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This paper analyzes the first integrals and exact solutions of mathematical models of epidemiology via the partial Lagrangian
approach by replacing the three first-order nonlinear ordinary differential equations by an equivalent system containing one second-
order equation and a first-order equation. The partial Lagrangian approach is then utilized for the second-order ODE to construct
the first integrals of the underlying system.We investigate the SIR and HIVmodels. We obtain two first integrals for the SIR model
with and without demographic growth. For the HIV model without demography, five first integrals are established and two first
integrals are deduced for the HIV model with demography. Then we utilize the derived first integrals to construct exact solutions
to the models under investigation.The dynamic properties of these models are studied too. Numerical solutions are derived for SIR
models by finite difference method and are compared with exact solutions.

1. Introduction

Epidemiology has become an exciting area for the modern
application of mathematics. Mathematical models play a
vital role in analyzing the spread and control of different
diseases. Graunt [1] was the first scientist who tried to
quantify causes for death in 1662 and this analysis led to
the foundation of modern epidemiological theory. The first
epidemiological mathematical model describing infectious
disease was proposed by the Swiss mathematician Bernoulli
in 1760. Bernoulli studied the impact of immunization with
cowpox upon the expectation of life of the immunized
population and argued the importance of variolation [2, 3].

In 1927, Kermack and McKendrick [4] developed infec-
tious disease models to study the Great Plague of London
for the period of 1665-1666. These models served as the
foundation of theoretical models in epidemiology [5]. The
population is divided into three categories (compartments)
as susceptible, infected, and recovered [4] and the model is
called the SIR model. Later on, Brauer [6] formulated the

SIR model which included births and deaths. The systems of
nonlinear differential equations arising from the SIR models
represent the Lotka-Volterra type equations [7–9]. In 1981,
the human immunodeficiency virus (HIV) appeared which
causes the sexually transmitted disease, namely, the acquired
immunodeficiency syndrome (AIDS). The results reported
in the analysis of HIV transmission in San Francisco [10]
were replicated through a mathematical model developed by
Anderson [11]. Song et al. [12] looked at the transmission
dynamics of the tuberculosis model while Song et al. [13]
discussed the global dynamics of the tuberculosis model with
a density dependent demographic growth. A tremendous
variety of models have been formulated for infectious dis-
eases [14].The study ofmathematicalmodels of epidemiology
is essential in order to uncover the essential aspects of
infectious diseases spread and helps public health decision
makers to compare, plan, evaluate, and implement different
control programs [14, 15].

Most of the mathematical models in epidemiology give
rise to a system of linear and nonlinear first-order ordinary
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differential equations (ODEs) and several qualitative and
quantitative techniques have been applied to discuss the
dynamic properties of thesemodels. One branch of the litera-
ture has applied numerical methods to study the dynamics of
these models which include [16–19]. A separate strand of the
literature has looked at the dynamics of thesemodels through
the stability analysis of the dynamical systems [20–22]. We
apply Lagrangian methods to study the additional features
of first integrals and reductions relating to the dynamics
of these models. A small number of papers have utilized
Lie symmetry methods for epidemiology models [23–30].
The optimal control problems arising in epidemics can be
solved by the newly developed partial Hamiltonian approach
[31].

Any system of first-order ODEs possesses an infinite
number of Lie point symmetries and in order to reduce
the number of symmetries from infinite to finite, the Lie
group theorists replace this system by a system containing
a second-order ODE [30]. Nucci and Leach [23] derived an
explicit solution of the SIS model by the Painlevé analysis
and the Lie theory. The second-order ODE for the SIS
model possesses only one trivial Lie point symmetry and
thus hidden Lie symmetries were computed by increasing
the order of the second-order ODE by the Riccati type
transformation [23]. Nucci [24] has shown that the same
results for the SIS model can be derived by using the Jacobi
last multiplier approach. The Jacobi last multiplier yields
a transformation which converts the system of first-order
ODEs for the SIS model to a coupled system of one first-
order and one second-order ODE which admits more Lie
symmetries. The Lie group analysis of a mathematical model
which describes HIV transmission was performed by Torrisi
and Nucci [25], Nucci [26], and Edwards and Nucci [27].
Leach and Andriopoulos [28] utilized the Lie group method
to predict the cause of infectious diseases and compare the
effects of different control strategies for SARS (Severe Acute
Respiratory Syndrome) epidemic of 2002-2003. Lie integrable
cases of the simplified multistrain/two-stream model for
tuberculosis and dengue fever were discussed by Nucci and
Leach [29]. Nucci and Leach [30] performed the singularity
and symmetry analysis of the SIR model with and without
demographic growth, the model describing the transmis-
sion of HIV, and the model describing the transmission of
tuberculosis with and without demographic growth. To the
best of our knowledge the direct search for first integrals
for mathematical models in epidemiology has not yet been
considered in the literature and is the subject of this work.We
apply the partial Lagrangian approach which was developed
in [32, 33] to construct first integrals.This approach is similar
to the Noether method and works for even order ODEs.
However, one requires a partial Lagrangian instead of the
standard Lagrangian.The partial Noether condition which is
similar to the Noether condition is then invoked for each of
the partial Noether operators in order to explicitly (by means
of a formula) determine the corresponding first integrals.The
approach is useful since it uses a partial Lagrangian which is
easier to work out than the standard Lagrangian which may
be not possible or difficult to obtain (see the examples in [33]).
We show its effectiveness here. Then, we utilize the derived

first integrals to obtain exact solutions of the epidemiological
models under consideration.

The outline of this paper is as follows. In Section 2,
we give an overview of the partial Lagrangian approach.
Section 3 deals with the first integrals of the SIR model
without and with demography which are derived via the
partial Lagrangian approach. We utilize these first integrals
to find the reductions and exact solutions of the model.
In Section 4, we study several features associated with the
dynamics of the HIV model. Finally, concluding remarks are
presented in Section 5.

2. Preliminaries

We now provide an overview of the partial Lagrangian
approach as proposed in [32, 33].

