug, dual to |φ̃ik,α〉, and
obey 〈

p̃β

∣∣∣φ̃ik,α

〉
= δαβ . (3.6.75)

Now, we can rewrite Eq. 3.6.70 in a full form as

|ϕik〉︸ ︷︷ ︸
AE

= |ϕ̃ik〉︸ ︷︷ ︸
PS

+
∑

β

〈p̃β|ϕ̃ik〉 |φβ〉
︸ ︷︷ ︸

AE on-site

−
∑

β

〈p̃β|ϕ̃ik〉 |φ̃β〉
︸ ︷︷ ︸

PS on-site

, (3.6.76)

which shows explicitly that the basic ingredients of the PAW method (compared i.e. to the OPW

method) are partial waves and the projectors. Starting from this equation, it is straightforward

to show that the AE charge density, in the PAW method, has approximately a similar form as the

AE wave function:

n(r) =
∑

i

∑

k∈BZ

fi,k 〈ϕ̃ik|r〉 〈r|ϕ̃ik〉
︸ ︷︷ ︸

ñ(r)

+
∑

(α,β)

ραβ 〈φα|r〉 〈r|φβ〉
︸ ︷︷ ︸

n1(r)

−
∑

(α,β)

ραβ

〈
φ̃α

∣∣∣r
〉〈

r

∣∣∣φ̃β

〉

︸ ︷︷ ︸
ñ1(r)

,

(3.6.77)

where

ραβ =
∑

(α,β)

fi,k 〈ϕ̃ik|p̃α〉 〈p̃β|ϕ̃ik〉 (3.6.78)

are the occupancies of each augmentation channel (α, β).

Indeed, the brief discussion above introduces only some basic ideas of the PAW method. However,

the topic is broad, and many issues have to be considered, such as: details about which approxi-
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mations are required in real calculations; the expressions for ĥKS and forces; the implementation

in first-principles molecular dynamics schemes; formal description and construction of the basic

ingredients used in the method, such as partial waves and projector functions; analysis of the

errors introduced in the practical implementation of the method; numerical test calculations; and

details about the relation between the PAW method and the other existing electronic structure

calculations approaches. Interested readers are referred to Refs. [143–145].

Relativistic Effects

If heavy elements present in a solid, Dirac equation [146] (with Darwin, mass-velocity and spin-

orbit terms included) must be solved. On the other hand, non-relativistic calculations are well

justified for solids containing light elements. For the third class of medium atomic numbers (up

to about 54), the so-called scalar relativistic calculations [147] are commonly performed. In this

scheme, the main expansion and contraction of orbitals due to the Darwin and the mass-velocity

terms are incorporated, but spin-orbit splittings are neglected [148].

In practice inclusion of the spin-orbit term is computationally demanding. This is due to the fact

that spin-down and spin-up wave functions are coupled by this spin-orbit term. If we have M

basis functions without spin-orbit coupling, then inclusion of the spin-orbit term in the Hamilto-

nian leads to a 2M × 2M matrix equation. Due to the M3 scaling relation, the latter, in turn,

requires about eight times as much computer time as the former [148].

In general, valence states carry small spin-orbit effects, and essential relativistic effects originate

deep inside the atomic core. Therefore, it is often sufficient to carry out fully relativistic calcu-

lations for spherical atomic geometry. Obtained results are expected to be transferable to solids

and molecules with no change. Therefore, in actual calculations fully relativistic effects of the

atomic core are built-in the (pseudo)potential [78].

For brief discussion of Dirac equation and spin-orbit coupling, we refer to Ref. [78, Sec. 10.4 and

p. 218]. For a decent survey on relativistic density functional theory (RDFT), we recommend

Ref. [149] and original articles referred to therein.
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3.7 Summary

The topic of this chapter was the density functional theory (DFT). The original idea beyond the

theory, the Thomas-Fermi-Dirac model was discussed in Sec. 3.1, then the Hohenberg-Kohn DFT

was introduced in Sec. 3.2. Some subtleties were discussed in Sec. 3.3, and the clever Kohn-

Sham approach to DFT was discussed in Sec. 3.4. The latter leads to a set of Schrödinger-like

equations that must be solved self-consistently, with special handling to their ingredients. Basis

sets for the expansion of the one-electron orbitals ϕσ
i,k of the one-electron KS equations 3.6.2

was discussed in Subsec. 3.6.1. The one-electron kinetic energy (Eqs. 3.4.5 and 3.4.9) and

the Hartree interaction (Eq. 3.4.10) terms in Eq. 3.6.2 are by now known exactly. The biggest

unknown part ṽσxc was treated approximately in Subsec. 3.6.3. the quantum numbers σ and k

were treated in Sec. 3.5 and Subsec. 3.6.2, respectively. The only piece in Eq. 3.6.2 that we

have not considered so far is the electron-nuclei interaction vext(r). This was the subject of the

last subsection. Many related practical issues are deferred to Part II. One of the limitations of

DFT and an approach to overcome are the subject of the next chapter.



4. The GWA Approach

Properties of matter can be grouped into two main categories determined by the electronic ground

states (such as: total energy, electron density, equilibrium crystal structure and elastic constants.)

and electronic exited states (e. g. optical properties, spectra of adding and removing electrons.).

This distinction determines the framework for theoretical understanding and development of the

entire field of electronic calculations [78].

4.1 Excited States in KS-DFT

The widely used DFT, described in Ch. 3, is a reasonably successful approach for determination of

structural and some ground-state physical properties of many solids 1. The ground-state density

in particular is, in principle, exact [78–80]. However, a well-known failure of DFT is that it does

not describe the excited states accurately [80]. In particular, it is well known that the calculated

band gaps in semiconductors and insulators are too small in comparison to experiment [105], the

Fermi surface of metals are in general not correct [78], and sometimes even the general qualitative

features of the conduction band is not correct [150]. Compared to experiment, Optical spectra

calculated within DFT show significant deviations. The position of the energy characteristic peaks

and their corresponding amplitudes can be wrong [151].

This striking failure of DFT is intimately linked to the fact that the KS one-electron eigenval-

ues (band structure) ǫi and wave functions ϕi are in principle nothing but mathematical con-

structs [75,78,79,150], while the fundamental quantities in DFT are the ground state total energy

and the electron density [105]. Neither these KS eigenvalues correspond to true electron removal

or addition energies nor their differences correspond to optical (neutral) excitations2 [78, 152].

A successful approach to solve the foregoing problem is to go beyond DFT using KS eigenstates

as basis for many-body perturbation theory (MBPT) calculations. The approach is based on the

1 To see why single-particle approximations are successful, see for example [79, pp. 66–67]
2 In 1985 it was shown that in exact DFT the highest occupied eigenvalue (highest occupied molecular orbital

level, or HOMO) does have a physical interpretation: it corresponds to the ionization potential [78, 152].
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concept of the so-called quasi-particle, the Green’s function and the self-energy [77, 80, 150].

4.2 Quasi-Particles (QP)

The Coulomb repulsion between bare electrons leads to a depletion of negative charge around

a given electron and the ensemble of this electron and its surrounding positive screening charge

forms a quasi-particle [80]. This concept of quasi-particles was first introduced by Landau [77,79].

The advantage of the notion is evident, since instead of dealing with a complicated system of

strongly interacting particles, one can treat the system as constitutes of weakly interacting quasi-

particles. In such a case, one formulate a perturbation theory starting from non-interacting

particles (usually KS particles) as the unperturbed state [79].

4.3 Green’s functions

The mathematical description of quasi-particles is based on the single-particle Green’s function

G [80]. In mathematics, Green’s function of a linear operator L is defined by [121, 126]

[z − L(r)]G(x, x′; z) = δ(x− x′) , (4.3.1)

with δ(x − x′) being the Dirac’s delta function. For example, a single particle in an external

potential vext(r) satisfies [126]

[
− ~

2

2m
∇2 + vext(r)− ǫ

]
G(0)(r, r′; ǫ) = −δ(r− r′) . (4.3.2)

For a many-electron system, it can be shown that the one-particle Green’s function G(r, r′;E)

of the system satisfies [75]

{
− ~

2

2m
∇2 + vext(r)− ǫ

}
G(r, r′; ǫ) +

∫
dr′′ Σ(r, r′′; ǫ)G(r′′, r′; ǫ) = −δ(r− r′) . (4.3.3)

In this expression, we have written G in the energy domain. This is possible because when

the Hamiltonian is time-independent, G depends only on the time difference t − t′, i.e. G ≡
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G(r, r′; t−t′). A Fourier transformation of G(r, r′; t−t′) w.r.t. t−t′ then yields G(r, r′; ǫ) [126].

Physically, the one-particle Green’s function G(r, r′; t− t′) gives the probability of finding an elec-

tron at r at time t given that there was an electron at r′ at time t′. In some sense, G(r, r′; t− t′)
represents a kind of extension of the static pair correlation function g(r, r), introduced in Sec.

2.4, to the time domain 3. If Eq. 4.3.3 can be solved exactly, i.e. if G(r, r′; t− t′) is known, all

physical properties are, in principle, accessible [75].

If the exact G0(r, r
′; ǫ) of related reference (e.g. KS reference system) is known exactly, then

G(r, r′; ǫ) of the true system can obtained by means of MBPT using Dyson’s equation

G(r, r′; ǫ) = G0(r, r
′; ǫ) +

∫
dr1dr2 G0(r, r1; ǫ) ∆Σ(r1, r2; ǫ) G(r2, r

′; ǫ) , (4.3.4)

where the perturbation ∆Σ is given in terms of the interaction potential of the reference system

v0 by4

∆Σ(r1, r2; ǫ) = Σ(r1, r2; ǫ)− v0(r1, r2) . (4.3.5)

If one takes the KS system as the reference system, the Green’s function assumes the exact form

G0(r, r
′; ǫ) =

∑

i

ϕi(r)ϕ
∗
i (r

′)

ǫ− ǫi
. (4.3.6)

4.4 The Self-Energy

The quantity Σ that appears in Eqs. 4.3.3 and 4.3.4 is known as the self-energy. Generally, it is

an energy dependent, non-local, and in general non-Hermitian operator [75,77,80]. Physically, it

represents the difference between the bare particle and the quasi-particle. The name, self-energy,

emerges from the fact that Σ is equal to the energy of the bare particle interacting with itself

through the polarization cloud which the particle induces in the many-body system. Hence, Σ

3 Recall that in Ch. 2 we proceeded from the pair correlation function to the reduced density matrix. The
latter quantity does not contain explicit information about the coordinates of every single particle in the system,
yet it can replace the complicated many-body wave function since it contains all the relevant information about
the system. The Green’s function G is another object which has the same property [126].

4 Notice that v0(r1, r2) = 0 for a non-interacting reference system [75].
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accounts for all the exchange and correlation interactions, static and dynamic, including those

effects neglected in the reference system (see Eq. 4.3.5). With such many-body complexities, an

exact determination of Σ is not possible, and a numerical determination of the Σ can only be

approximate [80].

4.5 The GW Approximation

A practical scheme for the quantitative calculations of Σ in metals, semiconductors and insulators

is the so-called dynamically screened interaction, or the GW approximation (GWA), first proposed

by Hedin in 1965 [110]. In this approximation, the self-energy Σ is expanded linearly in terms of

the screened interaction

ΣGW (r, r′; t) ≈ jG(r, r′; t)W (r, r′; t) , (4.5.1)

which explains the name of the approximation [80], or in the energy domain

ΣGW = j

∫
dǫ′ G(r, r′; ǫ+ ǫ′)W (r, r′; ǫ), (4.5.2)

where the screened interaction W can be obtained from the bare Coulomb interaction v via

W (r, r′; ǫ) = j

∫
dr1ε

−1(r, r1; ǫ)v(r1, r
′), (4.5.3)

with ε the dielectric function; or equivalently

W (r, r′; ǫ) = v(r1, r
′) +

∫
dr1 dr1 W (r, r1; ǫ) P (r1, r2; ǫ) v(r2, r

′) (4.5.4)

where the polarization P (r1, r2; ǫ) is given by

P (r, r′; ǫ) = −jG(r, r′; ǫ) G(r′, r; ǫ) . (4.5.5)

In practice, the set of the four equations 4.3.5, 4.5.2, 4.5.4, and 4.5.5 are solved self-consistently

[75].
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4.6 The Quasi-Particle Equations

Within the GWA method, the quasi-particle energies ǫQP
i,k are the solutions of the following quasi-

particle (QP) equations, which can be written for a periodic crystal as [80, 153]

{
− ~

2

2m
∇2 +

∫
dr′

n(r′)

|r− r′| + vext(r)

}
ϕQP
i,k (r) +

∫
dr′Σ(r, r′; ǫQP

i,k )ϕ
QP
i,k (r

′) = ǫQP
i,kϕ

QP
i,k (r) .

(4.6.1)

In practice, the orbitals ϕQP
i,k (r) are taken from the ground-state KS-DFT calculations, and the

corresponding QP eigenvalues read

ǫQP
i,k = Re

(〈
ϕQP
i,k

∣∣HKS − vσXC + ΣGW

∣∣ϕQP
i,k

〉)
. (4.6.2)

4.7 Further Technical Details

The presentation of the subject in this Chapter is meant to be very brief and phenomenological. A

proper discussion of Σ and G requires second quantization formalism and via Feynman diagrams

[126]. For comprehensive discussion of such topics, interested readers are referred to Ref. [77].

Article [80] is a very good review of quasi-particle calculations in the GWA. For details on the

implementation of the GWA scheme within the PAW framework, we refer readers to Ref. [150].

Nevertheless, more practical issues (e.g. the self-consistent iteration and the calculation of the

dielectric matrix) will be discussed in Ch. 9.



Part II

Calculation and Characterization

Methods
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“... non of the methods we shall describe can be carried through

analytically ... . All require modern, high-speed computers for their

execution. ... and the kinds of approximations one is likely to

consider are influenced by available computational techniques.”

Neil W. Ashcroft and N. David Mermin [89, p. 193].

“... nevertheless it is not easy to set all parameters correctly”!

VASP the GUIDE [154].
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5. Chemical Formulas and Crystal

Structures

As a part of the transition-metal pnictides, transition-metal nitrides (TMNs) crystallize in a large

number of different structural types. This exhibited structural richness is translated into their

physical properties. Among TMNs one can find metals, semiconductors, superconductors and

different types of magnetic behavior [155]. Probably, then, the main reason why researchers

(within the electronic structure calculations community) test different chemical stoichiometries

and crystal structures of transition-metal nitrides (TMNs) is that many TMNs are known to form

more than one nitride [21, p. 835].

Our target materials in the present investigation (see Ch. 1) are the nitrides of the late transition

metals: Pd, Pt, Cu, Ag, Au and Zn. We start this chapter (i.e. Sec. 5.1) by presenting the

procedure we followed in this study to choose certain molecular formulas for these materials. In

Sec. 5.2, we propose a loose procedure to assign crystal structures to the chosen stoichiometric

compounds. Then we tabulate the output of our application of these two procedures and give

some additional information about the considered crystal structures. In Sec. 5.3, the problem of

this study (fisrt posed in Sec. 1.2) will be formally reposed within the introduced motivations

(Sec. 1.1), theoretical framework (Part I) and within the chosen chemical formulas and crystal

structures (the present chapter).

5.1 Stoichiometries and Chemical Formulas

The term stoichiometric compound is used in general to refer to kind of materials that have

chemical combination in simple integral ratios. That is, such a compound has no excess of re-

actants or products, and it balances the chemical equation that represents the given chemical

reaction [156]. On the other hand, the term solid solution, or mixed crystal, refers to a crystal

which contains a second chemical constituent (considered as a defect) that fits into and is dis-

tributed in the lattice of the host crystal [156].
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In the present chapter, we use the symbol MmNn to refer to a general TMN with an m:n ratio

of a transition metal M to nitrogen N, where m and n are generally integers. It is well known

that many (if not most) real transition-metal nitrides behave as (non-stoichiometric) solid solu-

tions, with chemical formulas MNx, where “x” as a rule is a variable quantity. That means N

atoms in such phases occupy interstitial sites of the closed-packed metal host lattices. Within

first-principle calculations, researchers usually consider a wide range for the variable “x” in order

to study the physical properties of such materials and to be able to interpret the experimental

observations [36, 157].

In dealing with such compounds, one has no specific rules to determine their stoichiometry. Nev-

ertheless, some crystalline stoichiometric TMNs were experimentally reported (e.g. Cu3N [32]),

some others have been theoretically proposed and studied (e.g. AuN [65], AuN2 [64], and

Au3N [63]), while the true stoichiometry and crystal structure of some others are still a matter

of debate (cf. Ref. [1] and references therein).

In the present study, we consider the nitrides of group 10 (Ni, Pd and Pt), group 11 (Cu, Ag

and Au) and of Zn (which belongs to group 12) of the periodic table. We assign three chemical

formulas to each nitride: M3N, MN and MN2. These selected molecular formulas for a given

TMN are chosen according to the following simple loose systematic procedure: First, we choose

the already reported (either from experiment or calculations) stoichiometries. Second, we assign

every chosen studied stoichiometry to the nitrides of all the other considered metals. When

discussing the crystal structures in the following section, we will give some information about

which formula was experimentally reported, theoretically proposed by other researchers, which is

hypothetical, and which is still controversial.

5.2 Crystal Structure Descriptions

The electronic structure of the outer shells of atoms is a crucial controlling factor in deciding

which crystal structure to be assumed [58]. In the present study, the proposed crystal structures

for a given metal nitride and for a given molecular formula are chosen according to the following
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procedure: First, we choose the already reported (either experimentally reported or theoretically

investigated) structures. Second: we assign every chosen reported structure to the nitrides of all

the other considered metals. By following these two steps, we will be able to study trends, if

any, since our compounds under study share the same geometrical structure(s) within any con-

sidered molecular formula. Last: we consider some prototype compounds that have our chosen

stoichiometries and assign their structures to our materials. We do this even if these structures

have not been reported (see Subsec. 1.1.1).

Table 5.1 below shows the outputs of our application of the two procedures proposed in Sec. 5.1

and Sec. 5.2 on the nitrides of group 10, 11 and 12 elements of the periodic table. Information

about each chosen crystal structure are summarized in Table 5.1, unit cells are depicted in Figs.

5.1, 5.2 and 5.3 and more data are given about some structures follows. Presented information

include:

• Strukturbericht designation (symbols): The Strukturbericht Designation is a very simple

partly systematic useful system of nomenclature for describing relatively simple structures

[185]. We try to stick to these Strukturbericht structure symbols in this chapter and

through out the study. However, some of the considered structures (ǫ-Fe3N, RhF3, NiTi,

CoSb2) do not have Strukturbericht symbols.

• The underlying Bravais lattice (BL). For definition, see App. A.

• The prototype compound(s): These are well known compounds with the same structure

under consideration. However, some TMNs that have one of the considered structures will

be pointed out.

• The space group and its sequential number as given in the International Tables for Crys-

tallography [173]. For more information, see App. A.

• The number of MmNn chemical formulas per unit cell (Z).

• Sources where one can obtain the presented data and more are cited. However, Information

about crystal structures can be found at various useful on-line sites. One example is the

http://www.webelements.com/
http://it.iucr.org/
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Table 5.1: The studied structural phases of MNn (n = 0, 1/3, 1, 2). Presented are the Strukturbericht
designation (symbol), the underlying Bravais lattice (BL), a prototype compound, the space group and
its sequential number as given in International Tables for Crystallography, number of MmNn formulas
per unit cell Z, and references where one can obtain the presented information and more.

Symbol BL Prototype(s) Space group Z References
M Structures

A1 fcc Cu Fm3̄m (#225) 1 [158] [159, p. 12-19]
A3 hexagonal Mg P63mmc (#194) 1 [158]

M3N Structures
D03 fcc AlFe3 Fm3̄m (#225) 1 [158, 160] [161, p. 323] [21, p. 254]
A15 sc Cr3Si Pm3̄n (#223) 2 [158, 162] and [163, pp. 217-220]
D09 sc anti-ReO3 (α), Cu3N Pm3̄m (#221) 1 [155, 164, 165] [21, p. 208 and p. 265]
L12 sc Cu3Au Pm3̄m (#221) 1 [158, 166, 167] [21, pp. 1297–1298]
D02 bcc CoAs3 (skutterudite) Im3̄ (#204) 4 [155, 158, 168] [21, pp.267–268]
ǫ-Fe3N hexagonal ǫ-Fe3N, Ni3N P6322 (#182) 2 [169, 170]
RhF3 trigonal (rhombohedric) RhF3 R3̄c (#167) 2 [171] [21, p. 417]

MN Structures
B1 fcc NaCl Fm3̄m (#225) 1 [158, 172] [173, p. 734] [21, p. 238]
B2 sc CsCl Pm3̄m (#221) 1 [158, 172] [173, p. 873] [21, p. 245]
B3 fcc ZnS (zincblende) F4̄3m (#216) 1 [158, 172] and [174, pp. 112-114]
B81 hexagonal NiAs P63/mmc (#194) 2 [158, 175] and [174, pp. 124-132]
Bk hexagonal BN P63/mmc (#194) 2 [158, 176] [21, pp. 1060–1061]
Bh hexagonal WC P6̄m2 (#187) 1 [158, 175]
B4 hexagonal ZnS (wurtzite) P63mc (#186) 2 [158, 177] and [174, pp. 118-124]
B17 s tetragonal PtS (cooperite) P42/mmc (#131) 2 [158, 178, 179] [21, p. 755]
B24 fc orthorhombic TlF Fmmm (#69) 1 [158, 180]

MN2 Structures
C1 fcc CaF2 (fluorite) Fm3̄m (#225) 1 [158, 168], [21, p. 252]
C2 sc FeS2 (pyrite) Pa3̄ (#205) 4 [168, 181, 182] [21, p. 759 and p.242]
C18 s orthorhombic FeS2 (marcasite) Pnnm (#58) 2 [158, 168, 182, 183] [21, p. 759 and p.250]
CoSb2 s monoclinc CoSb2 P21/c (#14) 4 [168, 182, 184]

on-line Crystal Lattice Structures database of the Center for Computational Materials Sci-

ence (CCMS) [http://cst-www.nrl.navy.mil/lattice/] which offers a concise index

of common crystal lattice structures. In this web page, structures are indexed by Struk-

turbericht Designation, Pearson symbol, space group, and prototype. The CCMS on-line

information about each prototype includes : Pearson symbol, Strukturbericht designation,

space group, references, other compounds with the same structure, primitive vectors, and

basis vectors; as well as graphical representations and more useful information about the

crystals.

• Relations between some structures and some more useful informations will be given wherever

appropriate.

http://cst-www.nrl.navy.mil/lattice/
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(a) D03 (b) A15 (c) D09

(d) L12 (e) D02 (f) Fe3N

(g) RhF3

Figure 5.1: (Color online.) M3N structures considered in this work. The large (red) and the small
(blue) spheres represent metallic and nitrogen atoms, respectively. All figures were created using the
XCrySDen software. Dimenssions of different unit cells are not in the same scale. For numerical data,
i.e. primitive and basis vectors, see App. F.

http://www.xcrysden.org/
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5.2.1 M3N structures

1. D03: The D03 structure of AlFe3 is sometimes referred to as BiF3 structure. However, A.

F. Wells claims that this might not be true [21, p. 255 and p. 422]. D03 structure was

proposed and tested for the synthesized Au3N [63].

2. A15: This structure is sometimes refered to as GeV3 structure (cf. Refs. [63] and [21, p.

1283]). It was proposed and tested for the synthesized Au3N [63].

3. D09: Two substances are said to be anti-isomorphous when their crystal structures are

geometrically identical but with the position of the corresponding atoms or ions inter-

changed [186, p. 194]. Hence the prefix anti in anti-ReO3. This D09 structure is the most

symmetrical [21, p. 208] and the simplest structure for MX3 compounds [155] including

Cu3N [32]. While the N atoms occupy the corners of the cell, the M atoms occupy the

middle of the cubic edges, leading to many vacant interstitial sites. The electrical and

optical properties of a TMN in this structure can be modified by hosting additional (or

other) M atoms within these sites [187].

4. L12: Both D09 and L12 structures belong to the same space group, and N atoms occupy

1a Wyckoff sites. M atoms on the other hand are in the 3d sites for D09 but occupy the

3c sites in the case of L12. Cu3N is found to prefer the latter structure over the former at

high pressure [188].

5. D02: This structure was proposed and tested for the synthesized Au3N [63]. However, we

set Z = 4, while Z = 8 in Ref. [63].

6. ǫ-Fe3N: This structure is based on an hcp sub-lattice of M atoms, while N atoms occupy

the octahedral sites. ǫ-Fe3N structure is quite common for binary nitrides of 3d metals;

particularly, it was experimentally confirmed for Ni3N [170].

7. RhF3: For the relation between D09, D02 and RhF3 structures, see Ref. [21, p. 265 and

pp. 267–268] and Ref. [155]. This structure was proposed and tested for the synthesized

Au3N [63].
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5.2.2 MN structures

1. B1: In this structure N atoms occupy all the four octahedral sites of the FCC metal sub-

lattice [64]. It is the most popular structure for many early TMNs, e.g. ScN, TiN, VN,

CrN, FeN, ZrN and HfN [64,189,190], and it has been theoretically proposed for most late

TMNs. In particular, it was experimentally claimed for PdN [10] and NiN [191].

2. B2: This structure was theoretically tested for NiN [192], PdN [193], PtN [194], CuN,

AgN and AuN [65]. Of all the listed MN structures here, the most dominated among the

AB binary compounds are B1, B2 and B3 [180].

3. B3: In this structure all of the NM4 tetrahedra are corner-sharing [30]. In B1, B2 and B3

structures, N atoms fill in the same fcc sub-lattice formed by the metal atoms. However,

the volume of the octahedral interstitial cites, at which the N atoms in B1 are located, is

larger than that of the tetrahedral interstitial ones occupied by the N atoms in B3 [192].

FeN [195] and CoN [196] were experimentally synthesized in this structure.

4. B81: Electronic and magnetic properties of CuN and NiN in this structure have been

studied [192].

5. Bk: See Table 5.1.

6. Bh: See Table 5.1.

7. B4: AlN and GaN are known to crystallize in this structure [22].

8. B17: Non-metal atoms in this structure are tetrahedrally coordinated, while the Pt atoms

have square-planar coordination environments [30]. B17 structure has a distorted fcc M

sub-lattice [22]. The structure is adopted by PtS and PtO and was theoretically proposed

to be the ground-state structure of PtN [30].

9. B24: This is the least symmetric considered structure. In an apparently similar trial to

test such low symmetry structure possibility, Patil et al. [178] investigated the mechanical

stability of PtN in a face-centered orthorhombic structure (space group Fddd), but it is not

the same as our studied face-centered orthorhombic B24 structure (space group Fmmm).
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(a) B1 (b) B2 (c) B3

(d) B81 (e) Bk (f) Bh

(g) B4 (h) B17 (i) B24

Figure 5.2: (Color online.) MN structures considered in this work. The large (red) and the small
(blue) spheres represent metallic and nitrogen atoms, respectively. All figures were created using the
XCrySDen software. Dimenssions of different unit cells are not in the same scale. For numerical data,
i.e. primitive and basis vectors, see App. F.

http://www.xcrysden.org/
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5.2.3 MN2 structures

1. C1: In the C1 structure, N atoms occupy all the tetrahedral interstitial sites of the fcc metal

sub-lattice, giving rise to a stoichiometry of MN2 [25]. One can start by a B3 structure, in

which the N atoms occupy half of the tetrahedral interstitial sites of the M sub-lattice, then

fill the remaining tetrahedral sites with another four N atoms to obtain the C1 structure

(cf. Fig. 1 in Ref. [197]). For the relation between D03 and C1 structures, see Ref. [21, p.

254].

2. C2: This structure can be described as a B1 structure, in which N atoms are replaced with

N2 units (i.e. nitrogen pairs) [25,30]. It has 12 atoms per primitive unit cell with M atoms

occupying the 4a Wyckoff positions and N atoms occupying the 8b positions. Moreover,

the structure has one free parameter (u) that determines the bond length between the N2

units. The C1 structure is a special high-symmetry phase of C2 with u = 0.25 [25]. Chen,

Tse and Jiang [66] claim that there is a consensus on the crystal structure of PtN2 and

PdN2 to be this C2 structure.

3. C18: Chen, Tse and Jiang [66] also claim that there is a consensus on the crystal structure

of OsN2 to be the C18 structure.

4. CoSb2: This structure is related to the FeAsS-arsenopyrite structure and is very close to the

C43 structure of ZrO2. The C2, C18 and CoSb2 structures can be looked at as composed

of PdN6 octahedra. In C2, the octahedra are corner shared, while in C18 and CoSb2 the

octahedra are both edge and corner shared [66]. From first-principles calculations and

comparison with experimental data, CoSb2 structure was assigned to IrN2 [198]. Chen, Tse

and Jiang [66] went further and claimed that there is a consensus on the crystal structure

of IrN2 to be this CoSb2 structure.

5.3 Re-Posing the Problem

As a starting point of the present investigation, we assigned in the previous two sections certain

crystal structures to the bulk nitrides under investigation. The procedures we have followed in

proposing the chemical formulas and crystal structures, though loose, allow us to
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(a) C1 (b) C2

(c) C18 (d) CoSb2

Figure 5.3: (Color online.) MN2 structures considered in this work. The large (red) and the small
(blue) spheres represent metallic and nitrogen atoms, respectively. All figures were created using the
XCrySDen software. Dimenssions of different unit cells are not in the same scale. For numerical data,
i.e. primitive and basis vectors, see App. F.

http://www.xcrysden.org/
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• compare our results with experiment and with previous theoretical studies; and to

• use our results to investigate regularities and trends (if any) among these nitrides. This,

in turn, helps in identifying and in searching for the most appropriate TMN(s) for use in a

given application (e.g. replacing gold in electronic devices), or that TMN in which certain

physical properties (e.g. bulk modulus) can be enhanced.

Therefore, the next natural step is to search, within a given stoichiometry, for the most stable

TMNs which might be the most likely candidates for the true crystal structure 1. This can be

done by studying their energy-volume equation of state (EOS). Equilibrium cohesive energy and

formation energy are common crucial measures of relative stabilities. Lattice parameters at equi-

librium control the physical properties of materials and should be identified. Equilibrium bulk

modulus and its pressure derivative are very important properties for many applications. Upon

application of external pressure, structural phase transition may take place. This can be examined

by means of the enthalpy-pressure EOS. Band structure and total and partial density of states

(DOS) of the energetically most stable phases contain most information about the electronic

properties of these TMNs. Optical characterization can be achieved by finding a way to derive

the frequency-dependent optical constants (e.g. absorption coefficient, reflectivity and refractive

index) of these phases.

Within the theoretical methods introduced in Part I, the rest of the present Part is devoted to

definitions and technical details of methods of calculations of these desired properties.

1 However, even if one examines a wide range of structures, this, of course, does not mean that we have
determined the global minimum. However, it is worth eliminating those structures which are not energetically
favorable. This is usually the issue of structure optimization problem (cf. Refs. [63, p.4] and [78, sec. 2.2]).



6. Electronic Relaxation Details

In Subec. 3.6.2 we established the fact that the Kohn-Sham approach to DFT leads to Nk (num-

ber of k points) equations of the form 3.6.2 that should be solved self-consistently. The present

chapter is devoted to the practical settings and technical details of our KS-DFT calculations.

At this point, it must be mentioned that all calculations at the electronic structure level (i.e.

DFT and GWA) in this study were carried out using the all-electron plane-wave Vienna ab initio

Simulation Package (VASP) [87, 128, 144, 154, 199–201].

6.1 Convergence Issues

A numerical calculation is considered to be well-converged when the true solution of the (DFT)

mathematical problem is accurately approximated by the numerically derived solution [127] 1. As

already pointed out in Subsections 3.6.2 and 3.6.1, convergence of the calculated total energy

with respect to the plane waves energy cut-off Ecut and with respect to the number of k points

is essential to be achieved before doing any real DFT (or GWA) calculations.

6.1.1 Plane-wave cut-off convergence

For the VASP expansion of the pseudo part of the KS one-electron spin orbitals ϕσ
i,k(r), we in-

cluded only those PWs with kinetic energy ~
2

2me
|k+G| < Ecut such that the change in Ecut causes

a change in the total electronic energy E and in the Fermi energy (or the chemical potential) EF

that is always less than 0.003 eV/atom and 0.002 eV , respectively. This can always be achieved

using Ecut = 600 eV for all systems under investigation. A set of samples of convergence tests of

E and EF with respect to Ecut are depicted in Figs. 6.1. In contrast to what we have mentioned

in Subsec. 3.6.1, Fig. 6.1a shows clearly that E does not decrease monotonically with increasing

Ecut, which is an apparent violation of the variational principle. However, this is because VASP

takes into account the approximate error according to the RRKJ [202] kinetic energy criterion

when cohesive energies are calculated. For details on this issue, interested readers are referred to

Refs. [154], [202], [75, pp. 153–154].

1 It may be worth to recall here that the accuracy of DFT in describing physical reality is quite separate from
the concept of numerical convergence. cf. Ref. [127, pp. 49-50 and Ch. 10].
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Figure 6.1: (Color online.) (a) Total energy E per atom, and (b) Fermi energy EF , for CuN in
different structures (see Table 5.1), each versus the energy cut-off Ecut, using 15× 15× 15 Γ-centered
Monkhorst-Pack k mesh, te = 0.2 eV and the Methfessel-Paxton 2nd order smearing method. For a
given structure, each value is given relative to that evaluated at the highest trial Ecut = 800 eV . (For
notations, see Subsec. 3.6.2).

6.1.2 k-points convergence

All our BZs were sampled using Γ-centered Monkhorst-Pack meshes (see Sec. 3.6.2). To deter-

mine the size of the mesh, convergence tests of the total energy E with respect to the size of the

mesh (i.e. with respect to the number of k points) were always carried out prior to any calcula-

tions. All tests were carried out at plane waves cut-off energy Ecut = 600 eV using the smearing

method of Methfessel-Paxton of the 2nd order, with the smearing width set to te = 0.2 eV . A

set of samples of such test are depicted in Fig. 6.2a. In all cases, total energy E is considered to

be well converged with respect to the number of k points (i.e. independent of the number of k

points) when any increase in the density of the mesh produces a change in the total energy less

than 0.002 eV/atom. Also, Fig. 6.2b below shows that the Fermi surface EF (or the chemical

potential µ) has been carefully treated such that any increase in the density of the mesh produces

a change in EF less than 0.02 eV . Moreover, the smearing width te was chosen such that the

fictitious entropy - introduced by the smearing occupation scheme (see Sec. 3.6.2) - has always

been kept below 0.001 eV/atom.
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Figure 6.2: (Color online.) (a) Total energy E per atom, and (b) Fermi energy EF , for CuN in
different structures (see Table 5.1), each versus the size of the Γ-centered Monkhorst-Pack k mesh
qi, using Ecut = 600 eV , te = 0.2 eV and the Methfessel-Paxton 2nd order smearing method. For a
given structure, each value is given relative to that evaluated at the highest trial mesh size qimax. (For
notations, see Subsec. 3.6.2).

After all, different mesh densities and occupation schemes were employed according to the fol-

lowing different cases:

• Geometry relaxation: A 13×13×13 mesh and the smearing method of Methfessel-Paxton

(MP) were always used (See also Sec. 7.3 and Sec. 7.4).

• Static calculations: After each ionic relaxation, a static calculations step with a 17×17×
17 mesh and the tetrahedron interpolation method with Blöchl corrections are employed

(see also Sec. 7.4).

• DOS calculations: At least a 21× 21× 21 mesh with partial occupancies fσ
i,k set using

the tetrahedron method with Blöchl corrections were used (see also Sec. 8.2).

• Band structure calculations: Non-self-consistent calculations are always performed on

top of the above mentioned self-consistent DOS calculations. The coordinates of the high-

symmetry k-points with respect to the reciprocal lattice basis vectors (and their labeled

according to Ref. [203]) are supplied explicitly (see also Sec. 8.1).

• GWA calculations: These are computationally demanding (see Chs. 4 and 9). Therefore,

in consideration of computational cost, that is, depending on the available computational
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resources and time, we used 12 × 12 × 12 or 10 × 10 × 10 mesh of k-points (see Ch. 10

and the appended articles).

6.2 XC Functional and PAW Potentials

For all calculations that are related to the structural and electronic properties, the The PBE-GGA

functional (see Sec. 3.6.3) was employed for the XC potentials ṽxc[n
↑(r), n↓(r)]. The VASP

implemented PAW method (see Sec. 3.6.4) was used to describe the core-valence interactions

vext(r). Which electrons are treated as core electrons and which are treated as valance ones

for each element in consideration is mentioned explicitly in Ch. 10 and in the appended arti-

cles [1–3, 6, 7].

Concerning relativistic effects (see the very last part of Subsec. 3.6.4), VASP, in its standard

mode, performs full relativistic calculations for the core electrons and treats the valence electrons

in an approximate scalar relativistic fashion [128]. Due to the large number of phases we should

deal with, and due to the computationally demanding nature of its calculations, no effort to

consider spin-orbit interaction of the valence electrons were made. Nonetheless, other researchers

have tested the spin-orbit contributions to the macro-physical properties of some of our target

materials, and found it to be negligible. See our article [1], Ref. [204] and [P. Philipsen and E.

Baerends, Phys. Rev. B, 61: 1773 (2000)] cited therein.

6.3 Numerical Optimization Schemes

In this section we mention the algorithms implemented in VASP to calculate the electronic

ground state and briefly discuss the corresponding self-consistency cycle. The discussion here

follows [154]. For detailed analysis, readers are referred to [87].

