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Abstract 

 

Rationale: There is a lack of reliable data in developing settings to inform policy and 

practice to make best use of direct scarce resources. Health and socio-demographic 

surveillance systems have the potential to address this information gap. While levels 

and trends of mortality in rural South Africa have previously been documented, the 

complex spatial-temporal patterns and risk factors for correlated mortality data have 

not been fully examined. This will contribute to policy, interventions and programmes. 

 

Aims: To apply various advanced spatial methodologies and Bayesian modelling to 

longitudinal health and socio-demographic surveillance data in order to: better 

understand the dynamics of mortality in space-time; identify and correctly quantify 

risk factors for mortality using intrinsically correlated longitudinal data; and relate 

disparities in risk factor distributions with spatial mortality risk. Using these findings 

to: elucidate the public health implications and better inform programme planning and 

resource allocation. 

 

Methods: The Agincourt health and socio-demographic surveillance system, located 

in a rural sub-district in northeast South Africa close to the Mozambique border, is 

based on the continuous demographic monitoring of an entire geographically-defined 

population. Vital events − deaths, births, in- and out-migrations − are updated 

annually. The site covers an area in excess of 400km2 and contains 25 villages, 

~14,700 households and ~85,000 individuals. Various simple to more advanced 

spatial techniques were used to identify significant mortality “hotspots” in space and 

time. Multivariate Bayesian models were used to assess the effects of the most 
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significant covariates on age-specific mortality and develop predictive models to 

enable mapping of the mortality outcome. Spatial correlation was modelled using 

village-specific random effects which were considered as latent observations of a 

spatial Gaussian process. Correlation between any pairs of village locations was 

considered as an exponential function of their distance and modelled by the 

covariance matrix of the process. Temporal correlation was introduced by yearly 

random effects modelled via an autoregressive process of various order. The Bayesian 

framework was used to specify the models and Markov chain Monte Carlo simulation 

was applied to estimate the parameters. 

 

Key findings: Significant increases in mortality in most age groups were observed, 

especially from the late 1990’s onwards, largely due to the increase in HIV/AIDS and 

tuberculosis. Results suggest strong geographical and temporal clustering of age-

specific mortality in distinct foci, showing that mortality can vary within a small 

geographical area such as the Agincourt sub-district. The study confirmed several 

known risk factors and identified additional novel predictors of mortality. Significant 

differences in the risk factor profiles of the identified mortality “hotspots” included: 

higher Mozambican concentration, higher proportion of mother deaths, higher 

household mortality burden and higher mortality of household head, higher infectious 

disease mortality specifically HIV/TB and diarrhoea, higher proportion of temporary 

labour migrants with longer duration spent away, lower education and higher poverty. 

 

Implications: The impact of HIV/AIDS on mortality dynamics within this rural setting 

is striking. Findings indicate the need for interventions to be targeted at higher risk 

households and villages with respect to both direct and indirect effects of the HIV 
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epidemic. These high risk clusters also displayed significant differences in risk factor 

profiles. Risk maps can be used by decision makers for the design and implementation 

of interventions to alleviate the mortality burden. Interventions that target the mother-

infant pair and increase access to a variety of services for more vulnerable “high 

mortality” households are urgently needed. Important interventions include prevention 

of mother to child transmission (PMTCT), antiretroviral therapy (ART) rollout, water 

and sanitation, and screening for and control of non-communicable disease risk 

factors. Increased distance to nearest health facility emerged as a significant risk 

factor among adults and highlights the importance of geographical access to ART 

rollout. The strong spatial clustering of diarrhoeal and malnutrition mortality in 

children represents a breakdown or absence of basic services, such as provision of 

water and sanitation, that needs to addressed. Recommendations from this study have 

implications for other rural settings within South Africa and potentially beyond. 

 

Keywords: age-specific mortality, trends, spatial-temporal risk, determinants, 

demographic surveillance system, rural, South Africa 
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1.0 Background 

 

This thesis deals with the spatial-temporal distributions of mortality in a rural South 

African setting, identifying determinants that may be driving mortality and finally 

relating the identified spatial hotspots with their determinant profile to suggest 

tailored interventions. Given the intrinsic geostatistical and longitudinal nature of the 

data, sophisticated spatial-temporal and Bayesian methodologies are needed to 

accurately quantify risk and are used in this thesis. Previous work has not utilised 

these methodologies which has limitations discussed in detail in subsequent sections.

  

1.1 Justification of the study 

 

The following section deals with the justification for this study which commences 

with a discussion of the value of health and socio-demographic surveillance systems 

(HDSS) in a developing country context where data are often not available. The 

justification then highlights how little proper spatial analysis and risk factor modelling 

have been undertaken for HDSS how the growing number of HDSS have contributed 

to filling the gap in national data, as well as informing policy interventions. 

 

1.1.1 Lack of data and value of Health and socio-Demographic Surveillance Systems 

(HDSS) mortality data 

 

Countries that monitor mortality and its causes are among those that have made 

substantial progress in health. Reliable statistics on mortality, its causes and trends are 

in high demand for assessing the global and regional health situation. Reliable 
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mortality data are a prerequisite for planning health interventions (Ruzicka and Lopez, 

1990), yet such data are often not available or reliable in developing countries, 

including those in sub-Saharan Africa. (Lopez, 1990; Mathers et al., 2005). In 

particular, information on Cause-of-death in Sub Saharan Africa (SSA) is either 

unreliable or nonexistent (Lopez, 1990; Kaufman et al., 1997; Hammer et al., 2006). 

In this regard, the data collected by infrequent population censuses in this region are 

not suitable for health policy or for research directed at understanding rapidly 

evolving health transitions. 

 

Infant and child mortality are linked to maternal health which, in turn, is linked to 

socio-economic status (SES), health service access and the quality of service 

provision. The Millenium Development Goal (MDG) 4 focuses on reducing the 

under-5 mortality by two-thirds between 1990 and 2015. Reliable and timely 

estimates of childhood mortality are critically important in SSA in order to develop 

public health policy.  In particular, disease-specific mortality rates are useful for 

detecting the protective effect of a specific intervention (Greenwood, 1999; Cooper et 

al., 1998). However, in many rural African settings, children do not die in medical 

facilities and thus denominator data are not recorded in a manner suitable for research 

purposes (Cooper et al., 1998; Greenwood, 1999). Hospital-based data of child 

mortality and disease-specific fatality rates, moreover, are often incorrectly 

extrapolated to interpret child mortality in surrounding communities (Snow et al., 

1994). An outcome of these deficiencies, therefore, is that inappropriate policy is 

developed to direct scarce resources to lower risk communities, as well as an inability 

to evaluate the effectiveness of intervention programs. 
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The level of adult mortality is also an important indicator or proxy for the overall 

assessment of mortality in a population, as well as for evaluating variations in access 

to health care services and for planning health interventions (Rosero-Bixby, 1991; 

Timaeus, 2001). Despite the important implications of adult mortality estimates, this 

information has either been neglected or is biased in many African countries because 

of unreliable data or inappropriate models (Hill, 1999; United Nations, 2002). 

Because of these limitations, adult mortality estimates for public health purposes have 

been compromised by an assumption that the survival disadvantage after childhood is 

small (Murray et al., 1992). In addition to the socio-economic burden of adult 

mortality, its impact on the young and elderly survival is also a major issue. The large 

estimated number of orphans in South Africa (Government of South Africa, 2007; 

Budlender et al, 2008; UNGASS, 2010) further magnifies the need to assess the 

impact of adult mortality that precipitates both emotional, as well as financial 

hardships. The impact of HIV, in particular, has significantly reduced income per 

capita in 80 percent of all affected households (Collins et al., 2007).  Furthermore, the 

impacts of gender and nationality are important considerations that need to be 

integrated with morbidity and mortality data in order to understand rapidly evolving 

adult health transitions (Kahn et al., 2006). 

 

In the absence of accurate and comprehensive registries of vital events for the 

majority of the region's inhabitants, longitudinal studies of defined population-based 

cohorts represent the only realistic strategy to fill this void in basic public health 

information. Health and socio-Demographic Surveillance Systems (HDSS), which 

monitor the entire population of a defined geographical area, provide longitudinal 

health data and serve as a basis for health research. HDSS are being increasingly used 
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to prospectively monitor demographic events, as well as provide accurate age-specific 

mortality rates. In this regard, a number of countries, including South Africa, have 

established HDSS to collect and analyze health data in selected sites with the view to 

filling in the gaps of national data, setting health priorities and for directing policy 

based on sound longitudinal evidence (INDEPTH Network1, 2002; Sankoh and Binka, 

2004). The number of HDSS has increased over time and at present INDEPTH 

comprises 42 HDSS in 19 countries (www.indepth-network.org). 

 

Cause-of-death data are a critical input to formulating good public health policy. In 

most parts of Africa, a verbal autopsy (VA) is the only means to determine the 

probable cause-of-death and classify cause-specific mortality data (Hammer et al., 

2006). A VA is also a valuable tool for assessing longitudinal mortality trends and 

serves as a platform to test and evaluate health interventions (INDEPTH Network, 

2002). It provides a better understanding of chronic diseases, the conditions for which 

little is known. Non-communicable diseases account for a significant proportion of 

adult deaths in sub-Saharan Africa (Tollman et al., 2008), yet the empirical bases for 

public health policies and interventions are essentially absent. Despite the HIV 

epidemic, non-communicable disease among adults is also rapidly increasing in many 

developing countries due to ageing and health transitions (Kaufman et al., 1997; 

Tollman et al., 2008,).  

 

                                                
1 “The International Network for the Demographic Evaluation of Populations and Their Health in 
Developing Countries (INDEPTH) is a global network of members who conduct longitudinal health 
and demographic evaluation of populations in low- and middle-income countries (LMICs). INDEPTH 
aims to strengthen global capacity for Health and Demographic Surveillance Systems (HDSS), and to 
mount multi-site research to guide health priorities and policies in LMICs, based on up-to-date 
scientific evidence.” http://www.indepth-network.org 
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1.1.2 Methodological value of spatial-temporal and Bayesian risk factor analysis 

 

Recent advances in data availability and analytic methods have created new 

opportunities to improve the analysis of disease on a local, national or regional basis 

(Walter, 2000). The widespread use of geographic information systems (GIS) that are 

factored into statistical packages, have further encouraged spatial data analysis.With 

the development of Markov Chain Monte Carlo (MCMC) methods and software such 

as WinBUGS (a generic Bayesian software platform that has built in tools to account 

for location data), spatial-temporal Bayesian approaches are being applied to the 

analysis of many social and health problems in addition to disease mapping and 

modelling (Best et al., 2005). The reason for this is that it provides a platform for 

incorporating prior knowledge assumptions (based on objective observable data), 

adjusting for spatial -temporal correlation and uncertainty (unstructured and structured 

heterogeneity) in the modelling process, and to model both the observed data and 

random variables. 

 

The availability of geo-referenced health data, advances in statistical methodology, 

and developments in geographic information systems (GIS), are increasingly reflected 

in epidemiological research (Elliot et al., 2000). In particular, the use of spatial-

temporal analysis has increased in recent years (Elliot et al., 2000), especially for 

malaria risk and transmission (Kleinschmidt, 2001; Gemperli, 2003a; Gemperli, 

2003b; Gething et al., 2006). Despite the growing applications of spatial methodology 
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in malaria research, few studies have analysed spatial variation of all-cause and cause-

specific mortality, with little or no work on HDSS longitudinal data. 

 

Classical statistical methods for risk factor analysis assume that the outcomes are 

independent.  However longitudinal HDSS data have inherent spatial and temporal 

characteristics which violate this assumption. Objects in close proximity are often 

more alike. Consequently, one must include the effects of spatial proximity when 

performing statistical inference on such processes. Including these spatial effects is 

important for the efficient estimation of parameters, prediction, and the design of 

sampling networks (Wikle et al., 2002). Thus, common exposures (measured or 

unmeasured) may influence mortality similarly in households of the same 

geographical area, introducing spatial correlation in mortality outcomes. Repeated 

data are also expected to be correlated in time. Standard statistical methods, however, 

assume independence of outcome measures, such as mortality, thus ignoring 

correlation bias for two reasons. Firstly, the standard error of the covariates is 

underestimated, thereby overestimating the significance of the risk factors. Secondly, 

estimates of the mortality outcomes are incorrect at the locations where data are 

lacking. Geostatistical models relax the assumption of independence and assume that 

spatial correlation is a function of distance between locations. They are highly 

parameterized models and their full estimation has only become possible in the last 

decade by formulating them within a Bayesian framework that estimates the 

parameters using Markov chain Monte Carlo (MCMC) simulation (Diggle et al., 

1998). The literature indicates a paucity of spatial analysis, or Bayesian geostatistical 

risk factor modelling, has been employed to analyse HDSS longitudinal data.  
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1.1.3 Policy value of spatial-temporal and risk factor analyses 

 

The identification of geographical clusters of high risk mortality is an important 

policy issue that has received limited attention, especially the ability to rapidly 

identify individuals, households and villages at elevated risk. This study contributes to 

other literature that investigates mortality and its risk factors that are important from a 

public health perspective (Gobalet and Thomas 1996). The study also provides 

guidance regarding the distribution of health services, and other spatially-targeted 

interventions for disease control, mortality reduction and resource allocation in rural 

sub-Saharan Africa. 

 

The mortality gap between wealthier and poorer children is still unacceptably high, or 

even increasing, in many countries worldwide (Wagstaff, 2000). The targeting of 

health interventions to poorer individuals and high risk communities is, therefore, 

important for achieving equity. Successful approaches include subsidized health care 

and health inputs, improved geographic access to health interventions in poor 

communities, and social marketing (Victora et al., 2003). This study contributes to the 

targeting of mortality in Africa by incorporating methodology that explains the 

spatial-temporal dynamics of adult mortality and its associated risk factors. In 

particular, Benzler and Sauerborn (1998) recommend that when general population-

wide intervention programmes are too expensive to implement, it is necessary to limit 

such efforts to high risk units where particular adverse health effects are most likely to 

occur. 
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Despite the high cost of HIV/AIDS prevention for children (Schwartländer et al 2001; 

Stover et al., 2002; Stringer et al 2004), the lifetime treatments costs of HIV infected 

infants are far higher (Giraudon et al., 1999; Adomakoh et al., 2002; Sansom et al., 

2006). Effective preventative measures, such as prevention of mother to child 

transmission (PMTCT), therefore, need to be prioritized and targeted to reduce 

transmission rates to below 2 percent (European Collaborative Study, 2005; Naver et 

al., 2006; Newell et al., 2007) and improve child survival. Spatial analysis and 

mapping is an effective method of depicting the spread or retreat of disease and 

mortality over space and time (Clarke et al., 1996).  

 

1.2 Spatial temporal modelling in the public health sector 

 

Bayesian geostatistical modelling is both a powerful and statistically robust tool for 

identifying high prevalence areas in a heterogeneous and imperfectly known 

environment (Clements et al., 2006). Analysis of spatially indexed data is common in 

biomedical and epidemiological research due to the effect of geographical location on 

health-related outcomes. An increasing body of literature on spatial analysis of health 

outcomes in developing countries, moreover, has been motivated by the availability of 

geo-referenced data, and by the recent advances in methods and software that can 

implement such complex models (Walter 2000; Brezger et al., 2005; Rezaeian et al., 

2007). Previous studies applying Bayesian and other spatial analyses have 

demonstrated their policy and decision-making value (Best et al., 2005; Gething et al., 

2006). Examples include malaria prevention and control (Kleinschmidt, 2001; Diggle 

et al., 2002; Gemperli et al. 2003a; 2003b; 2006; Mabaso et al., 2006; Kazembe et al., 

2007a; Noor et al., 2009; Yeshiwondim et al., 2009;  Gosoniu et al., 2006; 2008; 2010; 
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Zacarias et al., 2010), control of other neglected tropical or parasitic diseases such as 

schistosomiasis (bilharzia), onchocerciasis and trachoma (Gyapong et al., 2002; 

Zhang et al., 2008; Raso et al., 2005a and b; Clements et al., 2006; Clements et al., 

2008a; 2008b;Taylor et al., 2009; Baker et al., 2010; Brooker et al., 2010; Clements et 

al., 2010a; 2010b) and for targeting of mortality interventions (Balk et al., 2003; 

Adebayo et al., 2004; Balk et al., 2004; Gemperli et al., 2004; Hsu et al., 2004; 

Kandala 2006; Kazembe et al., 2007a; Kazembe and Namangale 2007b; Becher 2010; 

Sartorius et al., 2010a; 2010b; 2011). 

 

Social, policy and technological changes influence the types of risk factors to which 

populations are exposed, typically shifting the major causes of disease and death. It is 

estimated that non-communicable diseases will cause over 70 percent of all deaths 

worldwide by 2020, compared with an estimated 15percent of deaths from 

communicable diseases (Gwatkin et al., 1999). The mapping of geographical 

variations in the risk of communicable and non-communicable diseases aimed at 

advancing etiological hypothesis and targeting of interventions, will increase the 

importance of future geographically driven epidemiological studies. In this regard, 

GIS data incorporated in spatial or geostatistical techniques, will become increasing 

important to target interventions. Spatial analysis and GIS can reveal spatial variations 

and distribution patterns of disease and mortality (all-cause and cause-specific) much 

more effectively than the tabular form with no spatial structure or proximity built into 

it (World Health Organization (WHO), 2009). Its efficiency in visualizing the 

distribution of health-related problems also allows policy makers to target resources 

more efficiently. Disease maps highlight low- and high risk areas and environmental 

factors (physical and/or socio-cultural) that contribute to disease causation and 



 25 

mortality. Furthermore, GIS overlay techniques and relating the distribution of 

identified risk factors with observed mortality can assist policy makers when tailoring 

interventions to a given location (Jerrett et al., 2010). 

 

1.3 Mortality estimates and trends: sub-Saharan Africa, South Africa and the 

Agincourt sub-district 

 

Large reductions in child mortality occurred in low and middle-income countries 

towards the end of the last century, however, more than 10 million children still die 

every year in these countries (Ahmad et al, WHO). In particular, infant and childhood 

deaths remain high the developing world, particularly sub-Saharan Africa (SSA). In 

1990, there was a 20-fold difference in infant deaths between sub-Saharan Africa and 

industrialized countries (180 versus 9 deaths per 1000 live births). In 2000, this 

difference had increased to 29-fold with mortality rates of 175 and 6 per 1000 

children respectively (UNICEF 2001). Furthermore, approximately  420 000 children 

in 2007 became infected with HIV, mostly through mother-to-child transmission 

(MTCT) in resource poor settings, particularly SSA (Dabis et al., 2000; Newell, 2001; 

UNICEF et al., 2008). There is, however, significant heterogeneity within SSA with 

respect to differential age patterns and trends in childhood mortality rates which have 

increased since the 1990s (Ahmad OB et al, 2000; WHO, 2002). This trend has 

mainly been attributed to the effects of the HIV/AIDS epidemic and to the spread of 

chloroquine-resistant malaria (Müller and Garenne, 1999; Adetunji, 2000; Trapé, 

2001). Other, more easily preventable, causes-of-death among children younger than 

five years include diarrhoea, pneumonia, measles and malnutrition. (Black et al., 2003; 

Tulloch, 1999). 
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Increased HIV/AIDS infection, as well as the re-emergence of infectious diseases, 

especially in sub-Saharan Africa, has been accompanied by a resurgence of drug-

resistant strains of malaria and tuberculosis closely associated with HIV/AIDS (Cohen 

2000; Morens et al., 2004). Furthermore, some infectious diseases are linked to 

several types of cancers. Hepatitis B and C, for instance, are risk factors for liver 

cancer, and the human papilloma virus is a precursor for cervical cancer (Ikeda et al., 

1998; Niederau et al., 1998; Walboomers et al., 1999).  In addition, countries in SSA 

are increasingly subject to diseases consequent on changing behavioural patterns 

including smoking and alcohol consumption. Lifestyle-related diseases, as well as 

diseases linked to ageing are, therefore, also associated with adult mortality in both 

developed and developing countries (WHO 2002; 2003).  

 

The emergence of HIV/AIDS has precipitated a substantial decline in life expectancy 

in many African countries, especially in adults aged between 15 and 60 years. The 

severity of the HIV/AIDS impact is magnified because this disease targets working 

adults, who are responsible for the welfare of the young and elderly (Murray et al., 

1992) who comprise more than 50 percent of the population of SSA (United Nations 

2006). Although estimating these mortality levels has been compromised by a lack of 

reliable data, adult mortality is higher in SSA than in the rest of the world (Mathers et 

al. 2006). Using models that take HIV/AIDS into account, Murray et al. (2003) 

estimate the probability of dying between the ages of 15 and 60 in SSA in 2000 had 

risen by approximately 0.15 when compared to 1990 (Lopez et al., 2006). In 2001, 

moreover, adult mortality from communicable and reproductive diseases appears to 

have increased in SSA with HIV/AIDS accounting for 40percent and 45percent of 
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adult male and female mortality respectively (Mathers et al. 2006). However, this 

international picture conceals regional variations, since HIV/AIDS and many tropical 

diseases, such as malaria, do not affect all African countries to the same extent (Grant 

and De Cock, 1998; Kalipeni 2000). 

 

In South Africa, HIV has produced a substantial decline in life expectancy in both 

urban  rural settings (Bradshaw et al, 2000; Kahn et al., 2007a). The HIV effect on 

child mortality may be more noticeable in South Africa due to the lower underlying 

non-HIV mortality than in other parts of Africa. Increases in mortality in rural South 

Africa were most prominent in children (0–4 years) and young adults (20–49 years) 

where increases of two- and fivefold respectively were reported in the 1990’s and 

early 2000’s.  Kahn et al. (2007a), for instance, showed a prominent increase in child 

mortality due to HIV over this period from 39/1000 to 77/1000. Similarly, Garrib et al. 

(2006) found high levels of infant mortality in 2006, 67.5 per 1000 person-years, and 

estimated HIV/AIDS as the single largest cause-of-death in the under-5 age-group at 

41percent. Gender differences in mortality patterns were particularly evident with 

greater increases in female mortality in most adult age groups (Kahn et al., 2007a). 

Adult mortality in South Africa also increased during the period 1992 to 2005 due to 

infectious and parasitic diseases largely driven by HIV/TB (Tollman et al., 2008). 

Furthermore, age-specific mortality from non-communicable disease also increased 

significantly in adults who were 30 years and older; the change in younger age-groups 

was not significant. The prominent increase in all-cause mortality, therefore,  has been 

driven by the large increase in infectious and parasitic disease (HIV) and a modest 

increase in non-communicable disease (Tollman et al., 2008). However, little spatial 
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analyses of these patterns have been undertaken, thus, justifying a starting point this 

study. 

 

Injuries and violent death are also an important cause of adult mortality in Africa, 

particularly adult males. Violent deaths are mostly related to a specific local or 

regional context and often neglected given its lower relative health priority status in 

SSA and especially South Africa (Meel, 2004). Furthermore, the difference between 

rural and urban areas in terms of living conditions and health care, suggests that adult 

mortality in rural areas may differ from urban areas (Clifford and Brannon, 1985; Ali 

et al., 2007). In this context, HDSS, though not representative at national level, 

contribute to a better understanding of population levels and trends, particularly with 

regards to adult mortality, while also providing informative data on cause-of-death 

(Kaufman et al. 1997; Garenne and Cantrelle, 1997; Ngom et al., 2001; Pison 2005). 

 

Studies in several developing countries have shown high rates of premature mortality 

in adults (WHO 2003; Lopez et al., 2006). The risk of a 15-year-old person dying 

before reaching 60 years of age is 25percent for men and 22percent for women in 

developing countries, more than double than that in the developed world, where the 

respective figures are 12percent and 5percent (Murray et al., 1992). A contrast 

between low-mortality developing countries such as China (with more than one-sixth 

of the world's population) and high mortality countries in Africa (with one-tenth of 

the global population) illustrates the extreme diversity in health conditions among 

developing countries. Less than 10percent of deaths in China occur below 5 years of 

age compared with 40percent in Africa. Conversely, 48percent of deaths in China 

occur beyond age 70, compared with only 10percent in Africa (Lee, 2003). In addition 
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to the neglected problem of adult death which requires attention in its own right, the 

health of adults is essential for the wellbeing of the young and the elderly. Thus, the 

need to understand the trend and causes of adult mortality to develop national and 

international policies cannot be underestimated (Kitange, 1996). 

 

Mortality-related analyses in Agincourt, and other HDSS, have largely documented 

the changing trends and patterns of all-cause and cause-specific mortality by age and 

sex. These analyses have also quantified certain risk factors such as comparisons 

between Mozambican immigrants and local South Africans, and variations by gender 

and socio-economic status using conventional methodologies (Tollman et al., 1999a; 

Garenne et al., 2000a; Hargreaves et al., 2004; Sankoh et al., 2006; Zwang et al., 2007; 

Kahn  et al., 2007a; Cook et al., 2008; Tollman et al., 2008). However, understanding 

risk factors and their distribution can play a central role in predicting and preventing 

premature mortality by guiding policy and targeting interventions. An accurate 

quantification of previously documented and new risk factors is, therefore, possible 

using a Bayesian approach.  
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Summary 

 

In the background and justification, I have shown: 

 

 the dearth of mortality data in developing settings where accurate information 

regarding spatial-temporal distribution and associated predictors is most 

needed to inform policy and practice, and to  appropriately direct scarce 

resources 

 the, as yet, untapped potential of health and socio-demographic surveillance 

systems to contribute data on spatial-temporal mortality patterns and related 

risk or predictive factors 

 previous studies that have documented levels and trends for mortality in sub-

Saharan Africa, South Africa and the Agincourt sub-district 

 that there are sophisticated methods that can be applied to elucidate complex 

spatial-temporal patterns of mortality, with examples of how this has been 

applied within the public health sector 

 that most previous analyses have not used methods for correlated data when 

quantifying risk factors, and that these can be correctly quantified using 

Bayesian geostatistical and temporal models 

 that there has been policy value in the past when these or similar techniques 

have been applied, especially in resource poor settings. 
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Overall contribution 

 

This thesis will contribute through the testing, refinement and application of various 

classical and Bayesian spatial-temporal analysis and statistical modelling of risk 

factors for a very large geostatistical longitudinal data such as an HDSS. The novel 

application of methodologies within the public health sector will contribute to a better 

understanding of factors related to mortality and how to better quantify them for 

correlated geostatistical and longitudinal data. This study contributes to the 

development of public health interventions by targeting clusters of adverse health 

outcomes that appear to aggregate geographically over time. This study will also 

contribute to the tracking and targeting of other emerging (or re-emerging) 

communicable diseases that are compromising achievements made in developing 

countries (Sen and Bonita, 2000). In particular, space-time modelling and mapping 

can be an effective tool for public health authorities and epidemiologists in showing 

and monitoring diffusion patterns of communicable diseases and in searching for 

infectious agents. There is, thus, the need to identify disparities in the distribution of 

mortality and their related risk factors in space and time in order to guide policy 

interventions and programmes. The methods developed, assessed and used in this 

thesis, therefore, contribute to our understanding of risk factor modelling of large 

correlated longitudinal data. 
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2.0 Literature review 

 

The literature review extends from the history and development of spatial analysis 

techniques, to their applications in various settings such as health and socio-

demographic surveillance systems (HDSS) and risk factors for age-specific mortality. 

Using the relevant literature, I finally present a broad overall conceptual framework 

for this thesis. 

 

2.1 Methods and applications of spatial analysis for disease and mortality 

  

2.1.1 Early disease mapping 

 

The earliest disease maps were constructed more than two hundred years ago (Pickle, 

2002; Elliot, 2004) when John Snow developed cholera maps to describe the epidemic 

in London (Snow, 1855). Other early examples include a spot map of yellow fever in 

1798 and an unpublished disease map of the world produced in 1792 (Barrett, 2000).  

