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Abstract
The Adomian decomposition method is an effective procedure for the
analytical solution of a wide class of dynamical systems without linearization
or weak nonlinearity assumptions, closure approximations, perturbation
theory, or restrictive assumptions on stochasticity. Our aim here is to apply
the Adomian decomposition method to steady two-dimensional blood flow
through a constricted artery in the presence of a uniform transverse magnetic
field. Blood flow is the study of measuring blood pressure and determining
flow through arteries. Blood flow is assumed to be Newtonian and is governed
by the equation of continuity and the momentum balanced equation (which
are known as the Navier-Stokes equations). This model is consistent with
the principles of ferro-hydrodynamics and magnetohydrodynamics and takes
into account both magnetization and electrical conductivity of blood. We
apply the Adomian decomposition method to the equations governing blood
flow through arteries in the presence of an external transverse magnetic field.
The results show that the effect of a uniform external transverse magnetic
field applied to blood flow through arteries favors the physiological condition
of blood. The motion of blood in stenosed arteries can be regulated by
applying a magnetic field externally and increasing/decreasing the intensity
of the applied field.
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Chapter 1

Introductory Remarks

1.1 Research Objectives

The objectives of this study are to:

1. demonstrate the application of the Adomian decomposition method

(ADM) and the modified ADM with illustrative examples

2. analyze blood flow mathematically by using equation of continuity and

the momentum balance equation (these equations are known as the

Navier-Stokes equations)

3. approximate blood flow through arteries in the presence of a uniform

transverse magnetic field using the ADM

4. investigate the effects of homogeneous magnetic field on the blood flow

characteristics by using the Frobenius method

1.2 Outline of Dissertation

Chapter 1, provides the basic definitions and introductory concepts. We

present the origin and the advantages of the ADM based on the literature.

The ADM is a significant, powerful method, which provides an efficient

means for the analytical and numerical solution of differential equations,

which model real-world physical applications. A considerable amount of

research work has been invested recently in applying this method to a

wide class of linear and nonlinear ordinary differential equations, partial

1



Chapter 1. Introductory Remarks 2

differential equations and integral differential equations as well. We outline

applications of both the ADM and the modified ADM. We present a

background introduction of blood flow through an artery in the presence

of a uniform external transverse magnetic field.

In chapter 2, we present mathematical background of the ADM and

modified ADM. We demonstrate the application of both the ADM and

modified ADM by illustrative examples. The ADM and the improvements

made by the noise terms phenomenon and the modified ADM are reliable

and effective techniques with promising results. Adomian polynomials are

key in solving nonlinear equations and hence we present both the Adomian

and alternative algorithms for calculating Adomian polynomials. We also

present a useful tool which accelerates the convergence of the ADM, namely

the noise terms phenomenon. We present the convergence analysis of both

the ADM and modified ADM. In the literature, the effects of different types

of magnetic field on flow characteristics in tubes of uniform circular cross-

section have been studied; but the corresponding problem in the presence of

a constriction is more important from the physiological point of view.

In chapter 3, blood flow like any other fluids (such as air, water, oil, etc.)

may be analyzed mathematically by the use of two equations. The first,

often referred to as the continuity equation, requires that the mass of fluid

entering a fixed control volume either leaves that volume or accumulates

within it. It is thus a mass balance requirement posed in mathematical

form, and is a scalar equation. The second, is the momentum equation, and

may be thought of as a momentum balance. The Navier-Stokes equations

are the fluid dynamics equivalent of Newton’s second law, force equals mass

times acceleration and they are of crucial importance in fluid dynamics. We

consider blood as an incompressible Newtonian fluid with uniform viscosity

and present the Navier-Stokes equations in vector form and in cylindrical

polar coordinates to be the equations governing blood flow through arteries

in the presence of a magnetic field.

The novelty in chapter 4 is the extension of the work of ([21], [31]) to

include a three-term approximation to the solution of the stream function.

The expressions for a two-term and a three-term approximation to the

solution of the stream function, axial velocity component and wall shear
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stress are obtained. We apply the ADM to the equation governing blood

flow through a constricted artery in the presence of an external transverse

magnetic field which is applied uniformly. Blood flowing through the tube is

assumed to be Newtonian in character. The numerical solutions of the wall

shear stress for different values of the Reynolds number Re and the Hartmann

number M are shown graphically.

In chapter 5, we investigate the effect of an externally applied

homogeneous magnetic field on the flow characteristics in a single constricted

blood vessel using the Frobenius method.

Chapter 6 states concluding remarks and recommendations about possible

future research work.

1.3 Introduction

At the beginning of the 1980’s, an American Applied Mathematician named

George Adomian (1922-1996) presented a powerful decomposition metho-

dology for practical solution of linear or nonlinear and deterministic or

stochastic operator equations, including ordinary differential equations,

partial differential equations, integral equations, etc. Since then, the method

has been known as the Adomian decomposition method or in short the ADM.

The ADM is a significant, powerful method, which provides an efficient means

for the analytical and numerical solution of differential equations, which

model real-world physical applications. A considerable amount of research

work has been invested recently in applying this method to a wide class

of linear and nonlinear ordinary differential equations, partial differential

equations and integral differential equations as well [4], [17]-[29].

Many phenomena in mathematics, engineering, physics, chemistry, etc.,

can be described very successfully by models using mathematical tools

from fractional calculus, i.e. the theory of derivatives and integrals of

fractional (non-integer) order. Most fractional differential equations do

not have exact analytical solutions, so that approximation methods and

numerical techniques must be used. Most of these models depict problems

which are nonlinear and nonlinear phenomena play a crucial role in applied

mathematics, physics, mechanics, biology, etc., and, therefore, explicit
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solutions to the nonlinear equations are of fundamental importance to

preserve the actual physical character of the problem and to understand

deeply the described process. It is very important to apply efficient methods

such as the ADM to solve these nonlinear problems.

Adomian ([1]-[4]) and others have successfully applied the ADM to

algebraic equations, ordinary, partial, delay, and non-integer order or

fractional differential equations ([5], [6], [7]) for a wide class of nonlinearities,

including polynomial, exponential, trigonometric, hyperbolic, composite,

negative power, radical and even decimal power nonlinearities. The

ADM solves nonlinear differential equations for any analytic nonlinearity.

The ADM allows one to solve nonlinear differential equations without

having to appeal to the decidedly questionable practices of perturbation or

linearization.

The solution algorithm yields a rapidly convergent sequence of

analytic approximants, which are readily computable, without recourse to

linearization, perturbation, discretization, etc. The solution is viewed by

Adomian as a decomposition of the pre-existent, unique, analytic function,

which identically satisfies the mathematical statement under consideration

into components to be determined or resolved by recursion, rather than as a

formal series, i.e. some suspect expansion series of uncertain convergence,

where the convergence question is held in suspense until after the series

coefficients or such other parameters are actually computed. Of course,

the notion of decomposition presupposes the existence and uniqueness

of a mathematical construct, since decomposition is the partitioning of

the solution into basic components or parts, which represents a specific

performance measure for some aspect of a natural phenomenon or man-made

device.

Decomposition then may be viewed as a rearrangement, depending upon

the particular recursive algorithm, of the terms of the uniformly convergent

series of an analytic function. It is definitely not an expansion of an arbitrary

or pathological function. Decomposition is the rearrangement of the analytic

function, which is the solution of a mathematical statement modeling a

physical system. It is a rapidly convergent series. Furthermore, Adomian et

al. ([14], [15]) developed a new approach to numerical integration algorithms

based upon the ADM [16]. Also the ADM does not require very large

computations inherent in discretization methods such as finite differences.



Chapter 1. Introductory Remarks 5

Since the ADM solves nonlinear problems rather than linearizing them,

the resulting solutions are physically more realistic. The objective of the

decomposition method is to make possible physically realistic solutions of

complex systems without the usual modeling and solution compromises to

achieve tractability. A bonus is that it essentially combines the fields of

ordinary and partial differential equations. The prior art in mathematical

analysis as seen in the literature necessarily relies on such limiting procedures.

Thus it may well be said that physics is usually perturbative theory and

mathematics is essentially linear operator theory. Of course there are some

methods of solving nonlinear equations, but not general methods. For

example, clever transformation of variables sometimes results in a linear

equation: however, this rarely works.

The ADM provides an analytical solution in the form of an infinite

power series. From a practical perspective, it is necessary to evaluate this

analytical solution, and to obtain numerical values from the infinite power

series. An advantage of the decomposition method is that it can provide

analytical approximation to a rather wide class of nonlinear (and stochastic)

equations without linearization, perturbation, closure approximations, or

discretization methods which can result in very large numerical computation.

Common analytical procedures, to solve nonlinear differential equations,

linearize the system or assume that the nonlinearities are relatively small,

transforming the physical problem into a purely mathematical one with

an available solution. This procedure may change the real solution of the

mathematical model which represents the physical reality. Usually, the

numerical methods are based on discretization techniques, and permit only

to calculate the approximate solutions for some values of time and space

variables, which have the disadvantage of causing overlooking for some

important phenomena occurring in very small time and space intervals, such

as chaos and bifurcations. Closed-form analytical solutions are considered

ideal when possible. However, they may necessitate changing the actual

or real-life problem to a more tractable mathematical problem. Except

for a small class of equations in which clever transformations can result in

linear equations, it becomes necessary to resort to linearization or statistical

linearization techniques, or assumptions of ”weak nonlinearity,” etc. What

we obtain then is a solution of the simpler mathematical problem. The

resulting solution can deviate significantly from the solution of the actual
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problem; nonlinear systems can be extremely sensitive to small changes.

These small changes can occur because of inherent stochastic effects or

computer errors; the resulting solutions (especially in strongly nonlinear

equations) can show violent, erratic (or ”chaotic”) behavior. Of course,

it is clear that considerable progress has been made with the generally

used procedures, and, in many problems, these methods remain adequate.

Thus, in problems which are close to linear, or where perturbation theory is

adequate, excellent solutions are obtained.

In recent years, the decomposition method has emerged as an alternative

method for solving a wide range of problems whose mathematical models

involve algebraic, differential, integral, integro-differential, higher-order

ordinary differential equations (ODEs), and partial differential equations

(PDEs) and systems, arising from Physics, Chemistry, Biology, Engineering,

etc, subject to boundary or initial conditions. For nonlinear models, the

ADM has shown reliable results in analytical approximation that converges

very rapidly.

1.4 Advantages of the Adomian

Decomposition Method

The ADM provides an analytical approximation to a rather wide class of

nonlinear (and stochastic) equations without linearization, perturbation,

closure approximations, or discretization methods which can result in very

large numerical computation.

An advantage, other than the fact that problems are considered more

realistically than by customary constraints, is that solutions are not obtained

here by discretized methods: solutions are continuous and computationally

much more efficient.

The ADM can be applied directly for all types of differential and integral

equations, linear or nonlinear, homogeneous or inhomogeneous, with constant

coefficients or with variable coefficients.

The ADM does not require discretization of the variables. Hence, the

solution is not affected by computation round off errors and the necessity of

large computer memory.

ADM is capable of greatly reducing the size of computation work while



Chapter 1. Introductory Remarks 7

still maintaining high accuracy of the numerical solution.

The advantage of this method is the avoidance of simplifications and

restrictions, which change the nonlinear problem to a mathematically

tractable one, whose solution is not consistent with the physical solution.

The decomposition method has a significant advantage in that it

provides the solution in a rapid convergent series with elegantly computable

components.

The ADM uses the linear composite operator coefficients of the Adomian

integral equation to construct the solution. The ADM is a constructive

method.

Furthermore, the ADM is preferred for solving stochastic differential

equations (Adomian, [8]-[13]) for the statistical measures, e.g. the

expectation, correlation and so forth, of solution processes as pioneered by

Adomian, when dealing with physically realistic applications without a priori

assumptions of stationarity, ergodicity, white noise, Gaussian processes, etc.

The decomposition solution is also an approximation, but one which

does not change the problem. All modeling is an approximation and this

methodology approximates (accurately and in an easily computable manner)

the solution of the real nonlinear and possibly stochastic problem rather than

a grossly simplified linearized or averaged problem. It provides analytical

expressions, explicitly displaying the expected nonlinear dependence versus

any of the physical parameters of the problem.

The ADM rigorously solves practical problems, and goes beyond vicious

circles appearing in the study of different schemes.

The ADM can be carried out easily and the non-numerical results

obtained are very useful.

Of paramount interest is that the ADM provides a universal approach

to real-world problems at the frontiers of science, including both initial

and boundary value problems. Thus, Adomian’s breakthrough providing a

unified theory of differential equations in mathematics is without precedent!

Although his work has been regarded as controversial due to a sometimes-

evident disregard of rigorous terminology, Adomian was the first to state

necessary conditions for convergence of the ADM. For example, in Adomian

[8] he discusses the notion of mean-square convergence for analytic correlation

functions as solution of stochastic differential equations [16].
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1.5 Application of the Adomian

Decomposition Method

Applications of the ADM and its modifications have caught the attention

of several researchers, so it could be possible to solve a great diversity of

both ordinary as well as partial linear and nonlinear differential equations,

deterministic and also stochastic [4], [17]-[29]. The ADM has extensive

applications in fields such as physics, biology, chemistry, and engineering.

Adomian [1] applied the ADM to the Navier-Stokes equations in a

Cartesian coordinate system by studying the flow of viscous incompressible

continuous fluids. Chiu and Chen [30] applied the ADM in solving convective

longitudinal fin problems with variable thermal conductivity, in which the

nonlinear problems were treated in a manner similar to linear problems.

Haldar [31] applied the ADM to approximate the analytical solution of

the Navier-Stokes equations in cylindrical coordinates by studying steady

two-dimensional irrotational fluid flow problems in tubes of nonuniform

circular cross-sections. ADM was applied to time-fractional Navier-Stokes

equations for unsteady flow of viscous fluid in a tube by Momani and

Odibat [32]. The time-fractional Navier-Stokes equations are nonlinear and

as such there is no known general method to solve these equations and

there are very few cases where an exact solution can be obtained. Momani

[17] applied the ADM to find the exact and approximate the solutions of

convection-diffusion problems. The approximate solution was calculated in

the form of a convergent series with easily computable components. The

calculations were accelerated by using the noise terms phenomenon for non-

homogeneous problems. Mamaloukas et al [23] applied double decomposition

to pulsatile flow of incompressible viscous fluid through a circular rigid tube

provided with constriction and concluded that pulsatile blood flow through

an artery with stenosis depicts flow characteristics and the phenomena of

flow separation very well. Ngarhasta et al [33] proved convergence of the

ADM applied to linear or nonlinear diffusion equations. Their results showed

that convergence of the ADM is not influenced by the choice of the linear

invertible operator L in the equation to be solved. Also other researchers [18],

[34]-[41] have since more rigorously investigated the necessary conditions for

convergence of the ADM.
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1.6 Blood Flow through Arteries

Modeling and analysis of a number of biological problems involving

interactions of physiological systems, such as those between the respiratory

system and the cardiovascular system, can benefit significantly from new

advances in mathematical methodology, which allow solution of dynamical

systems involving coupled systems, anharmonic oscillators, nonlinear

ordinary or partial differential equations, and delay equations [42].

Blood flow is a study of measuring blood pressure and determining flow

through the blood vessels. This study is important for human health.

Most researchers study blood flow in the arteries and veins. Blood flow

under normal physiological conditions is an important field of study, as is

blood flow under disease conditions. The majority of deaths in developed

countries result from cardiovascular diseases, most of which are associated

with some form of abnormal blood flow in arteries. One of the motivations

to study blood flow is to understand conditions that may contribute to high

blood pressure. Past studies indicated that one of the reasons a person

has hypertension is when the blood vessels become narrow. The flow of

blood through an artery depends upon the pumping action of the heart

which gives rise to a pressure gradient which produces an oscillatory flow

in the blood vessel. The blood vessels distribute blood to different organs

and supply themselves with nutrition. Blood flow problems through arteries

are of increasing interest due to physiological and clinical importance. A

number of diseases of blood vessels are being covered by a general term

called “stenosis” which is one of the present health hazards. Stenosis refers

to the occlusion of the arterial lumen partly or fully due to the deposition of

fatty substance. It is the most wide spread arterial disease of blood vessels.

Localized narrowing in an artery, commonly referred to as a stenosis, is

a frequent result of arterial disease. Such constrictions disturb normal blood

flow through the artery and there is considerable evidence that hydrodynamic

factors can play a significant role in the development and progression of this

disease. Several flow characteristics, such as wall shearing stress, pressure,

and turbulence, may have potential medical significance. In addition, higher

resistance to flow can become increasingly important as the stenosis becomes

more severe.

Biomagnetic fluid dynamics (BFD) is a relatively new area in fluid
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mechanics investigating the fluid dynamics of biological fluids in the presence

of magnetic field. Biomagnetic fluid is a fluid that exists in a living creature

and its flow is influenced by the presence of a magnetic field. The most

characteristic biomagnetic fluid is blood, which behaves like a magnetic fluid,

due to the complex interaction of the intercellular protein, cell membrane

and the hemoglobin, a form of iron oxide, which is present at a uniquely high

concentration in the mature red blood cells, while its magnetic property is

affected by factors such as the state of oxygenation.

The human body experiences magnetic fields of moderate to high intensity

in many situations of day to day life. In recent times, many medical

diagnostic devices especially those used in diagnosing cardiovascular disease

make use of magnetic fields. It is known from magnetohydrodynamics that

when a stationary, transverse magnetic field is applied externally to a moving

electrically conducting fluid, electrical currents are induced in the fluid. The

interaction between these induced currents and the applied magnetic field

produces a body force (known as the Lorentz force) which tends to retard

the movement of blood. i.e. the Lorentz force (electromagnetic force) acts

on the blood and this force opposes the motion of blood and thereby flow of

blood is impeded, so that the external magnetic field can be used in treatment

of some kinds of diseases like cardiovascular disease and in the disease with

accelerated blood circulation such as hemorrhages and hypertension. When

the body is subjected to a magnetic field, the positively and negatively

charged blood particles, flowing transversally to the field, are deflected by

the Lorentz force in opposite directions. This induces electrical currents and

voltages across the vessel walls and in the surrounding tissues, strong enough

to be detected at the surface of the thorax in the electrocardiogram.

In general, biological systems are affected by application of an external

magnetic field on blood flow through the human arterial system. Many

mathematical models have already been investigated by several research

workers to explore the nature of blood flow under the influence of an external

magnetic field. The biological effects of magnetic fields have often been

linked to nitric oxide, which is responsible for the changes in vessel diameter

following magnetic field exposure. Recently magnetic fields have been shown

to have positive effects on numerous human systems. For instance, it is

documented that magnetic field exposure can provide analgesia, decrease

healing time for fractures, increase the speed of nerve regeneration, act as a
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treatment for depression and provide other medical benefits.

Magnetic force therapy could be useful for the reperfusion of ischemic

tissue or during sepsis. When blood flow to a tissue becomes blocked or

reduced, necrosis will eventually occur. Local exposure of a magnetic field

could potentially result in blood vessel relaxation and increased blood flow.