Generally, two nested loops present: the outer one for charge density optimization, and the inner

one for wave functions optimization. Accordingly, we have two sets of algorithms: The matrix-

diagonalization iterative schemes including the conjugate gradient (CG) scheme [205,206], block

Davidson scheme [207] and a residual minimization scheme - direct inversion in the iterative
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subspace (RMM-DIIS) [208, 209]. The other set of algorithms is for the charge density mixing.

This includes an efficient Broyden/Pulay mixing scheme [209, 210] .

At the beginning, the wave functions and the charge density are completely independent quanti-

ties. Later, the charge density is used to set up the Hamiltonian within each self-consistency loop;

then the wave functions are updated iteratively such that they get closer and closer to the exact

wave functions of this Hamiltonian. The optimized wave functions are now used to calculate the

new charge density. Then the new and the old densities are mixed to create a new input density,

... .

The combination of the above mentioned traditional self-consistency cycle with these efficient

numerical algorithms leads to fast, efficient and robust scheme for solving the KS system. The

implemented blocked Davidson and RMM-DISS are among the fastest currently available meth-

ods.

For a given ionic configuration, we chose the implemented blocked Davidson iteration scheme

[207] for the relaxation of the electronic degrees of freedom. Convergence was considered to be

arrived at when the difference in the total (or free) energy and in the eigenvalues between two

successive self-consistent (SC) loops are both less than 1× 10−4 eV .



7. Calculations of Structural Properties

It is well known now that structural properties, crystal stabilities and pressure-induced phase

transformations in bulk solids can be accurately described employing first-principles calculations

[211]. In the present chapter, we demonstrate, how we utilized the theoretical methods introduced

in Part I to study these properties.

7.1 Cohesive Energy

Cohesive energy Ecoh of a solid is the energy required to decompose the soild into its atomic

constituent with all atoms neutral and infinitely separated [89, 212–215]. Thus, in ab initio

calculations practice, it corresponds to the difference between the calculated total crystal energy

per unit cell and the total energy of the isolated atoms [36, 135, 215, 216]

Ecoh = E(crystal)−E(atoms) = E(crystal)−
∑

atom

E isolated
atom . (7.1.1)

That is, the cohesive energy per atom for our target nitrides MmNn can be expressed as1

EMmNn

coh =
EMmNn

solid − Z ×
(
mEM

atom + nEN
atom

)

Z × (m+ n)
. (7.1.2)

Here, Z is the number of MmNn per unit cell, as defined in Sec. 5.2, EM
atom and EN

atom are the

atomic energies, and m,n = 1, 2 or 3 are the stoichiometric weights.

It should be clear that, for Eq. 7.1.2 above to have a physical meaning, both crystal energy and

atomic energies must be calculated at the same level of accuracy [36,217]. However, total energies

in VASP are calculated with respect to non spin-polarized spherical atomic references [154].

Moreover, VASP, as a solid-state code, performs calculations periodic systems only. Therefore,

we placed each atom in in an orthorhombic cell with 13 Å× 14 Å× 15 Å dimensions and carried

out SDFT calculations. Electronic configurations of these isolated spin-polarized pseudo-atom

were set to be the same as they enter the RHS of Eq. 7.1.2 above. By imposing large dimensions

1 Eq. 7.1.2 results in a negative Ecoh. However, another convention with positive Ecoh is also common, where
energy signs in Eq. 7.1.2 change.
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to the unit cell, one is certain that there is no significant interaction between the atom in the

cell and its neighbor replicants. Moreover, by imposing the symmetry of the orthorhombic cell,

the physically incorrect spherical states are avoided2 (cf. Ref. [204] and Ref. 28 therein.). We

used Γ point and Gaussian smearing method with a small width of 0.002 eV . We then manually

subtracted the obtained atomic energies from the cohesive energies ECumNn
solid calculated by VASP.

7.2 Bulk Modulus B and its Pressure Derivative B′

Given the DFT calculated total energy E (or, equivalently cohesive energy Ecoh), the external

pressure on the unit cell can be calculated from [89, 219]

P = −∂E
∂V

. (7.2.1)

When the pressure vanishes (P = 0), we say the bulk system is at equilibrium, and all quantities

at that state are denoted by subscript “0”. The equilibrium isotropic elastic properties of a bulk

system are described by its compressibility K0 [89, 219]

1

K0

= B0 = −V ∂P
∂V

∣∣∣∣∣
V=V0

= −V ∂
2E

∂V 2

∣∣∣∣∣
V=V0

, (7.2.2)

where B0, the ratio between the small decrease in pressure P to the resulting fractional increase

in volume V , is the equilibrium bulk modulus (or incompressibility) [82, 89, 220]. Its pressure

derivative is given by [219]

B′
0 =

∂B

∂P

∣∣∣∣∣
P=0

=
∂B

∂V

∂V

∂P

∣∣∣∣∣
V=V0

=
1

B0

(
−V ∂B

∂V

) ∣∣∣∣∣
V=V0

=
1

B0

(
V

∂

∂V
(V
∂2E

∂V 2
)

) ∣∣∣∣∣
V=V0

.(7.2.3)

It is clear that B′
0 measures the dependence of the equilibrium bulk modulus B0 on pressure [219].

From experimental point of view, B′
0 is a measurable quantity3, is related to some important

2 It is also well known that GGA may slightly lower the ground-state energy when a non-spherical ground-state
density is allowed for (cf. Ref. [218] and Ref. 46 therein).

3 Theoretically, B′
0 can be obtained from first-principles calculations, as in the present work, or through the

so-called method of model potentials. In either approaches, and from eq. 7.2.2, eq. 7.2.1 and eq. 7.2.3, the main
required quantity is the total energy E [219]. For summary of the experimental and semi-empirical methods of
determining B′

0, interested readers are referred to the work by Raju, Mohandas and Raghunathan [219]. In that
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thermo-physical properties, and it is of great physical significance in high pressure physics [219,

and Ref. (1) therein]. Therefore, the measurable B0 and B′
0 can be used to directly test our

total-energy ab initio calculations against experiment.

7.3 Forces on Ions and Cell

The general theory of force has been established in Sec. 2.3. For expressions of force within

the PAW formalism, we have already referred interested readers to Refs. [143–145]. Here, we

emphasize that the assumption that total energy of a system E depends on a single geometri-

cal parameter λ may be valid only in the case of cubic crystals and only when the constituent

atomic basis has no internal degrees of freedom. In the general case, however, one should -in

principle- consider the E(λ1, λ2, ..., λn) hyper-surface over all possible deformations of the lattice

that are described by λ1, λ2, ..., λn [213]. A general expression for the force Fλ is thus given by

the Hellman-Feymann force theorm (Eq. 2.3.7).

Given a certain crystal structure, the dependence of its total electronic energy E on a geometrical

parameter λ with linear dimension (such as lattice parameter, distance between nearest neighbors,

cube root of the molar volume, etc.), we define the equilibrium structural parameter λmin as the

value of λ which satisfies E(λmin) = Emin. That is, the first derivative satisfies (∂E/∂λ)|λm = 0,

while the second derivative is related to the bulk modulus B by

B = −V ∂P
∂V

= V
∂2E

∂V 2
= V

∂2E

∂λ2
∂2λ

∂V 2
, (7.3.1)

where V is the volume of the cell, P the hydrostatic pressure and the derivatives are to be eval-

uated at λmin [213].

As in the most available soild-state codes, in using VASP one needs only to input the chemi-

cal symbols of the constituent atomic elements, lattice vectors and basis vectors (See App. A

and Sec. 5.2). Then, in general, the total energy E should be minimized with respect to the

work, they pointed out that these different methods agree poorly among themselves! On the other hand, B0 can
be measured with great accuracy at T 6= 0 and extrapolated to T = 0 [78].
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volume (volume relaxation), with respect to the shape of the unit cell (cell external relaxation),

and with respect to the position of the atoms within the cell (cell internal relaxation) [8,128,154].

In our calculations, we did not relax the shape of the unit cell (i. e. angles and lattice pa-

rameters ratios are kept fixed), and we relaxed the volume manually (see Sec. 7.4). However,

employing the implemented conjugate-gradient (CG) algorithm (which is regarded as the most

reliable backup routines in the present), we allowed every ion with free parameter(s) to search for

local minima on the Born-Oppenheimer potential hyper-surface (see Sec.2.2) until all Hellmann-

Feynman force components on every and each ion are smaller than 0.01 eV/Å.

If a position of an individual atom in a crystal is changed by a small amount, δr, then the

corresponding change in total energy is roughly |δE| ≈ |F||δr|, with F being the force on that

atom. If we set δr = 0.01 Å, a relatively significant distance at the atomic scale, our stopping

criterion |F| ≤ 0.01 eV/Å will produce |δE| ≤ 0.0001 eV . Thus, this small amount of energy

justifies our relaxation stopping condition (cf. [127]).

7.4 Equation of State (EOS) and Lattice Constants

It is clear from the last parts to the right in Eq. 7.2.2 and Eq. 7.2.3 that: (i) B0 and B′
0 are

a second- and a third-order energy derivative with respect to the externally imposed volume,

respectively. (ii) The only DFT calculated quantity is the total energy E (or, equivalently Ecoh)

at T = 0. Therefore, B0 and B
′
0 are directly related to the energy versus volume curve E(V ), and

both measures its curvature about the equilibrium volume, V0. Since it is very straight forward

to carry out electronic structure calculations at fixed V , the E(V ) equation of state (EOS) has

become the most convenient for theoretical analysis [78].

To determine the equilibrium lattice parameters of each structure and to study its energy-volume

E(V ) equation of state (EOS) we perform a two-step energy calculations at several different

volumes: First, atoms with internal degrees were relaxed as in Sec.7.3 above. Second, a static

calculation (i.e. with atomic positions fixed) with tetrahedron method with Blöchl corrections

(see Subsec. 3.6.2). We then calculated Ecoh and the obtained values as a function of volume
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V per atom were least-squares-fitted [221] to the integration

E(V ) = E(V0) +
9V0B0

16



[(

V0
V

) 2
3

− 1

]3
B′

0 +

[(
V0
V

) 2
3

− 1

]2 [
6− 4

(
V0
V

) 2
3

]
 (7.4.1)

of the isothermal Birch-Murnaghan 3rd-order EOS [220, 222]

P (V ) =
3

2
B0

((
V0
V

)7/3

−
(
V0
V

)5/3
)(

1 +
3

4
(B′

0 − 4)

[(
V0
V

)2/3

− 1

])
, (7.4.2)

where V0, E0, B0 and B′
0 here are the fitting parameters. The equilibrium structural parameters

and energetic and elastic properties are are readily then deduced by performing the calculations

again at V0.

7.5 Formation Energy

Since the driving force for the formation of a solid may lie in the energy liberated when the

elements condense to form the solid [223], it has become a common practice in first-principles

calculations to calculate the so-called heat or energy of formation4 in order to test the possibility

of formation of materials under consideration [224] as well as to measure the relative thermody-

namic stabilities of different phases [36, 225].

We can formally define the formation heat Ef of a solid as the energy required to separate the

solid compound into elements (not necessarily atoms) in their standard state [212]. Within ab

initio calculations, formation energy Ef can be obtained from the difference between the cohesive

energy (or enthalpy) of the products Ecoh(products) and the cohesive energy (or enthalpy) of the

reactants Ecoh(reactants) [8, 215, 226]

Ef =
∑

Ecoh(products)−
∑

Ecoh(reactants); (7.5.1)

where Ecoh(reactants) should be given in the reference states of the reactants; that is, at their

4 Note that, we use the term energy of formation not enthalpy of formation because the latter is defined only
at T = 273.15 K = 0 oC [215].
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most stable state at specified temperature and pressure [226].

Assuming that the bulk solid MmNn results from the interaction between the gaseous N2 and the

solid M(structure) metal (where structure = A3 for Zn and = A1 for Ni, Pd, Pt, Cu, Ag and

Au. See Table 5.1 and Refs. [161, 168, 227].) through the chemical reaction

mMsolid +
n

2
Ngas

2 ⇋ MmN
solid
n , (7.5.2)

Eq. 7.5.1 translates as

Ef (MmN
solid
n ) = Ecoh(MmN

solid
n )− mEcoh(M

solid) + n
2
Ecoh(N

gas
2 )

m+ n
, (7.5.3)

where Ecoh(MmN
solid
n ) is the cohesive energy per atom as obtained from Eq. 7.1.25.

To determine the equilibrium cohesive energy of the elemental metals Ecoh(Cu
solid) each in its

well-known standard crystal structure, we followed the same procedures described in Sec. 7.1

and Sec. 7.4. The obtained energy-volume EOS curves are displayed in Sec. 10.1. The obtained

structural parameter(s) and cohesive energy of each metal M are given with the obtained results

for the corresponding nitride, MmNn.

To calculate the cohesive energy of the gaseous diatomic molecular nitrogen (Ecoh(N
gas
2 )), we

generally followed the method described in Sec. 7.1. However, we placed one N atom at a

corner of a cubic cell of edge a = 14 Å, while we displaced the second atom along the diagonal

direction, and, following the implemented conjugate gradient algorithm, the latter atom was

allowed to move searching for the optimal point on this one-dimensional potential surface. In

this calculation, we set Ecut = 800 eV and employed Γ point and Gaussian smearing method

with te = 0.002 eV . With comparison to experiment and to previous calculations, obtained

equilibrium cohesive energy and equilibrium bond length are given in Table II of the appended

article (Ref. [3]).

5 If Ecoh is used with a positive sign convention, i.e. negative of Eqs. 7.1.1 and 7.1.2, then signs in Eq. 7.5.3
must be reversed.
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7.6 Pressure-Induced Structural Phase Transitions

At T = 0 K, a (structural) phase transition between, say, phase 1 and phase 2 takes place when

the enthalpies

H = E(V ) + PV (7.6.1)

of the two structures are equal, that is when [213]

E1(V1) + PtV1 = E2(V2) + PtV2. (7.6.2)

This condition defines the transition pressure Pt, the pressure at which the transition occurs, as

Pt = −E2 − E1

V2 − V1
= −

[
dE1

dV

]

V=V1

= −
[
dE2

dV

]

V=V2

, (7.6.3)

where we made use of Eq. 7.2.1. Geometrically, Eq. (7.6.3) above defines a common tangent

line that connects point V1 on the E(V ) EOS of phase 1 to point V2 on the E(V ) EOS of phase 2.

Thus, to determine the transition pressure Pt, one can either use Eq. (7.6.2), plot the H(P )

curves and the point where the two curves (of two modifications with the same chemical stoi-

chiometry [228]) cross is Pt; or use Eq. (7.6.3), plot the E(V ) curves and the the slope of the

common tangent line to the two curves defines Pt. The later approach is known in the literature

as Gibbs construction [78].

Surely the direction of transition is from the higher H to the lower H , and only the phase with

the lower H will survive above Pt, since systems under pressure always adjust themselves toward

a lower point on the potential surface. The Pt itself is a point at which polymorphism occurs [213].

In the present investigation, we plotted the H(P ) curves for a selected set of nitrides, determine

the Pt’s, if any, and carefully analyzed the stabilities (see Sec. 7.7).
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7.7 Phase Stabilities

In general, a phase is said to be stable if it is resistant to changes of condition. Such phase lives

in a deep energy-well. A phase is said to be metastable if it cannot maintain its condition. Such

phase lives in a shallow energy-well [215]. If a phase has a positive cohesive energy Ecoh or a

positive formation energy Ef , it is unstable.

The concepts and methods of calculations of the cohesive energy Ecoh and formation energy

Ef were established in Sec. 7.1 and Sec. 7.5, respectively. The significance of both quanti-

ties is that they can be used as useful measures of relative stabilities. That is, those structural

phases with the lower Ecoh are relatively more favorable than those with higher Ecoh; and those

structural phases with the lower Ef are thermodynamically more stable6. For non-zero pressure

states, we employed enthalpy H as a measure of stability, since it a natural extension to Ecoh.

We have not considered elastic stability, but refer it whenever results are available in the literature.

6 From its definition, Ef may give an evidence about the spontaneous decomposition of the bulk solid phase,
yet Ef cannot be used as a sharp restriction of the synthesizability and alloying ability of the phase [215].



8. Calculations of Electronic Properties

The electronic energy band diagram is the fundamental quantity that characterizes the electronic

structure of a solid and determines its ground state and a series of excitations involving electronic

states [148]. In the present chapter, we first summarize several basic concepts from solid-state

physics in order to establish the notation used to characterize the materials under investigation

and to show how these quantities are calculated within the context of the theoretical methods

introduced in Part I, especially DFT. Introduced and derived equations and the analysis lead to

them will be applied in Part III to characterize the materials under investigation.

8.1 Band Structure

Within an independent-particle approximation to the many-electron problem of bulk crystalline

solids, Bloch’s theorem, we summarize the basic notions of band structure in App. B. In the

present section, we will discuss related issues like Fermi surface, band gap, and how can one make

use of the band diagrams to classify materials into metals, insulators and semiconductors.

The ground state of N independent electrons (e.g. Bloch and Kohn-Sham electrons) is con-

structed by populating the lowest one-electron states εi,k. When all electrons are accommodated,

three distinct configurations can result [89]:

1. Certain number of bands are completely filled, while the rest are completely empty. The

difference in energy between the highest occupied band (called valence band maximum

(VBM)) and the bottom of the lowest unoccupied band (called conduction band minimum

(CBM)) is referred to as the band gap Eg
1. If Eg >> kBT , where kB is the Boltzmann

constant and T is about room temperature, one has an insulator [89].

2. As in 1 above but Eg ∼ kBT . In that case one has an intrinsic semiconductor [89]2.

3. A band or more may be partially filled, and one has a metallic material [89].

1 At T = 0 K, the collection of all occupied electronic states is known as the valence band, while the collection
of all the unoccupied electronic states is known as the conduction band [127].

2 In fact, the distinction between insulators and semiconductors is somewhat arbitrary. However, Eg > 3 eV
are typically considered wide band gaps [127].
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Note that, the number of levels (i.e. number of allowed k’s) in each band is just twice the number

of primitive cells in the crystal (see App. B). Therefore, only in solids with an even number of

electrons per primitive cell all bands can be filled or empty. However, the converse is not true

and it is common to find conducting solids with an even number of electrons per primitive cell.

This happens because the overlap of band energies can lead to a ground state in which several

bands are partially filled.

In the latter configuration above, the highest occupied level is known as Fermi level, εF . The

set of constant energy surfaces εi,k = εF in k-space is known as Fermi surface. A Fermi surface

arising from a single partially filled band is known as a branch of Fermi surface.

As T → 0, the chemical potential µ of a solid with Eg approaches the energy in the middle

between the VBM and the CBM. It is this µ which is referred to when the term Fermi energy

εF is used to describe a solid with Eg. However, strictly speaking, a solid with Eg has no εF

(cf. [89, App. B, p. 142 and p. 575]).

For spin-polarized calculations (Sec. 3.5), one obtains two sets of bands, one for each spin.

8.2 Density of States (DOS)

The density of the electronic states (DOS) as a function of energy is a very useful concept in

analyzing the electronic states of solids [79]. It condenses the properties of the band structure

for all possible positions in reciprocal space into a simple form [127]. The DOS is defined as the

number of one-electron states (in Bloch, HF, or DFT schemes) per unit energy interval and per

unit cell volume [148]. Thus, for energies in the range ε + dε, the DOS is given by a sum over

all states with energy in that range [79]. An explicit relation between the DOS and the band
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structure εi(k) can be seen in the following expression for DOS [79, 89]

g(ε) =
1

Ω

∑

i

2
∑

k

δ(ε− εi,k) =
∑

i

2

∫
dk

(2π)3
δ(ε− εi,k)

=
∑

i

2

∫

εi,k=ε

dSk

(2π)3
1

|∇k εi,k|︸ ︷︷ ︸
gi(ε)

(8.2.1)

where Ω is the volume of the solid. The presence of the prefactor 2 is due the fact that each

i,k level can accommodate two electrons (one of each spin in the non-spin-polarized case). In

the limit of bulk material (i.e. large crystal with an infinite number of unit cells) the spacings

between the allowed k vectors become very small; hence the sum over k in the first expression is

replaced with an integral in the second expression. The volume integral in the second expression

can be expressed as a surface integral as in the last expression, where Sk is a constant-energy

surface in k-space and ∇k εi(k) is a vector normal to Sk with magnitude equal to the rate of

change of εi(k) in that normal direction.

Because εi(k) is bound (see App. B), there must exist, for each i, at least two points k0 at which

∇k εi(k) = 0. These vanishing gradients lead to singularities, known as van Hove singularities,

in the integrand of g(ε) 8.2.13. Typical van Hove singularities introduce sharp features in the

gi(ε) diagrams [79, 89] in a number of places where the slope of the DOS changes discontinu-

ously [127]. Moreover, with valence and conduction bands separated, the gi(ε) also reflects the

presence of the Eg. On the other hand, a simple observation is that metals have a nonzero DOS

at the Fermi level [127].

For practical purposes, let us define the integrated DOS by [148]

I(ε) =

ε∫

−∞

dε g(ε) . (8.2.2)

Now, by imposing that I(εF ) = N , where N is the number of (valence) electrons per unit cell,

3 It can be shown that such singularities are integrable [89, p.145]. For brief treatments of this point see [79,
Sec. 5.1].
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Fermi energy εF can be obtained readily from Eqs. 8.2.1 and 8.2.2. On computer (and in VASP),

however, it is easier to calculate the DOS from I(ε) as [154]

g(εi) =
I(ε)− I(εi−1)

∆ε
, (8.2.3)

where ∆ε is the energy difference between each two points in the energy grid. This scheme

should conserve the total number of electrons N exactly.

As always, for spin-polarized calculations (Sec. 3.5), it is straightforward to calculate spin-

projected DOS using εi,σ(k) instead of εi(k) in Eq. 8.2.1 (and replacing the prefactor 2 with

1) and gσi (ε) instead of gi(ε) in the subsequent equations. At the end, one obtains two sets of

DOS’s, one for each spin.

gσ(ε) =
1

Ω

∑

i

∑

k

δ(ε− εσi,k) =
∑

i

∫
dk

(2π)3
δ(ε− εσi,k)

=
∑

i

∫

εσi,k=ε

dSk

(2π)3
1∣∣∇k εσi,k

∣∣
︸ ︷︷ ︸

gσi (ε)

. (8.2.4)

8.3 Partial (Projected) Density of States (PDOS)

The DOS we have discussed in the previous section is known in the literature as the total DOS

(TDOS). However, the TDOS can be resolved into spin-projected DOS (Eq. 8.2.4) when spin-

plorized calculation are performed. One can go further and rewrite the expression for TDOS 8.2.1

as

g(ε) =
1

Ω

∑

i

2
∑

k

〈ϕi,k|ϕi,k〉 δ(ε− εi,k) , (8.3.1)
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where |ϕi,k〉 are the KS eigenstates corresponding to the eigenvalues εi,k. Insertion of a complete

set of orthonormal basis, say |r〉 with
∫

dr |r〉〈r| = 1, yields

g(ε) =
1

Ω

∑

i

2
∑

k

〈ϕi,k|
(∫

dr |r〉〈r|
)
|ϕi,k〉 δ(ε− εi,k)

=

∫
dr

(
1

Ω

∑

i

2
∑

k

〈ϕi,k|r〉〈r|ϕi,k〉 δ(ε− εi,k)

)

︸ ︷︷ ︸
g(ε,r)

=

∫
dr g(ε, r) . (8.3.2)

The projection of DOS on the configuration space, g(ε, r), is known as the local (or site-projected)

density of states (LDOS). For a general complete orthonormal basis {|a〉} with
∑

a

|a〉〈a| = 1,

the projected (or partial) density of states (PDOS), ga(ε), is defined by

g(ε) =
1

Ω

∑

i

2
∑

k

〈ϕi,k|
(
∑

a

|a〉〈a|
)
|ϕi,k〉 δ(ε− εi,k)

=
∑

a

(
1

Ω

∑

i

2
∑

k

〈ϕi,k|a〉〈a|ϕi,k〉 δ(ε− εi,k)

)

︸ ︷︷ ︸
ga(ε)

=
∑

a

ga(ε) . (8.3.3)

One can choose to project the TDOS onto the all-electron partial waves of the isolated atoms (see

Subsec. 3.6.4), to get the atom-projected DOS. One can also choose to project the TDOS onto

the atomic orbitals (e.g. s, p and d) to obtain the atomic orbital (or ℓ-) projected DOS [145,229].

The significance of ℓ-PDOS is evident, since the interactions between different atoms or orbital

components in a soild manifest themselves in the alignment of peaks in their PDOS spectra.

This in turn, provides a very useful tool to investigate the nature of interactions and electronic

bonding in a solid [229, 230]. Spin PDOS give a clue about the magnetic nature of a solid (cf.

Eq. 3.5.6). Moreover, PDOS may give a clue about the electrons dynamics under perturbation

(cf. Ch. 9).

VASP gives access to different kinds of PDOS: TDOS, spin-PDOS, site-PDOS and ℓ-PDOS.

For each target TMNs, and within each stoichiometry, we carried out band-structure and DOS
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calculations on the most energetically favorable phase(s). Electronic properties of some other

phases have been also investigated. The SDFT calculated band diagrams (i.e. ǫσi (k) curves),

spin-projected DOS and ℓ-PDOS (decomposed into each atomic type) for the selected phases have

been presented graphically. In order to closely investigate the details of their electronic structure,

we plotted the energy bands along densely sampled high-symmetry string of neighboring k-points

(listed in Table 8.1). Moreover, the orbital character of the bands were extracted by plotting the

(integrated) ℓ-PDOS (of each atomic type) at the same energy scale as the energy bands and

side by side.

Table 8.1: High-symmetry k-points along which band diagrams are calculated. Points are labeled
according to Ref. [203] and coordinates are given w.r.t. the reciprocal lattice basis vectors. The
common Γ(0.0, 0.0, 0.0) point is not shown.

Structure k-points
M3N Structures

D09 M(0.5, 0.5, 0.0), X(0.0, 0.5, 0.0), R(0.5, 0.5, 0.5).
D02 N(0.0, 0.0, 0.5), P (0.25, 0.25, 0.25), H(0.5,−.5, 0.5).
ǫ-Fe3N A(0, 0, 0.5), H(−0.333, 0.667, 0.5) K(−0.333, 0.667, 0), M(0, 0.5, 0), L(0, 0.5, 0.5).
RhF3 F (0.5, 0.5, 0.0), Q(0.375, 0.625, 0.0), B(0.5, 0.75, 0.25), Z(0.5, 0.5, 0.5),

L(0.0, 0.5, 0.0), Y (0.25, 0.5,−.25), Σ(0.0, 0.5,−.5).
MN Structures

B3 X(0.0, 0.5, 0.0), W (0.75, 0.25, 0.5), L(0.5, 0.5, 0.5), K(0.750, 0.375, 0.375),
U(0.625, 0.250, 0.625).

B17 X(0.0, 0.5, 0.0), M(0.5, 0.5, 0.0), Z(0.0, 0.0, 0.5), A(0.5, 0.5, 0.5), R(0.0, 0.5, 0.5).
B24 Z(0.5, 0.5, 0.0), X(0.5, 0.0, 0.5), Y (0.0,−.5,−.5), L(0.5, 0.0, 0.0).

MN2 Structures
C18 X(0.0, 0.5, 0.0), S(−.5, 0.5, 0.0), Y (−.5, 0.0, 0.0), Z(0.0, 0.0, 0.5), U(0.0, 0.5, 0.5),

R(−.5, 0.5, 0.5), T (−.5, 0.0, 0.5).
CoSb2 B(−.5, 0.0, 0.0), A(−.5, 0.5, 0.0), E(−.5, 0.5, 0.5), Z(0.0, 0.0, 0.5),

Y (0.0, 0.5, 0.0), D(−.5, 0.0, 0.5), C(0.0, 0.5, 0.5).



9. Calculations of Optical Properties

“Response functions are the bread and butter of theoretical physics and the

connection to important experimental measurements.”

Richard M. Martin [78, p. 486]

A vast amount of useful information and extremely powerful investigation and characterization

methods of solid materials are provided by their optical excitation spectra. Moreover, optical

spectra supply us with the basis for a wide range of technological applications, e.g. in opto-

electronics [151]. From a fundamental point of view, the evaluation of the static and frequency-

dependent dielectric response functions is important for the interpretation of the optical properties

measured for bulk solids as well as their surfaces [231]. An efficient calculation of the frequency-

dependent microscopic density repose matrix χ (Sec. 9.2.1) is crucial for the implementation

of most post-DFT approaches (e.g. GW and the Bethe-Salpeter) which constitute the main

routes toward a high-level description of the optical properties in extended systems. In GW ,

in particular, the frequency-dependent macroscopic dielectric function is required for analytically

integrating the q = 0 Coulomb singularity of the correlation and self-energy. If excitonic effects

are included, dielectrically screened interaction potentials are also necessary [231].

Following the clear presentation of Ref. [153, Ch. 2] and Refs. [150, 231], the present chapter

is devoted to the employed methods of evaluation of the dielectric matrix ε. We emphasize

that we only sketch the general derivation procedures, quote results and define some important

terminologies in the subject. Technical details can be found in the original works [150,153,231–

235] and in many texts [78, 86, 89, 236, 237].

9.1 Preliminary Remarks

In Appendix D, it is shown that all the frequency-dependent optical constants of a material can

be calculated if the complex dielectric function ε(q, ω) is known. However, before we move to

show how ε(q, ω) itself can be obtained from DFT-GW calculations, we should mention some

points:
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1. As in the usual spectroscopic experiments, we are limiting the discussion here to the linear

response. That is, we are considering the influence of weak external perturbations compared

to the electric fields caused by the ions [153]; in which case the material parameters are

independent of the strength of the electric field.

2. It is also assumed that these parameters do not depend on the change of an external applied

magnetic field, i.e. no magneto-resistive effects are considered.

3. In principle, the dielectric function has a tensorial nature, that is Eq. D.1.4a should be

written as

Dα =
∑

β

εαβEβ . (9.1.1)

However, in experiment isotropy is normally assumed. Therefore, in order to make compar-

ison with experiment, we averaged out the diagonal terms of the obtained εαβ. It is this

average which is substituted in the relations of Appendix D 1.

9.2 Dynamical Linear Response

9.2.1 The Density Response Function (χ)

The central quantity in the so-called “linear response theory” is the density response function:

χ(r, r′, t− t′) =
δn(r, t)

δvext(r′, t′)
, (9.2.1)

where δn(r, t) is the induced change in the electronic density at (r, t) due to a small change δvext

in the external potential at (r′, t′) [78, 153]. Therefore,

δn(r, t) =

∫
dt′
∫

dr′ χ(r, r′, t− t′) δvext(r
′, t′) . (9.2.2)

In the static DFT approach (Ch. 3), it is required that the electron density of the KS system

and of the physical system must be the same. Similarly, one may require that any change δn in

1 For cubic crystals diagonal terms are equal and there is no need for approximation.
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the time-dependent density n(r, t) of the reference system2 to be equal to that of the physical

system. Therefore, one can define the density response function of the KS system χKS(r, r′, t−t′)
to any small change in the KS potential (defined by Eqs. 3.4.17 and 3.4.19)3 as

χKS(r, r′, t− t′) =
δn(r, t)

δvR(r′, t′)
, (9.2.3)

δn(r, t) =

∫
dt′
∫

dr′ χKS(r, r′, t− t′) δvR(r
′, t′) . (9.2.4)

Substituting for vR from Eq. 3.4.19, Eq. 9.2.4 reads

δn(r, t) =

∫
dt′
∫

dr′ χKS(r, r′, t− t′) (δvH(r, t) + δvext(r, t) + δṽxc(r, t)) . (9.2.5)

9.2.2 The Exchange-Correlation Kernel (fxc)

In order to obtain an explicit relation between χ and χKS, one may write the time-dependent

exchange correlation functional ṽxc(r, t) in terms of the ground state density time-independent

n0(r) as

ṽxc(r, t) = ṽxc[n0 + δn](r, t) = ṽxc[n0](r) +

∫
dt′
∫

dr′ fxc[n0](r, r
′, t− t′) δn(r′, t′) , (9.2.6)

where the so-called exchange-correlation kernel fxc is the functional derivative of the ṽxc potential

with respect to the electron density evaluated at the unperturbed ground state [234]

fxc[n0](r, r
′, t− t′) =

δṽxc(r, t)

δn(r′, t′)

∣∣∣∣
n=n0

. (9.2.7)

Now, substituting Eq. 9.2.7 in Eq. 9.2.6 and equating Eqs. 9.2.2 and 9.2.5 one obtains a Dyson

equation

χ(r, r′, ω) = χKS(r, r′, ω) +

∫
dr1dr2 χ

KS(r, r1, ω)

(
e2

|r1 − r2|
+ fxc(r1, r2, ω)

)
χ(r2, r

′, ω) ;

(9.2.8)

2 In fact, by considering n to be a time-dependent quantity, one has already migrated from the static KS-DFT
formalism to a time-dependent DFT formalism.

3 Dropping the spin superscript, for now.
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where we have moved from the time domain to the frequency domain, and the chain rule have

been employed on δvH and δvxc (For further explanation, see Ref. [153, p.14]).

9.2.3 Random Phase Approximation (RPA)

Dyson equation 9.2.8 above is a key equation in the subject, telling us how to calculate the

response function of a many-body system from that of the reference KS system. However, the

exchange-correlation kernel fxc, like its parent ṽxc, has to be approximated. The simplest ap-

proximation is the well-known random phase (or Hartree) approximation (RPA) [236], in which

exchange and correlation effects on the response are neglected: fxc = 0 [234]. In this approx-

imation, electrons are considered to respond to the total (external plus induced) field indepen-

dently [238]. Only Hartree term δvH contributes to 9.2.8, while other interactions felt by the

electrons average out because of their random phases [78].

9.2.4 Explicit Forms of χ and χKS

By introducing the time-dependent external perturbation δĤe(t) into the picture, the many-body

electronic Schrödinger equation reads

i~
∂

∂t
|Φ(t)〉 =

(
Ĥe + δĤe(t)

)
|Φ(t)〉 , (9.2.9)

where δĤe can be written in terms of the time-dependent induced potential δv as

δĤe(t) = eηt
N∑

i=1

δv(ri, t) ; 0 < η ≪ 1 , (9.2.10)

or, in the frequency domain

δĤe(t) =

∫
dr

∫
dω

2π
e−j(ω+jη)t δv(r, ω) n̂(r) . (9.2.11)
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It is then a routine matter to solve Eq. 9.2.9 to linear order by perturbation theory (See Ref. [153,

Sec. 2.2]) to obtain

χ(r, r′, ω) = −
∑

i 6=0

(〈Φ0
i |n̂(r′)|Φ0

0〉〈Φ0
0|n̂(r)|Φ0

i 〉
ω0
i − ω − jη

+
〈Φ0

0|n̂(r′)|Φ0
i 〉〈Φ0

i |n̂(r)|Φ0
0〉

ω0
i + ω + jη

)
; (9.2.12)

where |Φ0
i 〉 are the eigenstates of the unperturbed Schrödinger equation (Eq. 2.2.3), and

ω0
i = E0

i − E0
0 are the differences between the corresponding eigen energies E0

i and the ground

state energy E0
0 .

In the (KS) independent-particle picture, where |Φ0
i 〉 is given by Eq. (2.4.51), it can be shown

straightforwardly that (See Ref. [153, Sec. 2.2])

χKS(r, r′, ω) = −
∑

i

∑

i′

2fi(1− fi′)

(
ϕ∗
i′(r

′)ϕi(r
′)ϕ∗

i (r)ϕi′(r)

ǫi′ − ǫi − ω − jη
+
ϕ∗
i (r

′)ϕi′(r
′)ϕ∗

i′(r)ϕi(r)

ǫi′ − ǫi + ω + jη

)
;

(9.2.13)

where fi = 0 for unoccupied states and fi = 1 for occupied states, while all other quantities are

defined as in Ch. 3.

9.2.5 Periodic Solids

Due to the lattice translation invariance in periodic solids χ(r + R, r′ + R, ω) = χ(r, r′, ω), it

can be shown that the Fourier transform χ(k,k′, ω) of χ(r, r′, ω) is non-zero only if k and k′

differ by a vector K in the reciprocal lattice (see App. C). Therefore, the following replacements

are valid: k → k + K and k′ → k + K′, where K and K′ are in the reciprocal lattice, and

k and K′ are inside the BZ. Also, as we did in Sec. 3.6, the indices i and i′ must be replaced

with the crystal quantum numbers i→ i,k and i′ → i′,k , respectively. Considering all this and

doing some mathematical manipulations (See Ref. [153, Sec. 2.2]), the response function can be

obtained in the k-space as [150, 231]

χKS
q (K,K′, ω) =

1

Ω

∑

i,i′,k

2wk (fi′,k−q − fi,k)

〈
ϕi′,k−q|ei(q+K)·r|ϕi,k

〉 〈
ϕi,k|ei(q+K′)·r′|ϕi′,k−q

〉

ω + ǫi′,k−q − ǫi,k + jη sgn (ǫi′,k−q − ǫi,k)
.

(9.2.14)
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To summarize, within DFT, one can define the independent-electron density response function

χKS as the functional derivative of the electron density with respect to the total KS potential

(Eq. 9.2.3) evaluated at the unperturbed ground state (Eqs. 9.2.7 and 9.2.8). In a periodic

medium, χKS is, at any given k point in the Brillouin zone (BZ), a matrix (Eq. 9.2.14)4 over

reciprocal lattice vectors (see also Ref. [234]).