Maps of disease rates in different countries started to emerge in the 1800’s that 

characterized the spread and possible causes of outbreaks of infectious diseases such 

as yellow fever and cholera (Walter, 2000). Most of the first disease maps identified 

residence location of cases by either a dot or a small bar (McLeod, 2000). Patterns 

were identified by visual examination and the case locations were compared to those 

of suspected or known risk factors. A well known early example is that of cholera 

cases plotted in relation to water pumps in London (Snow, 1855). With time these 

methods “grew in complexity, sophistication, and utility” (Elliot, 2004). 
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2.1.2 Development of spatial analysis 

 

Early evidence of manual and then computerized spatial information capturing and 

analysis were demonstrated in the disciplines of cartography, surveying and 

geography (Coppock and Rhind, 1991) This evidence, however, was not formalized 

until the late twentieth century due to a lack of appropriate databases and software 

(Bailey and Gatrell, 1995; Pickle 2002). Since then spatial analytic techniques have 

been developed in many disciplines including biology, epidemiology, sociology, 

demography, statistics, geoinformatics, computer science, mathematics, and scientific 

modelling (Bailey and Gatrell, 1995). Due to recent advances, the geographic 

information system (GIS) has become a common software feature that is extensively 

applied in the modern analytic toolbox and now provides public health researchers 

and policy makers with an excellent platform to explore the spatial nature of data 

(Bailey and Gatrell, 1995; Ricketts 2003). Computer science has also been enhanced 

by the application of algorithms (Mitchell, 1998) that have been complimented by 

advances in processing capacity. Spatial analysis in the biological sciences includes 

studies of species distributions (Segurado and Araujo, 2004; Guisan and Thuiller, 

2005; Elith et al., 2006), and animal movement (Boveta and Benhamou, 1988; Wua et 

al., 2000; Patterson et al., 2009; Tang and Bennett, 2010). Other spatial analysis 

applications include ecological studies of vegetation (Dale 1999), remote sensing 

imagery in vegetation mapping (Xie 2008), and ecological studies of spatial 

population dynamics (Tilman and Kareiva, 1997). The potential of remote sensing 

data for use in the field of epidemiology and the control of tropical diseases was first 

noted by Cline (1970) and has since been extensively applied in animal and human 

epidemiological research (Stein et al., 1999; Brooker et al., 2006; Rinaldi et al., 2006; 
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Hay et al., 2006; Danson et al., 2008). Further developments of spatial analysis 

include spatial econometrics (Anselin et al., 2004; Arbia and Baltagi, 2009; Anselin, 

2010), disease mapping and spread in epidemiology (Basáñez et al., 2004; Pfeiffer et 

al., 2008), and mortality and health care delivery (Walsh et al.,1997; Klauss  et al., 

2005). Finally, spatial analysis has been greatly enhanced by new mathematical, 

modelling and statistical techniques that have contributed to the development of 

advanced spatial statistics (Whittle, 1954; Vecchia, 1988; Gelfand et al., 1990; Diggle, 

1998; Elliot et al., 2000; Walter, 2000; Rue et al., 2002; Wikle et al., 2002; Higdon et 

al., 2003; Gemperli, 2003b; Banerjee et al., 2004).  

 

Spatial analysis in the early part of the last century was hampered by a lack of 

appropriate statistical methods, lack of data and software (Pickle, 2002; Bell, 2002). 

Identification of cases for early maps, dating back to the late 18th and 19th centuries, 

was made by individual physicians, and rates could not be calculated in the absence of 

an area-wide population count. When health outcome data became available on a 

national level in the 1930’and 1940’s, statistical methods for their analysis soon 

followed. The next decade saw the development of key statistical methods to evaluate 

spatial autocorrelation or clustering (Moran, 1948; Geary, 1954) This formative work 

was then extended to the detection of disease clustering (Mantel, 1967) and space-

time interactions (Knox, 1964). Modern spatial analysis now focuses on computer-

based techniques because of the large amount of data, the power of modern statistical 

and geographic information science (GIS) software, and the complexity of the 

computational modelling. Kulldorff and Nagarwalla (1995), for example, developed a 

new method for the detection of spatial and space-time clusters of disease. “The 

proposed test can detect clusters of any size, located anywhere in the study region. It 
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is not restricted to clusters that conform to predefined administrative or political 

borders. The test can be used for spatially aggregated data, as well as when exact 

geographic co-ordinates are known for each individual” (Kulldorff and Nagarwalla, 

1995). A free software to implement this methodology called SaTScan is available at 

http://www.satscan.org/. 

 

Other statistical methods for spatial analysis also developed in parallel to those in 

epidemiology. Geostatistical methods such as kriging arose from the need to 

interpolate and predict in the geologic sciences, for example to produce a surface 

rendition of soil content (Krasilnikov et al., 2008) or to predict where oil drilling 

would be successful (Hohm, 1988). These methods were initially for lattice point data 

(regularly-spaced samples), however, extensions allowed application to irregularly-

spaced data (Nielsen, 1994). Prediction models were also developed for small area 

estimation from national survey data (see Ghosh and Rao 1994; Rao 2003). The goal 

of small area estimation is to predict responses in non-sampled areas, similar to 

geostatistics, but the method includes explanatory covariates in the regression model 

that ignores spatial correlation in the data. 

 

2.1.3 Current methods 

 

Before I review each of the methods used in my thesis in more detail, I first make a 

theoretical distinction between the two broad spatial statistic measures and further list 

the methods under their relevant sections in Table 1. These include 

a) Global spatial measures or statistics 
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-A single average value which applies to the entire data set (study area) 

-Same pattern or process occurs over the entire geographic area 

b) Local spatial measures or statistics 

-A unique value calculated for each location (or observational unit) 

-Different patterns or processes may occur in different parts of the region   

-Geographical approaches to estimating local spatial segregation and local measures 

of segregation phenomena were suggested in the 1980s (Getis and Ord, 1992) and 

have developed in parallel with geostatistical approaches (Cressie, 1993). 
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Table 1: List of global and local spatial methods 

Global methods Local methods 
Joint Count Statistic (Goodchild, 1986) 

Kendall (Kendall, 1970) 

Local Indicators of Spatial Association 
(LISA) (Anselin, 1995): 
Local Moran’s  
Local Geary’s C 
Local : developed by Ord and 
Getis (1995) 
Local :developed by Ord and 
Getis (1995) 
 
Generalised forms: GLISA (Bao and 
Henry 1996) 
 

Weighted K-Function (Getis, 1984) Local K-Function (Getis, 1984) 
 

Global Moran’s I (Moran, 1948): well 
known test for autocorrelation 
 

Kulldorff’s spatial and space-time scan 
statistics 

Global Geary’s c (Geary, 1954): well 
known test for spatial autocorrelation 
 

Bayesian areal (lattice) models 
--Conditional Autoregressive (CAR) 
(Besag 1974) 
--Simultaneous Autoregressive (SAR)  
(Cressie, 1993) 
 

General G(d) statistic (Getis and 
Ord ,1992) 
 

Bayesian point pattern (geostatistical) 
models 

 Bayesian areal and geostatistical models 
--General Spatio-Temporal Model 
(Cressie and Huang, 1999; Stein 2005) 
--Spatio-Temporal Dynamic Models 
(Wikle 1998, 2003) 

 

The individual methods reviewed below start with simpler techniques and increase in 

complexity and sophistication. Local methods are used (Moran’s I, Kulldorff spatial 

clustering and Bayesian geostatistical kriging) for all analyses in the publications. 

This is because we were less interested in whether or not clustering/autocorrelation 

was occurring globally but rather where the specific all-cause and cause-specific 

hotspots were within the site. 
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2.1.3.1 Simple exploratory: areal aggregation, rates 

 

Generally disease or mortality proportions or rates are aggregated by different levels 

of government administrative unit boundaries or demarcations (e.g. provincial, district 

and sub-district). The most basic calculation is the crude mortality rate. However, a 

comparison of crude rates between different villages would essentially be meaningless 

because more deaths would be expected in villages with an older population structure. 

An age-adjusted rate scale, therefore, is more meaningful for proper comparison. The 

actual value of any standardized rate is only meaningful in comparison to other rates 

that have also been standardized in the same way (Rothman et al., 2008). The two 

methods most often used to adjust epidemiologic rates are the direct and indirect 

methods (Fleiss 1981). The advantage of the indirect method is that it may be used for 

sparsely populated areas which would have age-specific rates too unreliable for the 

direct method of standardization. However, direct standardization retains the rank 

order and the proportional differences of the age-specific rates between places. 

Further limitations of these exploratory approaches include loss of spatial information 

(particularly important for local public health officials concerned with identifying 

local “hotspots2”), influence of confounders (age), small numbers and hence the 

reliability of estimates (Pickle 2002; Ghosh et al., 2004; Ghosh et al., 2006; Lawson, 

2009). 

 

 

 

 

                                                
2 Location or area with excess mortality 
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2.1.3.2 Spatial smoothing or filtering 

 

Spatial smoothing or filtering is a non-parametric exploratory spatial analysis 

technique and has proven useful in disease or mortality mapping (Kafadar, 1996; 

Talbot et al., 2000; Pickle 2002; Best et al., 2005). The main purpose of these two-

dimensional smoothing algorithms (linear or non-linear) is to remove background 

random noise so that the underlying spatial pattern for a given set of data can be seen. 

Spatial filtering produces spatial density estimates based on health events that have 

been observed at individual locations and are a valuable tool for exploring the spatial 

distribution of cases or deaths in relation to persons at risk. Thus, smoothing methods 

make use of information from neighbouring points or areas to improve the estimated 

value for each point. In public health policy, this can be particularly valuable in 

justifying potential target locations for focusing scarce intervention resources. 

 

The main problem with smoothing methods is how to define spatial neighbours. With 

temporal smoothing this is simpler as there is a clear ordering of points either side of 

the given time point. However in a spatial context this becomes more complex as one 

is now dealing with two dimensions. The choice of spatial neighbours can impact the 

analysis, especially when areas vary greatly in size and shape (Kafadar, 1996; Talbot 

et al., 2000; Pickle 2002; Best et al., 2005). Furthermore, none account for possible 

explanatory variables i.e. they do not include the capacity to adjust for potential 

confounding variables. Most do not permit inverse variance weights, making them 

inappropriate for rate and count data except perhaps as a crude first look at the 

patterns or for areas such as census tracts where population sizes are roughly equal 



 40 

(Pickle 2002). Thus, their application is limited to producing descriptive maps that 

must be prepared and interpreted with care. 

 

2.1.3.3 Hypothesis testing of counts: Poisson confidence intervals, spatial 

autocorrelation and spatial clustering 

 

To simply identify demarcated areas (e.g. government administrative units) or villages 

(in the case of an HDSS) in which the death rate is significantly above average either 

overall or by year, an exact 95percent confidence interval (CI) for each (area) rate can 

be calculated based on the Poisson distribution of the observed number of deaths in a 

given year or period (Esteve et al., 1994; Sankoh et al., 2001). An area or village rate 

can be considered significantly above average if the overall rate of the respective year 

or period is below the lower value of the confidence interval for that area or village 

rate. This procedure has been commonly used in descriptive epidemiology (Pickle et 

al., 1987).  

 

The use of spatial-temporal analysis has increasingly been applied in epidemiological 

research in recent years (Elliot et al., 2000). Advances in data availability and analytic 

methods have also created new opportunities for investigators to improve on the 

traditional reporting of disease at national or regional scale by studying variations in 

disease occurrence rates at a local (small-area) scale (Walter, 2000). Spatial analytical 

techniques and models, moreover, are often used in epidemiology to identify spatial 

anomalies or hotspots in disease or mortality regions. These analytical approaches can 

be used to not only identify the location of such hotspots, but also describe their 

spatial patterns. 
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When studying spatially-related objects or characteristics, the first step generally 

involves describing the regional characteristics that differentiate areas (e.g. villages or 

households) from each another, and then moves onto the analysis of spatial 

interrelationships (Douven and Scholten, 1995; Rezaeian et al., 2007). Common 

spatial techniques used in health research include disease mapping, clustering 

techniques, the identification of risk factors through map comparisons and regression 

analysis (Rezaeian et al., 2007). Spatial clustering techniques are important for 

statistical consideration, and form the initial steps in the development of models for 

predicting disease risk areas. Disease risk hotspots located close to one another tend to 

share similar disease or mortality risk factors, because they share similar 

environments and are also often connected by the spread of communicable diseases 

via vectors or host dispersal (Waller and Gotway, 2004).  

 

Spatial autocorrelation analysis includes a class of methods which measure spatial 

dependence, the association between a value at a particular location and values for 

nearby or adjacent areas. It is useful for finding disease clusters based on area data 

(Goodchild, 1986; Anselin,1995; Cromley and McLafferty, 2002;). Geary’s C (Geary, 

1954) and Moran’s I (Moran, 1948) are two commonly used methods for areal 

patterns or spatial autocorrelation. By comparing adjacent area values, they assess the 

level of large-scale clustering. They have been frequently applied to examine areal 

clusters, including for example for cancer (Moore and Carpenter, 1999; Mohebbi et al., 

2008), other diseases (Fang  et al., 2006; Lombardo and Buckeridge , 2007; Chaikaew 

et al., 2009;), mortality (Uthman et al., 2009; Tottrup et al., 2009; Borden and Cutter, 

2008) and other applications such as clustering of traffic accidents, crime and poverty 
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(Chainey and Ratcliffe, 2005; Holt, 2007; Tsai et al., 2009; Anselin et al., 2008; 

Erdogan, 2009). 

 

Among the most important exploratory methods for epidemiology and public health 

are those which identify significant clusters in space and/or time (Ripley, 1977; 

Diggle, 1983; Alexander and Boyle, 1996; Hjalmars et al., 1994; 1996; 1999, 

Kulldorff, 1995; 1997; Waller and Gotway, 2004). Spatial, temporal, and space-time 

scan statistics are now commonly used to detect and evaluate statistically significant 

spatial clusters in multiple disciplines. The K function introduced by Ripley (1977) is 

one such method for general clustering in point pattern and is discussed in detail by 

Diggle (1983) and Waller and Gotway (2004). Another technique which takes this one 

step further is the kernel intensity function developed by Kelsall and Diggle (1995) 

which can be used to test for clustering as well as the presence and location of local 

clusters. Further discussion and applications of this method can be found in (Waller 

and Gotway, 2004; Wheeler, 2007). A more commonly used clustering technique 

employs the spatial or space-time scan statistic developed by Kulldorff et al. (1998). 

This application is embedded in a free and easy to use software called SaTScan which 

is widely used in an increasing number of applications including epidemiology 

(Hjalmars et al., 1996, Britton, 1997; Sankoh et al., 2001, , Huang et al., 2007, 

Wheeler, 2007; Takahashi et al., 2008; Tanser, 2009; Ruiz-Moreno et al., 2010; 

Pascual, 2010; Becher, 2010) and other research fields and minimizes the problem of 

multiple statistical tests. SaTScan is also useful for determining which clusters merit 

further investigation and which clusters are likely to occur by chance alone. 
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The exploratory analysis of spatial data aims to describe spatial patterns using 

inferential statistics (for example, to determine whether the occurrence of mortality is 

random or not), and for the development of hypotheses. However, these techniques do 

not answer the question as to what may influence the spatial patterns and spatial 

modelling is better suited to predict mortality rates (e.g. at unsampled locations) 

(Diggle et al., 1998). These Bayesian geostatistical approaches have the advantage 

over traditional spatial prediction or interpolation methods through a robust and 

comprehensive handling of spatial structure (incorporating spatial dependency) and 

the uncertainty associated with predicted patterns. 

 

2.1.3.4 Spatial modelling (Bayesian kriging) 

 

The identification of clusters described in the section above does not provide any 

causal explanation for the patterns detected and hence spatial modelling is required. 

Recent advances in data availability and analytic methods have also created new 

opportunities for investigators to improve on the traditional reporting of disease at 

national or regional scale by studying variations in disease occurrence rates at a local 

(small-area) scale (Walter, 2000). With the advent of health data captured at a fine 

geographical resolution (as is the case with HDSS data), small area disease mapping 

studies have become an established technique in epidemiology (Best et al., 2005).  

 

A study by Sankoh et al (2002) demonstrated that the mapping of mortality rates 

using Bayesian smoothing techniques is a useful graphical supplement to these 

analytical methods for disease cluster investigations. In this regard, these techniques 

address the issue of heterogeneity in the population at risk and it is therefore 
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recommended for use in the explorative mapping of mortality. This and future 

research efforts in this area will, thus, use Bayesian kriging to produce smooth maps 

of mortality risk (Gelfand et al., 1999). As mentioned earlier, underlying risk factors 

(both quantified and un-quantified) drive the spatial and temporal risk clustering 

observed in this study. Common exposures may influence mortality similarly in 

households of the same geographical area, introducing spatial correlation in mortality 

outcomes. Repeated data are also expected to be correlated in time. Standard 

statistical methods assume independence of outcome measures (e.g. mortality data) 

and ignoring correlation introduces bias in the analysis. Recent developments indicate 

Bayesian techniques to be the appropriate methodology for taking account of this 

spatial and temporal dependence (Wikle and Royle, 2002; Diggle et al., 1998). These 

risk factor studies in the Agincourt sub-district will employ Bayesian geostatistical 

models to correctly quantify risk factors for mortality by age group. These spatial 

models allow one to estimate with accuracy the amount of spatial and non-spatial 

variation in the data, assess factors associated with spatial correlation and test 

hypotheses under the presence of spatial correlation. 

 

More complete studies comparing these various methods are needed to provide 

specific recommendations for general and specific tests of clustering. However, it is 

clear that clustering tests should not be used for health data unless they account for 

varying population sizes across areas (Goovaerts and Jacquez, 2004). In addition, 

some adjustment for multiple comparisons should be made whenever necessary, such 

as when different sized moving windows are tried. Whenever possible, it seems that 

use of a Monte Carlo method to compute the significance level of the test is to be 

preferred over asymptotic results based on questionable assumptions. These tests 
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provide a useful preliminary evaluation of clusters in a given area and for generating 

hypotheses; however, this should be followed by further careful investigation to 

confirm the existence and importance of the identified patterns (Pickle, 2002). 

 

With the development of Markov Chain Monte Carlo (MCMC) methods and software 

such as WinBUGS, Bayesian spatial modelling approaches are being applied to the 

analysis of many social and health problems in addition to disease mapping and 

modelling. The Bayesian approach takes into account not only the raw data but also 

any prior knowledge that supplements the given data. The prior information may 

include all possible evidence and results from previous studies and data. These 

assumptions can be updated when new evidence or information is discovered. 

Bayesian approaches also assume that neighbouring areas are more likely to be 

similar than remote areas (Rytkönen, 2004). 

 

Despite the inherent strengths of Bayesian methods, certain criticisms exist. I discuss 

some of the major issues now one by one.  One major concern is the choice of 

subjective priors (beliefs) which influence the models posterior estimates. The choice 

of word “subjective” however is not entirely accurate and should rather be referred to 

as informative.  The choice of informative priors which are study specific is often a 

major issue raised with Bayesian modeling as they are often not deemed transferrable 

between studies.  An informative prior can be problematic if not based on previous 

“objective data”. In words of Gelman: Prior distributions can be informative while 

still being constructed from objective data”. Furthermore, given the paucity of this 

modeling approach using longitudinal demographic surveillance data we have erred 

on the side of caution and have further elected to use non-informative priors in this 
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research which further removes any subjective model manipulation by the researcher.  

A further criticism is the computation complexity of Bayesian methods. This however 

also applies to conventional classical methods and “are the price we pay for analyzing 

large and complex data sets” (Gelman, 2008).  Furthermore, some argue that the 

model formulation, fitting and checking in a Bayesian framework is automatic and not 

necessarily rigorous. Bayesian methods are often scrutinized in the second step 

(inference), however Gelman argues that the process as a whole is definitely not 

automatic and the real challenge comes in terms of constructing a model that 

adequately and objectively depicts reality and rigorously assessing that the fit of the 

model is correct. As you will see in the methods part of this thesis I have also spent 

much time ensuring the fit the Bayesian geostatistical models was adequate based on 

prediction and Bayesian credibility intervals. 

 

The use of GIS based Bayesian spatial modelling has particularly added value in the 

field of epidemiology. Furthermore, the applications of Bayesian methods to disease 

mapping, risk assessment and prediction within spatial epidemiological research, are 

numerous (Besag and Newell, 1991; Bernardinelli et al., 1995; Biggeri et al., 1995). 

Bayesian modelling techniques can be successfully used in descriptive mapping 

analyses to produce, for example, maps of posterior means (smoothed incidence 

values) and maps of posterior probabilities (Best et al.,, 2001; Congdon, 1997; 2003). 

However, until recently, there were not many software packages suitable for Bayesian 

analyses, and the building of complex spatial models, therefore, requires specialist 

programming work (Bland and Altman, 1998). Full Bayesian estimation employing 

Monte Carlo techniques can be used to predict multi-dimensional disease patterns and 

to provide more realistic significance levels of statistical tests. Recent major 
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improvements in computational speed have also facilitated the merging of   

epidemiology, geostatistics and survey sampling, to provide powerful new methods 

for the spatial analysis of disease patterns (Ghosh et al., 1998). 

 

2.2 Ethics of mapping and confidentiality 

 

The presentation of sensitive information in maps must protect the subject’s 

confidentiality. One common approach to protect privacy called “computational 

disclosure control," includes both aggregation of data values in the dataset before 

analysis, and cell suppression in a table after analysis (Sweeney, 1997; Rudolph et al., 

2006). However, even aggregated data may need to be suppressed. One example of 

aggregation and suppression are the restrictions applied to data retrieved from the 

Compressed Mortality File (CMF) on Centres for Disease Control (CDC) WONDER 

on the Web. Counts and rates are suppressed when the single-year count is less than 

or equal to five for counties with a total population that is less than 100,000. However, 

when the data is aggregated over three or more years, there is no suppression of small 

counts even when the count is less than five (http://wonder.cdc.gov). 

 

The increasing use of linked social-spatial and health-spatial data has raised 

significant concerns regarding the ability to protect the confidentiality of research 

participants and the potential stigmatisation that may arise if sensitive information 

were released. Rural areas present an amplified problem in that settlements are fewer, 

more dispersed and distinct than in urban areas, and higher levels of buffering are thus 

required to ensure confidentiality and limit disclosure risk (Leah et al., 2005). 

Presenting information cartographically is a very useful tool for quickly ascertaining 
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complex spatial patterns visually, yet disclosure risks are associated with this form of 

presentation (Leah et al., 2005). Increased layers such as borders and roads when 

displayed on a map add to the security threat.  

 

One approach to protect sensitive individuals or locations is to add a random error to 

the longitude and latitude before display on a dot map. This jittering of the location is 

documented for users of the map and the jittering must be sufficient to ensure 

confidentiality. More traditional is the presentation of spatial statistics in the form of a 

chloropleth or isopleth maps 3 so that individual locations are never mapped for 

presentation (Frumkin, 2010). 

 

Confidentiality risks exist when health data are disaggregated at a fine scale (Curtis et 

al., 2010). Various studies describe geographical masks that protect the confidentiality 

of health records, when appropriately used, while permitting many important 

geographically-based analyses (Armstrong et al., 1999; Curtis et al., 2010). They 

explore transformation-masking methods, aggregation-masking methods, nearest-

neighbour masks, and the replacement of geographic identifiers with contextual 

information of specific interest to the data user. 

 

2.3 Health and socio-Demographic Surveillance Systems (HDSS), verbal autopsy 

and geographic information systems (GIS) – strengths and limitations 

 

                                                
3 A choropleth map is a thematic map in which areas are shaded or patterned in proportion to the 
measurement of the statistical variable being displayed on the map, such as population density or per-
capita income. In other words it uses geographic units of analysis to aggregate individual case data as 
smoothed incidence for that area or unit rather than plotting point data. 
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Many countries have set up sites to collect demographic and health data on selected 

populations in a longitudinal follow-up (INDEPTH Network, 2002; Sankoh and 

Binka, 2004).  Kahn (2006 and the National Research Council (2002) suggest that the 

advantages of a HDSS include:  

 measurement of and changes in demographic events such as fertility, mortality 

and cause-specific disease burden 

 identification of health transitions 

 large sample sizes that enable observation of rare events 

 longitudinal follow-up of all members of a community and therefore provide 

and platform along with the ability to evaluate the impact of interventions 

 embedding experimental study designs in a relatively homogeneous 

community 

 determine the sequence of events and therefore assessing causality  

 promotion of community participation and strengthening local capacity  

 benefit from an established research infrastructure through attracting other 

scientists, addition of variables to existing protocols at relatively low cost and 

promotes effective capacity-building with respect to research skills and 

scientific leadership in developing settings  

 increased scientific and policy value the longer the follow-up period continues. 

 

Limitations of HDSS include: 

 the fact that one cannot easily generalise findings to a broader area or make 

inferences due to the restricted geographic focus (due to economic reasons) in 

many instances (Kahn, 2006; National Research Council, 2002) 
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 HDSS covering only a small proportion of the total population (usually 

10,000–100,000 individuals in most cases) and are not a random sample of 

the country’s population. Therefore, it is not easily possible to derive wider or 

nationally representative estimates for epidemiological or demographic 

parameters from these (Hammer et al., 2006) 

 sub-group differences being difficult to elucidate, given the relatively 

homogeneous community and resulting limited community variation; 

 HDSS tending to be resource-intensive (funding requirements, design and 

planning, participation of study subjects, and time) 

 mobile migrant sub-populations being difficult to track and follow up  

 the representativity of individuals also being compromised the longer they are 

observed or studied (so called “Hawthorne effect4”). 

 

A verbal autopsy (VA) is conducted on every death each census and the INDEPTH 

Network and WHO have developed standardised VA tool across sites (INDEPTH, 

2003; WHO, 2007). A VA is an approach used to obtain a probable underlying cause 

of death by interviewing lay respondents on the signs and symptoms experienced by 

the deceased before their death. In many HDSS the VA instrument has been improved 

over time with the addition of questions relating to HIV/AIDS, refining questions for 

cardiovascular related symptoms as well as the extension of various sections, for 

example,  maternal deaths, lifestyle practices an occupation (Kahn et al., 2007b). The 

VA tool has also been extensively validated in terms of accuracy and reliability. In 

Agincourt Health and Socio-demographic Surveillance System (HDSS) this has been 

done twice thus far (Kahn et al., 2000; Gerritson et al., in manuscript 2011) with the 

                                                
4 The “Hawthorne effect” is a form of reactivity whereby subjects modify their behaviour in response 
to the fact that they are being studied. 
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latter looking at deaths specifically between 2001-2005 to access sensitivity and 

specificity with regards to HIV/AIDS in particular. 

 

In both instances the VA has performed well against the gold standard of a hospital 

doctor diagnosis. Another study in Agincourt HDSS (Fottrell et al., 2010) has also 

assessed the VA using a standardised computer based probabilistic Bayesian model, 

namely InterVA5 (Byass et al., 2003; 2006). As mentioned above general expert 

physicians have been used to interpret the VA and to assign individual causes-of-

death. However, this process is time consuming and not always repeatable. Computer 

based approaches such as InterVA have the potential to address these issues.  

 

The limitations to VA use include the need for medically trained personnel to assign a 

cause-of-death, the limited list of causes that can be assigned, and poor sensitivity or 

specificity for certain causes-of-death (Garenne and Fauveau, 2006). For the latter this 

is primarily problematic with diseases that have less specific symptoms (HIV in 

children, malaria in adults, and cancers). Lastly the coding of VA causes has not been 

systematic or standardised which could be improved by the inclusion of rules for 

cause-of-death hierarchy (underlying, immediate and contributing causes of death) 

(Garenne and Fauveau, 2006).  

 

The development and introduction of full Geographic Information System (GIS) 

databases in most HDSS has strengthened the potential and application of spatial 

analysis, as well as field work management (Kahn et al., 2007b). The potential of GIS 

                                                
5 InterVA is a suite of computer models to facilitate interpreting VA’s. 
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for HDSS analysis has also been effectively demonstrated in other settings such as the 

African centre (for example: Tanser et al., 2009; Cooke et al., 2010) 

 

2.4 Risk factors for age-specific mortality 

 

The analysis of risk factors for child and adult mortality in developing countries is 

fundamental for the design of interventions, for monitoring their performance and for 

achieving the Millenium Development Goals (MDG).  

 

A risk factor analysis in medical geography should be informed by a conceptual that 

incorporates factors that are most important to the spatial distribution of mortality 

(and disease) in a given context. According to Oppong et al. (2009) “The disease 

ecology framework provides an explanation for this uneven geographic distribution of 

diseases and can be extended to a population level as well (Huynen M et al., 2005). In 

its most basic form, the disease-ecology framework argues that any disease may be 

attributable to three sets of factors–genetics, environment, and behavior.”   The risk 

factor analysis in this thesis is based on a combined disease–political ecological 

framework which involves biological, social, economic, behavioural and 

environmental factors (Mayer, 2000) as well as political and socio-cultural influence 

(Mayer, 1996) and which I feel suitably encompasses the most important factors 

(determinants) is this setting. We further construct the framework to take into account 

the various levels at which determinants operate on mortality. We have included the 

political component due to the specific historical context in the early to mid-1980s. 

Many Mozambicans fleeing the civil war settled in the eastern parts of the study site 

originally in “refugee settlements” that lacked infrastructure. Many of these 
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Mozambican immigrants elected to stay in South Africa - nearly a third of the current 

population is of Mozambican origin – and have gradually become more assimilated 

over time. Nevertheless, they remain a vulnerable sub-group of the population.  

Significant differentials in health outcomes exist within the Agincourt study 

population with former Mozambican refugees representing a particularly 

disadvantaged group (Dolan et al, 1997; Hargreaves et al, 2004; Kahn, 2006). 

According to Collinson et al. (2006): “In 1993, group refugee status was granted to 

Mozambicans who had fled the conflict, yet access to water, sanitation, labour 

markets and legal rights has remained persistently poor for most (Dolan et al, 1995). 