The effects of magnetism on blood vessels and the cardiovascular system are

very interesting.



Chapter 2

Adomian Decomposition

Method

2.1 Introduction

In this section we present the mathematical background of the ADM.

The ADM has received much attention in recent years in Applied

Mathematics in general, and in the area of series solutions in particular.

The ADM proved to be powerful, effective and can easily handle a wide class

of linear or nonlinear, ordinary or partial differential equations, and integral

equations.

The ADM demonstrates fast convergence of the solution and therefore

provides several significant advantages. We will use the method to handle

most types of partial differential equations that appear in several physical

models and scientific applications. The ADM attacks the problem in a direct

way and in a straightforward fashion without linearization, perturbation or

any restrictive assumption that may change the physical behavior of the

model under discussion. A brief description of the ADM follows along with

a list of the necessary Adomian Polynomials, an essential component of the

method.

12
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2.2 Analysis of Adomian Decomposition

Method

Definition 1 (Decomposition Scheme). Let
∑
Ck(X0, . . . , Xk) be a strongly

convergent decomposition series. The decomposition scheme associated with∑
Ck is the recurrent scheme

u0 = 0, un+1 = Cn(u0, . . . , un)

which constructs a series
∑
Cn in a Banach space E

Definition 2 (Decomposition Method). The decomposition method is

the method consisting of constructing the solution of an equation with a

decomposition scheme

The ADM consists of decomposing the unknown function u(x, t) of any

equation into sum of infinite number of components defined by

u(x, t) =
∞∑
n=0

un(x, t),

where the components un(x, t), n ≥ 0 are to be determined in a recursive

manner.

The ADM concerns itself by finding the components u0, u1, u2, . . .

individually. The determination of these components can be achieved in

an easy way through a recursive relation that involves simple integrals. This

technique is very simple in an abstract formulation but the difficulty arises in

calculating the Adomian polynomials and proving convergence of the series

of the function.

The ADM consists of splitting the given equation into linear and nonlinear

parts, inverting the highest-order derivative operator contained in the linear

operator on both sides, identifying the initial and/or boundary conditions and

the terms involving the independent variable alone as initial approximation,

decomposing the unknown function into a series whose components are

to be determined, decomposing the nonlinear function in terms of special

polynomials called Adomian polynomials and finding the successive terms of

the series solution by recurrent relation using Adomian polynomials. The

solution is found as an infinite series in which each term can be easily

determined and that converges quickly towards an accurate solution. The
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ADM is quantitative rather than qualitative, analytic, requiring neither

linearization nor perturbation and continuous with no resort to discretization

and consequent computer-intensive calculations.

For a clear overview of the ADM, we consider a differential equation

Fu(t) = g(t),

where F represents a general nonlinear ordinary or partial differential

operator comprising of both linear and nonlinear terms. Linear terms are

decomposed into L + R, where L is invertible and is taken as the highest

order derivative to avoid difficult integrations involving complicated Green’s

functions, and R is the remainder of the linear operator. Thus the equation

may be written as

Lu+Nu+Ru = g (2.1)

where Nu represents nonlinear terms. Solving for Lu, we obtain

Lu = g −Ru−Nu. (2.2)

L is invertible and L−1 is a twofold integration operator and is defined as a

definite integration from 0 to t. i.e.

L−1 =

∫ t

0

∫ t

0

(.)dtdt. (2.3)

For the operator L =
d2

dt2
, we have

L−1Lu = u(x, t)− u(x, 0)− tut(x, 0). (2.4)

Operating on both sides of eq. (2.2) with L−1 we have,

L−1Lu = L−1g − L−1Ru− L−1Nu. (2.5)

Combining eqs. (2.4) and (2.5) yields,

u(x, t) = u(x, 0) + tut(x, 0) + L−1g − L−1Ru− L−1Nu. (2.6)

The decomposition method represents the solution u(x, t) as a series of this

form,

u(x, t) =
∞∑
n=0

un(x, t). (2.7)
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The nonlinear term Nu is decomposed as

Nu =
∞∑
n=0

An (2.8)

Substitute eqs. (2.7) and (2.8) into eq. (2.6),

∞∑
n=0

un(x, t) = u0 − L−1R
∞∑
n=0

un − L−1

∞∑
n=0

An, (2.9)

where

u0 = f, (2.10)

and f represents the terms arising from integrating the source term g and

from the given conditions all are assumed to be prescribed.

Consequently, we can write

u1 = −L−1Ru0 − L−1A0,

u2 = −L−1Ru1 − L−1A1,
... (2.11)

un+1 = −L−1Run − L−1An, n ≥ 0,

where An are the Adomian polynomials generated for each nonlinearity so

that A0 depends only on u0, A1 depends only on u0 and u1, A2 depends on

u0, u1, u2, and etc. The Adomian polynomials are obtained from the formula

An =
1

n!

dn

dλn

[
F

(
∞∑
n=0

λnun

)]
λ=0

, n = 0, 1, 2, . . . (2.12)

We write the first five Adomian polynomials

A0 = F (u0),

A1 = u1F
′(u0),

A2 = u2F
′(u0) +

1

2!
u2

1F
′′(u0), (2.13)

A3 = u3F
′(u0) + u1u2F

′′(u0) +
1

3!
u3

1F
′′′(u0),

A4 = u4F
′(u0) +

[
1

2!
u2

2 + u1u3

]
F ′′(u0) +

1

2!
u2

1u2F
′′′(u0) +

1

4!
u4

1F
′′′′(u0),

...
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So, the practical solution for the n− term approximation is,

φn =
n−1∑
i=0

ui (2.14)

where

u(x, t) = lim
n→∞

φn(x, t) =
∞∑
i=0

ui(x, t) (2.15)

We now demonstrate the ADM on the following illustrative examples.

Example 2.2.1. Consider a nonlinear ordinary differential equation

du

dt
= u2 (2.16)

u(0) = 1.

The differential equation represented by eq. (2.16) has an exact solution

given by

u(t) =
1

1− t
. (2.17)

Decomposing the differential equation in eq. (2.16) we obtain

Lu = Nu

⇒ L−1Lu = L−1(Nu), (2.18)

where Nu = u2 and N a nonlinear operator.

Define an invertible linear operator L =
d

dt
such that

L−1 =

∫ t

0

(.)dt, (2.19)

then

L−1Lu = u(t)− u(0)

⇒ L−1Lu = u(t)− 1. (2.20)

Combining eqs. (2.18) and (2.20) we have

u(t) = 1 + L−1(Nu). (2.21)
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Applying eqs. (2.7) and (2.8) we have

∞∑
n=0

un(t) = 1 + L−1

∞∑
n=0

An. (2.22)

Recursively we determine u0, u1, u2, . . . to obtain

u0 = 1

un+1 = L−1(An) n ≥ 0. (2.23)

The Adomian polynomials are given as follows

A0 = u2
0

A1 = 2u0u1

A2 = u2
1 + 2u0u2

A3 = 2u1u2 + 2u0u3

A4 = u2
2 + 2u1u3 + 2u0u4

...

Solving eq. (2.23) yields

u0 = 1

u1 =

∫ t

0

A0dt = t

u2 =

∫ t

0

A1dt = t2 (2.24)

u3 =

∫ t

0

A2dt = t3

u4 =

∫ t

0

A3dt = t4

...

It follows that the solution series generated by the ADM in eq. (2.24) is

represented by

u(t) = 1 + t+ t2 + t3 + t4 + t5 + . . . (2.25)

which we recognize as a Taylor series expansion of the function

u(t) =
1

1− t
. (2.26)
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Hence the differential equation in eq. (2.16) is solved.

Example 2.2.2. Consider the following inhomogeneous partial differential

equation (PDE)

ux + uy = x+ y, u(0, y) = 0, u(x, 0) = 0. (2.27)

Solution

In operator form eq. (2.27) can be written as

Lxu = x+ y − Lyu, (2.28)

where

Lx =
∂

∂x
, Ly =

∂

∂x
. (2.29)

It is clear that Lx is invertible, hence L−1
x exists and is given by

L−1
x =

∫ x

0

(.)dx. (2.30)

Applying L−1
x on both sides of eq. (2.28) we have

L−1
x Lxu = L−1

x (x+ y)− L−1
x (Lyu), (2.31)

or equivalently

u(x, y) = u(0, y) +
x2

2
+ xy − L−1

x (Lyu(x, y))

=
x2

2
+ xy − L−1

x (Lyu(x, y)) (2.32)

obtained using the given condition u(0, y) = 0 and by integrating f(x, y) =

x + y with respect to x. The ADM identifies the unknown function u(x, y)

as an infinite number of components un(x, y), n ≥ 0 given by

u(x, y) =
∞∑
n=0

un(x, y). (2.33)

Substituting eq. (2.33) into eq. (2.32) we have

∞∑
n=0

un(x, y) =
x2

2
+ xy − L−1

x

(
Ly

(
∞∑
n=0

un(x, y)

))
, (2.34)



Chapter 2. Adomian Decomposition Method 19

or equivalently

u0 + u1 + u2 + . . . =
x2

2
+ xy − L−1

x (Ly(u0 + u1 + u2 + . . .)). (2.35)

The ADM identifies the zeroth component u0 by all terms arising from the

given condition and from integrating f(x, y) = x+ y, therefore

u0(x, y) =
x2

2
+ xy. (2.36)

Consequently, the recursive scheme that will enable us to completely

determine the successive components is constructed by

u0(x, y) =
x2

2
+ xy

un+1(x, y) = −L−1
x (Ly(un)), n ≥ 0. (2.37)

This in turn gives

u1(x, y) = −L−1
x (Ly(u0)) = −L−1

x (Ly(
x2

2
+ xy)) = −x

2

2
, (2.38)

u2(x, y) = −L−1
x (Ly(u1)) = −L−1

x (Ly(−
x2

2
)) = 0.

Accordingly, un = 0, n ≥ 2. Having determined the components of

u(x, y), we find

u(x, y) = u0(x, y) + u1(x, y) + u2(x, y) + . . . =
x2

2
+ xy − x2

2
= xy (2.39)

Hence the exact solution of the inhomogeneous PDE in eq. (2.27) is given

by

u(x, y) = xy. (2.40)

2.3 Adomian Algorithm for Calculating

Adomian Polynomials

Adomian polynomials, a notion due to Adomian [43], are key in solving

nonlinear equations, and which notion was named the Adomian polynomials

by Rach [44] in obvious recognition of Adomian’s breakthrough in

mathematics. Recall that the Adomian decomposition technique suggests

that the unknown solution u(x, t) can be represented by the following
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decomposition series

u(x, t) =
∞∑
n=0

un(x, t) (2.41)

with un being computed recursively in an elegant way. However, the

nonlinear term F (u), such as u2, u3, u4, sinu, eu, uux, etc. can be expressed

by an infinite series of the Adomian polynomials An given on the form

F (u) =
∞∑
n=0

An(u0, u1, u2, . . . , un) (2.42)

where the Adomian polynomials An can be evaluated for all forms of

nonlinearity. Several schemes have been introduced in the literature by

researchers to calculate the Adomian polynomials. Adomian introduced

a scheme for calculation of the Adomian polynomials that was formally

justified and considered by many as simple and practical. In the following,

we present the general Adomian algorithm for the calculation of the Adomian

polynomials and a summary of the necessary steps to calculate the first few

Adomian polynomials.

Definition 3 (Adomian Polynomials). Let F be an analytical function

and
∑
un a convergent series in a Banach space E. Then the Adomian

polynomials An for the nonlinear term F (u) can be evaluated by the following

expression

An =
1

n!

dn

dλn

[
f

(
∞∑
n=0

λnun

)]
λ=0

, n = 0, 1, 2, . . . (2.43)

The general formula of the Adomian polynomials in eq. (2.43) can

be simplified as follows. Assuming that the nonlinear function is F (u).

Therefore by using eq. (2.43), the Adomian polynomials are given by

A0 = F (u0),

A1 = u1F
′(u0),

A2 = u2F
′(u0) +

1

n!
u2

1F
′′(u0), (2.44)

A3 = u3F
′(u0) + u1u2F

′′(u0) +
1

3!
u3

1F
′′′(u0),
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A4 = u4F
′(u0) +

(
1

2!
u2

2 + u1u3

)
F ′′(u0) +

1

2!
u2

1u2F
′′′(u0) +

1

4!
u4

1F
′′′′(u0),

A5 = u5F
′(u0) + (u2u3 + u1u4)F ′′(u0) +

(
1

2!
u1u

2
2 +

1

2!
u2

1u3

)
F ′′′(u0)

+
1

3!
u3

1u2F
′′′′′(u0) +

1

5!
u5

1F
′′′′′(u0)

...

Other polynomials can be generated in the same manner.

Two important observations can be made here. First, A0 depends only

on u0, A1 depends only on u0 and u1, A2 depends on u0, u1, u2, and so on.

Secondly, substituting eq. (2.44) into eq. (2.42) we obtain

F (u) = A0 + A1 + A2 + A3 + A4 + . . .

= (u1 + u2 + u3)F ′(u0)

+
1

2!
(u2

1 + 2u1u2 + 2u1u3 + u2
2 + . . .)F ′′(u0))

+
1

3!
(u3

1 + 3u2
1u2 + 3u2

1u3 + 6u1u2u3 + . . .)F ′′′(u0)

= F (u0) + (u− u0)F ′(u0) +
1

2!
(u− u0)2F ′′(u0) +

1

3!
(u− u0)3F ′′′(u0) + . . .

=
∞∑
n=0

F (n)(u0)

n!
(u− u0)n. (2.45)

The last expansion confirms that the series of An polynomials is a Taylor

series expansion about a function u0 and not about a point as is usually used.

As mentioned before, it is clear that A0 depends only on u0, A1 depends only

on u0 and u1, A2 depends only on u0, u1 and u2. The same conclusion holds

for other polynomials.

In the following, we will calculate Adomian polynomials for two forms

of nonlinearity that may arise in nonlinear ordinary or partial differential

equations.

Example 2.3.1. F (u) = u2

The Adomian polynomials are

A0 = u2
0

A1 = 2u0u1
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A2 = u2
1 + 2u0u2

A3 = 2u1u2 + 2u0u3

A4 = u2
2 + 2u1u3 + 2u0u4

A5 = 2u2u3 + 2u1u4 + 2u0u5

...

Example 2.3.2. F (u) = sinu

The Adomian polynomials are

A0 = sinu0

A1 = u1 cosu0

A2 = u2 cosu0 −
1

2!
u2

1 sinu0 (2.46)

A3 = u3 cosu0 − u1u2 sinu0 −
1

3!
u3

1 cosu0

...

2.4 Alternative Algorithm for Calculating

Adomian Polynomials

A considerable amount of research work has been invested to develop an

alternative method to the Adomian algorithm for calculating Adomian

polynomials An. The objective was to construct a practical technique that

would calculate Adomian polynomials in a practical way without any need

to the formulae introduced before. However, the methods developed are

identical to those used by Adomian. We believe that a simple and reliable

technique can be established to make the calculations less dependable on

the formula given in eq. (2.43). We will introduce an alternative algorithm

that can be used to calculate Adomian polynomials for nonlinear terms in an

easy way. The newly developed technique depends mainly on algebraic and

trigonometric identities, and on Taylor series expansions as well. Moreover,

we should use the fact that the sum of subscripts of the components of u in

each term of the polynomials An equals n. The alternative algorithm suggests

that we substitute u as a sum of components of un, n ≥ 0 as defined by the

Adomian decomposition method. It is clear that A0 is always determined
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independently of the other polynomials An, n ≥ 1, where A0 is defined by

A0 = F (u0). (2.47)

The alternative algorithm assumes that we first separate A0 = F (u0)

for every nonlinear term F (u). With the separation done, the remaining

components of F (u) can be expanded by using algebraic operations,

trigonometric identities, and Taylor series as well. Next we collect all the

terms of the expansion obtained such that the sum of the subscripts of the

components of u in each term is the same and thus complete the calculation

of the Adomian polynomials. Several examples have been tested, and the

obtained results have shown that the Adomian polynomials can be elegantly

computed without the formula established by Adomian. We explain the

alternative algorithm by means of worked examples.

Case 1. F (u) = u2

We first set

u =
∞∑
n=0

un. (2.48)

Substitute eq. (2.48) into F (u) = u2 gives

F (u) = (u0 + u1 + u2 + u3 + u4 + u5 + . . .)2

= u2
0 + 2u0u1 + 2u0u2 + u2

1 + 2u0u3 + 2u1u2 + . . . (2.49)

= u0︸︷︷︸
A0

+ 2u0u1︸ ︷︷ ︸
A1

+ 2u0u2 + u2
1︸ ︷︷ ︸

A2

+ 2u0u3 + 2u1u2︸ ︷︷ ︸
A3

+ 2u0u4 + 2u1u3 + u2
2︸ ︷︷ ︸

A4

+ 2u0u5 + 2u1u4 + 2u2u3︸ ︷︷ ︸
A5

+ . . .

This is consistent with the results obtained before using Adomian’s

algorithm.

Case 2. F (u) = sinu

Note that it is impossible to perform algebraic operations here. Therefore,

our main aim is to separate A0 = F (u0) from other terms. To achieve this

goal, we first substitute

u =
∞∑
n=0

un (2.50)

into F (u) = sinu to obtain

F (u) = sin(u0 + u1 + u2 + . . .)

= sin(u0 + [u1 + u2 + . . .]). (2.51)
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Recall that sin(A+B) = sinA cosB + cosA sinB.

Thus

sin(u0 + [u1 + u2 + . . .]) = sinu0 cos(u1 + u2 + . . .) + cosu0 sin(u1 + u2 + . . .).

(2.52)

Applying the Taylor expansion for sin(u1 + u2 + . . .) and cos(u1 + u2 + . . .).

F (u) = sinu0

[
1− (u1 + u2 + . . .)2

2!
+
u1 + u2 + . . .)4

4!
− . . .

]
+ cosu0

[
(u1 + u2 + . . .)− (u1 + u2 + . . .)3

3!
+ . . .

]
= sinu0

[
1− 1

2!
(u2

1 + 2u1u2 + . . .) + . . .

]
+ cosu0

[
(u1 + u2 + . . .)− 1

3!
(u3

1 + 3u2
1u2 + 3u2

1u3 + . . .) + . . .

]
= sinu0︸ ︷︷ ︸

A0

+u1 cosu0︸ ︷︷ ︸
A1

+u2 cosu0 −
1

2!
u2

1 sinu0︸ ︷︷ ︸
A2

+ u3 cosu0 − u1u2 sinu0 −
1

3!
u3

1 cosu0︸ ︷︷ ︸
A3

+ . . . (2.53)

When we compare the Adomian polynomials found in eq. (2.53) with the

ones found in eq. (2.46) we see that we have the same Adomian polynomials

computed using two different methods.