9.3 The Dielectric Function (ε)

9.3.1 Macroscopic Dielectric Function (εmac)

For a bulk crystalline solid and at a coarse scale, both χ and ε are homogeneous, while the

periodicity of the external perturbation Eext is followed by the total field E. The two fields are

formally related via

E(r, ω) =

∫
dr′ ε−1

mac(r− r′, ω)Eext(r
′, ω) . (9.3.1)

Due to the homogeneity of the bulk material, the macroscopic dielectric function ε depends only

on the difference r− r′. Therefore, Eq. 9.3.1 has a simple Fourier-transformed form:

E(q, ω) = ε−1
mac(q, ω)Eext(q, ω) . (9.3.2)

The Eext field is caused only by an external source. That is, Eext is independent of the material

and its value at any point is the same as if the material were not present [78]. To properly

investigate the situation, usually the total potential vtot is divided into external and induced :

vtot = vext + vind . (9.3.3)

Here, the screened potential vtot is due to the external charge density next plus the induced

charge density nind = δn. Therefore, in terms of potentials, Eq. 9.3.2 can be rewritten (in the

long-wavelength limit) in momentum space as

vtot = ε−1vext ; (9.3.4)

4 Adler [233] and Wiser [235] were the first to give such an expression for χ in the context of the self-consistent
field (SCF) approximation [234].
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and, within the linear response limit, the definitions of the response function χ (known also as

the reducible polarizability) and the screened response function P (known also as the irreducible

polarizability) read

nind = χ vext , (9.3.5)

vind = P vtot . (9.3.6)

Moreover, it is straightforward to show that:

ε−1 = 1 + νχ , (9.3.7)

ε = 1− νP , (9.3.8)

χ = P + Pνχ . (9.3.9)

It is now clear that ε can be obtained if the response of the system to the change in either the

external potential (Eq. 9.3.7) or the total potential (Eq. 9.3.8) is known. Eq. 9.3.9 is a Dyson

equation (c.f. Eq. 9.2.8).

9.3.2 Microscopic Dielectric Function (εmic)

At the atomic scale, the total microscopic field e(r, ω) oscillates rapidly, and Eq. 9.3.1 becomes

e(r, ω) =

∫
dr′ ε−1

mic(r, r
′, ω)Eext(r

′, ω) , (9.3.10)

where now the microscopic dielectric function ε is invariant only under the translation by a lattice

vector. It is straightforward to shown that this kind of invariance implies that

e(q +K, ω) =
∑

K′

ε−1(q+K,q+K′, ω) Eext(q+K′, ω) =
∑

K′

ε−1
K,K(q, ω) Eext(q +K′, ω) .

(9.3.11)

Eqs. 9.3.10 and 9.3.11 above are to be compared with Eqs. 9.3.1 and 9.3.2, respectively.
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9.3.3 Relation Between εmac and εmic

The macroscopic and microscopic fields are connected via the integration over the unit cell Ω

around R:

E(R, ω) =
1

Ω

∫

Ω(R)

dr e(r, ω) . (9.3.12)

At this point, it may be worth mentioning that the microscopic dielectric function is the acces-

sible quantity through ab initio calculations. However, the long-wavelength limit(q → 0) of the

dielectric matrix determines the optical properties in the regime accessible to optical probes.

Starting from Eq. 9.3.12 above and considering the relations in the previous subsections, one can

straightforwardly arrive at the fact that the evaluation of εmac requires the inversion of the full

εmic matrix and taking the limit q → 0

1

εmac(q̂, ω)
= lim

q→0
ε−1
0,0(q, ω) , (9.3.13)

where q̂ = q/q is the direction which is used to approach the Γ point [231]. At this point, it

may be worth mentioning that:

• The microscopic dielectric function is the accessible quantity through ab initio calculations.

Eq. 9.3.13, however, shows that one can obtain εmac from the first-principles-calculated

εmic by inverting the latter w.r.t. K,K′ and taking the head5 of the resulting matrix, then

invert this 3× 3 tensor.

• The long-wavelength limit (q → 0) of the dielectric matrix determines the optical properties

in the regime accessible to optical probes.

9.3.4 Local Field Effects

In a real solid, the microscopic electric field varies rapidly over the unit cell. The average of the

microscopic field over a region large compared with the lattice constant but small compared with

the wave-length 2π/q is what we call the macroscopic field. These two quantities are not in

5 The terms “head”, “body” and “wing” refer to (K = K′ = 0), (K 6= 0 and K′ 6= 0) and (K = 0 or K′ = 0)
of the dielectric matrix, respectively.
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general the same; the difference between them give rise to non-vanishing off-diagonal elements

in the macroscopic response matrices and is usually referred to as “crystal local fields” or “local

field effects” [233, 234].

9.3.5 Longitudinal and Transversal ε

The external perturbation with frequency ω and spatial periodicity q induces two kinds of poten-

tials in the material, longitudinal and transversal fields. The former results from slowly moving

charges and is parallel to the wave vector q. On the other hand, q and the transversal field

vector are perpendicular. As a consequence, ε has two corresponding components: longitudinal

and transversal, linking the longitudinal/transversal component of the external electric field to

the longitudinal/transversal component of the total electric field. However, in the limit q → 0,

i.e. for slowly varying fields, the two components are equal [153]6. Furthermore, It has been

found that the transversal and longitudinal expressions for the dynamic response function yield

identical energy peaks positions in the optical absorption spectrum. This is due to the fact that

the optical transitions positions are determined from the ground state band diagrams by applying

the optical selection rules regardless of εmic type of expression [231].

However, if non-local pseudopotentials or non-local exchange interactions are applied, the sim-

pler transversal approximation breaks down, and the longitudinal or appropriate corrections to

the transversal expression have to be used. Furthermore, within PAW formalism, the one-center

terms in the standard PAW potentials are truncated at low angular momenta (l = 1) leading to

an inaccurate transversal expression. However, instead of including higher angular components,

the rigorous treatment using the exact longitudinal form has the advantage of a more rapid con-

vergence with the one-center basis set. Moreover, the extension of the longitudinal expression to

non-local XC functionals is readily achievable (see Ref. [231] for details). In the next subsection,

we follow Ref. [153] and quote the longitudinal expressions as derived by Gajdoš et. al. [231]

within PAW formalism.

6 For formal derivation of the longitudinal ε, cf. Ref. [153, Sec.2.5] and Ref. [20] therein. For formal derivation
of the transversal ε, cf. Ref. [233].
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9.3.6 Derivation of ε from Band Diagrams

Using Poisson equation

j q · E(q) = e

ǫ0
n(q) , (9.3.14)

where e is the charge unit, one can replace the fields in Eq. 9.3.11 by the densities to get

next(q+K) =
∑

K′

(q+K) ε(q+K,q+K′) (q+K′)
next(q +K′) + nind(q+K′)

(q+K′)2
. (9.3.15)

From this relation, one can, after some mathematical manipulations (See Ref. [153, Sec. 2.5]),

arrive at the following expressions for the microscopic dielectric function and its inverse:

ε−1
K,K′(q, ω) := ε−1(q+K,q+K′, ω) = δK,K′ +

νK,K′ (q)
︷ ︸︸ ︷

4πe2

|q+K||q+K′|

χK,K′ (q,ω)
︷ ︸︸ ︷
∂nind(q+K, ω)

∂vext(q+K′, ω)

= δK,K′ + νK,K′(q) χK,K′(q, ω) (9.3.16)

εK,K′(q, ω) := ε(q+K,q+K′, ω) = δK,K′ −

νK,K′ (q)
︷ ︸︸ ︷

4πe2

|q+K||q+K′|

PK,K′(q,ω)︷ ︸︸ ︷
∂nind(q+K, ω)

∂vtot(q+K′, ω)

= δK,K′ − νK,K′(q) PK,K′(q, ω) (9.3.17)

Note that Eqs. 9.3.16 and 9.3.17 are the same as Eqs. 9.3.7 and 9.3.8, respectively; while the

corresponding Dyson equation, Eq. 9.3.9, can be obtained by combining Eqs. 9.3.16 and 9.3.17

to give

χK,K′(q, ω) = PK,K′(q, ω) +
∑

K1,K2

PK,K1(q, ω)

νK1,K2
(q)

︷ ︸︸ ︷
4πe2

|q+K1||q+K2|
χK2,K′(q, ω)

= PK,K′(q, ω) +
∑

K1,K2

PK,K1(q, ω) νK1,K2(q) χK2,K′(q, ω) . (9.3.18)

Now, everything is in order: Eqs. 9.3.16 and 9.3.17 show that for one to obtain the exact

ε−1
K,K′(q, ω) or εK,K′(q, ω), one has to know the exact χ or P , respectively. Yet neither χ nor P
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of the physical system is known exactly. The only quantity one can access so far is χKS through

Eq. 9.2.14 for the KS unphysical system. Therefore, one of the following two approximations is

to be chosen:

• Replacing χ by χKS in Eq. 9.3.16: In this choice, one is actually assuming that the phys-

ical system responds to changes in vext exactly as an independent-particles system.

• Replacing P by χKS in Eq. 9.3.17: Using the foregoing relations between the external,

induced, total and the effective KS potentials, the following relation can be shown to hold

PK,K′(q, ω) = χKS
K,K′(q, ω) +

∑

K1,K2

χKS
K,K1

(q, ω) fxc;K,K′(q, ω) PK2,K′(q, ω) . (9.3.19)

If one applies the random phase approximation (Subsection 9.2.3) by letting fxc;K,K′(q, ω) =

0, Eq. 9.3.19 above reads

PK,K′(q, ω) = χKS
K,K′(q, ω) . (9.3.20)

Therefore, replacing P by χKS in Eq. 9.3.17 is exactly the random phase approximation to

the dielectric tensor, and Eq. 9.3.17 yields

εRPA
K,K′(q, ω) = δK,K′ − νK,K′(q) χKS

K,K′(q, ω) . (9.3.21)

From physical point of view, this replacement assumes that the response to the screened

external perturbation P equals the independent particle response function χKS. Therefore,

in this RPA, the electron-electron interaction is taken at least partly into account, and thus

it is more accurate than the (χ = χKS) approximation.

9.3.7 Imaginary and Real Parts of ε

The imaginary part εim(q̂, ω) of the macroscopic dielectric function (ε = εre + j εim) can be

evaluated as a sum over δ-like peaks at transition energies ω = ǫc,k − ǫv,k , which are weighted

by the transition probability |〈uc,k+q|uv,k〉|2

εimmac(q̂, ω) =
4π2e2

Ω
lim
q→0

1

q2

∑

c,v,k

2wk δ(ǫc,k+q − ǫv,k − ω) 〈uc,k+q|uv,k〉〈uc,k+q|uv,k〉∗ (9.3.22)
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where the indices v and c stand for valence and conduction, respectively, uck is the usual cell

periodic part (see App. B) of the orbitals at k [153, 231]. The dependence of the dielectric

function on the direction q̂ via the dielectric tensor εαβ can be given by

εmac(q̂, ω) = lim
q→0

εmac(q, ω) =:
∑

α,β

q̂α εαβ(ω) q̂β , (9.3.23)

where q̂α is one Cartesian component of the unit vector q̂. With eα being the unit vectors for

the three Cartesian directions, the 3× 3 Cartesian tensor εimαβ(ω) is defined as [153, 231]

εimαβ(ω) =
4π2e2

Ω
lim
q→0

1

q2

∑

c,v,k

2wk δ(ǫc,k − ǫv,k − ω) 〈uc,k+eαq|uv,k〉〈uc,k+eβq|uv,k〉∗ .

(9.3.24)

Employing the useful Kramers-Kronig transformation

εreαβ(ω) = 1 +
2

π
P
∫ ∞

0

dω′
εimαβ(ω

′)ω′

ω′2 − ω2 + jη
, (9.3.25)

is a cheep way to obtain the real part εreαβ(ω) of the dielectric tensor [231].

9.4 The GW0 Routine

Within the introduced PAW-GW scheme (Subsec. 3.6.4 and Ch. 4), the dynamically screened

Coulomb interaction W (K,K′, ω) can be obtained from the multiplication of the bare Coulomb

kernel 4πe2 1
q+K

with the inverse dielectric matrix ε−1(K,K′, ω) in Fourier space [150]:

W (K,K′, ω) = 4πe2
1

|q+K| ε
−1(K,K′, ω)

1

|q+K′| . (9.4.1)

The dielectric matrix ε, for a crystalline solid, is calculated at the random phase approximation

(RPA) [80] level via Eq. 9.3.21, while the time-ordered independent-particle irreducible polariz-

ability χKS
q (K,K′, ω) is given by Eq. 9.2.14 [150, 231].

The method described above requires, in practice, an appreciable number of empty conduction
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states. Therefore, in all our calculations we double or triple the default number of bands sup-

plied by VASP. We start by performing normal DFT calculation to obtain the unperturbed KS

eigenstates and eigenenergies. However, because of the demanding computational nature of the

scheme, we used a smaller meshes of k points: either 12×12×12 or 10×10×10. We employed

the implemented GW0 self-consistent routine on G, in which the quasi-particle eigenvalues are

updated four times in the calculations of G, while W is kept at the original DFT level 7. The

dielectric matrix ε is recalculated after the final update of G.

9.5 Calculations of Optical Spectra

Using the relations derived in App. D, we managed to derive all the optical constants from the

updated real εre(ω) and imaginary εim(ω) parts of this frequency-dependent dielectric tensor.

7 With only one exception in the case of PdN(24), where we used a less dense k mesh and performed single
shot G0W0 calculations. See Sec. 10.2.
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10. Results and Discussions

In this chapter, the obtained results are presented and discussed within the framework of the

introduced theoretical approaches (Part I) and characterization methods (Part II).

10.1 Reference Systems

By reference systems we mean those systems which their energies are required to calculate cohe-

sive energy (Eq. 7.1.2) and formation energy (Eq. 7.5.3) of the TMN different phases. Namely,

these are the isolated atoms, the nitrogen dimer and the elemental crystalline metals. Methods

of calculating their energies are described in Sections 7.1 and 7.5.

10.1.1 Isolated Atom

The obtained energies for the non-spherical spin-polarized isolated atomic systems are

N -3.1247041 eV

Pd -1.4776848 eV

Pt -.60627956 eV

Cu -.24231365 eV

Ag -.33908628 eV

Au -.28759991 eV

Zn -.16458042 eV

These values are considered as corrections to the energies determined by VASP, and should be

compared with those calculated by the VASP authors [154].

10.1.2 Molecular Nitrogen

Obtained cohesive and structural energies of the gaseous diatomic molecular nitrogen (Ecoh(N
gas
2 ))

are given in Table 10.1 and compared with experiment and with previous calculations therein.

The source of the difference between theory and experiment, and the consequence of that, are

131
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touched in Subsection 10.4.4.

Table 10.1: Calculated and experimental cohesive energy Ecoh(eV ) and bond length d(Å) of the gaseous
diatomic molecular nitrogen (Ngas

2 ). The presented data are of the current work (Pres.), experimentally
reported (Expt.) and of previous calculations (Comp.).

Pres. Expt. Comp.

Ecoh(eV ) −10.392 −(9.797658± 0.0061149)a 10.49b, 11.75c, 11.57d, 10.69e

d(Å) 1.113 (1.0976± 0.0002)6 1.102b, 1.085c, 1.095d, 1.095e

a This bond strength in nitrogen diatomic molecule is taken from Ref. [159, p. 9:55] where it is given there as
(945.33± 0.59 KJ/mol) with positive sign convention and at 298 K. In p. 9:76 of the same reference, the force
constant for bond stretching in nitrogen diatomic molecule is given to be 22.95 N/cm.
b Ref. [218], PBE(GGA)-LAPW, with spherical ground-state density of the N free atom.
c Ref. [218], LDA-PP, with spherical ground-state density of the N free atom.
d Ref. [218], LDA-LAPW, with spherical ground-state density of the N free atom.
e Ref. [218], PBE(GGA)-PP, with spherical ground-state density of the N free atom.
f Ref. [239, p. S7].

—————————————————————-

10.1.3 Elemental Crystalline Metals

Structural and energetic properties of the elemental crystalline metals are required to study the

effect of nitridation on these pure elemental crystalline metals. Therefore, we present our ob-

tained equilibrium properties of each metal in the first row of the table that includes our obtained

equilibrium properties of the corresponding TMN. As a benchmark for the accuracy of the rest

of the calculations, we always make comparison with experiment and with previous calculations.

Within the accuracy of the employed calculation methods, excellent agreement between our find-

ings and experiment and previous calculations usually achieved.

The energy-volume EOS curves of these metals are displayed in Fig. 10.1. It should be noted

that we used the experimental value c/a = 1.856 for bulk Zn, however, this ratio may change

slightly when Zn is prepared in form of a thin film [240, p. 225].
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Figure 10.1: (Color online.) Cohesive energy Ecoh(eV/atom) versus atomic volume V (Å3/atom) of
the elemental crystalline metals Pd, Pt, Cu, Ag, Au and Zn. Zn is in the hcp A3 structure, while the
rest are in the fcc A1 structure.

10.2 Palladium Nitrides

Cohesive energy Ecoh versus atomic volume V0 equation of state (EOS) for the considered mod-

ifications of Pd3N, PdN and PdN2 are displayed graphically in Figs. 10.2a, 10.2b and 10.2c,

respectively. The corresponding calculated equilibrium structural, energetic and mechanical prop-

erties of these twenty phases and of Pd(A1)are presented in Table 10.2. Modifications in this

table are ordered in the same way as in Table 5.1. Our results are compared with experiment and

with previous calculations. In the latter case, the calculations methods and the XC functionals

are indicated in the Table footnotes whenever possible.
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Figure 10.2: (Color online.) Cohesive energy Ecoh(eV/atom) versus atomic volume V (Å3/atom) for:
(a) Pd3N in seven different structural phases; (b) PdN in nine different structural phases; and (c) for
PdN2 in four different structural phases.
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Table 10.2: Calculated and experimental zero-pressure properties of Pd(A1) and of the twenty studied
phases of Pd3N, PdN and PdN2: Lattice constants (a(Å), b(Å), c(Å), α(◦) and β(◦)), atomic volume

V0(Å
3
/atom), cohesive energy Ecoh(eV/atom), bulk modulus B0(GPa) and its pressure derivative B′

0,
and formation energy Ef(eV/atom). The presented data are of the current work (Pres.), experimentally
reported (Expt.) and of previous calculations (Comp.).

Structure a(Å) b(Å) c(Å) α(◦) or β(◦) V0(Å
3/atom) Ecoh(eV/atom) B0(GPa) B′

0 Ef (eV/atom)

Pd

A1

Pres. 3.957 – – – 15.49 −3.703 163.626 5.549
Exp. 3.8900a – – – 14.716b −3.89c 180.8c, 184d 5.42e

Comp. 3.85f,g – – – −5.06h, 212f, 220g 5.50i, 6.40j,
– – – −3.74k,l 5.29m

Pd3N
D03 Pres. 6.043 – – – 13.79 −2.965 162.895 5.353 1.111
A15 Pres. 4.857 – – – 14.32 −2.758 148.123 5.321 1.318
D09 Pres. 4.089 – – – 17.09 −3.617 132.499 5.255 0.459
L12 Pres. 3.834 – – – 14.09 −2.880 148.697 5.402 1.196
D02 Pres. 7.828 – – – 14.99 −3.698 111.276 9.361 0.378
ǫ-Fe3N Pres. 5.135 – 4.785 – 13.66 −3.758 168.259 8.694 0.318
RhF3 Pres. 5.627 – – α = 54.640 13.78 −3.749 130.415 9.837 0.327

PdN

B1

Pres. 4.444 – – – 10.97 −3.317 207.787 4.978 1.132
Comp. 4.145n – – – −4.585o 0.400q

4.33r – – – −11.90r 297.67r 4.15r

– – – −4.027p

B2
Pres. 2.779 – – – 10.73 −2.947 210.200 4.931 1.502
Comp. 2.71r – – – −12.25r 251.03r 4.70r

B3
Pres. 4.748 – – – 13.38 −3.404 167.804 5.015 1.045
Comp. 4.67r – – – −8.89r 192.33r 4.07r

B81 Pres. 3.416 – 4.751 – 12.00 −3.034 187.954 5.021 1.415
Bk Pres. 3.378 – 8.986 – 22.20 −3.092 88.897 4.830 1.357
Bh Pres. 2.992 – 2.921 – 11.32 −3.135 201.682 5.037 1.314

B4
Pres. 3.360 – 5.503 – 13.45 −3.387 164.169 4.978 1.062
Comp. 3.37r – 5.26r – −11.43r 171.34r 4.63r

B17 Pres. 3.061 – 5.389 – 12.62 −3.570 190.426 4.993 0.879
B24 Pres. 4.173 4.427 4.898 – 11.31 −3.265 197.566 4.997 1.184

PdN2

C1 Pres. 4.975 – – – 10.26 −3.050 221.734 4.809 1.648

C2
Pres. 5.169 – – – 11.51 −4.181 68.462 5.611 0.517
Comp. 4.975s – – – 10.267s 135s

4.843t – – – 156t 9.48t

C18
Pres. 3.173 4.164 5.082 – 11.19 −4.254 76.615 6.102 0.444
Comp. 3.911s 4.975s 3.133s – 10.333s – 100s

CoSb2
Pres. 5.608 5.304 9.630 β = 151.225 11.49 −4.200 71.792 6.511 0.498
Comp. 5.071s 5.005s 5.071s – 10.433s 93s
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Notes to Table 10.2 : —————————-
a Ref. [240]: This is an average of 21 experimental values, at 20 ◦C, with a deviation ±0.0007 Å.

b Ref. [240]: At 20◦C.

c Ref. [172]: Cohesive energies are given at 0 K and 1 atm = 0.00010GPa; while bulk moduli are given at

room temperature.

d Ref. (25) in [219]: at room temperature.

e See Refs. (8)–(11) in [219].

f Ref. [241]. LAPW-TB.

g Ref. [241]. LAPW-LDA.

h Ref. [242]: PAW-LDA.

i Ref. [219]: Using the so-called method of transition metal pseudopotential theory; a modified form of

a method proposed by Wills and Harrison to represent the effective interatomic interaction.

j Ref. [219]: Using a semi-empirical estimate based on the calculation of the slope of the shock velocity

vs. particle velocity curves obtained from the dynamic high-pressure experiments. The given

values are estimated at ∼ 298 K.

k Ref. [242]: PAW-PW91.

l Ref. [242]: PAW-PBE.

m Ref. [219]: Using a semi-empirical method in which the experimental static P − V data are fitted to an

EOS form where B0 and B′
0 are adjustable parameters. The given values are estimated at ∼ 298 K.

n Ref. [10]: Estimated by extrapolation of the (experimental) average volume per atom ΩMN for nitrides of

other 4d transition metals.

o Ref. [10]: Using the linear-muffin-tin-orbitals (LMTO) method and the local-spin-density approximation (LSDA).

p Ref. [10]: (±0.150) Semi-empirical calculations.

q Ref. [10]: This is enthalpy of formation (±0.145) from Pd and N in their stable modifications at one

atmosphere and T = −298.15K.

r Ref. [193]: Using separable norm-conserving pseudopotentials within LDA.

s Ref. [243]: Using the Vanderbilt ultrasoft pseudopotential within GGA.

t Ref. [244]: Using PAW within LDA.

—————————————————————-

To compare and to deeper analyze the obtained equilibrium properties of the three stoichiometries

series with respect to one another, the calculated equilibrium properties are depicted graphically

in Fig. 10.3. All quantities in this figure are given relative to the corresponding ones of Pd(A1)

given in Table 10.2. In this way, one will be able to investigate the effect of nitridation on the
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parent crystalline Pd as well 1.

10.2.1 EOS and Relative Stabilities

In Fig. 10.2a, the energy-volume EOSs of the seven considered Pd3N modifications are displayed.

This figure, and the values of the equilibrium cohesive energy Ecoh (Table 10.2 and Fig. 10.3)

reveal that the Fe3N structure (of the Ni3N) is the most energetically favored modification, as

we expected. However, the rhombohedric RhF3 phase has a very similar EOS curve before and

around the equilibrium, with very close Ecoh value to that of Fe3N. Cubic systems (D03, A15,

D09, L12 and D02) seem not to be energetically competing in this stoichiometry.

It is clear that the simple tetragonal structure of cooperite (B17) would be the energetically most

stable phase of PdN (Fig. 10.2b). To the best of our knowledge, this structure has not been

considered for PdN in any earlier work, though it was theoretically predicted to be the ground-

state structure of the nitrides of the elements surrounding Pd in the periodic table: PtN [3, 30],

CuN [3], AgN [2], and AuN [6]. Nevertheless, Fig. 10.3 shows clearly that no PdN phase, even

PdN(B17), has a tendency to lower the cohesive energy of the parent metal.

In Ref. [193] the E(V ) EOS for PdN in the B1, B2, B3 and B4 structures was studied. Within

this parameter sub-space, the relative stabilities arrived at in that work agree very well with ours.

However, their obtained Ecoh are more than twice the values we obtained, and the bulk moduli

differ considerably (see Table 10.2)!

In the studied parameter sub-space of PdN2, the marcasite structure (C18) is the most energeti-

cally stable. The relative stability of C2 and CoSb2 phases may be compared with Crowhurst et

al. [20] who found PdN2 in the baddeleyite structure (which is very close to CoSb2 structure [198])

to be more stable than PdN2(C2).

From a combined theoretical and experimental investigation, Åberg et al. [245] showed that

for PdN2(C2) both the electronic and the structural degrees of freedom have a strong pressure

dependence. They claimed that the EOS cannot be accurately described within the GGA. Earlier

calculations showed that PdN2(C2) is very soft (see Ref. 22 in [20]). These two facts may explain

the difficulty we found in relaxing this structure as well as they may explain the considerable

differences found with and among the earlier reported structural properties.

1 In Table 10.2, our computed properties of the elemental Pd are compared with experiment and with previous
calculations as well. This may benchmark the accuracy of the rest of our calculations.
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Figure 10.3: (Color online.) Calculated equilibrium properties of the twenty studied phases of palladium
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Figure 10.4: (Color online.) Enthalpy vs. pressure for some PdN modifications in the region where:
B17→B1 and B17→B2 (top) and B17→Bh and B17→B24 (bottom) phase transitions occur.

10.2.2 Volume per Atom and Lattice Parameters

From Fig. 10.3 one can see clearly that except Pd3N(D09) and PdN(Bk), all phases tend to

lower the volume per atom of their parent metal. The metal-metal bond length, as represented

by the volume per metal atom V Pd
0 , increases (on average) in the direction of increasing nitrogen

content and decreasing structural symmetry.

10.2.3 Pressure-Induced Phase Transitions

Enthalpy-pressure relations for PdN in some of the considered structures are displayed in Figs.

10.4. A point at which enthalpies H = Ecoh(V ) + PV of two structures are equal defines the

transition pressure Pt, where transition from the phase with higher enthalpy to the phase with

lower enthalpy may occur.

Some possible transitions and the corresponding Pt’s are depicted in Fig. 10.4. From the top

subfigure, it is clear that, in this parameter sub-space, B17 structure is preferred at pressures

below ∼ 25 GPa, while B1 structure, the most popular structure for transition-metal mono-

nitrides, is favoured at higher pressures. The bottom subfigure reveals that B24 is favored over

B17 and Bh at pressures higher than 41 GPa.
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10.2.4 Bulk Modulus and its Pressure Derivative

Fig. 10.3 shows that the bulk moduli of the Pd3N phases, except Pd3N(Fe3N), tend to be lower

than that of Pd, while 1:1 nitrides, except (Bk) tend to increase it. Despite the lower V0 and

the lower Ecoh possessed by the last three PdN2 phases, they have ∼ 100 GPa lower B0 than

their parent metal. This can be understood only in terms of the increase in the metal-metal bond

length (represented by V Pd
0 ).

Upon application of external pressure, the first four Pd3N phases, all PdN phases and PdN2(C1)

phase tend to lower their B0. PdN2(C2) has the same sensitivity of its parent metal. PdN2(C18

and CoSb2) tend to increase their B0. Pd3N(D02, Fe3N and RhF3), however, are far more sensitive

to external pressure, and their bulk moduli tend to increase significantly under pressure.

10.2.5 Thermodynamic Stability

Interestingly, Fig. 10.3 reveals that Pd3N(Fe3N and RhF3) phases have lower formation energy

than all PdN and PdN2. That is, Pd3N(Fe3N and RhF3) are thermodynamically favored over PdN

and PdN2. Nevertheless, the PdN2 modifications, except C1, have significantly lower cohesive

energy than the most favored Pd3N phases. The numerical values of the formation energy (Table

10.2) and and their graphical representation (Fig. 10.3) reveal that it may be relatively harder to

form a 1:1 palladium nitride.

10.2.6 Electronic Properties

With the Fermi surface crossing the partly occupied bands, it is evident from Figs. 10.6 and 10.5

that Pd3N(Fe3N and RhF3) are metals. In both cases, the strong Pd(d)-N(p) mixture is in the

range (−7.7 ∼ −5.7 eV ). The Pd(d)-N(p) hybridization in the range (−5 ∼ EF eV ) has very

little contribution from the N(p) states.

The DFT(GGA) calculated electronic band structures for PdN(B17), PdN(B24) and PdN2(C18)

and their corresponding total and partial DOS are displayed in Figs. 10.7, 10.8 and 10.9, respec-

tively. All phases show clear metallic feature, though PdN2(C18) has a very low TDOS around

Fermi level EF coming mainly from the d states of the Pd atoms.
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Figure 10.5: (Color online.) DFT calculated electronic structure for Pd3N in the Fe3N structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Pd(s, p, d) orbitals in Pd3N; and (d) PDOS of
N(s, p) orbitals in Pd3N.
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Figure 10.6: (Color online.) DFT calculated electronic structure for Pd3N in the RhF3 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Pd(s, p, d) orbitals in Pd3N; and (d) PDOS of
N(s, p) orbitals in Pd3N.
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Figure 10.7: (Color online.) DFT calculated electronic structure for PdN in the B17 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Pds, p, d) orbitals in PdN; and (d) PDOS of
N(s, p) orbitals in PdN.
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Figure 10.8: (Color online.) DFT calculated electronic structure for PdN in the B24 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Pd(s, p, d) orbitals in PdN; and (d) PDOS of
N(s, p) orbitals in PdN.
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Figure 10.9: (Color online.) DFT calculated electronic structure for PdN2 in the C18 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Pd(s, p, d) orbitals in PdN2; and (d) PDOS of
N(s, p) orbitals in PdN2.
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Figure 10.10: (Color online.) The GW calculated frequency-dependent optical spectra of PdN(B24):
(a) the real εre(ω) and the imaginary εim(ω) parts of the dielectric function εRPA(ω); (b) reflectivity
R(ω) and transmitivity T (ω); (c) refraction n(ω) and extinction κ(ω) coefficients; and (d) absorption
coefficient α(ω). The shaded area highlights the optical region.

10.2.7 Optical Properties

Fig. 10.10 displays the real and the imaginary parts of ε
RPA

(ω) for PdN(B24) and the correspond-

ing derived optical constants within the optical region [∼ (3.183− 1.655) eV ≡ (390− 750) nm].

With its non-zero value, it is clear from the absorption coefficient α (ω) spectrum that our G0W0

calculations confirm that B24 is a metallic phase of PdN.

10.3 Platinum Nitrides

Cohesive energy Ecoh versus atomic volume V0 equation of state (EOS) for the different phases

of Pt3N, PtN2 and PtN are displayed graphically in Fig. 10.11a, Fig. 10.11b and Fig. 10.11c,

respectively. The corresponding obtained equilibrium structural parameters and energetic and

elastic properties are presented in Table 10.3. In this table, as well as in Fig. 10.12, structures

are first grouped according to the nitrogen content, starting with the stoichiometry with the

lowest nitrogen content Pt3N, followed by the 1:1 series and ending with the nitrogen-richest

PtN2 group. Within each series, structures are ordered according to their structural symmetry,

starting from the highest symmetry (i.e. the highest space group number) to the least symmetry.
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Figure 10.11: (Color online.) Cohesive energy Ecoh(eV/atom) versus atomic volume V (Å3/atom)
for: (a) Pt3N in seven different structural phases; (b) PtN in nine different structural phases; and (c)
for PtN2 in four different structural phases. (d) Enthalpy H vs. pressure P equation of state (EOS) for
the most favorable Pt3N phase (RhF3), the three proposed PtN modifications (B1, B3 and B17), and
the four considered PtN2 structures in the present work (C1, C2, C18 and CoSb2). The arrows indicate
the pressures at which curves cross each other.

Whenever possible, our results are compared with experiment and with previous calculations.

In the latter case, the calculations methods and the XC functionals are indicated in the Table

footnotes. To study the effect of nitridation on the elemental Pt(A1) and to easly compare

the properties of these phases relative to each other, the calculated equilibrium properties are

displayed relative to the corresponding ones of Pt(A1) in Fig. 10.12.
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Table 10.3: The calculated (Pres.) zero-pressure properties of the platinum nitrides and the results
of previous calculations (Comp.). The available experimental data are given in the last row. Table
footnotes are in the next page.

a(Å) b(Å) c(Å) α(◦) or β(◦) V0(Å
3
/atom) Ecoh(eV/atom) B0(GPa) B′

0 Ef(eV/atom)

Pt

A1

Pres. 3.978 – – – 15.74 −5.451 242.999 5.486

Expt.
3.9233a – – – 15.097b −5.84c 278.3c, 280d 5.18e

3.924ee – – – 249ee 5.23ee

Comp.
3.90g, 3.890s, – – – −7.04h, 305g, 320s, 5.16k, 5.30l,
3.967t, 3.966cc – – – −5.53j, 249cc, 242dd, 5.23cc, 5.83dd,
3.981gg – – – −3.74i 244.18gg, 238t 5.25m, 5.7gg

Pt3N
D03 Pres. 6.106 – – – 14.23 −4.140 218.097 5.282 1.247
A15 Pres. 4.924 – – – 14.92 −3.759 194.136 5.266 1.628
D09 Pres. 4.114 – – – 17.41 −4.558 167.839 5.241 0.829
L12 Pres. 3.863 – – – 14.41 −4.021 205.279 5.472 1.366
D02 Pres. 7.875 – – – 15.26 −4.644 147.174 12.098 0.743
ǫ-Fe3N Pres. 5.680 – 5.293 – 18.49 −4.713 217.035 6.779 0.674
RhF3 Pres. 5.463 – – α = 58.640 13.97 −4.688 224.419 5.412 0.699

PtN

B1

Pres. 4.495 – – – 11.35 −3.945 230.869 5.059 1.378

Comp.
4.45x, 4.50y, – – – 232x, 230y, 288z

4.471cc, 4.41z – – – 10.66ff 251cc, 242dd, 294ff 4.00cc, 4.78dd 1.365cc

4.491gg – – – 229.76gg 4.9gg 0.375hh

B2
Pres. 2.819 – – – 11.20 −3.522 238.187 5.070 1.801
Comp. 2.818gg – – – 234.88gg 5.1gg

B3

Pres. 4.782 – – – 13.67 −4.203 193.466 5.031 1.120

Comp.

4.7217n, 4.8250o, – – – 243.3n, 196.3o, 5.1gg,
4.6833p, 4.7889q, – – – 271.9p, 192.7q, 0.95aa

4.692s, 4.780t, – – – 244s, 194t, 213cc, 4.00cc 1.1cc

4.80x,y, 4.70z, – – – 192x, 190y, 232z, 3.62dd 0.21hh

4.779gg, 4.8114r, – – – 190.61gg, 184r,
4.760cc, 4.699hh – – – 217dd

B81 Pres. 3.482 – 4.843 – 12.71 −3.713 210.165 4.945 1.610
Bk Pres. 3.378 – 8.986 – 22.20 −4.061 108.968 4.553 1.262
Bh Pres. 3.039 – 2.966 – 11.86 −3.716 222.279 5.014 1.607

B4
Pres. 3.382 – 5.539 – 13.72 −4.171 190.130 5.033 1.152
Comp. 3.386gg – 5.529gg – 191.06gg 4.7gg

B17
Pres. 3.069 – 5.403 – 12.72 −4.652 235.041 5.018 0.671
Comp. 3.323hh – 4.579hh –

B24
Pres. 4.216 4.472 4.948 – 11.66 −3.928 226.608 5.153 1.395
Comp.∗ 3.972hh 3.977hh 6.022hh – 270hh 0.085hh

PtN2

C1

Pres. 4.963 – – – 10.19 −3.918 263.295 4.717 1.363

Comp.
4.9428n, 5.0403o, – – – 322.1n, 267.2o, 4.00cc 1.167aa

4.866s, 4.958t, – – – 316s, 264t, 4.73dd 1.317dd

4.939dd – – – 269cc, 260dd

C2
Pres. 4.912 – – – 9.882 −4.689 226.779 6.893 0.592

Comp.
4.87aa – – – 9.12ff 305cc, 4.00cc, 0.267aa,
4.848cc, 4.874ii – – – 9.65ii 285dd, 300ii 5.50dd 0.64cc,

– – – 0.24bb ,
– – – 0.212ii

C18
Pres. 3.036 3.984 4.862 – 9.800 −4.755 244.320 7.938 0.526
Comp. 3.778ii 4.880ii 3.208ii – 9.827ii 286ii 0.249ii

CoSb2
Pres. 5.460 5.163 9.374 β = 151.225 10.60 −4.508 118.594 6.619 0.773
Comp. 4.950ii 4.880ii 4.950ii 99.50ii 9.827ii 289ii 0.248ii

Experiment
(4.8032± 5)u,v, – – – (372± 5)u, 4.0u,
4.8041(2)w – – – (354± 5)v 5.26v
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Notes to Table 10.3 : —————————-
a Ref. [240]: This is an average of 23 experimental values (with a deviation ±0.0007 Å), at room temperature.

b Ref. [240]: at room temperature.

c Ref. [172]: Cohesive energies are given at 0 K and 1 atm = 0.00010 GPa; while bulk moduli are given at room temperature.

d Ref. (25) in [219]: at room temperature.

e See Refs. (8)–(11) in [219].

g Ref. [241]: using the full-potential linearized augmented plane waves (LAPW) method within LDA.

h Ref. [242]: using the projector augmented wave (PAW) method within LDA.

i Ref. [242]: using the projector augmented wave (PAW) method within GGA(PW91).

j Ref. [242]: using the projector augmented wave (PAW) method within GGA(PBE).

k Ref. [219]: using the so-called method of transition metal pseudopotential theory; a modified form of a method

proposed by Wills and Harrison to represent the effective interatomic interaction.

l Ref. [219]: using a semi-empirical estimate based on the calculation of the slope of the shock velocity vs. particle velocity curves

obtained from the dynamic high-pressure experiments. The given values are estimated at ∼ 298 K.

m Ref. [219]: using a semi-empirical method in which the experimental static P − V data are fitted to an EOS form.