Nevertheless, uptake to voluntary repatriation programmes has been low (Hargreaves 

et al, 2004).” The neighbourhood health effect is thus in play in this stetting as 

Mozambicans settled in generally distinct villages i.e. ‘effect’ that attributes of local 

residential environments, or neighbourhoods have on a variety of health and social 

outcomes (for example: Kawachi and Berkman (eds) 2003; Diez-Roux 2001; Diez-

Roux and Mair 2010).  

 

HIV/AIDS and temporary labour migration are other important factors in this 

conceptual framework. HIV/AIDS has reduced life expectancy in many African 

countries in recent times, with South Africa and this site severely affected (Bradshaw 

et al, 2000; Kahn et al., 2007a). The association between temporary migration (often 

labour related) and HIV infection (and thus mortality) has been shown by several 

authors in South Africa (Jochelson et al, 1991) (Lurie, 2000. 
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Based on the context for this specific setting and existing theoretical frameworks, I 

have attempted to develop an appropriate conceptual framework (see schema below) 

that illustrates the interrelated nature of key factors in this context. 

 

Conceptual framework for determinants of mortality -   an adapted disease-

ecology-political model (Mayer, 1996; 2000; Diez-Roux and Mair 2010) 

 

International/National National/regional/community Household Individual
(long term) (long-medium term) (medium term) (medium-short term)

Physical location/environmental Natural resources Demographic
Political Economic (assets, income, employment) Education

History/contextual Socio-cultural Access to infrastructure/institutions (health services, legal, Employment Mortality
Institutional (infrastructure, policy, legal) social grants, employment, water,sanitation) Behavioural
Economic Socio-cultural: lifestyle, support, religion, work ethic, norms, beliefs Parental/partners/

Nationality household head
Household head characteristics
Food security, access to farm land

Shocks (e.g. death of breadwinner)
Disasters (e.g. drought)
Epidemics (e.g. HIV/TB)

Examples: Examples: Examples: Examples:
--South Africans (apartheid) --Poverty --Household changes (death of household head, younger household Age
--Mozambicans (former --Forced resettlement heads, female headed household) Gender
   refugees, civil war) --Circular labour migration --Poorer households (nationality, death of breadwinner) Education level

--Lack of infrastructure Maternal survival (HIV-direct and indirect)
--Access to health facilities (nationality, distance) Household mortality (direct and indirect)
--Access to social service and legal rights (social grants, employment) Partner behaviour (labour migration,
--Social discrimination and inequality high risk practises)

 

At the individual level, an example biological determinant of infant survival is gender. 

Typically male infants have a higher risk of mortality in infancy than female infants.  

Explanations for this gender difference are dominated by biological factors (Waldron, 

1998) and form part of core analytical frameworks for assessing infant and child 

survival (Mosley and Chen, 1984). Maternal death and resulting orphan hood are well 

established predictors for poor infant and child health and survival (Miller et al., 2007; 

Watts et al., 2007) both due to the direct and indirect impacts of HIV. The impact of 

breastfeeding practices on infant survival is complex especially in settings of high 

HIV prevalence (Coovadia et al., 2007; WHO, 2010). The impact of proximate factors 

(household), socioeconomic and environmental factors acting directly or indirectly 

through them, on mortality has been studied for several decades. Studies have 
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identified individual- and household-level factors as key determinants of infant and 

child survival (Becher et al., 2004, Hammer et al., 2006). Child mortality in 

developing countries is mainly associated with measurable socioeconomic conditions 

such as poor living conditions (Manda, 1999). Poor children are more likely to be 

exposed to health risks such as unhygienic or unsafe environments, ingestion of 

unsafe water and lack of access to sanitation (WHO, 2002; Ezzati et al., 2002; Black 

et al., 2003)), and have less resistance to disease because of malnutrition. These 

inequities are further compounded by reduced access to health care. Other proximate 

determinants of child mortality include maternal factors (age, education, health-

related behaviours such as pace of childbearing, child spacing, birth intervals, death),   

nutritional, environmental contamination, injury, and health care access and quality 

(Black et al., 2003).  

 

The level of adult mortality is an important indicator for the overall assessment of the 

mortality pattern in a population, for evaluating access to quality health care services 

and planning health care interventions (Rosero-Bixby, 1991; Timæus, 2001). The 

principal focus of global public health efforts over the past several decades has been 

on improving child health and survival, thus few studies have assessed risk factors for 

adult mortality in Africa where data are often lacking (Gakidou et al., 2004). Large 

review studies have indicated the following to be prominent risk factors for adult 

mortality: high blood pressure and cholesterol, and key behavioural activities: tobacco 

and alcohol consumption and unsafe sex (WHO, 2002). As many adults circular 

migrant for labour in this site and engage in high risk activities (Lurie, 2000; 

Collinson, 2006), behavioural aspects thus form a key component in this framework.  
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A recent example using data from the Mlomp HDSS in Senegal highlighted certain 

gender and behavioural differences in adult mortality risk (Duthe and Pison, 2008). 

Another from the Butajira HDSS in Ethiopia found higher adult mortality associated 

with low literacy in a household, poor economic status and lack of women's decision 

making (Fantahun et al., 2008). 

 

Many studies indicate that environmental or geographic factors play an important role 

in mortality (Balk et al., 2003), including population density (Root, 1997), climate 

(Patz et al., 2000), disease environment (Root, 1999), and urban residence (Woods, 

2003). However, few studies have incorporated potential environmental factors that 

are explicitly spatial i.e. derived from geographic databases. Spatial variables include 

simple constructs, such as distances from households or communities (e.g., to nearest 

clinic or water source) and environmental characteristics that have their own 

geographic boundaries (e.g., types of farming or land cover). 

 

A number of publications have analysed household-level HDSS data to identify 

determinants of all-cause (, Becher et al., 2004, Hargreaves et al., 2004; Adazu et al., 

2005) and cause-specific mortality like malaria and HIV/TB (Tollman et al., 1999a, 

Minh et al., 2003; Hammer et al., 2006) and spatial-temporal trends (Delaunay et al., 

2001; Kynast-Wolf et al., 2002, Baiden et al., 2006). Furthermore, very few studies 

have assessed risk factors for adult mortality using HDSS data. None of these studies 

have employed geostatistical modelling. Instead models for independent data have 

been used, which is problematic for reasons discussed earlier.
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2.5 Thesis framework 

      What we do                                  What we examine                                   What we find         What we recommend 
Patterns of mortality in space and time 
 Age-specific  
 All-cause 
 Cause-specific 
 

Anomalies in spatial-
temporal distribution of 
mortality and associated 
risk factors 
 
 Hotspots 
 Non-random distribution of 
   risk factors in hotspots 
 

Spatial-temporal methods 
 
Rate maps (exploratory 
analysis) 
 
 Areal Aggregation 
 Spatial filtering or smoothing 
 
Detecting clusters of 
significantly high or low rates 
(hypothesis testing of spatial 
pattern) 
 
 Tests for randomness (counts) 
 Spatial autocorrelation 
   (Moran’s I and Geary’s C) 
 Spatial Scan Statistic  
   (Kulldorff) 
 
Spatial modelling  
 
 Hierarchical modelling 
 Conditional Autoregression  
   (CAR) models 
 Bayesian geostatistical models  
 Temporal autoregressive  
   random effects 
 

 

Risk factors 
Proximate individual- and household-level 
determinants  
Infants (<1) and children (1-4) 
 Maternal 
 Demographic 
 Nutritional 
 HIV/AIDS: direct and indirect  
Adults (15-64) 
 Gender 
 Nationality or social-economic status 
 Education 
 HIV/AIDS 
 
Socio-economic determinants 
Infants (<1) and children (1-4) 
 Maternal and paternal 
 Use of health services  
 Household environment e.g. water and sanitation 
Adults (15-64)  
 Education 
 Employment 
 Use of health services  
 Household environment e.g. water and sanitation 
 
Spatial factors (environmental or geographic) 
 Distance to nearest health facility (clinic/district hospital) 
 Climate factors 

 

 
Correct estimates of risk 
factor significance 
 
 Correlated spatial 
   (geostatistical) longitudinal  
   data 
 
 

 Policy and practice 
 
 Concentrate 

resources in high risk 
areas where adverse 
health effects most 
likely to occur 

 
 Address inequality in 

health service 
delivery 

 
 Better understand 

disparities in  
distribution of risk 
factors in mortality 
hot spots 

 
 Target most 

prominent factors for 
intervention 

 
 Utilise spatial maps to 

visually highlight high 
risk areas and thus 
better guide policy 
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3.0 Aims and objectives 

 

3.1 Broad aims 

 

To apply various advanced spatial methodologies and Bayesian modelling to 

longitudinal health and socio-demographic surveillance data in order to: better 

understand the dynamics of mortality in space-time; identify and correctly quantify 

risk factors for mortality using intrinsically correlated longitudinal data; and relate 

disparities in risk factor distributions with spatial mortality risk.  

 

To elucidate the public health implications that can better inform programme planning 

and resource allocation. 

 

3.2 Specific objectives 

 

For the rural Agincourt sub-district population from 1992-2008, to: 

 elucidate temporal trends in age-specific mortality 

 identify significant clusters of age-specific mortality in space-time by applying 

advanced spatial analysis techniques 

 identify and correctly estimate significant risk factors for age-specific mortality 

using Bayesian inference to analyse large spatially and temporally correlated 

longitudinal data 

 develop smoothed maps of predicted mortality risk for spatially relevant 

predictors using Bayesian kriging 
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 assess significant differences between spatial hotpots in the distribution of 

underlying risk factors for age-specific mortality identified through risk factor 

modelling. 
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4.0 Thesis themes 
 

Themes Integrating narrative Paper I (all age-groups) Paper II (infants <1 year) Paper III (children 1-4 years) Paper IV (adults 15-64 years) 
Spatial-temporal 
analysis of mortality 
 
 

Age and cause-specific 
temporal mortality trends.  
 
Comparison of spatial 
techniques to identify 
mortality hotspots. 

Identify specific villages and 
clusters of villages with 
significantly different all-
cause or age-specific 
mortality in space-time.  

Bayesian kriging used to 
produce smooth maps of all-
cause and cause-specific infant 
mortality risk in space alone. 
Distinct foci identified. 

Bayesian kriging used to 
produce smooth maps of all-
cause and cause-specific child 
mortality risk in space and 
time. Distinct and emerging 
foci identified over time. 

Bayesian kriging used to produce 
smooth maps of all-cause and 
cause-specific adult mortality risk. 
Bayesian kriging risk map 
constructed based on distance to 
nearest health facility; distance 
found to be a risk factor. 

Methods to: 
(i) identify and correctly 
estimate risk factors for 
correlated mortality 
data 
 
 
(ii) identify differences 
in risk factor profile 
between  spatial 
mortality hotpots  
 

Comparison of risk factors, 
based on Bayesian models 
for specific age groups 
(proximate, socio-
economic, spatial factors). 
 
 
Significant differences in 
risk factor distributions by 
age group detected between 
high and lower risk village 
hotspots or clusters. 

 Application and testing of 
Poisson and negative binomial 
Bayesian random effect risk 
factor models. Significant 
classical and novel risk factors 
emerged.  

Application and testing of 
discrete time (monthly) event 
history Bayesian random effect 
risk factor models. Significant 
classical and novel risk factors 
emerged. 

Application and testing of non-
parametric and parametric survival 
time risk factor models 
incorporating Bayesian random 
effects. Significant classical and 
novel risk factors emerged. 
 
Significant differences in risk 
factor distributions detected 
between high and lower risk 
village hotspots or clusters. 

Applications for health 
policy and practice 
 
 

Excess mortality identified 
in particular locations, and 
non-random distribution of 
underlying risk factors, are 
policy relevant findings 
Further research required to 
better guide policy. 

Distinct villages and groups 
of villages with excess or 
emerging mortality 
identified. Require up-
scaling of general health and 
development interventions. 
 
 

Risk maps can guide policy to 
vulnerable villages. Strengthen 
existing health and 
development interventions and 
target mother-infant dyad 
(prevention of vertical 
transmission or PMTCT6; 
maternal survival). Inequalities 
in infectious disease mortality 
risk by nationality needs 
attention. 

Efforts to prevent vertical 
transmission of HIV (PMTCT) 
should target high risk villages 
as should programmes to 
increase survival of mothers 
and fathers. Inequalities in 
infectious disease mortality 
risk by nationality is an 
important issue. 

Complex interaction of factors 
driving adult communicable 
disease mortality: higher HIV and 
household mortality, longer 
distance from nearest health 
facility, lower socio-economic 
status and education level, higher 
labour migration.  Access to ART 
for underserved villages is a 
priority. 

                                                
6 Prevention of Mother To Child Transmission (PMTCT) of HIV 
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5.0 Data and methods 

 

The following section describes the study area and population, the data and its 

processing and analyses performed in this thesis. 

   

5.1 Study area 

 

The Agincourt Health and Socio-demographic Surveillance System (HDSS) is located 

in a sub-district in northeast South Africa (Figure 1). It is a poor rural setting and 

comprises a mix of former Mozambican refugees, migrant workers and a more stable 

permanent local population. The site was demarcated in 1992 when a baseline census 

was conducted (Tollman et al., 1999b; Collinson et al., 2002). The key feature of a 

HDSS is the continuous demographic monitoring of an entire geographically-defined 

population - in the case of Agincourt HDSS vital events are updated annually. It has 

since 1993 thus provided a unique longitudinal record of trends in mortality, fertility, 

in- and out-migration and household composition (Garenne et al., 2000b; Collinson et 

al., 2006; Kahn et al., 2007a; Garenne et al., 2007;). The site now covers an area in 

excess of 400km2 and contains 25 villages, ~14 700 households and ~85 000 

individuals.  
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Figure 4: Maps showing the regional location of the Agincourt Health and socio-

Demographic Surveillance Site 7               

 

5.2 Data collected in the Agincourt Health and Socio-demographic Surveillance 

System (HDSS) 

 

Routine census updates   

The baseline census was conducted in 1992 at which time each household was visited 

and information captured for every resident. The main tool of health and socio-

demographic surveillance in Agincourt is a thorough annual update of:  

 household memberships 

  individual status variables such as relation to household head, nationality, 

marital-, residence- and education status 

 vital events such as pregnancy outcome, death, in- and out-migration and a full 

maternity history captured for women aged 15-54 years of age. Enquiry into 

key variables important to each vital event is undertaken.  

                                                
7 Kahn K et al. Research into health, population and social transitions in rural South Africa: Data and 
methods of the Agincourt Health and Demographic Surveillance System. Scandinavian Journal of 
Public Health, 2007; 35(Suppl 69): 8–20. 
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Since the baseline, 14 census update rounds have been conducted, the last 8 at strictly 

annual intervals (1999 to 2009). A verbal autopsy (VA) is conducted on every death 

to determine its probable cause (Kahn et al., 1999) and has been show to perform well 

in terms of sensitivity and specificity based on a previous validation study (Kahn et al, 

2000). 

 

Additional data collected in Agincourt   

Special census modules were introduced in 2000 and provide explanatory variables on 

topics relevant to understanding and monitoring transitions and thus can be repeated 

to assess changes over time. Examples include the labour participation module 

(conducted in 2000, 2004 and 2008), temporary migration module (2002 and 2007), 

child social grant uptake module (2002, 2005 and 2008), health care utilization (2003, 

2006), food security (2004 and 2008) and marital status (2005 and now regularly 

updated during every census round). A measure of household socio-economic status is 

gained through an asset survey conducted every 2 years (2001, 2003, 2005, 2007 and 

2009). 

 

5.3 Village household mapping and Geographic Information Systems (GIS) 

 

In 1992 hand drawn maps of each village were used; these were updated regularly to 

incorporate new dwellings and other infrastructural changes. In 1997 village maps 

were digitised and geo-referenced through an innovative approach that made it 

possible to construct queries at the household level (le Sueur, 1997). In 2003, a GIS 

with geo-referencing of every household was introduced. The coordinate data, aerial 

photographs and HDSS household identifiers were developed into a GIS database. 
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Maps are updated and edited annually to take account of spatial changes, including 

the introduction of new dwelling. 

 

5.4 Data quality control 

 

The Agincourt data management system, with a data model as per the standards of the 

INDEPTH population reference data model, was upgraded in 2002 from Microsoft 

Access to Microsoft SQL Server. In 2001 the operational database was converted to 

SQL server, which enabled a higher standard of database technology including data 

protection and improved database querying and extraction. Overall, these 

developments ensure a more robust and stable environment for both data volume and 

complexity. 

A custom-made data entry programme, that resembles that data forms for ease of 

entry, links to the background SQL Server database. Data is captured via 

simultaneous data entry with multiple networked computers and the system has 

numerous built-in validation checks. Basic analyses are produced such as village fact 

sheets, community-feedback information, sampling frames, and denominator 

information. Further data-cleaning and demographic analyses are conducted to ensure 

reliable population data.  

Data are stored in related tables: the main or so-called ‘Individuals’ table stores key 

information on all individuals; while the ‘Residence’ table provides information on 

individual residence episodes, and a’ Membership’ table records information on entry 

and exit from a particular household should it dissolve. Tables also exist for each vital 

event category. A range of status observation and special module tables record other 
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point or cross sectional observations that describes the status of individuals or 

households at a particular point in time. 

 

To ensure data quality, supervised household visits and random duplicate visits are 

conducted. Random duplicate visits are conducted by the supervisor for 2percent of 

the population. From these data, quality can be assessed, and error rates can be 

computed. Furthermore, form-checking occurs in a structured system at four levels of 

the field organization. The checks become more detailed as the form progresses 

through the system. An error is returned to the fieldworker for correction, and, where 

necessary, a revisit is done. 

 

5.5 Data cleaning and management 

 

5.5.1 Geocoding of households that dissolved from 1992 to 2002 

 

The major limitation is the fact that in the past prior to the development of the full 

GIS database (in Agincourt this occurred in 2003), many households that dissolved 

were not recorded in this database but were on old hand drawn paper based maps. 

However, as will be seen in the methods, this has been reduced to some extent for 

Agincourt prior to 2003. 

 

Prior to the introduction of the full GIS in 2003, many of the households located on 

the older paper-based maps that had dissolved prior to 2003 did not have geo-

coordinates. In order to bring these household locations into my analytic datasets, 

queries were run on the database to extract the list of these pre-2003 dissolved 
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households that had missing coordinates. Old village paper-based maps from 1995-

2002 were used to locate these dissolved households and ascertain their position 

relative to existing households with assigned locations and geo-coordinates. Table 1 

below describes the results of this exercise. 

Table 2: Geocoding of households that dissolved prior to introduction of the 

Agincourt GIS system, 1992-2002 

Type clean 
Total # 

households percent 
Location digitised 1103 46.82 
Linked to existing location 670 28.44 
Not located on paper based map 536 22.75 
Multiple dissolve 47 1.99 
Total 2356 100.00 

 

An SQL script was written to update locations of households that dissolved before 

2003 and that were linked to a current existing household identification number. 

 

More than 75percent of coordinates were identified for households that dissolved 

prior to introduction of the full GIS system in 2003 and that were not previously 

geocoded. Given the need for spatial coordinates of households in the Bayesian 

geostatistical analyses (described later), this increased the sample size for the 

purposes of my PhD from ~87percent to 97percent.  

 

5.5.2 Village boundary extraction and centroid calculation 

 

Using ArcGIS (software housing Agincourt GIS data) we constructed polygons of all 

village boundaries and extracted vertices. The centroid (point: Cx, Cy) of a non-self-

intersecting closed polygon (Burke, 1988), defined by n vertices (x0,y0), (x1,y1), ..., 

(xn−1,yn−1), was calculated as follows: 
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5.5.3 Cleaning of VA database 

 

This involved running SQL scripts to identify out-of-domain values and various 

logical errors (e.g. temporal inconsistencies) in the verbal autopsy (VA) database. The 

original paper VA forms where then pulled and checked. Cleaning SQL scripts were 

developed and run to correct values in the main VA database. At the same time, 

constraints for future data entry and logical checks or triggers (SQL query that cross 

checks field values during or after entry) were built into the database as well as the 

VA access front-end to limit future data entry errors. Disparities between values in 

VA and main Agincourt HDSS database were checked and cleaned.  

 

5.5.4 Checking and hierarchical cleaning of assigned ICD10 codes 

 

With the assistance of Professor Kathleen Kahn, I performed a clean for all ICD-10 

cause-of-death (COD) codes. This involved both checking the text description of 

COD versus the assigned ICD-10 codes, reassessment of selected VA questionnaires 

as well as a hierarchical restructuring of main, immediate and contributing causes of 

death where necessary. This exercise was undertaken to improve quality of COD data.  
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5.5.5 Data extraction using Microsoft SQL  

 

Four different analytical datasets were extracted for the four papers included in this 

PhD. This was done using Microsoft SQL Server 2005 which houses the Agincourt 

databases. Since the method of analysis (see statistical models below) was different 

for the four papers, differently structured datasets has to be constructed and extracted. 

The mortality clustering dataset comprised age-specific mortality by year and village 

with precise estimates of person time contributed as denominators (paper I). The 

infant dataset consisted of person time (in days) contributed by an infant at a given 

location along with mortality outcome in the first year of life (paper II). An event 

history (discrete monthly time segments) dataset structure was used for children (1-4 

years) until censoring or death (paper III). A continuous survival time approach was 

used for adult mortality which track time segments at given locations along with 

mortality outcomes or censoring (paper IV). Relevant COD codes were linked using 

common individual identifiers in the main Agincourt HDSS and verbal autopsy 

databases. Time varying covariate datasets were constructed and merged onto core 

datasets (infant, child and adult) in a time sensitive manner. 

 

5.6.1 Study population 

 

The following age groups were used in thee analyses – namely infants (<1 year), 

children (1-4 years), young to middle-age adults (15-49 years), and older adults (50-

64 years). 
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5.6.2 Study period 

 

Papers I-III cover the period 1992-2007; Paper IV covers 1992-2008. 

 

5.7 Data analysis 

 

5.7.1 Descriptive analysis: demographics, mortality rates and cause-specific fractions 

(CSF) 

 

Data on population size, structure, and deaths were extracted from the Agincourt 

HDSS using Microsoft SQL Server 2005. Data cleaning were done in Stata 10.0. 

Precise person-years (PY) at risk by age, gender, year, and village were used as the 

denominator. Observation dates were used for the calculation of person-time as they 

are the most reliable. Cause-of-death classifications were based on ICD-10 main or 

underlying cause-of-death code based on VA assessment. Top five causes of death 

(plus fractions) were listed for each of the specific age groups. Note for infants, death 

in the perinatal period refers to the first 7 days of life, while neonatal refers to the first 

28 days of life. 

 

5.7.2 Temporal trends: descriptive and analytical 

 

Age-specific all-cause and cause-specific mortality trends, using relevant person time 

denominators, were assessed and depicted graphically. For the age-specific trend 

analyses significant all-cause and cause-specific mortality trends were assessed 

univariately (yearly trend term) using the analytical model specific for that age group. 
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Significance was assessed at the 5percent level. Significant village-specific annual 

mortality rate trends were analyzed by using a simple Poisson regression model 

containing person time exposure, a constant and yearly temporal trend term (dos 

Santos, 1999). 

 

5.7.3 Risk factor analysis using Bayesian geostatistical modelling 

 

5.7.3.1 Outcome variables 

 

Infants – defined as observed mortality within the first 365.25 days of life. 

Children - defined as observed mortality between one and 4.999 years of age. 

Young to middle-age adults - defined as observed mortality between 15 and 49.999 

years of age 

Older adults - defined as observed mortality between 50 and 64.999 years of age 

 

5.7.3.2 Explanatory variables 

 

Demographics (gender, nationality), time period, season, maternal factors (former 

refugee status, age at pregnancy, death of mother during their off-springs infancy or 

childhood, education) and fertility factors (parity, birth intervals, sibling death), 

household factors (size mortality experience, household head demographics, socio-

economic status based on household assets, food security), health seeking (distance to 

nearest health facility, antenatal clinic attendance), migration patterns, and household 

elevation (climatic proxy) were included as covariates.  
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Socio-economic status (SES) index construction for the risk factor models: socio-

economic data collected in the Agincourt HDSS is based on information on living 

conditions and assets, building materials of main dwelling, water and energy supply, 

ownership of modern appliances and livestock, and means of transport available 

(Kahn, 2008). SES quintiles were constructed using a Multiple Correspondence 

Analysis (MCA).  The weights used for the MCA index were those from the first 

dimension. I used an MCA based index after a detailed analysis of the properties of 

three measures (other two using absolute asset count and Principal Component 

Analysis (PCA)), because it is better suited to categorical data (Howe et al., 2008). 

 

5.7.3.3 Dataset structure and modelling approaches  

 

Different dataset structures and thus the corresponding modelling approach were used 

for the various age groups. For infants, a negative binomial model with an offset of 

time in days contributed in the first year was used. For children (1-4), a monthly 

discrete time logistic or event history approach was used that tracked any changes of 

selected covariates in the given intervals. A monthly time interval was used as it was a 

better approximation of the risk than using a yearly interval. For the adult models, a 

non-parametric and parametric survival modelling approaches were adopted that split 

episodes of time for any relevant changes in selected covariates e.g. change of 

location or household. For all approaches, standard regression models were fitted to 

identify the most significant risk factors univariately. All covariates significant at 

10percent significance level were entered in the Bayesian geostatistical models. For 

the child and adult models an unstructured individual level random effect was 

incorporated using a normal distribution centred on zero and a non-informative 
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inverse gamma prior for the variance. Temporal correlation was taken into account via 

autoregressive temporal random effects (see description below). A spatial correlation 

parameter was incorporated in village-level random effect and modelled by assuming 

that the random effects are distributed according to a Multivariate Normal distribution 

with a variance-covariance matrix related to the variogram of the spatial process 

(Diggle et al, 2002). Markov chain Monte Carlo simulation was used to estimate the 

model parameters (Gelfand and Smith, 1990). Full details of the various modelling 

specification along with the WinBUGS codes to implement each are provided in 

Appendix 2. 

 

5.7.3.4 Model assessment and validation 

 

Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) was used as the first 

step in comparison of model fit and the one giving the lowest DIC was chosen. 

Models were then also validated by fitting the models for a subset of the data and 

predicting outcomes for the remainder. Credibility intervals were constructed and the 

model providing the best predictions (along with low DIC) were used as the final 

model. In Bayesian statistics, a credible interval is a posterior probability interval 

which is used for interval estimation in contrast to point estimation (confidence 

intervals). In other words, the credibility interval refers to the distribution of 

parameter values while a confidence interval pertains to estimates of a single value. 

All the final multivariate models were also fitted using the conventional form in Stata 

and full set of diagnostics run to ensure that none of the assumptions were violated. 
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5.7.3.5 Temporal random effects 

 

To model the temporal random effects various approaches, namely standard 

autoregressive moving average (ARMA) with priors for the AR(1) and AR(2) 

processes as defined by Schotman (1994) and Zeller (1996) respectively, as well as a 

generalised autoregressive moving average (GARMA) approach (Benjamin et al., 

2003) were tested and the one providing the best fit for a given model and age group 

(based on Deviance Information Criterion (DIC) were used in the subsequent analyses. 

The lower the DIC the better the fit of the model. To further validate particular 

models we excluded data from last observation year and used the remainder to 

predicate the outcomes for the excluded year. The predictive accuracy of the 

developed model was assessed in terms of the percentage of infants with correctly 

predicted outcome within Bayesian credible intervals of selected probability coverage 

using R software. 

 

5.7.3.6 Spatial random effect 

 

As mentioned above we assumed that the spatial random effect (wj) had a multivariate 

normal distribution, wj~MVN(0,Σ), with variance-covariance matrix Σ expressed as a 

parametric function of distance between pairs of the village centroids points. We also 

assume an isotropic stationary spatial process, where Σmn = σw
2 exp(−φdmn), dmn is the 

Euclidean distance between villages m and n, σw
2 is the geographical variability 

known as the sill, φ is a smoothing parameter that controls the rate of correlation 

decay with increasing distance and measures the range of geographical dependency. 

We specified φ as a uniform distribution between φ min and φ max (Gelfand et al., 
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2003). The range is defined as the minimum distance at which spatial correlation 

between locations is below 5percent. This distance can be calculated as 3/u meters. A 

non-informative gamma prior was adopted for σw
2 with a mean and variance of 0.01. 

 

5.7.4 Spatial analyses and risk maps 

 

5.7.4.1 Exploratory: village rates 

 

We calculated the mortality rates by village and year by dividing the observed number 

of deaths by the total person-years contributed in village i (i =1,..., 21) at year j (j = 

1992,..., 2008). To identify villages in which the mortality rate was significantly 

above average in time, we constructed exact 95percent confidence intervals (CI) for 

each rate using the Poisson distribution of the observed number of events i.e. deaths 

(Este`ve et al., 1994). Village mortality was considered significantly above average 

for a given year if the overall rate for the given year was below the lower value 

(α=0.025) of the mortality rate CI for that village (Pickle et al, 1987).  