Consider a 𝑘th-order ODE system,

𝐸
𝛼

(𝑡, 𝑞, 𝑞
(1), 𝑞(2), . . . , 𝑞(𝑘)) = 0, 𝛼 = 1, . . . , 𝑚, (1)

where 𝑡 is the independent variable, 𝑞
𝑖

, 𝑖 = 1, . . . , 𝑚, are the
𝑚 dependent variables, and 𝑞

(𝑗)
, 𝑗 = 1, . . . , 𝑘, is the 𝑗th total

derivative of 𝑞 with respect to the independent variable 𝑡.
The total derivative operator with respect to 𝑡 in this

context is defined as

𝐷
𝑡

=
𝜕

𝜕𝑡
+ ̇𝑞
𝑖

𝜕

𝜕𝑞𝑖
+ ̈𝑞
𝑖

𝜕

𝜕 ̇𝑞𝑖
+ ⋅ ⋅ ⋅ (2)

so that 𝐷
𝑡
(𝑞
𝑖

) = ̇𝑞
𝑖

, . . . , 𝐷
𝑡
(𝑞
(𝑘−1)) = 𝑞

(𝑘)
.

The following are the basic operators defined in the space
A which is the vector space of differential functions.

The Lie-Bäcklund operator 𝑋 is given by

𝑋 = 𝜉
𝜕

𝜕𝑡
+ 𝜂
𝑖

𝜕

𝜕𝑞𝑖
+ ∑

𝑠≥1
𝜁
𝑖

𝑠

𝜕

𝜕𝑞𝑖
𝑠

, (3)

where

𝜁
𝑖

𝑠
= 𝐷
𝑡
(𝜁
𝑖

𝑠−1) − 𝑞
𝑖

𝑠
𝐷
𝑡
(𝜉) , 𝑠 ≥ 1, 𝑖 = 1, . . . , 𝑚, (4)

in which 𝜁
𝑖

0 ≡ 𝜂
𝑖.

The Euler-Lagrange operator is defined by

𝛿

𝛿𝑞𝑖
=

𝜕

𝜕𝑞𝑖
+ ∑

𝑠≥1
(−𝐷
𝑡
)
𝑠 𝜕

𝜕𝑞𝑖
𝑠

, 𝑖 = 1, 2, . . . , 𝑚. (5)

The characteristic form of the Lie-Bäcklund operator (3)
is

𝑋 = 𝜉𝐷
𝑡
+ 𝑊
𝑖

𝜕

𝜕𝑞𝑖
+ ∑

𝑠≥1
𝐷
𝑠

𝑡
(𝑊
𝑖

)
𝜕

𝜕𝑞𝑖
𝑠

, (6)

where 𝑊
𝑖 is the Lie characteristic function

𝑊
𝑖

= 𝜂
𝑖

− 𝜉 ̇𝑞
𝑖

, 𝑖 = 1, . . . , 𝑚. (7)

The partial Noether method for the construction of
first integrals (see [32, 33]) is applied to even order ODEs
that have no Lagrangian or ODEs which satisfy a partial
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Euler-Lagrangian system. This method also applies to even
order ODEs for which a Lagrangian is sometimes difficult
to determine. For example, the second-order ODE (19)
discussed at length below is of even order two and has a
standard Lagrangian which is not obvious. However a partial
Lagrangian for it is rather simple and one can take it to be
𝐿 = ̇𝑆

2
/2. For odd order ODEs, such as a third-order ODE,

one can only use the Noether or partial Noether method
if one converts this ODE to fourth order by introducing a
potential variable, for example, 𝑞 = 𝑢

, for 𝑞


= 0, or a system
containing a second- and first-order ODE. For the system of
three first-order ODEs studied herein we convert this system
to one which has a second-order ODE (see below).

Definition 1 (partial Lagrangian). Suppose that the 𝑘th-order
differential system (1) can be expressed as

𝐸
𝛼

= 𝐸
0
𝛼

+ 𝐸
1
𝛼

= 0. (8)

A function, 𝐿 = 𝐿(𝑡, 𝑞, 𝑞
(1), 𝑞(2), . . . , 𝑞(𝑙)), 𝑙 ≤ 𝑘, if it exists, is

known as a partial Lagrangian for system (1) if

𝛿𝐿

𝛿𝑞𝑖
= 𝑓
𝛽

𝑖
𝐸
1
𝛽

(9)

provided𝐸
1
𝛽

̸= 0 for some𝛽. Here (𝑓
𝛽

𝑖
) is an invertiblematrix.

If one has that 𝐸
1
𝛽

= 0, then one has the standard Lagrangian
𝐿 and Noether’s theorem is applicable.

Definition 2 (partial Noether operator [33]). The operator 𝑋

as in (3), which satisfies

𝑋 (𝐿) + 𝐿𝐷
𝑡
(𝜉) = 𝐷

𝑡
(𝐵) + (𝜂

𝑖

− 𝜉 ̇𝑞
𝑖

)
𝛿𝐿

𝛿𝑞𝑖
,

𝑖 = 1, . . . , 𝑚,

(10)

where 𝐵 is the gauge term, is referred to as a partial Noether
operator corresponding to the partial Lagrangian 𝐿. In the
special case when 𝛿𝐿/𝛿𝑞

𝑖

= 0 one has the Noether operator
which gives the divergence invariance of the functional
associated with the standard Lagrangian 𝐿.

Theorem 3 (partial Noether first integral [33]). The first inte-
gral of system (1) associatedwith the partial Noether operator𝑋

corresponding to the partial Lagrangian 𝐿 is determined from
[33]

𝐼 = 𝑁 (𝐿) − 𝐵 (11)

for suitable gauge function 𝐵 or in expanded form by

𝐼 = 𝜉𝐿 + 𝑊
𝑖
𝛿𝐿

𝛿𝑞𝑖
𝑡

+ ∑

𝑠≥1
𝐷
𝑠

𝑡
(𝑊
𝑖

)
𝛿𝐿

𝛿𝑞𝑖
𝑠+1

− 𝐵, (12)

where𝑊
𝑖 is the characteristic of the conservation law related to

this first integral 𝐼.

3. The First Integrals and Closed
Form Solutions of SIR Model without
and with Demography

In this section, we study the SIR model first analyzed by
Kermack andMcKendrick [4] and this model may be applied
to diseaseswhich cause permanent immunity after recovering
from the disease. The model is applicable to diseases like
diphtheria, typhoid fever, measles, mumps, smallpox, and
chickenpox. We analyze the two variants of the model: the
SIR model without demography and the SIR model with
demography. The partial Lagrangian approach is utilized
to obtain the first integrals for the SIR model with and
without demographic growth. We utilize these first integrals
to find the exact solutions of the SIR model with and without
demographic growth.