The given values are estimated at ∼ 298 K.

n Ref. [26]: using the ultrasoft pseudopotential (USPP) method within LDA. B0’s are calculated from elastic constants.

o Ref. [26]: using the ultrasoft pseudopotential (USPP) method within GGA. B0’s are calculated from elastic constants.

p Ref. [26]: using the projector augmented wave (PAW) method within LDA. B′
0 is set to be 4.

q Ref. [26]: using the projector augmented wave (PAW) method within GGA. B′
0 is set to be 4.

r Ref. [26]: using fully relativistic full-potential linearized augmented plane waves (LAPW) method within GGA.

s Ref. [29]: using the full-potential linearized augmented plane waves (LAPW) method within LDA.

t Ref. [29]: using the full-potential linearized augmented plane waves (LAPW) method within GGA(PBE).

u Ref. [22]: The experimental evolution of the volume with pressure was fitted with a Birch-Murnaghan EOS, but B′
0 was set to be 4.

v Ref. [22]: The experimental evolution of the volume with pressure was fitted with a Birch-Murnaghan EOS, but B′
0,Pt = 5.26 was fixed.

w Ref. [22]: From XRD measurements at 0.1 MPa.

x Ref. [30]: using the full-potential linearized augmented plane waves (FPLAPW) method within GGA(PBE).

y Ref. [30]: using pseudopotentials method within GGA(PBE).

z Ref. [30]: using pseudopotentials method within LDA.

aa Ref. [25]: using the PAW method within GGA(PW91), but the experimental value of Ecoh(N
gas
2 ) in Eq. 7.5.3 was used.

bb Ref. [25]: using the full-potential linear-augmented plane-wave method.

cc Ref. [27]: using pseudopotentials method within GGA(PBE).

dd Ref. [27]: using pseudopotentials method within GGA(PBE).

ee Ref. [246].

ff Ref. [28]: using the pseudopotential method within LDA.

gg Ref. [194]: using the full potential augmented plane wave plus local orbitals (APW+lo) method within GGA(PBE).

hh Ref. [31]: using the Vanderbilt ultrasoft pseudopotentials within LDA. ∗The data from Ref. [31] are for a

face-centered orthorhombic structure (space group Fddd) which is not the same as our studied face-centered

orthorhombic B24 structure (space group Fmmm). The listed Ef are w.r.t Ef (B17).

ii Ref. [66]: using Vanderbilt USPPs within GGA(PBE). B0’s are calculated from the elastic constants. Ecoh(N
solid
2 ) was

used in Eq. 7.5.3 instead of Ecoh(N
gas
2 ).

—————————————————————-
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Figure 10.12: (Color online.) Calculated equilibrium properties of the twenty studied phases of platinum
nitrides. All quantities are given relative to the corresponding ones of the fcc crystalline elemental
platinum given in the first row of Table 10.3.
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10.3.1 EOS and Relative Stabilities

Fig. 10.11a reveals that Pt3N in its least symmetric phase, the trigonal (rhombohedric) structure

of RhF3, is the most favorable phase in this series. However, after ∼ 15.9 Å
3
/atom the EOS

of Pt3N(RhF3) is almost identical with the EOS of Pt3N in the simple cubic structure of the

anti-ReO3 (D09). They share a minimum at ∼ (17.4 Å
3
/atom,−4.56 eV ). Very close to this

point, at ∼ (17.23 Å
3
/atom,−4.59 eV ), the EOS of Pt3N(D02) has a kink due to a change in

the positions of some Pt ions.

The EOS of Pt3N(Fe3N) has two minima located at (14.11 Å
3
/atom,−4.697 eV ) and (18.26

Å
3
/atom,−4.679 eV ). Thus, the two minima are very close in energy but, due to the difference

in V0, they correspond to bulk moduli of 222.7 GP and 169.0 GP, respectively. The Pt ions are

in the 6g Wyckoff positions: (x, 0, 0), (0, x, 0), (−x,−x, 0), (−x, 0, 1
2
), (0,−x, 1

2
) and (x, x, 1

2
).

Upon ion relaxation of Pt3N(Fe3N), atomic positions change from x ∼ 1
3
to x = 1

2
causing

the sudden change in the potential surface (at ∼ 16.83 Å
3
/atom) as the bulk Pt3N(Fe3N)

being decompressed (Fig. 10.11a). It may be worth mentioning here that Ag3N(Fe3N) [2] and

Cu3N(Fe3N) [3] were found to behave in a similar manner.

Hence, one of the two minima in the EOS of Pt3N(RhF3) is shared with the minimum of the

EOS of Pt3N(D09) and the other is shared with one of the two minima of Pt3N(Fe3N).

The crossings of the less stable D03, L12 and A15 EOS curves with the more stable D09 EOS

at the left side of their equilibria indicates that D09 would not survive under pressure and that

possible pressure-induces phase transitions from the latter phase to the former ones may occur.

Fig. 10.12 shows that the Pt3N most stable phases may energetically compete with the PtN and

PtN2 most stable ones. However, from the foregoing discussion, it seems that Pt3N would not

have a simple potential surface.

Using the full potential augmented plane wave plus local orbitals (APW+lo) method within

GGA(PBE), the energy-volume EOS’s for B1, B2, B3 and B4 have been studied by the authors

of Ref. [194]. Some of their obtained equilibrium properties are included and referred to in Table

10.3. Within the considered parameter sub-space, our obtained EOS’s (Fig. 10.11b), relative

stabilities, and equilibrium structural parameters and mechanical properties (Table 10.3) are in

excellent agreement with their findings. However, relaxing the c/a parameter, they obtained an

additional EOS which lies below all the other considered ones, but its equilibrium B0 is significantly



Section 10.3. Platinum Nitrides Page 149

smaller.

From Fig. 10.11b, it is evident that PtN(B17) is the energetically most stable phase in the PtN

series. The difference in the equilibrium Ecoh between PtN(B17) and the next (less) stable phase,

PtN(B3), is about 0.5 eV (Table 10.3). This difference was found by other researchers [30] to be

0.9−1.05 eV . The crossings of the EOS curve of B17 with some of those of less stability at the left

side of their equilibria reveals possible pressure-induces phase transitions. To closely investigate

these transitions, we plot the corresponding relations between enthalpy H = E(V ) + PV and

the imposed external pressure P . Possible transitions and the pressures at which they occur

are carefully depicted. A point where two H(P ) curves (of two modifications with the same

chemical stoichiometry [28]) meet represents a phase transition from the phase with the higher

H to the one with the lower H [213]. From the H(P ) diagrams (not shown here) we found that

PtN(B17) would transform to PtN(B1, B2, Bh or B24) at ∼ 93 GPa, ∼ 143 GPa, ∼ 193 GPa or

∼ 123 GPa, respectively.

It may be worth to mention here a few points about this B17 structure: (i) It was theoretically

predicted to be the ground-state structure of CuN [3], AgN [2], AuN [6] and PdN [7]. (ii) The

same foregoing phase PtN-PtN structural pressure-induced transitions have been predicted for

PdN, but at relatively smaller pressures in the range (25.8 ∼ 62.1 GPa) [7]. (iii) B17 is the

structure of PtS [179] and PtO [30]. (iv) It was found by other authors to be a possible ground

state for PtN [30]. (v) The B17 structure has an fcc Pt sub-lattice (as the synthesized platinum

nitride), but it is tetragonal and the sub-lattice are highly distorted (c/a ≈
√
3 versus c/a =

√
2

for ideal fcc), and probably because of this distortion it was rejected by the platinum nitride

synthesizers [22]. (vi) Fig. 10.11d that B17 is energetically favorable over B1 and B3 at all

pressures. Nevertheless, PtN(B17) was found to be elastically unstable [31].

Assuming 1:1 stoichiometry, the first platinum nitride synthesizers assigned the B3 structure for

their product [22]. However, it was shown in the same work that PtN(B3) should break down

or transform at pressures above 12 GPa. In agreement with this experimental prediction, Fig.

10.11d shows that PtN(B3) would not survive at pressures above 19 GPa where the B3→B1

phase transition occurs. Other theoretical works also predicted that B1 becomes more favorable

than B3 structure above 13.3 GPa [30], ∼ 15 GPa [28], 16.5 GPa [30], and 17.6 GPa [30].

Therefore, we support Ref. [30] on the judgment that, unless the PtN(B3) was formed upon
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depressurization, its production at 45 − 50 GPa [22] is questioned. Further, first-principles

calculations showed that PtN(B3) is elastically unstable [26, 27, 29], and that it may distort

spontaneously to a tetragonal lattice to lower the energy [29].

In the PtN2 series, we can see from Table 10.3 and from Fig. 10.12 that PtN2 in the simple

orthorhombic structure of FeS2 marcasite (C18) is the most stable phase, while the face-centered

cubic structure of CaF2 fluorite (C1) is significantly the least favorable structure. Yet, Fig. 10.11d

reveals that the latter PtN2(C1) is more favorable than the proposed PtN(B1, B3 and B17) at

pressures above 4 GPa, 14 GPa and 52 GPa, respectively. Others [30] found PtN2(C1) to be

more favorable than PtN(B3) at pressures above 30 GPa.

In contrast to our enthalpy-pressure EOS’s in Fig. 10.11d, Chen, Tse and Jiang [66] obtained

an H(P ) curve for C18 which lies always above the curve for C2 and coincides with the one of

CoSb2. They concluded that C2 is the most stable structure among these three modifications.

While we sticked to the original C18 relative dimensions, it seems that Chen, Tse and Jiang tried

to optimize the lattice parameters ratios (see Table 10.3). However, the c : a : b ratio they

obtained is very close to our a : b : c ratio, and the difference in V0 is less than 0.03 Å
3
/atom)2.

Another difference is the atomic electronic configuration of Pt 5d86s2 they used. Nevertheless,

they agreed with us that in the 0 − 60 GPa pressure range, no transition between these three

phases occurs.

Comparing the relative stability of the three most stable compositions, we find from Table 10.3

and from Fig. 10.12 that PtN2(C18) is the most favorable, followed by Pt3N(RhF3), and the

least stable phase is PtN(B17). However, the differences in their equilibrium Ecoh lies within a

narrow range of 0.036 eV. Relative to their parent metal, all phases have higher Ecoh, i.e. they

are less bound than Pt(A1). Hence, we found, as other theoretical works [29], that platinum

nitride can be stabilized in stoichiometries and structures other than that proposed by the first

synthesizers [22].

In Ref. [30], the energy-volume EOS for B1, B3, B17, C1, and C2 have been studied using DFT-

GGA. Within this parameter sub-space, our obtained EOS’s (Figs. 10.11b, 10.11c and 10.12) are

in excellent agreement with the findings of [30]. From the relative enthalpy-pressure diagrams

2Surprisingly, Chen, Tse and Jiang [66] got exactly the same V0 values for C2 and C18 within both GGA and
LDA; but the average values they gave are different! Thus, we suspect the equal V0 values they gave for C2 and
C18 in both GGA and LDA (see Table 1 in that article); and it may be a typo.
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3, Ref. [30] arrived at an astonishing result: the experimentally proposed PtN(B3) is an entirely

unstable structure at any pressure.

To closely study the non-zero pressure stoichiometric and structural preferences, we displayed in

Fig. 10.11d the enthalpy H vs. pressure P equation of states (EOS) for the most favorable Pt3N

phase (RhF3), the three previously proposed PtN modifications (B1, B3 and B17), and the four

considered PtN2 structures in the present work (C1, C2, C18 and CoSb2). The arrows indicate

the pressures at which curves cross each other. From these curves, it is clear that PtN2(C18),

followed by PtN2(C2), are the most energetically favorable phases at all pressure. At pressures

above 10 GPa, PtN2(CoSb2) has lower enthalpy than the rest of the modifications, including

PtN(B17) and PtN2(C1). At pressures higher than 8 GPa, PtN(B17) becomes more favorable

than Pt3N(RhF3), but the former never competes behind 52 GPa when PtN2(C1) becomes more

favorable. However, Pt3N(RhF3) is more stable than PtN(B3) at all pressures. In summary, Fig.

10.11d reveals that even if a PtN phase has been observed (at pressures around 50 GPa), this

phase must be unstable toward phase decomposition into solid constituents Pt and PtN2 (see

also Ref. [28]) or into Pt and Pt3N. However, the series of the possible phase transitions must

be carefully investigated.

10.3.2 Volume per Atom and Lattice Parameters

The obtained equilibrium volume per atom V0, i.e. the inverse of the number density, for all the

considered modifications are numerally presented in Table 10.3 and graphically depicted relative

to the Pt(A1) in Fig. 10.12. On average, Pt3N phases tend not to change the number density

of the host parent Pt(A1); PtN phases tend to slightly increase it; while the PtN2 increase it

significantly.

It is also evident from Fig. 10.12 that in crossing the boarders between the Pt3N and PtN and

between the PtN and PtN2 islands, i.e. in increasing the N content, V0 tends to decrease while

the volume per Pt atom V Pt
0 , a measure of the average Pt–Pt bond length, tends to increase.

The latter finding has been found to be true for the nitrides of Cu [3] and Ag [2] as well.

3These are H(P ) diagrams but relative to their elemental constituents.
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10.3.3 Bulk Modulus and its Pressure Derivative

With only a few exceptions, Fig. 10.12 and Table 10.3 reveal that nitridation of Pt apparently

tends to reduce its bulk modulus. Relative to each other, the twenty B0’s show no clear trend.

The most energetically favorable PtN phase, B17, has 42 GPa higher bulk modulus than the

proposed PtN(B3).

As we mentioned somewhere else [2], B0 is far more sensitive to any change in volume than

the change in Ecoh. The case of PtN(B2) is a clear example, in which the slight decrease in V0

overcomes the significant increase in Ecoh leading only to a very small decrease in B0 (Fig. 10.12

and Table 10.3).

Given that all the considered phases have higher Ecoh than Pt(A1), the foregoing argument fails

to explain the decrease in B0 in the case of the structures which have lower V0 than their parent

Pt(A1) and have lower Ecoh than the extreme case PtN(B2). However, if one replaces V0 in

the argument above with V Pt
0 , the contradiction can be lifted. Therefore, we believe that the

mechanical properties in these nitrides may be dominated by the effect of the Pt-Pt bond length

more than the simple number density.

Although the GGA calculated B0 values in the present and previous works (Table 10.3) are far

smaller than the reported experimental value, our obtained bulk modulus for PtN2(C1) is 20 GPa

higher than that of Pt(A1). This is exactly the measured value for Pt after the PtN formation

took place. The observation was considered by Gregoryanz et al. as an indication that some N is

dissolved in Pt [22]. Recalling that the B0 of the produced platinum nitride is ∼ 100 GPa than

that of Pt(A1) [22], our GGA-obtained B0 for PtN2(C1) is ∼ 80 GPa less than the experimental

value 4.

It may be worth to notice from Table 10.3 that the lattice parameter a of PtN2(C1) is 0.13 Å

higher than that of PtN(B3); yet the B0 of the former is ∼ 70 GPa higher than the latter. This

difference in B0 can be attributed to the fact that in B3, N atoms occupy only half of the tetrahe-

dral interstitial sites of the Pt sub-lattice, while in C1, the four remaining tetrahedral interstitial

sites are filled with N atoms [29,30,197]. This filling significantly reduces the compressibility but

slightly increases the volume of the unit cell. This fact can also be seen readily as a consequence

of the difference in the average volume per atom in the two cases (Table 10.3).

4Recall that we only consider values relative to Pt(A1) to eliminate systematic errors.
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The pressure derivative of the bulk modulus, B′
0, measures the sensitivity of B0 to any external

pressure. The top subfigure in Fig. 10.12 reveals that the bulk moduli of Pt3N(Fe3N) and

PtN2(C2, C18 and CoSb2) increase upon application of external pressure. Pt3N(D02) is very

sensitive and its B0 will increase significantly under an infinitesimal excess of pressure. Pt3N(L12

and RhF3) tend to be inert; while Pt3N(D03, A15 and D09), PtN2(C1) and all PtN phases tend to

decrease their bulk modulus upon application of external pressure. Although B′
0 is a measurable

quantity [219], we couldn’t find any experimental value to test our obtained values against.

10.3.4 Formation Energies

From Fig. 10.12 and Table 10.3, it is evident that formation energy Ef has the same trend as

the cohesive energy Ecoh. If Ef is taken as a measure of synthesized, then the relatively most

favorable Pt3N phases have the same synthesized as the most favorable PtN and PtN2.

A positive value of Ef means, in principle, that, at the temperature and pressure at which Ef

is calculated, the phase is thermodynamically unstable (endothermic) and have a tendency to

decompose into its constituent components. In our case, this observation is corroborated by the

experimental fact that the synthesis of the platinum nitrides was achieved only at high temperature

and temperature [27, 66].

Using different methods, other researchers [25, 27, 66] also obtained positive (zero-pressure and

zero-temperature) formation energies for some PtN and/or PtN2 phases. Some of their values

are included in Table 10.3 with indication to the methods of calculations.

The obtained relative difference in Ef for PtN2(C1) and PtN2(C2) is in good agreement with

Ref. [25]. However, the differences in our and their obtained Ef values can be attributed to

three factors: First, the difference in the obtained lattice parameter (see Table 10.3). Second,

the value of our calculated equilibrium free parameter u is 0.417 while Ref. [25] obtained 0.415

5. Third, and the most significant source of difference, the experimental value of Ecoh(N
gas
2 ) in

Eq. 7.5.3 was used by Ref. [25], while we calculated it as described in sub-section 7.5.

It may be worth mentioning here that a negative theoretical value of Ef = −0.4 eV/atom

was obtained for PtN2(C2) at P = 50 GPa, showing excellent agreement with experiment [25].

5 Fixing the lattice parameter at the experimental value a = 4.8041 Å, Ref. [27] relaxed the N ions and
obtained the same value u = 0.415.
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Figure 10.13: (Color online.) DFT calculated electronic structure for Pt3N in the RhF3 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Pt(s, p, d) orbitals in Pt3N; and (d) PDOS of
N(s, p) orbitals in Pt3N.

Moreover, Young et al. [27] claimed that PtN2 dissociates upon mild heating below P = 10 GPa.

10.3.5 Electronic Properties

The DFT obtained band diagrams ǫσi (k) and spin-projected total and partial density of states

(DOS) of the most stable modifications: Pt3N(RhF3), PtN(B3 and B17), and PtN2(C18) are

displayed in Figs. 10.13, 10.146, 10.15 and 10.16, respectively. Spin-projected total density of

states (TDOS) are shown in sub-figure (b) in each case. Because in these four considered cases

electrons occupy the spin-up and the spin-down bands equally, it was sufficient only to display

spin-up DOS and spin-up band diagrams. Displaying the energy bands along densely sampled

high-symmetry strings of k-points allows us to extract information about the electronic structure

of these phases. Moreover, to investigate the details of the orbital character of the bands, the

Pt(s, p, d) and N(s, p) resolved DOS’s are plotted at the same energy scale.

With The Fermi surface crossing the partly occupied bands. it is clear from Figs. 10.13, 10.14,

and 10.15 that Pt3N(RhF3) PtN(B3) and PtN(B17) are metals.

The TDOS of Fig. 10.16(b) reveal that PtN2(C18) is a semiconductor with (Fig. 10.16(a)) its

valence band maximum (VBM) at (Y,−0.091 eV ) and its conduction band minimum (CBM) at

(Y, 0.044 eV ), resulting in a narrow direct energy band gap Eg = 0.135 eV of width. Below

6 Note that, in Fig. 10.14, the coordinates of the W point is not as the same as in Ref. [203], but they
are equivalent. Also, the coordinates of U and K are not given in Ref. [203]. The coordinates of U, K and the
equivalent W were created by means of XCrySDen software!

http://www.xcrysden.org/


Section 10.3. Platinum Nitrides Page 155

810 85 0 5 10
TDOS (arb. units) 

 (b)

915

910

95

0

5

10

15
TDOS up
TDOS down

0 1 2 3 4 5 6 7
PDOS (arb. units)

 (c)

915

910

95

0

5

10

15
Pt s 
Pt p 
Pt d 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
PDOS (arb. units)

 (d)

915

910

95

0

5

10

15
N s 
N p 

: X W L : KWU X 
 (a)

915

910

95

0

5

10

15

E

;

E
F

 (e
V)

Figure 10.14: (Color online.) DFT calculated electronic structure for PtN in the B3 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Pt(s, p, d) orbitals in PtN; and (d) PDOS of
N(s, p) orbitals in PtN.
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Figure 10.15: (Color online.) DFT calculated electronic structure for PtN in the B17 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Pt(s, p, d) orbitals in PtN; and (d) PDOS of
N(s, p) orbitals in PtN.
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Figure 10.16: (Color online.) DFT calculated electronic structure for PtN2 in the C18 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Pt(s, p, d) orbitals in PtN2; and (d) PDOS of
N(s, p) orbitals in PtN2.
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Figure 10.17: (Color online.) The GW calculated frequency-dependent optical spectra of PtN(B3):
(a) the real εre(ω) and the imaginary εim(ω) parts of the dielectric function εRPA(ω); (b) refraction
n(ω) and extinction κ(ω) coefficients; (c) absorption coefficient α(ω); and (d) reflectivity R(ω) and
transmitivity T (ω). The shaded window highlights the optical region.

this fundamental gap there are three bands: the deep one at ∼ −20.5 eV consists mainly of the

N(2s) states. Its high DOS and sharp feature correspond to its little and slow energy variation

in the k−space. The second band is relatively narrow (∼ 2.2 eV of width) with low density and

steming mainly from a mixture of the N states with Pt(d) states. The superposition Pt(d) and

N(p) states in the region from −10.314 eV to −0.091 eV below the fundamental gap constitutes

the third band with highly structured, intense and narrow series of peaks. Our obtained TDOS

and PDOS show excellent agreement with Ref. [66] where also PtN2(C18) was predicted to be a

semiconductor, but band diagrams and Eg value are not given.

It may be worth mentioning here that PtN(B1) [31] and PtN(B4) [194] were found to be metallic,

PtN2(C1) was found to be a poor metal [29], PtN2(CoSb2) [66] was found to be a semiconductor,

and an indirect band gap between 1.2 eV [66] and 1.5 eV [27] has been obtained for PtN2(C2).

10.3.6 Optical Properties

GW calculations were carried out for the PtN(B3) and PtN(B17) metallic phases at their equi-

librium. Figs. 10.17 and 10.18 display the obtained real and imaginary parts of the frequency-

dependent dielectric function εRPA(ω) of these two phases and the corresponding derived opti-

cal spectra (Eqs. D.2.12, D.2.13, D.2.17 and D.2.22). In each sub-figure, the optical region

[∼ (3.183− 1.655) eV ≡ (390− 750) nm] is shaded.
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Figure 10.18: (Color online.) The GW calculated frequency-dependent optical spectra of PtN(B17):
(a) the real εre(ω) and the imaginary εim(ω) parts of the dielectric function εRPA(ω); (b) refraction
n(ω) and extinction κ(ω) coefficients; (c) absorption coefficient α(ω); and (d) reflectivity R(ω) and
transmitivity T (ω). The shaded window highlights the optical region.

The non-vanishing absorption coefficient α (ω) in the whole range for both phases confirms their

metallic character. As it should be the case, refraction n(ω) and extinction κ(ω) coefficients

behave as the real εre(ω) and the imaginary εim(ω) dielectric functions, respectively.

As one can see from sub-figure 10.17(d), close to the edge of the optical region at ∼ (1.762 eV =

703.768 nm) PtN(B3) is 50% reflector and 50% transmitter. From ∼ (2.071 eV = 598.579 nm)

to the UV region, PtN(B3) is only ∼ 40% reflecting but ∼ 60% transmitting. However, more of

the transmitted portion in this region will be absorbed as the photon energy increases. This fact

can be readily noticed if one compares sub-figures 10.17(c) and 10.17(d).

PtN(B17), as can be seen from sub-figure 10.18(d), is a very good reflector in the whole re-

gion until ∼ (3.000 eV = 413.281 nm) where it equally reflects and transmits the violet light.

However, less of the transmitted portion in the optical region will be absorbed as the photon

wavelength decreases. This fact can be readily observed in sub-figures 10.18(c).

According to the best of our knowledge, there is no available experimental optical spectra for

the platinum nitride. However, from their visual appearance, all the synthesized platinum nitride

samples look very shiny and darker than their parent platinum in reflected light and totally opaque

in transmitted light. These features suggest that PtN is either a poor metal or a semiconductor

with a small band gap [22].

From Figs. 10.18 and 10.15, the above mentioned properties are strongly met by PtN(B17), but

purely seen (Figs. 10.17 and 10.14) in PtN(B3), as discussed above. Unfortunately, we did not
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carry out optical calculations for PtN2(C1 or C2).

10.3.7 PtN versus PtN2

Using our own obtained results in the present work as well as the findings of other researchers,

below we make a comparison between the PtN modifications (supported by the experimentalists)

and the PtN2 phases (supported by the theoreticians):

• Given that GGA calculated lattice parameters are usually overestimated [134,135,247], the

obtained values of the a lattice parameter for PtN2(C1 and C2) are the closest ones to the

experimental value (to within 3 % and 2 %, respectively), while the PtN phases are in poor

agreement with experiment, as can be seen in Table 10.3.

• First-principles studies of transition metals nitrides show that the B0’s of the elemental

metals are generally enhanced by nitridation [16,22]. Compared to experiment, Table 10.3

and Fig. 10.12 reveal that this trend is met by PtN2(C1), while PtN(B3) has 50 GPa lower

than Pt(A1).

• Like the first synthesized sample and the proposed PtN(B3) modification [22], PtN2(C1 [29]

and C2 [25]) have fcc sub-lattice of Pt.

• PtN2( C1 [29], C2 [27, 66], C18 [66] and CoSb2 [66]) have all been found to be elastically

stable, while PtN(B3 [26, 27, 29, 31] and B17 [31]) were found to be elastically unstable.

• Formation and cohesive energies of PtN2(C2, C18 and CoSb2) are lower than that of

PtN(B3) [Table 10.3 and Fig. 10.12.

• In excellent agreement with experiment, the calculated formation energy of PtN2(C2) at

P = 50 GPa was calculated to be negative [25], while calculations found PtN(B3) to be

thermodynamically unstable at all pressures [30].

• The experimentally obtained Raman spectrum of the reproduced platinum nitride [25]

matches closely that of pyrite (FeS2), i.e. in the C2 structure, but does not match the

PtN(B3) spectrum that expected from group theory [25].
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• The theoretically calculated [27,66] Raman spectrum for PtN2(C2) shows good agreement

with the first experimentally obtained one [22].

• In agreement with the experimental observation and the visual appearance of the first

produced platinum nitrides [22], PtN2(C1) was found to be a poor metal [29], and we

found PtN2(C18) to be a semiconductor with a small band gap.

Hence, in contrast to the proposed PtN modifications, PtN2 phases possess many similar prop-

erties as the synthesized phase 7.

10.4 Copper Nitrides

Cohesive energy versus atomic volume data for the different phases of Cu3N, CuN2 and CuN are

visualized graphically in Fig. 10.19a, Fig. 10.19b and Fig. 10.19c, respectively. The correspond-

ing obtained equilibrium structural parameters and energetic and elastic properties are presented

in Table 10.4. In this table, phases are first grouped according to the nitrogen content, starting

with the stoichiometry with the lowest nitrogen content Cu3N, followed by the 1:1 phases and

ending with the nitrogen-richest CuN2 ones. Within each group, phases are ordered according

to their structural symmetry, starting from the highest symmetry (i.e. space group) to the least

symmetry. Our results are compared with available experiment and with previous theoretical

calculations; with the calculation methods and XC functional pointed out in the Table footnotes

whenever appropriate.

7 Such an observation was arrived at by other authors [29] for the PtN(C1). Here we are making more
comprehensive comparison
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Figure 10.19: (Color online.) Cohesive energy Ecoh(eV/atom) versus atomic volume V (Å3/atom)
for: (a) Cu3N in seven different structural phases; (b) CuN in nine different structural phases; and (c)
for CuN2 in four different structural phases.
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Table 10.4: Calculated and experimental zero-pressure properties of the twenty studied phases of
Cu3N, CuN and CuN2: Lattice constants (a(Å), b(Å), c(Å), α(

◦) and β(◦)), equilibrium atomic volume

V0(Å
3
/atom), cohesive energy Ecoh(eV/atom), bulk modulus B0(GPa) and its pressure derivative B′

0,
and formation energy Ef (eV/atom). The presented data are of the current work (Pres.), experimentally
reported (Exp.) and of previous calculations (Comp.).

Structure a(Å) b(Å) c(Å) α(◦) or β(◦) V0(Å
3/atom) Ecoh(eV/atom) B0(GPa) B′

0 Ef (eV/atom)

Cu

A1a,b

Pres.. 3.636 – – – 12.02 −3.474 136.351 5.032 –
Exp. 3.6148c, 3.6077f – – – 11.811g, 11.810f −3.49i 137i, 137p 5.48q –
Comp. 3.52d,e – – – 11.009h −4.29j, −3.12k, 189d, 190e 4.46r, –

– – – −3.30l, −4.66m, 5.20s,
– – – −3.69n,o 5.14t

Cu3N
D03 Pres.. 5.585 – – – 10.89 −2.960 142.829 4.845 0.944
A15 Pres. 4.455 – – – 11.05 −2.915 138.164 4.845 0.989

D09

Pres. 3.827 – – – 14.05 −3.614 112.5 4.899 0.287
Exp. (3.810 ∼ 3.830)u, – – –

(3.830± 0.005)z,
3.815x, 3.83y, – – –
3.855aa, 3.82gg, – – –
(< 3.868)dd – – –

Comp. 3.846v, 3.82w,ee, – – – 13.94w, −4.863w, 115.2w, 4.066w,
3.826bb, 3.841cc, – – – 14.02ee −4.865ee 116bb, 4.47bb,
3.83ff – – – 104ee 5.26ee

L12
Pres. 3.507 – – – 10.78 −3.022 147.516 4.817
Comp. 3.50bb – – – 153bb 4.74bb 0.882

D02 Pres. 7.674 – – – 14.12 −3.616 111.776 4.757 0.286
ǫ-Fe3N Pres. 5.263 – 4.905 – 14.71 −3.579 109.798 4.819 0.325
RhF3 Pres. 5.426 – – α = 60.003 14.12 −3.615 111.192 4.758 0.286

CuN

B1

Pres. 4.182 – – – 9.143 −3.300 200.770 4.687 1.035
Comp. 4.185hh, – – – 201.60hh, 3.811hh,

4.05ii, – – – 307ii, 4.491kk

4.336jj, – – – 244.27jj,
4.074kk, – – – 257.46kk,
4.17ll – – – 207ll

B2

Pres. 2.615 – – – 8.936 −2.937 195.896 4.775 1.398
Comp. 2.61hh, – – – 200.01hh, 4.352hh,

2.54kk, – – – 265.40kk, 4.373kk

2.51ll – – – 196ll

B3
Pres. 4.445 – – – 10.98 −3.343 161.726 4.677 0.992
Comp. 4.447hh, – – – 164.96hh, 4.534hh,

4.34ii, – – – 305ii,
4.078jj, – – – 240.66jj,
4.341kk, – – – 212.16kk, 4.311kk

4.44ll – – – 158ll

B81
Pres. 3.174 – 4.415 – 9.603 −3.128 184.371 4.850 1.211
Comp. 3.08ll – 5.020ll – 227ll

Bk Pres. 3.160 – 8.406 – 18.17 −3.074 86.124 4.494 1.261
Bh Pres. 2.805 – 2.738 – 9.327 −3.149 192.9 4.779 1.186

B4
Pres. 3.148 – 5.155 – 11.06 −3.309 152.956 4.963 1.026
Comp. 3.17hh, – 5.16hh, – 157.85hh, 4.41hh,

3.077kk, – 5.016kk, – 202.10kk,
3.16ll – 5.151ll – 155ll 4.35kk

B17 Pres. 2.870 – 5.052 – 10.40 −3.509 174.324 4.948 0.818
B24 Pres. 3.928 4.167 4.611 – 9.435 −3.253 189.745 4.708 1.082

CuN2

C1
Pres. 4.8 – – – 9.214 −2.712 198.265 4.652 1.910
Comp. 4.694jj – – – 258.94jj

C2 Pres. 4.919 – – – 9.920 −4.065 80.907 6.170 0.557
C18 Pres. 3.039 3.988 4.867 – 9.831 −4.132 92.680 6.317 0.490
CoSb2 Pres. 5.303 5.015 9.106 β = 151.225 9.714 −4.110 92.028 6.167 0.512
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Notes to Table 10.4 : —————————-
a Ref. [248]: Information is given at RTP.

b Ref. [159].

c Ref. [240]: This is an average of 66 experimental values (with a deviation ±0.0003 Å), at 20◦C.

d Ref. [241]: using LAPW-TB.

e Ref. [241]: using LAPW-LDA.

f Ref. [227], with a deviation ±0.0002 Å.

g See Ref. 15 in [249].

h Ref. [249]: using APW-MT-LDA.

i Ref. [172]: Cohesive energies are given at 0 K and 1 atm = 0.00010 GPa; while bulk mudulii are given

at room temperature.

j Ref. [216]: using LDA.

k Ref. [216]: using BP-GGA.

l Ref. [216]: using PW-GGA.

m Ref. [242]: using PAW-LDA.

n Ref. [242]: using PAW-PW91.

o Ref. [242]: using PAW-GGA(PBE).

p Ref. (25) in [219]: at room temperature.

q See Refs. (8)–(11) in [219].

r Ref. [219]: using the so-called method of transition metal pseudopotential theory; a modified form of a method

proposed by Wills and Harrison to represent the effective interatomic interaction.

s Ref. [219]: using a semiempirical estimate based on the calculation of the slope of the shock velocity vs. particle

velocity curves obtained from the dynamic high-pressure experiments. The given values are estimated at ∼ 298 K.

t Ref. [219]: using a semiempirical method in which the experimental static P − V data are fitted to an EOS

form where B0 and B′
0 are adjustable parameters. The given values are estimated at ∼ 298 K.

u Values obtained in the experimental work by Gallardo-Vega and Cruz [44] are between 3.810 Åand 3.830 Å.

v Ref. [46]: using PAW-GGA(Perdew-Wang).

w Ref. [187]: using FP-LAPW-GGA(PBE). Only the total energy (−19.45 eV ) is given.

x Ref. [47]; y Ref. [34]; z Ref. [39]; aa Ref. [250].

bb Ref. [188]: using FP-LAPW-GGA(PBE).

cc Ref. [251]: using USPP-GGA.

dd Ref. [252].

ee Ref. [18]: using FP-LAPW-GGA(PBE). Only the total energy (−19.46 eV ) is given.

ff Ref. [36]: using FP-LAPW+lo-GGA(PBE).

gg Ref. [253].

hh Ref. [65]: using FP-LAPW+lo method within GGA(PBE).

ii Ref. [189]: using FLAPW-LDA.

jj Ref. [254]: using USPP-GGA(PBE).

kk Ref. [65]: using FP-LAPW+lo method within LDA.

ll Ref. [192]: using full-potential linear muffin-tin orbital (FP-LMTO) method within GGA(PBE).

—————————————————————-



Section 10.4. Copper Nitrides Page 163

To deeper analyze and to compare the obtained equilibrium properties of the three stoichiometries

series with respect to one another, these quantities are depicted again in Fig. 10.20. All quantities

in this figure are given relative to the corresponding ones of the fcc crystalline elemental copper

given in Table 10.4. This will allow us to study the effect of nitridation on pure crystalline Cu 8.

10.4.1 Relative Stability: Cohesive Energy

Considering Ecoh in the Cu3N series, one can use Fig. 10.20 to group these phases into two

groups: a lower energy (more stable than the elemental Cu) group, containing D09, D02, RhF3

and Fe3N structures; and a higher energy (significantly less stable than the elemental Cu) group

containing L12, D03 and A15 structures. The difference in cohesive energy between the least

stable phase in the lower group (Fe3N) and the relatively most stable phase in the higher group

(L12) is 0.557 eV/atom, as one can see from Table 10.4. It is interesting to point out here that,

except Cu3N(Fe3N), all phases in the first group are insulators, while all the less stable phases

are metallic9.