 

5.7.4.2 Hypothesis testing: Spatial autocorrelation 

 

To further describe spatial mortality patterns as well as age-specific mortality patterns, 

two common spatial autocorrelation coefficients were calculated: Moran's I, a 

product-moment coefficient; and Geary's c, a standardized squared-distance measure 

(Cliff and Ord, 1973; Sokal and Oden, 1978a; 1978b; Cliff and Ord, 1981). Moran's I 

and Geary's c often lead to similar conclusions, and were reasonably compatible in the 

present study. I therefore only report the results for Moran's I. 
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5.7.4.3 Hypothesis testing: Kulldorff clustering technique 

 

In this study, the Kulldorff spatial scan statistic (Kulldorff, 1997) was used to identify 

space-only clusters of high mortality by age-group in the Agincourt HDSS overall for 

the entire aggregated period  of1992-2008. A circular window is imposed on a map by 

the statistic and the centre of the circle moves across the study region. This window is 

centered on each of the possible grid points (village centroids) positioned throughout 

the study region; the radius of the circle changes continuously between zero and a 

specified upper limit and is thus flexible both in location and size. The maximum 

radius size of this window is based upon population at risk. The default maximum-

size value, as recommended in the SaTScan user guide (SaTScan), is set to 50% of the 

total population at risk. In other words, with this setting a reported cluster can contain 

at most 50% of the total population at risk (Chen et al., 2008). Each of these circles 

can thus contain a different set and number of neighbouring villages, and each of the 

circles is a potential cluster of age-specific deaths in the Agincourt study area. 

However limitations of choice of the scaling parameters do still represent a problem 

with this approach and are reviewed in great detail in Chen et al (2008). A village is 

captured in the cluster if it lies within the circle. The spatial scan statistic calculates 

the likelihood of observing the number of deaths inside and outside each circle, and 

the one with the maximum likelihood is defined as the most likely cluster i.e. least 

likely to have occurred by chance (tests the null hypothesis that the risk of dying is the 

same in all villages in the study area). The spatial scan statistic was also extended into 

a space-time scan statistic (Hjalmars et al., 1996). The window imposed by the 

statistic on the study area is cylindrical with a circular geographical base and height 
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corresponding to time. The centre is again one of several possible village centroids 

located throughout the Agincourt study area and the height reflects the time interval. 

The cylindrical window is then moved in space and time. This was applied to the 

Agincourt HDSS data for the period 1992-2008 (time aggregation of 1 year) to 

identify high space-time clusters only. The following age groups were used: <5 years, 

5-14, 15-49, 50-64, and 65+. Person-time by age group, gender, and village was used 

as the denominator. To ensure sufficient statistical power, the number of Monte Carlo 

replications was set to 19,999. The p-value of the statistic is obtained through Monte 

Carlo hypothesis testing. SaTScan gives the most likely cluster with a corresponding 

p-value (significance was set at the 5percent level). If other clusters not overlapping 

with the most likely cluster are identified (secondary, tertiary, etc.), these are also 

given with their corresponding p-values. Maps showing all significant non-

overlapping clusters were constructed in MapInfo Professional 9.5. Larger circles do 

not represent greater risk clusters but rather contain a larger number of neighbouring 

villages i.e. extend over larger geographical area.  

 

5.7.4.4 Spatial modelling: Bayesian kriging using a spatially structured covariate 

namely distance to nearest health facility 

 

Simulation based Bayesian kriging (Gelfand et al., 1999) at regular grid prediction 

points within the site was used to produce smoothed maps of all-cause and cause-

specific adult mortality risk within the entire HDSS site. All-cause and cause-specific 

baseline models were used that included no covariates except a constant and spatial 

random effect. Spatial risk of adult mortality adjusting for straight-line distance to 

nearest health facility at the prediction point (< or >=6km) used a univariate Bayesian 
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spatial kriging model that included this distance as a covariate. Model estimates were 

exponentiated to relevant measures of association. 

 

5.7.4.5 Modifications of maps to preserve confidentiality 

 

In this study we removed all geographically identifying features (administrative and 

village boundaries, village centroids, roads) from the mortality maps that were 

developed. For all other significant mortality clusters (e.g. cause-specific), tables 

describing relative cluster location within the site were used to further protect those 

villages with high HIV burden. This is especially pertinent in a small geographic area 

such as the Agincourt sub-district where there is high prevalence and stigmatisation of 

conditions such as HIV/AIDS.  

 

5.7.5. Significant differences in determinant profile in high risk clusters 

 

We classified households and villages contained with significant age specific 

mortality clusters based on Kulldorff’s Spatial Scan Statistic as 1’s compared to the 

remainder of the site 0’s. Based on this binary variable I then compared the risk factor 

profile (based on significant risk factors from the Bayesian multivariate models) of 

high risk areas to the remainder in an attempt to identify significant differences in the 

spatial distribution of the determinants. 
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5.7.6 Software 

 

Data extraction and management was done using Microsoft SQL Server 2005 and 

STATA 10.0 SE. The analysis was carried out in Microsoft Excel, STATA 10.0 SE, 

WinBUGS and R. Covariance was assessed using STATA 10.0 SE (using local 

Moran’s I option in the spat* routines). Bayesian models were run in WinBUGS and 

posterior estimates exported to R for model fit and validation. The risk predictions 

(kriging) of the fitted spatial models were mapped in MapInfo Professional 9.5. 
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6.0 Results 

 

In this section, I provide some descriptive statistics for the study population; examine 

the trend coefficients for the leading causes-of-death of four groups: infants, children, 

young adults and older adults; examine the major risk factors for each of the four 

groups; present a spatial distribution of age-specific mortality and finally relate the 

distribution of risk factors to the identified mortality hotspots.      

 

6.1 Descriptive Statistics 

 

This section commences with a description of the demographic and mortality profile 

of the study sample including the log hazard of mortality, the leading causes-of-death 

and trends in age-specific mortality. 

 

6.1.1 Demographic and mortality profile 

 

The demographic and mortality profile of the study samples are provided in Table 3. 

Overall 9,035 deaths occurred during 1992-2008, based on 1,110,166 person-year 

time contributed, at an overall crude mortality rate of 8.1 per 1,000 person-years. The 

highest mortality rates occurred among infants followed by the older adult (50-64) age 

group (29 and 19 per 1,000 person-years respectively). The mortality rate among 

children and younger adults (15-49) was similar at 5.7 and 6.9 per 1,000 person-years 

respectively. Among infants 216 deaths occurred during the perinatal8 period and 251 

                                                
8 Perinatal period: last period of gestation up to first 7 days of life. 
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in the neonatal9 period i.e. majority occurred in the perinatal or early neonatal phase. 

The overall perinatal and neonatal mortality rates were 7.6 and 8.8 per 1,000 person-

years respectively. Among adults (15-64) mortality rates showed a steady increase by 

5-year grouping with a non-linear excess in 30-34 and 35-39 age groups due to 

HIV/AIDS. 

  

Table 3: Demographic profile of study sample by age group 

Characteristic Infants Children (1-4) Adults (15-49) Adults (50-64) Overall b 
Denominator 
(person-years) 28,470 116,729 549,030 70,864 1,110,166 
Female (percent) 16,030 (50.4) 20,838 (50.3) 99,994 (56.6) 4,062 (59.5) 576,680 (51.9) 
South African 
(percent) 

20,382 (64.1) 25,848 (62.3) 66,926 (66.9) 4,292 (62.9) 117,448 (64.1) 

Deaths (percent of 
overall deaths) 826 (9.1) 669 (7.4) 3,798 (42) 1,337 (14.8) 9,035 (100) 
Mean age at death 
(std. dev.) 

126.2 days 
(112.7) 

2.1 years (0.9) 34.6 years (8.5) 57.3 years (4.5) 41.8 years (26.8) 

Median age at 
death (IQR) 

99 days (16-
217) 

1.9 years (1.4-
2.6) 

34.8 years (28.4-
41.5) 

57.0 years (53.5-
61.4) 

40.7 years (24.2-
63.8) 

Mortality rate a 29.0 5.7 6.9 18.9 8.1 
a: per 1,000 person-years 
b: includes 5-14 and 65+ age groups 
 

Hazard of death (Figure 2) increases in the first few years of life then rapidly 

decreases and reaches its lowest hazard round the age of 8 years. The hazard of 

mortality starts rising once more round puberty (13 years) and steadily increases 

thereafter.  

 

 

 

 

 

 

                                                
9 Neonatal period: within the first 28 days of life. 
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Figure 1: Log hazard of mortality by yearly age  

 

While we expect to see a linear increase in the log hazard with increasing age through 

adulthood (Figure 3), a non-linear pattern is observed to indicating an increased 

hazard among younger adults due to the HIV epidemic (Figure 2). 
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Figure 2: Predicted log hazard of death among adults aged 15-49 (linear line 

represents expected trend in developed setting) 

 

6.1.2 Leading causes of death by age group, 1992-2007 

 

The leading Cause-of-death in all age groups (Table 4) was HIV/TB. Among children 

the second most prominent Cause-of-death was diarrhoea or malnutrition. Among 

younger adults (15-49) external cases of death, namely assault and transport accidents, 

featured as the second and third top causes-of-death, with lifestyle-related diseases 

following. In the older adult age group (50-64) following HIV/TB, chronic non-

communicable diseases featured prominently. 
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Table 4: Top five causes-of-death by age group 

Rank 
 

Infants (<1) 
No. (percent) 

Children (1-4) 
No. (percent) 

Adults (15-49) 
No. (percent) 

Adults (50-64) 
No. (percent) 

1 
 

HIV/TB 
132 (16.6) 

HIV/TB  
192 (29.5) 

HIV/TB  
1,545 (43) 

HIV/TB  
317 (24.7) 

2 
 

Diarrhoea or malnutrition 
104 (13.1) 

Diarrhoea or malnutrition 
164 (25.2) 

Assault 
164 (4.6) 

Vascular 
159 (12.4) 

3 
 

ARI or Pneumonia 
103 (13) 

External 
39 (6) 

Transport accident 
134 (3.7) 

Neoplasms 
88 (6.9) 

4 
 

Perinatal condition a 
93 (11.7) 

ARI or Pneumonia 
27 (4.2) 

Vascular 
109 (3) 

Digestive 
54 (4.2) 

5 
 

Congenital 
25 (3.1) 

Congenital 
13 (2) 

Neoplasms 
106 (2.9) 

Suicide 
35 (2.7) 

a: based on ICD-10 main cause-of-death only i.e. P00-P96 (not inclusive of date of birth and date of 
death timing) 
 

6.2 Temporal trends in age- and cause- specific mortality 

 

Infants and children 

 

A significant increase in the infant and child mortality rates was observed over the 

study period (Table 5, Figure 4). Infant mortality rates increased from 10.7 to 56.0 per 

1000 person-years between 1992 and 2008 while child mortality rates increased from 

4.5 to 7.2 per 1000 person-years over the same period. 

 

Table 5: Trend coefficients and significance for infants and child mortality rates 

Category Trend coefficient (β) p-value 
Infants a 0.09 <0.001 
Perinatal a 0.05 0.003 
Perinatal b 0.07 <0.001 
Neonatal a 0.06 0.001 
Neonatal b 0.09 <0.001 
Children a 0.05 0.001 

a: for period 1992-2008 (see Figures 4,5) 
b: for period 1996-2008 (see Figure 5) 
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Figure 4: Infant and child mortality rates by year, 1992-2008 

 

The majority of neonatal deaths occurred during the early neonatal period or first 7 

days of life. During 1992-1996 a steady decrease in the perinatal and neonatal 

mortality rate was observed from 10.7 to 2.3 and 10.7 to 2.8 per 1,000 person-years 

respectively (Figure 5). However from 1997 onwards, concurrent with the rise in 

infant HIV mortality, a significant increasing trend became apparent with the neonatal 

and perinatal mortality rates reaching 21.7 and 13.2 per 1,000 person-years 

respectively. 
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Figure 5: Perinatal and neonatal mortality rates by year, 1992-2008 

 

A significant (p<0.001) and striking increase in the mortality rate of mothers dying in 

the infants’ first year was observed (Figure 6), again from 1998 onwards.  
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Figure 6: Mortality rate of mothers dying in infants’ first year per 1000 infant person-

years, 1992-2007 

 

Trend coefficients demonstrate the leading causes-of-death, (Table 6) and show a 

significant increase in deaths due to HIV/TB and acute respiratory infection (ARI) or 

pneumonia among infants and children (Figure 7). This trend was more pronounced 

for HIV/TB. A significant (at 10percent level) increasing trend was also observed for 

deaths due to unknown causes which is concurrent with the rise in HIV mortality 

(Figure 7, Table 6).  
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Figure 7: Selected cause-specific mortality rates among infants and children by year, 

1993-2007 

 

A significant decrease in deaths due to diarrhoea or malnutrition (Table 6) was 

observed over the study period. This finding was no longer significant, however, if 

data for 1992 removed from the trend assessment (β=-0.01, p=0.614). A majority of 

neonatal deaths occur during the perinatal period or first 7 days of life. A marginally 

significant increasing trend was observed for congenital deaths between 1992 and 

2007. No identifiable trend was observed for external infant and child deaths (Table 

6). 
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Table 6: Trend coefficients and significance for leading causes of death among infants 

and children combined, 1992-2007 

Cause Trend coefficient (β) p-value 
HIV/TB 0.22 <0.001 
Unknown 0.10 0.001 
Diarrhoea or malnutrition -0.05 0.055 
ARI or pneumonia 0.12 <0.001 
Congenital 0.07 0.073 
External 0.05 0.319 

 

Younger adults (15-49 years) 
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Figure 8: Adult mortality rates by year, Agincourt sub district, 1992-2008 
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A significant increasing trend for younger adult mortality overall was observed, 

especially from 1992 to 2004 (Figure 8). Thereafter a levelling out of the mortality 

rate occurred at approximately 11 deaths per 1000 person-years which was relatively 

unchanged at 2008. A similar pattern was observed by 5-year age-group. The largest 

increasing trend coefficients were observed in the 25-29, 30-34 and 35-39 age groups 

(Table 7). Only the 15-19 age group did not show a significant increasing trend at the 

5percent level. The largest absolute rate changes by 5 year age group when comparing 

the period 1992-1996 to 2004-2008 occurred in the 30-34 and 35-39 age groups 

(Table 7).  

 

Table 7: Mortality trend coefficients, significance and rate differences by 5 year age 

group among younger adults (15-49 years) and period 

 

Age group Trend coefficient (β) p-value Rate (1992-1996) Rate (2004-2008) Rate change 
15-19 0.03 0.073 1.31 1.61 +0.31 
20-24 0.10 <0.001 1.33 4.81 +3.48 
25-29 0.14 <0.001 2.50 11.77 +9.27 
30-34 0.15 <0.001 3.03 18.41 +15.38 
35-39 0.13 <0.001 4.85 21.02 +16.17 
40-44 0.11 <0.001 5.59 20.41 +14.82 
45-49 0.10 <0.001 6.69 21.83 +15.14 

 

A significant and large increasing trend was observed for younger adult deaths due to 

HIV/TB (leading cause-of-death in this age group) while a significant decreasing 

trend was observed for deaths due to assault (Table 8, Figure 9).  
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Table 8: Trend coefficients and significance for leading causes of death among young 

adults (15-49), 1992-2007 

Cause Trend coefficient (β) p-value 
HIV/TB 0.24 <0.001 
Unknown 0.11 <0.001 
Assault -0.04 0.030 
Transport accidents -0.004 0.879 
Vascular -0.02 0.266 
Neoplasms -0.02 0.404 
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Figure 9: Selected annual cause-specific mortality rates among younger adults (15-49 

years), 1993-2007 
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Concurrent to the significant rise in HIV/TB mortality we also observed a significant 

increase in deaths due to unknown causes. No significant trend was detected for 

deaths due to transport accidents, vascular diseases or cancer (neoplasm) over the 

period 1992-2007 (Table 8). 

 

Older adults (50-64 years) 

 

A significant increase in mortality, (Figure 10), was observed among older adults (50-

64 years) over the study period. The rate was relatively stable around 10-15 deaths per 

1000 person-years until 2000; from 2000 to 2005 a pronounced rise occurred to a 

level of approximately 28 deaths per 1000 person-years; it then appeared to stabilize 

until 2008. This change occurred for all 5 year subgroups of this category although the 

change was more pronounced for 50-54 and 50-59 year age groups (Figure 10). 
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Figure 10: Annual older adult (50-64 years) mortality rates, 1992-2008 

 

The most significant increasing trend was for HIV/TB related deaths (Table 9). A 

concurrent significant increase in mortality was also observed for unknown causes. A 

significant increasing trend was identified for deaths due to neoplasms between 1994 

and 2007 (Figure 11). 

 

 

 

 

 



 93 

Table 9: Trend coefficients and significance for all-cause and leading causes of death 

among older adults (50-64) 

Cause Trend coefficient (β) p-value 
All-cause a 0.07 <0.001 
HIV/TB b 0.19 <0.001 
Unknown b 0.06 <0.001 
Vascular b 0.01 0.785 
Neoplasm b 0.07 0.007 
Digestive b -0.04 0.185 
Suicide b 0.02 0.859 

a: for the period 1992-2008 
b: for the period 1992-2007 
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 Figure 11: selected cause-specific mortality rates among older adults (50-64) by year, 

Agincourt sub district, 1992-2007 
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6.3 Major risk factors for age- specific mortality 

 

This section first discusses the major risk factors influencing age-specific mortality 

with respect to infants, children and adults. A multivariate model is then developed to 

illustrate specific relationships.  

 

Infants 

 

Later year of birth, mother dying in the infant’s first year (especially due to HIV/TB), 

higher number of cumulative household deaths, previous birth being stillborn and 

previous birth interval less than 1 year emerged as highly significant risk factors for 

all-cause infant mortality (Table 10), especially mother death in the infant’s first year 

and cumulative household deaths. Death of previous child was also a significant risk 

factor at the 10percent level. Male gender and increasing parity were no longer 

significant risk factors for infant mortality following multivariate adjustment. No 

significant association was observed between infant mortality and household socio-

economic status, increasing distance to nearest health facility and climate (using 

elevation as a proxy which corresponds to the rainfall gradient in the sub-district). 

 

Children 

 

Mother death between the child’s first and fifth birthdays, particularly due to HIV/TB, 

was the most prominent risk factor from the multivariate analysis (Table 10), followed 

by father death due HIV/TB, four or more children aged less than 5 years living 

within the household, Mozambican origin of the mother, and winter season. 
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Increasing age of child remained highly protective. As with infants, no significant 

association was observed between mortality risk and increased distance to nearest 

health facility. In contrast to infants, however, a significant and increasing trend of 

protective association was observed with increasing household socio-economic status 

based on the univariate findings. 

 

Adults 

 

The most prominent risks for 15-49 year mortality following multivariate adjustment 

were later time period, male gender, being a migrant, increasing number of other 

household deaths, household head death, and distance to nearest health facility (>6km) 

(Table 10). Increasing wealth of household, household head being male and older than 

40 years were significant and prominent protective factors. No significant difference 

was observed between Mozambicans and South Africans. Villages with a mortality 

proportion of HIV/TB above the median value remained at a significantly higher risk. 
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Table 10: All-cause bivariate (Stata) and multivariate risk factor analyses for age-specific mortality using Bayesian geostatistical modelling 

(WinBUGS) 

Factors Infants  (<1) Children (1-4) Young adults (15-49) Older adults (50-64) 
  IRRa (95 percent CI) ORa (95 percent CI) HRa (95 percent CI) HRa (95 percent CI) 
Temporal     
     Year 1.06 (1.03,1.08)b 1.05 (1.04,1.07)b 1.15 (1.14,1.16)b 1.14 (1.12,1.16)b 

     
Proximate individual- and household-level determinants     
     Increasing age in years n/a 0.50 (0.46,0.55)b 1.07 (1.06,1.07)b 1.04 (1.02-1.06)b 
     Winter season n/a 1.33 (1.12,1.57)b --- --- 
     Male gender 1.03 (0.87,1.21)b 1.07 (0.91-1.26)d 1.47 (1.38,1.56)b 3.03 (2.64-3.48)b 
     Mozambican (maternal for infants and children) 1.12(0.70,1.79)d 1.12 (0.90,1.38)b 0.94 (0.87,1.02)b 0.59 (0.50-0.70)b 
     Maternal death (in first year for infants or 1-4 for children)     

       Not due to HIV/TB 6.01 (3.18,11.37)b 5.45 (2.99,8.75)b n/a n/a 
       Due to HIV/TB 30.78 (12.13,78.11)b 15.11 (8.39,24.54)b n/a n/a 
     Migrant: ≥ 6months outside site per year (maternal status for infants and 

children) 0.77 (0.591,1.25)b 1.15 (0.88,1.50)d 1.15 (1.08,1.23)b 1.23 (1.04-1.44)b 
     Paternal death (prior birth to within first year for infants or 1-4 for children)     

       Not due to HIV/TB 1.25 (0.03,58.97)d,e 1.51 (0.75,2.54)b n/a n/a 
       Due to HIV/TB e 2.19 (0.95,4.06)b n/a n/a 
     Tertiary education (maternal for infants and children) 0.14 (0.06,0.37)c 0.49 (0.23-1.04)c --- --- 
     Secondary or higher for adult models n/a n/a 0.98 (0.91,1.05)d 0.56 (0.40-0.77)b 
     Cumulative other household deaths 8.24 (6.41, 10.59)b 1.28 (1.07,1.52)b --- --- 
     Number of other household deaths 59.25 (46.87,74.91)f 9.16 (8.01,10.46)f 1.04 (1.02,1.07)b d 

     Household head:     
       Male 0.86 (0.63,1.17)d 0.78 (0.60-1.02)b 0.53 (0.50,0.57)b 0.40 (0.35-0.45)b 
       Death 1.77 (0.03,113.22)d,e 1.41 (0.95,2.09)c 3.66 (3.36,3.98)b 6.74 (5.70-7.92)b 
       >=40 years of age 1.02 (0.85,1.22)b 1.11 (0.90,1.37)d 0.62 (0.58,0.66)b 0.15 (0.13-0.17)b 
       Mozambican 1.12 (0.97,1.31)d 1.71 (1.40,2.09)b 1.04 (0.98,1.11)d 0.76 (0.66,0.86)c 
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     Parity 0.91 (0.80,1.05)d 0.99 (0.90-1.08)d n/a n/a 
     Death of previous sibling 1.17 (0.84,1.65)b 1.63 (1.08-2.45)b n/a n/a 
     Breastfed 0.21 (0.17,0.26)b 0.88 (0.58,1.33)d n/a n/a 
     Increasing birth weight 0.42 (0.36,0.50)c 0.77 (0.59,1.00)c n/a n/a 

     
     Other child born less than one year prior 4.61 (1.34,15.81)b c,e n/a n/a 
     Four or more children in the household 1.33 (1.02,1.72)f 1.44 (1.13,1.80)b n/a n/a 

     
Socio-economic determinants     
     Household SES (MCA) quintile for infant and child models; tertile for adult 

models     
     Most poor 1 1 1 1 
     More poor 0.81 (0.42,1.57)d 0.74 (0.51-1.07)d --- --- 
     Poor 0.91 (0.47,1.78)d 0.63 (0.43-0.92)c 0.76 (0.69,0.84)b 0.78 (0.58-1.05)b 
     Less poor 0.91 (0.47,1.76)d 0.60 (0.41-0.87)c --- --- 
     Least poor 0.98 (0.50,1.91)d 0.43 (0.28-0.66)c 0.65 (0.58,0.71)b 0.78 (0.58-1.03)b 
     Unknown f f 1.48 (1.26,1.71)b 1.01 (0.75-1.35)b 
     
Environmental or geographic factors     
     Distance to nearest health facility (>6km) 1.18 (0.63,2.21)d 0.46 (0.17,1.24)d 5.34 (3.11-9.98)b 1.20 (0.17,8.63)b,e 
     Climatic proxy (elevation in metres) 0.998 (0.994,1.002)d 0.999(0.997,1.000)d 0.998(0.997,0.998)c 0.998(0.997,0.999)c 

a: measure of association based on analytical data structure and model type for  given age-group;  incidence rate ratio (IRR), odds ratio (OR); hazard ratio (HR) 
b: significant in bivariate analysis, estimate following multivariate adjustment  
c: significant (at 10percent level) in bivariate analysis but substantial missing data so not included in final multivariate model 
d: not significant at 10 percent level in bivariate analysis 
e: very small numbers 
f: not run in Bayesian multivariate framework - either due to co linearity or discovered post publication 
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Most prominent risks for 50-64 year mortality following multivariate adjustment were 

later time period, male gender, being a migrant and death of household head (Table 

10). Increasing wealth of household, household head being male and older than 40 

years were again prominent protective factors. Mozambicans appeared to have 

significantly lower risk in this age group when compared to South Africans. In 

contrast to the findings for younger adults, following multivariate adjustment in the 

50-64 year model, distance to nearest health facility (>6km) was no longer a 

significant risk factor. 

 

6.4 Spatial distribution of age-specific mortality, 1992-2007 

 

This section shows the spatial distribution of age-specific mortality. This is first 

illustrated by assuming a Poisson distribution before using the Kulldorff spatial scan 

statistic and Moran’s I spatial autocorrelation statistic. The spatial distribution of 

mortality is then developed using Bayesian kriging before showing clusters of space 

and time distribution of age-specific mortality  

 

6.4.1 Rates and test for randomness of counts assuming a Poisson distribution for all-

cause mortality (excludes 5-14 and 65+ years) 

 

By comparing individual village mortality rates to the overall area rate using 

95percent CI’s based on a Poisson distribution, we observed that three villages in the 

south-east (lower east grid in Table 11) and one in upper central had significantly 

higher mortality rates. Two villages with significantly lower mortality rates were also 

found, both in the upper central region. Similarly, when comparing age-specific 
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mortality rates we observed significant excess and deficit counts with particular 

villages emerging as high risk across all age groups (one village in the upper central 

region of the site and three villages in the lower east). Graphical depictions of this are 

provided in figures 12 to 15, along with significant spatial differences based on the 

Kulldorff spatial clustering scan statistic and Moran’s I local spatial autocorrelation 

statistic. 
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Table 11: Mortality rates (95percent Poisson confidence intervals a) per 1,000 person-years by age-group and village 

Village Location 

Combined (0-4,15-49) 
mortality rate  
(95percent CI) 

Infant (<1) mortality 
rate (95percent CI) 

Child (1-4) mortality 
rate (95percent CI) 

Adult (15-49) 
mortality rate  
(95percent CI) 

Adult (50-64) 
mortality rate  
(95percent CI) 

16 Upper west 8.17 (7.34-9.07) 19.41 (13.19-27.55) 4.1 (2.63-6.1) 7.08 (6.18-8.08) 17.48 (13.86-21.75) 
3 Lower west 7.90 (7.18-8.66) 21.04 (15.46-27.97) 4.51 (3.19-6.19) 6.16 (5.42-6.97) 20.23 (16.68-24.3) 
1 Upper central 7.70 (7.07-8.36) 17.70 (13.22-23.21) 4.29 (3.16-5.68) 6.69 (6.01-7.43) 16.25 (13.33-19.62) 
2 Upper central 7.32 (6.43-8.3) 23.22 (15.66-33.14) 5.97 (4.03-8.52) 5.77 (4.84-6.82) 14.38 (10.57-19.12) 
6 Upper central 9.00 (8.07-10.00) 27.55 (19.94-37.11) 5.18 (3.52-7.36) 6.86 (5.91-7.91) 24.33 (19.35-30.2) 
13 Upper central 8.35 (7.42-9.37) 25.3 (17.81-34.87) 5.43 (3.69-7.7) 6.56 (5.57-7.66) 18.24 (13.98-23.38) 
14 Upper central 9.12 (7.83-10.56) 32.63 (21.5-47.48) 3.72 (1.86-6.65) 7.21 (5.87-8.76) 21 (14.78-28.94) 
21 Upper central 13.05 (10.79-15.66) 29.51 (17.49-46.63) 13.19 (7.94-20.6) 10.79 (8.45-13.56) 31.08 (13.42-61.25) 
4 Lower central 8.39 (7.46-9.40) 27.64 (19.36-38.26) 4.43 (2.78-6.71) 6.04 (5.13-7.08) 23.08 (18.33-28.69) 
9 Lower central 8.00 (7.22-8.85) 18.62 (12.82-26.15) 3.89 (2.56-5.66) 6.99 (6.14-7.93) 17.58 (13.94-21.88) 
10 Lower central 8.72 (7.87-9.63) 21.91 (16.04-29.22) 4.01 (2.74-5.66) 8.01 (7.04-9.08) 19.17 (14.91-24.25) 
18 Lower central 8.22 (6.58-10.13) 22.28 (11.12-39.87) 5.46 (2.72-9.76) 6.64 (4.86-8.86) 18.54 (11.48-28.34) 
7 Upper east 9.14 (7.97-10.43) 29.18 (19.54-41.91) 4.61 (2.74-7.29) 7.91 (6.63-9.36) 18.62 (13.3-25.36) 
11 Upper east 8.55 (7.86-9.29) 33.29 (26.66-41.06) 4.79 (3.55-6.34) 6.8 (6.07-7.58) 18.84 (15.46-22.75) 
5 Lower east 8.34 (7.30-9.48) 20.71 (13.27-30.82) 4.28 (2.62-6.61) 6.95 (5.83-8.21) 22.45 (16.71-29.51) 
8 Lower east 9.82 (8.98-10.71) 30.01 (23.01-38.47) 6.15 (4.58-8.08) 7.95 (7.06-8.92) 21.55 (17.52-26.24) 
12 Lower east 10.42 (9.05-11.95) 24.33 (15.59-36.2) 9.43 (6.57-13.12) 8.61 (7.12-10.32) 20.75 (14.19-29.29) 
15 Lower east 10.15 (9.08-11.31) 25.52 (18.15-34.89) 5.88 (4.07-8.21) 8.55 (7.37-9.87) 21.25 (16.26-27.3) 
17 Lower east 8.63 (7.47-9.90) 24.64 (16.37-35.61) 9.07 (6.51-12.3) 5.69 (4.56-7.01) 18.28 (13.06-24.9) 
19 Lower east 8.50 (6.97-10.26) 28.73 (17.03-45.41) 7.47 (4.5-11.67) 7.1 (5.39-9.18) 11.06 (6.19-18.25) 
20 Lower east 9.41 (7.67-11.42) 26.64 (14.91-43.95) 9.77 (6.12-14.79) 6.54 (4.79-8.72) 18.7 (11.08-29.55) 
Overall --- 8.62 (8.41-8.84) 24.68 (22.93-26.53) 5.36 (4.94-5.8) 7.03 (6.8-7.26) 19.17 (18.12-20.26) 

a: Statistically significant rates (high or low) are bolded 
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6.4.2 Kulldorff spatial scan statistic and Moran’s I spatial autocorrelation statistic 

 

Towards the south-east corner of the site a statistically significant (at 5percent level) 

cluster of higher mortality comprising 5 villages was observed for the period 1992-

2007 (observed deaths=1831, expected deaths=1706, RR=1.09, p=0.025). 