3.1. The First Integrals and Exact Solutions of SIR Model
without Demography. In this model a fixed population𝑁 (no
demography) is considered and is divided into three com-
partments, namely, susceptible 𝑆, infected 𝐼, and recovered 𝑅

such that 𝑆 + 𝐼 + 𝑅 = 𝑁. The SIR model without demography
describing the effects of the Black Death in the seventeenth
century is represented by the following dynamical system of
ODEs:

̇𝑆 = − 𝛽𝑆𝐼, (13)

̇𝐼 = 𝛽𝑆𝐼 − 𝛾𝐼, (14)

�̇� = 𝛾𝐼, (15)

with the initial conditions 𝑆(0) = 𝑁1 ≥ 0, 𝐼(0) = 𝑁2 ≥ 0,
𝑅(0) = 𝑁3 ≥ 0, 0 ≤ 𝛽 ≤ 1, and 0 ≤ 𝛾 ≤ 1 and where dot
denotes differentiation with respect to the time and 𝛽 and 𝛾

denote the infection and the recovery rates, respectively. If we
add (13)–(15), we have

𝑑

𝑑𝑡
(𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅 (𝑡)) = 0. (16)

The model is consistent with 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁 and
thus the total population is an arbitrary positive constant of
integration. Notice that𝑅 occurs only in the last equation and
hence the 𝑅 equation can indeed be omitted as

𝑅 (𝑡) = 𝑁 − 𝐼 (𝑡) − 𝑆 (𝑡) . (17)

From (13), we have

𝐼 = −
̇𝑆

𝛽𝑆
(18)

and this converts (14) to the following second-order ODE in
𝑆:

̈𝑆 −
̇𝑆
2

𝑆
− 𝛽𝑆 ̇𝑆 + 𝛾 ̇𝑆 = 0. (19)
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3.1.1. First Integrals via Partial Lagrangian Approach. We
apply the partial Lagrangian approach to construct first
integrals of the second-order ODE (19) and we utilize these
first integrals to deduce exact solutions for 𝑆. Once 𝑆 is known
to us then 𝐼 can be computed from (18) and finally 𝑅(𝑡) =

𝑁 − 𝐼(𝑡) − 𝑆(𝑡).
Equation (19) admits the partial Lagrangian 𝐿 = ̇𝑆

2
/2 and

the corresponding partial Euler-Lagrange equation is

−
̇𝑆
2

𝑆
− 𝛽𝑆 ̇𝑆 + 𝛾 ̇𝑆 =

𝛿𝐿

𝛿𝑆
, (20)

where
𝛿

𝛿𝑆
=

𝜕

𝜕𝑆
− 𝐷
𝑡

𝜕

𝜕 ̇𝑆
+ 𝐷

2
𝑡

𝜕

𝜕 ̈𝑆
− ⋅ ⋅ ⋅ . (21)

The partial Noether operator 𝑋 = 𝜉𝜕/𝜕𝑡 + 𝜂𝜕/𝜕𝑆 corres-
ponding to 𝐿 satisfies (10); that is,

[𝜂
𝑡
+ 𝜂
𝑆

̇𝑆 − ̇𝑆𝜉
𝑡
− ̇𝑆

2
𝜉
𝑆
] ̇𝑆 +

̇𝑆
2

2
(𝜉
𝑡
+ 𝜉
𝑆

̇𝑆)

= (𝜂 − ̇𝑆𝜉) (−
̇𝑆
2

𝑆
− 𝛽𝑆 ̇𝑆 + 𝛾 ̇𝑆) + 𝐵

𝑡
+ ̇𝑆𝐵
𝑆
,

(22)

where 𝜉 = 𝜉(𝑡, 𝑆), 𝜂 = 𝜂(𝑡, 𝑆), and 𝐵 = 𝐵(𝑡, 𝑆). Now we
separate (22) with respect to powers of ̇𝑆 and we obtain the
following overdetermined system for 𝜉, 𝜂, and 𝐵:

̇𝑆
3: 𝜉
𝑆

+
2
𝑆

𝜉 = 0,

̇𝑆
2: 𝜂
𝑆

−
1
2

𝜉
𝑡
+

𝜂

𝑆
+ 𝜉 (𝛾 − 𝛽𝑆) = 0,

̇𝑆: 𝜂
𝑡
− 𝜂 (𝛾 − 𝛽𝑆) − 𝐵

𝑆
= 0,

̇𝑆
0: 𝐵
𝑡

= 0.

(23)

The solution of system (23) yields the following partial
Noether operators and gauge terms:

𝜉 =
𝑐2
𝑆2

,

𝜂 =
𝑐1
𝑆

+ 𝑐2 (𝛽 − 𝛾
ln 𝑆

𝑆
) ,

𝐵 = 𝑐1 (−𝛾 ln 𝑆 + 𝛽𝑆)

+ 𝑐2 (
1
2

𝛾
2

(ln 𝑆)
2

+
1
2

𝛽
2
𝑆
2

− 𝛽𝛾𝑆 ln 𝑆) .

(24)

Formula (12), with 𝜉, 𝜂, and 𝐵 from (24), results in the
following two first integrals:

𝐼1 = 𝛾 ln 𝑆 − 𝛽𝑆 +
̇𝑆

𝑆
,

𝐼2 =
1
2

(𝛾 ln 𝑆 − 𝛽𝑆 +
̇𝑆

𝑆
)

2

.

(25)

Notice that the integrals are connected by

𝐼2 =
𝐼
2
1
2

, (26)

and thus only one first integral is functionally independent.