Although this simple cubic D09 phase was indeed found to be stable, yet one interesting result

we obtained is that, in their equilibrium, the Cu3N(RhF3) and the Cu3N(D02) phases would be

0.001 eV/atom and 0.002 eV/atom more stable than Cu3N(D09), respectively. Moreover, Fig.

10.19a shows clearly that the E(V ) relations of Cu3N in D09, D02 and in RhF3 structures are

almost identical. This marginal10 difference in energy (Table 10.4) and the almost identical E(V )

curves (Fig. 10.19a) may indicate the possiblity of the co-existence of these phases during the

copper nitride synthesis process. However, this behaviour in the EOS could be attributed to the

structural relationships between these three structures that being discussed in Ref. [21, p. 265]

and in Ref. [155].

The bcc skutterudite structure (D02) can be derived from the more symmetric sc D09 structure

by simply displacing four of the N atoms located on parallel edges of the Cu cube to its center.

This is done for two adjacent Cu cubes but in two vertical displacement directions, as nicely

8 In Table 10.4, our computed properties of the elemental Cu are compared with experiment and with previous
calculations as well. This may benchmark the accuracy of the rest of our calculations.

9 The electronic structure of D09, D02 and RhF3 phases are discussed in Sec. 10.4.6, while the rest are not
shown here.

10 In fact, the accuracy of the approximate XC functional (PBE and others) does not really allow us to make
a distinction among these.
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Figure 10.20: (Color online.) Calculated equilibrium properties of the twenty studied phases of copper
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explained in Ref. [155]. On the other hand, to see the relation between D09 and RhF3, it is better

to think of D09 as built of Cu6N octahedra (cf. Fig. I in Ref. [188]). A simple rotation of 60◦ of

an octaheron about a shared vertex with another octahedron brings the system to a structure in

which Cu atoms are in hcp positions. Interested readers are referred to Ref. [21, p. 266] for more

details. Thus, both D02 and RhF3 can simply be derived from D09. Hence it is not surprising

that these structural relations reflect in their EOS’s and in other physical properties.

The odd behaviour of the EOS of Fe3N with the existence of two minima (Fig. 10.19a) shows

that the first minima (to the left) is a metastable local minimum that cannot be maintained as the

system is decompressed. Cu ions are in the 6g Wyckoff positions: (x, 0, 0), (0, x, 0), (−x,−x, 0),
(−x, 0, 1

2
), (0,−x, 1

2
), (x, x, 1

2
); with x = 1

3
to the left of the potential barrier (represented by the

sharp peak in Fig. 10.19a), and x = 1
2
to the right of the peak. It may be relevant to mention

here that Wang and Xue [192] obtained an additional local minimum at high pressure (lower

volume) in the E(V ) EOS of CuN(B1).

In the CuN series, all phases show less binding than the Cu(fcc), except that the simple tetragonal

structure of cooperite (B17) is slightly more stable, with 0.043 eV/atom lower Ecoh. This

structure, B17, was theoretically predicted to be the ground-state structure of PtN [30].

In the CuN2 nitrogen-richest phase series, we can see from Table 10.4 and from Fig. 10.20 that

the phases of this group are significantly more stable than all the studied phases, except C1,

which, in contrast, is the least stable among the twenty studied phases.

Comparing the relative stability of Cu3N, CuN and CuN2, we find from Table 10.4 and from Fig.

10.20 that CuN2(C18) is the most energetically stable phase with 0.526 eV/atom lower than the

experimentally reported Cu3N(D09) phase.

10.4.2 Volume per Atom and Lattice Parameters

Our obtained numerical values for the volume per atom V0 are given in Table 10.4 and visualized

in Fig. 10.20. Relative to the Cu(fcc), all phases tend to slightly lower the V0 values except

CuN(Bk) and the semiconducting Cu3N phases.

To study the structural effect of the nitrogen on the hosting Cu lattice, we, instead of using

the commonly used average V0, introduce the volume per metal atom V Cu
0 . In the case of CuN

and CuN2 it is numerically equivalent to the volume per formula unit, while for Cu3N it equals
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to (volume per formula unit)/3. Hence, this quantity (V Cu
0 ) may be considered as a direct

measure of the Cu-Cu bond length and, thus, as an indicator of the effect of nitridation on the

mechanical properties of the elemental Cu. That is, for a given cohesive energy, an increase in

V Cu
0 may/should lead to a decrease in B0 and vise versa, as will be seen when we discuss the

trends in B0 values.

In the same sub-window as V0, obtained V
Cu
0 values are depicted relative to the Cu(fcc) in Fig.

10.20. Having a look at this figure, one can see a general behaviour: V Cu
0 tends to increase with

the increase in the nitrogen content and with the decrease in the structural symmetry. There is

only one phase which has a clear odd bevaviour, that is CuN(Bk). It is worth to mention here

that this Bk is not an hcp structure, and we have not optimized its c/a ratio. Thus, this is the

most open phase among all the investigated set. Nevertheless, all phases show an increase in

V Cu
0 relative to the elemental Cu, and thus Cu-Cu bond is longer in all these nitrides than in the

elemental Cu. This cannot be seen directly from the V0 values given in Tabel 10.4.

10.4.3 Bulk Modulus and its Pressure Derivative

As can be seen in Fig. 10.20, compared to the parent Cu(fcc), the CuN phases tend to increase

B0. Such a conclusion has also been arrived at by Shimizu, Shirai and Suzuki [189] who calculated

B0 for a series of 1:1 TMNs, including CuN. On the other hand, the considered CuN2 phases are

all, except C1, more compressible than the Cu(fcc). Considering the 1:3 phases, one can easily

see that the trend in Ecoh manifests itself again and divides this series into two groups: a group

of more compressible semiconductors containing D09, D02, RhF3 and Fe3N; and a group with

almost no change in the Cu(fcc) bulk modulus containing L12, D03 and A15 metallic phases.

Having a look at Fig. 10.20, one may argue that, relative to Cu(fcc), the lower V0 and the lower

Ecoh of the CuN2(C2), CuN2(C18) and CuN2(CoSb2) phases must have led to higher B0 values.

Since this is not the case, we turn to our introduced V Cu
0 : Fig. 10.20 tells us that all these

three nitrogen-rich phases have higher V Cu
0 relative to Cu(fcc). Hence, V Cu

0 won the competition

with their relatively lower Ecoh, leading to lower B0. This, again,makes sense and justifies our

introduction of V Cu
0 when dealing with such nitrides.

Take, for example CuN2(C18). One can notice from Table 10.4 that, relative to Cu3N(D09),

CuN2(C18) has about 30% less atomic volume V0 and about 14% less Ecoh, but resulting in
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about 30% less bulk modulus than Cu3N(D09). However, if we consider our introduced V Cu
0 ,

rather than the commonly used V0, one can see that CuN2(C18) has about 57% more V Cu
0 than

Cu3N(D09), which explains the lesser B0 value. In fact, CuN2(C2), CuN2(C18) and CuN2(CoSb2)

share almost the same features when compared to Cu3N(D09), Cu3N(D02) and Cu3N(RhF3) as

CuN2(C18) when compared to Cu3N(D09).

Compared to the other CuN2 phases, the relatively greater value of Ecoh of C1 is overtaken by

the relatively less V Cu
0 value, resulting in a greater B0 than all the three other CuN2 phases. It is

also worth to notice from Table 10.4 that all the CuN phases, except the open Bk, have higher

bulk moduli than all Cu3N and CuN2 phases, except the least compressible phase, C1.

Hence, the isotropic elastic properties depend on, and are more appropriately described by, V Cu
0

rather than V0. Fig. 10.20 tells that the more the nitrogen content, the longer the Cu-Cu bond

length. Thus nitrogen tends to open the hosting Cu lattice and to reduce the bulk modulus.

Nevertheless, bulk modulus is a result of the competition between the change in V Cu
0 and the

change in Ecoh.

Physically, the pressure dependence of B0 can be quantified via its pressure derivative B′
0 given

by Eq. 7.2.3. Except for the last three CuN2 phases in Fig. 10.20, all phases show almost equal

sensitivity. However, the change in B0 of the elemental Cu would be greater than all these phases.

On the other hand CuN2(C2), CuN2(C18) and CuN2(CoSb2) show high elastic sensitivity to any

isotropic pressure. It is worth to mention here that this quantity is a measurable quantity [219],

but we cannot find any experimental value for the synthesized Cu3N(D09) phase.

Table 10.4 shows that our obtained B0 and B′
0 values agree well with many other theoretical

works. However, clear differences between the current and, and among, the theoretically obtained

values exist. This can be traced back to two factors:

• From Eq. 7.2.2 and Eq. 7.2.3, one needs only to calculate Ecoh from DFT. Hence, B′
0

values depends on the DFT algorithm/method and functional. For example, in Table 10.4,

the GGA (e.g. Refs. [65] and [254]) calculated B0 values of B1, B2 and B3 are all lower

than the obtained LDA (e.g. Refs. [65] and [189]) corresponding ones. This is, in fact,

a well-known feature of GGA compared to LDA. That is, relative to the latter,the former

understimates the cohesion and thus overstimates V0 resulting in a lower B0.

• Yet, there are considerable differences among the GGA values and among the LDA values!
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Recalling that B0 and B′
0 are obtained from the EOS fitting, the accuracy in the obtained

values depends not only on the accuracy of the DFT calculated Ecoh, but also on the

numerical fitting; e.g. number of points around V0 and how far these points are from both

V0 and E0. Moreover, B′
0 is numerically more sensitive than B0 [204], that why, we believe,

there is no even clear/general trend/systematic in the calculated B′
0 values of Table 10.4.

10.4.4 Relative Stability: Formation Energy

The obtained formation energies Ef of the twenty relaxed phases are given in Table 10.4 and

shown graphically in Fig. 10.20. All these values are positive; which means that all these twenty

phases are, in principle, thermodynamically unstable (endothermic). However, these results have

to be interpreted with some caution:

• Many other theoretical calculations found positive formation energy for experimentally syn-

thesized transition metal nitrides; e.g. OsN2 [255, using PP and PBE-GGA], PtN2 [27, us-

ing PP and PBE-GGA] and InN [218, using PP with LDA and different GGAs] [256, using

PW91-GGA].

• The fact that we obtained a positive formation energy for the successfully synthesized

Cu3N(D09) phase means that it may be possible that other phases can still be synthe-

sized, and it may indicate that there is a problem with our calculations method (i.e. with

the approximations) and/or with the physical conditions assumed for the calculations (i.e.

pressure and temperature); see below.

• These positive values are the result of static DFT calculations (T = 0 K) at equilbrium

volume (P = 0 GPa); while the fact is that most, if not all, of the successfully synthesized

TMNs were obtained by subjecting their parent elements to extreme conditions of pressure

and temperature (c.f. Ref. [255]).

• Referring to Table 10.1, the difference between our calculated cohesive energy of N2 and

experiment (Ref. [159]) is about −0.297 eV/atom; while for the bulk Cu the difference

is about 0.016 eV/atom. Now, using Eq. 7.5.3 with this significant overestimation

of Ecoh(N
gas
2 ) and the reasonable value of Ecoh(Cu

solid) will result in underestimation of
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Ef(CumN
solid
n ). This contribution has to be considered, as an apparent shortcoming of the

PBE-GGA, whenever one deals with a dimeric crystal [204, 218].

• Nevertheless, since all formation energies are calculated as the difference between the ab

initio cohesive energies, which in turn are calculated at the same level of accuracy, one can

still use these formation energies to measure the relative thermodynamic stabilities of these

structures. That is, the lower the formation energy, the lower the propensity to dissociate

back into the constituent elements Cu and N2 (c.f. Ref. [255]).

• Moreover, because Cu3N(D09) has been synthesized, we can take it as a reference measure

of stability. It is also worth to recall here that experiment found Cu3N(D09) to be metastable

at room temperature [34].

Relative to each other, and within each series, Ef of the twenty phases shows almost the same

trend as Ecoh. However, the CuN phases tend to be relatively less stable than the Cu3N and CuN2

phases, except the odd C1 phase. In fact, C2, C18 and CoSb2 are the most stable and share

almost the same features when compared to Cu3N(D09), Cu3N(D02) and Cu3N(RhF3). This may

agree well with Armenta and Soto [36] who proved, from the study of formation energy, that the

metallic phases of copper nitrides would be more stable than the semiconducting phase.

10.4.5 More Comparison with Experiment and with Theory

Comparing our obtained results with experiment, one can see from Table 10.4 that the lattice pa-

rameter a of Cu3N(D09) was reproduced very well. Excellent agreement with previous calculations

is also clear, though, with respect to experiment (or: with respect to each other), the common

overestimation of a by GGA and the underestimation of a by LDA (c.f. Refs. [46, 187, 188]; and

Refs. [257, 258]) is showing up.

Using the full-potential (linearized) augmented plane waves plus local orbitals (FP-LAPW+lo)

method within LDA and within GGA, Kanoun and Said [65] studied the E(V ) EOS for CuN in

the B1, B2, B3 and B4 structures. While within GGA, they found equilibrium lattice parameters

which are in excellent agreement with ours, their obtained LDA lattice parameter values show

the common underestimation with respect to our and their GGA values (see Table 10.4). Also,
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the relative stabilities of these phases they arrived at agree well with ours, and they concluded

that B3 is the ground-state phase of CuN and is metalic.

Shimizu, Shirai and Suzuki [189] performed first-principles calculations using full-potential lin-

earized augmented-plane-wave (FLAPW) method in the framework of LDA and found that

CuN(B1) is less than 0.20 eV/atom more stable than CuN(B3), while we found that CuN(B3)

is 0.043 eV/atom (GGA) more stable than CuN(B1). Some of their findings are shown in Table

10.4; and, again, their predicted LDA lattice constants are slightly less than our GGA values,

while their obtained bulk moduli are overestimated when compared to ours.

Using full-potential linear muffin-tin orbital (FP-LMTO) method within GGA(PBE), Wang et

al. [192] studied the E(V ) EOS of CuN in the B1, B2, B3, B81 and B4 structures. Their

obtained equilibrium lattice parameters and bulk muduli are included in Table 10.4 which show

good agreement with ours. However, Fig. 10.19b shows that, within this parameter space,

equilibrium cohesive energy decreases as B2, B81, B4, B1 and B3. This is consistent with Wang

et al. but B81 and B4 are swaped. Nevertheless, B3 is the most stable in both works, contrary

to the findings of Shimizu, Shirai and Suzuki [189].

Whatever the case, in our wider parameter space, Fig. 10.19b and Table 10.4 reveal that

CuN(B17) is 0.17 eV/atom and 0.21 eV/atom (GGA) more stable than CuN(B3) and CuN(B1),

respectively. It may be worth to mention again here that B17 was theoretically predicted to be

the ground-state structure of PtN [30].

Using norm-conserving ultra-soft pseudopotential within GGA and the so-called BFGS scheme

for geometry optimization, Bouayed et al. [254] studied CuN in the B1 and B3 structures, and

CuN2 in the C1 structure. Although their obtained lattice constants (given in Table 10.4) are in

good agreement with our findings, the noticable difference in bulk moduli may be traced back to

the numerical fitting (see Subsection 10.4.3).

10.4.6 Electronic Properties

Band structure (i.e. ǫσi (k) curves) and spin-projected total and partial (i.e. orbital resolved) den-

sity of states (DOS) of the energetically most stable phases are presented in Figs. 10.21, 10.22,

10.23, 10.24 and 10.25. Spin-projected total density of states (TDOS) are shown in subfigure (b)

in each case. In all cases, TDOS’s are completely symmetrical in majority and minority spins. That
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Figure 10.21: (Color online.) DFT calculated electronic structure for Cu3N in the D09 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Cu(s, p, d) orbitals in Cu3N; and (d) PDOS of
N(s, p) orbitals in Cu3N.
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Figure 10.22: (Color online.) DFT calculated electronic structure for Cu3N in the RhF3 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Cu(s, p, d) orbitals in Cu3N; and (d) PDOS of
N(s, p) orbitals in Cu3N.

is, electrons occupy the majority and minority spin bands equally and result in a zero total spin mo-

ment and a zero spin-polarization ratio: SPRDOS(E) = | (D↑(E)−D↓(E)) / (D↑(E) +D↓(E)) |.
That is why it was sufficient only to display spin-up partial density of states (PDOS) and spin-up

band structures. To properly show details of the electronic structure of these phases, we plotted

the energy bands along densely sampled high-symmetry string of neighbouring points in the k-

space; while displaying the Cu(s, p, d) and N(s, p) partial DOS allows us to extract information

about the orbital character of these bands.

Energy bands ǫσi (k), total density of states (TDOS) and partial (orbital-resolved) density of states
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Figure 10.23: (Color online.) DFT calculated electronic structure for Cu3N in the D02 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Cu(s, p, d) orbitals in Cu3N; and (d) PDOS of
N(s, p) orbitals in Cu3N.

l10 l5 0 5 10
TDOS (arb. units) 

 (b)

l15

l10

l5

0

5

10

15

TDOS up
TDOS down

0 2 4 6 8 10
PDOS (arb. units)

 (c)

l15

l10

l5

0

5

10

15

Cu s 
Cu p 
Cu d 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
PDOS (arb. units)

 (d)

l15

l10

l5

0

5

10

15

N s 
N p 

X M m Z A M m X R Z

 (a)

l15

l10

l5

0

5

10

15

E

n

E
F

 (e
V)

Figure 10.24: (Color online.) DFT calculated electronic structure for CuN in the B17 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Cu(s, p, d) orbitals in CuN; and (d) PDOS of
N(s, p) orbitals in CuN.
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Figure 10.25: (Color online.) DFT calculated electronic structure for CuN2 in the C18 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Cu(s, p, d) orbitals in CuN2; and (d) PDOS of
N(s, p) orbitals in CuN2.
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(PDOS) of Cu3N(D09) are shown in Figs. 10.21. It is clear that Cu3N(D09) presents insulating

character in its spin band. It has its valence band maximum (VBM) at R which lies 0.13 eV

below the Fermi energy EF , and its conduction band minimum (CBM) at M which also lies 0.13

eV above EF , resulting in a narrow indirect gap of 0.26 eV . By looking at the PDOS plots,

energy bands can be divided into three parts: a deep band around ∼ −16 eV below EF consists

mainly of N(2s), a broad group of 12 valence bands with ∼ 8 eV of width that comes mostly

from the 3d electrons of Cu plus smaller contribution from N(2p), and the conduction bands.

Our obtained band structure of Cu3N(D09) agrees qualitatively well with many previous the-

oretical works [33, 46, 187]; however, depending on the calculation method, the value of the

indirect band gap of Cu3N(D09) was predicted to be 0.23 eV (LAPW+LDA) [33], 0.25 eV (FP-

LAPW+GGA(PBE)) [18,187], 0.355 eV (UPP-GGA(Perdew-Wang)) [46] and 0.9 eV (LCAO+LDA)

[33]. Although our predicted band structure and gap value agree well with many theoretical cal-

culations, the experimentally reported values of the energy gap Eg of Cu3N(D09) are larger, as

will be discussed in Subsection 10.4.7. This is a well known drawback of Kohn-Sham DFT-based

calculations to understimate the band gap.

Fig. 10.22 shows that the top of the valence band and the bottom of the conduction band of

Cu3N(RhF3) are about to touch the Fermi level at (Γ,−0.13 eV ) and (Σ, 0.15 eV ), respectively.

Hence, we have an indirect band gap of 0.28 eV with EF slightly shifted towards the VBM.

The third most stable candidate in this 3:1 series is Cu3N(D02). Its band structure (shown in Fig.

10.23) has the VBM at (H,−0.14 eV ), and the CBM at (Γ, 0.14 eV ), resulting in an indirect

energy gap of 0.28 eV .

The orbital resolved density of states (PDOS) of both Cu3N(D02) and Cu3N(RhF3) share the

same qualitative features with those of Cu3N(D09). As expected, the structural relation between

these three phases are reflected into their electronic properties.

Energy bands ǫσi (k), total density of states (TDOS) and partial (orbital-resolved) density of states

(PDOS) of CuN(B17) are shown in Figs. 10.24. It is clear that CuN(B17) would be a true metal

at its equilibrium. The major contribution to the very low TDOS around Fermi energy EF comes

from the 2p states of the N atoms. Beneath EF lies a band with ∼ 8 eV of width, in which one

can notice that the main contribution is due to the mixture of Cu(3d) states with N(2p) states.

The N(2s) states dominate the deep lowest region, while the unoccupied states stem mainly from

the N(2p) states. Fermi surface intersects two bands: a lower one in the M-Γ-X-R directions,



Section 10.4. Copper Nitrides Page 174

and a higher band in the Γ-M-A and M-X directions. Hence, EF is not a continous surface

contained entirely within the first BZ.

So, in CuN(B17), the nitridation effects on the pure Cu can be summarized from previous sections

as: significant increase in the volume per atom V0, increase in the bulk modulus resulting in a

less compressible material than the pure metal, while the metallic character is preserved . Similar

results for CuN(B3) were also arrived at by other researchers [254].

It may be worth to mention here that B1 [65, 254], B2 [65, 254], B3 [65] and B4 [65] phases of

CuN were also theoretically predicted to be metallic.

With EF crossing the finite TDOS, Fig. 10.25 shows that CuN2(C18) is metallic at 0 K. The

PDOS reveals that the major contribution to the TDOS at EF comes from the N(2p) states with

minor contribution from the Cu(3d) states. Compared to CuN(B17), a new feature of this 1:2

nitride is the contribution of N(2p) states to N(2s) states at the deep lowest region. However,

variation in N(2s) energy with respect to k is smaller than the variation of N(2p) states, resulting

in a narrower and higher PDOS. It may be instructive to mention here that CuN2(C1) phase was

also found to be metallic [254].

A common feature between all the studied cases is the higly structured, intense and narrow series

of peaks in the TDOS valance band corresponding to superposition of N(2p)-states and Cu(3d)-

states. In their k-space, Cu(3d) energies show little variation with respect to k; hence the Hove

singularities-like sharp features.

To summarize this section, we have found that the most stable phases of CuN and CuN2 are

metallic, while Cu3N is a semiconductor. This finding agrees well with literature, specially with

Armenta and Soto [36] who predicted theoretically that the semiconducting state is sensitive to

the nitrogen concentration and changes to metallic when the composition is out of the ideal

nitrogen to copper ratio, x = 1/3. Armenta and Soto, who studied the effect of introducing

N atoms in one by one basis to the bulk cubic Cu matrix, also pointed out that as x increases,

the TDOS at EF , due to both N and Cu atoms, increases as well. Concerning this point, our

findings are in excellent agreement with theirs, since we found for the most stable phases (i.e.

Cu3N, CuN and CuN2, respectively) that TDOS(x = 1/3) = 0, TDOS(x = 1) ∼ 0.70 and

TDOS(x = 2) ∼ 0.85, in relative arbitrary units.
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Figure 10.26: (Color online.) Normal-incidence frequency-dependent optical constants of Cu3N(D09).

10.4.7 Optical Properties

Fig. 10.26 displays the real and the imaginary parts of the frequency-dependent dielectric function

εRPA(ω) of Cu3N(D09) and the corresponding derived optical constants within the optical region
11.

The real part εre(ω) shows an upward trend before 0.3 eV , reaches a maximum value at 1 eV

and generally decreases after that. The imaginary part εim(ω) has two main peaks located at

∼ 1.3 eV and ∼ 2.0 eV . Niu et al. [251] carried out DFT(UPP-GGA) calculations and derived

an ε(ω) spectrum with a real part that shows an upward trend before 1 eV , reaches the maximum

value at 1 eV (as ours) and decreases after that. The imaginary part they obtained has two main

peaks, in the range 0 eV to 5 eV , located at 2.07 eV and 3.51 eV . By analyzing the DOS, Niu

et al. claimed that these two peaks are mainly due to the electron transition from the Cu(3d)

band to the conduction band.

Refractive index n (ω) spectrum (Fig. 10.26) shows almost the same frequency dependance as

εre(ω). Comparing our obtained n (ω) with the experimental results of Gordillo et al. [38], one can

see a kind of general qualitative agreement between the experimental curve and the theoretical

11 Recall that the optical region (visible spectrum) is about (390 ∼ 750) nm which corresponds to (3.183 ∼
1.655) eV .
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one, represented by the increase in n with increase in the photon energy till reaching a maximum,

then followed by a generally decreasing behaviour. However, the experimental peak of n is at

∼ (1.4 eV, 3.65), while our obtained peak is at ∼ (1.2 eV, 4.5). Surprisingly, the DFT(UPP-

GGA)-refractive index spectrum derived by Niu et al. [251] shows far better agreement with the

experimental results of Gordillo et al. [38] and they got the peak at ∼ (1.6 eV, 3.9).

From the absorption coefficient α (ω) spectrum (Fig. 10.26), it can be seen that Cu3N(D09) starts

absorbing photons with ∼ 0.75 eV energy. Hence, it is clear that GW0 calculations give a band

gap of ∼ 0.75 eV , which is a significant correction to the obtained DFT value. Our presented

α (ω) spectrum agrees qualitatively well with the experimental work of Gordillo et al. [38], who,

in the ∼ (0.6 − 1.4) eV region, obtained a smooth exponential-like curve. However, their

obtained α (ω) reaches 1× 105 cm−1 in the visible range before 1.4 eV , while ours (Fig. 10.26)

never reaches such a value before 3.3 eV . Niu et al. [251] got a curve that reaches this value at

∼ 3.6 eV . However, their α (ω) spectrum starts to be non-zero from ∼ 0.71 eV !

Gordillo et al. [38] prepared nearly stoichiometric copper nitride polycrystalline films having nitro-

gen contents of (27±2)% with lattice parameter a = 3.8621 Å. They referred to it in their article

as stoichiometric Cu3N, and, at room temperature and with orientation along the (1 0 0) crystal-

lographic axis, they carried out some optical measurements and fitted the obtained data. From the

fits, they managed to derive the refractive index and the absorption coefficient, while reflectance

was measured directly. So, although our calculated optical properties show partial agreement

with this experimental work, discrepancies may be attributed due to the lack of knowledge of the

exact stoichiometry of the prepared samples. Wang, Nakamine, and Hayashi [43] also prepared

nearly stoichiometric Cu3N films at 67 Pa. Their experimentally obtained α (ω) spectra reach

1× 105 cm−1 at about 2.4 eV . However, α leaves the zero level only at about (1.8 ∼ 1.9) eV .

On the other hand, the used Ecut = 290 eV and 8 × 8 × 8 k-mesh in the DFT(UPP-GGA)

calculations by Niu et al. [251] may not be sufficient to reproduce qualitatively similar spectra as

those we obtained from GWA calculations. No quantitative correspondence is to be expected.

Experimentally reported values of the Cu3N(D09) optical gap spread over a wide range [34, 38].

Some of these values are: (0.25 ∼ 0.83) eV [45], 1.30 eV [37, 252], (1.7 ∼ 1.84) eV [250],

1.85 eV [35] and (1.8 ∼ 1.9) eV [43]. Hence, although GWA calculations give a band gap of

∼ 0.75 eV , which is a significant correction to the obtained DFT value of 0.26 eV , the difference
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between theory and experiment is still considerable. This is a well known problem with GWA

calculations on top of DFT eigenvalues and eigenstates that correspond to a very small bandgap

compared to experiment.

Given that standard DFT functionals severely underestimate the band gaps while the Hartree-

Fock (HF) approximation overestimates them [152], a potential solution is to combine local or

semilocal DFT exchange with a portion of nonlocal exact exchange thereby constructing the

so-called hybrid functional [259]. Much improved band gaps can be obtained by screening the

nonlocal HF-type portion of exchange potential with a suitable screening parameter [260, 261].

A more appropriate approach is to apply the partially self-consistent GW method on eigenvalues

obtained using hybrid functionals or DFT+U schemes [262] which readily provide better band

gaps for insulators [263].

10.5 Silver Nitrides

The energy-volume equation of state (EOS) for the different structures of Ag3N, AgN2 and AgN

are depicted in Figs. 10.27a, 10.27b and 10.27c, respectively. The corresponding calculated

equilibrium properties are given in Table 10.5. In this table, we ordered the studied phases

according to the increase in the nitrogen content; then within each series, structures are ordered

in the direction of decreasing structural symmetry. For the sake of comparison, we also presented

results from experiment and from previous ab initio calculations; and, whenever appropriate, the

calculation method and the XC functional are also given in footnotes of the Table.

The calculated equilibrium properties: cohesive energies, formation energies, volume per atom,

volume per Ag atom, and bulk modulus and its pressure derivative which are given Table 10.5, are

visualized in Fig. 10.28. This kind of visualization allows us to study the effect of nitridation on

the parent Ag(A1), since all quantities in this figure are given relative to the corresponding ones

of the elemental Ag(A1) given in the first row of Table 10.5. Moreover, one can easly compare

the properties of these phases relative to each other.
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Figure 10.27: (Color online.) Cohesive energy Ecoh(eV/atom) versus atomic volume V (Å3/atom)
for: (a) Ag3N in seven different structural phases; (b) AgN in nine different structural phases; and (c)
for AgN2 in four different structural phases. (d) Enthalpy H vs. pressure P equation of state (EOS)
for some Ag3N phases in the range where D09 → A15, D09 → D03 and D09 → L12 phase transitions
occur.
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Table 10.5: Calculated and experimental zero-pressure properties of the twenty studied phases of
Ag3N, AgN and AgN2: Lattice constants (a(Å), b(Å), c(Å), α(

◦) and β(◦)), equilibrium atomic volume

V0(Å
3
/atom), cohesive energy Ecoh(eV/atom), bulk modulus B0(GPa) and its pressure derivative B′

0,
and formation energy Ef (eV/atom). The presented data are of the current work (Pres.), experimentally
reported (Expt.) and of previous calculations (Comp.).

Structure a(Å) b(Å) c(Å) α(◦) or β(◦) V0(Å
3/atom) Ecoh(eV/atom) B0(GPa) B′

0 Ef (eV/atom)

Ag

A1

Pres. 4.164 – – – 18.06 −2.484 88.188 5.793
Expt. 4.08570a – – – −2.95b 100.7b, 101c 6.12d

Comp. 4.01f – – – −3.59g, 142f 5.00l,
−2.67i, 5.97k,

– – – −2.66h 5.70j

Ag3N
D03 Pres. 6.322 – – – 15.79 −2.055 98.356 5.457 1.107
A15 Pres. 5.065 – – – 16.24 −1.976 92.280 5.470 1.186

D09

Pres. 4.328 – – – 20.27 −2.513 71.980 5.386 0.649
Comp. 3.995q, – – – 95.7r, 87.1s

4.169r, – – –
4.292s – – –

L12 Pres. 3.972 – – – 15.67 −2.081 100.743 5.530 1.081
D02 Pres. 8.662 – – – 20.31 −2.514 72.230 5.335 0.648
ǫ-Fe3N Pres. 5.967 – 5.560 – 21.43 −2.469 64.737 2.335 0.692
RhF3 Pres. 6.126 – – α = 59.989 20.31 −2.514 72.237 5.396 0.648

fcct Expt.
4.369u, – – 2.587± 0.364w

4.29v, – – –
4.378x – – –

AgN

B1
Pres. 4.617 – – – 12.30 −2.253 147.600 5.145 1.587
Comp. 4.57q, 4.506r, – – – 219.2r, 4.653p

4.476o, – – – 197.18o, 4.883o

4.606p, – – – 147.40p,
4.619s – – – 162.3s

B2
Pres. 2.873 – – – 11.86 −2.021 146.157 5.260 1.819
Comp. 2.833q, 2.806r, – – – 138.96p 4.823p

2.78o, 2.87p – – 204.10o 5.451o

2.876s – – –

B3

Pres. 4.950 – – – 15.16 −2.122 109.639 5.210 1.718
Comp. 4.88q, 4.816r, – – – 100.11p 5.825p

4.79o, 4.94p – – – 151.05o 4.542o

4.946s – – –
B81 Pres. 3.544 – 4.929 – 13.40 −1.996 130.485 5.240 1.844
Bk Pres. 3.521 – 9.368 – 25.15 −1.891 57.077 5.110 1.949
Bh Pres. 3.096 – 3.023 – 12.55 −2.121 141.385 5.285 1.719

B4
Pres. 3.501 – 5.734 – 15.22 −2.113 105.992 5.467 1.727
Comp. 3.41o, – 5.52o, – 143.68o, 4.82o,

3.54p – 5.69p – 110.12p 4.663p

B17 Pres. Pres. 3.158 – 5.560 – 13.86 −2.517 132.556 5.185 1.323
B24 Pres. 4.337 4.601 5.091 – 12.70 −2.202 138.704 5.132 1.638

AgN2

C1

Pres. 5.157 – – – 11.43 −1.959 164.844 4.996 2.333
Comp. 5.055r, 5.172s, – – – 181.3r, 164.5s

5.013m, 5.141n, – – – 215m, 164n

5.124q – – –
C2 Pres. 5.617 – – – 14.77 −3.626 30.058 6.894 0.666
C18 Pres. 3.440 4.513 5.508 – 14.25 −3.680 35.878 7.269 0.612
CoSb2 Pres. 5.976 5.651 10.261 β = 151.225 13.90 −3.699 35.117 7.822 0.593
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Notes to Table 10.5 : —————————-
a Ref. [240]. This is an average of 56 experimental values (with a deviation ±0.00018Å), at 20◦C.

b Ref. [172]. Cohesive energies are given at 0 K and 1 atm = 0.00010 GPa; while bulk mudulii are given at room temperature.

c Ref. (25) in [219]: at room temperature.

d See Refs. (8)–(11) in [219].

f Ref. [241]: using the full-potential linearized augmented plane waves (LAPW) method within LDA.

g Ref. [242]: using projector augmented wave (PAW) method within LDA.

h Ref. [242]: using projector augmented wave (PAW) method within GGA(PW91).

i Ref. [242]: using projector augmented wave (PAW) method within GGA(PBE).

j Ref. [219]: using a semiempirical estimate based on the calculation of the slope of the shock velocity vs. particle

velocity curves obtained from the dynamic high-pressure experiments. The given values are estimated at ∼ 298 K.

k Ref. [219]: using a semiempirical method in which the experimental static P − V data are fitted to an EOS

form where B0 and B′
0 are adjustable parameters. The given values are estimated at ∼ 298 K.

l Ref. [219]: using the so-called method of transition metal pseudopotential theory; a modified form of

a method proposed by Wills and Harrison to represent the effective interatomic interaction.

m Ref. [64]: using the full-potential linearized augmented plane waves (LAPW) method within LDA.

n Ref. [64]: using the full-potential linearized augmented plane waves (LAPW) method within GGA.

o Ref. [65]: using full-potential (linearized) augmented plane waves plus local orbitals (FP-LAPW+lo) method within LDA.

p Ref. [65]: using using full-potential (linearized) augmented plane waves plus local orbitals (FP-LAPW+lo) method within GGA(PBE).

q Ref. [264]: using pseudopotential (PP) method within LDA.

r Ref. [264]: using linear combinations of atomic orbitals (LCAO) method within LDA. B0’s are calculated from elastic constants.

s Ref. [264]: using linear combinations of atomic orbitals (LCAO) method within GGA. B0’s are calculated from elastic constants.

t This is the face centered cubic (fcc) structure with Z = 4/3 (i.e. 4 Ag atoms in the unit cell) suggested by Hahn and Gilbert

according to some measurements (Ref. [55]).

u Ref. [55].

v Ref. [54].

w This is the average of the experimental values: (+314.4∓ 2.5) kJ/mol [53] = (3.25853± 0.02591) eV/atom,

+199 kJ/mol [57] = 2.062 eV/atom, +255 kJ/mol [55] = 2.643 eV/atom, and +230 kJ/mol [56] = 2.384 eV/atom.

We used the conversion relation: 1 eV/atom = 96.521 kJ/mol or equivalently 1 kJ/mol = 0.010364 eV/atom.

x Ref. [58].

10.5.1 EOS and Relative Stabilities

Considering Ecoh in the Ag3N series, Fig. 10.27a shows clearly that the E(V ) relations of Ag3N

in D09, D02 and RhF3 phases are almost identical, corresponding to equilibrium cohesive energy

(Table 10.5) of −2.513, −2.514 and −2.514 eV/atom, respectively. This behavior in the EOS

could be traced back to the structural relationships between these three structures, since both

D02 and RhF3 can simply be derived from the more symmetric D09 (see Ref. [3] and references

therein). These structural relations may reflect in the EOS’s and in other physical properties, and

the three phases may co-exist during the Ag3N synthesis process. Relative to the elemental Ag,
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these three phases tend not to change the Ecoh (Fig. 10.28), lowering it only by ∼ 0.03 eV/atom,

as can been seen from Table 10.5. It may be worth to mention here that the simple cubic D09

phase is the stable phase of the synthesized Cu3N [32, 33].

The odd behavior of the EOS of Ag3N(Fe3N) with the existence of two minima (Fig. 10.27a)

shows that the first minima (to the left) is a metastable local minimum that cannot be maintained

as the system is decompressed. Ag ions are in the 6g Wyckoff positions: (x, 0, 0), (0, x, 0),

(−x,−x, 0), (−x, 0, 1
2
), (0,−x, 1

2
) and (x, x, 1

2
); with x ∼ 1

3
to the left of the potential barrier

(represented by the sharp peak at ∼ 18.2 Å
3
/atom), and x = 1

2
to the right of the peak. It may

be relevant to mention here that Cu3N(Fe3N) was found to behave in a similar manner [3].