2.5 The Noise Terms Phenomenon

In this section, we present a useful tool that will accelerate the convergence of

the ADM. In problems solved by the decomposition method, the appearance

of noise terms sometimes makes it necessary to compute more terms to

observe the self-cancellations and separate solution terms from the terms

whose sum vanishes in the limit. In the study of inhomogeneous equations,

the noise term phenomenon is rather useful because of the role it plays in

the rapid convergence of solutions obtained by the ADM. The noise terms

phenomenon provides a major advantage in that it demonstrates a fast
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convergence of the solution. It is of great importance to note that the noise

terms phenomenon may appear only for inhomogeneous partial differential

equations of any order. The noise terms, if they exist in components u0

and u1, will provide the solution in a closed form with only two successive

iterations.

The noise terms are defined as the identical terms with opposite signs

that arise in the components u0 and u1. By cancelling out the noise terms

between u0 and u1, even though u1 contains further terms, the remaining

non-cancelled of u0 may give the exact solution of the partial differential

equation. Therefore, it is necessary to verify that the non-cancelled terms of

u0 satisfy the partial differential equation under discussion [28, 29]. On the

other hand, if the non-cancelled terms of u0 did not justify the given partial

differential equation, or the noise terms did not appear between u0 and u1,

then it is necessary to determine more components of u to determine the

solution in a series form. It was formally proved [29] that the noise terms

appear for specific cases for inhomogeneous PDE’s, whereas homogeneous

PDE’s do not show noise terms. The conclusion about the self-cancelling

noise terms was based on observations drawn from solving specific models

where no proof was presented. It was formally proved by researchers that a

necessary condition for the appearance of the noise terms is required. The

conclusion made in this regard is that the zeroth component u0 must contain

the exact solution u among other terms. The phenomenon of the useful noise

terms will be explained by the following illustrative examples.

Example 2.5.1. In this example we use the ADM and the noise terms

phenomenon to solve the following inhomogeneous partial differential

equation

ux + uy = (1 + x)ey, u(0, y) = 0, u(x, 0) = x (2.54)

Equation (2.54) can be written in an operator form as follows

Lxu = (1 + x)ey − Lyu (2.55)

Clearly Lx is invertible and therefore the inverse operator L−1
x exists and

given by

L−1
x =

∫ x

0

(.)dx (2.56)
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Applying L−1
x on both sides of eq. (2.55) and using the given condition leads

to

u(x, y) = (x+
x2

2!
)ey − L−1

x (Lyu(x, y)) (2.57)

Using the decomposition series u(x, y) =
∞∑
n=0

un(x, y) into eq. (2.57) yields

∞∑
n=0

u(x, y) = (x+
x2

2!
)ey − L−1

x

(
Ly

(
∞∑
n=0

un(x, y)

))
(2.58)

or equivalently

u0 + u1 + u2 + . . . = (x+
x2

2!
)ey − L−1

x (Ly(u0 + u1 + u2 + . . .)) (2.59)

The components of u0 + u1 + u2 + . . . are determined in a recursive manner

by

u0(x, y) =

(
x+

x2

2!

)
ey

u1(x, y) = −L−1
x (Lyu0) = −

(
x2

2!
+
x3

3!

)
ey, (2.60)

u2(x, y) = −L−1
x (Lyu2) =

(
x4

4!
+
x5

5!

)
ey,

...

Considering the first two components u0 and u1 in eq. (2.60), it is

easily observed that the noise terms
x2

2!
ey and −x

2

2!
ey appear in u0 and u1

respectively. By cancelling the noise term
x2

2!
ey in u0, and by verifying that

the remaining non cancelled terms of u0 satisfy eq. (2.54), we find that the

exact solution is given by

u(x, y) = xey. (2.61)

Notice that the exact solution is verified through substitution in eq. (2.54)

and not only upon the appearance of the noise terms. In addition, the other

noise terms that appear between other components will vanish in the limit.
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2.6 Modified Adomian Decomposition

Method

In this section we present a reliable modification of the ADM presented by

Wazwaz [45, 46] which gives us a variation of the recursive relation in eq.

(2.11), which in turn leads to a faster and easier way of determining the

components of u.

The modelling of physical problems can lead to ordinary or partial differential

equations which are quite generally nonlinear, such as the Navier-Stokes

equations in fluid mechanics, the Lane-Emden equation for stellar structure,

nonlinear Schrödinger equations in quantum theory, soliton equations, etc.

We present a variation of the decomposition method which can also be

applied to such equations to obtain accurate quantitative solutions. A

mathematical advantage of the various adaptations of decomposition is that

linear equations are an easily solved special case and ordinary differential

equations are a special case of the theory for partial differential equations, so

we have a single unified field. This alternative formulation will be referred

to as “ modified Adomian decomposition method.”

A modification of the ADM was proposed by Wazwaz [45] to overcome

computational difficulties arising when obtaining the solution of differential

equations containing radicals while inverting the operator, particularly when

the initial approximation is not a constant. Wazwaz [45] proposed a

modification of the ADM in order to simplify the calculations and accelerate

rapid convergence of the series solution, and validated the method through

several examples. The modified decomposition further accelerates the

convergence of the series solution. Note that, the modified ADM will be

applied wherever it is appropriate, to all partial differential equations of any

order. The modified ADM has been shown to be computationally efficient

in several examples that are important to researchers in applied fields. In

addition, the modified ADM may give the exact solution after just two

iterations only and without using the Adomian polynomials.

To give a clear description of the modified ADM we consider the partial

differential equation in an operator form

Lu+Nu+Ru = g (2.62)

where L is the highest order derivative which is assumed to be easily
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invertible, R is a linear differential operator of less or equal order to L,

Nu represents the nonlinear terms.

Applying the operator L−1 to both sides of eq. (2.62) yields

u = f − L−1Ru− L−1Nu, (2.63)

where f represents the terms arising from the given conditions and from

integrating the source term g.

The standard ADM defines a solution u(x, t) by the series

u(x, t) =
∞∑
n=0

un(x, t). (2.64)

The aim of the ADM is to determine the components un, n ≥ 0 recursively

and elegantly. To achieve this goal, the ADM use the following recursive

relation

u0 = f,

u1 = −L−1Ru0 − L−1A0,
...

un+1 = −L−1Run − L−1An, n ≥ 1. (2.65)

The modified decomposition method introduces a slight variation to the

recursive relation in eq. (2.65) that leads to the determination of u in a faster

and easier way. For specific cases, the function f can be set as the sum of

two partial functions, namely f1 and f2. i.e.

f = f1 + f2. (2.66)

Using eq. (2.66), we introduce a qualitative change in the formation of the

recursive relation in eq. (2.65). To reduce the size of calculations, we identify

the zeroth component u0 by one part of f , namely f1 or f2. The other part

can be added to the component u1 among other terms. In other words, the

modified recursive relation can be identified by

u0 = f1,



Chapter 2. Adomian Decomposition Method 29

u1 = f2 − L−1u0 − L−1A0,
... (2.67)

un+1 = −L−1Run − L−1An, n ≥ 1.

Comparing the recursive scheme in eq. (2.11) of the ADM with the

recursive scheme in eq. (2.67) of the modified ADM leads to the conclusion

that in eq. (2.65) the zeroth component was defined by the function f ,

whereas in eq. (2.67) the zeroth component u0 is defined by f1 of f . The

remaining part f2 is added to the definition of the component u1 in eq. (2.65).

Two important remarks related to the modified method can be made here.

First, by proper selection of the functions f1 and f2, the exact solution u

may be obtained by using very few iterations. The success of this modification

depends only on the choice of f1 and f2, and this can be made through trials.

Second, if f consists of one term only, the standard decomposition method

should be employed. It is worth mentioning that the modified decomposition

method will be used for linear and nonlinear equations of any order.

Example 2.6.1. Consider the ordinary differential equation

u′(x)− u(x) = x cosx− x sinx+ sinx, u(0) = 0. (2.68)

The ADM Applying the inverse operator L−1 to both sides of eq. (2.68) we

obtain

u(x) = x+ x cosx− sinx+ L−1(u(x)). (2.69)

Using the recursive scheme in eq. (2.11) yields

u0 = x sinx+ x cosx− x sinx,

u1 =

∫ x

0

u0(t)dt

= −x cosx+ sinx+ x sinx+ 2 cosx− 2,

u2 =

∫ x

0

u1(t)dt

= −x sinx− 2 cosx− x cosx+ 3 sinx− 2x+ 2,
... (2.70)
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We need more components to obtain an insight through the series of functions

obtained. i.e. the ADM takes long to converge to the desired solution. We

notice that the noise terms x cosx and − sinx appear with opposite signs in

the components u0 and u1.

By cancelling these terms from u0 and justifying that the remaining non-

cancelled term of u0 given by

u0 = x sinx (2.71)

satisfies the equation. This means that the exact solution is given by

u(x) = x sinx. (2.72)

Modified ADM We split f into two parts defined by

f1 = x sinx (2.73)

f2 = x cosx− sinx (2.74)

Applying the recursive scheme in eq. (2.67) we have the following relation

u0 = x sinx

u1 = x cosx− sinx+

∫ x

0

u0(t)dt = 0

... (2.75)

un+1 = 0, n ≥ 0.

Looking at eq. (2.75) we see that the exact solution is given by

u(x) = x sinx. (2.76)

Note that the power of the modified ADM depends mainly on the proper

selection of f1 and f2 which in turn accelerates the convergence of the solution

by employing two iterations only. An important observation that can be

made here is that the success of this method depends mainly on the choice

of f1 and f2. We have been unable to establish any theory for the selection

of f1 and f2. It appears that trials are the only criteria that can be applied.
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2.7 Convergence Analysis

The convergence concept of the decomposition series was thoroughly

investigated by many researchers [18], [34]-[41] to confirm the rapid

convergence of the resulting series. They obtained a number of important

results allowing the easy use of the decomposition method in concrete

situations.

2.7.1 Convergence of the Adomian Decomposition

Method

Consider the general functional equation

y −N(y) = f(t) (2.77)

where N is a nonlinear operator from a Hilbert space H to H. f is a given

function in H and we are seeking a y ∈ H satisfying eq. (2.77). We assume

that eq. (2.77) has a unique solution for f ∈ H.

Theorem 2.7.1. Consider an entire series
∞∑
n=0

anx
n, (2.78)

with a convergence radius R. Suppose that

x =
∞∑
n=0

bnλ
n. (2.79)

If we replace x in eq. (2.78) by the expression in eq. (2.79), we have an

entire series
∞∑
n=0

cnλ
n, (2.80)

where the cn are given by

c0 = a0 + a1b0 + a2b
2
0 + . . .+ anb

n
0 + . . .

c1 = a1b1 + 2a2b1b0 + . . .+ nanb
n−1
0 + . . .

c2 = a1b2 + a2(b2
1 + 2b0b2) + . . .+ . . . (2.81)
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If we have 
|bn| ≤

M

(1 + ε)n
(n ≥ 0), ε > 0

M < R

ε ≥ M

R−M
,

(2.82)

then the series in eq. (2.81) has a radius of convergence (R ≥ 1).

Proof. It is sufficient to prove that

∞∑
n=0

|bn||λ|n < R for |λ| < 1. (2.83)

From eq. (2.79) we have

∞∑
n=0

|bn||λ|n ≤
∞∑
n=0

M

(
|λ|

1 + ε

)n
. (2.84)

Suppose we let |λ| < 1 + ε; then from eq. (2.84) it follows that

∞∑
n=0

|bn||λ|n ≤
M

1− |λ|
1 + ε

(2.85)

1

1− |λ|
1 + ε

< R⇔ |λ| < (1 + ε)

(
1− M

R

)
. (2.86)

From eq. (2.85) we have

(1 + ε)

(
1− M

R

)
≥
(

1 +
M

R−M

)(
1− M

R

)
= 1 (2.87)

so that the result is proved.

Lemma 2.7.1. If ∑
|i|=n

(i)0 =
∑
|i|=n

(1). (2.88)

then ∑
|i|=n

(1) =
(m+ n)!

m!n!
, (2.89)

where i = (i1, i2, . . . , im+1) ∈ INm.
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Lemma 2.7.2. Suppose that N is an analytic function in :]x0−R; x0 +R[:,

and furthermore

‖ Nn(x0) ‖≤ n!Mαn. (2.90)

Then the Adomian polynomials satisfy the following expression

‖ An ‖≤
(2n!)

(n+ 1)!n!
Mn+1αn (n ≥ 0). (2.91)

The above lemmas lead to the following theorem.

Theorem 2.7.2. Suppose that N satisfies the following condition

‖ Nnx0 ‖≤ n!Mαn. (2.92)

Then the sufficient conditions for convergence of the method are

1. 4Mα ≤ 1 if R is infinite.

2. 5Mα ≤ 1 if R is finite.

Proof. Case 1

It is sufficient to prove that

∞∑
n=0

‖ An ‖<∞

∞∑
n=0

‖ An ‖≤
∞∑
n=0

(2n)!

(n+ 1)!n!
Mn+1αn.

Using the Stirling [41] formula we obtain

(2n)!

(n+ 1)!n!
Mn+1αn ∼ (4Mα)nM

√
π(n+ 1)

3
2

(n→∞).

Case 2

‖ An ‖≤
(2n)!

(n+ 1)!n!
Mn+1αn =

(2n)!M

4n(n+ 1)!n!
4nMnαn.

If

Xn =
(2n)!

4n(n+ 1)!n!
, (2.93)
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then we have

Xn+1

Xn

=
2n+ 1

2n+ 4
< 1⇒ Xn < X0 = 1. (2.94)

Consequently,

‖ An ‖≤
(2n)!

(n+ 1)!n!
Mn+1αn = M4nMnαn =

M

(1 + ε)n
, (2.95)

where

ε =
1

4Mα− 1
(4Mα < 1). (2.96)

It follows that

ε ≥ M

R−M
⇔ 5Mα ≤ 1, (2.97)

where R is a convergence radius.

2.7.2 Convergence of the Modified Adomian

Decomposition Method

Case 1

Consider an ordinary differential equation

Suppose that H = <, {
u′(t) = f(u(t)) + g(t)

u(0) = c, t ∈ [a, b]
(2.98)

If we integrate between 0 to t we have

u(t) =

∫ t

0

f(u(s))ds+ c+

∫ t

0

g(s)ds.

Suppose that

g(t) =
∞∑
n=0

g(n)(0)

n!
tn,
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then

u(t) =

∫ t

0

f(u(s))ds+ c+
∞∑
n=0

g(n)(0)

(n+ 1)!
tn+1.

By setting

bn =
g(n)(0)

(n+ 1)!
tn+1,

we obtain

|f (n)(c)| ≤Mαn,

and

|g(n)(0)| ≤ n!M1α
n
1 .

Then the sufficient conditions for convergence of the modified Adomian

decomposition are

α1 < αM |t|
M1 < M

|t|αM ≤ 1

e
,

where

N(u)(t) =

∫ t

0

f(u(s))ds.

Then

‖ N (n)(c) ‖≤Mαn|t|,
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and we have

|bn| ≤ M1α
n
1 |t|n+1

= (M1|t|).(α1|t|)n.

Case 2

We begin with the following preliminary results.

Lemma 2.7.3. Suppose that

|N (n)(a)| ≤ n!Mαn,

then ∣∣(N [n](a))(m)
∣∣ ≤ (n+m− 1)!)!

(n− 1)!m!
Mnαm.

Proof. This can be proved by using the general Leibnitz formulae and lemma

2.7.1.

Theorem 2.7.3. Suppose that

|N(n)(a)| ≤ n!Mαn (2.99)

and

|bn| ≤M1α
n
1 (2.100)

with {
M1 < M

α1 < M,α
(2.101)

then the sufficient conditions for ensuring convergence towards the solution

of eq. (2.78) are

(a) If R is finite 
β ≤ 1

α
1

4Mα
− 1 ≥ αβ

1− αβ
(2.102)
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(b) If R is infinite

4Mα ≤ 1. (2.103)

Proof. See [41] page 537

2.7.3 The Fundamental Convergence Theorem

Theorem 2.7.4 (Convergence of the decomposition schemes). Every

decomposition scheme associated with a strongly convergent decomposition

series the degeneration sum of which is S, gives a convergent series the sum

of which U verifies U = S(U), where f is contracting and f is an analytic

function in Banach space E

Proof. Let
∑
Ck be a strongly convergent decomposition series, let S be its

degenerated sum and let S̄ be its sum (i.e for all convergent series
∑
vi,

S̄(
∑
vi) = S(

∑∞
0 vi)).

Note,
∑
ui is the series given by the decomposition scheme associated

with
∑
Ck.

Suppose that S is a contraction, then there exists u such that u = S(u).

ū =
∑
ūi the series defined by ū0 = u, and ∀i ≥ n, ūi = 0.

Using the following scheme

ū(0) = ū, ū(n+1) = S̄
(
0 + ū(n)

)
we build out a sequence of series (u(n)).

It can also be verified that the first N terms of u(N) are equal to the first

N terms of
∑
ui.

If, for every convergent series w̄ and v̄, we note R̄n(w̄) =
∑∞

n+1Ck(w̄) and

R̄n(v̄) = R̄n(0 + v̄), then we have

‖u−
∞∑
i=0

ui‖ = ‖
∞∑
i=0

ū(N) −
∞∑
i=0

ui‖

= ‖R̄N

(
ū(N)

)
‖ (2.104)

= ‖R̃N R̃N−1 . . . R̃0(ū)‖.
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As
∑
Ck is a strongly convergent decomposition series, R̄n and R̃n

converge towards 0. So
∑N

0 ui converges towards u. The decomposition

scheme leads to a series
∑
ui the sum of which is the solution u of the

equation u = S(u).

Note. We cannot obtain the convergence of the scheme by adding the

equalities defining un

u0 = 0

u1 = C0(u0)

u2 = C0(u0, u1)
...

un+1 = Cn(u0, . . . , un). (2.105)

We do not know if the series of elements of E
∑
Ck(u0, . . . , uk) converges.

We only know that the decomposition scheme
∑
Ck strongly converges, i.e.∑

Ck(u0, . . . , uk) converges if
∑
ui converges and that is what we want to

prove. It is dangerous to use the hypothesis lim ‖Sn − S‖ = 0 with Sn =∑n
0 Ck because Sn − S =

∑∞
n+1Ck converges towards 0 if

∑
Ck converges,

and that is what we want to prove. This hypothesis can be verified only if

the expression of
∑N

0 Ck is known and this case rarely occurs. Finally, the

hypothesis
∑
Ck, is a strongly convergent decomposition series and is more

easily verified without computation.

Note, the terms of a convergent decomposition series always verify the

Cherruault equalities [47] un+1 = Sn(Un)− Sn−1(Un−1). Those relations can

be considered as an extension to the definition of the Bk to the Ck (Sn

replacing S).

Conclusion. The practical problem is to solve equation u = G(u), where

G is a given operator. Using the convergence theorem, it is possible to do this

if we have a strongly convergent decomposition series, the degeneration sum

of which is G. Then the solution U is obtained by applying the decomposition

scheme associated with this series.