3.1.2.The Exact Solutions of SIRModel. Nowwe utilize 𝐼1 and
derive the exact solutions to (19). Setting 𝐼1 = 𝑔1, we have

𝛾 ln 𝑆 − 𝛽𝑆 +
̇𝑆

𝑆
= 𝑔1, (27)

which is integrable by quadratures

∫
𝑑𝑆

𝑆 (𝑔1 − 𝛾 ln 𝑆 + 𝛽𝑆)
= 𝑡 + 𝑔2, (28)

where 𝑔1 and 𝑔2 are arbitrary constants. Now, the solution for
the infected 𝐼 can be derived from (18)

𝐼 =
1
𝛽

(𝛾 ln 𝑆 − 𝛽𝑆 − 𝑔1) , (29)

and finally 𝑅 from (17) is given by

𝑅 = 𝑁 −
1
𝛽

(𝛾 ln 𝑆 − 𝑔1) . (30)

An interesting solution exists for the special case when 𝛾 = 0
and thus (28) gives rise to the following implicit solution:

𝑆 =
𝑔1

𝑔1𝑔2𝑒
−𝑔1𝑡 − 𝛽

,

𝐼 = −
𝑔1
𝛽

−
𝑔1

𝑔1𝑔2𝑒
−𝑔1𝑡 − 𝛽

,

𝑅 =
𝑔1
𝛽

+ 𝑁.

(31)

Exact solution (31) is new and not reported in the literature
before. The Painlevé analysis and the Lie symmetry analysis
of the SIRmodel were performed by Leach andAndriopoulos
[28]. It is noted that the exact solutions of the SIRmodel with
no demography can be utilized as benchmarks for numerical
solutions that are deduced for this model.

3.1.3. The Comparison of Exact and Numerical Solutions of
SIR Model. Now we compare exact solutions (31) with the
numerical integration of system (13)–(15). We take initial
values as 𝑁1 = 20, 𝑁2 = 15, and 𝑁3 = 10, respectively,
and 𝛽 = 0.01 as adopted in [17]. The values of arbitrary
constants are 𝑔1 = −0.35 and 𝑔2 = 0.0214. We have
employed finite difference method in order to solve system
(13)–(15) numerically. In particular, we have used backward
finite differences to approximate the first-order derivatives
which gives us an implicit scheme for the solution of equation
system. For a fixed time step 𝜏, we have partitioned the time
domain [0, 10] as follows:

𝑡0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡
𝑚

. (32)

System (13)–(15) follows implicit scheme as follows:

𝑆
𝑘+1 = 𝑆

𝑘
− 𝜏𝛽𝑆
𝑘+1𝐼𝑘,

𝐼
𝑘+1 = 𝐼

𝑘
+ 𝜏𝛽𝑆
𝑘+1𝐼𝑘+1 − 𝜏𝛾𝐼

𝑘+1,

𝑅
𝑘+1 = 𝑅

𝑘
+ 𝜏𝛾𝐼
𝑘+1.

(33)
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with the initial conditions

𝑆0 = 20,

𝐼0 = 15,

𝑅0 = 10.

(34)

In order to implement the aforementioned scheme, we have
developed a code inMATLAB and used 𝑚 = 200 time nodes
to execute the simulations.The exact and numerical solutions
of 𝑆(𝑡) and 𝐼(𝑡) are graphically represented by Figures 1 and 2.
It can be observed that the numerical results are in complete
agreement with the exact solution curves.

3.2. The First Integrals and Exact Solutions of SIR Model with
Demography. In many infectious diseases new susceptible
agents enter into the population and therefore deaths must
be included in the model (this means we consider the
model with demography). Assume that the death rate at any
epidemiological compartment is 𝜇 ≥ 0 and a birth rate equals
the death rate, thus ensuring that the total population size is
constant 𝑁. The SIR model, including births and deaths, is
represented by the following dynamical system of ODEs:

̇𝑆 = − 𝛽𝑆𝐼 + 𝜇 (𝑁 − 𝑆) , (35)

̇𝐼 = 𝛽𝑆𝐼 − (𝛾 + 𝜇) 𝐼, (36)

�̇� = 𝛾𝐼 − 𝜇𝑅, (37)

with the initial conditions 𝑆(0) = 𝑁1 ≥ 0, 𝐼(0) = 𝑁2 ≥ 0,
𝑅(0) = 𝑁3 ≥ 0, 0 ≤ 𝛽 ≤ 1, and 0 ≤ 𝛾 ≤ 1 and where dot
denotes differentiation with respect to the time and 𝛽 and 𝛾

denote the infection and the recovery rates, respectively. As
adopted in the standard literature, if we add (35)–(37) and
integrate the resultant equation, this gives

𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅 (𝑡) = 𝑁 + 𝑁0𝑒
−𝜇𝑡

, (38)

where 𝑁0 is the arbitrary constant of integration and it must
be chosen as zero to ensure that the total population size is
constant, namely, 𝑁. We note that 𝑅 occurs only in the last
equation and hence the 𝑅 equation can be omitted by

𝑅 (𝑡) = 𝑁 − 𝐼 (𝑡) − 𝑆 (𝑡) . (39)

From (36), we have

𝑆 =
̇𝐼

𝛽𝐼
+

𝛾 + 𝜇

𝛽
(40)

and this converts (35) to the following second-order ODE in
𝐼:

̈𝐼 −
̇𝐼
2

𝐼
+ (𝜇 + 𝛽𝐼) ̇𝐼 + 𝜇 (𝛾 + 𝜇 − 𝛽𝑁) 𝐼 + 𝛽 (𝜇 + 𝛾) 𝐼

2

= 0.

(41)
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Figure 1: Exact and numerical solutions for 𝑆(𝑡).
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Figure 2: Exact and numerical solutions for 𝐼(𝑡).

3.2.1. First Integrals via Partial Lagrangian Approach. We
apply the partial Lagrangian approach to construct first
integrals of the second-order ODE (41). We utilize these first
integrals to find exact solutions for 𝐼 and then 𝑆 can be
computed from (40) and finally we have𝑅(𝑡) = 𝑁−𝐼(𝑡)−𝑆(𝑡).