 

We used the Kulldorff Spatial Scan statistic to identify clusters of villages with 

higher age-specific mortality. For this we employed an elliptical (instead of 

circular) scanning window which allows the angle of the ellipse to be varied by the 

algorithm. This method yielded the following: 

  

Infants: only one significantly higher infant mortality cluster of five villages 

emerged, which encompassed all villages running closest to the Kruger National 

Park boundary on the eastern side of the sub-district (observed deaths= 223, 

expected deaths= 176, RR= 1.38, p=0.034).  

 

Children (1-4 years): two significant clusters of higher child mortality were found 

using the Kulldorff spatial scan statistic (Figure 12). The villages in red are those with 

significantly higher than expected counts of child mortality based on Poisson 

confidence intervals shown in Table 11: one cluster of five villages in the south-east 

corner (observed deaths= 151, expected deaths=101, RR=1.66, p<0.001) and a single 

village in the upper central region (observed deaths= 19, expected deaths=8, RR=2.51, 

p=0.043). The Moran I spatial autocorrelations statistic identified only one significant 

cluster of high-low (discordant or negative spatial autocorrelation) mortality in the 
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village in the upper central region of the sub-district. This means the one village in the 

upper central with excess mortality is surrounded by villages with low mortality. 

 

ii

i

 

Figure 12: Villages with significantly high or low mortality rates based on 95percent 

Poisson confidence limits, significant Moran’s I local spatial autocorrelation and 

Kulldorff spatial scan clusters of all-cause mortality in infants and children 

Triangle: Moran's I spatial-autocorrelation High-low (p<0.001) 

Circle i: primary high cluster; Kulldorff Scan statistic (p<0.001) 

Circle ii: secondary high cluster; Kulldorff Scan statistic (p=0.011) 

 

Adults (15-49 years): two significant clusters of higher mortality were observed in 

similar locations to that observed for children (1-4 years) above based on the 

Kulldorff spatial scan statistic (Figure 13). One village in the central region of the site 

had significant excess mortality (Table 11) based on Poisson confidence intervals 

when compared to the site overall. Though detected by Kulldorff spatial scan statistic 

it was not statistically significant using this approach. Two significant clusters of 

mortality were identified using the Kulldorff spatial scan statistic: one cluster 

consisting of five villages in the south-east corner (observed deaths= 790, expected 

deaths=702, RR=1.16, p=0.016) and a cluster consisting of one village in the upper 
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central region (observed deaths= 73, expected deaths=48, RR=1.55, p=0.025). As 

with child mortality rates, the Moran I spatial autocorrelation statistic only detected on 

significant cluster of high-low mortality in the village in the upper central region. 

i

iii

ii

 

Figure 13: Villages with significant mortality rates based on 95percent Poisson 

confidence limits, significant Moran spatial autocorrelation and Kulldorff spatial scan 

clusters of all-cause mortality in adults (15-49 years) 

Triangle: Moran's I spatial-autocorrelation High-low (p<0.001) 

Circle i: primary high cluster; Kulldorff Scan statistic (p=0.016) 

Circle ii: secondary high cluster; Kulldorff Scan statistic (p=0.025) 

Circle iii: tertiary high cluster; Kulldorff Scan statistic (p=0.586) 

 

Adults (50-64 years): no significant clusters were detected using the Kulldorff scan 

or Moran I spatial autocorrelation statistics. One village in the upper central region 

did display significant excess mortality with the lower limit of that villages Poisson 

95percent confidence interval being greater than the overall mortality rate for all 

villages combined. Similarly two villages were significantly below the expected 

overall mortality rate (shown in blue in Figure 14). 
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Figure 14: Villages with significant mortality rates based on 95percent Poisson 

confidence limit comparison to overall rate 

 

A composite of all significant excess or deficit mortality counts for the various age-

groups can be seen in Figure 15. There appears to be a “corridor” of mortality starting 

in the upper central region of the site and runs through the villages in the south-east 

part of the site. These villages are the ones closest to the Kruger National Park 

boundary between South Africa and Mozambique. Possible reasons for this observed 

pattern will be considered in the discussion section. 

 

 

Figure 15: Villages with significant excess mortality based on individual age-group 

results using Poisson confidence intervals (section 6.4.1) 
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6.4.3 Bayesian kriging 

 

The risk estimates based on age-specific Bayesian kriging prediction models showed a 

similar distribution of higher risk as shown by the cluster and village rate findings 

(Figure 16), especially with regards to infants and children. The similarity in findings 

for adults when comparing village rates and 95percent CI’s, Kulldorff high risk 

clusters and Bayesian kriging yielded a slightly different pattern and indicated some 

heterogeneity between the techniques. For example two villages with significantly 

higher mortality rates among adults aged 15-49 years (based on comparing the village 

specific lower confidence limit for its mortality rate to the overall aggregated rate) 

appeared as lower risk predictions using the Kriging approach. 

 

Five distinct foci of higher mortality in the 15-49 age-group were observed using 

Bayesian kriging (Figure 16). Three are in the central to upper central region of the 

site and two in the south east. These correlate to areas with higher risk of infectious 

disease mortality in this age group, largely HIV/TB. A very similar pattern was seen 

in the 50-64 year age-group when compared to 15-49 years though with one minor 

difference in that one village in the south east was no longer at higher risk and one 

additional village in the upper central region emerged as high risk. Similarly, this 

distribution is largely driven by HIV/TB mortality. Higher non-communicable disease 

mortality risk was observed in one particular village in the upper central region of the 

site. Based on the prediction model that adjusted for straight-line distance to health 

facility from prediction points using a univariate Bayesian kriging model that included 

this risk factor we can see that two villages, one in the upper and the other in the 

lower south east region, appear to have a higher mortality risk as a function of 
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increased distance to the nearest local clinic in the Agincourt sub-district (Figure 17). 

We also observe that there are parts of other villages that appear to be at a large 

distance from the nearest health facility. 

 

 

Figure 16: Maps of all-cause mortality risk by age group within the Agincourt sub 

district based on baseline models without covariates 
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Figure 17: Geographic risk of adult mortality adjusting for distance to nearest health 

facility at prediction point  using a univariate Bayesian spatial kriging model that 

includes distance to health facility as the risk factor (2km band increments with blue 

being the lowest risk, >6km or high risk areas are represented in red) 

 

6.5 Space and time distribution of all-cause age-specific mortality  

 

Significant spatial-temporal clusters of age-group specific all-cause mortality can are 

presented in Table 12. A significant space time cluster of higher all-cause mortality 

was observed among infants in four villages in the south east corner of the site during 

2001-2007 (105 observed cases, 66 expected, RR=1.67, p=0.012). A significant space 

time cluster of higher all-cause mortality was observed among children (1-4 years) in 

four villages in the south east corner of site during 1997-2004  (63 observed cases, 34 

expected, RR=2.04, p=0.005). During 2001-2007, a significant high cluster of adult 

mortality (15-49 years) was observed in the south east comprising five villages (548 

observed cases, 323 expected, RR=1.82, p<0.001) as well as another cluster of five 

villages in the lower central/east region during the same period (483 observed cases, 
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318 expected, RR=1.60, p<0.001). Significant clusters of higher older adult mortality 

(50-64 years) were observed in similar areas during similar periods (Table 12). 

 

Table 12: Significant clusters of all-cause mortality by age-group using the space-time 

scan analysis scanning for high mortality rates only 

 

Age-

group 

Years Number of 

Villages 

Location within site Observed 

cases 

Expected 

cases 

Relative 

risk (RR) 

p-valuea 

<1 2001-2007 11 Central/South east 286 195 1.67 <0.001* 

1-4 1997-2004 4 South east 63 34 2.04 0.005* 

15-49 2001-2007 11 South east 1293 822 1.90 <0.001* 

15-49 2001-2007 9 West/Central 1139 809 1.60 <0.001* 

50-64 2002-2007 12 Upper-mid 

Central/South east 

368 248 1.69 <0.001* 

a: significant at 5percent level (*); 

 

6.6 Potential proximate reasons for the observed high risk clusters 

 

Reasons for the observed high risk mortality spatial clusters in infant, children and 

adult age-groups are listed below. The significance comparison is based on the 

comparison of the distribution of various predictors in aggregated high risk versus low 

risk village clusters as identified using the Kulldorff spatial scan statistic. 
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Infants 

 

The high infant mortality cluster, comprising five villages along the Kruger National 

Park Boundary, when compared to the lower mortality cluster had a significantly: 

 Higher number of cumulative household deaths; 

 Higher number of deaths of previous children; 

 Higher incidence of household heads dying; 

 More Mozambican household heads; 

 More infant deaths due to HIV/TB and diarrhoea or malnutrition; 

 Higher number of mothers dying of HIV/TB at the 10percent level; 

 Lower duration of breastfeeding. 

 

There was no significant difference in father deaths prior to birth or in infants first 

year, however numbers were small and it appears there might be a higher incidence in 

the high risk cluster (IRR=1.41,p=0.126). Interestingly households in the high risk 

cluster were significantly closer to health facilities on average than in the lower 

cluster with a mean of 1.75 versus 2.55 kilometres (km's) respectively. 

 

Children 

 

The high child mortality cluster had a significantly: 

 Higher number of infant deaths due to HIV (OR=1.75; p=0.020); 

 Higher number of infant deaths due to diarrhoea or malnutrition (OR=2.54; 

p<0.001); 
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 Higher proportion of Mozambican mothers and household heads (OR=7.07; 

p<0.001 and OR=7.32; p<0.001 respectively) ;   

 Higher proportion previous sibling deaths (OR=1.47; p<0.001); 

 Higher mortality rate in all other age groups combined (p<0.001); 

 Younger household heads (OR=0.78; p<0.001); 

 Higher proportion of households greater than 6km to nearest health facility 

(OR=1.44; p<0.001); 

 Higher proportion of male headed households (OR=1.44; p<0.001); 

 Higher mother deaths (while child aged <5) due to undetermined causes, 

probably related to increase of HIV (OR=2.17; p=0.077). This is expected due 

to limitations of the VA tool determining HIV-related cause-of-death and 

often non-specificity of symptoms leading to undetermined cause assessment 

by the physicians; 

 Lower mean maternal education years (5.39 versus 7.75 years, p<0.001); 

 Lower proportion of migrants (OR=0.87; p<0.001). 

 

No significant differences between these clusters were identified with regards to 

mother or father death due to any cause or due to HIV/TB while their children were 

aged <5 years. There was no significant difference with regards to proportions of 

preceding births being less than 1 year prior. There was almost a marginally 

significant higher number of migrant months in the high risk cluster of villages when 

compared to the remainder (OR=1.004; p=0.106). 
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Adults 

 

The high younger adult (15-49 years) mortality cluster had a significantly: 

 Lower proportion of individuals with secondary or higher level education 

(OR=0.54; p<0.001). Average education years per individual in high cluster 

areas was 7.31 years versus 9.27 in lower risk clusters; 

 Higher odds of a household belonging to lower socio-economic status 

category (OR=0.66; p<0.001); 

 Higher odds of having a Mozambican household head (OR= 2.60; p<0.001); 

 Higher likelihood of having a male household head (OR= 1.06; p=0.001); 

 Lower likelihood of having adults involved in government, professional or 

private sector skilled labour (OR=0.80; p<0.001); 

 Lower likelihood of having a household head 40 years or older (OR=0.61; 

p<0.001); 

 Higher number of migrant months (OR=1.005; p=0.039) - especially high 

number of migrant months in the one village in the upper central area which 

consistently emerged as mortality hotspot (average of 4.1 migrant months per 

year per individual in this village compared to 3.3 in all other villages 

combined; p<0.001). This village in particular also had a significantly lower 

mean age. 

 More likely to have a higher household proportion of deaths attributed to 

HIV/TB (p<0.001). 

 

There was no significant difference in terms of male headed households or 

proportions of household head deaths. 
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7.0 Discussion 

 

The following section discusses the findings of this thesis in relation to the literature, 

makes some recommendations and proposes future related research questions that 

need to be addressed. This section is ordered as per the results in section 6 but certain 

key findings in one or more of the published papers of this thesis (see Appendix) may 

also be discussed. Finally, a number of conclusions are reached.  

 

7.1 All-cause mortality 

 

Key findings 

 High mortality in Agincourt, though slightly lower than national average 

 Highest mortality rates in infants and elderly 

 Excess mortality in younger to middle age adult age groups due to HIV/AIDS 

 

The results indicate that overall 9,035 deaths occurred in the Agincourt sub-district 

during the study period 1992-2008 (overall crude mortality rate of 8.1 per 1,000 

person-years). This is lower than the average crude mortality rate of 13.3 per 1,000 

population described for the country as a whole during a similar period 1994-2008 

(Health Systems Trust, 2010). The highest mortality rates occurred among infants 

followed by the older adult age group age group (50-64), with 29 and 19 deaths per 

1000 person-years respectively. The mortality rate among children (1-4) and younger 

adults (15-49) was similar at 5.7 and 6.9 per 1,000 person-years respectively. A high 

burden of perinatal mortality was observed with a significant increasing trend from 
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1996 onwards. It does, however, appear that the early neonatal mortality rate in this 

sub-district (approximately 8 per 1,000 person-years for the aggregated study period) 

is lower than the regional estimate given by WHO for 2004 of approximately 34 per 

1000 live births (WHO, 2006). Among adults (15-64) log mortality hazard showed a 

strong non-linear excess between ages 15-55 due to HIV/AIDS (Figures 1 and 2). 

Generally one expects to observe a linear increase in the log mortality hazard in the 

adult age range. 

 

7.2 Leading causes of death 

 

Key findings 

 Most prominent cause of death HIV/TB 

 Emerging non-communicable disease mortality in older age groups 

 External causes of death (violent or accident related) prominent among 

younger adults 

 

Earlier work in South Africa and Agincourt has shown the profound impact of 

HIV/TB on mortality across most age groups (Bradshaw et al., 2000; Kahn et al., 

2007a, Tollman et al., 2008). The results show that infectious diseases are the most 

prominent cause-of-death with the leading cause-of-death in all age groups being 

HIV/TB. Approximately half of all child (<5) and younger adult (15-49) deaths could 

be attributed to infectious causes. Among children the second most prominent cause-

of-death was diarrhoea or malnutrition. Mortality from non-communicable disease has 

also increased significantly in adults 30 years and older in the rural Agincourt sub-

district (Tollman et al., 2008). Violent or transport related mortality also featured 
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prominently in younger adults. In the older age groups however, lifestyle or non-

communicable related mortality (e.g. vascular disease, neoplasms) featured 

prominently following HIV/TB. Thus, despite mortality in this sub-district being 

dominated by communicable diseases, non-communicable diseases are evident and 

emerging (Tollman et al., 2008). 

 

7.3 Temporal, spatial and spatial-temporal distribution of mortality 

 

Key findings 

 Significant temporal mortality increases in most age groups due to HIV/TB 

particularly from the late 1990’s 

 Levelling out of mortality around 2005 possibly linked to ART access outside 

the sub-district 

 Strong space-time differences in age-specific mortality detected even within a 

small area such as the Agincourt sub-district 

 Distinct clustering of higher mortality risk  in the eastern and upper central 

area 

 Strong association with former Mozambican refugee location 

 Emerging higher risk cluster in upper central -  newer village with a young and 

highly mobile migrant population 

 Strengths and weaknesses of different methodologies 

 Recommendations for future space-time work 
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7.3.1 Summary of findings 

 

The results show significant temporal increases in mortality in most age groups in 

Agincourt, especially from the late 1990’s onwards, largely due to the increase in 

HIV/AIDS.  This is similar to findings from other parts of South Africa during similar 

periods (Dorrington et al., 2001; Hosegood et al., 2004). 

 

There was a significant worsening of infant mortality over time as well as child 

mortality, particularly between 1996 and 2003. The increase was observed from 1998 

onwards, and can be largely attributed to the HIV epidemic and its impact on 

mortality (Newell, 2001; Tollman et al., 2008), both directly (vertical transmission of 

HIV) and indirectly (death of a caregiver, resultant loss of wealth).  HIV/AIDS deaths 

due to diarrhoea also remained prominent. Interventions to reduce child mortality 

must target infectious causes, specifically HIV and diarrhoea. A substantial and 

significant increase in adult mortality was observed, as has been documented in other 

parts of the country, over the same period (Dorrington et al., 2001, Hosegood et al., 

2004). The increase began around 1999 and seemed to plateau around 2006. Given the 

younger adult ages at which these additional deaths are occurring (Figures 2 and 3 

with log hazard of mortality by yearly age) and the change in the cause-of-death 

profile, this rise can largely be attributed to HIV/AIDS. This is similar to findings 

from the Africa Centre in northern Kwazulu Natal where an increase in adult 

mortality in the late 1990’s, with the largest cause-of-death being HIV/TB, was 

documented (Hosegood et al., 2004). The levelling out of adult mortality is possibly 

linked to the ART rollout which began in South Africa round 2004, though this 

plateau in adult mortality in Agincourt preceded ART rollout in this area. This could 
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be a data effect due to small numbers or as a result of individuals accessing ART 

outside the site pre Agincourt rollout. The results, supported by other findings, 

indicate that Government should rapidly augment its current plan to prevent and treat 

HIV/AIDS. ART rollout started in the Agincourt sub-district in 2007 and, as a result 

of this delay, many unnecessary deaths have probably occurred. Future studies in this 

area can better assess the post impact of ART rollout on mortality, as well as specific 

villages or areas were equity of access may be an issue. 

 

There is renewed interest in the spatial clustering of infectious disease and mortality, 

especially in poor areas with limited resources. Spatial variations of age-specific 

mortality remain substantial in developing countries, yet little proper spatial analysis 

of longitudinal HDSS data undertaken. Results showed strong geographical and 

temporal differences in mortality even within a small area such as the Agincourt sub-

district (~400km2). Several statistically significant clusters of higher all-cause and 

cause-specific mortality rates were identified among the 21 villages both in space and 

space-time. This distribution is being driven by a complex web of interacting factors 

that have likely increased communicable disease mortality (HIV) and non-

communicable disease mortality (in the older age-group) in specific risk areas. A 

strong geographical pattern with regards to higher infectious disease mortality risk 

(particularly HIV/TB and diarrhoea) and former Mozambican settlements lying to the 

east of the site was generally observed. According to the spatial cluster analyses the 

south-east and upper central regions of the site were consistently identified as high 

risk areas for most age groups thus indicating a definite non-random element to the 

mortality distribution in this rural sub-district. From the space-time cluster analysis 

we observed that most of the significant mortality clusters appeared during the later 
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period (1999-2007) with none in the earlier period (1992-1998) (Table 12). 

Significant increases in mortality rates particularly in <5, 15-49, and 50-64-year age 

groups were observed (Tollman et al., 2008). Hence this newly described temporal 

increase in spatial clustering is also linked to the increase in mortality over the time 

period. According to the space-time cluster analysis, the south east and upper central 

regions of the site appear to have the highest mortality risk. The results inform 

policies to address health inequalities in the Agincourt sub district and improve access 

to certain health services. Specific efforts to prevent vertical transmission of HIV 

should target specific villages, as well as interventions to promote mother and father 

in childhood. A significant space cluster of older adult (65+) mortality (as well as a 

space-time cluster of higher mortality among 50-64 year olds during 2002-2006) was 

observed toward the west of the site in the later period. More affluent South African 

villages are concentrated towards the west of the site. A recent study by Tollman et al. 

(2008)  found a significant increase in the mortality rate due to non-communicable 

diseases in adults 30+ when comparing the baseline period of 1992-1994 to 2002-

2005 (RR=1.22, p=0.026) . Thus, an emergence of lifestyle related disease and 

mortality has been documented and the spatial analysis point to specific areas within 

the site where this may be most prominent. 

 

The highest infant mortality risk was in villages bordering the eastern part of the site.  

With regard to the geographical distribution of infectious infant deaths (particularly 

HIV/TB) there was a distinct spatial pattern of mortality with an increasing gradient 

towards the east of the site where communities appear to be at increased risk and 

where suitable interventions need to be directed accordingly. Diarrhoea and 

malnutrition-related mortality was clustered in the south east of the site suggesting 
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greater problems with clean water and sanitation.  Based on an environmental survey 

conducted some years before , Mozambican refugee settlements in the southeast were 

consistently worse off with respect to access to water, sanitation, waste disposal; in 

addition they had fewer schools, poor quality of housing and were particularly 

isolated from public transport (Dolan et al., 1997). Similar findings have been 

documented by Collinson more recently (2010). It would appear therefore that the 

concentrated burden of mortality has not been alleviated and that service provision to 

more marginalised and poorer communities remains inadequate.  A study assessing 

child mortality disparities between ethnic groups in eleven countries of sub-Saharan 

Africa found close links to economic inequity and differential use of health services 

(Brockerhoff and Hewett, 2000). Service provision in this sub-district needs to be 

fully assessed and strengthened by local government as disparities are still evident.  

 

Spatial autocorrelation and clustering analysis indicated two distinct pockets of higher 

child mortality burden towards the southeast and upper central parts of the site. This 

was consistent with the cause-specific mortality risk distribution we observed for 

HIV/TB, diarrhoea/malnutrition and ARI/pneumonia. Distinct spatial foci of 

increased adult mortality risk were observed in almost identical foci to that of child 

mortality. According to the space-time analysis, recent trends suggest that 

interventions need to first target villages in the southeast (high risk throughout the 

period) and upper central (emerging risk from 2000 onwards) areas of the site where 

the highest mortality burden lies. This evolving space-time risk distribution is likely 

being driven by the evolving HIV epidemic, a temporal phenomenon previously 

documented in this area (Tollman et al., 2008). One village in the upper central region 

appears to be at consistently higher risk across all age groups. This village has a 
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significantly younger and more highly mobile population, potentially engaging in 

higher risk behaviour with more time spent away as described by (Collinson, 2010). 

 

Addressing the concentrated spatial-temporal burden of mortality requires a 

multifaceted approach that includes the provision of clean water and sanitation, 

ensuring maternal survival, promoting maternal, infant and child nutrition, and 

strengthened primary care services for mothers, infants and children. A 

comprehensive approach to the prevention of mother-to-child transmission (PMTCT) 

in these infant and child mortality hotspots is needed. This would include a 

combination of antiretroviral therapy (ART) from early pregnancy, elective caesarean 

section and highly active anti-retroviral therapy (HAART) for mother or infants 

during breastfeeding (Patwari, 1999; Coovadia et al., 2007; WHO, 2010), can 

significantly reduce transmission rates in this sub-district (European Collaborative 

Study, 2005; Naver et al., 2006; Newell et al., 2007). The persistent high burden of 

diarrhoea and malnutrition related mortality in the south east of the site is of concern. 

Routine testing and improved water supply to villages within this region is required. 

Rehydration fluid and dietary management are key aspects in the treatment of acute 

diarrhoea. The capabilities and resources of health facilities, specifically those 

situated near the south east corner of the sub district, to effectively manage children 

presenting with diarrhoea and/or malnutrition needs to be assessed and improved 

(Sartorius el al., 2011). 

 

Some of the spatial distribution of mortality risk described above can be partly 

explained by differences in nationality within the site. Mpumalanga Province in 

northeast South Africa was an important destination for refugees fleeing the civil war 
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in Mozambique from 1983 onwards. A formal peace agreement was signed in 1992, 

yet despite voluntary repatriation programmes, by 2000 it was estimated that more 

than 200 000 former Mozambican refugees were still inhabitants in the province 

(Johnston 2000). A previous study by Hargreaves (Hargreaves et al., 2004) 

demonstrated higher mortality rates among children from former Mozambican refugee 

households when compared to South Africans in the Agincourt sub-district. They 

concluded that lack of legal status and poorer socio-economic status (SES) of many 

former Mozambican refugees partly explains this disparity. They remain a vulnerable 

group and policy amendments are needed to address any inequity and differential 

access to various services. Other underlying factors driving this and other disparities 

with regards to mortality distribution need to be assessed in more detail, as well as the 

distribution of other proximate, socio-economic or spatial driven predictive factors. 

 

This study has also demonstrated the usefulness of Bayesian geostatistical survival or 

event history models in assessing risk factors and producing smooth maps of infant, 

child and adult mortality risk in a health and socio-demographic surveillance system. 

These generated risk maps can be used by decision makers for the design and 

implementation of an ART rollout. Given that a larger distance from the nearest 

health facility was a risk in adults, the usefulness of Bayesian kriging can also be 

highlighted by the generation of risk prediction maps at locations throughout the site 

and that distinct household and village foci of higher risk were identified. This will be 

discussed in more detail in the risk factor section. 
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7.3.2 Methodological comparison and future work 

 

The various strengths and limitations of the different spatial analysis techniques used 

in this thesis (both in theory and as identified in practice with application now to 

Agincourt HDSS data) are listed in Table 13.  This study has demonstrated the 

usefulness of these different spatial analysis techniques, namely Kulldorff’s spatial-

temporal scan statistic for clusters (Kulldorff and Nagarwalla 1995; Kulldorff et al., 

1997) and Moran’s I (Moran, 1948) for autocorrelation, in highlighting high risk areas 

within a rural sub-district as a guide for targeting health interventions. Overall the 

Kulldorff Scan statistic appeared to perform best when identifying significant clusters 

of age-specific mortality in space and space time, as it can identify aggregates of 

higher risk villages that singularly may not have had a significantly high mortality rate. 

There is a future need to identify the most efficient, accurate and simple spatial 

analysis technique(s) to identify significant space-time anomalies of a given outcome 

(mortality, divorce etc) for routine HDSS use. There are several spatial analysis 

techniques (from simple Poisson confidence intervals; to intermediate spatial 

autocorrelation and clustering; and advanced geostatistical modelling), all of which 

have certain intrinsic advantages and disadvantages (Table 13). For example the main 

limitation of the circular Kulldorff’s spatial scan statistic is the detection of irregularly 

shaped clusters. The proposed way forward would be the use of a simulated 

longitudinal dataset with predefined anomalies embedded and testing the various 

spatial techniques in terms of efficiency, sensitivity and specificity to detect these 

predefined anomalies. Subsequent the best technique would be used on empirical. The 

overall objective of this would be to identify which is the most suitable for 
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longitudinal HDSS data and then make recommendations for routine use within the 

INDEPTH network. 