The crossings of the less stable A15, D03 and L12 EOS curves with the more stable D09, D02 and

RhF3 ones at the left side of their equilibrium points reveals pressure-induces phase transitions

from the latter phases to the former. To show this, we plotted the corresponding relation between

enthalpy H = E(V )+PV and the imposed pressure P in Fig. 10.27d. Since D09, D02 and RhF3

phases have identical E(V ) curves, the corresponding H(P ) curves are also identical. Hence,

only the H(P ) of D09 is displayed in Fig. 10.27d. A point where the enthalpies of two phases are

equal determine the phase transition pressure Pt; and, indeed, the direction of the transition is

from the higher H to the lower H [213]. As depicted in Fig. 10.27d, Pt(D09 → L12) = 17.8 GPa,

Pt(D09 → D03) = 19.5 GPa and Pt(D09 → A15) = 26.0 GPa. Thus, D09, D02 and RhF3 would

not survive behind these Pt’s and A15, D03 and L12 are preferred at high pressure.

Fig. 10.28 reveals that the AgN group contains the least stable phase among all the twenty

studied phases: the hexagonal Bk. Fig. 10.27b and Table 10.5 show that the simple tetragonal

structure of cooperite (B17) is the most stable phase in this AgN series. In fact, one can see from

Fig. 10.28 and Table 10.5 that all the considered AgN phases possess less binding than their

parent Ag(fcc), except AgN(B17) which is slightly more stable, with 0.033 eV/atom lower Ecoh.

It is interesting to notice that AgN(B17) is ∼ 0.003 eV/atom more stable than the Ag3N most

stable phases. Moreover, this B17 structure was theoretically predicted to be the ground-state

structure of CuN [3], AuN [6], PdN [7] and PtN [30].

Using the full-potential (linearized) augmented plane waves plus local orbitals (FP-LAPW+lo)

method within LDA and within GGA, Kanoun and Said [65] studied the E(V ) EOS for AgN in

the B1, B2, B3 and B4 structures. The equilibrium energies they obtained from the E(V ) EOS
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revealed that B1 is the most stable phase, and the relative stability they arrived at is in the order

B1–B3–B4–B2, with a significant difference in total energy between B3 and B4 (see Fig. 2(b)

in that article). Within this subset of structures, the numerical values of Ecoh in Table 10.5 do

have the same order. However, the difference between the equilibrium Ecoh(B3) and Ecoh(B4) is

only ∼ 0.009 eV , and the E(V ) EOS of B3 and B4 match/overlap over a wide range of volumes

around the equilibrium point. This discrepancy may be attributed to the unphysical/ill-defined

measure of stability that Kanoun and Said used, the total energy, while the number of the AgN

formula units per unit cell in the B4 structure differs from that in the others12. Nevertheless, it

may be worth mentioning here that AgN(B3) was found to be elastically unstable [264].

In the CuN2 nitrogen-richest phase series, we can see from Table 10.5 and from Fig. 10.28

that the phases of this group are significantly more stable than all the other studied phases,

except C1, which is, in contrast, the second least stable among the twenty studied phases, with

0.017 eV/atom more than AgN(Bk). From Fig. 10.27c, Fig. 10.28 and Table 10.5, one can see

that in this series, the lower the structural symmetry, the more stable is the phase. It was found

that CuN2 phases have the same trend [3].

Comparing the relative stability of Ag3N, AgN and AgN2, we find from Table 10.5 and from Fig.

10.28 that AgN2 in its least symmetric phase, the simple monoclinc structure of CoSb2, is the

most energetically stable phase with Ecoh = −3.699 eV/atom.

10.5.2 Volume per Atom and Lattice Parameters

The numerical values of the lattice parameters and the average equilibrium volume per atom V0

for the twenty modifications are presented in Table 10.5. The middle subwindow of Fig. 10.28

depicts the V0 values relative to the Ag(fcc). To measure the average of the Ag–Ag bond length

in the silver nitride, the equilibrium average volume per Ag atom (V Ag
0 ), which is simply the ratio

of the volume the unit cell to the number of Ag atoms in the unit cell, is visualized in the same

subwindow.

From the V0 curve in Fig. 10.28, we can see that, all AgN and AgN2 modifications, except the

open AgN(Bk) phase, decrease V0; while the Ag3N phases tend, on average, not to change the

number density of the parent Ag(A1).

12 In their original article [65], Kanoun and Said stated that “... there are two atom in wurtzite unit cell, and

one in all the other cases.” which is a clear typo!
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On the other hand, the V Ag
0 curve in Fig. 10.28 reveals that, relative to the elemental Ag and to

each other, V Ag
0 tends to increase with the increase in the nitrogen content. Thus, in all these

nitrides, the introduced N ions displace apart the ions of the host lattice causing longer Ag-Ag

bonds than in the elemental Ag. This cannot be seen directly from the V0 values depicted in the

same figure.

For AgN in the B1, B2, B3 and B4 structures, Kanoun and Said (Ref. [65] described in Sec.

10.2.1 above) obtained GGA equilibrium lattice parameters which are in very good agreement

with ours. Their obtained LDA lattice parameter values show the common underestimation with

respect to their and our GGA values (see Table 10.5).

Gordienko and Zhuravlev [264] studied the structural, mechanical and electronic properties of

AgN(B1) , AgN(B2), AgN(B3), AgN2(C1) and Ag3N(D09) cubic phases. Their DFT calculations

were based on pseudopotential (PP) method within LDA, and on linear combinations of atomic

orbitals (LCAO) method within both LDA and GGA. For comparison, some of their findings are

included in Table 10.5. Within the parameter subspace they considered, our GGA values of the

a lattice parameter agree very well with theirs. On the other hand, although their PP a values

are closer to the GGA ones (ours and theirs), all their LDA values are less than the GGA ones.

This confirms the well-known behavior of LDA compared to GGA [134,135,247]. Gordienko and

Zhuravlev also found that the Ag–Ag interatomic distance increases in the order Ag3N–AgN–

AgN2. This agrees with the general trend shown in Fig. 10.28, since the V Ag
0 curve shows an

average increase in the same direction.

10.5.3 Bulk Modulus and its Pressure Derivative

Fig. 10.28 reveals that Ag3N phases tend, on average, to preserve the B0 value of the parent

Ag(A1). Increasing the nitrogen content to get AgN phases will increase the B0 value of the

parent Ag(A1), except in the case of Bk. While the nitrogen in AgN2 tends to lower the B0 value

of the parent Ag(A1), the cubic C1 phase posses the highest B0 value. This could be seen from

Fig. 10.27c, where the curvature of the Ecoh(V ) curve of C1 is higher compared to the shallow

minima of the C2, C18 and CoSb2 curves.

From the definition of the equilibrium bulk modulus (Eq. 7.2.2), one would expect B0 to increase

as Ecoh or V0 decreases. This is because of the minus sign of the former and the inverse propor-
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tionality of the latter. That is, roughly speaking, the B0 curve should have a mirror reflection-like

behavior with respect to the Ecoh and V0 curves. Nevertheless, if Ecoh or V0 are increasing and

the other is decreasing, then the dominant net effect will be of the one with the higher change

13. For example, Fig. 10.28 shows that in going from D03 to A15, both Ecoh and V0 increase

resulting in a negative change in B0. In going from A15 to D09, Ecoh is decreasing while V0 is

increasing, but, in the end, the latter won the competition and lowered the value of B0. This

argument stays true throughout the three series. When there is no significant change in both

Ecoh and V0, there is no significant change in B0. This is the case when one goes from C18

to CoSb2. A close look at the B0 curve in Fig. 10.28, reveals that the huge decrease in Ecoh

between C1 and C2 defeats the relatively small increase in V0. This is simply because, according

to Eq. 7.2.2, the value of B0 is proportional to the absolute change in Ecoh, while it is far more

sensitive to any change in V0 because it is proportional to (∆V0)
−1.

It is common to measure the pressure dependence of B0 by its derivative B′
0 (Eq. 7.2.3). Fig.

10.28 shows that the B0 value of the C2, C18 and CoSb2 phases increases as these phases are

put under pressure. While the B0 values of the rest of the phases shows very low sensitivity to

pressure and they tend to slightly lower the bulk modulus, the Fe3N phase is the most sensitive

phase and tends to significantly lower its B0 upon application of pressure. This high sensitivity

may indicate that the corresponding minimum on the potential surface is not global, but another

local minimum as the one at 16.2 Å3/atom (Fig. 10.27a).

From the elastic constants they obtained, Gordienko and Zhuravlev [264] calculated the corre-

sponding macroscopic bulk moduli (included in Table 10.5). They found the highest LDA B0

value for AgN(B1) among all phases they considered, but, in agreement with the present work,

they obtained the highest GGA B0 value for AgN2(C1). Since LDA relative to GGA overesti-

mates Ecoh and thus underestimates V0, each of these two factors (see Subsection 10.2.4) would

separately lead to the odd LDA value of 219.2 GPa which they obtained. Nevertheless, due to

this fact, Gordienko and Zhuravlev argued that one should consider the LDA and GGA average

value of B0.

13 Since Eq. 7.2.2 does not refer to any stoichiometry or any species (that is, it does not consider the way that
the change in energy or volume was done), we may take the change in volume (or energy) with respect to itself,
with respect to the parent Ag(A1), or with respect to any of the other nineteen considered modifications.
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10.5.4 Formation Energies

Formation energies in the present work are used as a measure of the relative thermodynamic

stabilities of the phases under consideration. That is, the lower the formation energy, the lower

the tendency to dissociate back into the constituent components Ag and N2.

The obtained formation energies Ef of the twenty relaxed phases are given in Table 10.5 and

depicted graphically in Fig. 10.28. The latter shows that, relative to each other and within each

series, the formation energy Ef (defined by Eqs. 7.5.2 and 7.5.3) of the studied phases has

the same trend as the cohesive energy14. That is, all phases have the same relative stabilities

in the Ef space as in the Ecoh space. However, while Ag3N phases tend to have equal Ecoh

as the AgN phases, all Ag3N modifications have a lower Ef than the AgN ones. Hence, silver

nitride is more likely to be formed in the former stoichiometry. However, all the twenty obtained

Ef values are positive; which, in principle, means that all these phases are thermodynamically

unstable (endothermic) 15.

Some of the experimental values of Ef for the synthesized Ag3N phase (which is claimed to be in

an fcc structure) are +199 kJ/mol [57] = 2.062 eV/atom, +230 kJ/mol [56] = 2.384 eV/atom,

+255 kJ/mol [55] = 2.643 eV/atom and (+314.4∓2.5) kJ/mol [53] = (3.25853±0.02591) eV ;

with an average value of 2.587 ± 0.364 eV . Among the considered phases in the present work,

there is only one phase wich has Ef value that fits in this range, the AgN2(C1). Interestingly,

this C1 structure has an fcc underlying Bravia lattice; however, the chemical formula differs from

that of the synthesized phase.

10.5.5 Electronic Properties

The DFT(GGA) calculated band diagrams (i.e. ǫσi (k) curves) and spin-projected total and orbital

resolved (i.e. partial) density of states (DOS) of the most stable phases: D09, RhF3, D02,

B17, and C18 are presented in Figs. 10.29, 10.30, 10.31, 10.32 and 10.33, respectively. Spin-

projected total density of states (TDOS) are shown in sub-figure (b) in each case. In all the

six considered cases, electrons occupy the spin-up and spin-down bands equally, resulting in zero

14 Surely, this needs not to be so. Compare the definition 7.1.2 with the definition 7.5.3.
15It is common that one obtains positive DFT formation energy for (even the experimentally synthesized)

transition-metal nitrides. Moreover, the zero-pressure zero-temperature DFT calculations have to be corrected
for the conditions of formation of these nitrides. Another source of this apparent shortcoming stems from the
PBE-GGA underestimation of the cohesion in N2. We have discussed this point further in Ref. [3].
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Figure 10.29: (Color online.) DFT calculated electronic structure for Ag3N in the D09 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Ag(s, p, d) orbitals in Ag3N; and (d) PDOS of
N(s, p) orbitals in Ag3N,.
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Figure 10.30: (Color online.) DFT calculated electronic structure for Ag3N in the RhF3 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Ag(s, p, d) orbitals in Ag3N; and (d) PDOS of
N(s, p) orbitals in Ag3N.

spin-polarization density of states: ζ(ǫ) = n↑(ǫ)−n↓(ǫ). Thus, it is sufficient only to display spin-

up (or spin-down) density of states (DOS) and spin-up (or spin-down) band diagrams. In order to

investigate the details of the electronic structure of these phases, energy bands are plotted along

densely sampled high-symmetry string of neighboring k-points. Moreover, to extract information

about the orbital character of the bands, the Ag(s, p, d) and N(s, p) partial DOS are displayed at

the same energy scale.

Fig. 10.29(a) shows the band structure ǫσi (k) of Ag3N(D09). With its valence band maxi-

mum (VBM) at (R,−0.086 eV ) and its conduction band minimum (CBM) at (Γ, 0.049 eV ),

Ag3N(D09) presents a semiconducting character with a narrow indirect band gap Eg of 0.134 eV .

From sub-figures 10.29(c) and (d), it is seen clearly that the Ag(d)-N(p) mixture in the region
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Figure 10.31: (Color online.) DFT calculated electronic structure for Ag3N in the D02 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Ag(s, p, d) orbitals in Ag3N; and (d) PDOS of
N(s, p) orbitals in Ag3N.
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Figure 10.32: (Color online.) DFT calculated electronic structure for AgN in the B17 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Ag(s, p, d) orbitals in AgN; and (d) PDOS of
N(s, p) orbitals in AgN.
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Figure 10.33: (Color online.) DFT calculated electronic structure for AgN2 in the C18 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Ag(s, p, d) orbitals in AgN2; and (d) PDOS of
N(s, p) orbitals in AgN2.
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Figure 10.34: (Color online.) DFT calculated electronic structure for AgN2 in the CoSb2 structure:
(a) band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density
of states (TDOS); (c) partial density of states (PDOS) of Ag(s, p, d) orbitals in AgN2; and (d) PDOS
of N(s, p) orbitals in AgN2.
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from −7.286 eV to −0.086 eV beneath EF , with two peaks: a low density peak around −1.5 eV

and a high density peak around −4.0 eV stemming mainly from the bands of silver d electrons.

Our obtained PDOS, TDOS and band structure of Ag3N(D09) agree qualitatively well with

Gordienko and Zhuravlev [264]; however, using LCAO method within GGA, the value of the

indirect Eg of Ag3N(D09) they predicted is 0.25 eV .

To the best of our knowledge, there is no experimentally reported Eg value for Ag3N. However,

Tong [54] prepared Ag3+xN samples, and carried out XRD measurements to confirm the fcc

symmetry of the prapared samples. Using a TB-LMTO code within LDA, Tong then calculated

the band structure of Ag3N and obtained an indirect energy gap of 1.35 eV . Nevertheless, we

could not figure out the positions of the N ions Tong’s model.

It is a well known drawback of Kohn-Sham DFT-based calculations to underestimate the band

gap. Thus the more demanding GW calculations were carried out, and the obtained Eg value

will be presented in Sec. 10.2.7.

Calculated electronic properties of Ag3N(D02) are displayed in Fig. 10.31. sub-figure 10.31(a)

shows the energy bands ǫσi (k) of Ag3N(D02). With its valence band maximum (VBM) at

(H,−0.091 eV ) and its conduction band minimum (CBM) at (Γ, 0.039 eV ), Ag3N(D09) presents

semiconducting character with a narrow indirect band gap Eg of 0.130 eV . From sub-figures

10.31(c) and (d), one can notice clearly the Ag(d)-N(p) mixture in the region from −7.249 eV

to −0.091 eV below EF , with two peaks: a low density peak around −1.3 eV stemming from

an almost equal mixture of Ag(d) and N(p), and a high density peak around −4.3 eV steming

mainly from the bands of silver d electrons plus a relatively very low contribution from the N(p)

states.

Fig. 10.30 depicts the band diagram and DOS’s of Ag3N(RhF3). In contrast to Ag3N(D09) and

Ag3N(D02), sub-figure 10.30(a) shows that Ag3N(RhF3) is a semiconductor with a narrow direct

band gap of 0.129 eV of width located at Γ point. The VBM is at −0.089 eV and the CBM is

at 0.040 eV . From sub-figures 10.30(c) and (d), one can see the Ag(d)-N(p) mixture is in the

region from −7.286 eV to −0.089 eV beneath EF , with two peaks: a low density peak around

−1.366 eV stemming from an almost equal mixture of Ag(d) and N(p), and a high density peak

around −4.382 eV stemming mainly from the bands of silver d electrons plus a relatively very

low contribution from the N(p) states.

The relationship between D09, D02 and RhF3 structures manifests itself in many common features
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between the electronic structure of these three Ag3N nitrides: (i) equal Eg of ∼ 0.13 eV ; (ii) a

deep bound band around ∼ −14.6 eV below EF consists mainly of the N(2s) states; (iii) a broad

valence band with ∼ 7.2 eV of width that comes mostly from the 4d electrons of Ag plus a very

small contribution from N(2p); and (iv) the relatively low TDOS of the conduction bands.

Energy bands ǫσi (k), total density of states (TDOS) and partial (orbital-resolved) density of states

(PDOS) of AgN(B17) are shown in Figs. 10.32. It is clear that AgN(B17) would be a true metal

at its equilibrium. The major contribution to the very low TDOS around Fermi energy EF comes

from the 2p states of the N atoms as it is evident from sub-figure 10.32(d). Beneath EF lies a

band with ∼ 7.3 eV of width, in which the main contribution is due to the Ag(4d) states plus

a small contribution from the N(2p) states. While the N(2s) states dominate the deep lowest

region around 13.5 eV , the low density unoccupied bands stem mainly from the N(2p) states.

The Fermi surface crosses two partly occupied bands: a lower one in the X-M , Γ-Z-A and

Γ-X-R directions, and a higher band in the X-M-Γ and M-A directions. Thus, EF is not a

continuous surface contained entirely within the first BZ.

It may be worth mentioning here that AgN(B1) [65,72] and AgN(B3) [65,265] phases were also

theoretically predicted to be metallic.

Although AgN2(CoSb2) is the most stable phase, but the difference in cohesive energy between

AgN2(CoSb2) and AgN2(C18) is less than 0.02 eV/atom, and we decided to examine the elec-

tronic structure of both phases. With EF crossing the finite TDOS, Fig. 10.33 shows that

AgN2(C18) is metallic at 0 K. The orbital resolved DOS’s reveal that the major contribution to

the low TDOS at EF comes from the N(2p) states with tiny contributions from the 5s, 4d and

3p states of Ag, respectively. As one can see from sub-figure 10.33(a), the EF surface crosses

the edges of the first Brillouin zone in the Z-U -R-S-T -X and T -Z directions.

The calculated electronic properties of AgN2(CoSb2) are displayed in Fig. 10.34. Band structure,

TDOS and orbital resolved DOS’s have almost the same features as the corresponding ones of

AgN2(C18). It may be worth to mention here that C1 phase of AgN2 was also theoretically

predicted to be metallic [264].

Compared to the metallic AgN(B17), three new features of these 1:2 nitrides are evident: (i)

Deep at ∼ −22.7 eV there is a highly-localized mixture of the N(s)-N(p) states. However, the

variation in N(2s) energy with respect to k is smaller than the variation of N(2p) states, resulting

in a narrower and higher PDOS. (ii) Below the band that is crossed by EF there are four bands
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Figure 10.35: (Color online.) The GW calculated frequency-dependent optical spectra of Ag3N(D09):
(a) the real εre(ω) and the imaginary εim(ω) parts of the dielectric function εRPA(ω); (b) reflectivity
R(ω) and transmitivity T (ω); (c) refraction n(ω) and extinction κ(ω) coefficients; and (d) absorption
coefficient α(ω). The shaded area highlights the optical region.

separated by ∼ 11.4 eV , ∼ 1.6 eV , ∼ 0.38 eV and ∼ 0.28 eV energy gaps, respectively. (iii)

The very tiny contribution of the N(p) states to the N(2p)-Ag(4d) band.

A common feature of all the studied cases is that Ag(p)-orbitals do not contribute significantly

to the hybrid bands. Another common feature is the highly structured, intense and narrow series

of peaks in the TDOS valance band corresponding to the superposition of N(2p) and Ag(4d)

states. In their k-space, Ag(4d) energies show little variation with respect to k; hence the Van

Hove singularities-like sharp features.

To summarize, we have found that the most stable phases of AgN and AgN2 are metallic, while

those of Ag3N are semiconductors. A close look at Fig. 10.32 up to Fig. 10.29 reveals that as

the nitrogen to silver ratio increases from x = 1 to x = 1/2, the TDOS at EF decreases; and by

arriving at x = 1/3 a gap opens. This finding agrees well with Gordienko and Zhuravlev [264].

Moreover, it may be worth mentioning here that such behavior was theoretically predicted to be

true for copper nitrides as well [3, 36].

10.5.6 Optical Properties

Fig. 10.35 depicts the GW calculated real and imaginary parts of the frequency-dependent

dielectric function εRPA(ω) of Ag3N(D09) and the corresponding derived optical constants. The

optical region16 is shaded in each sub-figure.

16 Recall that the optical region (i.e. the visible spectrum) is about (390 ∼ 750) nm which corresponds to
(3.183 ∼ 1.655) eV .
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The real part εre(ω) (sub-figure 10.35(a)) shows an upward trend before ∼ 2.3 eV , where it

reaches its maximum value and generally decreases after that. The imaginary part εim(ω) (same

sub-figure 10.35(a)) shows an upward trend before ∼ 1.0 eV and it has three main peaks located

at ∼ 2.6 eV in the optical region, ∼ 3.3 eV at the right edge of the optical region, and at

∼ 4.1 eV in the UV range.

Calculated reflectivity R(ω) and transmitivity T (ω) are displayed in sub-figure 10.35(b). With

0.6 ≤ R(ω) ≤ 0.8, it is evident that Ag3N(D09) is a good reflector, specially in the red and the

infrared regions. In the visible range, the maximum transmitivity T (ω) is at ∼ 2.54 eV ≡ 489 nm,

which is at the blue-green edge.

sub-figure 10.35(c) depicts the calculated refraction n(ω) and extinction κ(ω) coefficients. As

they should, these two spectra have, in general, the same qualitative frequency dependence as

the real εre(ω) and the imaginary εim(ω) dielectric functions, respectively.

From the absorption coefficient α (ω) spectrum (sub-figure 10.35(d)), it can be seen that Ag3N(D09)

starts absorbing photons with ∼ 0.9 eV energy. Hence, it is clear that GW0 calculations give a

band gap of ∼ 0.9 eV , which is a significant improvement over the value obtained from DFT.

The non-vanishing α (ω) in the whole optical region agrees with the experiment, since it may

explain the observed black color of the synthesized Ag3N.

To the best of our knowledge, the present work is the first trial to theoretically investigate the

optical properties of silver nitride. However, for more accurate optical characterization (e.g. more

accurate positions and amplitudes of the characteristic peaks), electron-hole excitations should

be calculated. This can be done by evaluating the two-body Green function G2 on the basis

of our obtained GW one-particle Green function G and QP energies, then solving the so-called

Bethe-Salpeter equation, the equation of motion of G2 [151].

10.6 Gold Nitrides

Cohesive energy Ecoh versus atomic volume V0 equation of state (EOS) for the considered mod-

ifications of Au3N, AuN and AuN2 are displayed graphically in Figs. 10.36a, 10.36b and 10.36c,

respectively. The corresponding calculated equilibrium structural, energetic and mechanical prop-

erties of these twenty phases and of Au(A1) are presented in Table 10.6. Modifications in this

table are ordered in the same way as in Table 5.1. Whenever possible, our results are compared
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Figure 10.36: (Color online.) Cohesive energy Ecoh(eV/atom) versus atomic volume V (Å3/atom) for:
(a) Au3N in seven different structural phases; (b) AuN in nine different structural phases; and (c) for
AuN2 in four different structural phases. (d) Enthalpy H versus pressure P for Au3N in five structures.

with experiment and with previous calculations. In the latter case, the calculations methods and

the XC functionals are indicated in the Table footnotes.
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Table 10.6: Calculated and experimental zero-pressure properties of Au(A1) and of the twenty studied
phases of Au3N, AuN and AuN2: Lattice constants [a(Å), b(Å), c(Å), α(◦) and β(◦)], equilibrium

atomic volume V0(Å
3
/atom), cohesive energy Ecoh(eV/atom), bulk modulus B0(GPa) and its pressure

derivative B′
0, and formation energy Ef(eV/atom). The presented data are of the current work (Pres.),

experimentally reported (Expt.) and of previous calculations (Comp.).

Structure a(Å) b(Å) c(Å) α(◦) or β(◦) V0(Å
3/atom) Ecoh(eV/atom) B0(GPa) B′

0 Ef(eV/atom)

Au

A1

Pres. 4.174 – – – 18.18 −2.982 135.363 5.926
Exp. 4.0782a – – – −3.81b 173.2b, 173c 6.29d

Comp. 4.06e,f – – – −4.38g, −3.17h, 187e, 205f 4.68i, 6.00j,
– – – −3.19l 5.23k

Au3N
D03 Pres. 6.368 – – – 16.14 −2.238 133.110 5.656 1.297
A15 Pres. 5.124 – – – 16.82 −2.084 121.792 5.645 1.451

D09
Pres. 4.336 – – – 20.38 −2.695 95.370 5.518 0.840
Comp. 4.239m – – –

L12 Pres. 4.017 – – – 16.20 −2.254 135.621 5.686 1.281
D02 Pres. 8.672 – – – 20.38 −2.695 95.692 5.551 0.840
ǫ-Fe3N Pres. 5.473 – 5.100 – 16.54 −2.546 125.363 5.551 0.989
RhF3 Pres. 6.075 – – α = 61.269 20.38 −2.694 95.859 5.534 0.841

AuN
B1 Pres. 4.670 – – – 12.73 −2.411 170.385 5.178 1.678
B2 Pres. 2.912 – – – 12.35 −2.054 170.874 5.269 2.035
B3 Pres. 4.989 – – – 15.52 −2.378 126.414 5.119 1.711
B81 Pres. 3.600 – 5.007 – 14.05 −2.144 151.504 5.271 1.945
Bk Pres. 3.508 – 9.332 – 24.86 −2.317 73.343 5.126 1.772
Bh Pres. 3.138 – 3.063 – 13.06 −2.223 163.369 5.285 1.866
B4 Pres. 3.526 – 5.774 – 15.54 −2.382 120.842 5.711 1.707
B17 Pres. 3.149 – 5.543 – 13.74 −3.105 176.760 5.334 0.984
B24 Pres. 4.380 4.647 5.141 – 13.08 −2.375 161.383 5.092 1.714

AuN2

C1
Pres. 5.162 – – – 11.46 −2.334 195.138 4.890 2.124

Comp.
5.035n – – – 246n

5.144o – – – 198o

C2
Pres. 5.607 – – – 14.69 −3.597 26.129 7.643 0.861

Comp.
5.471p – – – 41p 0.727p

5.157q – – – 126q

C18
Pres. 3.467 4.549 5.551 – 14.59 −3.622 27.178 7.609 0.836

Comp.
6.160p 5.013p 2.936p – 27p 0.554p

5.410q 4.938q 2.874q – 57q

CoSb2

Pres. 6.219 5.882 10.679 β = 151.225 15.67 −3.667 11.430 7.529 0.791

Comp.
8.149p 5.350p 5.361p 131.09p 36p 0.529p

7.715q 5.215q 5.172q 132.11q 81q
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Notes to Table 10.6 : —————————-
a Ref. [240]. This is an average of 40 experimental values, at 20 ◦C, with a deviation: ±0.0002 Å.

b Ref. [172]. Cohesive energies are given at 0 K and 1 atm = 0.00010GPa; while bulk moduli are given at

room temperature.

c Ref. (25) in [219]: at room temperature.

d See Refs. (8)–(11) in [219].

e Ref. [241]. LAPW-TB.

f Ref. [241]. LAPW-LDA.

g Ref. [242]: PAW-LDA.

h Ref. [242]: PAW-PW91.

i Ref. [219]: using the so-called method of transition metal pseudopotential theory; a modified form

of a method proposed by Wills and Harrison to represent the effective interatomic interaction.

j Ref. [219]: using a semi-empirical estimate based on the calculation of the slope of the shock velocity

vs. particle velocity curves obtained from the dynamic high-pressure experiments. The given

values are estimated at ∼ 298 K.

k Ref. [219]: using a semi-empirical method in which the experimental static P − V data are fitted to an

EOS form where B0 and B′
0 are adjustable parameters. The given values are estimated at ∼ 298 K.

l Ref. [242]: PAW-PBE.

m Ref. [63]: Using the AIMPRO code, in which a Gaussian orbital basis set is used with the separable

dual-space pseudopotentials of Hutter et al.

n Ref. [64]: Using the full-potential linearized augmented plane waves (LAPW) method within LDA.

o Ref. [64]: Using the full-potential linearized augmented plane waves (LAPW) method within GGA(PBE).

p Ref. [66]: using Vanderbilt USPPs within GGA(PBE). B0’s were calculated from the elastic constants.

Ecoh(N
solid
2 ) was used in Eq. 7.5.3 instead of Ecoh(N

gas
2 ).

q Ref. [66]: using Vanderbilt USPPs within LDA. B0’s were calculated from the elastic constants.

—————————————————————-

To compare and to deeper analyze the obtained equilibrium properties of the three stoichiometries

series with respect to one another, the calculated equilibrium properties are depicted graphically

in Fig. 10.37. All quantities in this figure are given relative to the corresponding ones of Au(A1)

given in Table 10.6. In this way, one will be able to investigate the effect of nitridation on the

parent crystalline Au as well 17.

17In Table 10.6, our computed properties of the elemental Au are compared with experiment and with previous
calculations as well. This may benchmark the accuracy of the rest of our calculations.
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10.6.1 EOS and Relative Stabilities

Fig. 10.36a shows that the most stable phases in the studied Au3N series are D09, D02 and RhF3.

From the figure, it is also clear that the Ecoh(V ) curves of these three phases are almost identical

around their equilibria. In fact the D09 curve can hardly be seen in the whole range (compare

with Fig. 1(c) in Ref. [6]). We found the same behavior in the EOS to be true for Ag3N in

the same phases (see Ref. [2]), and we traced back this behavior to the structural relationships

between these three phases (For more details, see Ref. [3] and references therein). As can readily

be seen from Fig. 10.37 and Table 10.6, these structural relations have manifested themselves in

all the presented structural, energetic and mechanical properties, giving rise to almost identical

values. Therefore, one may conclude that, if one phase is synthesizable, the three phases may

co-exist during the Au3N synthesis process.

Noting that Cu, Ag and Au share the same group in the periodic table of elements, it may

be worth to mention here that D09 structure is known to be the structure of the synthesized

Cu3N [34, 47, 253] and, as mentioned above, we found it to be the most stable structure of

Ag3N [2].

Assuming that it is the most likely stoichiometry, Krishnamurthy et al. [63] undertook ab initio

pseudopotential calculations on Au3N and studied all the Au3N structures in Table 5.1. Although

they found D09 to be the most stable modification in this sub-parameter space, yet, they identified

a triclinic crystal structure with 0.25 eV/atom lower energy than the D09. Krishnamurthy and

co-workers determined the triclinic phase to be metallic. It must be mentioned here that all the

3:1 structures we have investigated in the present study were taken mainly from the work of

Krishnamurthy et al. [63]. However, Krishnamurthy et. al. gave only the lattice vectors of their

triclinic structure, but no basis vectors were given. So, we were not able to properly place the

atoms inside the cell they gave. Allowing them to relax, ions keep moving over the potential

surface with no sign of a local minimum, and the structure seems to be very soft!

The odd behavior of the EOS curve of Au3N(RhF3) with the existence of two minima (Fig.

10.36a) reveals that the first minimum (the one with higher Ecoh) is a metastable local minimum

on the potential surface that cannot be maintained as the material is decompressed. The potential

barrier, represented by the sudden drop of the Au3N(RhF3) curve, at ∼ 18.4 eV/atom is due to

the change of positions of those metal ions which possess internal degrees of freedom.
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Concerning the AuN series, it is evident from Fig. 10.36b that the simple tetragonal structure of

cooperite (B17) would be the energetically most stable structure, with 0.694eV/atom less than

B1. This B17 structure was theoretically predicted to be the ground-state structure of CuN [3],

AgN [2] and PtN [1, 30].

Kanoun and Said [65] studied the E(V ) EOS for AuN in the B1, B2, B3 and B4 structures.

Within this parameter sub-space, the relative stabilities they arrived at agree in general with ours.

However, they predicted that B3 is always more stable than B4, while Fig. 10.36b shows that

B4 is preferred against B3 only at low pressures.

In the AuN2 series, the least symmetric simple CoSb2 monoclinc structure is found to be the

most stable (Fig. 10.36c). This agrees with the conclusion of Ref. [66], where it is suggested

that AuN2 may be synthesized at extreme conditions (higher pressure and temperature) and/or

it may have other Au:N stoichiometric ratios than 1:2.

10.6.2 Pressure-induced phase transitions

Enthalpy-pressure relations of Au3N for five considered structures are displayed in Fig. 10.36d. A

point at which enthalpies H = Ecoh(V ) + PV of two structures are equal defines the transition

pressure Pt, where transition from the phase with higher enthalpy to the phase with lower enthalpy

may occur.

Fig. 10.36d shows that a transition from D09 phase to the Fe3N phase would take place at a very

low pressure ∼ 6.3 GPa; and it is clear that the D09 phase is favourable only at low pressures

below ∼ 6.3 GPa, while the Fe3N hexagonal structure of Ni3N is favoured at higher pressures.

Fig. 10.36d also reveals that L12 and D03 phases may co-exist over a wide range of pressure and

that they are both favoured over D09 phase at pressures higher than ∼ 20 GPa, while A15 would

be favoured over D09 only at pressures higher than ∼ 33 GPa.

10.6.3 Volume per Atom and Lattice Parameters

The numerical values of the equilibrium lattice parameters and the corresponding volume per

atom V0 for the twenty modifications are presented in Table 10.6. The middle sub-window of

Fig. 10.37 depicts the V0 values relative to Au(A1). To measure the average of the Au–Au bond

length in the silver nitride, the equilibrium average volume per Au atom (V Au
0 ), which is simply
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the ratio of the volume the unit cell to the number of Au atoms in that unit cell, is visualized in

the same subwindow.

From the V0 curve in Fig. 10.37, we can see that, all AuN and AuN2 modifications, except the

open AuN(Bk) phase, decrease V0 ; while the Au3N phases tend, on average, not to change

the number density of the parent Au(A1). The metal-metal bond length, as represented by the

volume per metal atom V Au
0 , increases (on average) in the direction of increasing nitrogen content

and decreasing structural symmetry.

Both trends in V0 and in V M
0 were found to be true for copper [3], silver [2] and platinum [1]

nitrides. The trend in V M
0 , however, reveals the fact that in all these nitrides, the introduced

N ions displace apart the ions of the host lattice causing longer metal-metal bonds than in the

elemental parent metal. This cannot be seen directly from the V0 values depicted in the same

figure.

10.6.4 Bulk Modulus and its Pressure Derivative

The numerical values of the equilibrium bulk moduli and their pressure derivatives for the twenty

modifications are presented in Table 10.6. The second from top and the top sub-windows of Fig.

10.37 visualize these values relative to Au(A1).

In the Au3N series, one can see from the second top subfigure of Fig. 10.37 that less stable

phases tend to preserve the B0 value of their parent Au(A1), while the most stable phases (D09,

D02 and RhF3) posses lower B0 values.

Except Bk, AuN modifications and AuN2(C1) tend, on average, to increase the B0 value of their

parent Au(A1), with the highest B0 value possessed by the most stable AuN phase: B17.

The last least symmetric structures AuN2(C2, C18 and CoSb2) possess the lowest B0 values

among the 20 studied modifications. The B0 values of AuN2’s have the same trend as their

corresponding Ecoh’s and opposite trend as their corresponding V Au
0 ’s.

From the top subfigure of Fig. 10.37 one can see that upon application of external pressure, all

Au3N and AuN phases and C1 phase tend to lower their B0. The last AuN2 three modifications,

however, are more sensitive to external pressure, and their bulk moduli tend to increase under

pressure.
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10.6.5 Thermodynamic Stability

The numerical values of the calculated formation energy Ef (Table 10.6) and their graphical rep-

resentation (Fig. 10.37) show clearly that all the twenty obtained Ef values are positive. This, in

principle, means that all these phases are thermodynamically unstable (endothermic). However, it

is common that one obtains positive DFT-calculated Ef for (even the experimentally synthesized)

transition-metal nitrides. Moreover, the zero-pressure zero-temperature DFT calculations have

to be corrected for the conditions of formation of these nitrides. Another source of this apparent

shortcoming stems from the PBE-GGA underestimation of the cohesion in N2. We have discussed

this point further in Ref. [3]. Nevertheless, formation energies in the present work are used as

a measure of the relative thermodynamic stabilities of the phases under consideration. That is,

the lower the formation energy, the lower the tendency to dissociate back into the constituent

components Au and N2.

Fig. 10.37 shows that, relative to each other and within each series, the formation energy Ef

(defined by Eqs. 7.5.2 and 7.5.3) of the studied phases has the same trend as the cohesive

energy18. That is, all phases have the same relative stabilities in the Ef space as in the Ecoh

space. This trend was found to be true for the nitrides of Cu [3] and Ag [2] as well. However,

while Au3N phases tend to have comparable Ecoh as the AuN phases, all Au3N modifications have

a lower Ef than the AuN ones, except B17. In fact, Fig. 10.37 indicates that it may be relatively

hard to form a 1:1 gold nitride other than B17. Moreover, it is apparent that the tendency of

AuN2(C2, C18 and CoSb2) phases to decompose back to Au and N2 is comparable with that of

Au3N(D02, D09 and RhF3).