Thepartial Euler-Lagrange equation corresponding to the
partial Lagrangian 𝐿 = ̇𝐼

2
/2 of (41) is given by

−
̇𝐼
2

𝐼
+ (𝜇 + 𝛽𝐼) ̇𝐼 + 𝜇 (𝛾 + 𝜇 − 𝛽𝑁) 𝐼 + 𝛽 (𝜇 + 𝛾) 𝐼

2

=
𝛿𝐿

𝛿𝐼
,

(42)



6 Mathematical Problems in Engineering

where

𝛿

𝛿𝐼
=

𝜕

𝜕𝐼
− 𝐷
𝑡

𝜕

𝜕 ̇𝐼
+ 𝐷

2
𝑡

𝜕

𝜕 ̈𝐼
− ⋅ ⋅ ⋅ . (43)

If we assume that 𝜉 = 𝜉(𝑡, 𝐼), 𝜂 = 𝜂(𝑡, 𝐼), and 𝐵 =

𝐵(𝑡, 𝐼), then the partial Noether determining equation (10)
corresponding to 𝐿 after separation with respect to powers
of ̇𝐼 results in the following overdetermined system for 𝜉, 𝜂,
and 𝐵:

̇𝐼
3: 1

2
𝜉
𝐼
+

𝜉

𝐼
= 0,

̇𝐼
2: 𝜂
𝐼
−

𝜉
𝑡

2
+

𝜂

𝐼
+ 𝜇𝜉 + 𝛽𝐼𝜉 = 0,

̇𝐼: 𝜂
𝑡
− 𝜇𝜂 − 𝛽𝜂𝐼 + 𝜉𝐼𝜇 (𝛾 + 𝜇 − 𝛽𝑁) + 𝛽 (𝜇 + 𝛾) 𝜉𝐼

2

− 𝐵
𝐼

= 0,

̇𝐼
0: 𝐵
𝑡
+ 𝜂𝜇 (𝛾 + 𝜇 − 𝛽𝑁) 𝐼 + 𝜂𝛽 (𝜇 + 𝛾) 𝐼

2
= 0.

(44)

The solution of the first three equations of system (44) yields

𝜉 =
𝐹 (𝑡)

𝐼2
,

𝜂 =
1
𝐼

(−𝐹 (𝑡) 𝛽𝐼 +
1
2
ln (𝐼) 𝐹 (𝑡) − ln (𝐼) �̇� (𝑡) 𝜇

+ 𝑔 (𝑡)) ,

𝐵 = (−
3
4

𝜇�̇� (𝑡) +
1
2

𝜇
2
𝐹 (𝑡) +

1
4

𝐹


(𝑡)) (ln (𝐼))
2

⋅ (−𝜇𝑔 (𝑡)

+ 𝐹 (𝑡) 𝜇 (𝛾 + 𝜇 − 𝛽𝑁) + ̇𝑔 (𝑡) + 𝐹 (𝑡) 𝛽𝜇𝐼

−
1
2

�̇� (𝑡) 𝛽𝐼) ln (𝐼) +
1
2

𝐹 (𝑡) 𝛽
2
𝐼
2

+ (−𝛽𝑔 (𝑡)

−
1
2

�̇� (𝑡) 𝛽 + 𝛽 (𝜇 + 𝛾) 𝐹 (𝑡)) 𝐼 + ℎ (𝑡) .

(45)

The last equation of system (44), with knowledge of 𝜉, 𝜂, and
𝐵 from system (45), gives 𝛾 = 0 and

𝐹 (𝑡) = 𝑐1𝑒
2𝜇𝑡

,

𝑔 (𝑡) = − 𝑐1𝑒
2𝜇𝑡

(𝜇 − 𝛽𝑁) + 𝑐2𝑒
𝜇𝑡

,

ℎ (𝑡) =
1
2

𝑐1𝑒
2𝜇𝑡

(𝜇 − 𝛽𝑁)
2

− 𝑐2 (𝜇 − 𝛽𝑁) 𝑒
𝜇𝑡

+ 𝑐3,

(46)

where 𝑐1, 𝑐2, and 𝑐3 are arbitrary constants and without loss
of generality we can choose 𝑐3 = 0. The unknown 𝜉, 𝜂, and 𝐵

from system (45) with the help of (47) result in

𝜉1 = 0,

𝜂1 =
𝑒
𝜇𝑡

𝐼
,

𝐵1 = (−𝛽𝐼 − 𝜇 + 𝛽𝑁) 𝑒
𝜇𝑡

,

𝜉2 =
𝑒
2𝜇𝑡

𝐼2
,

𝜂2 =
−𝑒

2𝜇𝑡
(𝛽𝐼 + 𝜇 − 𝛽𝑁)

𝐼
,

𝐵2 = 𝑒
2𝜇𝑡

(
1
2

𝛽
2
𝐼
2

+ 𝛽 (𝜇 − 𝛽𝑁) 𝐼 +
1
2

(𝜇 − 𝛽𝑁)
2
) .

(47)

Finally we determine the following two first integrals with 𝛾 =

0:

𝐼1 = (𝛽𝐼 + 𝜇 − 𝛽𝑁 +
̇𝐼

𝐼
) 𝑒
𝜇𝑡

,

𝐼2 =
1
2

(𝛽𝐼 + 𝜇 − 𝛽𝑁 +
̇𝐼

𝐼
)

2

𝑒
2𝜇𝑡

.

(48)

For the case 𝛾 ̸= 0, no first integral exists. Notice that the
integrals are connected by

𝐼2 =
𝐼
2
1
2

, (49)

and therefore only one first integral is functionally indepen-
dent.

3.2.2. The Exact Solutions and Transition Dynamics of SIR
Model with Demographic Growth. Now we utilize 𝐼1 and
derive the exact solutions to (41) for the 𝛾 = 0 case. Setting
𝐼1 = 𝑔1, we have

(𝛽𝐼 + 𝜇 − 𝛽𝑁 +
̇𝐼

𝐼
) 𝑒
𝜇𝑡

= 𝑔1, (50)

and this can be rewritten as

̇𝐼 + (𝜇 − 𝛽𝑁 − 𝑔1𝑒
−𝜇𝑡

) 𝐼 = − 𝛽𝐼
2
. (51)

Equation (51) is the familiar Bernoulli differential equation.
Equation (40) with the aid of (51) takes the following form:

𝑆 = 𝑁 − 𝐼 +
1
𝛽

𝑔1𝑒
−𝜇𝑡

. (52)

Finally, 𝑅 from (39) gives

𝑅 = −
1
𝛽

𝑔1𝑒
−𝜇𝑡

. (53)
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An interesting particular solution can be derived if we set
𝑔1 = 0.Then the implicit solution of Bernoulli’s equation (51)
is given by

𝐼 =
𝛽𝑁 − 𝜇

𝛽 + 𝑔2 (𝛽𝑁 − 𝜇) 𝑒−(𝛽𝑁−𝜇)𝑡
. (54)

In this case 𝑅 = 0 and 𝑆 takes the following form:

𝑆 = 𝑁 −
𝛽𝑁 − 𝜇

𝛽 + 𝑔2 (𝛽𝑁 − 𝜇) 𝑒−(𝛽𝑁−𝜇)𝑡
. (55)

The time derivative of (52) with 𝑔1 = 0 yields

̇𝑆

𝑆
= −

̇𝐼

𝐼
. (56)

It is clear from (56) that the growth rates of susceptible
and infected agents in the population are negatively related.
This makes true sense because if the number of susceptible
agents in the population increases, then the number of
infected agents in population will decrease and vice versa.
This is an interesting result which has not been pointed out
before in the literature.