 

Future studies that will employ the Kulldorff Spatial Scan statistic will also use the 

ellipsoid scanning window which will remove some of the limitations of the circular 

variant described above as the angle of an ellipsoid can also be changed and can 

highlight clustering along a linear boundary such as the border of the site with the 

Kruger National Park. We will also employ the novel and more sophisticated 

approaches suggested by (Duczmal, 2004; Duczmal et al., 2007) to further improve 

the detection of irregularly shaped clusters (Table 13) and compare performance with 

the Kulldorff Spatial Scan statistic. A recently modified and improved variant of the 

Moran’s I spatial autocorrelation statistic (Jackson et al., 2010) has proven to be more 

powerful for identifying local and global clusters and will also be tested in the near 

future. 
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Table 13: Strengths and limitations of different and increasingly complex spatial analysis methods (in theory and as applied to Agincourt 

longitudinal HDSS data) 

 Village-specific mortality rates  
(95 percent Poisson CI’s) 

Spatial autocorrelation:  
standard Moran’s I 

Spatial and space-time clustering: 
Kulldorff Scan Statistic 

Bayesian modelling or kriging 

Strengths Significant high or low mortality can 
be observed in single and multiple 
aggregated villages by age group and 
period 
 

Identify location and spatial scale of 
aggregations of unusual values such as 
clusters of high and low mortality (hot 
and cold spots) (Boots, 2002) 
 
Example of this is the identification of a 
single incongruent village in upper 
central region of site with higher 
mortality risk 
 

Significant mortality clustering of one or 
multiple combined locations can be 
observed in space and space-time 
 
Lower penalty associated with the elliptic 
spatial scan statistic (Kulldorff, 2006) 
 
Novel approaches (Duczmal, 2004; Duczmal 
et al., 2007) such as the annealing strategy 
and genetic algorithm for dealing with 
irregularly shaped clusters. Perform faster, 
have less variance and more flexible than 
elliptic scan (Duczmal et al., 2007) 

Produce smooth maps of mortality risks (can 
incorporate irregular nature of mortality 
distribution) 
 
Prediction of mortality at unsampled locations 
based on prediction of spatially relevant 
covariates (e.g. distance to nearest health 
facility, climatic or environmental factors) 
 
High potential to model changes in tropical 
areas for diseases such as malaria and forecast 
predicted change in malaria distribution within 
HDSS given climatic or environmental 
changes 
 

Limitations Provides no spatial structure or relative 
position 
 
Minor excesses in single villages that 
would be significant when clustered 
with nearer villages (with similar traits) 
is not taken into account and would be 
missed 
 
Small numbers make it difficult to 
identify significant differences 
 

Lack of sensitivity (minor excesses 
significant over a group or cluster of 
nearer villages not taken into account 
and would be missed) 
 
Does not account for population 
heterogeneity or density (Jackson et al., 
2010) 

Lack of specificity – given that clusters are 
as circular windows: villages with lower 
mortality surrounded by higher mortality 
villages are included in the cluster but will 
have different characteristics; when 
searching for clustering along a geographic 
boundary  (e.g. river, geographical boundary 
such as the Kruger National Park) then a 
circular window may not be appropriate 
(Sankoh et al., 2001) 
 
Inability or penalisation of circular statistic 
to detect irregularly shaped mortality 
patterns (Duczmal et al., 2006) 

Given large standard errors assigned to 
prediction estimates, difficult to assess 
significant differences or excess risk between 
locations 
 
With HDSS we assume that all households are 
mapped, hence limited potential for Bayesian 
kriging or prediction at unsampled locations 
for spatially relevant factors 
 
Limited potential in an area (such as 
Agincourt) where tropical or environmentally 
driven disease not prominent 
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Results from this method are sensitive to the 
selection of scaling parameters (Waller and 
Gotway, 2004; Fukuda et al, 2005; Chen et 
al., 2008). 
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7.4 Risk factors for mortality in Agincourt HDSS 

 

Key findings 

 Known multilevel risk factors confirmed and novel predictors identified 

 Confirms the adapted disease-ecology theoretical framework I developed for 

this setting in the literature review 

 Mother survival and high household mortality burden are key determinants of 

infant and child survival outcomes 

 Direct and indirect or proximate effects of HIV/AIDS are evident 

 Higher risk among children (1-4 years) associated with Mozambican 

nationality, socio-economic status and death due to diarrhoea and malnutrition 

 Complex interplay of factors related to migrants appears to be driving adult 

mortality due to HIV/TB 

 Distance to nearest health facility is a significant risk factor in adults but not 

among infants and children 

 

7.4.1 Confirmation of known factors and identification of novel predictors 

 

Certain multilevel determinants are now discussed in detail in relation to age-specific 

mortality. Key individual and household level determinants have been confirmed and 

certain novel determinants have emerged. Certain complex multilevel dynamics are 

driving mortality (overall and age-specific) in this sub-district. I know discuss some of 

the key multilevel aspects of mortality in relation to the age groups as well as other 

key determinants which can be related back to the framework in section 2.4. 
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Infants, children and mothers 

 

A mother’s death in the infant’s first year or childhood (1-4) was a major risk factor in 

this study, as was higher numbers of cumulative household deaths. Other reports 

indicate that infants who survive the death of the mother, only have a 10 percent 

chance or less of living past the age of one year (Koblinsky et al., 1994; Ronsmans et 

al., 2010).  Death of the child’s mother (and father to a smaller extent) between their 

first and fifth birthdays (specifically due to HIV/TB) was also a  prominent risk factor.  

The results confirmed the importance of other known risk factors such as age of 

mother, birth spacing, season, village and ethnic group (Mosley et al., 1984; Hobcraft 

et al, 1985; Binka et al, 1995; Ronsmans, 1996; Kuate Defo, 1997; Manda, 1999; 

Hargreaves at al., 2004; Gemperli et al., 2004; Becher et al., 2004; Hammer et al., 

2006,). The association between socio-economic status, maternal education and 

mortality has been previously described (Farah et al,1982; Moser et al., 2005; 

Schellenberg et al., 2008; Chowdhury et al., 2010). Higher education may result in 

better health awareness and utilization of health facilities (Jain, 1988;  Kuate-Defo and 

Diallo, 2002; Becher et al., 2004), as well as translate into higher income and the 

ability to purchase goods and services that improve child’s health (Schultz, 1979). 

Education, moreover, may influence longer birth intervals and possibly higher 

maternal ages (Cleland and van Ginneken, 1989; Becher et al., 2004; Schellenberg et 

al., 2008). A significant protective association between higher household SES and 

reduced infant mortality risk was, however, not observed in this study. This has been 

shown elsewhere and may be explained by the fact that unlike endogenous maternal 

and demographic factors that substantially influence an infant’s risk of death, the 

effects of SES factors on mortality increase as the child gets older due to exogenous 
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factors over which parents have more control (Manda, 1999). The higher risk of child 

mortality in the winter season is most likely due to the increase in respiratory illness, 

as well as environmental or household pollution due to the burning of fuel (e.g. coal, 

wood, paraffin) for indoor heating and cooking. Results from a previous study in 

South Africa suggest that exposure to cooking and heating smoke from polluting fuels 

is significantly associated with under 5 mortality (Wichmann and Voyi, 2006). 

 

 

Direct vertical transmission of HIV or the loss of the primary care giver(s) leading to 

to impaired child care and indirectly through reduced household income are the most 

likely explanations for this finding. About half of children infected with HIV through 

vertical transmission develop AIDS symptoms and die within two years if they are not 

on ART (UNAIDS, 2002). Published work from this thesis (see Figure 4 in Sartorius 

et al., 2010b; and Figure 3 in Sartorius et al., 2011) clearly illustrates this impact on 

infant and childhood mortality risk in this study population. Prevention of vertical 

transmission of HIV and survival of mothers during infancy and childhood in high 

prevalence villages needs to be urgently addressed, including expanded antenatal 

testing (improve elective access to testing and ARV treatment to mothers and fathers 

in these settlements), prevention of mother-to-child transmission, and improved 

access to antiretroviral therapy. There is also a need to assess and improve the 

capacity of district hospitals for emergency obstetric and newborn care.  Persisting 

risk factors, including inadequate provision of clean water and sanitation, are yet to be 

fully addressed. A comprehensive approach to prevention of mother to child 

transmission PMTCT, including a combination of ART from early pregnancy, 

elective caesarean section and avoidance of breastfeeding, can significantly reduce 
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transmission rates in this sub-district (European Collaborative Study, 2005; Naver et 

al., 2006; Newell et al., 2007). However, in resource-poor settings such as the 

Agincourt sub-district, the risks of such surgical procedures need to be taken into 

consideration before recommending caesarean sections as a feasible strategy for 

PMTCT. The avoidance of breastfeeding must also be balanced against the risks 

associated with replacement feeding such as cost and lack of access to clean water 

(Thior et al., 2006; Coovadia and Bland, 2007) which we have shown to be a problem 

in the south east region of the site. Breastfeeding had a protective effect on all-cause, 

as well as diarrhoea and malnutrition-related infant mortality. Breastfeeding protects 

infants through decreased exposure to contaminated water and food, optimal nutrition, 

and improved resistance to infection, however, there is risk of HIV transmission 

through breast milk.  In South Africa, the Department of Health policy with regards to 

breastfeeding practices by HIV positive mothers has evolved in response to emerging 

research (Coovadia and Bland, 2007). Current recommendations are to breastfeed 

exclusively during the first six months with administration of anti-retrovirals to HIV 

positive mothers (WHO, 2010), especially those mothers with low CD4 counts.  

Mothers or infants receiving highly active anti-retroviral therapy (HAART) 

prophylaxis should continue prophylaxis for one week after breastfeeding has ceased 

(WHO, 2010). Infant mortality due to diarrhoea, malnutrition and their interaction is a 

complex problem in poor, high HIV prevalence African settings. Addressing this issue 

requires a multifaceted approach that includes provision of clean water and sanitation, 

promotion of infant nutrition, and strengthened primary care services for mothers and 

infants to reduce the risk of HIV transmission through breast milk (Patwari, 1999). 
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The mothers’ physical presence or absence had a significant impact on infant 

mortality. Conversely, the mother being a temporary migrant (largely work-related) 

proved to be significantly protective and mothers who spent an increasing number of 

months resident in the site appeared to increase infant mortality risk. Brockerhoff 

(1994) proposes how maternal rural-urban migration may affect children as a result of 

three types of living arrangements, namely: children may remain in the village as 

foster-children in the care of their fathers or other relatives; children may accompany 

or follow their mothers to towns or cities; and children born after migrant mothers 

settle in an urban area may remain there through the first few years of life. In this 

study, infants born to mothers who have permanently relocated to urban areas would 

not necessarily be captured by the HDSS. However, this information would be 

captured if they later migrated back into the site or if a household respondent in which 

the mother previously resided was asked details about the absent individual(s) and any 

children born to her. Bledsoe and Anastasia (1992), when reviewing evidence from 

West Africa, suggest that while fostered children may be disadvantaged compared to 

biological children (in terms of access to health care and nutrition), they may still be 

better off than if they had accompanied their migrant mothers. By staying home, these 

children avoid exposure to infectious diseases during a vulnerable period of their life, 

have continued access to economic resources of a non-migrant father, and benefit 

from remittances received from the migrant mother (Bledsoe and Anastasia, 1992) – 

as well as better health care, nutrition and enhanced maternal health knowledge 

(Hildebrand and McKenzie, 2004). In our study, migrant mothers had significantly 

higher education and came from households with significantly higher SES which may 

explain the protective effect of mothers’ migration. According to Collinson et al. 

(2001) there has been an increasing trend in the number of temporary female labour 
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migrants since 1997 in the Agincourt sub-district, a poor area with limited 

employment opportunities with resulting pressures to migrate and remit wages back to 

the rural household. 

 

Death of household members, other than the mother or father, also appeared to be a 

significant risk in this study. Previous research indicates that HIV has had great (if not 

the greatest) impact at the household level in terms of dissolution and reduced 

economic status (Hosegood et al., 2004; Yamano and Jayne, 2004). Thus, the death of 

these members places additional strain (for example financial burden of payment for 

medical services and funerals) on the household which negatively impacts on the 

child’s health outcome. Few studies have quantified the excess risk of infant or child 

mortality associated with other household deaths. High mortality burden households 

are vulnerable and require both financial and social support to reduce the indirect 

impact on their children (Hosegood et al., 2007). The household is forced to take on 

the costs of the funeral, loss of income and labour and, in some cases, the leadership 

skills of a lost household head. A previous study by Hosegood ( 2007) has shown that 

the loss of the household head can have a pivotal effect on other household members. 

In most instances, our research has indicated that female headed households result in 

greater mortality risk in the various age groups examined. The socio-economic 

impacts of AIDS on households include both direct and indirect costs following the 

premature death of an adult. The direct costs are medical prior to death, and the 

funeral cost following death (Booysen, 2002; Hosegood et al., 2007) while the 

indirect cost relates to income lost from a working age individual, along with the 

impact of this on food security, child schooling and loss of assets (Booysen, 2002). 
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Former Mozambican refugees and child mortality 

 

Much of the spatial concentration of infant and child mortality in villages bordering 

the east of the site can be partly explained by the migration patterns of former 

Mozambican refugees who now constitute about a third of the Agincourt HDSS 

population (Kahn, 2006). These people entered South Africa via the Kruger National 

Park, a game conservation area situated between the eastern border of the site and 

Southern Mozambique. The self-settled Mozambican settlements are concentrated to 

the east of the site with predominantly South African villages to the west.  Despite 

equity- orientated policies in South Africa, for example, free primary health care for 

children and pregnant women, it is generally children at the lowest risk of mortality 

who are able to access services and are easiest to reach (Twine et al., 2007). Although 

primary health care is free, transport costs are high; this is a barrier as former 

Mozambican’s are generally further away from health services and have less access to 

paid work. We found a significant risk for all-cause child mortality associated with 

having parents of Mozambican origin. Mozambican villages are more vulnerable and 

isolated with weaker infrastructure; Mozambican households experience poorer 

access to housing, water and sanitation, social grants, education and health services; 

and social discrimination (Dolan et al, 1997; Kahn, 2006; Kahn et al., 2007a). These 

children are the least likely to receive interventions and those who receive one inter-

vention are most likely to receive subsequent ones.  Hargreaves et al ( 2004) suggest 

the higher mortality rates among children of former Mozambican refugees could be 

due to the fact that Mozambican households generally are generally poorer (three 

times more likely to be in the poorest socio-economic quintile) with fewer resources 
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than South African households. Until recently the lack of legal status meant 

Mozambican children could not access the child support grant which puts them at 

further disadvantage relative to South African children. Policy needs to be amended to 

address differential access to services and inequalities. However, our study indicates 

that these mortality patterns are not driven by nationality alone, a finding supported 

by Hargreaves et al. ( 2004) who found no difference in mortality rates between South 

African and former Mozambican infants between 1992 and 2000, despite significant 

differences in the 1-4 year age group. Other factors include Mozambican origin of 

mother for certain infectious causes, maternal death in first year of infant’s life, lower 

maternal education, poor quality of and limited access to neonatal care, poor antenatal 

clinic attendance, and increased vulnerability of households with a high mortality 

burden. These factors should be better elucidated and quantified in order to contribute 

meaningfully to policy and programmes. 

 

We examined health service access with respect to primary health care generally and 

antenatal care specifically. Distance to the nearest primary health care facility was not 

a risk factor in this study with regards to infant and child mortality. Antenatal clinic 

attendance and the number of antennal clinic visits were significantly protective, with 

no difference between South Africans and former Mozambican refugees. These 

findings suggest that factors other than geographic access may be the key to 

understanding the risks associated with health care utilisation. These could include the 

quality of care, level of available care (primary versus secondary), cost and social 

barriers. In South Africa, primary health care for children under the age of six is free, 

as is antenatal care. However, financial costs associated with transport and 

opportunity costs associated with lengthy waiting time (Bigdeli and Annear, 2009) are 
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some of the barriers described in this setting (Twine et al., 2007; Goudge et al., 2009). 

Twine el al. (2007) showed that the poorest households were less likely to apply for 

social support grants than those in higher socioeconomic strata due to barriers such as 

distance from government offices, lack of official documentation and education of 

caregiver and household head.  

 

The strong clustering of diarrhoeal or malnutrition-related (food security) mortality 

risk in former Mozambican refugee settlements suggests worse water and sanitation 

infrastructure facilities which need the attention of local government. Previous 

research has shown a strong link between poor nutrition and infection (Katona and 

Katona-Apte, 2008). Oral rehydration therapy (ORT) and dietary management are key 

aspects in the treatment of acute diarrhoea, particularly those episodes which persist. 

The capabilities and resources of health facilities to effectively manage children with 

diarrhoea and/or malnutrition needs to be strengthened as do referral systems where 

necessary. 

 

Adults 

 

Adult survival is influenced by several factors examined in this study. Low SES and 

few employment opportunities locally have led to adults migrating externally for work. 

Migration patterns have been shown to influence HIV risk (Lurie, 2000). A study in 

Agincourt found that over 90 percent of men perceived little or no personal risk of 

HIV infection (Collinson et al., 2006). Males were much more likely to be labour 

migrants than females. The level of reported risk behaviour among migrants depended 

on the frequency of return and those long-distance migrants who return once or twice 
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a year report more partners than those who worked in nearby destinations (Collinson 

et al., 2006). They also found, however, that resident employed men also reported 

more partners and high levels of male labour migration, coupled with a low frequency 

of long-distance migrants returning home and low personal HIV risk perception, are 

potentially contributing to an explosive spread of HIV in this and other rural settings 

(Collinson  et al., 2006). In this regard, they suggest that strategies (though very 

difficult to implement in reality) to enable more frequent contact between migrant 

men and their rural families are urgently needed as are prevention and awareness 

raising activities (Collinson et al., 2006).  

 

Mozambican nationality was not a risk factor in the 15-49 age-group following 

multivariate adjustment, likely due to the adjustment for lower education and SES in 

the model which is more evident among Mozambicans and settlements further away 

from health facilities. The risk for adult mortality was higher in poorer villages 

suggesting that the benefits of improved health care are not evenly distributed 

throughout the study area. Another study in South Africa on the impact of adult 

mortality on household dissolution and migration in rural Kwazulu Natal, suggests 

that poorer households and households affected by adult deaths were more vulnerable 

(Hosegood et al., 2004). 

 

Mozambicans in the older age group had a significantly lower risk of mortality when 

compared to South Africans. This suggests that, given the generally lower SES of 

Mozambican households, lifestyle-related mortality among South African households 

may be driving risk for mortality due to non-communicable diseases. A study in this 
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area showed that non-communicable disease remains evident despite the pronounced 

impact of HIV/TB (Tollman et al., 2008).  

 

Overall and age-specific mortality risk was higher in households headed by women 

and where the head was less than 40 years of age. In our study, adult mortality was 

significantly higher for males than that for females and the spatial pattern of male and 

female mortality risk was identical, in contrast to a study in China which found 

different spatial patterns of mortality risk by gender (Ali et al., 2007). A cycle of 

increased risk of male death (migrancy and lifestyle related disease in 50-64 year 

olds), leading to more female-headed households is likely. Given that a male 

household head conferred a survival advantage to adults and that male migrants are at 

increased risk, this could potentially compound adult mortality over time as household 

head dynamics change. This needs to be assessed in more detail, along with the 

impact of adult mortality on orphans and elderly mortality. Female-headed households 

require support since they appear to be more vulnerable and at higher risk for adult 

mortality. 

 

7.4.2 Distance to nearest health facility: risk for age-specific mortality 

 

Several studies relate geographic access to the use of health facilities. Members of 

distant communities use facilities less than those living nearer, but this does not 

necessarily translate into increased mortality risk (Stock, 1983; Becher et al, 2008).  A 

recent study in Kenya found that, despite significant spatial variations in child 

mortality, these were not correlated with distance to health facilities (Moïsi et al., 

2010). They concluded that geographic access to curative services did not influence 
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population-level mortality given the density of health facilities in Kenya. They also 

suggest that when distance access targets are met, further improvements in child 

survival can only be achieved through renewed investigation of the social, 

behavioural and quality-of-care factors that obstruct access to health services. 

Similarly, in rural South Africa, there is an urgent need to evaluate and assure a high 

level of health service quality; assess and strengthen referral patterns for emergency 

obstetric, infant and child health care; and identify other barriers to accessing these 

and other government services. In this study no significant change in risk was found 

with increasing distance of household from nearest primary health care clinic or 

district hospitals. The same holds true for infant mortality (Sartorius et al., 2010b). 

This suggests that quality of health services may be influencing child mortality more 

than geographic access. Evaluation of primary health care services with attention to 

quality improvements is needed. 

 

Adult mortality hotspots appear to be affected by differential health care access in this 

rural setting. Larger distance from the nearest health facility had a significantly higher 

risk associated with adult mortality. This has been shown in a study on adult mortality 

in China (Ali et al., 2007). Specific foci of higher mortality risk based on Bayesian 

kriging which included distance from nearest health facility highlighted specific 

villages at increased adult mortality risk. Given that increased distance to nearest 

health facility was a significant risk, this has major implications for ART rollout and 

inequalities with regards to access. The impact of the ART rollout which started in 

this area in 2007 and proximity to the more distant district health facilities also needs 

to be accessed in more detail in future studies.   
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7.4.3 Methodological comparison and future work  

 

A summary of the advantages and disadvantages of the different methods used are 

discussed in Table 13. Future work that builds on current work includes the following:  

 

There is a need to identify the most efficient, accurate and simple way to correctly 

assess risk factors for a given outcome (mortality, divorce etc) using correlated 

longitudinal HDSS data. Firstly, this relates to the best temporal or longitudinal data 

structure to use e.g. various discrete time lengths or continuous time with time varying 

breaks. Secondly, to assess which is the best routine modelling approach that should 

be used e.g. clustered, generalized linear, generalized linear latent and mixed or 

random effects modelling. Longitudinal data (such as HDSS) are correlated both in 

space (closer households are more likely to be similar) and time (repeated 

measurement on individuals or households). If this correlation is not taken into 

account, the standard errors of the risk factors can be underestimated thereby over 

estimating significance. Various methods exist, from simple to very complex, that 

allow one to adjust for this correlation when performing the analysis. However some 

of the more complicated techniques (such as Bayesian geostatistical and temporal 

autoregressive modelling) can take very long time to run. The proposed next steps 

would be to use basic datasets, both simulated and actual, to identify the best temporal 

structure and modelling approach for HDSS longitudinal data which best estimates the 

magnitude and significance of the risk factors in terms of accuracy and computational 

time for example. The major objective would be to make a recommendation regarding 

which approach and data structure could best be used routinely, by the INDEPTH 

network for example, and in computationally limited settings. 
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More advanced analysis of distance to the nearest health facility as an age-specific 

mortality risk in Agincourt HDSS was developed using a proper road network 

analysis. Previous studies in Agincourt and other HDSS that have assessed the impact 

on distance to nearest health facility as a risk factor for mortality have generally 

limited the calculation to a straight-line Euclidean distance from the individual’s 

household.  In many instance no association has been found and this may be purely 

due to how this measurement was defined i.e. straight-line. The straight-line distance 

suffers from limitations that have been described in the literature (Noor et al., 2006). 

For example this measurement assumes that individuals travel in a straight line and 

use the nearest health facility, which is often not the case as the patients’ actual use 

characteristics may differ substantially (Gething et al. 2004; Guargliardo et al. 2004)”. 

More complex, as well as accurate measurements (for example a transport network 

model which accounts for road type, topography and barriers (Noor et al., 2006) exist 

to estimate the shortest distance to quantify this predictive factor. Future analyses of 

the physical access to the nearest health facility or external district hospital on 

mortality in Agincourt and other HDSS, should utilise these more advanced and 

accurate approaches. 

 

There is also a need to better relate the spatial-temporal distribution of the identified 

risk factors with the observed space-time anomalies or hot and cold spots. Developing 

attributable fractions of specific risk factors to individual or aggregated high risk 

clusters and how the distribution of this varies within and between villages and/or the 

other spatial units of aggregation is needed. This could also allow one to more 

efficiently quantify significant differences in the distribution of predictors or risk 
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factors between 'hot-hot' and 'hot-cold' spots, thereby strengthening policy 

applications. 
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Table 13: Comparison of the advantages and disadvantages of various longitudinal survival modelling approaches 

 
Category Unrepeated measures a: Standard binary 

logistic (or Poison or Negative Binomial) 
model (with time offset) 

Repeated measures b: 
Discrete time (monthly, quarterly or 
yearly) event history model 

Repeated measures b: 
Continuous time survival or hazard model 

Advantages Computationally simple 
 
Suitable for age groups with short time span 
or unrepeated measures (e.g. infants) or cross 
sectional data 
 

Straightforward handling of time changing 
covariates 
 
Can allow for non-proportional hazards / 
easily allow for unstructured and structured 
estimation of the hazard function at each 
discrete time point (Muthen and Masyn, 2005) 
 
More transparent than continuous time 
methods (Steele, 2005) 
 
Essentially logistic regression models which 
are familiar to most disciplines and more 
easily interpreted 
 
Often most useful and natural in many  
settings (social and behavioural science) 
where time is most likely to be measured 
discretely e.g. school years (Muthen and 
Masyn, 2005 
  
More capable of handling or analysing ties 
than continuous time modelling approaches 
(Box-Steffensmeier and Jones, 1997) 
 
Approximation of a continuous time process 
improves as the discrete intervals become 
smaller (Yamaguchi, 1991) 
 

Frequently used in many settings (Hougaard, 
2000) 
 
Truly dynamic analysis – risk of experiencing an 
event at a certain time point 
 
Can deal with censored observations 
 
Covariates may change value during the 
observation period 
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Disadvantages Not suitable for multiple or repeated measures 
per individual (long time spans) 
 
Can’t incorporate time varying covariates 

Loss of precision of event time in longer 
discrete time periods used (averaging of risk 
over the period) 
 
Creating person-period dataset: 
--complex data manipulation 
--large datasets especially as discrete time 
period shortens (e.g. monthly) 
--long computation times for complex random 
effects models 

If censoring mechanism related to process or 
outcome under study then bias introduced (non-
random censoring) 
 
Complex to split continuous time episodes to 
reflect all covariate changes 
 
Assumption that only one event can occur at any 
given time is problematic when durations are 
measured in reasonably broad time intervals i.e. 
can’t easily handle co-occurrence of events 
(Yamaguchi, 1991). Estimation procedures for 
continuous-time models thus need to be adapted if 
there are tied event times (Hosmer and Lemeshow, 
1999) 
 

a: overall probability of an event 
b: longitudinal progression of the probability that event will occur 
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7.5 Distribution of underlying risk factors and implications for policy 

 

Key findings 

 Proportion of Mozambicans, number of household deaths and levels of poverty were 

significantly elevated in high risk child and younger adult mortality clusters  

 Concentration of a younger migrant population in upper central region driving higher 

child and adult HIV/TB mortality 

 Targeting the RDP village in the upper central region of the site (emerged as at high 

risk for mortality and HIV especially in the later period). This is a highly mobile sub-

population with a high number of circular migrants. The blanket intervention could be 

health education messages that focus on high risk sexual behaviour when away 

increasing risk for HIV infection, the risk this poses to their partners when they return, 

and the consequent risk of vertical transmission to future children arising from this 

partnership. This village should also be targeted to ensure proper antenatal support to 

address risk of vertical transmission and PMTCT. The loss of ‘bread winners’ also 

further impoverishes these household which subsequently has indirect impacts on 

their children. 

 Blanket up-scaling for entire sub-district: ensuring equitable and high quality 

antenatal care, PMTCT to prevent vertical transmission, and go identify HIV positive 

mothers for ART treatment. 

 Given the high concentration of diarrhoeal and malnutrition-related child mortality in 

a cluster of four villages in close proximity in the south-east corner, there is urgent 

need to assess and scale-up water and sanitation facilities in these communities 

 

This study should be regarded as a first step in prioritizing areas for follow-up public 

health efforts and evaluating their impact: targeting of vertical prevention of HIV/TB 

and antiretroviral rollout in significant child and adult mortality clusters; spatial 
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assessment of antiretroviral therapy (ART) rollout that started in this area in 2007 

along with any villages or areas not accessing equitably; and assessment and 

provision of adequate water and sanitation in the child mortality clusters particularly 

in the south-east where diarrhoeal mortality appears high. Mother-to-child HIV 

transmission prevention efforts in areas with high child mortality needs to be 

emphasized, along with other interventions. 

 

As discussed earlier there is generally a higher concentration of Mozambicans to the 

east and south east regions of the sub-district which proximately explains part of the 

observed or predicted space and space-time mortality risk. It also appears that the 

burden of communicable disease mortality (specifically HIV/TB and diarrhoea) is 

highest in these areas, thus leading to the all-cause space and space-time findings. 

Settlements comprising former Mozambican refugees, as well as selected South 

African villages appear to have an increased risk of and infectious-related mortality. 

Suitable interventions such as ART and the assessment and provision of adequate 

water and sanitation need to be directed to these villages to address existing 

inequalities. A higher cluster of old adult mortality (50-64) was observed in the west 

of the site and older Mozambicans had a lower risk of mortality when compared to 

their South African counterparts.  Thus, the South Africans’ higher standard of living 

may be contributing to a relatively higher spatial risk of non-communicable disease. 

This will be investigated in future. 