Note, usually, all the terms of the series
∑
ui cannot be computed. So the

exact solution
∑∞

i=0 ui cannot be obtained but an approximation as close as

needed can be worked out using only the first terms of the series ϕn =
∑n−1

i=0 ui

[47].
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Mathematical Analysis

3.1 Introduction

Fluid dynamics deals with the motion of liquids and gases, which when

studied macroscopically, appear to be continuous in structure. All the

variables are considered to be continuous functions of the spatial coordinates

and time. Blood flow like any other fluids (such as air, water, oil, etc.) may be

analyzed mathematically by the use of two equations. The first, often referred

to as the continuity equation, requires that the mass of fluid entering a fixed

control volume either leaves that volume or accumulates within it. It is thus

a “mass balance” requirement posed in mathematical form, and is a scalar

equation. The second governing equation, is the momentum equation, and

may be thought of as a “momentum balance”. The Navier-Stokes equations

are the fluid dynamics equivalent of Newton’s second law, force equals mass

times acceleration and they are of crucial importance in fluid dynamics.

The Navier-Stokes equations are vector equations, meaning that there is a

separate equation for each of the coordinate directions (usually three). The

equations were derived independently by G.G. Stokes, in England, and M.

Navier, in France, in the early 1800’s [48]. The equations are extensions of

the Euler equations and include the effects of viscosity on the flow. The

Navier-Stokes equations are a set of nonlinear partial differential equations

(relating first and second derivatives of fluid velocity) that describe the flow

of fluids under quite general conditions, and they appear in the study of

many important phenomena, either alone or coupled with other equations.

They model weather, the movement of air in the atmosphere, ocean currents,

39
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water flow in a pipe, as well as many other fluid flow phenomena.

For instance, they are used in theoretical studies in aeronautical sciences,

in meteorology, in thermo-hydraulics, in the petroleum industry, in plasma

physics, etc. From the point of view of continuum mechanics the Navier-

Stokes equations are essentially the simplest equations describing the motion

of a fluid, and they are derived under a quite simple physical assumption,

namely, the existence of a linear local relation between stresses and

strain rates. The Navier-Stokes equations are nonlinear partial differential

equations in every real situation. The nonlinear term (u.∇)u contained in the

equations comes from kinematical considerations (i.e., it is the result of an

elementary mathematical operation) and does not result from assumptions

about the nature of the physical model; consequently this term cannot be

avoided by changing the physical model.

While the physical model leading to the Navier-Stokes equations is simple,

the situation is quite different from the mathematical point of view. In

particular, because of their nonlinearity, the mathematical study of these

equations is difficult and requires the full power of modern functional

analysis. Despite all the important work carried out on these equations,

our understanding of them remains fundamentally incomplete [49].

The Navier-Stokes equations may be used to analyze the flow of most

common fluids in internal (pipes) or external (wings) flow situations.

Mathematically speaking, these equations are extremely difficult to solve

in their raw form. The Navier-Stokes equations are second order, non-

homogeneous, nonlinear partial differential equations that require at least

two boundary conditions for solution. Most solutions that exist are for highly

simplified flow situations where certain terms in the equations have been

eliminated through some rational process.

3.2 Navier-Stokes Equations in Cylindrical

Polar Coordinates

An ultimate objective in fluid dynamics is to obtain the general solution

for the Navier-Stokes equations describing viscous compressible fluid flow.

The incompressible case occurs where pressure depends only on the velocity

field and vice-versa [1, 4]. A complete solution of the compressible case
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requires determination of the three components of the velocity vector and the

state of the fluid described by the pressure P , density ρ, and temperature

T as a function of space and time. The objective of this research is an

analytical, non-perturbative, non-linearized solution avoiding discretization

and resulting intensive numerical computation. The procedure is the ADM

which has been shown to offer accurate solutions of general mathematical

models involving systems of nonlinear partial differential equations.

Cylindrical polar coordinates (r, θ, z) are such that

x = r cos θ, y = r sin θ, z = z as shown in fig. 3.1

∇2 =
∂

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
(3.1)

and

ū.∇ = ur
∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z
, (3.2)

where ur, uθ, and uz are the physical components of the fluid velocity in

cylindrical polar coordinates (r, θ, z) respectively.

Figure 3.1: Cylindrical polar coordinates.

We consider an incompressible, Newtonian fluid with uniform viscosity and

present the Navier-Stokes equations in vector form and in cylindrical polar

coordinates.

In vector form the equation of motion of an incompressible Newtonian fluid

is given by

ρ
Du

Dt
= −∇p+ µ∇2u + ρḡ, (3.3)
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∇̄.u = 0. (3.4)

Mathematically the condition of incompressibility (which is the equation of

continuity) is simply

∇.u = 0.

In cylindrical coordinates (r, θ, z) the continuity equation for an

incompressible fluid is given by

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0. (3.5)

In cylindrical coordinates, the Navier-Stokes equations of motion for an

incompressible fluid of constant dynamic viscosity ν, and density ρ are

r-component

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− u2

θ

r
+ uz

∂ur
∂z

)
= (3.6)

−∂p
∂r

+ ν

[
∂

∂r

(
1

r

∂

∂r
(rur)

)
+

1

r2

∂2ur
∂θ2

− 2

r2

∂uθ
∂θ

+
∂2ur
∂z2

]
+ Fr ,

θ-component

ρ

(
∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ
− uruθ

r
+ uz

∂uθ
∂z

)
= (3.7)

−1

r

∂p

∂θ
+ ν

[
∂

∂r

(
1

r

∂

∂r
(ruθ)

)
+

1

r2

∂2uθ
∂θ2

+
2

r2

∂ur
∂θ

+
∂2uθ
∂z2

]
+ Fθ ,

z-component

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

)
= (3.8)

∂p

∂z
+ ν

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂θ2

+
∂2uz
∂z2

]
+ Fz ,

where ur, uθ, uz are the velocities in the r, θ, z cylindrical coordinates direction

respectively, ρ is the density of the fluid, ν is the kinematic viscosity, p is the
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pressure, Fr, Fθ, Fz are the body force components in the r, θ, z directions

and the operators
D

Dt
and ∇2 are defined as

D

Dt
=

∂

∂t
+ ur

∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z
,

∇2 =
∂

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
.

Equations (3.6)-(3.8) are often called the momentum equations.

3.3 Mathematical Model

During the last decades extensive research work has been carried out on

fluid dynamics of biological fluids in the presence of a magnetic field. In

general, biological systems are affected by the application of an external

magnetic field on blood flow through the human arterial system. Many

mathematical models have already been investigated by several researchers

[50]-[60] to explore the nature of blood flow under the influence of a magnetic

field.

Blood flow is the study of measuring blood pressure and finding flow

through blood vessels. This area of study is of great importance to our

health. Most researchers conduct studies in blood flow in order to understand

conditions which contribute to high blood pressure and other blood related

diseases. An electromagnetic force acts on the blood and this force opposes

the motion of blood and thus flow of blood is impeded, so that the external

magnetic force can be used in the treatment of some kinds of diseases like

cardiovascular diseases and in the disease with accelerated blood circulation

such as hemorrhages and hypertension. Heat transfer in a biological system

is relevant in many diagnostic and therapeutic applications that involve

changes in temperature. The cardiovascular system is sensitive to changes

in the environment, and flow characteristics of blood are modified to satisfy

the changing demands of an organism. In addition to transporting oxygen,

metabolites and other dissolved substances to and from tissues, blood flow

alters heat transfer within the human body.

The simulation of complex, dynamic processes that appear in nature or

in industrial applications poses challenging mathematical problems, opening
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a long road from the basic problem, to the mathematical modelling, the

numerical simulation, and finally to the interpretation of results. In

order to achieve these goals, interdisciplinarity research between applied

mathematicians and experts in other fields becomes of increasing importance,

since mathematical knowledge alone does not suffice in order to obtain a

solution, but understanding the physics of the process is required as well.

The following steps should be followed in order to construct a

mathematical model that will preserve the actual physical character of our

problem

Figure 3.2: The process of mathematical modelling.
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3.4 Modelling Blood Flow

Adequate modelling of blood flow in the human cardiovascular system

and ability to solve the resulting very complex nonlinear equations would

contribute materially to better understanding of pathogenesis of arterial

disease and the design of artificial hearts. Such a solution would depend on

solving the general Navier-Stokes equations without resorting to linearization

and assumptions of ”smallness.”

Despite this, however, the solutions indeed leave much to be desired. For

example, the ocean dealt with in hydrodynamics studies is a mathematized

ocean, not the real ocean in which pressure, density, and velocity are

fluctuating or stochastic variables. Nonlinearities are linearized and complex

terms are dropped in order to obtain an approximate solution and the

flow is assumed to be laminar since turbulence has not been tractable to

mathematical analysis. Turbulence is a strongly nonlinear and stochastic

phenomenon and mathematics needed is more complicated. The blood

flow problem is modeled by these same equations as well as by boundary

conditions that may be even more complicated. We are dealing with flow of a

complex fluid through an elastic or viscoelastic vessel with branches, organs,

prosthetic devices or natural heart valves, and tubes of varying diameter

with possible motion of the walls under pulsatile flow because of elasticity.

Detailed analysis of arterial flow should consider unsteady viscous flow and

retain all the nonlinear terms. The assumptions of smallness-e.g., in wall

motions-are unrealistic since such motions may have a significant effect on

flow-as in the aorta.

The objective is to determine the velocity, knowing quantities such as

pressure. Then it is possible to estimate stresses on the walls and possible

wall damage or filtration, thrombus growth, or the behavior in an artificial

heart. To be able to describe mathematically the flow of blood through

prosthetic or natural heart valves or the flow about any obstacle in a vessel,

or the analytical description of flow under conditions where it becomes non-

laminar, could help diagnoses and design of prosthetic devices. Finally, we

must be able to handle another hitherto unsolved problem-that of nonlinear

boundary conditions as a result of nonlinear changes of area with pressure

changes [42].

Consider steady, laminar and axially symmetric flow of blood through
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a locally constricted straight artery of infinite length under the influence

of an external transverse magnetic field which is applied uniformly and

perpendicular to the flow of blood. Blood exhibits remarkable non-

Newtonian properties but in this case we assume that blood flowing through

arteries to be a Newtonian, incompressible, homogeneous, and viscous fluid.

The assumption of Newtonian behaviour of blood is acceptable for high shear

rate flow, i.e blood flow in large arteries behaves almost like a Newtonian

fluid. Also the viscosity is assumed to be constant. The flow of blood through

an artery depends upon the pumping action of the heart which gives rise to

a pressure gradient which produces an oscillatory flow in the blood vessel.

The effect of an applied magnetic field is perpendicular to the flow of blood

as shown in fig. 3.3. The appropriate equations governing the flow field in

the tube are the momentum equations and these equations, after introducing

the electro-magnetic force, are

u.∇u = −1

ρ
.∇p + ν∇2u +

1

ρ
(I×B) (3.9)

where u is the velocity vector of the field, p is the pressure, ν =
µ

ρ
is the

kinematic viscosity, ρ is the density of the fluid, I is the current density, B

is the magnetic field and the operator is the same as defined in eq. (3.1)

The current density and the magnetic field are expressed by Maxwell’s

equations and Ohm’s Law, given by

I = σe[E + µe(u×B)] (3.10)

∇.B = 0 (3.11)

∇×B = 0 (3.12)

where E is the electric field, σe is the conductivity of the field and µe is

the magnetic permeability [31].
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Figure 3.3: The geometry of the problem.

The electric fluid produced due to the motion of an electrically conducting

fluid is very small. We assume that due to the effects of the induced

magnetic field there is no external force applied. With these assumptions and

the assumption of axially symmetric flow of fluid, the governing equations

of motion of the fluid are the Navier-Stokes equations in cylindrical polar

coordinates

z-component

∂ūz̄
∂t̄

+ (u.∇̄)ūz̄ = −1

ρ

∂p̄

∂z̄
+ ν∇̄2ūz̄(

ūr̄
∂

∂r̄
+
ūθ̄
r̄

∂

∂θ̄
+ ūz̄

∂

∂z̄

)
ūz̄ = −1

ρ

∂p̄

∂z̄
+ ν

[
∂2

∂r̄2
+

1

r̄

∂

∂r̄
+

1

r̄2

∂2

∂θ̄2
+

∂2

∂z̄2

]
ūz̄ + F̄z̄

ūr̄
∂ūz̄
∂r̄

+ ūz̄
∂ūz̄
∂z̄

= −1

ρ

∂p̄

∂z̄
+ ν

(
∂2ūz̄
∂r̄2

+
1

r̄

∂ūz̄
∂r̄

+
∂2ūz̄
∂z̄2

)
− B2

0

ρ
ūz̄.

Rearranging the terms on the left hand side we have

ūz̄
∂ūz̄
∂z̄

+ ūr̄
∂ūz̄
∂r̄

= −1

ρ

∂p̄

∂z̄
+ ν

(
∂2ūz̄
∂r̄2

+
1

r̄

∂ūz̄
∂r̄

+
∂2ūz̄
∂z̄2

)
− B2

0

ρ
ūz̄. (3.13)
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r-component

∂ūr̄
∂t̄

+ (u.∇̄)ūr̄ −
ū2
θ̄

r̄
= −1

ρ

∂p̄

∂r̄
+ ν

(
∇̄2ūr̄ −

ūr̄
∂r̄
− 2

r̄2

∂ūθ̄
∂θ̄

)
+ F̄r̄(

ūr̄
∂

∂r̄
+
ūθ̄
r̄

∂

∂θ̄
+ ūz̄

∂

∂z̄

)
ūr̄ −

ūθ̄
r̄

= −1

ρ

∂p̄

∂r̄
+ ν

(
∂2

∂r̄2
+

1

r̄

∂

∂r̄
+

1

r̄2

∂

∂r̄
+

∂2

∂z̄2
− 1

r̄2

)
ūr̄

ūz̄
∂ūr̄
∂z̄

+ ūr̄
∂ūr̄
∂r̄

= −1

ρ

∂p̄

∂r̄
+ ν

(
∂2ūr
∂r̄2

+
1

r̄

∂ur
∂r̄
− ūr̄
r̄2

+
∂2ūr
∂z̄2

)
. (3.14)

Since we are considering a steady state and if we let ūz̄ = ū and ūr̄ = v̄, then

eqs. (3.13) and (3.14) become

ū
∂ū

∂z̄
+ v̄

∂ū

∂r̄
= −1

ρ

∂p̄

∂z̄
+ ν

(
∂2ū

∂r̄2
+

1

r̄

∂ū

∂r̄
+
∂2ū

∂z̄2

)
− B2

0

ρ
ū, (3.15)

ū
∂v̄

∂z̄
+ v̄

∂v̄

∂r̄
= −1

ρ

∂p̄

∂r̄
+ ν

(
∂2v̄

∂r̄2
+

1

r̄

∂v̄

∂r̄
− v̄

r̄2
+
∂2v̄

∂z̄2

)
, (3.16)

and the continuity equation is

∂

∂z̄
(r̄ū) +

∂

∂r̄
(r̄v̄) = 0, (3.17)

where ū and v̄ are the components of the fluid velocity in the axial and radial

directions respectively, B0 = µeH0 is the electromagnetic induction and H0

is the transverse component of the magnetic field.

The geometry of the constriction is described by

R̄(z̄)

R0

= 1−
∑̄
R0

f̄(z̄) (3.18)

where R̄0 is the radius of the normal tube, R̄(z̄) is the radius of the tube in

the stenotic region and
∑̄

is the maximum height stenosis [21].

The boundary conditions are

ū = v̄ = 0 at r̄ = R̄(z̄), (3.19)

∂ū

∂r̄
= r̄ at r̄ = 0, (3.20)∫ R̄(z̄)

0

r̄ūdr̄ =
Q̄

2π
, (3.21)
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where Q̄ is the constant volumetric flux across any cross-section of the tube.

The equations that govern flow, under the assumed conditions, are the

Navier-Stokes equations with continuity equation [21]. For convenience we

write the system of equations from eq. (3.15) to eq. (3.21) in non-dimensional

form using the following transformation variables

u =
ū

U0

, v =
v̄

U0

(3.22)

r =
r̄

R0

, z =
z̄

R0

, p =
p̄

ρU2
0

where (u, v) are the dimensionless velocity components, U0 is the

characteristic velocity, and p is the dimensionless fluid pressure.

Applying the above transformations to the dimensionless momentum

equations in eqs. (3.15) and (3.16) yields

u
∂u

∂z
+ v

∂u

∂r
= −∂p

∂z
+

1

Re

(
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2

)
−M2u (3.23)

in the axial direction and

u
∂v

∂z
+ v

∂v

∂r
= −∂p

∂z
+

1

Re

(
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+
∂2v

∂z2

)
(3.24)

in the radial direction where Re and M are the Reynolds number and the

Hartmann number respectively, defined by

Re =
U0R0

ν
(3.25)

M = B0R0

√
σe
µ
. (3.26)

Similarly, applying the transformation variables from eqs. (3.22) on the

dimensionless continuity equation from eq. (3.17), the continuity equation

can thus be written as

∂

∂z
(ru) +

∂

∂r
(rv) = 0, (3.27)

and the geometry of constrictions from eq. (3.18) takes the form

η(z) = 1−
∑

f(z), (3.28)
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where

η(z) =
R̄z̄

R0

f(z) =
f̄(z̄)

R0

(3.29)∑
=

∑̄
R0

.

Applying transformations from eq. (3.22) to the dimensionless boundary

conditions in eqs. (3.19) to (3.21) we have

u = v = 0 at r = η (3.30)

∂u

∂r
= 0 at r = 0 (3.31)∫ η(z)

0

rudr = −1

2
. (3.32)

Let us now introduce the stream function ψ defined by

u = −1

r

∂ψ

∂r
, (3.33)

v =
1

r

∂ψ

∂z
. (3.34)

The continuity equation in eq. (3.27) is satisfied identically and by using eqs.

(3.33) and (3.34) we eliminate p between eqs. (3.23) and (3.24). Hence we

have the following governing equation

Re

[
1

r
J − 2

r2
∇2ψ

∂ψ

∂z

]
= ∇4ψ −M2r

∂

∂r

(
1

r

∂ψ

∂r

)
, (3.35)

where J is the Jacobian defined as

J =
∂(∇2ψ, ψ)

∂(r, z)

=

∣∣∣∣∣∣∣
∂(∇2ψ)

∂r

∂ψ

∂r
∂(∇2ψ)

∂z

∂ψ

∂z

∣∣∣∣∣∣∣
=

∂(∇2ψ)

∂r
.
∂ψ

∂z
− ∂(∇2ψ)

∂z
.
∂ψ

∂r
; (3.36)
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and the operator ∇2 is given by

∇2 =
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
. (3.37)

The boundary conditions relating to eq. (3.35) in terms of ψ are as follows

− 1

r

∂ψ

∂r
= 0, ψ = −1

2
at r = η (3.38)

− ∂

∂r

(
1

r

∂ψ

∂r

)
= ψ = 0 at r = 0. (3.39)

Equation (3.35) governing the flow of blood through arteries in the presence

of a magnetic field is a nonlinear partial differential equation subject to

the boundary conditions eqs. (3.38) and (3.39) and the exact solution of

this equation is not always available. This equation can be solved using

traditional numerical techniques which will result in very large numerical

computations. We will use the ADM to solve this nonlinear partial

differential equation in the next chapter.