The exact solutions obtained can be used as benchmarks
for any numerical solution to this SIR model with demo-
graphic growth.

3.2.3.TheComparison of Exact andNumerical Solutions of SIR
Model with Demography. Now we compare exact solutions
(54) and (55) with the numerical integration of system (35)–
(37). We take initial values as 𝑁1 = 15, 𝑁2 = 10, and
𝑁3 = 0, respectively, and 𝛽 = 0.01 and 𝜇 = 0.20 as
adopted in [17]. The values of arbitrary constants are 𝑔1 = 0
and 𝑔2 = −0.1. Similar procedures as those we used for
SIR model without demography have been employed for
system equations (35)–(37) in order to obtain the numerical
simulations and compared with the exact solution curves in
Figures 3 and 4. The exact and numerical solutions overlap.

4. An HIV-Transmission Model with and
without Demography

In this section, we derive the first integrals and exact solutions
of the important model proposed by Anderson [11], which
describes theHIV transmission inmale homosexual/bisexual
cohorts. The partial Lagrangian approach is employed to
obtain the first integrals for the HIV model with and without
demography. We utilize these first integrals to find the exact
solutions of HIV model with and without demographic
growth.

4.1. An HIV-Transmission Model without Demography. This
compartmental model divides the population at time 𝑡

into three compartments: susceptible (HIV negatives) 𝑢1(𝑡),
infected (HIV positives) 𝑢2(𝑡), and AIDS patients 𝑢3(𝑡). The
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Figure 3: Exact and numerical solutions for 𝑆(𝑡) for SIRmodel with
demography.
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Figure 4: Exact and numerical solutions for 𝐼(𝑡) for SIRmodel with
demography.

model is represented by the following system of nonlinear
ODEs:

�̇�1 =
−𝛽𝑢1𝑢2

𝑢1 + 𝑢2 + 𝑢3
, (57)

�̇�2 =
𝛽𝑢1𝑢2

𝑢1 + 𝑢2 + 𝑢3
− ]𝑢2, (58)

�̇�3 = ]𝑢2 − 𝛼𝑢3, (59)

where 𝛼 is AIDS related death, 1/] is the average incubation
period for infected individual to develop AIDS, and 𝛽 is the
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average probability that an infected individual will infect a
susceptible partner. We can express 𝑢3(𝑡) from (57) in terms
of 𝑢1(𝑡) and 𝑢2(𝑡) and thus we have

𝑢3 =
−𝛽𝑢1𝑢2

�̇�1
− 𝑢1 − 𝑢2. (60)

Adding (57) and (58) results in

�̇�2 + ]𝑢2 = − �̇�1. (61)

Equation (59) with the help of (60) and (61) yields the
following second-order ODE in 𝑢1(𝑡):

�̈�1 − (𝛼 − ]) �̇�1 − (𝛼 + 𝛽)
�̇�
2
1

𝛽𝑢1
− (𝛼 − 𝛽)

�̇�
2
1

𝛽𝑢2
= 0. (62)

First-order system (57)–(59) is equivalent to coupled system
(61) and (62) but no first integrals exist for this system unless
𝛼 = 𝛽. Equation (62) for 𝛼 = 𝛽 case reduces to the following
second-order ODE in terms of 𝑢1(𝑡):

�̈�1 − (𝛼 − ]) �̇�1 − 2
�̇�
2
1

𝑢1
= 0. (63)

4.1.1. First Integrals. Wederive the first integrals of (63) by the
partial Lagrangian approach.Thenwe find exact solutions for
𝑢1 with the help of these first integrals. Equation (61) results
in 𝑢2 and finally (60) gives 𝑢3.

Equation (63) admits the partial Lagrangian 𝐿 = �̇�
2
1/2 and

the corresponding partial Euler-Lagrange equation is

− (𝛼 − ]) �̇�1 − (𝛼 + 𝛽)
�̇�
2
1

𝛽𝑢1
=

𝛿𝐿

𝛿𝑢1
, (64)

where

𝛿

𝛿𝑢1
=

𝜕

𝜕𝑢1
− 𝐷
𝑡

𝜕

𝜕�̇�1
+ 𝐷

2
𝑡

𝜕

𝜕�̈�1
− ⋅ ⋅ ⋅ . (65)

If we assume that 𝜉 = 𝜉(𝑡, 𝑢1), 𝜂 = 𝜂(𝑡, 𝑢1), and
𝐵 = 𝐵(𝑡, 𝑢1), then the partial Noether operators determining
equation after separation with respect to powers of �̇�1 results
in the following system:

�̇�
3
1: 𝜉
𝑢1

+
4
𝑢1

𝜉 = 0,

�̇�
2
1: 𝜂
𝑢1

−
1
2

𝜉
𝑡
+
2𝜂

𝑢1
− 𝜉 (𝛼 − ]) = 0,

�̇�1: 𝜂
𝑡

= − 𝜂 (𝛼 − ]) + 𝐵
𝑢1

,

�̇�
0
1: 𝐵
𝑡

= 0.

(66)

The solution of system (66) provides the following partial
Noether operators and gauge terms:

𝜉1 = 0,

𝜂1 =
1
𝑢2
1
𝑒
(]−𝛼)𝑡

,

𝐵1 = 0,

𝜉2 =
1
𝑢4
1
𝑒
2(]−𝛼)𝑡

,

𝜂2 = 0,

𝐵2 = 0,

𝜉3 = 0,

𝜂3 =
1
𝑢2
1
,

𝐵3 =
] − 𝛼

𝑢1
,

𝜉4 =
1

𝑢4
1 (] − 𝛼)

,

𝜂4 =
1
𝑢3
1
,

𝐵4 =
] − 𝛼

2𝑢2
1

,

𝜉5 = − 𝑒
(]−𝛼)𝑡 2

𝑢4
1 (𝛼 − ])

,

𝜂5 =
𝑒
(]−𝛼)𝑡

𝑢3
1

,

𝐵5 = 0.