 

Addressing health inequities in populations is a major challenge (Feachem, 2000), and 

research that documents and quantifies inequities is needed to inform policies to close 

health gaps in the developing world. Evidence on reducing inequities within countries 
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is growing; successful approaches include those that improve geographic access to 

health interventions in poor communities, subsidize health care and health inputs for 

the poor, and empower poorer communities (Gwatkin et al., 2004; Marmot 2005). The 

results of our study indicate the need for interventions in villages to the east of the site, 

many of which have a large proportion of former refugees, to reduce the higher 

burden of infant deaths due to infectious and parasitic causes. HAART for HIV began 

in 2007 in this district; hence its impact cannot be captured during the time frame of 

this study. This research does, however, provide useful insight into spatial-temporal 

mortality patterns before HAART rollout and will allow post-rollout assessment of its 

impact on infant mortality. Such evaluation has the potential to identify areas needing 

improved access to treatment, specifically prevention of mother-to-child transmission 

and anti-retroviral therapy. 

 

Of concern is the high number of neonatal deaths (particularly in the perinatal period), 

their gradual increase over the study period, and the highest risk area being in close 

proximity to a health facility. This suggests problems of service quality rather than 

geographic access, and highlights the need to assess and improve the capacity of sub-

district health facilities for antenatal, emergency obstetric and newborn care; improve 

coverage of deliveries by skilled birth attendants; and advise mothers on appropriate 

care-seeking for sick babies. Part of the perinatal mortality burden observed may 

relate to maternal HIV since the same village experienced the highest risk for neonatal 

and infant mortality. A meta-analysis (Brocklehurst and French, 1998) found an 

association between maternal HIV infection and adverse perinatal outcomes, 

including low birth weight and pre-term delivery.  

 



 145 

When comparing the high risk age-specific village clusters combined as identified by 

the Kulldorff Spatial Scan statistics versus the remainder of the villages, significant 

differences emerged with regards to the distribution of underlying risk or protective 

factors. 

 

A complex interaction of factors appears to be driving adult mortality in space-time. 

Villages with higher HIV, large distance from nearest health facility, low SES, low 

education, high household mortality burden, and high migrancy rates (increased risk 

behaviour) appear to be driving communicable disease mortality particularly HIV. 

Mozambican nationality was protective in the older age-group (50-64) indicating that 

the generally lower SES of Mozambicans may be protective relative leading to more 

affluent South Africans in terms of lifestyle related non-communicable disease 

mortality. The risk maps can guide decision makers regarding an ART rollout, 

specifically to six higher risk villages. Given that increased distance to nearest health 

facility was a significant risk, this has major implications for ART rollout and 

perpetuating inequalities with regards to access. 

 

One village in the upper central region of the site repeatedly emerged as a significant 

hotspot of mortality. This village had the highest number of migrants and migrant 

months compared to other villages. It is also a “Reconstruction and Development 

Programme (RDP)”10 village with a highly mobile population within the sub-district. 

Temporary or labour migrants are more vulnerable to HIV than more settled 

populations and this has been shown in other African and southern African countries 

                                                
10  The Reconstruction and Development Programme (RDP) is a South African socio-economic policy 
framework implemented by the African National Congress (ANC) government. One component 
involves replacing all shacks and informal settlements in South Africa by providing low cost housing 
for the poor. 
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(Brockerhoff and Biddlecom, 1999; Lurie at al., 2003). A complex interaction of 

factors that surround this mobility predisposes the migrant (and thus his/her partner or 

partners) to greater risk of acquiring HIV. This has been shown to be due to poverty, 

high sexually transmitted infection (STI) rates, the presence or absence of 

circumcision, high partner change rates and increasing the number of higher risk 

partners (commercial sex workers) (Williams et al., 2002; White, 2003). According to 

Lurie ( 2003) migrant men are much more likely to have multiple sexual partners and 

engage in high-risk behaviour. 

 

The findings indicate the need for more detailed research regarding the underlying 

risk factors (at individual, household or community level) that may drive the observed 

spatial-temporal all-cause and cause-specific mortality patterns. For example when 

planning interventions for both communicable and non-communicable mortality, one 

should disentangle the intricate set of factors that differentiate settled South Africans, 

former Mozambican refugees and labour migrants. 

 

7.6 Limitations 

 

A limitation of the study is the potential to miss infant deaths, particularly neonatal 

deaths, which would underestimate the overall infant mortality burden. Infants that are 

born and then die during the 12 months between HDSS census update rounds may not 

be reported, particularly if the mother migrated out of the household; similarly, death 

among in-migrant infants who die before they are enumerated in the annual household 

census may be missed. However, infant death ascertainment has improved in the 
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study site (Kahn, 2006), and the proportion of infants who were in-migrants decreased 

significantly over time, reducing the bias towards the end of the study period.  

 

Determination of cause-of-death through verbal autopsy is more problematic for 

diseases that have less specific symptoms such as HIV/AIDS (Garenne and Fauveau, 

2006). The prevalence of HIV infection in a population and the resulting rate of HIV-

associated co-morbidity and death due to malnutrition in children, for example, may 

affect the performance (such as specificity) of the tool. Thus, it is likely that the HIV 

burden is underestimated due to the misclassification of deaths as AIDS-related 

conditions such as malnutrition or diarrhoea, or their being placed in the “unknown 

cause” category. The significant increase in the number of infant deaths attributed to 

unknown causes since the late 1990s (Figure 2) is concurrent with the rise in HIV-

related mortality in the area. Levels of stigma associated with HIV are high in South 

Africa, particularly prior to the introduction of HAART. The ability to make a 

diagnosis on VA depends, in large part, on the quality of information provided by the 

respondent. This may have been compromised in some cases in an effort to disguise 

HIV as a likely cause-of-death, partly explaining the increase in unknown causes. 

 

Physician-coded verbal autopsies have known limitations (Murray et al., 2007) and 

misclassification could have occurred in our data, especially with regards to 

underestimating non-specific HIV/AIDS-related mortality. One limitation of this 

study is the HIV/TB related deaths misclassified by VA as unknown (R99), as 

demonstrated by the significant increasing trends in this classification over time 

(Figures 7,9,11), which would underestimate the true burden and also suggest that a 

physician-coded verbal autopsy relies heavily on household recall of medical records 
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and related information, limiting its applicability in low-resource settings (Murray et 

al., 2007).  However, a previous validation study of the VA in Agincourt HDSS has 

shown that it performs well in this high HIV prevalence setting (Kahn et al., 2000). 

These found that for HIV/TB combined the sensitivity, specificity and PPV were all 

high (78, 80 and 85 percent respectively). Other studies have also confirmed that VA 

data can be used to reasonably estimate the distribution of AIDS- and non-AIDS-

related deaths even in a rural population with relatively low levels of education 

(Doctor and Weinreb, 2003). One area that needs to be addressed is how the tool 

could be modified to take into account the influence of HIV/AIDS when estimating 

the sensitivity for conditions such as diarrhoea, ALRI/pneumonia and malnutrition 

that are unrelated to HIV/AIDS. 
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8.0 Conclusions 

 

Demographic surveillance systems provide a viable method for the collection of 

reliable data on vital events in rural sub-Saharan Africa. They add value given the 

paucity or lack of reliable routine mortality data or statistics in Sub-Saharan Africa, 

which often renders important health or mortality related issues, along with their 

determinants, invisible to policymakers and donors. Such estimates are critical for the 

design and implementation of effective public health programmes in rural sub-

Saharan Africa including South Africa. The value of HDSS data have been 

demonstrated and the results of the thesis have provided valuable information for 

service planning and prioritization in this and other rural areas of South Africa. The 

high burden of HIV in this population (leading cause-of-death), as is the case with 

most of South Africa, is clearly evident. By estimating the true spatial and temporal 

distribution of the age-specific mortality burden in rural northeast South Africa, this 

study has shown variation across a relatively small geographical area. Various spatial 

analysis techniques (ranging from very simple to highly advanced) were employed 

and their relative strengths and weaknesses identified with recommendation for future 

research to progress forward. The thesis employed Bayesian geostatistical models in 

order to identify risk factors, correctly estimated the standard errors (significance) of 

these risk factors and produced smoothed maps of age-specific mortality risk from 

spatially correlated longitudinal mortality data in a health and socio-demographic 

surveillance system.  Findings indicate the need for interventions targeted at villages 

with excess age-specific mortality risk due to both a direct and indirect impact of HIV. 

A few essential interventions include improving prevention of mother-to-child 

transmission programmes, and antiretroviral therapy for HIV positive mothers to 
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ensure their survival during their infants’ and child’s critical first year(s) of life, 

targeting and improving access to various services for vulnerable households (for 

example households with high mortality burden, suffered shock of key adult(s) deaths 

or loss of pivotal household head), adult education (with regards to unsafe sex) and 

improved testing of highly mobile or migrant individuals. From our study, it is clearly 

inadequate to consider maternal health separately from infant and neonatal health. 

This is consistent with other studies which showed that maternal health directly 

affects infants’ health (Newell et al., 2004). Policy should thus have greater emphasis 

on interventions targeting the mother-infant pair. We also conclude that the non-

random clustering of infant mortality due to diarrhoea and malnutrition in the south-

east part of the site represents a breakdown in basic services (or, indeed, their 

absence); there is hence need to assess and improve water and sanitation in these 

villages. The high level of perinatal mortality, in some instances in close proximity to 

health facilities, is of concern, indicating a need to strengthen the capacity of sub-

district facilities for emergency obstetric and newborn care. Recommendations from 

this study will have applications to other rural settings within South Africa and 

potentially beyond. 

 

Based on the space-time analysis, the southeast and upper central regions of the site 

appear to have the highest mortality risk. These maps are particularly helpful in 

identifying high mortality areas to guide efficient allocation of limited resources in 

child survival and other programs. Risk factor results can contribute to policies to 

address health inequalities and improve access to health services. Targeted efforts to 

prevent the vertical transmission of HIV in specific villages needs to be undertaken, 

as well as efforts to promote the survival of mothers and fathers, both which emerged 
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as prominent risk factors for child mortality. The distribution of adult mortality is 

driven by a complex web of interacting factors that have likely increased 

communicable disease mortality (HIV/TB) and non-communicable disease mortality 

(in the older adult age-group) in specific risk areas. 

 

The impact of HIV on mortality dynamics within this rural setting is striking. The 

findings of this study indicate that particular villages, households and individuals, are 

at higher mortality risk with significant differences in their risk factor profiles. Risk 

maps can be used by decision makers for the design and implementation of 

interventions to alleviate this burden and reduce disparities. Interventions that target 

the mother-infant pair and increase access to various services for more vulnerable 

“high mortality” households are needed. Important interventions include PMTCT, 

ART rollout, water and sanitation, and screening for and control of non-

communicable disease risk factors. Increased distance to nearest health facility, a 

significant risk factor among adults, highlights the importance of geographical access 

to ART rollout. The strong concentration of diarrhoeal and malnutrition mortality in 

children represents a breakdown or absence of basic services, such as provision of 

water and sanitation, that needs to addressed. Recommendations from this study have 

implications for other rural settings within South Africa and potentially beyond. 
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Our study has demonstrated the considerable potential of spatial statistical methods 

for analyzing HDSS event data; this is a contribution since few studies have used 

geostatistical modelling on HDSS event data (e.g. mortality). This study has also 

demonstrated that space-time methods can be used to identify anomalies of a given 

outcome (in this case mortality) in time which further helps guide policy and 

intervention both as to where the problem is and when it occurs. Within the resources 

in the study setting we have also demonstrated that simple to advanced methods can 

be applied that detect significant hotspots of a given outcome in space and time. These 

methods can and have been applied to non-disease outcomes in this setting such as 

poverty (Sartorius et al., 2011) and household dissolution (Sartorius et al., 2011 in 

press). These methods can also be easily extended to other areas (INDEPTH centres, 

national census data) and to other social problems (marriage dissolution).  Future 

post-doctoral work will compare various space-time methods (including more recent 

advances) on actual and simulated data in order to recommend routine use both in 

INDEPTH and in the broader public health arena. 

 

The analytical determinant models used in this thesis have definite applications to 

other studies within this site (Sartorius et al., 2011), in the wider INDEPTH network 

as well as other longitudinal datasets. Future post-doctoral work will focus on 

identifying and making recommendations with regards to which would be the best for 

routine use and given computational/resource limitations in certain African settings. 

 

Finally a better integration of the two methodologies above, which I touched on 

briefly in this thesis, will be a key component that should prove invaluable for policy 
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makers. That is “knowing the where, when and why in specific locations (e.g. 

households and villages)” that will allow for highly structured and targeted 

interventions as well as policy programs. 
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Appendix 1 (model formulations and WinBUGS code) 

 

The various analytical modelling approach formulations as well as WinBUGS code 

are provided below. All parameter specifications follow on after all model 

formulations. 

 

--Model specifications and parameters 

 

Negative binomial spatial-temporal modelling approach (Sartorius et al., 2010) 

 

Let Yit and pit be the status and probability of mortality of individual i in year of birth 

t. We assume that Yit arises from a negative binomial distribution, that is Yit 

~NegBin[pit, r], where pit is the probability that individual i at location si is dead and r 

is the parameter that quantifies the amount of extra Poisson variation. We modelled 

the probability of death [pit] as follows: logit (pit) = β0 + βXit + φit + αt 

 

Discrete time logistic spatial-temporal modelling approach (Sartorius et al., 2011) 

 

Let Yit and pit be the mortality status of individual i and time t. We assume that arises 

from a Bernoulli distribution, Yit ~ Be(pit). We model covariates Xit, village-specific 

random effect φit, individual level random effect µi and temporal random effect αt as 

follows: logit (pit) = β0 + βXit + µi + φit + αt 

 

Parametric spatial modelling approach 
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Note that a non-parametric Cox modelling approached was also tested, though 

violated the proportional hazards assumption. Various parametric distributions were 

also tested based on best fit and predictive power. We assumed a parametric Weibull 

distribution for the survivor function, where tikj is the failure time of an individual i 

(for censored observations the survival distribution is a truncated Weibull with an 

upper bound corresponding to the censoring time) for residence episode k at location j 

with covariate vector Xik and β is a vector of unknown regression coefficients and 

including a village level spatial random effect wj in the exponent of the hazard model 

as follows 

tikj ~ Weibull(ρ,μikj)    i = 1,...,N;  

with a baseline hazard function of the form  

l0(tikj) = ρtikjr - 1 

and means for the various models as follows 

log(µikj) = β0 + βXik + φit 

 

Where applicable in the various model formulations: 

 β0 is the constant (model dependent) when all covariates are zero (i.e. the 

constant) 

 Xit denotes the covariates 

 β is the vector of regression coefficients 

 φit the village-specific random effect 

 αt the temporal random effect. 

 µi the individual level random effect 
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We assume that φit has a multivariate normal distribution, φit ~ MVN (0,Σ), with 

variance-covariance matrix Σ. We also assume an isotropic stationary spatial process, 

where Σkl = σw
2 exp(−φdkl), dkl is the Euclidean distance between villages k and l, σw

2 

is the geographical variability known as the sill, φ is a smoothing parameter that 

controls the rate of correlation decay with increasing distance and measures the range 

of geographical dependency. Both a noninformative gamma prior was adopted for the 

exponential correlation function, phi [φ], which is the smoothing parameter that 

controls the rate of correlation decay, as well as uniform prior with a distribution limit 

between φmin and φmax based on calculation which factors in the minimum and 

maximum estimated distance between locations i.e. meters between village centroids 

in this case (Gelfand and Vounatsou, 2003). 

 

The individual level random effect, µi, was modelled as a Normal distribution, µi ~ 

N(0, σu
2). We also used hierarchical centering to improve convergence of selected 

models. Hierarchical centering were each stochastic variable is considered to arise 

from a stochastic mean. Gelfand et al. (1995,1996) argue that this procedure often 

improves convergence, and further evidence is provided by Roberts and Sahu (1997). 

 

Temporal random effects were also used at monthly or yearly intervals to account for 

temporal correlation. A first order year level autoregressive temporal random effect 

(αt) was modeled as simple AR(1) model where the random effects αt may be written 

as  αt | αt-1 ∼ N(ραt-1,σ2
α),where σ2

α is the temporal dispersion parameter and ρ as 
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temporal autocorrelation with |ρ| ≤ 1 (Schotman, 1994). It simple terms it assumes 

that deaths at month or year t are influenced by deaths at month t-1. 

A second order year level autoregressive temporal random effect (αt), for t=1 to 16 

years, was modelled as a normal distribution with mean αmean [t=3,..,16] = ρ0 + 

ρ[1]*α[t-1] + ρ[2]*α[t-2] and a noninformative gamma distribution for the variance 

parameter. The first two autoregressive terms were specified as αmean [1] <- ρ0 + l[1] 

and αmean [2] <- ρ0 + ρ[1]*α[1] + l[2]. Noninformative normal prior distributions were 

adopted for the ρ and l coefficients (Zeller, 1996). 

 

We assumed: 

 non-informative Normal distributions for the β0 and β parameters ~ N(0, 1 or 

0,1).   

 inverse gamma priors for all σ2 of the various random effects 

 

The range (φ) is defined as the minimum distance at which spatial correlation between 

locations is below 5% i.e. spatial correlation is significant within this distance 

(example: Raso et al., 2006). This distance can be calculated as 3/φ meters based on 

exponential correlation decay. 

 

--WinBUGS code for the three model specifications 

 

Note covariates are represented by: "b[1]*X1[i]+ … +b[8]*X8[i]” 

 

Negative binomial spatial-temporal model 

model { 
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for (i in 1:N){  

 infant_deaths[i] ~ dnegbin(p[i],r)                

 p[i] <- r/(r+mu[i])  

log(mu[i]) <-  log(offset[i]) + b0 + alpha[year[i]] + w[village[i]] + 

b[1]*X1[i]+....+b[7]*X7[i] 

     }    

# AR(2) process 

for (j in 1:2){ 

 l[j] ~ dnorm(0,0.01) 

 rho[j] ~ dnorm(0,1) 

 } 

rho.0 ~ dnorm(0,0.001)  

tau.e ~ dgamma(1,1) 

sigma2.e <- 1./tau.e 

alphamean[1] <- rho.0 + l[1] 

alphamean[2] <- rho.0 + rho[1]*alpha[1] + l[2] 

for (t in 3:16){ 

 alphamean[t] <- rho.0 + rho[1]*alpha[t-1] + rho[2]*alpha[t-2] 

 } 

for (k in 1:16){ 

 alpha[k]~ dnorm(alphamean[k],tau.e) 

 } 

# Spatial process 

w[1:21] ~spatial.exp(m[], x[], y[], tau.w, phi,1) 

for (j in 1:21){  
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 m[j] <- 0 

 } 

tau.w ~ dgamma(1,1)  

sigma2.w <- 1/tau.w  

phi ~ dunif(0.0001,0.0017) 

range <- 3/phi 

#  Dispersion parameter 

r ~ dgamma(1,0.1) 

#  Constant 

b0 ~ dnorm(0,0.1)  

# Covariates 

for (j in 1:7) { 

 b[j] ~ dnorm(0,0.1) 

 RR[j] <- exp(b[j]) 

   } 

# Spatial kriging 

for (j in 1:M){ 

 w.pred[j] ~ spatial.unipred(0,x.pred[j],y.pred[j], w[]) 

 p.pred[j]<-exp(w.pred[j]) 

   } 

} 

Discrete time (monthly) logistic models 

--Spatial-temporal: AR(1) 

Model 

#  Likelihood 
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{ 

for (i in 1:N){ 

 u[i]~dnorm(0,tau.u) 

 for (t in 1:n.obs[i]){ 

 child_died[i,t] ~ dbern(p[i,t]) 

 logit(p[i,t]) <- b0 +  

 b[1]*X1[i]+ … +b[8]*X8[i]+u[i]+w[village[i,t]]+alpha[year[i,t]] 

 } 

} 

# Individual random effect 

tau.u ~ dgamma(0.01, 0.01) 

sigma2.u <- 1/tau.u 

# Spatial process 

w[1:21] ~ spatial.exp(m[], x[], y[], tau.w, phi,1) 

for (j in 1:21){  

 m[j] <- 0 

 } 

tau.w ~ dgamma(0.01, 0.01)  

sigma2.w <- 1/tau.w  

phi ~ dunif(0.0001,0.0017) 

range <- 3/phi 

#  AR(1) process 

for (k in 2:16){ 

 alphamean[k-1]<-rho*alphayear[k-1] 

 alpha[k] ~ dnorm(alphamean[k-1],tau.e) 



 221 

 } 

alpha[1] ~ dnorm(0,tau.a) 

tau.a <- (pow(tau.e,2)/(1-pow(rho,2))) 

tau.e ~ dgamma(0.01,0.01)  

sigma2.a <-1./tau.a 

sigma2.e <-1./tau.e 

rho~dunif(-5,5) 

#  Constant 

b0 ~ dnorm(0,0.1) 

#  Covariates 

for (j in 1:8) { 

 b[j] ~ dnorm(0,0.1) 

 OR[j] <- exp(b[j]) 

 } 

# Spatial kriging 

for (j in 1:M){ 

 w.pred[j] ~ spatial.unipred(0,x.pred[j],y.pred[j], w[]) 

 p.pred[j]<-exp(w.pred[j]) 

 } 

 

} 

--Spatial-temporal: AR(2) 

Model 

{ 

for (i in 1:N){ 
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 for (t in 1:n.obs[i]){ 

  child_died[i,t] ~ dbern(p[i,t]) 

  logit(p[i,t]) <- v[subject[i,t]] +  

b[1]*X1[i]+ … +b[8]*X8[i]+u[i]+w[village[i,t]]++ w[village[i,t]] + 

alpha[year[i,t]] 

  } 

 }  

# Hierarchical centering of individual random intercepts 

for (j in 1:N){ 

 v[j]~dnorm(b0,tau.v) 

 }  

tau.v ~ dgamma(1,1) 

sigma2.v<-1./tau.v 

#  Spatial process 

w[1:21] ~ spatial.exp(m[], x[], y[], tau.w, phi,1) 

for (j in 1:21){  

 m[j] <- 0 

 } 

tau.w ~ dgamma(1,1)  

sigma2.w <- 1/tau.w  

phi ~ dunif(0.0001,0.0017) 

range <- 3/phi 

#  AR(2) process 

for (j in 1:2){ 

 l[j] ~ dnorm(0,1) 
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 rho[j] ~ dnorm(0,1) 

 } 

rho.0 ~ dnorm(0,1)  

tau.e ~ dgamma(1,1) 

sigma2.e <- 1./tau.e 

alphamean[1] <- rho.0 + l[1] 

alphamean[2] <- rho.0 + rho[1]*alpha[1] + l[2] 

for (t in 3:16){ 

 alphamean[t] <- rho.0 + rho[1]*alpha[t-1] + rho[2]*alpha[t-2] 

 } 

for (k in 1:16){ 

 alpha[k]~ dnorm(alphamean[k],tau.e) 

 } 

#  Constant 

b0 ~ dnorm(0,1) 

#  Covariates 

for (j in 1:8) { 

 b[j] ~ dnorm(0,1) 

 OR[j] <- exp(b[j]) 

 }     

} 

Parametric spatial model 

model 

{ 

 for(i in 1:N) { 
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#  Individual random effect    

  u[i]~dnorm(0,tau.u)  

   for(k in 1:n.obs[i]){ 

  t[i,k] ~ dweib(rho, mu[i,k])I(tcen[i,k],) 

   log(mu[i,k])<-b0+ b[1]*X1[i]+ … +b[8]*X8[i]+u[i]+w[village[i,k]]  

   } 

 } 

# Spatial process 

  w[1:25] ~ spatial.exp(m[], x[], y[], tau.w, phi,1) 

  for (j in 1:25){  

   m[j] <- 0 

   } 

# Priors  

tau.w ~ dgamma(1,1)  

sigma2.w <- 1/tau.w  

phi ~ dunif(0.0001,0.0017) 

range <- 3/phi 

tau.u~dgamma(1,1) 

sigma2.u<-1./tau.u  

b0~dnorm(0,1) 

rho~dgamma(1,1)  

# Spatial kriging 

for (j in 1:M){ 

 w.pred[j] ~ spatial.unipred(0,x.pred[j],y.pred[j], w[]) 

 p.pred[j]<-exp(w.pred[j]) 
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 } 

} 
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Background: Detailed information regarding the spatial and/or spatial�temporal distribution of mortality is

required for the efficient implementation and targeting of public health interventions.

Objectives: Identify high risk clusters of mortality within the Agincourt subdistrict for targeting of public

health interventions, and highlight areas for further research.

Design: Mortality data were extracted from the Agincourt health and socio-demographic surveillance system

(HDSS) for the period 1992�2007. Mortality rates by age group and time were calculated assuming a Poisson

distribution and using precise person-time contribution estimates. A spatial scan statistic (Kulldorff) was used

to test for clusters of age group specific all-cause and cause-specific mortality both in space and time.

Results: Many statistically significant clusters of higher all-cause and cause-specific mortality were identified

both in space and time. Specific areas were consistently identified as high risk areas; namely, the east/south-

east and upper east central regions. This corresponds to areas with higher mortality due to communicable

causes (especially HIV/TB and diarrheal disease) and indicates a non-random element to the distribution of

potential underlying causative factors e.g. settlements comprising former Mozambican refugees in east/south-

east of the site, corresponding higher poverty areas, South African villages with higher HIV prevalence, etc.

Clusters of older adult mortality were also observed indicating potential non-random distribution of non-

communicable disease mortality.

Conclusion: This study has highlighted distinct clusters of all-cause and cause-specific mortality within the

Agincourt subdistrict. It is a first step in prioritizing areas for further, more detailed research as well as for

future public health follow-on efforts such as targeting of vertical prevention of HIV/TB and antiretroviral

rollout in significant child and adult mortality clusters; and assessment and provision of adequate water and

sanitation in the child mortality clusters particularly in the south-east where diarrheal mortality appears high.

Underlying causative factors need to be identified and accurately quantified. Other questions for more

detailed research are discussed.
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R
eliable statistics on mortality, its causes and trends

are in high demand for assessing the global and

regional health situation and developing appro-

priate interventions. Countries that monitor mortality and

its causes are among those that have made substantial

progress in health. In the absence of routine mortality

statistics (especially sub-Saharan Africa), health and socio-

demographic surveillance site (HDSS) data provide a

valuable source for estimating all-cause adult mortality

and mortality trends. An additional benefit of HDSS

implementing the verbal autopsy (VA) is that they are

often the only data in many countries to monitor cause-

specific mortality of a population on a longitudinal basis

(1).

In 1992, the Agincourt subdistrict of Bushbuckridge

was demarcated by Wits University as a site for health

and socio-demographic surveillance (HDSS) and a

baseline census conducted that same year (2�4). Life
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expectancy among both males and females in Agincourt

has significantly and steadily decreased (12 years in

females and 14 years in males). The increases in mortality

were most prominent in children (0�4) and young adults

(20�49) where increases of two- and fivefold, respectively,

have been observed when comparing mortality rates from

1992�1993 to 2002�2003. Gender differences in mortality

patterns are also evident with more marked increases in

females in most adult age groups (5). According to a study

by Tollman et al. (6), comparing periods from 1992�1994

to 2002�2005, the increase in infectious and/or parasitic

(I&P) disease mortality was significant in all age and sex

groups except children aged 5�14 years (increase in HIV

and tuberculosis mortality was significant however) and

the elderly (65�). With respect to increased I&P disease

mortality, the change was driven by HIV/TB. Age-specific

mortality from non-communicable disease increased sig-

nificantly in adults who were 30 years and older; the

change in younger age groups was not significant. Thus

the prominent increase in all-cause mortality is being

driven by the large increase in I&P disease (HIV)

and a modest increase in non-communicable disease (6).

However, few true spatial analyses have been undertaken

and thus offer an area for more detailed research within

this site.

Benzler and Sauerborn (7) suggest that when popula-

tion-wide intervention programs are too expensive to

implement, it is necessary to limit such efforts to high

risk units where certain adverse health effects are the most

likely to occur. Therefore, investigating the distribution of

adverse health outcomes in a population (whether random

or not) should be an important objective before starting a

program for primary or secondary prevention of commu-

nicable disease. It is necessary to determine whether there

are clusters where adverse health outcomes seem to

aggregate. If this is the case, there is a need to identify

them by means of simplified scores and to develop specific

health strategies targeted at these clusters (8).

Use of spatial�temporal analysis has increasingly been

applied in epidemiological research in recent years (9).

Advances in data availability and analytic methods have

created new opportunities for investigators to improve on

the traditional reporting of disease on a national or

regional scale by studying variations in disease occur-

rence rates at a local (small-area) scale (10). Among the

most important exploratory methods for epidemiology

and public health are those that identify significant

clusters in space and/or time (11�15). Spatial, temporal,

and space�time scan statistics are now commonly used to

detect and evaluate statistically significant, spatial clus-

ters. These methods can be analyzed by using the space�
time scan statistic (SaTScanTM) software (16), which is

used widely in an increasing number of applications

including epidemiology (8, 13, 17�19) and other research

fields

and minimizes the problem of multiple statistical tests.

SaTScanTM is useful for determining those cluster alarms

that merit further investigation and those clusters that are

likely to occur by chance. Despite growing applications of

spatial methodology, fewer studies have analyzed spatial

variation of all-cause and cause-specific mortality, with

little or no work on DSS longitudinal data. Analysis in

Agincourt HDSS has thus not utilized a proper spatial

(and spatial�temporal) analysis of mortality or other

outcomes, especially since this and other HDSS sites keep

track of the coordinates of all households and update

these regularly.