Chapter 4

Mathematical Evaluation

4.1 Introduction

As ambitious as it may appear, it is fortuitous that the ADM appears to

be capable of solutions in a fairly wide class of problems. The superficial

resemblance of this method to some other methods can be misleading; the

proof is in the fact that it solves problems not always solvable by other

methods, or only solvable with much more difficulty or computation. The

method is an “approximation” method, not a “closed form” solution. The

usual significance of these terms is that in the one case, we have an exact

answer and in the other an approximate one. Clearly, however, a method

of solution which changes the problem to a different, easier mathematical

problem and then solves it exactly is not to be preferred to one in which the

actual nonlinear and/or stochastic model is treated with an “approximate”

method which provides accurate, rapidly convergent, and computable series

of terms.

52
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4.2 The Adomian Decomposition Method

Applied to the Equation Governing

Blood Flow in the Presence of a Magnetic

Field

From eq. (3.35) the equation governing flow of blood through arteries in the

presence of a magnetic field as a nonlinear partial differential equation given

by the following expression

Re

[
1

r
J − 2

r2
∇2ψ

∂ψ

∂z

]
= ∇4ψ −M2r

∂

∂r

(
1

r

∂ψ

∂r

)
, (4.1)

where Re and M are the Reynolds number and the Hartmann number

respectively defined by

Re =
U0R0

ν
, (4.2)

M = B0R0

√
σe
µ

; (4.3)

J is the Jacobian defined as

J =
∂(∇2ψ, ψ)

∂(r, z)

=

∣∣∣∣∣∣∣
∂(∇2ψ)

∂r

∂ψ

∂r
∂(∇2ψ)

∂z

∂ψ

∂z

∣∣∣∣∣∣∣
=

∂(∇2ψ)

∂r
· ∂ψ
∂z
− ∂(∇2ψ)

∂z
· ∂ψ
∂r

; (4.4)

and the operator ∇2 is given by

∇2 =
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
. (4.5)

The boundary conditions are

− 1

r

∂ψ

∂r
= 0, ψ = −1

2
at r = η, (4.6)
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− ∂

∂r

(
1

r

∂ψ

∂r

)
= ψ = 0 at r = 0. (4.7)

We now recall basic principles of the ADM for solving differential equations

subject to boundary conditions.

In order for us to apply the ADM we need an invertible operator L to

decompose eq. (4.1). Consider the operator ∇2 in eq. (4.5)

∇2 =
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
. (4.8)

Let L =
∂2

∂r2
− 1

r

∂

∂r
be an operator

i.e

∇2 = L+
∂2

∂z2

∇4 = L2 + 2L
∂2

∂z2
+

∂4

∂z4

∇4ψ = L2ψ + 2L
∂2ψ

∂z2
+
∂4ψ

∂z4
. (4.9)

Substituting eq. (4.9) and the operator L into eq. (4.1), we obtain

L2ψ = ReNψ −
∂4ψ

∂z4
− 2

∂2

∂z2
(Lψ) +M2Lψ (4.10)

where

Nψ =
1

r
J − 2

r2
∇2ψ

∂ψ

∂z
(4.11)

represents the nonlinear term. Also note that

r
∂

∂r

(
1

r

∂ψ

∂r

)
= Lψ. (4.12)

(see Appendix B).

Operating on both sides of eq. (4.10) with the inverse operator L−2, we
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obtain

ψ = ψ0 + L−2

[
ReNψ −

∂4ψ

∂z4
− 2

∂2

∂z2
(Lψ) +M2Lψ

]
. (4.13)

In this case ψ0 is a solution to the homogeneous equation

L2ψ0 = 0 (4.14)

and it is given by

ψ0 =
1

4
r4B(z) +

[
1

2
log r − 1

4

]
r2C(z) +

1

2
r2E(z) + F (z). (4.15)

The functions B,C,E and F in eq. (4.15) are to be determined using the

given boundary conditions in eqs. (4.6) and (4.7). The ADM decomposes

the solution ψ and the nonlinear term Nψ into the following parametrized

forms

ψ =
∞∑
n=0

λnψn (4.16)

Nψ =
∞∑
n=0

λnAn (4.17)

where An are the Adomian polynomials and the parameter λ used in eqs.

(4.16) and (4.17) is not a perturbation parameter; it is only used for grouping

the terms of different orders. Then the parameterized form of eq. (4.13) is

given by

ψ = ψ0 + λnL−2

[
ReNψ −

∂4ψ

∂z4
− 2

∂2

∂z2
(Lψ) +M2Lψ

]
. (4.18)

Substituting eqs. (4.16) and (4.17) into eq. (4.13) we obtain

∞∑
n=0

λnψn = ψ0 + λnL−2

[
Re

∞∑
n=0

λnAn −
∂4ψ

∂z4
− 2

∂2

∂z2
(Lψ) +M2Lψ

]
.

(4.19)
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Comparing the like-power terms of λ on both sides of eq. (4.19) we obtain

the following expression

ψn+1 = L−2

[
ReAn −

∂4ψn
∂z4

− 2
∂2(Lψn)

∂z2
+M2Lψn

]
(4.20)

where n = 0, 1, 2, . . . and An are the Adomian polynomials. Once the

component ψ0 is determined, the other components of ψ such as, ψ1, ψ2,

ψ3 can be easily determined from eq. (4.20). We have applied the regular

ADM on the above expression.

If we further take the parameterized decomposition of ψ0 given by

ψ0 =
∞∑
n=0

λnψ0,n (4.21)

i.e we have applied the Adomian double decomposition.

By substituting eqs. (4.16), (4.17), and (4.21) into eq. (4.13) we obtain

∞∑
n=0

λnψn =
∞∑
n=0

λnψ0,n+λnL−2

[
Re

∞∑
n=0

λnAn −
∂4ψ

∂z4
− 2

∂2

∂z2
(Lψ) +M2Lψ

]
.

(4.22)

This is the double decomposition of ψ given by

ψn+1 = ψ0,n+1 + L−2

[
ReAn −

∂4ψn
∂z4

− 2
∂2(Lψn)

∂z2
+M2Lψn

]
. (4.23)

Since the expression ψ0 contains the constants B,C,E, and F then the

parameterized decomposition forms of all these constants are as follows

B =
∞∑
n=0

λnBn,

C =
∞∑
n=0

λnCn,

E =
∞∑
n=0

λnEn, (4.24)

F =
∞∑
n=0

λnFn.
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Substitute eqs. (4.21) and (4.24) into eq. (4.15) to obtain the following

expression

∞∑
n=0

λnψ0,n =
1

4
r4

∞∑
n=0

λnBn+

[
1

2
log r − 1

4

]
r2

∞∑
n=0

λnCn+
1

2
r2

∞∑
n=0

λnEn+
∞∑
n=0

λnFn.

(4.25)

Comparing the like-power terms of λ on both sides of eq. (4.25) we obtain

ψ0,n+1 =
1

4
r4Bn+1(z) +

[
1

2
log r − 1

4

]
r2Cn+1(z) +

1

2
r2En+1(z) + Fn+1(z),

(4.26)

Using the relations (4.23) and (4.26) together we will obtain the components

of ψ. The constants involved in each ψn will be determined by their respective

boundary conditions.

The approximations of ψ from eq. (4.23) are given as follows.

When n = 0, we have

ψ1 = ψ0,1 + L−2

[
ReA0 −

∂4ψ0

∂z4
− 2

∂2(Lψ0)

∂z2
+M2Lψ0

]
, (4.27)

where

ψ0,1 =
1

4
r4B1(z) +

[
1

2
log r − 1

4

]
r2C1(z) +

1

2
r2E1(z) + F1(z). (4.28)

Likewise, when n = 1, we have

ψ2 = ψ0,2 + L−2

[
ReA1 −

∂4ψ1

∂z4
− 2

∂2(Lψ1)

∂z2
+M2Lψ1

]
, (4.29)

where

ψ0,2 =
1

4
r4B2(z) +

[
1

2
log r − 1

4

]
r2C2(z) +

1

2
r2E2(z) + F2(z), (4.30)

and so on.

The polynomials A0, A1, . . . , An are the Adomian polynomials. They are
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defined in such a way that A0 ≡ A0(ψ0), A1 ≡ A1(ψ0, ψ1),

A2 ≡ A2(ψ0, ψ1, ψ2), . . ., An ≡ An(ψ0, ψ1, . . . , ψn).

In order to determine these polynomials, we substitute eqs. (4.16) and (4.17)

into eq. (4.11)

∞∑
n=0

λnAn =
1

r
·∂(∇2

∑∞
n=0 λ

nψn,
∑∞

n=0 λ
nψn)

∂(r, z)
− 2

r2
· ∂
∂z

(
∞∑
n=0

λnψn

)
·∇2

∞∑
n=0

λnψn.

(4.31)

Comparing the terms of the like powers of λ on both sides of eq. (4.31) yields

the following expression

An =
1

r
· ∂(∇2ψn, ψn)

∂(r, z)
− 2

r2
· ∂ψn
∂z
· ∇2ψn. (4.32)

Equation (4.32) gives the following set of Adomian polynomials

A0 =
1

r
· ∂(∇2ψ0, ψ0)

∂(r, z)
− 2

r2
· ∂ψ0

∂z
· ∇2ψ0

A1 =
1

r

[
∂(∇2ψ1, ψ0)

∂(r, z)
+
∂(∇2ψ0, ψ1)

∂(r, z)

]
− 2

r2

[
∂ψ0

∂z
· ∇2ψ1 +

∂ψ1

∂z
· ∇2ψ0

]
(4.33)

A2 =
1

r

[
∂(∇2ψ2, ψ0)

∂(r, x)
+
∂(∇2ψ1, ψ1)

∂(r, z)
+
∂(∇2ψ0, ψ2)

∂(r, z)

]
− 2

r2

[
∂ψ0

∂z
.∇2ψ2 +

∂ψ1

∂z
.∇2ψ1 +

∂ψ2

∂z
.∇2ψ0

]
...

Now we need to substitute eq. (4.16) into the boundary conditions (4.6) and

(4.7). This gives the boundary conditions for the respective components of

ψ0, ψ1, ψ2, etc. as follows

−1

r
· ∂ψ0

∂r
= 0, ψ0 = −1

2
at r = η,

− ∂

∂r

(
1

r
· ∂ψ0

∂r

)
= ψ0 = 0 at r = 0,

 (4.34)
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and

−1

r
· ∂ψn
∂r

= ψn = 0 at r = η,

− ∂

∂r

(
1

r
· ∂ψn
∂r

)
= ψn = 0 at r = 0,

 (4.35)

for any positive integer.

4.3 Two-Term Approximation of ψ

Before we proceed to the solutions we need to determine the inverse operator

L−1 and to do that we consider the following equation for ψ

Lψ = F, (4.36)

which on solving, gives

ψ = [L−1
1 r(L−1

1 r−1)]F, (4.37)

remembering that the boundary condition terms vanish and L−1
1 is a one-fold

indefinite integral. It is obvious from the relation (4.37) that the inverse L−1
1

is identified as

L−1 = [L−1
1 r(L−1

1 r−1)]. (4.38)

Hence we obtain

L−2 = L−1
1 [rL−1

1 {r−1L−1
1 (rL−1

1 r−1)}]. (4.39)

Using the boundary conditions in eqs. (4.34) into eq. (4.15) we obtain the

expression for ψ0 (see Appendix C) as

ψ0 =
1

2η4
(r4 − 2η2r2). (4.40)

To obtain the expression for ψ1 we use eqs. (4.27) and (4.28) and this
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expression involves the operator L−2 given by eq. (4.39). Performing the

operation of the inverse operator (see eq. (D.22)) , we obtain

ψ1 =
α(z)r10

5040
+
β(z)r8

1680
+
γ(z)r6

360

+
1

4
r4B1 +

[∫
r log rdr

]
C1 +

1

2
r2E1 + F1, (4.41)

where B1, C1, D1 and F1 are integration constants to be obtained from the

boundary conditions (F.14).

We can rewrite eq. (4.41) as

ψ1 = αr10 + βr8 + γr6

+
1

4
r4B1 +

[∫
r log rdr

]
C1 +

1

2
r2E1 + F1 (4.42)

where

α =
Re

315η11

(
20η3

1 − 13ηη1η2 + η2η3

)
, (4.43)

β =
Re

105η9

(
8η1 − 16η3

1 + 11ηη1η2 − η2η3

)
+

1

420η8

(
180ηη2

1η2 − 210η4
1 − 15η2η2

2 − 20η2η1η3 + η3η4

)
, (4.44)

γ =
1

180η6

(
60η4

1 − 160η2
1 + 32ηη2 − 72ηη2

1η2 + 9η2η2
2 + 12η2η1η3 − η3η4

)
+

Re

90η7

(
12η3

1 − 9ηη1η2 + η2η3 − 16η1

)
+

M2

45η4
. (4.45)

The resulting expression of ψ1 as in eq. (E.9) is

ψ1 = αr10 + βr8 + γr6 − η2(4αη4 + 3βη2 + 2γ)r4

+ η4(3αη4 + 2βη2 + γ)r2, (4.46)

where α, β, γ are defined in eqs. (4.43), (4.44) and (4.45) respectively,

η1, η2, η3 and η4 are the derivatives of η with respect to z indicating the

orders according to their subscripts.

The two-term approximation of the solution of ψ from eq. (4.16), is

ψ = ψ0 + ψ1

=
1

2η4
(r4 − 2η2r2) + αr10 + βr8 + γr6 − η2(4αη4 + 3βη2 + 2γ)r4

+ η4(3αη4 + 2βη2 + γ)r2, (4.47)
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where α, β, γ are defined in eqs. (4.43), (4.44) and (4.45) respectively and

remembering that the convergence of the solution ψ is λ = 1.

The axial velocity component is given by the expression

u = −
[

1

r
· ∂ψ0

∂r
+

1

r
· ∂ψ1

∂r

]
,

=
2

η2
− 4r2

η4
− 2(5αr8 + 4βr6 + 3γr4 − 8r2αη6

− 6r2βη4 − 4r2γη23αη8 + 2βη6 + γη4) (4.48)

The wall shear stress is defined by

τ = −1

4

(
∂u

∂r

)
r=η

(1 + η2
1), (4.49)

=
1

η3

[
2 + 2η6

(
6αη4 + 3βη2 + γ

)]
(1 + η2

1). (4.50)

The wall shear stress in eq. (4.50) is a result of substituting u from eq. (4.48)

into eq. (4.49).

To assess the validity of the assumptions made in section 3.4 a series of

experiments was performed. The following stenosis geometry(see fig. 4.1)

was selected and was described by the expression

f(z) =
1

2

(
1 + cos

πz

L0

)
, −L0 ≤ z ≤ L0 (4.51)

The geometry of constriction from eq. (3.28) takes the following form

η(z) = 1− 1

2
Σ

(
1 + cos

πz

L0

)
, −L0 ≤ z ≤ L0 (4.52)

The wall shear stress of the two-term approximation solution ψ in eq.

(4.50) is a result of substituting the axial velocity u from eq. (4.48) into eq.

(4.49).

Figures. 4.2 and 4.3 show variations of the wall shear stress (4.58) along

the length of the constricted artery for different values of the Reynolds

number and the Hartmann number for a two-term solution of ψ.
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Figure 4.1: Schematic diagram of the model geometry.

Figure 4.2: Distribution of wall shear stress for Σ = 2
3

and M = 10.
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Figure 4.3: Distribution of wall shear stress for Re = 25 and Σ = 2
3
.

Figure 4.4: Distribution of wall shear stress for Σ = 0.85 and M = 10.
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Figure 4.5: Distribution of wall shear stress for Re = 25 and Σ = 0.85.
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Figures 4.2, 4.3, 4.4, and 4.5 show that the maximum value of the solution

occurs just ahead of the throat of stenosis for different values of the Reynolds

number Re, Hartmann number M and Σ for a two-term approximation to

the solution. In figs. 4.4 and 4.5, the negative distribution of the solution is

observed over some length in the diverging section as we increase the value of

Σ. This negative behavior of the wall shear stress indicates separation which

involves circulation with back flow near the wall. As a result of this back

flow, a low shear exists at the wall and a high velocity core surrounded by

the separated region is formed. Figure 4.5 shows the variation of wall shear

stress with x for different values of Hartmann number M . It is seen that

the negative behavior of the solution observed in the diverging section of the

tube decreases with increasing Hartmann number. As a result the circulation

diminishes indicating the favorable physiological condition of blood flow.

4.4 Three-Term Approximation of ψ

In this section we seek the expression of ψ2 such that the solution of ψ is

given by

ψ = ψ0 + ψ1 + ψ2 (4.53)

that is, to obtain the expression of ψ2 we use eqs. (4.29), and (4.30). To do

this we also require the operator L−2 from eq.(4.39). Performing the inverse

operator(see eq. (F.11)) from eq. (4.39), we obtain

ψ2 = ζr14 + ϑr12 + ξr10 + ςr8 + χr6 − r4η2
(
6ζη8 + 5ϑη6 + 4ξη4 + 3ςη2 + 2χ

)
+ r2

(
5ζη12 + 4ϑη10 + 3ξη8 + 2ςη6 + χη4

)
(4.54)

where ζ, ϑ, ξ, ς, χ are defined in eq. (F.13). Hence, considering the three-term

solution of ψ from eq. (4.16)is given by

ψ = ψ0 + ψ1 + ψ2

=
1

2η4
(r4 − 2η2r2) + αr10 + βr8 + γr6 − η2r4(4αη4 + 3βη2 + 2γ)

+ η4r2(3αη4 + 2βη2 + γ) + ζr14 + ϑr12 + ξr10 + ςr8 + χr6 (4.55)

− r4η2
(
6ζη8 + 5ϑη6 + 4ξη4 + 3ςη2 + 2χ

)
+ r2

(
5ζη12 + 4ϑη10 + 3ξη8 + 2ςη6 + χη4

)
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where α, β, γ are defined in eqs. (4.43), (4.44) and (4.45) respectively;

ζ, ϑ, ξ, ς, χ are defined in eq. (F.13) and remembering that the convergence

of the solution ψ is λ = 1.

The axial velocity component of the three-term approximation of the

solution ψ is given by

u = −
[

1

r
· ∂ψ0

∂r
+

1

r
· ∂ψ1

∂r
+

1

r
· ∂ψ2

∂r

]
,

=
2

η2
− 4r2

η4
− 2(5αr8 + 4βr6 + 3γr4)− 2(3αη8 + 2βη6 + γη4)

− 14ζr12 − 12ϑr10 − 10ξr8 + 8ςr6 − 6χr4 + 4r2η2
(
6ζη8 + 5ϑη6 + 4ξη4 + 3ςη2 + 2χ

)
− 2

(
5ζη12 + 4ϑη10 + 3ξη8 + 2ςη6 + χη4

)
. (4.56)

The wall shear stress of the three-term approximation of the solution ψ is

defined by

τ = −1

4

(
∂u

∂r

)
r=η

(1 + η2
1) (4.57)

=
1

η3

[
2 + 2η3(6αη7 + 3βη5 + γη3 + 15ζη11 + 10ϑη9 + 6ξη7 + 3ςη5 + χη3)

]
(1 + η2

1).