(67)

The first integral with 𝜉, 𝜂, and 𝐵 from (67) can be written as
follows:

𝐼1 =
�̇�1
𝑢2
1
𝑒
(]−𝛼)𝑡

,

𝐼2 = 𝑒
2(]−𝛼)𝑡 �̇�

2
1

2𝑢4
1
,

𝐼3 =
�̇�1
𝑢2
1

−
] − 𝛼

𝑢1
,

𝐼4 =
1

2 (] − 𝛼)
(

�̇�1
𝑢2
1

−
] − 𝛼

𝑢1
)

2
,

𝐼5 = 𝑒
(]−𝛼)𝑡

(
�̇�
2
1

𝑢4
1 (𝛼 − ])

+
�̇�1
𝑢3
1
) .

(68)
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We easily notice that

𝐼2 =
1
2

𝐼
2
1 ,

𝐼4 =
1

2 (] − 𝛼)
𝐼3,

(69)

and we can take 𝐼1 and 𝐼3 as functionally independent first
integrals for second-order ODE (63). There is an additional
dependence of 𝐼5 on 𝐼1 and 𝐼3.

4.1.2. The Exact Solutions and Transition Dynamics of HIV
Model. Nowwe utilize the derived first integrals to construct
solutions of second-order ODE (63) which eventually yields
the solutions to the dynamical system of first-order ODEs
(57)–(59).

Setting 𝐼1 = 𝑔1, we have

�̇�1
𝑢2
1
𝑒
(]−𝛼)𝑡

= 𝑔1, (70)

and this gives

𝑢1 =
] − 𝛼

𝑔1𝑒
−(]−𝛼)𝑡 + 𝑔2 (] − 𝛼)

. (71)

Equation (61), after substituting 𝑢1 from (71), gives the
following solution:

𝑢2 = (∫
𝑔1 (] − 𝛼)

2
𝑒
𝛼𝑡

(𝑔1𝑒
−(]−𝛼)𝑡 + 𝑔2 (] − 𝛼))

2 𝑑𝑡 + 𝑔3) 𝑒
−]𝑡

, (72)

and finally 𝑢3 can be computed from (60).
If we choose 𝑔2 = 0 then the solutions for 𝑢2 and 𝑢3 take

the simpler forms and we obtain the following solutions:

𝑢1 =
] − 𝛼

𝑔1
𝑒
(]−𝛼)𝑡

,

𝑢2 = −
(] − 𝛼)

2

(2] − 𝛼) 𝑔1
𝑒
(]−𝛼)𝑡

+ 𝑔3𝑒
−]𝑡

,

𝑢3

=
− (] − 𝛼)

2
(] + 𝛽) 𝑒

(]−𝛼)𝑡
− 𝑒
−𝑡]

𝑔1𝑔3 (2] − 𝛼) (] − 𝛼 − 𝛽)

(] − 𝛼) (2] − 𝛼) 𝑔1
.

(73)

We derive the same solutions from the other first integrals
as are obtained from the first integral 𝐼1.

It is worthy tomention here that if we use one first integral
to construct a solution, thenwe obtain a Bernoulli differential
equation. The solution of Bernoulli’s differential equation
yields the solution of our second-order ODE. We can obtain
the same solution by using the two functionally independent
first integrals 𝐼1 and 𝐼3. In this event no integration is required
in order to obtain the solution.

4.2. An HIV-Transmission Model with Demography. The
model is represented by the following nonlinear ODEs [26,
30]:

�̇�1 =
−𝛽𝑐𝑢1𝑢2

𝑢1 + 𝑢2 + 𝑢3
− 𝜇𝑢1, (74)

�̇�2 =
𝛽𝑐𝑢1𝑢2

𝑢1 + 𝑢2 + 𝑢3
− (𝜇 + ]) 𝑢2, (75)

�̇�3 = ]𝑢2 − 𝛼𝑢3, (76)

where 𝑢1(𝑡) is that portion of the population which is HIV
negative, 𝑢2(𝑡) is that portion of the population which is HIV
positive, and 𝑢3(𝑡) is the portion of the population which has
AIDS. The parameter 𝜇 is the death rate from other causes,
𝛼 is the death rate from AIDS, ] is the rate at which HIV
positives develop AIDS, 𝛽 is the rate of infection, and 𝑐 is the
rate of change of the partner. We can express 𝑢3(𝑡) from (74)
in terms of 𝑢1(𝑡) and 𝑢2(𝑡) and thus we have

𝑢3 =
−𝛽𝑐𝑢1𝑢2
�̇�1 + 𝜇𝑢1

− 𝑢1 − 𝑢2. (77)

Adding (74) and (75) results in

�̇�2 + (𝜇 + ]) 𝑢2 = − �̇�1 − 𝜇𝑢1. (78)

Equation (76) with the help of (77) and (78) gives the
following second-order ODE in 𝑢1(𝑡) provided 𝛼 = 𝜇 + 𝛽𝑐

(see [26]):

�̈�1 − 2
�̇�
2
1

𝑢1
+ (𝛽𝑐 + 2𝜇 − ]) �̇�1 + 𝜇 (𝜇 − ]+ 𝛽𝑐) 𝑢1 = 0. (79)

We derive the first integrals of (79) by the partial Lagrangian
approach. Then we find exact solutions for 𝑢1 with the aid of
these first integrals. Equation (78) results in 𝑢2 and, finally,
(77) gives 𝑢3.