Using Vanderbilt USPPs within GGA(PBE), Chen, Tse and Jiang [66] calculated Ef of C2, C18

and CoSb2 phases. Their results are included in Table 10.6 for comparison. Although they

got positive values, as expected, the differences between our obtained values and theirs can be

traced back to the fact that they used Ecoh(N
solid
2 ) in Eq. 7.5.3 instead of Ecoh(N

gas
2 ). Moreover,

the smaller the difference between our obtained values and their obtained equilibrium lattice

parameters, the smaller the difference in Ef.

Unfortunately, no experimental values of Ef for the synthesized gold nitride phases are available.

18Surely, this needs not to be so. Compare the definition 7.1.2 with the definition 7.5.2.
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Figure 10.38: (Color online.) DFT calculated electronic structure for Au3N in the D09 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Au(s, p, d) orbitals in Au3N; and (d) PDOS of
N(s, p) orbitals in Au3N.

10.6.6 Electronic Properties

In this subsection, the DFT calculated electronic structure for the most energetically stable phases

are shown graphically. In each case, presented information include (a) spin-projected total density

of states (TDOS); (b) partial density of states (PDOS) of Au(s, p, d) orbitals in Au3N; (c) PDOS

of N(s, p) orbitals in Au3N, and (d) band structure along the high-symmetry k-points.

Beside D09 (Fig. 10.38), the equilibrium electronic structure of its two competing phases: D02

and RhF3, are presented in Figs. 10.39 and 10.40, respectively. This is because the foregoing

similarity in their EOS’s may reflect in their electronic properties.

Krishnamurthy et al. [63] predicted Au3N(D09) to be an indirect band-gap semiconductor, but

they did not give a value. Fig. 10.38 shows that it is indeed a semiconductor with an (R −X)

indirect DFT band gap of 0.139 eV GGA value. According to the fact that the produced

gold nitrides are metallic, the D09 structure may not be the true candidate for the most likely

stoichiometry, Au3N.

Fig. 10.39 shows that Au3N(D02) has its CBM at (H, 0.065 eV ), and its VBM is at (H,−0.073 eV ),

resulting in a direct energy band gap at H : Eg = 0.139 eV . This is exactly equal to Eg of

Au3N(D09).

The Fermi surface EF in Au3N(RhF3) crosses the valence band at Γ and the phase seems to have

a poor metallic character, since there is only a very narrow width of energy of the unoccupied
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Figure 10.39: (Color online.) DFT calculated electronic structure for Au3N in the D02 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Au(s, p, d) orbitals in Au3N; and (d) PDOS of
N(s, p) orbitals in Au3N.
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Figure 10.40: (Color online.) DFT calculated electronic structure for Au3N in the RhF3 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Au(s, p, d) orbitals in Au3N; and (d) PDOS of
N(s, p) orbitals in Au3N.
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Figure 10.41: (Color online.) DFT calculated electronic structure for AuN in the B17 structure: (a)
band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density of
states (TDOS); (c) partial density of states (PDOS) of Au(s, p, d) orbitals in AuN; and (d) PDOS of
N(s, p) orbitals in AuN.

states above EF and around Γ.

A common feature in these three Au3N phases, there is an Au(d)-N(p) mixture in the range

∼ −8.8− EF which becomes stronger around −4.45 eV .

Although it might not be clear on the graph, Fig. 10.41(a) shows that AuN(B17) is a DFT(GGA)

indirect band gap semiconductor. With its valence band maximum (VBM) at (X,−0.012) and

its conduction band minimum (CBM) very close to EF at (M, 0.001 eV ), AuN(B17) possesses a

very narrow band gap of width: Eg = 0.013 eV .

This insulating feature is in contrast to PdN [7], PtN [1], CuN [3] and AgN [2] which were all

found to be metallic in this B17 structure.

With the Fermi surface crossing many partly occupied bands, it is evident from Fig. 10.42 that

AuN2(CoSb2) is a metal.

10.6.7 Optical Properties

Within a frequency range that includes the optical region (i.e. the visible spectrum: [(390 ∼
750 nm) ≡ (3.183 ∼ 1.655 eV )]), Fig. 10.43 displays the real and the imaginary parts of the

frequency-dependent dielectric function εRPA(ω) of Au3N(D09) and the corresponding derived

optical constants (Eqs. D.2.12, D.2.13, D.2.17 and D.2.22).

From the absorption coefficient α (ω) spectrum, it can be seen that Au3N(D09) starts absorbing
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Figure 10.42: (Color online.) DFT calculated electronic structure for AuN2 in the CoSb2 structure:
(a) band structure along the high-symmetry k-points (see Table 8.1); (b) spin-projected total density
of states (TDOS); (c) partial density of states (PDOS) of Au(s, p, d) orbitals in AuN2; and (d) PDOS
of N(s, p) orbitals in AuN2.
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photons with ∼ 0.9 eV energy. Hence, it is clear that GW0 calculations give a band gap of

∼ 0.9 eV, which is a significant improvement to the obtained DFT-GGA value. Therefore, our

presented α (ω) spectrum confirms that Au3N(D09) would be a true semiconductor and that D09

cannot be the true structure of the most likely Au3N stoichiometry.

10.7 Hypothetical ZnN

As most of the transition metals, different formulas of zinc nitride have been reported: Zn3N2,

ZnN2, α-ZnN6 and β-ZnN6; each with its own crystal structure [71]. However, it is a common

practice in first-principles calculations to study phases that have not been synthesized yet (cf.

Refs. [72, 73]). In the present section, we replace the sulfur ion in the well-known ZnS(B3)

and ZnS(B4) by an N ion and perform ab initio calculations to study the structural and elec-

tronic properties of these hypothetical ZnN(B3) and ZnN(B4) phases. We followed calculations

method described in Part II, and, as usual, we investigated the effect of nitridation on the ele-

mental Zn(A3).

The energy-volume equations of state (EOS) for the two phases are depicted in Fig. 10.44. The

corresponding calculated equilibrium properties are given in Table 10.7. It is clear from the Figure

that the two phases have almost identical EOSs, especially at high pressures (low volumes). Table

10.7 shows that both ZnN(B3) and ZnN(B4) have quite similar equilibrium V0 and Ecoh; however,

due to the slight difference in the curvature of the two EOS curves around the equilibrium, bulk

moduli differ and ZnS(B3) has ∼ 17 GPa higher B0 than ZnS(B4). However, B0 of the latter is

more sensitive to external pressure than the former, as can be noticed from the difference in the

B′
0 values.

The obtained values of formation energies Ef shows that Zn(B3) has slightly lower tendency to

dissociate back into the constituent components Zn and N2 than Zn(B4). The positive sign of

the obtained Ef does not mean that these phases are thermodynamically unstable (endothermic),

but the same argument of our article Ref. [3] applies. Moreover, the present values are far less

than those of the B3 and B4 phases of CuN [3] and PtN [1] for which we have argued to be
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Figure 10.44: (Color online.) Cohesive energy Ecoh(eV/atom) versus atomic volume V (Å3/atom) for
ZnN(B3) and ZnN(B4).

thermodynamically stable and synthesizable.

The obtained band diagrams ǫσi (k) and spin- and ℓ-projected density of states (DOS) of the

slightly more stable phase, ZnN(B3), are displayed in Fig. 10.45. From the spin-projected total

density of states (TDOS), sub-figure (b), it is evident that electrons occupy the spin-up and the

spin-down bands equally. Therefore, it is sufficient to display either spin-up DOS or spin-down

band diagrams. Depicting the energy bands along densely sampled high-symmetry strings of k-

points19 allows us to extract information about the electronic structure of this phase. Moreover,

to investigate the details of the orbital character of the bands, the Zn(s, p, d)- and N(s, p)-resolved

DOS’s are plotted at the same energy scale.

19 The coordinates of the W point is not as the same as in Ref. [203], but they are equivalent. Also, the
coordinates of U and K are not given in Ref. [203]. The coordinates of U, K and the equivalent W were created
by means of XCrySDen!

http://www.xcrysden.org/
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Table 10.7: Equilibrium properties of Zn(A3), ZnN(B3) and ZnN(B4): Lattice constants (a(Å), b(Å), c(Å), α(◦)

and β(◦)), equilibrium atomic volume V0(Å
3
/atom), cohesive energy Ecoh(eV/atom), bulk modulus B0(GPa)

and its pressure derivative B′
0, and formation energy Ef (eV/atom). The presented data are of the current work

(Pres.), experimentally reported (Expt.) and of previous calculations (Comp.).

Structure a(Å) b(Å) c(Å) α(◦) or β(◦) V0(Å
3/atom) Ecoh(eV/atom) B0(GPa) B′

0 Ef (eV/atom)

Zn

A3
Pres. 2.668 – 4.952 – 15.26 −1.179 70.745 5.474
Exp. (2.6644± 0.0003)a, 2.66c – (4.9454± 0.0003)a, 4.95c – (15.202± 0.003)b −1.35c,g 59.8c

Comp. – – 1.91d, 0.98e, 1.17f

ZnN
B3 Pres. 4.593 – – – 12.11 −2.534 127.991 4.873 0.571
B4 Pres. 3.247 – 5.318 – 12.14 −2.514 111.009 6.646 0.591

a Ref. [240]: These are averages of 23 experimental values, at 20◦C.
b Ref. [240]: at room temperature and atmospheric pressure.
c Ref. [172]: Cohesive energies are given at 0 K and 1 atm = 0.00010 GPa; while bulk moduli are given at room
temperature.
d Ref. [216]: LDA.
e Ref. [216]: BP-GGA.
f Ref. [216]: PW-GGA.
g Ref. [86].
h Ref. [266].
—————————————————————-
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Figure 10.45: (Color online.) DFT calculated equilibrium electronic structure for ZnN in the B3
structure: (a) band structure along the high-symmetry k-points which are labeled according to Ref.
[203]. Their coordinates w.r.t. the reciprocal lattice basis vectors are: Γ(0.0, 0.0, 0.0), X(0.0, 0.5, 0.0),
W (0.75, 0.25, 0.5), L(0.5, 0.5, 0.5), K(0.750, 0.375, 0.375), U(0.625, 0.250, 0.625); (b) spin-projected
total density of states (TDOS); (c) partial density of states (PDOS) of Zn(s, p, d) orbitals in ZnN; and
(d) PDOS of N(s, p) orbitals in ZnN.
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With The Fermi surface εF crossing the partly occupied bands, it is clear from Fig. 10.45 that

ZnN(B3) is a metal. The only evident contribution to DOS at εF is from the p states of the N

atoms. The bonding in the material is due to the Zn(d)-N(p) mixing around −6.2 eV . The very

low contributions (less than 0.15 in the PDOS scale) from Zn(s) and Zn(p) in the range from

about −6.5 eV and crossing εF is not clear in Fig. 10.45 due to the PDOS scale.

Compared to the elemental Zn(A3), it is clear that nitridation lowers the cohesive energy (per

atom) leading to a significant increase in the bulk modulus. Therefore, to conclude, it is evident

that the 1:1 nitridation of Zn significantly enhances its mechanical properties while, in contrast

to the reported semiconducting Zn3N2 [267, 268], it preserves its metallic character.



11. Conclusions and Future Work

Below we briefly summarize the general achievements of the present thesis investigations and

the progress made toward the main proposed goals of the study. Then we suggest some future

research directions which have emerged naturally during the course of this study.

11.1 Conclusions

In general, the present theoretical investigation yield an insight into the structural, stability, me-

chanical, electronic and optical properties of Pd, Pt, Cu, Ag, Au, and Zn nitrides. Each nitride

was attached to twenty different structures distributed among 1:1, 1:2 and 3:1 stoichiometries.

Some of these modifications have been experimentally reported for some of the nitrides under

investigation, some were proposed by other researchers, and some were proposed for the first

time in this work. Zinc nitride was studied only in two simple hypothetical phases.

Obtained results were analyzed within the introduced theoretical framework (Part I) and calcu-

lation methods (Part II). Extensive comparisons with experiment and with previous calculations

were carried out. In many cases we obtained excellent agreement with previous works. This was

justified within the limitations of and trends in the employed calculation methods. In other cases,

cf. Paper [1], we successfully argued even against some experimental proposals. This, however,

reveals the power of the employed DFT and GWA calculations-based schemes in dealing with

such realistic and technologically important materials.

From our comparison of the obtained properties of the nitrides each with the corresponding ones

of its parent metal, we found it possible to control the physical properties of such systems. For

example, one can preserve the metallic character of the parent metal and enhance its bulk mod-

ulus in the same time.

To the best of our knowledge, most of, if not all, our GWA-based calculations of the optical

properties are the first theoretical calculations of the optical spectra of these technologically im-

portant materials. Nevertheless, for more accurate optical characterization, exciton energies must
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be calculated. This can be achieved by means of the evaluation of the two-body Green’s function

G2 on top of the basis of the calculated GW one-particle Green’s function G and quasi-particle

energies, then solving the equation of motion of G2, the so-called Bethe-Salpeter equation.

We hope that the present work would serve as a reference source for meaningful comparisons

which may be made among the largely different calculations. We also hope that some of our

predictions will be confirmed in future experimentally and/or theoretically.

11.1.1 Palladium Nitrides

We have applied first-principles methods to investigate the structural, electronic and optical prop-

erties of some possible stoichiometries and crystal structures of the recently discovered palladium

nitride.

From the study of the equation of state (EOS), we identified the energetically most stable phases

and determined their equilibrium structural parameters. B17 and C18 were found to be the most

energetically favored structures in the PdN and PdN2 series, respectively. Band diagrams and

total and partial density of states reveal that PdN(B17 and B24) and PdN2(C18) are all metallic.

The considerable differences found with and among the earlier reported structural properties (of

PdN and PdN2) may invoke the need for deeper and more expensive calculation schemes such as

in Ref. [245].

The more sophisticated GW approach was employed to investigate excitation energies and optical

properties of this promising material. The obtained absorption coefficient spectrum confirmed

that the high-pressure competing phase PdN(B24) is metallic.

In the present investigation, we have studied a wider parameter sub-space than previous works,

and to the best of our knowledge, the present study is the first to propose and to investigate the

physical properties of Pd3N. If synthesized, Pd3N will likely be in the ǫ-Fe3N hexagonal structure

of Ni3N. This Pd3N modification is thermodynamically more stable (and thus it is more possible

to be synthesized) than all the previously proposed PdN and PdN2 modifications, and has better

cohesive energy than all the previously proposed PdN and PdN2(C1) modifications. Compared

to all these PdN and PdN2 modifications, Pd3N(ǫ-Fe3N) has the shortest Pd-Pd bond length.

Moreover, Pd3N(ǫ-Fe3N) possesses slightly higher bulk modulus B0 than its parent Pd, and
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B0 increases significantly under pressure. Pd3N(ǫ-Fe3N) preserves the metallic character of its

parent Pd. These properties together may make this phase, if synthesized, important to possible

high-pressure applications.

11.1.2 Platinum Nitrides

We presented a systematic series of first-principles calculations of the energy-optimized geome-

tries, phase stabilities and electronic and optical properties of bulk Pt3N, PtN and PtN2 in twenty

different crystal structures. Comprehensive comparison with experiment and with previous cal-

culations has been made, and excellent agreement has been achieved. We found that both the

lowest energy and the highest bulk modulus phases belong to the PtN2 series and not to the

PtN family. Moreover, the calculated electronic and optical properties of the PtN2 phases show

stronger consistency with experiment than the claimed PtN(B3) phase. In the present work, we

have investigated a wider parameter sub-space than previous calculations, and to the best of our

knowledge, the present work is the first to propose and to study the physical properties of Pt3N,

as well as the first to theoretically calculate the optical spectra of this new material. However,

optical properties of PtN2(C1 and C2) have not been investigated, and we strongly recommend

optical calculations for these phases and obtained results should be tested against experiment.

Moreover, experimentalists should provide the community with more data.

11.1.3 Copper Nitrides

DFT-based first-principles calculations on bulk crystalline Cu3N, CuN and CuN2 over a series of

twenty structural phases have been successfully carried out. The studied structural properties

include energy-volume equation of state (EOS), equilibrium lattice structural parameters, cohe-

sive and formation energies, relative phase stabilities, bulk modulus and its presssure derivative.

Electronic characterization of the energetically most stable phases was done via the analysis of

their band structure and their total and partial density of states (DOS). Further, we carried out

GW0 calculations within the random-phase approximation (RPA) to the dielectric tensor εRPA(ω).

The frequency-dependent optical constants (absorption coefficient, reflectivity and refractive in-

dex spectra) of the experimentally reported phase Cu3N(D09) were derived from the updated

εRPA(ω). Obtained results were compared with experiment and/or with previous calculations
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whenever possible. The main conclusions which we can derive from all these calculations are the

followings:

• The calculated lattice constants are in good agreement with experiment and with theory.

• From the obtained cohesive energies, the energetically most stable phases are D09, B17,

and C18 in the Cu3N, CuN and CuN2 stoichiometric series, respectively. However, other

Cu3N phases show similar stability to Cu3N(D09) and may present during the nitridation

process.

• Including the successfully synthesized Cu3N(D09) phase, all obtained formation energies are

positive, yet they can be used to measure the relative thermodynamic stabilities of these

phases.

• Although CuN2(C18) is the most bound phase, its tendency to decompose back into its

elemental constituents is more than the less bound Cu3N phases.

• The volume dependence of the bulk modulus is more precisely described by the change in

volume of the Cu sublattice rather than the common average atomic volume of the nitride.

• The most stable Cu3N phases are predicted to be indirect-gap semiconducing materials

with lower bulk modulus than the pure metal, while CuN(B17) preserves the metallicity

and improves the bulk modulus. However, the CuN2(C18) phase substantially increases the

compressibility while preserving the metallicity.

• Our GWA calculated optical properties show partial agreement with experiment and with

the available theoretical work (Ref. [251]). Discrepancies are probably due to the lack of

knowledge of the exact stoichiometry of the prepared samples, and due to the big difference

in the used plane waves cut-off energy and in the density of the k-mesh. Convergence

criterion with respect to these two quantities have not been referred to in Ref. [251].

• Our GWA calculated energy gap of Cu3N(D09) shows significant improvement over the

calculated DFT value.
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11.1.4 Silver Nitrides

We have succesfully employed first-principles calculation methods to investigate the structural,

stability, electronic and optical properties of Ag3N, AgN and AgN2. Within the accuracy of the

employed methods, the obtained structural parameters, EOS, B0, B
′
0 and electronic properties

show good agreement with the few avialable previous calculations. On the other hand, our

obtained results show, at least, partial agreement with three experimental facts: (i) the lattice

parameter of Ag3N(D09) is close to the experimentally reported one; (ii) the positive formation

energies reveals the endothermic (unstable) nature of silver nitrides, and (iii) absorption spectrum

explains its observed black color. Moreover, the present work may be considered as the first trial

to theoretically investigate the optical properties of silver nitride. We hope that some of our

obtained results will be confirmed in future experimentally and/or theoretically.

11.1.5 Gold Nitrides

We have successfully applied first-principles calculation methods to investigate the structural,

stability, electronic and optical properties of Au3N, AuN and AuN2. Within the accuracy of the

employed methods, the obtained structural parameters, EOS, B0, B
′
0 and electronic properties

show acceptable agreement with some of the available previous calculations.

Among the studied modifications, we determined metallic (RhF3 and CoSb2) and semiconducting

(D09 and B17) phases.

According to the fact that the produced gold nitride phases are metallic, our DFT-GGA and GW

calculations confirmed that D09 structure cannot be the true candidate for the Au3N stoichiometry

that has been suggested by experimentalists.

From experiment, ab initio calculations of Krishnamurthy et al. [63], and from the present work,

one may conclude that if Au3N is the true stoichiometry, it must have a metallic character only

at low crystal symmetries: i.e. RhF3 (present work) or a triclinic (Ref. [63]). However, the better

hardness -compared to pure gold- of the synthesized phases [12] remains a mystery and may be

a property of gold nitride at low dimensions only.

The low symmetry AuN2 phases have far lower cohesive energy than all Au3N, have comparable

formation energy with the most favorable Au3N modifications, and their bulk moduli become

higher under pressure.
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11.1.6 Zinc Nitrides

The two studied hypothetical phases of zinc nitride, ZnN(B3) and ZnN(B4), were found to have

almost identical EOSs as well as quite similar equilibrium number density and cohesive energy.

However, ZnS(B3) has ∼ 17 GPa higher equilibrium bulk modulus than ZnS(B4); but the latter

is more sensitive to external pressure than the former.

Compared to the elemental Zn(A3), it is clear that nitridation lowers the cohesive energy (per

atom) leading to a significant increase in the bulk modulus. Therefore, we conclude that the

1:1 nitridation of Zn significantly enhances its mechanical properties while, in contrast to the

reported semiconducting Zn3N2 [267, 268], it preserves its metallic character.

11.2 Directions for Future Work

“... it is still early to sing praises.” G. Soto [215]

The present work reveals a number of open problems that should be solved and a variety of

research directions:

1. Study elastic, thermal, transport and magnetic properties of the most stable phases among

these bulk compounds.

2. Since most of the considered nitrides have been prepared in form of thin films, it is important

to study the structural and physical properties of these materials at low dimensions. This

would be more realistic and should be application-oriented.

3. Although some trends in the physical properties of the target TMNs have been discussed

(e.g. B17 is the most energetically favorable phase in all the studied 1:1 nitrides; all

equilibrium phases in the D09 structure are semiconductors.), extensive and more formal

investigation may reveal interesting common features in this family of materials.

4. Due to the expensive nature of the GWA calculations, optical properties of many important

phases (e.g. PtN2(C1 and C2)) have not been studied. Therefore, we strongly recommend

the completion of the optical calculations.
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5. Inclusion of the excitonic effects in the calculations of the optical properties is a crucial

step toward comparison of the theoretically calculated optical spectra with those obtained

experimentally.
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Appendix A. Crystal Structure of Solids

“The 7 crystal systems and 14 Bravais lattices ... exhaust the possibilities. This is far from

obvious ... . However, it is of no practical importance to understand why these are the only

distinct cases. It is enough to understand why the categories exist, and what they are.”

Ashcroft and Mermin [89, p. 119].

The well-ordered state of matter in which the positions of its atomic nuclei are repeated period-

ically in space is known as crystal [78]. The geometrical description of a given physical crystal

can be fully described by giving the underlying Bravais lattice and the positions of its atomic

constituent (known as basis) within a particular primitive unit cell [89]. Below, we define these

terms and summarize some consequent notions.

The so-called Bravais lattice is a fundamental concept in the description of crystalline solids. A

3D Bravais lattice consists of all points

R =

3∑

i

ni ai = n1a1 + n2a2 + n3a3 , n1, n2, n3 = integers (A.0.1)

where the three linear independent unit vectors a1, a2 and a3 define the parallelepiped of the

primitive unit cell. The region that fills the space without any overlapping when translated

through T ∈ {R} is known as conventional unit cell [89]1. According to which unit cell one uses,

a full geometrical description of a given crystal structure can be given by two sets of vectors:

Either the primitive vectors of the lattice, a1, a2 and a3 above; or a set of the lengths of the

edges of the conventional unit cell a, b and c plus a set of the three interaxial (lattice) angles

α = a ∧ c, β = b ∧ c and γ = a ∧ b [79]. The group of the last two sets is usually referred to

in the literature as cell or lattice parameters.

The volume Ω of a primitive unit cell can always be given by

Ω = a1 · a2 × a3 (A.0.2)

1When the term unit cell is used in the present thesis, we refer to the latter.
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The region of space (usually a polyhedron) which is closer to a point in the Bravais lattice than

to any other lattice point uniquely defines the Wigner-Seitz (primitive) cell about that point [89].

Atomic species and positions in a primitive unit cell are known as basis [78]. Basis vectors give

the position of each atom within the unit cell relative to a chosen origin. The number of these

vectors equals the number of the atoms within the unit cell. These coordinates can either be

provided in the direct coordinates, i.e. with respect to the pre-defined lattice primitive vectors

RI = x1a1 + x2a2 + x3a3 (A.0.3)

or in the Cartesian coordinates

RI = s
(
x1̂i+ x2̂j+ x3k̂

)
. (A.0.4)

where x1...3 are the coordinates, I labels atoms, î, ĵ and k̂ are the conventional orthonormal

Cartesian basis vectors, and s may represent an arbitrary scaling factor.

The term basis introduced above refers to one of the identical copies physical of the same unit

(i.e. of atoms) which when translated through all the Bravais lattice vectors gives rise to a crystal

structure [89]. When dealing with conventional unit cell (or an artificial super cell), the number

of basis copies (i.e. number of chemical formula units) within the cell is usually labeled by the

letter Z.

Crystal Systems and Space Groups

From symmetry point of view, a crystal is characterized by all rigid symmetry operations (i.e.

operations that leaves the distance between all lattice points invariant) that take the lattice into

itself. The set of all such operations is referred to as space group, or symmetry group. The

subset of all the translations that leave the crystal invariant is called the translation group. The

(sub)set of all non-translational symmetry operations (that leave a particular point of the lattice

fixed) is known as the point group [79, 89].
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There are only 7 distinct Bravais point groups, known as the 7 crystal systems to which all crys-

tal structures belong. When translational symmetry operations are considered, only 14 Bravais

lattices (i.e. space groups) can be arrived at. These are the cubic (simple, body-centered and

face-centered), the hexagonal, the tetragonal (simple and body-centered), the orthorhombic (sim-

ple, base-centered, body-centered and face-centered), monoclinic (simple and base-centered), the

triclinic and the trigonal crystal system [79, 89].

When an atomic basis is attached to a Bravais lattice, 230 space groups can be obtained, with

the 32 point groups recovered by setting all the translations equal to zero [79, 89, 230]. It may

be worth mentioning here that these 230 are not just simple combinations of translational and

point symmetry operations as the 14 Bravais lattices. By attaching to each lattice point (that

belong to a certain crystal system) an atomic basis that has the same point group as the crystal

system, one generate only 73 groups, known as the 73 symmorphic space groups. Each of the

157 non-symmorphic space groups, on the other hand, involves at least a screw axis or a glide

plane translational symmetry operations [230]. For further details on this last point particularly,

we refer to [203, pp. 44–45], [89, pp. 125–126] or [79, pp. 104–105 ].

There are different ways for naming and labeling the 230 space groups. In the International

Tables for Crystallography [http://it.iucr.org/] each space group is assigned to a unique

number from 1 to 230. In these Tables, space groups within the same crystal system are given

consecutive numbers, starting with the cubic system and ending with the monoclinic system. A

different designation most commonly used by crystallographers is the international notation or

Hermann–Mauguin notation. Each symbol in this nomenclature consists in general of a set of

four symbols. The first is a capital letter (P , I, F , R, A, B or C) designating the Bravais lattice

centering [174]2, while the rest of the symbol characterizes the underlying point group using the

involved symmetry operations [89].

2 The symbol P stands for primitive lattices, I for body-centered lattice, F for all-face centered lattice, R for
a trigonal lattice; and the symbols A, B, or C describe one-face centered lattices centered at the corresponding
A, B, or C faces [174].

http://it.iucr.org/
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For a brief decent mathematical discussion of groups and symmetry operations, interested readers

are referred to Kaxiras [79, Ch. 3]. For comprehensive materials, the International Tables for

Crystallography [http://it.iucr.org/] and Bradley and Cracknell [203] are good references.

http://it.iucr.org/


Appendix B. Bloch’s Theorem and

Band-Structure

Within the independent-particle approximation to the many-electron problem of bulk crystalline

solids, Bloch’s theorem [269] states that the eigenfunctions ϕ of the one-electron Hamiltonian [89]

ĤB = − ~
2

2me

∇2
r + vext(r) , (B.0.1)

where the effective potential vext(r) satisfies

vext(r+R) = vext(r) for all R in the Bravais lattice , (B.0.2)

can be chosen to have the form

ϕi,k(r) = ek·r ui,k(r) , (B.0.3)

where

ui,k(r+R) = ui,k(r) for all R in the Bravais lattice. (B.0.4)

Note that:

• The wave function ϕi,k(r) itself is, in general, not periodic in the configuration space, but

the electronic density is, since

ϕi,k(r+R) = ek·R ϕi,k(r) ⇒ |ϕi,k(r+R)|2 = |ϕi,k(r)|2 . (B.0.5)

• For a given k, there are infinitely many independent eigenstates with discretely spaced

corresponding eigenvalues that are labeled by the band index i. Conversely, for a given i,

the eigenstates and eigenvalues are (quasi-continuous) periodic functions εi(k) (or εi,k) of

k. The information contained in these functions is referred to as “band structure”. For

each given i, the set of electronic levels specified by the band of eigenvalues εi(k) is called

“energy band” [89]. Examining band structure of a material provides a nuanced view of

its electronic structure [127].
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• By imposing the so-called Born-von Karman boundary conditions on the Bloch wave func-

tions ϕi,k(r)

ϕi,k(r) = ϕi,k(r+Njaj) , (B.0.6)

where Nj is the number of the primitive cells in the aj direction, it is straightforward to show

that the number of the allowed wave vectors k in a primitive cell of the reciprocal lattice

(e.g. the first Brillouin zone) is equal to the number of primitive cells (N = N1 ×N2 ×N3)

in the direct crystal. Each i,k level can accommodate two electrons (one of each spin) at

max [79, 89].

• Being continuous and periodic in k, each εi(k) must be bound; i.e. has at least one

minimum and one maximum1 at which ∇k εi(k) = 0.

From practical computational cost point of view, the most important appealing result of Bloch’s

theorem is that instead of dealing with an infinite number of interacting electrons in the perfectly

ordered infinite solid, it is sufficient only to calculate the wave function of a finite number of

electrons within one primitive unit cell. The wave function in any neighboring unit cell2 is exactly

the same, up to a phase factor (Eq. B.0.5) [8, 75].

1 Saddle points are possible.
2 Hence, all the quantum mechanical information and physical properties of the whole solid [8].



Appendix C. The k vector and the

Brillouin zone

“The concepts associated with reciprocal space are fundamental to much of solid-state physics;

that there are many physicists who can barely fathom the possibility that anyone might find

them slightly mysterious.”

David S. Sholl and Janice A. Steckel [127, p. 50].

From Eq. B.0.3, it is easy to see that there is a set of wave vectors {K}

K =
3∑

i

nibi = n1b1 + n2b2 + n3b3 ; n1, n2, n3 = integers , (C.0.1)

such that

ϕi,K(r+R) = ϕi,K(r) ⇒ eK·R = 1 , (C.0.2)

where R defines the (direct) lattice as given by Eq. A.0.1.

Thus, with k ∈ {K}, Bloch’s wave functions B.0.3 are periodic in R. The set of the smallest

independent bj vectors C.0.1 that spans the reciprocal lattice {K} can be given by

bi = 2π
aj × ak

ai · aj × bk

, i, j, k = 1, 2, 3 , (C.0.3)

with

ai · bj = 2πδij , (C.0.4)

where ai are the primitive vectors that span the direct lattice (Eq. A.0.1), and where the permu-

tation between their indices is cyclic.

The Wigner–Seitz cell (App. A) in the reciprocal space is known as the first Brillouin Zone, or
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simply Brillouin Zone (BZ). Its volume ΩR is equivalent to

ΩR = bi · bj × bk =
(2π)3

Ω
, (C.0.5)

where Ω is the volume of the unit cell in the direct space (Eq. A.0.2).

Any vector k′ outside the BZ can always be written in terms of another vector k inside the BZ

as k′ = k+K0, where K0 ∈ {K}. Now, expanding the periodic part ui,k(r) of the Bloch wave

function B.0.3 yields

ϕi,k′(r) = ek
′·r ui,k′(r) = ek

′·r
∑

K

Ci,k′+K eK·r = e(k+K0)·r
∑

K

Ci,k+K0+K eK·r

= ek·r
∑

K

Ci,k+K0+K e(K+K0)·r = ek·r
∑

K′

Ci,k+K′ eK
′·r = ϕi,k(r) . (C.0.6)

where the first (and, hence, the last) summation is over all the reciprocal lattice vectors K. This

proofs the major result that the wave vector k appearing in the Bloch theorem (App. B) can

always be restricted to the first BZ and

ϕi,k+K(r) = ϕi,k(r) and εi,k+K = εi,k for all K in the reciprocal lattice. (C.0.7)

Hence, beside the introduction of k as a quantum number, Bloch’s theorem (App. B) also shows

that the wave vector k characterizes the translational symmetry of the periodic potential vext [89].

In fact, k plays a fundamental role in describing electrons in a solid.

The Irreducible Brillouin Zone (IBZ)

Using group theory, one can show that the Bloch energy spectrum εi,k has the full symmetry of

the point group of the reciprocal lattice. Moreover, using group theory, one can also show that it

is sufficient only to solve the single-particle Bloch equations in a minimal portion of the Brillouin

Zone, called the Irreducible Brillouin Zone (IBZ). All the solutions in the entire BZ can then be

obtained by unfolding the IBZ using the symmetry operations of the point group. This offers

great savings in computation [79]. For example, the IBZ of the fcc BZ corresponds to 1/48 of
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the latter. Therefore, to count the number of the one-electron states in the BZ, one counts only

each k point in the IBZ with a proper weight wk to represent the whole BZ. The weight wk of

a k-point in the IBZ is defined to be the total number of the distinguishable k-points which are

related by point symmetry to this k, including k itself [78].

From Eq. C.0.1, it is clear that once the full Bravais lattice is correctly identified, the reciprocal

lattice and its BZ structure are determined uniquely from the translational symmetry of the direct

lattice and independent of the detailed configuration of the atomic basis within the primitive cell.

Consequently, one has only 14 distinct BZ’s [148, 203]. Unfortunately, the one-electron energy

bands εi,k possess symmetry associated with one of the 230 space groups. Thus, although it is

tempting, one can not simply use the geometrical symmetry of the BZ to find the corresponding

IBZ [148].

An easily programmable procedure to find the IBZ is as follows: First, one divides the three bi

vectors by an integer number of times. This yields a (more-or-less) uniform grid of k-points.

Second, by applying to each k-point in the generated grid the point-group operations, one can

extract a list of non-equivalent k-points. If a k-point is found to be already in the list, its weight

wk is increased by 1, otherwise it is added to the list [148]. Because it is shared with other

wedges, a k-point at the boundaries of an IBZ carries a smaller weight with a multiplicity factor

m = 1/Ws, where Ws is the number of IBZ’s that share the point. Indeed, any point inside the

IBZ have m = 1; however, the Γ point has m = 1/Wtot, where Wtot is the total number of IBZ’s

required by the BZ to be stuffed with. At the end, the weights wk should be normalized such

that [75]
∑

wk = 1 . (C.0.8)



Appendix D. Classical Electrodynamics

of Solids

D.1 Electromagnetic Waves in Linear Macroscopic Media

To macroscopically describe the interaction of electromagnetic fields with a solid, one needs

two sets of equations [270–273]: Maxwell equations and the so-called material (or constitutive)

equations. Below, we give these equations and summarize some of their implications that are

relevant to our study.

Maxwell equations in vacuum

The four classical Maxwell equations in vacuum are (in Gaussian units):

∇ · E(r, t) = 4πρ(r, t) (Gauss’s law), (D.1.1a)

∇ ·B(r, t) = 0 (No free magnetic monopole), (D.1.1b)

∇×E(r, t) +
1

c

∂B(r, t)

∂t
= 0 (Faraday’s law), (D.1.1c)

∇×B(r, t)− 1

c

∂E(r, t)

∂t
=

4π

c
J(r, t) (Ampere’s law). (D.1.1d)

In these equations, E is the electric field vector, B is the magnetic induction field vector, ρ is

the electric charge density, J is the electric current density, c is the speed of light in vacuum, and

(r, t) indicates the spatial and temporal dependence of these quantities. For convenience, fields

(E and B) are put on the left while sources (ρ and J) are put on the right.

Material equations

In the presence of a medium that is subject to electric and magnetic fields, the total charge

density ρ = ρtotal that appears in Gauss’s law (Eq. D.1.1a) has two contributions, free external

charge ρext and bound charge ρpol due to polarization P

ρtotal(r, t) = ρext(r, t) + ρpol(r, t) = ρext(r, t)−∇ ·P(r, t) . (D.1.2)

227



Section D.1. Electromagnetic Waves in Linear Macroscopic Media Page 228

If there is no external current Jext, the total current density J = Jtotal that appears in Ampere’s

law (Eq. D.1.1d) can be written as

Jtotal(r, t) = Jcond(r, t) + Jbound(r, t) = Jcond(r, t) +
∂P(r, t)

∂t
+ c∇×M(r, t), (D.1.3)

where Jcond arises from the transport of electrons in the presence of electric field, while the time

dependent polarization ∂P
∂t

and the spatially dependent magnetization ∇×M contribute to the

bound (or displacement) current Jbound component.

By substituting Eqs. D.1.2 and D.1.3 into Eqs. D.1.1a and D.1.1d, one arrives at the so-called

material (or constitutive) equations:

D(r, t) = ε1E(r, t) = E(r, t) + 4πP(r, t) = (1 + 4πχe)E(r, t), (D.1.4a)

B(r, t) = µ1H(r, t) = H(r, t) + 4πM(r, t) = (1 + 4πχm)H(r, t), (D.1.4b)

Jcond(r, t) = σ1E(r, t) (Ohm’s law), (D.1.4c)

which define the auxiliary vectors: the electric displacement field D and the magnetic field

strength H. The material parameters which connect the fields are the dielectric constant or

permitivity (ε1), the permeability (µ1), the conductivity (σ1), the dielectric susceptibility (χe),

and the magnetic susceptibility (χm).