(4.58)

The wall shear stress of the three-term approximation solution ψ in eq. (4.58)

is a result of substituting the axial velocity u from eq. (4.56) into eq. (4.57).

Figures 4.6 and 4.7 show the variations of the wall shear stress eq. (4.58)

along the length of the constricted artery for different values of Reynolds

number Re and the Hartmann number M for a three-term solution of ψ.
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Figure 4.6: Distribution of wall shear stress for Σ = 2
3

and M = 10.

Figure 4.7: Distribution of wall shear stress for Re = 25 and Σ = 2
3
.
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Figure 4.8: Distribution of wall shear stress for Σ = 0.85 and M = 10.

Figure 4.9: Distribution of wall shear stress for Re = 25 and Σ = 0.85.
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Figures 4.6, 4.7, 4.8, and 4.9 show that the maximum value of the solution

occurs just ahead of the throat of stenosis for different values of the Reynolds

number Re, Hartmann number M and Σ for a three-term approximation

to the solution. With the increase of the Reynolds number the negative

behavior of the solution increases showing the enlargement of circulation

which is physiologically unfavorable. Figure 4.8 shows the variation of wall

shear stress with x for different values of the Reynolds number Re. It is seen

that the negative behavior of the solution observed in the diverging section

of the tube decreases with increasing Reynolds number. As we increase the

values of Hartmann number M in fig. 4.9 the negative behavior is constant

in the diverging section of the tube. As a result the circulation diminishes

indicating the favorable physiological condition of blood flow.

The application of an external magnetic field B0 to blood flow generates

electromagnetic inductions in the fluid that reduce the flow rate and flatten

the velocity profile while stretching it more prominently in the same direction

as the applied field. These effects heighten when B0 increases; the induced

magnetic fields however remain very weak. Approximating the results by

neglecting these induced fields, while assuming velocity profile symmetry,

overestimates flow reductions. Even though the induced magnetic fields are

insignificant, solving the problem while neglecting them is inexact. Therefore,

it can be concluded that the effect of an external transverse magnetic field

applied uniformly favors the physiological condition of blood flow.



Chapter 5

Effect of a Magnetic Field on

Blood Flow

5.1 Introduction

Many cardiovascular diseases, particularly atherosclerosis (medically called

stenosis), found to be responsible for deaths in developed and developing

countries, are closely related to the nature of blood movement and the

dynamic behaviour of blood vessels. From medical surveys, it is well known

that more than 80% of the total deaths are due to the diseases of blood

vessel walls. Among them stenosis is a dangerous disease that is caused due

to deposition of cholesterol and some other substances on the endothelium

and by the proliferation of connective tissues in the arterial wall. The reason

for formation of stenosis in the lumen of an artery is not known but its

effect over the flow characteristics has been studied by many researchers [50]-

[66]. Stenosis may develop at more than one location of the cardiovascular

system. Stenosis means the abnormal and unnatural growth in the lumen

of an artery that develops at various locations in the cardiovascular system

under unfavorable conditions.

The study of blood rheology and blood flow has several objectives such

as not only understanding health and disease but also in essence, what kind

of fluid it is. Blood is assumed to be Newtonian in nature in large blood

vessels such as the aorta and in medium and small vessels blood is a non-

Newtonian fluid. Blood is a suspension of plasma and the plasma which is a

solution of proteins, electrolytes and other substances, is considered to be a

70
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Newtonian fluid. From a biochemical point of view, blood is considered an

intelligent fluid, probably the most one in nature capable of adapting itself to

a great extent in order to provide nutrients to the organs. Blood is regarded

as a magnetic fluid, in which red blood cells are magnetic in nature. Liquid

carriers in the blood contain the magnetic suspension of the particles [66].

Human body experiences magnetic fields of moderate to high intensity

in many situations of day to day life. In recent times, many medical

diagnostics especially those used in diagnosing cardiovascular disease make

use of magnetic fields. In this section we present the effect of an externally

applied magnetic field over the flow characteristics of blood in a single

stenosed artery.

5.2 Mathematical Model

Consider steady, laminar and axially symmetric flow of blood through an

artery with a mild stenosis under the influence of an externally applied

homogeneous magnetic field. The blood flowing in the tube is assumed

to be a suspension of red blood cells in plasma. We also assume that the

density of the fluid is constant but the viscosity varies radially and that the

electromagnetic force produced is very small. Under this assumption of small

electrical conductivity, the one dimensional equation of motion is given by

∂p

∂x
+

1

r

∂(rτrx)

∂r
+ β2

0σeu = 0, (5.1)

where p is the fluid pressure, u is the axial velocity component, β0 = µeH0

is the electromagnetic induction, µe is the magnetic permeability, H0 is the

intensity of the magnetic field, and σe is the conductivity of the fluid.

The shear stress τrx is given by

τrx = −µ(r)
du

dr
(5.2)

where µ(r) is the coefficient of viscosity of blood proposed by Einstein defined

as

µ(r) = µ0[1 + βh(r)]. (5.3)

where µ0 is the coefficient of viscosity of plasma, β = 2.5 is a constant and
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h(r) is the hematocrit described by an imperial formula

h(r) = hm

[
1−

(
r

R0

)n]
. (5.4)

R0 is the radius of the normal tube, hm is the maximum hematocrit at the

center of the tube and n(≥ 2) is a parameter determining the exact shape

of the profile. The relation (5.4) is valid only for a very dilute suspension of

red cells which are supposed to be spherical in shape.

The stenosis develops symmetrically about the tube axis but it is non-

symmetric with respect to radial coordinates and its geometry is described

by
R(x)

R0

= 1− A[ls−1
0 (x− d)− (x− d)s], d ≤ x ≤ d+ l0, (5.5)

where R(x) is the radius of the stenosed artery, l0 is the length of stenosis, d

indicates its location, and A is given by

A =
ε

R0ls0
, (5.6)

where s(≥ 2) is a parameter determining the shape of stenosis and ε denotes

the maximum height of stenosis at

x = d+
l0

S
1

(s−1)

(5.7)

such that ε
R0
< 1 see fig. 5.1

The boundary conditions are

u = 0 at r = R(x) (5.8)

du

dr
= 0 at r = 0. (5.9)

Consider eq. (5.4). We introduce the following transformations

y =
r

R0

r = yR0 (5.10)

dr = R0dy
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Figure 5.1: Geometry of Constrictions.

then substituting eqs. (5.10), (5.4), (5.3), and (5.2) into eq. (5.1), we

obtain

dp

dx
+

1

r

d

dr
(rτrx) + β2

0σeu = 0

dp

dx
+

1

yR0

d

R0dy

[
−yR0µ0

(
1 + βhm (1− yn)

du

R0dy

)]
+ β2

0σeu = 0

−R2
0

µ0

dp

dx
+

1

y

d

dy

[
−y
(

1 + βhm (1− yn)
du

dy

)]
− β2

0R
2
0σe

µ0

u = 0

1

y

d

dy

[
y(a− kyn)

du

dy

]
−M2u =

R2
0

µ0

· dp
dx

(5.11)

where

k = βhm. (5.12)

a = 1 + k

and M is the Hartmann number defined as

M = B0R0

√
σe
µ0

. (5.13)
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The corresponding boundary conditions in eqs. (5.8) and (5.9) take the form

u = 0 at y =
R(x)

R0

(5.14)

du

dy
= 0 at y = 0. (5.15)

5.3 Effect of a Magnetic Field on Blood Flow

using the Frobenius Method

In mathematics, the method of Frobenius, named after Ferdinand Georg

Frobenius, is a way of determining an infinite series solution for a second-

order ordinary differential equation in the vicinity of a regular singular point.

Equation (5.11) subject to boundary conditions in eqs. (5.14) and (5.15) can

be solved using the Frobenius method. It is required that u is bounded at

y = 0 and that the only admissible series solution of the governing equation

eq. (5.11) is

u = D
∞∑
m=0

Cmy
m +

R2
0

4aµ0

· dp
dx
·
∞∑
m=0

C̄my
m+2 (5.16)

where D is an arbitrary constant to be determined by the boundary

conditions in eqs. (5.14) and (5.15). Cm and C̄m are given by the following

expressions

Cm+1 =
k(m+ 1)(m− n+ 1)Cm−n+1 +M2Cm−1

a(m+ 1)2
(5.17)

and

C̄m+1 =
k(m+ 3)(m− n+ 3)C̄m−n+1 +M2C̄m−1

a(m+ 3)2
(5.18)

remembering that C0 and C̄0 are to be taken equal to unity and

C−m = C̄−m = 0. (5.19)

Applying the boundary condition in eq. (5.14) into eq. (5.16) we obtain

D = −

R2
0

4aµ0

[
∞∑
m=0

C̄m

(
R

R0

)m+2
]

∞∑
m=0

Cm

(
R

R0

)m (5.20)
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and the resulting expression of u is given by

u = − R2
0

4aµ0

· dp
dx

[
∞∑
m=0

C̄m

(
R

R0

)m+2

·
∞∑
m=0

C̄my
m

−
∞∑
m=0

Cm

(
R

R0

)m
·
∞∑
m=0

C̄my
m+2

]
/
∞∑
m=0

Cm

(
R

R0

)m
. (5.21)

If u0 is the average velocity given by

u0 = − R
2
0

8µ0

(
dp

dx

)
0

(5.22)

where

(
dp

dx

)
0

is the pressure gradient of blood flow in the normal tube in

the absence of a magnetic field and hematocrit, then the non-dimensional

form of u with respect to u0 is given by the following expression

u

u0

=
2

a
·
(
dp
dx

)(
dp
dx

)
0

[
∞∑
m=0

C̄m

(
R

R0

)m+2

·
∞∑
m=0

Cmy
m

−
∞∑
m=0

Cm

(
R

R0

)m
·
∞∑
m=0

C̄my
m+2

]
/
∞∑
m=0

Cm

(
R

R0

)m
. (5.23)

The volumetric flow rate Q of fluid in the stenotic region is given by the

expression

Q = 2πR0

∫ R(x)/R0

0

u(y) · ydy. (5.24)

Substituting u from eq. (5.21) into eq. (5.24) and then integrating with

respect to y we obtain the following expression

Q = − πR
3
0

2aµ0

· dp
dx

[
∞∑
m=0

C̄m

(
R

R0

)m+2

·
∞∑
m=0

Cm
m+ 2

(
R

R0

)m+2

−
∞∑
m=0

Cm

(
R

R0

)m
·
∞∑
m=0

C̄m
m+ 4

(
R

R0

)m+4
]
/
∞∑
m=0

Cm

(
R

R0

)m
.(5.25)

If Q0 is the flow rate of plasma fluid in the unconstricted tube in the absence

of magnetic field and hematocrit, then

Q0 =
πR3

0

8µ0

·
(
dp

dx

)
0

(5.26)
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where

(
dp

dx

)
0

is the pressure gradient of fluid. If the flow is steady and the

system is closed, then

(
Q

Q0

)
= 1 and we have the relative pressure gradient

from eqs. (5.25) and (5.26) as(
Q

Q0

)
= 1

⇒
(
dp
dx

)(
dp
dx

)
0

=

−a
∞∑
m=0

Cm

(
R

R0

)m
4
∞∑
m=0

C̄m

(
R

R0

)m+2

·
∞∑
m=0

Cm
m+ 2

(
R

R0

)m+2

− 4
∞∑
m=0

Cm

(
R

R0

)m
·
∞∑
m=0

C̄m
m+ 4

(
R

R0

)m+4
.

(5.27)

The wall shear stress is defined as

τR = −
[
−µ(r)

du

dr

]
r=R(x)

. (5.28)

Note that

(
du

dr

)
r=R(x)

from eq. (5.28) can be obtained by differentiating eq.

(5.21) where y = r
R0

, that is(
du

dr

)
r=R(x)

= − R2
0

4aµ0

· dp
dx

1

R0

[
∞∑
m=0

C̄m

(
R

R0

)m+2

·
∞∑
m=0

mC̄m

(
r

R0

)m−1

−
∞∑
m=0

Cm

(
R

R0

)m
·
∞∑
m=0

(m+ 2)C̄m

(
r

R0

)m+1
]
/
∞∑
m=0

Cm

(
R

R0

)m
= − R0

4aµ0

· dp
dx

[
∞∑
m=0

C̄m

(
R

R0

)m+2

·
∞∑
m=0

mC̄m

(
R

R0

)m−1

(5.29)

−
∞∑
m=0

Cm

(
R

R0

)m
·
∞∑
m=0

(m+ 2)C̄m

(
R

R0

)m+1
]
/

∞∑
m=0

Cm

(
R

R0

)m
and

− µ(r) |r=R(x)= −µ0

[
1 + βhm

(
1−

(
R

R0

)n)]
. (5.30)

Hence, the wall shear stress in the absence of magnetic field and hematocrit

is given by

τR =
R0

4a
· dp
dx

[
∞∑
m=0

C̄m

(
R

R0

)m+2

·
∞∑
m=0

mC̄m

(
R

R0

)m−1

(5.31)
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−
∞∑
m=0

Cm

(
R

R0

)m
·
∞∑
m=0

(m+ 2)C̄m

(
R

R0

)m+1
]
/
∞∑
m=0

Cm

(
R

R0

)m
.

If τN = −R0

2

(
dp

dx

)
0

is the shear stress of the plasma fluid at the normal

tube wall in the absence of a magnetic field, then the non-dimensional form

of eq. (5.31) is given by

τ =
1

2a
·
(
dp
dx

)(
dp
dx

)
0

[
∞∑
m=0

C̄m

(
R

R0

)m+2

·
∞∑
m=0

mC̄m

(
R

R0

)m−1

(5.32)

−
∞∑
m=0

Cm

(
R

R0

)m
·
∞∑
m=0

(m+ 2)C̄m

(
R

R0

)m+1
]
/
∞∑
m=0

Cm

(
R

R0

)m

where

(
dp
dx

)(
dp
dx

)
0

is given by the expression in eq. (5.27).

Since the wall shear stress in stenosed arteries increases with a rise in the

intensity of the magnetic field, there is a possibility that if the magnetic field

strength is quite high, the wall shear stress may become so amplified that

the stenosis may rupture and the concerned portion of the body may become

paralyzed. The motion of blood in stenosed arteries can be regulated by

applying a magnetic field externally and increasing/decreasing the intensity

of the applied field.
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Conclusions

It is well known that a general method for determining analytical solutions

for partial differential equations has not yet been found among traditional

methods [28]. However, we believe that the ADM, the noise terms

phenomenon, and the modified ADM provide an effective, reliable, and

powerful tool for handling nonlinear differential equations.

We point out that the ADM works effectively for nonlinear ordinary

and partial differential equations. The ADM and the improvements made

by the noise terms phenomenon and the modified ADM are reliable and

effective techniques with promising results. This was demonstrated by

applying the ADM and the modified ADM to problems of ordinary and

partial differential equations. The ADM can be used generally to all types

of differential and integral equations. The ADM can be applied in a

straightforward manner and it provides a rapidly convergent series solution.

The speed of convergence depends upon the choice of operator which may be

a highest-ordered differential operator or a combination of linear operators

or a multidimensional operator. The ADM essentially unifies the subjects

of linear and nonlinear, deterministic and stochastic, ordinary and partial

differential equations, initial value and boundary value problems as well as

systems of coupled equations into a single fundamental method [16].

We successfully applied the ADM to the equation governing blood flow

through a constricted artery in the presence of an external transverse

magnetic field which was applied uniformly. We assumed that blood flowing

through the tube was a Newtonian in character. The flow of blood through

an artery depends upon the pumping action of the heart which gives rise to
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a pressure gradient which produces an oscillatory flow in the blood vessel.

The electric fluid produced due to the motion of an electrically conducting

fluid was very small. We assumed that due to the effects of the induced

magnetic fields no external applied force exists and the governing equations

of motion of the fluid are the Navier-Stokes equations in cylindrical polar

coordinates. We applied the ADM to obtain a two-term approximation and

a three-term approximation to the solution of the stream function. The

axial velocity component and wall shear stress were obtained. The numerical

solutions of the wall shear stress for different values of the Reynolds number

Re and the Hartmann number M indicated that the maximum value of the

solution occurred just ahead of the throat of stenosis for different values

of the Reynolds number Re, Hartmann number M and Σ for a three-term

approximation to the solution. With the increase of the Reynolds number

the negative behavior of the solution increases showing the enlargement

of circulation which is physiologically unfavorable. It was observed that

the negative behavior of the solution in the diverging section of the tube

decreased with increasing Reynolds number. As we increased the values of

the Hartmann number M the negative behavior was constant in the diverging

section of the tube. As a result the circulation diminished indicating the

favorable physiological condition of blood flow.

We investigated the effect of a externally applied homogeneous magnetic

field on the flow characteristics in a single constricted blood vessel

analytically by using the Frobenius method and concluded that the motion

of blood in stenosed arteries can be regulated by applying a magnetic field

externally and increasing/decreasing the intensity of the applied field.

The application of an external magnetic field B0 to blood flow generates

electromagnetic inductions in the fluid that reduce the flow rate and flatten

the velocity profile while stretching it more prominently in the same direction

as the applied field. These effects heighten when B0 increases; the induced

magnetic fields however remain very weak. Approximating the results by

neglecting these induced fields, while assuming velocity profile symmetry,

overestimates flow reductions. Even though the induced magnetic fields are

insignificant, solving the problem while neglecting them is inexact.

Therefore, it can be concluded that the effect of an external transverse

magnetic field applied uniformly favors the physiological condition of blood

flow. This will encourage medical researchers/biomedical engineers to control
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the flow of blood in human cardiovascular and neural circulation systems

artificially by applying a uniform magnetic field perpendicular to direction

of blood flow. It will be of great importance in the treatment of cardiovascular

lesions such as atherosclerosis plaques, intimal cushions and aneurysms etc,

which tend to occur near the apex of bifurcation and the disease related with

accelerated circulation like hypertension and brain hemorrhages etc.

The results can be further improved by considering more terms of the

stream function ψ in the approximation to the solution. We extended

the work of [31] to include a three-term approximation to the solution of

the stream function. Future work could consider applying the Differential

Transform Method (DTM) to the problem and comparing results obtained

with ADM.



Appendix A

The Foundation of the

Adomian Decomposition

Method

A.1 The

Basic Concepts Of The Decomposition

Theory

The goal of the ADM is to solve an equation u = G(u), in a Banach space

E, where G is an operator which can be nonlinear. The Banach space E is

not necessarily a finite-dimensional space, it can be a functional space. The

ADM is an original approach to this kind of problem.