4.2.1. First Integrals. Equation (79) admits the partial Lag-
rangian 𝐿 = �̇�

2
1/2 and the corresponding partial Euler-Lag-

range equation is

2
�̇�
2
1

𝑢1
− (𝛽𝑐 + 2𝜇 − ]) �̇�1 − 𝜇 (𝜇 − ]+ 𝛽𝑐) 𝑢1 =

𝛿𝐿

𝛿𝑢1
. (80)

If we assume that 𝜉(𝑡, 𝑢1), 𝜂(𝑡, 𝑢1), and 𝐵(𝑡, 𝑢1), then the
partial Noether operators determining equation after sepa-
ration with respect to powers of �̇�1 results in the following
system:

�̇�
3
1: 𝜉
𝑢1

+
4
𝑢1

𝜉 = 0,

�̇�
2
1: 𝜂
𝑢1

−
1
2

𝜉
𝑡
+
2𝜂

𝑢1
− (𝛽𝑐 + 2𝜇 − ]) 𝜉 = 0,

�̇�1: 𝜂
𝑡

= − (𝛽𝑐 + 2𝜇 − ]) 𝜂 + (𝛽𝜇𝑐 + 𝜇
2

− 𝜇]) 𝜉 + 𝐵
𝑢1

,

�̇�
0
1: 𝐵
𝑡
− (𝛽𝑐𝜇 + 𝜇

2
− 𝜇]) 𝑢1𝜂 = 0.

(81)
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The solution of system (81) leads to the following partial
Noether operators and gauge terms:

𝜉1 = 0,

𝜂1 =
1
𝑢2
1
𝑒
−𝜇𝑡

,

𝐵 = (]− 𝜇 − 𝛽𝑐)
𝑒
−𝜇𝑡

𝑢2
1

,

𝜉2 = 0,

𝜂2 =
1
𝑢2
1
𝑒
−(𝛽𝑐+𝜇−])𝑡

,

𝐵 = −
𝜇

𝑢1
𝑒
−(𝛽𝑐+𝜇−])𝑡

.

(82)

The first integral with 𝜉, 𝜂, and 𝐵 from (82) can be written as
follows:

𝐼1 = 𝑒
−𝜇𝑡

(
�̇�1
𝑢2
1

+
𝛽𝑐 + 𝜇 − ]

𝑢1
) ,

𝐼2 = 𝑒
−(𝛽𝑐+𝜇−])𝑡

(
𝜇

𝑢1
+

�̇�1
𝑢2
1
) .

(83)

Thus the partial Lagrangian approach provided us with two
independent first integrals for this case. Now we make use
of the derived first integrals to construct the solutions to
second-order ODE (79) which finally yields the solutions of
the dynamical system of first-order ODEs (74)–(76). We can
construct the solutions either from 𝐼1 or by using 𝐼2 or both.
We use both of the first integrals 𝐼1 and 𝐼2 to establish the
exact solutions. Setting 𝐼1 = 𝑔1 and 𝐼2 = 𝑔2, we have

𝑒
−𝜇𝑡

(
�̇�1
𝑢2
1

+
𝛽𝑐 + 𝜇 − ]

𝑢1
) = 𝑔1,

𝑒
−(𝛽𝑐+𝜇−])𝑡

(
𝜇

𝑢1
+

�̇�1
𝑢2
1
) = 𝑔2.

(84)

Equations (84) provide the following exact solution for 𝑢1:

𝑢1 =
𝛽𝑐 − ]

𝑔1𝑒
𝜇𝑡 − 𝑔2𝑒

(𝛽𝑐+𝜇−])𝑡 . (85)

Equation (78), after substituting 𝑢1 from (85), gives the
following solution:

𝑢2

=

(∫ − ((𝛽𝑐 − ])2 𝑔2𝑒
(2]+𝛽𝑐)𝑡

/ (𝑔1𝑒
]𝑡

− 𝑔2𝑒
𝛽𝑐𝑡

)
2
)) 𝑑𝑡 + 𝑔3

𝑒(𝜇+])𝑡
,

(86)

and finally 𝑢3 can be computed from (77).These solutions are
the same as derived by Nucci [26].

If we choose 𝑔1 = 0, then the solutions for 𝑢2 and 𝑢3
take simpler forms and we obtain the following particular
solutions:

𝑢1 = − (
𝛽𝑐 − ]

𝑔2
) 𝑒
−(𝛽𝑐+𝜇−])𝑡

,

𝑢2 =
(−] + 𝛽𝑐)

2
𝑒
−(−]+𝜇+𝛽𝑐)𝑡

(−2] + 𝛽𝑐) 𝑔2
+ 𝑒
−(𝜇+])𝑡

𝑔3,

𝑢3

=
] (−] + 𝛽𝑐)

2
+ (𝑔3𝑔2]𝑒

(−2]+𝛽𝑐)𝑡
+ (−] + 𝛽𝑐)

2
) (−2] + 𝛽𝑐)

(−] + 𝛽𝑐) (−2] + 𝛽𝑐) 𝑔2𝑒
(−]+𝜇+𝛽𝑐)𝑡 .

(87)

The solutions given in (87) are new and have not been
reported in literature before.

We point out again that these exact solutions of the
HIV-transmission models with and without demography are
useful as benchmarks for numerical solutions that can be
investigated for such models.

5. Conclusions

This paper analyzed the first integrals and exact solutions
of the SIR and HIV models with and without demographic
growth. All these models are represented by systems of three
nonlinear first-order ODEs. The system of first-order ODEs
is replaced by a system containing at least one second-order
ODE in order to obtain a partial Lagrangian to the system.
The partial Lagrangian approach is then utilized for the
second-order ODE in order to construct first integrals of the
underlying system. New solutions were obtained which can
be used as benchmarks for any numerical solution.

First, we applied the partial Lagrangian approach to
the SIR model without demography and obtained two first
integrals. These first integrals are functionally dependent
and thus we found only one functionally independent first
integral. We utilize these first integrals to establish exact
solutions to this model. Then we considered the SIR model
with demography and established two first integrals for the
special case 𝛾 = 0. For this model also the first integrals are
functionally dependent and therefore only one first integral is
functionally independent. The exact solutions to this model
were presented. We also discussed some dynamic properties
of all the variables of the model with the help of the derived
first integrals. Numerical solutions were established for SIR
models by finite difference method and were compared with
exact solutions. For the HIV model without demography
five first integrals are constructed via the partial Lagrangian
approach and twofirst integrals are functionally independent.
Then we utilize the derived first integrals to construct exact
solutions to the HIVmodel.The partial Lagrangian approach
yielded two first integrals for the HIV model with demogra-
phy.The exact solutions and reductions were obtained for the
HIV model with demography.
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