Eq. D.1.4a simply says that the difference between the D-field and the E-field which is caused

be the induced polarization P is described by ε1. The linear proportionality between E and P is

given by χe. Similarly, Eq. D.1.4b shows that the difference between the B-filed and the H-field

which is caused be the induced magnetization M is described by µ1. The linear proportionality

between H and M is given by χm.



Section D.1. Electromagnetic Waves in Linear Macroscopic Media Page 229

Maxwell equations in matter

Using these definitions (i.e. Eqs. D.1.2, D.1.3 and D.1.4), one can now write Maxwell equations

(Eqs. D.1.1) in matter as

∇ ·D(r, t) = 4πρext(r, t), (D.1.5a)

∇ ·B(r, t) = 0, (D.1.5b)

∇× E(r, t) +
1

c

∂B(r, t)

∂t
= 0, (D.1.5c)

∇×H(r, t)− 1

c

∂D(r, t)

∂t
=

4π

c
Jcond(r, t). (D.1.5d)

Wave equations in matter

Recall the vector identity

∇× (∇×A) = −∇2A+∇(∇ ·A) , (D.1.6)

and take ∇ × (∇ × E), where (∇ × E) is given by Eq. D.1.5c while E itself is given by Eq.

D.1.4a, to obtain

∇2E− ε1µ1

c2
∂2E

∂t2
+

4πµ1σ1
c2

∂E

∂t
= 0. (D.1.7)

Similarly, taking ∇× (∇×H), where (∇×H) is given by Eq. D.1.5d while H itself is given by

Eq. D.1.4b, one obtains

∇2H− ε1µ1

c2
∂2H

∂t2
+

4πµ1σ1
c2

∂H

∂t
= 0. (D.1.8)

Eqs. D.1.7 and D.1.8 above describe the propagation of the electric and magnetic fields in matter.

A possible solution to them is the mono-harmonic plane wave fields in the following form

E(r, t) = E0e
j(q·r−ωt) , (D.1.9a)

H(r, t) = H0e
j(q·r−ωt+φ) , (D.1.9b)

where E0 and H0 are the maximum amplitudes, q is the wavevector, ω is the angular frequency,

φ is a phase factor and j =
√
−1.
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The wavevector

By substituting Eq. D.1.9a into Eq. D.1.7, or substituting Eq. D.1.9b into Eq. D.1.8, one

obtains a dispersion relation between the wavevector q and the frequency ω

q =
ω

c

[
ε1µ1 + j

4πµ1σ1
ω

] 1
2

nq , (D.1.10)

where nq is the unit vector in the direction of q.

The relation between E and H

Consider Eqs. D.1.9, it is straightforward to verify that

∇× E = j(q×E0)e
j(q·r−ωt). (D.1.11)

Substituting Eqs. D.1.11 and D.1.9b into Eq. D.1.5c and using B = µ1H yield

H0 =
c

ω

1

µ1
(q× E0) e

−jφ . (D.1.12)

Substituting Eq. D.1.12 above back into Eq. D.1.9b gives the relation between E and H1

H =
c

ωµ1

q× E . (D.1.13)

Poynting vector

Recall that the energy flux density (energy transported per unit area per unit time) of an electro-

magnetic wave is given by the so-called Poyinting vector S

S =
c

4π
(E×H), (D.1.14)

where c is the phase velocity of the wave.

1Eq. D.1.13 is Eq. 2.2.17 in Ref. [271] exactly; however it is a very general relation. If one considers the
special case in which σ = 0, then, from Eq. D.1.10, we have q = ω

c

√
ε1µ1nq. Substituting this back into Eq.

D.1.13 yields: H =
√

ε1
µ1

nq × E, which is the well-known relation for the non-conducting materials (cf. Eq.

2.2.21 in Ref. [271]).
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Wave intensity

Intensity I of a wave is defined as its time averaged power per unit area. That is

I = 〈S(t)〉 = 1

T

∫ T

0

dt |S(t)| , (D.1.15)

where the integral is taken over one time period T = 2π
ω

(cf. [272, p. 381]). Assuming that the

fields have the form of Eqs. D.1.9 and using Eq. D.1.13, the integral above reads

I = 〈S(t)〉 =
c

4π

1

T

∫ T

0

dt |E×H|

=
c

4π

1

T

∫ T

0

dt

∣∣∣∣E×
(

c

ωµ1
q×E

)∣∣∣∣

=
c

4π

c

ωµ1

1

T

∫ T

0

dt |q| |E0|2

=
c

4π

c

ωµ1
|q| |E0|2 , (D.1.16)

where we made use of the vector identity

A× (B×C) = B(A ·C)−C(A ·B) . (D.1.17)

Eq. D.1.16 above confirms the well-known fact that the intensity of a plane wave is proportional

to the square of its maximum amplitude.

D.2 Optical Constants

Using the introduced definitions and relations in the previous section, we are going to derive all

optical constants and show that they can all be calculated from the complex dielectric function

solely.

Dielectric constant (ε)

Substituting Eqs.D.1.4a and D.1.9a into Eq. D.1.5d yields

c∇×H = −jωε1E+ 4πσ1E = −jω(ε1 + j
4πσ1
ω

)E. (D.2.1)
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This defines the complex dielectric function ε as

ε = ε1 + j
4πσ1
ω

= ε1 + jε2, (D.2.2)

and Eq. D.1.4a can be generalized to

D(r, t) = εE(r, t), (D.2.3)

to reflect the fact that the field inside the material E may change magnitude and phase with

respect to the field in vacuum D. This is, however, more general and not restricted to ε; the

response of the material can have a time delay with respect to the applied perturbation. Thus,

one can define a complex permeability µ

µ = µ1 + jµ2 , (D.2.4)

and a complex conductivity σ

σ = σ1 + jσ2 . (D.2.5)

This generalizes the material equations D.1.4b and D.1.4c to read

B = µH , (D.2.6)

Jtot = σE . (D.2.7)

Refractive index and attenuation coefficient

The refractive index N of a medium is defined as the ratio between the speed of light in vacuum

c and the wave phase velocity vph = ω/q in the medium

N =
c

vph
=
c

ω
q =

c

ω

ω

c

[
ε1µ1 + j

4πµ1σ1
ω

] 1
2

= [µ1 (ε1 + jε2)]
1
2 = n + jκ , (D.2.8)
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where we have made use of Eq. D.1.10, and put ε2 =
4πσ1

ω
as defined by Eq. D.2.2. Thus, Eq.

D.2.8 above defines a complex refractive index. To relate the real part n and the imaginar part

κ of N to ε1 and ε2, we square both sides of Eq. D.2.2 and equate the real parts and imaginary

parts to get

n2 − κ2 = ε1µ1, (D.2.9)

2nκ = ε2µ1. (D.2.10)

Multiplying the last two parts in Eq. D.2.8 by their complex conjugates yields

n2 + κ2 =
[
µ2
1

(
ε21 + ε22

)] 1
2 . (D.2.11)

Adding Eq. D.2.9 to Eq. D.2.11 and making some arrangements yield

n =

√
µ1

2

([
ε21 + ε22

] 1
2 + ε1

) 1
2

(D.2.12)

Subtracting Eq. D.2.9 from Eq. D.2.11 and making some arrangements yield

κ =

√
µ1

2

([
ε21 + ε22

] 1
2 − ε1

) 1
2

(D.2.13)

To understand the meaning of n and κ, we rewrite Eq. D.1.9a using the fact that q = ω
c
Nnq =

ω
c
(n+ jκ)nq, as defined in Eq. D.2.8, to get

E(r, t) = E0e
j((ω

c
(n+jκ)nq)·r−ωt) =

(
E0e

−(ωκ
c
nq·r)

)
ejω(

n
c
nq·r−t). (D.2.14)

From Eq. D.2.14 above, and at a given time t = t′, the second exponent expresses the change in

the wavevector magnitude (i.e. change in wavelength and phase velocity), while the first exponent

reflects the damping feature of the wave amplitude in its spatial domain. For this reason, the

real part n is commonly referred to as the refractive index, while the imaginary part κ is known

in the literature as the attenuation (or extinction) coefficient.



Section D.2. Optical Constants Page 234

Absorption coefficient

The absorption coefficient α of a medium is defined via Beer-Lambert law

α = − 1

I(r)

dI(r)

dr
or I(r) = I0e

−αr, (D.2.15)

where I refers to the intensity of the wave. If we assume that the plane wave of Eq. D.2.14

travels in the z direction, then the intensity I (Eq. D.1.16) of this wave is2

I(z) ∝ |E0|2 e−2ωκ
c
z . (D.2.16)

Substituting Eq. D.2.16 above into Beer-Lambert law (Eq. D.2.15) yields

α = − 1

I(z)

dI(z)

dz
= 2

ω

c
κ =

√
2µ1ω

c

([
ε21 + ε22

] 1
2 − ε1

) 1
2

, (D.2.17)

where we made use of Eq. D.2.13 in the last part.

Reflectivity

Consider two linear media (1) and (2), the boundary between them is in the xy plane. And

consider a plane wave (Eqs. D.1.9) traveling in the z direction (i.e. its wavevector q(i) = q(i) ẑ is

perpendicular to the plane interface) and its E(i) and H(i) fields point in the x- and y- direction,

respectively. A portion of this wave will be reflected off the surface and travels back in medium

(1), while the other portion will enter medium (2). By carefully examining this situation, one can

arrive at the following relations between the maximum amplitudes of the three portions at the

boundary3

E
(t)
0x = E

(i)
0x + E

(r)
0x , (D.2.18)

H
(t)
0y = H

(i)
0y −H

(r)
0y . (D.2.19)

2We have neglected the prefactor ( c
4π

c
ωµ1

1

2
) since it would be common between the numerator and the

denominator in Eq. D.2.15 and cancels out.
3For details, cf. Refs. [271, 272].
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Here, the superscripts, t, i and r stand for the transmitted, the incident and the reflected portion,

respectively. The x and y subscripts are to remind us about the polarization directions of the

fields. Now, using Eqs. D.1.12 to write the H0 components in Eq. D.1.12 above in terms of the

E0 components4, and substituting q = w
c
N as defined in Eq. D.2.8, Eq. D.1.12 above reads

N (2)

µ
(2)
1

E
(t)
0x =

N (1)

µ
(1)
1

(
E

(i)
0x − E

(r)
0x

)
, (D.2.20)

Reflectivity R is defined as the ratio of the time averaged flux of the reflected portion 〈S(r)(t)〉
to that of the incident portion 〈S(i)(t)〉. Using Eq. D.1.16, an expression for R can be written as

R =
〈S(r)(t)〉
〈S(i)(t)〉 =

(v(1))
2

8πωµ
(1)
1

∣∣q(r)
∣∣
∣∣∣E(r)

0x

∣∣∣
2

(v(1))
2

8πωµ
(1)
1

|q(i)|
∣∣∣E(i)

0x

∣∣∣
2
=

∣∣∣E(r)
0x

∣∣∣
2

∣∣∣E(i)
0x

∣∣∣
2 =

∣∣∣∣
N(1)

µ
(1)
1

− N(2)

µ
(2)
1

∣∣∣∣
2

∣∣∣∣
N(1)

µ
(1)
1

+ N(2)

µ
(2)
1

∣∣∣∣
2 (D.2.21)

Here, the last part was obtained by first solving Eqs. D.2.20 and D.2.18 for E
(r)
0x , then for E

(i)
0x .

Eq. D.2.21 above is a general equation, but if one considers the case in which N (1) = 1 (i.e. free

space), and µ
(1)
1 = µ

(2)
1 ≃ 1 as for most materials, then R becomes

R =

∣∣1−N (2)
∣∣2

|1 +N (2)|2
=

(1− n)2 + k2

(1 + n)2 + k2
(D.2.22)

which is a commonly used equation (cf. Eq. 2.4.15 in Ref. [271]).

Transmitivity

Transmitivity (or transmission) T is defined as the ratio of the time averaged flux of the trans-

mitted portion 〈S(t)(t)〉 to that of the incident portion 〈S(i)(t)〉. Using Eq. D.1.16, an expression

4Note that phase factors have been embedded in the maximum amplitudes, which are considered here to be
complex.
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for T can be written as

T =
〈S(t)(t)〉
〈S(i)(t)〉 =

c2

µ
(2)
1

∣∣q(t)
∣∣
∣∣∣E(t)

0x

∣∣∣
2

c2

µ
(1)
1

|q(i)|
∣∣∣E(i)

0x

∣∣∣
2 =

c2

µ
(2)
1

∣∣q(t)
∣∣

c2

µ
(1)
1

|q(i)|

∣∣∣∣2
N(1)

µ
(1)
1

∣∣∣∣
2

∣∣∣∣
N(1)

µ
(1)
1

+ N(2)

µ
(2)
1

∣∣∣∣
2 (D.2.23)

Here, the last part was obtained by first solving Eqs. D.2.20 and D.2.18 for E
(t)
0x , then for E

(i)
0x .

Again, Eq. D.2.21 above is a general equation, but if one considers medium (1) to be the free

space, then it is straightforward forward to show that T becomes

T =
4n

(n + 1)2 + k2
= 1−R (D.2.24)

as one expects from the conservation of energy.



Appendix E. Functionals and Functional

Derivatives

Functionals play a central rule in the formulation of electronic structure calculations methods [78].

In fact, most of what is called “calculus of variation” is a branch of the calculus of functionals.

Following Refs. [76, Appendix A] and [75, Subsection 4.1.1], in this appendix we briefly quote some

basic definitions and properties of functionals and their derivatives. For a compact description,

readers are referred to Ref. [76, Appendix A] and to the clear notes by Svetitsky (Ref. [97]).

E.1 What is a Functional?

A functional F [f ] is a mapping of an entire function f onto a number [78, Appendix A]. For

example, the expectation 〈Q〉 = 〈ψ|Q̂|ψ〉 of a quantum dynamical variable Q is a functional that

maps ψ onto a number 〈Q〉 [76].

E.2 Functional Derivative

The functional derivative δF/δf(x) of F with respect to f at point x is defined via

δF [f(x)] =

∫
dx

δF

δf(x)
δf(x) (E.2.1)

where the deferential δF of the functional is the part of the difference F [f + δf ] − F [f ] that

depends linearly on δf [76]. The expression E.5.1 can be looked at as a generalization of the

usual expression for the multivariable function differential [75, 76]

dF (f1, f2, · · · ) =
∑

i

∂F

∂fi
dfi . (E.2.2)
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E.3 Properties of Functional Derivative

A number of rules analogue to those of usual derivatives can be derived for functional derivatives.

Below are some of these which are relevant for the present work [75]:

δ

δf(x)

(∫
dx g[f(x)]

)
=

∂g[f ]

∂f(x)
(E.3.1)

δ

δf(x)

(∫
dx g[f(x)]f(x)

)
=

∂g[f ]

∂f(x)
f(x) + g[f(x)] (E.3.2)

δ

δf(x)

(
1

2

∫
dx dx′ g(x, x′)f(x)f(x′)

)
=

∫
dx′ g(x, x′)f(x′) (E.3.3)

E.4 Higher-Order Functional Derivatives

The extension to second and higher-order functional derivatives is straightforward [75, 76], and

the order of differentiation is usually not important [76]

δ2F

δf(x)δf(x′)
=

δ2F

δf(x′)δf(x)
. (E.4.1)

E.5 The Chain Rule

Let F = F [f(x)] and f = f [g(x), x]; then the basic chain rule for functional derivative states [76]

δF

δg(x′)
=

∫
dx

δF

δf(x)

δf(x)

δg(x′)
. (E.5.1)



Appendix F. Crystal Structures:

Numerical Data

Information about each chosen crystal structure are given in Sec. 5.2, summarized in Table 5.1

therein and pictures of the unit cells are depectied. In the present appendix we explicitly give

numerical data for their lattice geometry (i.e. primitive vectors) and ionic positions (i.e. initial

basis vectors)1. All vectors are given up to a universal scaling factor which scales all lattice vectors

and all atomic coordinates. All atomic coordinates are given with respect to the lattice vectors.

The additional flag, T or F, for each atom signals whether the respective coordinate(s) of a given

atom possess an internal free parameter2 or not, respectively. We believe that presenting such

numerical information allows other researchers to check and/or redo the same calculations we

presented in this Thesis.

M3N structures

1. D03:

Primitive vectors

0.000000000000 0.500000000000 0.500000000000

0.500000000000 0.000000000000 0.500000000000

0.500000000000 0.500000000000 0.000000000000

Basis vectors

M -.5000000000000000 0.5000000000000000 0.5000000000000000 F F F

M -.2500000000000000 -.2500000000000000 -.2500000000000000 F F F

M 0.2500000000000000 0.2500000000000000 0.2500000000000000 F F F

N 0.0000000000000000 0.0000000000000000 0.0000000000000000 F F F

2. A15:

Primitive vectors

1.00000000 0.00000000 0.00000000

1 For definitions of these terms see App. A
2 Such coordinate(s) are allowed to change during the ionic relaxation. See Sections 7.3 and 7.4.
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0.00000000 1.00000000 0.00000000

0.00000000 0.00000000 1.00000000

Basis vectors

M 0.25000000 0.50000000 0.00000000 F F F

M 0.75000000 0.50000000 0.00000000 F F F

M 0.00000000 0.25000000 0.50000000 F F F

M 0.00000000 0.75000000 0.50000000 F F F

M 0.50000000 0.00000000 0.25000000 F F F

M 0.50000000 0.00000000 0.75000000 F F F

N 0.00000000 0.00000000 0.00000000 F F F

N 0.50000000 0.50000000 0.50000000 F F F

3. D09:

Primitive vectors

1.00000000 0.00000000 0.00000000

0.00000000 1.00000000 0.00000000

0.00000000 0.00000000 1.00000000

Basis vectors

M 0.50000000 .00000000 .00000000 F F F

M 0.00000000 .50000000 .00000000 F F F

M 0.00000000 .00000000 .50000000 F F F

N 0.00000000 .00000000 .00000000 F F F

4. L12:

Primitive vectors

1.00000000 0.00000000 0.00000000

0.00000000 1.00000000 0.00000000

0.00000000 0.00000000 1.00000000

Basis vectors

M 0.00000000 .50000000 .50000000 F F F

M 0.50000000 .00000000 .50000000 F F F

M 0.50000000 .50000000 .00000000 F F F

N 0.00000000 .00000000 .00000000 F F F

5. D02:
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Primitive vectors

-0.5000000000000000 0.5000000000000000 0.5000000000000000

0.5000000000000000 -0.5000000000000000 0.5000000000000000

0.5000000000000000 0.5000000000000000 -0.5000000000000000

Basis vectors

M 0.49560002 .15140004 .34419999 T T T

M 0.19279995 -.15140004 .34419999 T T T

M 0.34419999 .49560002 .15140004 T T T

M 0.34419999 .19279995 -.15140004 T T T

M 0.15140004 .34419999 .49560002 T T T

M -.15140004 .34419999 .19279995 T T T

M -.49560002 -.15140004 -.34419999 T T T

M -.19279995 .15140004 -.34419999 T T T

M -.34419999 -.49560002 -.15140004 T T T

M -.34419999 -.19279995 .15140004 T T T

M -.15140004 -.34419999 -.49560002 T T T

M 0.15140004 -.34419999 -.19279995 T T T

N 0.50000000 .50000000 .50000000 F F F

N 0.50000000 .00000000 .00000000 F F F

N 0.00000000 .50000000 .00000000 F F F

N 0.00000000 .00000000 .50000000 F F F

6. ǫ-Fe3N:

Primitive vectors

1.0000000000 0.0000000000 0.0000000000

-0.5000000000 0.8660254040 0.0000000000

0.0000000000 0.0000000000 0.9318713710

Basis vectors

M 0.328000009 0.000000000 0.000000000 T T T

M 0.000000000 0.328000009 0.000000000 T T T

M 0.671999991 0.671999991 0.000000000 T T T

M 0.671999991 0.000000000 0.500000000 T T T

M 0.000000000 0.671999991 0.500000000 T T T

M 0.328000009 0.328000009 0.500000000 T T T

N 0.333333343 0.666666687 0.250000000 F F F

N 0.666666627 0.333333313 0.750000000 F F F
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7. RhF3:

Primitive vectors

1.000000000000 0.000000000000 0.000000000000

0.581839108853 0.813303910853 0.000000000000

0.581839108853 0.299153068140 0.756287440879

Basis vectors

M -.08300000000 0.58300000000 0.25000000000 T T T

M 0.08300000000 -.58300000000 -.25000000000 T T T

M 0.58300000000 0.25000000000 -.08300000000 T T T

M -.58300000000 -.25000000000 0.08300000000 T T T

M 0.25000000000 -.08300000000 0.58300000000 T T T

M -.25000000000 0.08300000000 -.58300000000 T T T

N 0.00000000000 0.00000000000 0.00000000000 F F F

N 0.50000000000 0.50000000000 0.50000000000 F F F

MN structures

1. B1:

Primitive vectors

0.00000000 0.50000000 0.50000000

0.50000000 0.00000000 0.50000000

0.50000000 0.50000000 0.00000000

Basis vectors

M 0.00000000 0.00000000 0.00000000 F F F

N 0.50000000 0.50000000 0.50000000 F F F

2. B2:

Primitive vectors

1.00000000 0.00000000 0.00000000

0.00000000 1.00000000 0.00000000

0.00000000 0.00000000 1.00000000

Basis vectors

M 0.00000000 0.00000000 0.00000000 F F F

N 0.50000000 0.50000000 0.50000000 F F F
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3. B3:

Primitive vectors

0.00000000 0.50000000 0.50000000

0.50000000 0.00000000 0.50000000

0.50000000 0.50000000 0.00000000

Basis vectors

M 0.00000000 0.00000000 0.00000000 F F F

N 0.25000000 0.25000000 0.25000000 F F F

4. B81:

Primitive vectors

0.500000000 -0.866025404 0.000000000

0.500000000 0.866025404 0.000000000

0.000000000 0.000000000 1.390991986

Basis vectors

M 0.00000000 0.00000000 0.00000000 F F F

M 0.00000000 0.00000000 0.50000000 F F F

N 0.33333333 0.66666667 0.25000000 F F F

N 0.66666667 0.33333333 0.75000000 F F F

5. Bk:

Primitive vectors

0.187954122 -0.325546089 0.00000000

0.187954122 0.325546089 0.00000000

0.000000000 0.000000000 1.00000000

Basis vectors

M 0.33333333 0.66666667 0.25000000 F F F

M 0.66666667 0.33333333 0.75000000 F F F

N 0.66666667 0.33333333 0.25000000 F F F

N 0.33333333 0.66666667 0.75000000 F F F

6. Bh:

Primitive vectors

0.512160733 -0.88708841 0.00000000
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0.512160733 0.88708841 0.00000000

0.000000000 0.00000000 1.00000000

Basis vectors

M 0.000000000 0.000000000 0.00000000 F F F

N 0.666666666 0.333333333 0.50000000 F F F

7. B4:

Primitive vectors

0.50000000 -.866025404 0.000000000

0.50000000 0.866025404 0.000000000

0.00000000 0.000000000 1.637769116

Basis vectors

M 0.33333333 0.66666667 0.00000000 F F F

M 0.66666667 0.33333333 0.50000000 F F F

N 0.33333333 0.66666667 0.37480000 F F T

N 0.66666667 0.33333333 -0.12520000 F F T

8. B17:

Primitive vectors

1.000000000 0.000000000 0.000000000

0.000000000 1.000000000 0.000000000

0.000000000 0.000000000 1.760525633

Basis vectors

M 0.00000000 0.50000000 0.00000000 F F F

M 0.50000000 0.00000000 0.50000000 F F F

N 0.00000000 0.00000000 0.25000000 F F F

N 0.00000000 0.00000000 0.75000000 F F F

9. B24:

Primitive vectors

0.000000000 0.530405405 0.586872587

0.500000000 0.000000000 0.586872587

0.500000000 0.530405405 0.000000000

Basis vectors

0.000000000 0.000000000 0.000000000 F F F

0.500000000 0.500000000 -0.500000000 F F F
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MN2 structures

1. C1:

Primitive vectors

0.00000000 0.50000000 0.50000000

0.50000000 0.00000000 0.50000000

0.50000000 0.50000000 0.00000000

Basis vectors

M 0.00000000 0.00000000 0.00000000 F F F

N 0.25000000 0.25000000 0.25000000 F F F

N 0.75000000 0.75000000 0.75000000 F F F

2. C2:

Primitive vectors

1.0000000000 0.0000000000 0.0000000000

0.0000000000 1.0000000000 0.0000000000

0.0000000000 0.0000000000 1.0000000000

Basis vectors

M 0.0000000000 0.0000000000 0.0000000000 F F F

M 0.0000000000 0.5000000000 0.5000000000 F F F

M 0.5000000000 0.0000000000 0.5000000000 F F F

M 0.5000000000 0.5000000000 0.0000000000 F F F

N 0.3850000000 0.3850000000 0.3850000000 T T T

N -.3850000000 -.3850000000 -.3850000000 T T T

N 0.8850000000 0.1150000000 0.3850000000 T T T

N 0.1150000000 0.8850000000 -.3850000000 T T T

N 0.3850000000 0.1150000000 0.8850000000 T T T

N -.3850000000 0.8850000000 0.1150000000 T T T

N 0.8850000000 0.3850000000 0.1150000000 T T T

N 0.1150000000 -.38500000000 0.8850000000 T T T

3. C18:

Primitive vectors

1.000000000 0.000000000 0.000000000

0.000000000 1.220468891 0.000000000
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0.000000000 0.000000000 0.762173129

Basis vectors

M 0.00000000 0.00000000 0.00000000 F F F

M 0.50000000 0.50000000 0.50000000 F F F

N 0.20000000 0.37800000 0.00000000 T T F

N -.20000000 -.37800000 0.00000000 T T F

N 0.30000000 0.87800000 0.50000000 T T F

N 0.70000000 0.12200000 0.50000000 T T F

4. CoSb2:

Primitive vectors

1.0000000000 0.0000000000 0.0000000000

0.0000000000 0.9815910200 0.0000000000

-0.4667420000 0.0000000000 0.8905223700

Basis vectors

M 0.270000011 0.000000000 0.280000001 T F T

M 0.730000019 0.000000000 0.720000029 T F T

M 0.730000019 0.500000000 0.219999999 T F T

M 0.270000011 0.500000000 0.779999971 T F T

N 0.354000002 0.358999997 0.167999998 T T T

N 0.646000028 0.641000032 0.832000017 T T T

N 0.646000028 0.858999968 0.332000017 T T T

N 0.354000002 0.141000003 0.667999983 T T T

N 0.162000000 0.638000011 0.368000001 T T T

N 0.838000000 0.361999989 0.631999969 T T T

N 0.838000000 0.138000011 0.131999999 T T T

N 0.162000000 0.861999989 0.868000031 T T T



Appendix G. Presentations and

Activities

Conferences, workshops, schools, courses, seminars and symposia in which I participated during

the course of this study, and oral and poster presentations I gave out of this study are listed below

in a reverse chronological order:

1. Mohammed S. H. Suleiman and Daniel P. Joubert; Ab initio calculations on the structural,

electronic and optical properties of the hazardous silver nitrides; a talk (no. 557) presented

on Friday, 12 July 2013 at the South African Institute of Physics 58th Annual Conference

(SAIP 2013), 8–12 July 2013, University of Zululand, Richards Bay, South Africa.

2. 19 – 30 January 2013, 1st KhartoumWorkshop On Advances In Materials Science (KWAMS13),

University of Khartoum, Khartoum, Sudan.

3. Mohammed Suleiman Hussein Suleiman; Electronic Structure Calculations for Solids: Basic

Concepts and some Applications; a two-hours talk presented on Thursday, 17 January 2013

at the College of Science Seminar, Sudan University of Science and Technology (SUST),

Khartoum, Sudan.

4. Mohammed S. H. Suleiman and Daniel P. Joubert; Noble Metals: from South African Mines

to Computer Nitridation; a talk presented on Monday, 22 October 2012 at the Wits 4th

Cross Faculty Graduate Symposium, 19–22 October 2012, University of the Witwatersrand,

Johannesburg, South Africa.

5. Mohammed S H Suleiman and Daniel P Joubert; Structural, electronic and optical prop-

erties of gold nitrides; a talk (no. 298) presented on Wednesday 11 July 2012 at the

South African Institute of Physics 57th Annual Conference (SAIP 2012), 9–13 July 2012,

University of Pretoria, Pretoria, South Africa.

6. Mohammed S H Suleiman and Daniel P Joubert; First-principles calculations of the struc-

tural, electronic and optical properties of PdN and PdN2; a poster (no. 299) presented on
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Thursday 12 July 2012 at the South African Institute of Physics 57th Annual Conference

(SAIP 2012), 9–13 July 2012, University of Pretoria, Pretoria, South Africa.

7. 11 - 13 June 2012, VASP Workshop; The Institut des Matériaux Jean Rouxel (IMN),

Nantes, France.

8. Mohammed S. H. Suleiman, Daniel P. Joubert and Mahlaga P. Molepo; Computational

Study of the Structural, Electronic and Optical Properties of Copper Nitrides; a poster (no.

28) presented at the 2nd edition of the International Conference on Advanced Materials

Modelling (ICAMM 2012), 14 – 16 June 2012, The Institut des Matériaux Jean Rouxel

(IMN), Nantes, France.

9. 28 November – 03 December 2011, CHPC Introductory Scientific Programming School,

Meraka Institute, Council for Scientific and Industrial Research (CSIR), Pretoria, South

Africa.

10. 12 – 21 July 2011, Hands-on Tutorial Workshop 2011 on Ab Initio Molecular Simulations:

Toward a First-Principles Understanding of Materials Properties and Functions, Fritz-Haber-

Institut der Max-Planck-Gesellschaft, Berlin, Germany.

Presented a poster : Mohammed S. H. Suleiman, Daniel P. Joubert and Mahlaga P. Molepo;

A Theoretical Investigation of Structural, Mechanical, Electronic and Optical Properties of

some Bulk Late Transition-Metal Nitrides.

11. 29 November – 10 December 2010, The High Performance Computing School, the Cen-

tre for High Performance Computing (CHPC) of the Council for Scientific and Industrial

Research (CSIR), Cape Town, South Africa.

12. Mohammed Suleiman and Daniel P Joubert, Ab initio Study of the Crystal Structures

and Mechanical Properties of some Late Transition-Metal Nitrides; a poster (no. 209)

presented at the South African Institute of Physics 55th Annual Conference (SAIP 2010),

27 September – 1 October 2010, Council for Scientific and Industrial Research (CSIR),

Pretoria, South Africa.

Abstracts are available online at http://events.saip.org.za/saip2010/, ISBN: 978-

0-620-46211-2.

http://indico.saip.org.za/confSpeakerIndex.py?view=full&letter=s&confId=14
http://www.cnrs-imn.fr/ICAMM_2012/
http://www.cnrs-imn.fr/ICAMM_2012/
http://www.chpc.ac.za/news/programming-school
http://www.fhi-berlin.mpg.de/th/Meetings/DFT-workshop-Berlin2011/
http://www.chpcconf.co.za/index.cfm?x=hpcs
http://events.saip.org.za/saip2010/
http://events.saip.org.za/saip2010/
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13. 14 – 20 August 2010 CAMD Summer School 2010 on the Electronic Structure Theory

and Materials Design, Centre for Atomic-Scale Materials Design, Technical University of

Denmark (DTU), Copenhagen, Denmark.

Presented a poster: M S H Suleiman and D P Joubert; A Theoretical Investigation of some

Ground-State Properties of Group 10 and 11 Transition-Metal Mono-Nitrides.

14. 19 - 30 July 2010, African School on Electronic Structure Methods and Applications (AS-

ESMA 2010), African Institute for Mathematical Sciences (AIMS), Cape Town, South

Africa.

15. 24 January – 11 February 2010, attended a postgraduate course on Statistical Mechanics,

taught by Prof. Stephane Ouvry at the African Institute for Mathematical Sciences (AIMS),

Cape Town, South Africa.

http://www.camd.dtu.dk/English/Events/Latest_news.aspx?guid={CE229644-009C-4C26-8D79-7F0BB70F8D96}
http://cdsagenda5.ictp.trieste.it/full_display.php?ida=a1017
http://aims.ac.za/


List of Publications

E-Prints

1. Mohammed S. H. Suleiman and Daniel P. Joubert. Structural, electronic and optical

characterization of bulk platinum nitrides: a first-principles study. ArXiv e-prints, January

2013 [http://arxiv.org/abs/1301.5490].

2. Mohammed S. H. Suleiman and Daniel P. Joubert. Theoretical calculations on the struc-

tural, electronic and optical properties of bulk silver nitrides. ArXiv e-prints, December

2012 [http://arxiv.org/abs/1212.6507].

3. Mohammed S. H. Suleiman, Mahlaga P. Molepo and Daniel P. Joubert. A theoretical

investigation of structural, electronic and optical properties of bulk copper nitrides. ArXiv

e-prints, November 2012 [http://arxiv.org/abs/1211.0179].

4. Mohammed S. H. Suleiman and Daniel P. Joubert. Computational study of the structural,

electronic and optical properties of bulk palladium nitrides. ArXiv e-prints, October 2013

[http://arxiv.org/a/suleiman_m_1].

5. Mohammed S. H. Suleiman and Daniel P. Joubert. Quantum mechanical ab initio cal-

culations of the structural, electronic and optical properties of bulk gold nitrides. ArXiv

e-prints, September 2013 [http://arxiv.org/abs/1309.3753].

Conference Proceedings

6. Mohammed S H Suleiman and Daniel P Joubert. Structural, electronic and optical proper-

ties of gold nitrides. In South African Institute of Physics 57th Annual Conference (SAIP

2012), No. 298, July 2012 .

7. Mohammed S H Suleiman and Daniel P Joubert. First-principles calculations of the struc-

tural, electronic and optical properties of PdN and PdN2. In South African Institute of

Physics 57th Annual Conference ( SAIP 2012), No. 299, July 2012.
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[100] V. Fock. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems.

Zeitschrift fr Physik A Hadrons and Nuclei, 61:126–148, 1930.

[101] J. C. Slater. A Simplification of the Hartree-Fock Method. Physical Review, 81:385–390,

Feb 1951.

[102] O. Gunnarsson and B. I. Lundqvist. Exchange and correlation in atoms, molecules, and

solids by the spin-density-functional formalism. Physical Review B, 13:4274–4298, May

1976.

[103] P. Ravindran, Lars Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson. Density

functional theory for calculation of elastic properties of orthorhombic crystals: Application

to TiSi[sub 2]. Journal of Applied Physics, 84(9):4891–4904, 1998.

[104] Mihai V. Putz. Density Functionals of Chemical Bonding. International Journal of Molecular

Sciences, 9(6):1050–1095, 2008.

[105] John E. Klepeis. Introduction to First-Principles Electronic Structure Methods: Application

to Actinide Materials. Journal of Materials Research, 21:2979–2985, 2006.

http://www.wits.ac.za/staff/daniel.joubert2
http://julian.tau.ac.il/bqs/functionals/functionals.html
http://julian.tau.ac.il/bqs/functionals/functionals.html
http://julian.tau.ac.il/bqs/functionals/functionals.html
http://dx.doi.org/10.1017/S0305004100011919
http://link.aps.org/doi/10.1103/PhysRev.32.339
http://dx.doi.org/10.1007/BF01340294
http://link.aps.org/doi/10.1103/PhysRev.81.385
http://link.aps.org/doi/10.1103/PhysRevB.13.4274
http://link.aip.org/link/?JAP/84/4891/1
http://www.mdpi.com/1422-0067/9/6/1050
http://dx.doi.org/10.1557/jmr.2006.0371


BIBLIOGRAPHY Page 261

[106] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Physical Review, 136:B864–

B871, November 1964.

[107] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation

Effects. Physical Review, 140:A1133–A1138, November 1965.

[108] E.K.U. Gross and R.M. Dreizler, editors. Density Functional Theory. NATO ASI Series:

Physics. Plenum Press, 1995.

[109] C. Fiolhais, F. Nogueira, and M. Marques, editors. A Primer in Density Functional Theory.

Lecture Notes in Physics. Springer, 2003.

[110] Lars Hedin. New Method for Calculating the One-Particle Green’s Function with Application

to the Electron-Gas Problem. Physical Review, 139:A796–A823, Aug 1965.

[111] Paola Gori-Giorgi and Andreas Savin. Study of the discontinuity of the exchange-corre-

lation potential in an exactly soluble case. International Journal of Quantum Chemistry,

109(11):2410–2415, 2009.

[112] John P. Perdew, Adrienn Ruzsinszky, Jianmin Tao, Viktor N. Staroverov, Gustavo E. Scuse-

ria, and Gabor I. Csonka. Prescription for the design and selection of density functional

approximations: More constraint satisfaction with fewer fits. The Journal of Chemical

Physics, 123(6):062201, 2005.

[113] I V Solovyev. Combining DFT and many-body methods to understand correlated materials.

Journal of Physics: Condensed Matter, 20(29):293201, 2008.

[114] L. H. Thomas. The calculation of atomic fields. Mathematical Proceedings of the Cam-

bridge Philosophical Society, 23:542–548, January 1927.

[115] Enrico Fermi. Un Metodo Statistico per la Determinazione di alcune Prioprietá dell’Atomo.
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