Definition 4 (Decomposition series of finite-order p). A decomposition series

of finite-order p is a series
∑
Ck, where each Ck is an E-valued function of

the p(k + 1) variables X
(1)
0 , . . . , X

(1)
k , . . . , X

(p)
0 , . . . , X

(p)
k .

The decomposition series of first order is simply called the decomposition

series.

Definition 5 (Weak convergence of the decomposition series of finite-order

p). A decomposition series of finite-order p is weakly convergent if for each

collection of p convergent series in E
(∑

u
(1)
n , . . . ,

(p)
n

)
, the series∑

Ck

(
u

(1)
0 , . . . , u

(1)
k , . . . , u

(p)
0 , . . . , u

(p)
k

)
81
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in E converge.

Definition 6 (Sum of a convergent decomposition series of finite-order p).

The sum of a decomposition series of finite-order p is a function of p variables

mapping the set of convergent series (in E) into E.

S
(∑

u(1)
n , . . . ,

∑
u(p)
n

)
=
∞∑
k=0

Ck

(
u

(1)
0 , . . . , u

(1)
k , . . . , u

(p)
0 , . . . , u

(p)
k

)
.

Definition 7 (Strong convergence of the decomposition of finite-order p).

A decomposition series of finite-order p is strongly convergent if it is weakly

convergent and if its sum is depends only on the sum of the series in E, i.e.

∞∑
n=0

u(i)
n =

∞∑
n=0

v(i)
n

⇒ S
(∑

u(1)
n , . . . ,

∑
u(p)
n

)
= S

(∑
v(1)
n , . . . ,

∑
v(p)
n

)
, ∀iε[1, p].

Definition 8 (Degenerated sum of strongly convergent decomposition series

of finite-order p). Using the previously defined sum S of a convergent

decomposition series of finite-order p, a new operator S∗, mapping Ep into

E can be created when the convergence is strong. S and S∗ can be identified.

Let S be the sum of a strongly convergent decomposition series of

finite-order p. Then for each collection (u(1), . . . , u(p)) of elements of E,

S∗(u(1), . . . , u(p)) can be defined (because of the strong convergence) by

S(
∑
u(1), . . . ,

∑
u(p)), where each

∑
u

(i)
n is any convergent series in E the

sum of which is u(i). As a series of this kind, the the one which is reduced to

one term equal to u(i) can be chosen. So, it can be written

S∗(u(1), . . . , u(p)) = S(u(1), . . . , u(p)).

Definition 9 (Decomposition scheme). Let
∑
Ck(X0, . . . , Xk) be a strongly

convergent decomposition series. The decomposition scheme associated with∑
Ckis the recurrent scheme

u0 = 0

un+1 = Cn(u0, . . . , un) (A.1)

which constructs a series
∑
un in E.

Such a series can be constructed because each Cn is a function of

u0, . . . , un but not of the following terms.
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A.2 The Basic Decomposition Series

Definition 10 (Basic decomposition series). The basic decomposition series

associated with the operator G is the series
∑
Bn, where

B0 = 0,

Bn = G

(
n∑
i=0

Xi

)
−G

(
n−1∑
i=0

Xi

)
. (A.2)

Each Bn is mapping En+1 into E.

Theorem A.2.1 (Convergence of the basic decomposition series). The

basic decomposition series
∑
Bn associated with a continuous operator G

is a decomposition series (of first order) which strongly converges and the

degenerated sum of which is G.

Proof. If
∑
un converges, then the series in E,

∑
Bn(u0, . . . , un) converges

and its sum
∑
BnG(

∑∞
n=0 un) only depends on the sum of

∑
un

If G is a nonlinear operator, the basic decomposition series is useless

because the Adomian decomposition method needs much more calculus that

the successive approximations method to solve the equation u = G(u).

However, if G is a linear operator, the Adomian decomposition scheme

becomes simpler as shown below.

Definition 11 (Basic decomposition series associated with a linear

operator). The basic decomposition series
∑
Bk associated with the linear

operator L is

B0 = L(X0)

Bn = L(Xn). (A.3)

A.3 The Adomian Decomposition Series

We apply the Adomian decomposition theorem to decompose these analytic

functions into components to be computed by recursion as originally proposed

by Adomian. A key notion is that we thus effectively rearrange the Banach-

space analog of the Taylor expansion series about the solution’s initial

component function, or Taylor-Adomian expansion series, into an Adomian
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decomposition series with corresponding degenerate sums. This effective

rearrangement via decomposition is justified because the Banach-space

analog of the Taylor expansion series uniformly converges and thus the sum

will not be altered by rearrangement of the terms in such a series. Thus, we

say that the Adomian decomposition series for the solution and the Adomian

decomposition series for nonlinear functions of the solution are designed to

converge since we are clearly rearranging a uniformly convergent series of

an analytic function into another uniformly convergent series with identical

degenerate sums. We decompose the solution and nonlinear functions of the

solution in order to solve the Adomian integral equation for the solution by

recursion, hence thereby solving the associated nonlinear partial differential

equation. As Adomian often stated, the decomposition of a function is non-

unique, and hence permits the exercise of the creative art of computation

and algorithm synthesis. Of course, the degenerate sum is unique. It

is important to observe that we only bring in the Banach contraction

theorem in the setting of the Adomian integral equation for the solution,

because of how the ADM uses the linear composite operator coefficients of

the Adomian integral equation to construct the solution. The ADMis a

constructive method. Others, e.g. Hazewinkel in the Series Editor’s Preface

[13], observed that the Adomian decomposition series is distinct from the

Neumann series and indeed is very much unlike Picard’s method of successive

approximations. For solving nonlinear differential equations ([4], [11]-[13]),

the ADM is distinctly different from other techniques such as ad hoc

transformations, perturbation, successive approximations, finite differences,

or sinc-Galerkin methods [16]. Furthermore, the ADM is preferred for solving

stochastic differential equations [8]-[11] for the statistical measures, e.g. the

expectation, correlation and so forth, of solution processes as pioneered by

Adomian, when dealing with physically realistic applications without a priori

assumptions of stationarity, ergodicity, white noise, Gaussian processes, etc.

Definition 12 (Adomian’s polynomials). Let G be an analytical function and∑
un a convergent series in a Banach space E. The Adomian polynomials are

defined by

Ak =
1

k!

[
dk

dλk
G

(
∞∑
n=0

unλ
n

)]
λ=0

. (A.4)
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Define U =
∑∞

n=0 un and u+ =
∑∞

n=0 unλ
n. This power series converges

when λ = 1. But it is known that the sum of a power series, whose converge

radius is ρ, is analytical over OD(O, ρ) (open disc whose center is O and

whose radius is ρ), then u+ is analytical over DO(O, ρ), i.e. there are Ak so

that G ◦ u+(λ) =
∑∞

k=0 Akλ
k and these Ak verify

Ak =
1

k!

[
dk

dλk
G

(
∞∑
n=0

unλ
n

)]
λ=0

. (A.5)

Note. We do not need to assume that the convergence radius is greater than

1. If ρ = 1, as u+ converges and its sum is U , then the Abel’s theorem leads to

limλ→1− u
+(λ) = U (λ being a real number) and so limλ→1− G◦u+(λ) = G(U).

Theorem A.3.1 (Convergence of the Adomian decomposition series). The

Adomian decomposition series
∑
Ck associated with the analytical function

G define a decomposition series (of the first order) which strongly converges

and the degeneration sum of which is G.

Proof. To verify that each Ak depends only on u0, . . . , uk, we express Ak

as a function of the coefficients of the two series that are composed using

a classical theorem of power series composition [38]. We note that the

expression obtained is only used to prove this dependence. We have just

prove that the
∑
Ak is a decomposition series. If

∑
un is a convergent

series, we have seen that
∑
Ak(u0, . . . , uk) converges and that its sum is

G ◦ u+(1) = G(U), that is to say that the decomposition series
∑
Ak weakly

converges, and that its sum is G. If
∑
un and

∑
vn are two series having the

same sum U , and if their Adomian’s polynomials are Auk and Avk respectively,

then we write

∞∑
k=0

Auk = G ◦ u+(λ = 1)

= G ◦ v+(λ = 1) (A.6)

=
∞∑
k=0

Avk.

So, the sum of the Adomian decomposition series depends only on the sum

of the considered series the convergence is strong.



Appendix B

Equation Governing Blood

Flow

From eq. (4.1) for the last term we have r ∂
∂r

(
1
r
∂ψ
∂r

)
and comparing with the

operator L =
∂2

∂r2
− 1

r

∂

∂r
in chapter 4, we have

r
∂

∂r

(
1

r

∂ψ

∂r

)
= r

[
− 1

r2

∂ψ

∂r
+

1

r

∂ψ2

∂r2

]
= −1

r

∂ψ

∂r
+
∂ψ2

∂r2

= Lψ (B.1)
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Applying boundary conditions

(4.34) to obtain an expression

for ψ0

Using boundary conditions (4.34)

to solve the functions B(z), C(z), E(z), F (z) from eq. (4.15) and thus to

obtain the expression of ψ0.

From eq. (4.15)

ψ0 =
1

4
r4B(z) +

[∫
r log rdr

]
C(z) +

1

2
r2E(z) + F (z) (C.1)

and the boundary conditions from eq. (4.34) are

−1

r
· ∂ψ0

∂r
= 0, ψ0 = −1

2
at r = η,

− ∂

∂r

(
1

r
· ∂ψ0

∂r

)
= ψ0 = 0 at r = 0.

 (C.2)

The first equation for solving for constants is given by the following

expression

−1

r
· ∂ψ0

∂r
|r=η = 0

⇒ −1

r

[
∂

∂r

(
1

4
r4B(z) +

[∫
r log rdr

]
C(z) +

1

2
r2E(z) + F (z)

)]
r=η

= 0

⇒ −1

r

[
r3B(z) + r log rC(z) + rE(z)

]
r=η

= 0
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⇒ −η2B(z)− log ηC(z)− E(z) = 0 (C.3)

and for the second equation we use the boundary condition

ψ0|r=η = −1

2

⇒ 1

4
η4B(z) +

[
η2

2
log η − η2

4

]
C(z) +

1

2
η2E(z) + F (z) = −1

2
. (C.4)

From the boundary conditions in eq. (4.34) we have

− ∂

∂r

[
1

r
· (r3B(z) + r log rC(z) + rE(z))

]
r=0

= 0 (C.5)

⇒
[
−3r2B(z) + (1 + log r)C(z) + E(z)

r
+
r3B(z) + r log rC(z) + rE(z)

r2

]
r=0

= 0

⇒
[
−3r3B(z)− r log rC(x)− rC(z)− rE(z) + r3B(z) + r log rC(z) + rE(z)

r2

]
r=0

= 0

⇒
[
−2r2B(z)− C(z)

]
r=0

= 0

⇒ C(z) = 0. (C.6)

To obtain the fourth and final equation we use the boundary condition

ψ0|r=0 = 0 (C.7)

⇒ 1

4
r4B(z) +

[
1

2
log r − 1

4

]
r2C(z) +

1

2
r2E(z) + F (z)|r=0 = 0

⇒ F (z) = 0. (C.8)

We have obtained the following equations

− η2B(z)− log ηC(z)− E(z) = 0

1

4
η4B(z) +

[
η2

2
log η − η2

4

]
C(z) +

1

2
η2E(z) + F (z) = −1

2

C(z) = 0

F (z) = 0

After solving the simultaneous equations we find B(z) = 2
η4

and E(z) = − 2
η2
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Substituting B(z) and E(z) into eq. (4.15) we have the following expression

for ψ0

ψ0 =
1

4
r4

(
2

η4

)
− 1

2
r2

(
2

η2

)
=

r4

η4
− r2

η2

=
1

2η4
(r4 − 2η2r2). (C.9)
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Evaluating the second term of

the expression on eq. (4.23)

when n=0

Setting n = 0 in eq.(4.23), we have the following expression

L−2

[
ReA0 −

∂4ψ0

∂z4
− 2

∂2(Lψ0)

∂z2
+M2Lψ0

]
, (D.1)

where

L−2 = L−1
1 [rL−1

1 {r−1L−1
1 (rL−1

1 r−1)}];

ψ0 =
r4

η4
− r2

η2
;

A0 =
1

r
· ∂(∇2ψ0, ψ0)

∂(r, z)
− 2

r2
· ∂ψ0

∂z
· ∇2ψ0;

∂(∇2ψ0, ψ0)

∂(r, z)
=

∂(∇2ψ0)

∂r
· ∂ψ0

∂z
− ∂(∇2ψ0)

∂z
· ∂ψ0

∂r
;

∇2 =
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
;

L =
∂2

∂r2
− 1

r

∂

∂r
. (D.2)

Note that η = η(z) and

∂ψ0

∂r
=

4r3

η4
− 2r

η2
, (D.3)
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∂2ψ0

∂r2
=

12r2

η4
− 2

η2
. (D.4)

From eq.(D.1), we evaluate term by term starting with M2Lψ0

M2Lψ0 = M2

(
∂2ψ0

∂r2
− 1

r
· ∂ψ0

∂r

)
= M2

[
12r2

η4
− 2

η2
− 1

r

(
4r3

η4
− 2r

η2

)]
= M2

[
12r2

η4
− 2

η2
− 4r2

η4
+

2

η2

]
= M2 · 8r2

η4
. (D.5)

∂2(Lψ0)

∂z2
=

∂2

∂z2

[
∂2ψ0

∂r2
− 1

r
· ∂ψ0

∂r

]
=

∂2

∂z2

[
8r2

η4

]
= 8r2

(
20η′(z)2

η(z)6
− 4η′′(z)

η(z)5

)
(D.6)

∂ψ0

∂z
=

2r2η′(z)

η(z)3
− 4r4η′(z)

η(z)5
. (D.7)

∂4ψ0

∂z4
= r4

(
840η′(z)4

η(z)8
− 720η′(z)2η′′(z)

η(z)7
+

60η′′(z)2

η(z)6
+

80η′(z)η′′′(z)

η(z)6
− 4η′′′′(z)

η(z)5

)
− r2

(
120η′(z)4

η(z)6
− 144η′(z)2η′′(z)

η(z)5
+

18η′′(z)2

η(z)4
+

24η′(z)η′′′(z)

η(z)4
− 2η′′′′(z)

η(z)3

)
.

(D.8)

∇2ψ0 =
∂2ψ0

∂r2
− 1

r

∂ψ0

∂r
+
∂2ψ0

∂z2

=
8r2

η(z)4
+ r4

(
20η′(z)2

η(z)6
− 4η′′(z)

η(z)5

)
− r2

(
6η′(z)2

η(z)4
− 2η′′(z)

η(z)3

)
. (D.9)

∂(∇2ψ0)

∂r
=

16r

η(z)4
+ 4r3

(
20η′(z)2

η(z)6
− 4η′′(z)

η(z)5

)
− 2r

(
6η′(z)2

η(z)4
− 2η′′(z)

η(z)3

)
.

(D.10)
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∂(∇2ψ0)

∂z
= r4

(
60η′(z)η′′(z)

η(z)6
− 120η′(z)3

η(z)7
− 4η′′′(z)

η(z)5

)
(D.11)

− r2

(
18η′(z)η′′(z)

η(z)5
− 24η′(z)3

η(z)4
− 2η′′′(z)

η(z)3
− 32η′(z)

η(z)5

)
.

Now we multiply eqs. (D.10) with (D.7) to obtain the first part of the

determinant of A0, i.e.

∂(∇2ψ0)

∂r
· ∂ψ0

∂z
=

32r3η′(z)

η(z)7
− 64r5η′(z)

η(z)9
− 320r7η′(z)3

η(z)11
+

208r5η′(z)3

η(z)9

− 24r3η′(z)3

η(z)7
+

64r7η′(z)η′′(z)

η(z)10
− 48r5η′(z)η′′(z)

η(z)8

+
8r3η′(z)η′′(z)

η(z)6
. (D.12)

Similarly, we multiply eqs. (D.11) with (D.3) to obtain the second part of

the determinant of A0

∂(∇2ψ0)

∂z
· ∂ψ0

∂r
=

64r3η′(z)

η(z)7
− 128r5η′(z)

η(z)9
− 480r7η′(z)3

η(z)11
+

336r5η′(z)3

η(z)9

− 48r3η′(z)3

η(z)7
+

240r7η′(z)η′′(z)

η(z)10
− 192r5η′(z)η′′(z)

η(z)8

+
36r3η′(z)η′′(z)

η(z)6
− 16r7η′′′(z)

η(z)9
+

16r5η′′′(z)

η(z)7

− 4r3η′′′(z)

η(z)5
. (D.13)

Since

∂(∇2ψ0, ψ0)

∂(r, z)
=
∂(∇2ψ0)

∂r
· ∂ψ0

∂z
− ∂(∇2ψ0)

∂z
· ∂ψ0

∂r
, (D.14)

then

1

r
· ∂(∇2ψ0, ψ0)

∂(r, z)
=

1

r

(
∂(∇2ψ0)

∂r
· ∂ψ0

∂z
− ∂(∇2ψ0)

∂z
· ∂ψ0

∂r

)
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=
64r4η′(z)

η(z)9
− 32r2η′(z)

η(z)7
+

160r6η′(z)z

η(z)11
− 128r4η′(z)3

η(z)9

+
24r2η′(z)3

η(z)7
− 176r6η′(z)η′′(z)

η(z)10
+

144r4η′(z)η′′(z)

η(z)8
− 16r4η′′′(z)

η(z)7

− 28r2η′(z)η′′(z)

η(z)6
+

16r6η′′′(z)

η(z)9
+

4r2η′′′(z)

η(z)5
(D.15)

To obtain the full expression for A0 we multiply
2

r2
with the product of

eqs. (D.9) and (D.7)

2

r2
· ∂ψ0

∂z
· ∇2ψ0 =

32r2η′(z)

η(z)7
− 64r4η′(z)

η(z)9
− 160r6η′(z)3

η(z)11
+

128r4η′(z)3

η(z)9

− 24r2η′(z)3

η(z)7
+

32r6η′(z)η′′(z)

η(z)10
− 32r4η′(z)η′′(z)

η(z)8

+
8r2η′(z)η′′(z)

η(z)6
. (D.16)

Hence ReA0 will be eqs. (D.15) − (D.16)

ReA0 =
Rer

6

η11

(
320η3

1 − 208ηη1η2 + 16η2η3

)
+

Rer
4

η9

(
128η1 − 256η3

1 + 176ηη1η2 − 16η2η3

)
+

Rer
2

η7

(
48η3

1 − 64η1 − 36ηη1η2 + 4η2η3

)
. (D.17)

Thus

L−2

[
ReA0 −

∂4ψ0

∂z4
− 2

∂2(Lψ0)

∂z2
+M2Lψ0

]
= L−2

[
α(z)r6 + β(z)r4 + γ(z)r2

]
,

(D.18)

where

α(z) =
Re

η11

(
320η3

1 − 208ηη1η2 + 16η2η3

)
, (D.19)

β(z) =
Re

η9

(
128η1 − 256η3

1 + 176ηη1η2 − 16η2η3

)
+

1

η8

(
720ηη2

1η2 − 840η4
1 − 60η2η2

2 − 80η2η1η3 + 4η3η4

)
, (D.20)

γ(z) =
Re

η7

(
48η3

1 − 64η1 − 36ηη1η2 + 4η2η3

)
+

1

η6

(
120η4

1 − 320η2
1 + 64ηη2 − 144ηη2

1η2 + 18η2η2
2 + 24η2η1η3 − 2η3η4

)
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+
8M2

η4
. (D.21)

where η1, η2, η3 and η4 are the derivatives of η with respect to z indicating

the orders according to their suffies.

Using eq. (4.39) to integrate eq. (D.18) we have

L−2
[
α(z)r6 + β(z)r4 + γ(z)r2

]
= L−1

1 [rL−1
1 {r−1L−1

1 (rL−1
1 r−1)}]

=

∫
r

∫
r−1

∫
r

∫
r−1
(
α(z)r6 + β(z)r4 + γ(z)r2

)
drdrdrdr

=

∫ ∫ ∫ ∫ (
α(z)r6 + β(z)r4 + γ(z)r2

)
drdrdrdr

=
α(z)r10

5040
+
β(z)r8

1680
+
γ(z)r6

360
. (D.22)



Appendix E

Applying boundary conditions

(F.14) to obtain an expression

for ψ1

Applying boundary conditions (F.14) (set n = 1) to solve for constants

B1, C1, E1, F1 in eq. (4.42) to obtain an expression for ψ1.

Recall that eq. (4.42) is given by

ψ1 = αr10 + βr8 + γr6

+
1

4
r4B1 +

[∫
r log rdr

]
C1 +

1

2
r2E1 + F1 (E.1)

and the boundary conditions (F.14) when n = 1 are as follows

−1

r
· ∂ψn
∂r

= ψn = 0 at r = η,

− ∂

∂r

(
1

r
· ∂ψn
∂r

)
= ψn = 0 at r = 0,

 (E.2)

That is

−1

r
· ∂ψ1

∂r
|r=η= 0

⇒ −1

r

[
d

dr

(
αr10 + βr8 + γr6 +

1

4
r4B1 +

[∫
r log rdr

]
C1 +

1

2
r2E1 + F1

)]
r=η

= 0

⇒ −10αr8 − 8βr6 − 6γr4 −B1r
2 − E1 − C1 log r |r=η= 0

95
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⇒ −10αη8 − 8βη8 − 6γη4 −B1η
2 − E1 − C1 log η = 0

⇒ 10αη8 + 8βη8 + 6γη4 +B1η
2 + E1 + C1 log η = 0 (E.3)

and

ψ1 |r=η= 0

⇒ αr10 + βr8 + γr6 +
1

4
r4B1 +

(
r2

2
log r − r2

4

)
C1 +

1

2
r2E1 + F1 |r=η= 0

⇒ αη10 + βη8 + γη6 +
η4B1

4
+

(
η2

2
log η − η2

4

)
C1 +

η2E1

2
+ F1 = 0.

(E.4)

We now use the second boundary condition from the boundary conditions

(F.14) when n = 1.

− ∂

∂r

(
1

r
· ∂ψ1

∂r

)
|r=0= 0

⇒ − d

dr

[
1

r

(
10αr9 + 8βr7 + 6γr5 +B1r

3 + rE1 + C1 log r
)]
|r=0= 0

⇒ −(1 + log r)C1 + E1 + 3B1r
2 + 90αr8 + 56βr6 + 30γr4

r

+
10αr9 + 8βr7 + 6γr5 +B1r

3 + rE1 + C1r log r

r2
|r=0= 0

⇒ rC1 − 2B1r
3 − 80αr9 − 48βr7 − 24γr5 |r=0= 0

⇒ C1 − 2B1r
2 − 80αr8 − 48βr6 − 24γr4 |r=0= 0

⇒ C1 = 0 (E.5)

and

ψ1 |r=0= 0

⇒ αr10 + βr8 + γr6 +

(
r2

2
log r − r2

4

)
C1 +

1

2
r2E1 + F1 |r=0= 0

⇒ F1 = 0. (E.6)

Solving eqs. (E.3) and (E.4) where C1 = 0 and F1 = 0 yields the following
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results

B1 = −4η2(4αη4 + 3βη2 + 2γ), (E.7)

C1 = 2η4(3αη4 + 2βη2 + γ). (E.8)

Thus

ψ1 = αr10 + βr8 + γr6 − η2(4αη4 + 3βη2 + 2γ)r4

+ η4(3αη4 + 2βη2 + γ)r2. (E.9)



Appendix F

Applying boundary conditions

(F.14) to obtain an expression

for ψ2

After a rigorous evaluation we obtain the following expression for ψ2 as

ψ2 = L−2
[
Γ(z)r10 + Υ(z)r8 + Φ(z)r6 + Ψ(z)r4 + Ω(z)r2

]
+

1

4
r4B2 +

[∫
r log rdr

]
C2 +

1

2
r2E2 + F2 (F.1)

where

Γ =
102400R2

eη
6
1

21η18
+

4576Reη
7
1

3η15
− 1177R2

eη
4
1η2

21η17
− 8008Reη

5
1η2

3η14
+

33280R2
eη

2
1η

2
2

21η16

+
3520Reη3

1η
2
2

3η13
− 110Reη1η

3
2

η12
+

25600R2
eη

3
1η3

63η16
+

440Reη
4
1η3

η13
− 2048R2

eη1η2η3

9η15

− 2200Reη
2
1η2η3

9η12
+

110Reη
2
2η3

9η11
+

512R2
eη

2
3

63η14
+

80Reη1η
2
3

9η11
− 440Reη

3
1η4

9η12

+
130Reη1η2η4

9η11
− 5Reη3η4

9η10
+

32Reη
2
1η5

9η11
− 17Reη2η5

45η10
− 7Reη1η6

45η10

+
Reη7

315η9
; (F.2)
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Υ = 80M2α +
2048R2

eη
4
1

63η16
− 47168Reη

5
1

21η13
− 20480R2

eη
6
1

21η16
− 17280Reη

7
1

η15
+

3960η8
1

η12

+
23552R2

eη
2
1η2

63η15
+

15840Reη
3
1η2

7η12
+

104704R2
eη

4
1η2

21η15
+

164160Reη
5
1η2

7η14
− 5808Reη

5
1η2

7η12

− 10080η6
1η2

η11
− 7600Reη1η

2
2

21η11
− 16000R2

eη
2
1η

2
2

7η14
− 8640Reη

3
1η

2
2

η13
+

5280Reη
3
1η

2
2

7η11

+
7560η4

1η
2
2

η10
+

4320Reη1η
3
2

7η12
− 792Reη1η

3
2

7η10
− 1680η2

1η
3
2

η9
+

105η4
2

2η8
− 13312R2

eη1η3

315η14

− 17440Reη
2
1η3

63η11
− 36864R2

eη
3
1η3

7η16
− 28928R2

eη
3
1η3

63η14
− 2880Reη

4
1η3

7η13
+

2448Reη
4
1η3

7η11

+
2016η5

1η3

η10
+

656Reη2η3

21η10
+

18432R2
eη1η2η3

7η15
+

118016R2
eη1η2η3

315η13
+

2880Reη
2
1η2η3

7η12

− 9948Reη
2
1η2η3

35η10
− 2240η3

1η2η3

η9
+

2104Reη
2
2η3

105η9
+

420η1η
2
2η3

η8
− 6144R2

eη
2
3

35η14

− 4736R2
eη

2
3

315η12
+

544Reη1η
2
3

35η9
+

140η2
1η

2
3

η8
− 20η2η

2
3

η7
+

1208Reη1η4

63η10

− 3648Reη
3
1η4

7η12
− 2256Reη

3
1η4

35η10
− 280η4

1η4

η9
+

864Reη1η2η4

7η11
+

2696Reη1η2η4

105η9

+
210η2

1η2η4

η8
− 15η2

2η4

η7
− 144Reη3η4

35η10
− 29Reη3η4

21η8
− 20η1η3η4

η7
+

5η2
4

12η6

− 184Reη5

315η9
+

576Reη
2
1η5

7η11
+

688Reη
2
1η5

105η9
+

28η3
1η5

η8
− 288Reη2η5

35η10
− 97Reη2η5

105η8

− 13η1η2η5

η7
+

2η3η5

3η6
− 192Reη1η6

35η10
− 13Reη1η6

35η8
− 2η2

1η6

η7
+
η2η6

3η6
+

16Reη7

105η9

+
Reη7

105η7
+

2η1η7

21η6
− η8

420η5
; (F.3)
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Φ = 48M2β − 4608Reη
3
1

7η11
+

149504R2
eη

4
1

105η14
+

26624Reη
5
1

η13
+

28288R2
eη

6
1

5η14
+

6144η6
1

η10

+
13440Reη

7
1

η13
− 672Reη

7
1

η11
− 1008η8

1

η10
+

6912Reη1η2

35η10
− 91648R2

eη
2
1η2

105η13
+

33280Reη
3
1η2

η12

− 25344Reη
3
1η2

35η10
− 476032R2

eη
4
1η2

35η13
− 10240η4

1η2

η9
− 216736Reη

5
1η2

7η12
+

8736Reη
5
1η2

5η10

+
3136η6

1η2

η9
− 7680Reη1η

2
2

η11
+

8448Reη1η
2
2

35η9
+

742016R2
eη

2
1η

2
2

105η12
+

3840η2
1η

2
2

η8
+

147200Reη
3
1η

2
2

7η11

− 3472Reη
3
1η

2
2

3η9
− 2940η4

1η
2
2

η8
− 5248R2

eη
3
2

15η11
− 1280η3

2

7η7
− 24144Reη1η

3
2

7η10
+

168Reη1η
3
2

η8

+
840η2

1η
3
2

η7
− 35η4

2

η6
− 256Reη3

35η9
+

5632R2
eη1η3

105η12
− 23040Reη

2
1η3

7η11
+

7424Reη
2
1η3

35η9
+

36864R2
eη

3
1η3

35η14

+
95936R2

eη
3
1η3

35η12
+

5120η3
1η3

3η8
+

44192Reη
4
1η3

7η11
− 6328Reη

4
1η3

15η9
− 784η5

1η3

η8
+

15872Reη2η3

21η10

− 256Reη2η3

7η8
− 27648R2

eη1η2η3

35η13
− 12192R2

eη1η2η3

7η11
− 5120η1η2η3

7η7
− 234336Reη

2
1η2η3

35η10

+
5446Reη

2
1η2η3

15η8
+

1120η3
1η2η3

η7
+

23792Reη
2
2η3

35η9
− 439Reη

2
2η3

15η7
− 280η1η

2
2η3

η6
+

3072R2
eη

2
3

35η12

+
464R2

eη
2
3

7η10
+

1280η2
3

63η6
+

16416Reη1η
2
3

35η9
− 104Reη1η

2
3

5η7
− 280η2

1η
2
3

3η6
+

56η2η
2
3

3η5
+

13568Reη1η4

105η10

− 160Reη1η4

7η8
− 5632R2

eη
2
1η4

15η11
− 1280η2

1η4

7η7
− 32496Reη

3
1η4

35η10
+

994Reη
3
1η4

15η8
+

140η4
1η4

η7

+
1232Reη2η4

15η10
+

640η2η4

21η6
+

22832Reη1η2η4

35η9
− 476Reη1η2η4

15η7
− 140η2

1η2η4

η6
+

14η2
2η4

η5

− 6248Reη3η4

105η8
+

37Reη3η4

18η6
+

56η1η3η4

3η5
− 7η2

4

12η4
− 256Reη5

105η9
+

32Reη5

35η7
+

464R2
eη1η5

15η10

+
256η1η5

21η6
+

1648Reη
2
1η5

15η9
− 20Reη

2
1η5

3η7
− 56η3

1η5

3η6
− 488Reη2η5

15η8
+

11Reη2η5

9η6
+

56η1η2η5

5η5

− 14η3η5

15η4
− 16R2

eη6

15η9
− 128η6

315η5
− 152Reη1η6

15η8
+

2Reη1η6

5η6
+

28η2
1η6

15η5
− 7η2η6

15η4
+

8Reη7

15η7

− Reη7

90η5
− 2η1η7

15η4
+

η8

180η3
; (F.4)
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Ψ = 24M2γ +
12288R2

eη
2
1

35η12
− 20480Reη

3
1

3η11
+

19968R2
eη

4
1

35η12
+

1792η4
1

η8
+

189184Reη
5
1

9η11

+
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1

5η9
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eη
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1
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− 6496η6

1
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1

3η11
+

2624Reη
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1
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1
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38912Reη1η2
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+

192η3
1η2

η8
+
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+
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+

16624η6
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+
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2
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+
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2
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+
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2
2
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2
2
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2
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+
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+
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+
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+
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+
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− 3200Reη2η3

3η8
+
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+
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+
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+
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2
1η2η3

3η8
− 25712Reη
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+
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+
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+
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+
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+
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+
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+

1088Reη5

45η7
− 32Reη5

105η5
− 1496R2

eη1η5

45η8
− 568η1η5

45η4
− 59744Reη

2
1η5

315η7

+
1676Reη

2
1η5

315η5
− 988η3

1η5

105η4
+
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+
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+
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+
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+
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+
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− η8
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; (F.5)



Appendix F. Applying boundary conditions (F.14) to obtain an expression
for ψ2 102

Ω =
26624Reη
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eη
2
1

35η10
+
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1
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eη
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2
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2

45η4
− 215552Reη1η
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2
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2
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α =
Re

315η11

(
20η3

1 − 13ηη1η2 + η2η3

)
; (F.7)

β =
Re

105η9

(
8η1 − 16η3

1 + 11ηη1η2 − η2η3

)
+

1

420η8

(
180ηη2

1η2 − 210η4
1 − 15η2η2

2 − 20η2η1η3 + η3η4

)
; (F.8)

γ =
1

180η6

(
60η4

1 − 160η2
1 + 32ηη2 − 72ηη2

1η2 + 9η2η2
2 + 12η2η1η3 − η3η4

)
+

Re

90η7

(
12η3

1 − 9ηη1η2 + η2η3 − 16η1

)
+

M2

45η4
; (F.9)

where η1, η2, η3, η4, η5, η6, η7, η8 are the derivatives of η with respect to z

indicating the orders according to their suffixes, and B2, C2, E2, F4 are

constants to be determined by the boundary conditions.

Thus

L−2

[
ReA1 −

∂4ψ1

∂z4
− 2

∂2(Lψ1)

∂z2
+M2Lψ1

]
= L−2

[
Γ(z)r10 + Υ(z)r8

+ Φ(z)r6 + Ψ(z)r4 + Ω(z)r2, (F.10)

Using eq. (4.39) to integrate eq. (F.10) we have

L−2
[
Γ(z)r10 + Υ(z)r8 + Φ(z)r6 + Ψ(z)r4 + Ω(z)r2

]
= L−1

1 [rL−1
1 {r−1L−1

1 (rL−1
1 r−1)}]

=

∫
r

∫
r−1

∫
r

∫
r−1
(
Γ(z)r10 + Υ(z)r8 + Φ(z)r6 + Ψ(z)r4 + Ω(z)r2

)
drdrdrdr,

=
Γ(z)r14

24024
+

Υ(z)r12

11880
+

Φ(z)r10

5040
+

Ψ(z)r8

1680
+

Ω(z)r6

360
. (F.11)

Hence

ψ2 =
Γ(z)r14

24024
+

Υ(z)r12

11880
+

Φ(z)r10

5040
+

Ψ(z)r10

1680
+

Ω(z)r6

360

+
r44

B 2
+

[∫
r log rdr

]
C2 +

r2

2
E2 + F2

= ζr14 + ϑr12 + ξr10 + ςr8 + χr6

+
r4

4
B2 +

[∫
r log rdr

]
C2 +

r2

2
E2 + F2, (F.12)
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where

ζ =
Γ(z)

24024
,

ϑ =
Υ(z)

11880
,

ξ =
Φ(z)

5040
, (F.13)

ς =
Ψ(z)

1680
,

χ =
Ω(z)

360
.

We now apply the boundary conditions (F.14) setting n = 2 to solve for

the constants B2, C2, D2, E2 in eq. (F.12). Hence we obtain the expression

for ψ2

Recall that the boundary conditions (F.14) when n = 2 is given by

−1

r
· ∂ψ2

∂r
= ψ2 = 0 at r = η,

− ∂

∂r

(
1

r
· ∂ψ2

∂r

)
= ψ2 = 0 at r = 0,

 (F.14)

that is

−1

r
· ∂ψ2

∂r
|r=η= 0,

⇒ 14ζr12 + 12ϑr10 + 10ξr8 + 8ςr6 + 6χr4 +B2r
2 + C2 log r + E2 |r=η= 0,

⇒ 14ζη12 + 12ϑη10 + 10ξη8 + 8ςη6 + 6χη4 +B2η
2 + C2 log η + E2 = 0.

(F.15)

To obtain the second equation we apply

ψ2 |r=η= 0,

⇒ ζr14 + ϑr12 + ξr10 + ςr8 + χr6 +
r4

4
B2 +

[
r2

2
log r − r2

4

]
C2 +

1

2
r2E2 + F2 |r=η= 0,

⇒ ζη14 + ϑη12 + ξη10 + ςη8 + χη6 +
η4

4
B2 +

[
r2

2
log η − η2

4

]
C2 +

1

2
η2E2 + F2 = 0.

(F.16)
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For the third equation we apply

− ∂

∂r

(
1

r
· ∂ψ2

∂r

)
|r=0= 0,

⇒ C2 = 0. (F.17)

To obtain the fourth equation we apply

ψ2 |r=0= 0

⇒ F2 = 0. (F.18)

We now have the simultaneous equations given by

ζη12 + 12ϑη10 + 10ξη8 + 8ςη6 + 6χη4 +B2η
2 + E2 = 0, (F.19)

ζη14 + ϑη12 + ξη10 + ςη8 + χη6 +
η4

4
B2 + +

1

2
η2E2+ = 0. (F.20)

Solving the above simultaneous equations we obtain the following solutions

B2 = −4η2
(
6ζη8 + 5ϑη6 + 4ξη4 + 3ςη2 + 2χ

)
, (F.21)

and

E2 = 2
(
5ζη12 + 4ϑη10 + 3ξη8 + 2ςη6 + χη4

)
. (F.22)

Substituting eq. (F.21) and eq. (F.22) into eq. (F.12), the expression for ψ2

is given by

ψ2 = ζr14 + ϑr12 + ξr10 + ςr8 + χr6 − r4η2
(
6ζη8 + 5ϑη6 + 4ξη4 + 3ςη2 + 2χ

)
+ r2

(
5ζη12 + 4ϑη10 + 3ξη8 + 2ςη6 + χη4

)
. (F.23)

More terms like ψ3, ψ4, . . . , ψn were not evaluated because of their very large

differentiation.
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