This study will aim to identify clusters of all-cause and

cause-specific mortality within the Agincourt subdistrict,

which will be important for local and national health

departments to minimize morbidity and mortality

through timely and spatially directed implementation of

prevention and control measures in a resource limited

rural area. It will also thus direct future research efforts in

terms of identifying the underlying reasons (risk factors)

for the observed clustering both in space and time.

Study population and methods

Description of Agincourt health and
socio-demographic surveillance site (HDSS)
The Agincourt health and socio-demographic surveil-

lance site (HDSS), established in 1992, contains a blend

of former Mozambican refugees, migrant workers and a

more stable permanent population (2). The site is situated

in the northeast of South Africa (Fig. 1), covers an area

in excess of 400 km2 and consists of 21 villages with

approximately 11,700 households and a population of

70,000 people at the end of 2007. A full geographic

information system (GIS) exists for village boundaries

(20) and households within the site and is updated

annually. The study population comprised all individuals

within the site during the period 1992�2007.

Verbal autopsy (VA) and cause-specific categories
A VA is conducted on every death to determine its

probable cause (21). The Agincourt VA tool was first

validated in the mid-1990s (22) and again in 2006 with

particular reference to HIV/AIDS and tuberculosis

(manuscript in preparation). Cause-specific fraction ana-

lysis of main or underlying causes of death was limited to

1992�2006 as assessments of VAs for 2007 have not yet

been completed.

Mortality rate trends over time
Data on population size, structure, and deaths were

extracted from the Agincourt HDSS using Microsoft

SQL Server 2005. Data cleaning were done in Stata 10.0.

Precise person-years (PY) at risk by age, gender, year, and

village were used as the denominator. Observation dates

Space and time clustering of mortality in Agincourt HDSS
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were used for the calculation of person�time as they are

the most reliable. We calculated the mortality rates by

village and year by dividing the observed number of

deaths by the total person-years contributed in village

i (i�1,..., 21) at year j (j�1992,..., 2007). To identify

villages in which the mortality rate was significantly

above average in time, we constructed exact 95% con-

fidence intervals (CI) for each rate using the Poisson

distribution of the observed number of events i.e. deaths

(23). Village mortality was considered significantly above

average for a given year if the overall rate for the given

year was below the lower value (a�0.025) of the

mortality rate CI for that village (24). Temporal trends

in rates were analyzed in Stata by using a simple Poisson

regression model containing person�time exposure, a

constant and temporal (annual) trend term (25).

Mortality clustering technique (Kulldorff Scan
statistic and SaTScanTM)
In this study, the Kulldorff spatial scan statistic (26) was

used to identify space-only clusters of high mortality only

by age-group in the Agincourt HDSS overall for the

entire aggregated period (1992�2007). A circular window

is imposed on a map by the statistic and the center of the

circle moves across the study region. This window is

centered on each of the possible grid points (village

centroids) positioned throughout the study region; the

radius of the circle changes continuously between zero

and a specified upper limit and is thus flexible both in

location and size. Each of these circles can contain a

different set and number of neighboring villages, and

each of the circles is a potential cluster of age-specific

deaths in the Agincourt study area. A village is captured

in the cluster if it lies within the circle. The spatial scan

statistic calculates the likelihood of observing the number

of deaths inside and outside each circle, and the one with

the maximum likelihood is defined as the most likely

cluster i.e. least likely to have occurred by chance (tests

the null hypothesis that the risk of dying is the same in all

villages in the study area). Kuldorff et al. (13) also

extended the spatial scan statistic into a space�time scan

statistic. The window imposed by the statistic on the

study area is cylindrical with a circular geographical base

and height corresponding to time. The center is again one

of several possible village centroids located throughout

the Agincourt study area and the height reflects the time

interval. The cylindrical window is then moved in space

and time. This was also applied to the Agincourt HDSS

data for the period 1992�2007 (time aggregation of

1 year) to identify high space�time clusters only. The

following age groups were used: B5 years, 5�14, 15�49,

50�64, and 65�. Person�time by age group, gender, and

village was used as the denominator. To ensure sufficient

statistical power, the number of Monte Carlo replications

was set to 19,999. The p-value of the statistic is obtained

through Monte Carlo hypothesis testing. SaTScanTM

gives the most likely cluster with a corresponding p-value

(significant was set at the 5% level in this study). If other

clusters not overlapping with the most likely cluster are

identified (secondary, tertiary, etc.), these are also given

with their corresponding p-values. Maps showing all

significant non-overlapping clusters were constructed in

MapInfo Professional 9.5. Larger circles do not represent

greater risk clusters but rather contain a larger number of

neighboring villages i.e. extend over larger geographical

area. Village centroids were not displayed to preserve

confidentiality in a small geographic area.

Results

Description of mortality in study sample
During 1992�2007 the highest mortality rates were

observed among children, 50�64 and 65� (9, 19, and

46 per 1,000 person-years, respectively) (Table 1). Similar

Fig. 1. Maps showing the regional location of the Agincourt health and socio-demographic surveillance site (Source: Kahn K et

al. Research into health, population and social transitions in rural South Africa: data and methods of the Agincourt health and

socio-demographic surveillance system. Scand J Public Health 2007; 35: 8�20).
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mortality rates were observed by age group and gender

except in 50�64 and 65� years where males had much

higher rates.

Temporal trends
A significant increase in the mortality rate over time was

observed from 4.7 deaths per 1,000 person years (95% CI:

4.16�5.32) in 1992 to 12.5 deaths per 1,000 person years

(95% CI: 11.35�13.82) in 2007. A significant increase in

the mortality rate in all villages over time was observed.

Overall there were significantly higher mortality rates in

one village in the upper central part of the site and two in

the south-east (Table 2). Two villages (both in the south-

east part of the site) showed significantly higher mortality

rates during specific periods, one in 2000�2003 and the

other in 2004�2007. Several villages showed excessive

increases in mortality when comparing the rate in the first

to last period, with all but two (one in the west and the

other in the upper central region) situated toward the

eastern part of the site (Table 2).

There were significant increasing trends in mortality

for B5, 15�49, and 50�64-year age groups during the

period 1992�2007 (Fig. 2). Mortality in the 5�14-year

age groups remained constant and at a low level.

Significant increases in mortality in the age group

50�64 for both genders occurred but are more pro-

nounced among males. The elderly (65�) had the

highest mortality rates, higher (and slightly increasing)

in males than females (constant).

Cause-specific fractions (1992�2006)
Among children (B5) and adults (15�49), I&P-related

diseases remains the highest causes of death (560 or 48%

of 1,165 and 1,306 or 45% of 2,883, respectively). This is

largely due to HIV/TB mortality, which accounted for

23% (273) and 40% (1,141) of child and adult mortality,

respectively. Diarrhea and acute respiratory illness (ARI)

feature as prominent causes of death among children (145

deaths or 12% and 94 or 8%, respectively). HIV/TB

featured as a prominent cause of death in the 50�64-year

age group (244 or 23% of 1,077).

Vascular disease (all circulatory system disease) and

cancer (neoplasm) feature as the most prominent non-

communicable causes of death, particularly in older age

groups where they accounted for 14% (151) and 7% (76)

in those 50�64 years and 22% (401) and 11% (193) in

those 65�. Malnutrition is a prominent cause of death

among children (8% or 92 deaths). Vehicle accidents

followed by assault are the two leading external causes of

death (4% or 300 deaths and 2% or 170 deaths overall).

Suicide was highest among children aged 5�14 years and

adults 15�49 (3% or 6 deaths and 2% or 63 deaths,

respectively).T
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Spatial only analysis

All-cause
Toward the south-east corner of the site, a statistically

significant (at 5% level) cluster of higher mortality

comprising five villages was observed for the period

1992�2007 (observed deaths�1,831, expected deaths�
1706, RR�1.09, p�0.025).

All-cause by age group
With the exception of 65� mortality, all significant

clusters of higher mortality were in the south-east corner

of the site. There were clusters of higher child (B5) and

adult mortality (15�49 years) in one village in the upper

central region (Table 3). No significant clusters were

identified for B1, 5�14, and 50�64-year age groups.

Spatial�temporal analysis

All-cause
There were three statistically significant space�time clus-

ters of higher all-cause mortality. The most likely cluster

was situated in the south-east corner and comprised six

villages for the period 2002�2007 (observed deaths�
1,155, expected deaths�789, RR�1.54, pB0.001) using

the space�time scan statistic. A secondary cluster of 7

villages was situated in the upper central to east region of

the site during the period 2001�2007 (observed deaths�
1,237, expected deaths�898, RR�1.44, pB0.001); while

a tertiary cluster of three villages was situated in the

central/west region during 2002�2007 (observed deaths�
1,038, expected deaths�742, RR�1.46, pB0.001).

All-cause by age group
Spatial�temporal clustering of age-specific all-cause

mortality can be seen in Table 4. Significant space�time

clusters of higher all-cause mortality were observed

among children in six villages in the upper central region

(mostly likely) of the site during 1999�2006 (233 ob-

served cases, 148 expected, RR�1.70, pB0.001); and in

five villages in the south-east (secondary cluster) during

the same period (227 observed cases, 150 expected,

RR�1.62, p�B0.001). During 2001�2007, three

significant clusters of high adult mortality (15�49) were

observed. Most likely cluster during 2001�2007 was in

the south-east corner of the site comprising seven villages

Table 2. Crude mortality rates overall and by village in the Agincourt sub-district, 1992�2007

Death rate per 1,000 person years

Village Total deaths Person years Overall (95% CI) 1992�1995 1996�1999 2000�2003 2004�2007 Rate change (95%CI) a

1 828 106,445 7.8 (7.3�8.3) 5.4 4.9 9.4 11.7 6.4 (5.9, 6.8)

2 344 47,642 7.2 (6.5�8.0) 4.5 5.6 8.8 10.0 5.5 (4.9, 6.2)

3 640 82,066 7.8 (7.2�8.4) 4.8 6.9 8.4 11.1 6.3 (5.8, 6.8)

4 421 50,498 8.3 (7.6�9.2) 5.8 5.8 10 11.5 5.7 (5.1, 6.2)

5 315 40,215 7.8 (7.0�8.8) 4.7 6.9 9.1 10.5 5.8 (5.1, 6.5)

6 456 55,304 8.3 (7.5�9.0) 4.1 6.2 9.8 13.0 8.9 (8, 9.8.0)

7 282 35,393 8.0 (7.1�9.0) 3.8 5.6 9.6 12.9 9.1 (8.0, 10.2)

8 675 74,735 9.0 (8.4�9.7) 5.9 6.2 10.1 13.9 8.0 (7.4, 8.6)

9 550 69,795 7.9 (7.2�8.6) 5.0 5.6 8.5 12.5 7.4 (6.8, 8.0)

10 519 66,170 7.8 (7.2�8.6) 5.6 5.9 8.4 11.1 5.5 (5.1, 5.8)

11 738 94,577 7.8 (7.3�8.4) 5.3 5.6 8.3 11.6 6.3 (5.9, 6.6)

12 253 29,467 8.6 (7.6�9.7) 5.5 5.8 10 12.4 6.9 (6.2, 7.5)

13 409 50,503 8.1 (7.3�8.9) 5.1 6.3 10.8 10.2 5.2 (4.6, 5.7)

14 242 27,863 8.7 (7.6�9.9) 4.3 5.9 10.1 14.6 10.3 (9.0, 11.7)

15 432 46,907 9.2 (8.4�10.1) 6.1 7.2 10.5 12.9 6.8 (6.2, 7.4)

16 527 61,783 8.5 (7.8�9.3) 5.4 6.1 10.1 13.0 7.7 (7.0, 8.4)

17 263 34,933 7.5 (6.7�8.5) 5.4 4.5 9.5 12.4 7.0 (5.8, 8.3)

18 115 15,765 7.3 (6.0�8.8) 4.7 6.2 7.6 11.4 6.7 (5.3, 8.3)

19 156 19,049 8.2 (7.0�9.6) 6.3 6.1 8.6 13.8 7.4 (5.7, 9.6)

20 132 16,136 8.2 (6.8�9.7) 5.9 6.1 12.7 8.5 2.6 (1.8, 3.6)

21 122 11,990 10.2 (8.5�12.2) � 2.7 8.9 12.5 9.8 (9.4, 6.1)

Overall 8,419 1,037,238 8.12 (7.9�8.3) 5.2 (4.9, 5.5) 5.9 (5.6,6.2) 9.4 (9.0,9.7) 12.0 (11.5,12.4) 6.8 (6.6, 6.9)

Note: Bold numbers indicate mortality rates significantly above the average for a given period (pB0.05). a: Rate difference first period

(1992�1995) versus last period (2004�2007) except for village 21, which compares first available period (1996�1999) to last period.
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(638 observed cases, 385 expected, RR�1.80, pB0.001);

a secondary cluster of seven villages in the upper central/

east region during the same period (602 observed cases,

402 expected, RR�1.60, pB0.001); and a tertiary

cluster of three villages in the west/central region during

2003�2007 (426 observed cases, 278 expected, RR�1.60,

pB0.001). Significant clusters of higher older adult

mortality (50�64) were observed in similar areas during

similar periods (Table 4). No significant space�time

clusters of all-cause mortality were identified for the

5�14 and 65� age groups. Graphical depictions of

clusters by age group can be seen in Fig. 3.

Discussion
Demographic surveillance systems provide a viable

method for the collection of reliable data on vital events

in rural sub-Saharan Africa, especially in the absence of

accurate routine mortality statistics. Increasingly, there is

renewed interest in the spatial clustering of infectious

disease and mortality, especially in poor areas with

limited resources. Little proper spatial analysis of long-

itudinal HDSS data has been done thus far. This study

has demonstrated the usefulness of Kulldorff’s scan

statistic in highlighting high risk areas within the

Agincourt sub-district for future targeting of health

interventions, as well as focusing more detailed research

regarding the underlying risk factors (at individual,

household or community level) that may be driving these

spatial�temporal all-cause and cause-specific mortality

patterns. This study should be regarded as a first step in

prioritizing areas for follow-up public health efforts and

evaluating their impact (e.g. ARV rollout started in this

area in 2007).

Increasing trends in mortality were observed in most

age groups (B5, 15�49, and 50�64 years) during the

period 1992�2007, largely due to the HIV epidemic. As
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can be seen in the cause-specific fractions, all I&P

mortality (mainly HIV) is the leading cause of death in

this population. Thus, mother-to-child HIV transmission

prevention in clusters with high child mortality needs to

be undertaken, along with other interventions.

Several statistically significant clusters of higher all-

cause and cause-specific mortality rates were identified

among the 21 villages within the Agincourt sub-district

both in space and space�time. The south-east and upper

central regions of the site were consistently identified as

high risk clusters, i.e. a non-random distribution. Former

Mozambican refugees (about a third of the Agincourt

population) entered South Africa via the Kruger National

Park situated along the eastern border of the site and

settled in this area. Kahn indicates that they are a

vulnerable subgroup, poorer in more isolated villages

with less infrastructure and generally further away from

health facilities, with poor access to water and sanitation

as well as labor markets (27). It also appears that the

burden of communicable disease mortality (specifically

HIV/TB and diarrhea) is highest in these areas (upper

central and south-east for HIV/TB and south-east for

diarrhea), this all leading to the all-cause space and space�
time findings. Thus, settlements comprising former Mo-

zambican refugees as well as selected South African

villages appear to have increased risk of I&P-related

mortality. Suitable interventions such as ARV treatment

and assessment and provision of adequate water and

sanitation need to be directed to these villages to over-

come existing inequalities. More detailed research to

elucidate the exact risk factors and the relative contribu-

tion of each needs to be undertaken. The confounding

effect of settlement specific socio-economic status (SES)

in space and time also needs to be adjusted for in future

studies.

From the space�time analysis we observed that most of

the significant mortality clusters appeared during the

later period (1999�2007) with none in the earlier period

(1992�1998) (Table 4). Significant increases in mortality

rates particularly in B5, 15�49, and 50�64-year age

groups were observed (6). Hence this temporal increase

in spatial clustering � a newly described phenomenon � is

also linked to the increase in mortality over the time

period.

A significant space cluster of older adult (65�)

mortality (as well as a space�time cluster of higher

mortality among 50�64 year olds during 2002�2006) was

observed toward the west of the site in the later period.

The study by Tollman et al. (6) also found a significant

increase in the mortality rate from non-communicable

diseases in adults 30� from 1992�1994 to 2002�2005

(RR�1.22, p�0.026). As noted, most of the self-settled

Mozambican settlements are to the east of the site with

more of the South African settlements to the west.

According to Hargreaves et al. (28), Mozambican house-

holds generally have a lower standard of living than South

Table 3. Clusters of all-cause mortality by age group, using the purely spatial analysis scanning for high mortality rates, Agin-

court sub-district, 1992�2007

Age group Type Number of villages Location within site Observed cases Expected cases Relative risk (RR) p-Value

B5 Most likely 7 South east corner 526 439 1.32 B0.001

B5 Secondary 6 Upper central 35 18 2.02 0.011

15�49 Most likely 5 South east corner 790 703 1.16 0.013

15�49 Secondary 1 Upper central 73 48 1.55 0.025

65� Most likely 9 Central/West 1,039 961 1.17 0.024

Table 4. Clusters of all-cause mortality by age group using space�time scan analysis scanning for high mortality rates, Agin-

court sub-district, 1992�2007

Age

group Type Years

Number of

villages Location within site

Observed

cases

Expected

cases

Relative risk

(RR) p-Value

B5 Most likely 1999�2006 6 Upper central/east 233 148 1.70 B0.001

B5 Secondary 1999�2006 5 South east 227 150 1.62 B0.001

15�49 Most likely 2001�2007 7 South east corner 638 385 1.80 B0.001

15�49 Secondary 2001�2007 7 Upper central/east 602 402 1.60 B0.001

15�49 Tertiary 2003�2007 3 West/central 426 278 1.60 B0.001

50�64 Most likely 2002�2007 4 Upper east 151 94 1.69 B0.001

50�64 Secondary 2003�2006 1 South east 54 25 2.22 B0.001

50�64 Tertiary 2002�2006 3 Central/West 154 109 1.47 0.026
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African households and were three times more likely to

fall in the poorest quintile than South African households.

Thus the South Africans’ higher standard of living may be

contributing to a relatively higher spatial risk of non-

communicable disease. This needs to be investigated in

more detailed future studies.

The increasing use of linked social-spatial and health-

spatial data raises significant concerns regarding the

confidentiality of research participants and the stigmati-

zation that may arise if sensitive information were

released. This is especially true in a small geographic

area such as the Agincourt HDSS. Rural areas present an

additional problem in that settlements are fewer, more

dispersed and thus more distinct than in urban areas.

Hence higher levels of buffering are required to ensure

confidentiality and limit disclosure risk (29). Presenting

information cartographically is a useful tool for ascer-

taining complex spatial patterns visually, yet disclosure

risks are associated with this form of presentation (29).

Increased layers (e.g. borders, roads, etc.) displayable on a

map add to the security threat. In this study we removed

all geographically identifying features (administrative and

village boundaries, roads) from the subset of all-cause

mortality maps that were developed. For other significant

mortality clusters, tables describing their relative location

within the site were rather used to further protect those

villages with high HIV burden.

Exploratory analysis of spatial data aims to describe

spatial patterns using inferential statistics (occurrence of

mortality for example is random or not), and to develop

of hypotheses. However, it does not answer the question

as to what may be influencing the spatial patterns, while

spatial modeling (incorporating spatial dependency) is

better suited to predict mortality rates (e.g. at unsampled

locations). A study by Sankoh et al. (30) demonstrated

that mapping of mortality rates using Bayesian smooth-

ing techniques is a useful graphical supplement to spatial

analytical methods as it addresses the issue of hetero-

geneity in the population at risk. Future research will

thus use Bayesian kriging, as suggested by Gelfand et al.

(31), to produce smooth maps of mortality risk. As

mentioned earlier, underlying risk factors (both quanti-

fied and unquantified) drive the spatial (and temporal)

risk clustering observed in this study. Common exposures

may influence mortality similarly in households of the

same geographical area, introducing spatial correlation in

mortality outcomes. Longitudinal data are also expected

to be correlated in time. Standard statistical methods

assume independence of outcome measures (e.g. mortal-

ity events) and overlook correlation biases. Recent

developments recommend Bayesian techniques as the

appropriate methodology for taking account of this

spatial and temporal dependence. Future risk factor

studies in the Agincourt subdistrict will employ Bayesian

geostatistical models to correctly quantify risk factors for

mortality by age group.

This study underscores the need for an exploratory

approach to assess geographic and temporal patterns

(both historical and emerging) in all-cause mortality

within a relatively small geographic area such as the

Agincourt sub-district. It highlights villages requiring

more targeted health interventions, raising detailed ques-

tions regarding cause-specific and spatial�temporal

changes as well as the risk factors that may drive the

observed all-cause mortality patterns.
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Abstract

Background: Infant mortality is an important indicator of population health in a country. It is associated with
several health determinants, such as maternal health, access to high-quality health care, socioeconomic conditions,
and public health policy and practices.

Methods: A spatial-temporal analysis was performed to assess changes in infant mortality patterns between
1992-2007 and to identify factors associated with infant mortality risk in the Agincourt sub-district, rural northeast
South Africa. Period, sex, refugee status, maternal and fertility-related factors, household mortality experience,
distance to nearest primary health care facility, and socio-economic status were examined as possible risk factors.
All-cause and cause-specific mortality maps were developed to identify high risk areas within the study site. The
analysis was carried out by fitting Bayesian hierarchical geostatistical negative binomial autoregressive models
using Markov chain Monte Carlo simulation. Simulation-based Bayesian kriging was used to produce maps of all-
cause and cause-specific mortality risk.

Results: Infant mortality increased significantly over the study period, largely due to the impact of the HIV
epidemic. There was a high burden of neonatal mortality (especially perinatal) with several hot spots observed in
close proximity to health facilities. Significant risk factors for all-cause infant mortality were mother’s death in first
year (most commonly due to HIV), death of previous sibling and increasing number of household deaths. Being
born to a Mozambican mother posed a significant risk for infectious and parasitic deaths, particularly acute
diarrhoea and malnutrition.

Conclusions: This study demonstrates the use of Bayesian geostatistical models in assessing risk factors and
producing smooth maps of infant mortality risk in a health and socio-demographic surveillance system. Results
showed marked geographical differences in mortality risk across a relatively small area. Prevention of vertical
transmission of HIV and survival of mothers during the infants’ first year in high prevalence villages needs to be
urgently addressed, including expanded antenatal testing, prevention of mother-to-child transmission, and
improved access to antiretroviral therapy. There is also need to assess and improve the capacity of district hospitals
for emergency obstetric and newborn care. Persisting risk factors, including inadequate provision of clean water
and sanitation, are yet to be fully addressed.
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Background
Infant mortality is an important health indicator of a
population given its strong link to socio-economic status
(SES), health service access and quality, and maternal
health.
In the absence of vital events registration, health and

socio-demographic surveillance (HDSS) data provide a
valuable source for estimating mortality rates, trends and
risk factors. HDSS sites implementing the verbal autopsy
(VA) to determine probable cause of death are often the
only means in most developing and many middle-income
countries to observe cause-specific mortality of a popula-
tion on a longitudinal basis and are a valuable tool for
assessing trends in burden of disease [1,2].
Diarrhoea, pneumonia, malnutrition and malaria are

the leading causes of death among infants in low income
countries [3,4]. Birth asphyxia and neonatal sepsis are
responsible for most neonatal deaths [3]. These diseases,
that can be largely prevented or effectively treated at rela-
tively low cost, cause almost 95% of preventable infant
and child deaths [1]. HIV/AIDS has emerged as a major
cause of death among infants in recent years, though in
few countries outside of Africa [5].
In 1990, there was a 20-fold difference in the rate of

infant deaths between sub-Saharan African and indus-
trialized countries (180 versus 9 deaths per 1000 live
births). In 2000, this difference had increased to 29-fold
with mortality rates of 175 and 6 per 1000 children
respectively [6]. This is because many sub-Saharan Afri-
can countries have seen reversals in child mortality
trends in recent years due to HIV/AIDS. In 2007,
approximately 420 000 children became infected with
HIV [7], mostly through mother-to-child transmission
(MTCT) [8,9] in resource poor settings particularly sub-
Saharan Africa. Kahn et al showed a doubling of child
mortality due to HIV in a rural South African popula-
tion (Agincourt sub-district) between 1992 and 2003
from 39/1000 person-years to 77/1000 [10]. Garrib et al
in 2006 found very high levels of infant mortality in
another rural area of South Africa, 67.5 per 1000 per-
son-years, with HIV/AIDS estimated as the single largest
cause of death in the under-5 age-group (41% of deaths)
[11]. Thus interventions to reduce infant and child mor-
tality are urgently required. A study in Zambia esti-
mated that the cost per averted infection was
approximately US$890 [12]. According to a study in
Barbados the lifetime cost of treating an HIV infected
child is US$ 8,665 [13]. This is much lower than esti-
mates from the US where the cost for perinatally
infected infants was USD 113,476 for 9 years of survival,
US$ 151,849 for 15 years, and US$ 228,155 for 25 years
[14]. According to a study in the Ivory Coast, the mean
cost of treatment was € (euros) 254 per child-year for

infected children, €108 more than the mean cost of
treatment for HIV-negative children born to HIV-
positive mothers (a 74% increase in treatment costs)
[15]. Thus despite the costs associated with HIV/AIDS
prevention among young children [16,17], lifetime treat-
ments costs of HIV infected infants are far higher;
hence preventive measures need to be prioritized and
targeted to those at high risk in poor, resource limited
settings.
Effective interventions such as prevention of mother

to child transmission (PMTCT) are available. A compre-
hensive approach to PMTCT can reduce transmission
rates to below 2% [18-20]. Yet health care access and
inequity remain widespread problems in economically
disadvantaged areas [21]. Mpumalanga Province in
northeast South Africa was an important destination for
refugees fleeing the civil war in Mozambique from 1983
onwards. A formal peace agreement was signed in 1992,
yet despite voluntary repatriation programmes, by 2000
it was estimated that more than 200,000 former
Mozambican refugees were still inhabitants in the pro-
vince [22]. A study by Hargreaves et al [23] demon-
strated higher mortality rates among children from
former Mozambican refugee households when compared
to those from South African-headed households in the
Agincourt sub-district. They concluded that lack of legal
status and poorer SES of Mozambican refugees partly
explains this disparity.
Inequalities in health outcomes or access to services

and benefits can occur across space and time. In some
situations this can reflect a compositional effect with
variations merely reflecting the different groups that
inhabit different locations [24]. However, certain
inequalities in child health outcomes are avoidable and
unjust. These may reflect underlying inequities in the
distribution of wealth, resources and social privilege in a
given society, rather than an individual’s choice or beha-
viour. To be fair, society must strive to achieve equal
opportunities for all children regardless of parental sta-
tus (education, SES) and geographical location. High-
quality services for children that bridge the social divide
are an important means of achieving equity goals. If
South Africa is to achieve the Millennium Development
Goals by 2015, including MDG 4 to reduce child mor-
tality, then there is need to scale-up coverage rapidly
with access to high quality health care and social sup-
port, particularly in the most poor and marginalised
communities [25]. When population-wide intervention
programmes are too costly to implement, it becomes
necessary to target such efforts to high risk areas where
adverse health events are the most likely to occur [26].
To address inequity in child survival, service planners
need to understand the underlying socio-demographic
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profile and other factors contributing to high risk. Spa-
tial-temporal mapping of high risk communities identi-
fies those with greatest need, rather than those that are
easiest to reach [27]. This provides evidence on where
to target interventions for greatest impact [28] and gen-
erates hypotheses on the determinants of increased risk.
With the development of Markov Chain Monte Carlo

(MCMC) methods and Bayesian software such as Win-
BUGS, geostatistical spatial-temporal modelling has
increasingly been applied in epidemiological research
[29], especially with regards to malaria risk and trans-
mission. Gemperli et al (2004) carried out a Bayesian
spatial analysis of infant mortality in Bali that confirmed
well-known risk factors and found a spatial pattern of
infant mortality that showed a clear relationship with
established foci of malaria transmission [30-32]. Despite
growing applications of spatial methodology in malaria
research, fewer studies have analysed spatial variations
in population dynamics including all-cause and cause-
specific mortality, with little or no work on longitudinal
data collected in relatively small geographic areas cov-
ered by health and socio-demographic surveillance.
Many individual and household level factors have been

identified as key determinants of infant and child mor-
tality. Since objects in close proximity are often more
alike, common exposures (measured or unmeasured)
may influence mortality similarly in households of the
same geographical area, introducing spatial correlation
in mortality outcomes. Repeated measurements on indi-
viduals and households are also expected to be corre-
lated in time. Standard statistical methods assume
independence of outcome measures, for example mor-
tality data. Ignoring this correlation introduces bias in
the risk analysis as the standard error of the risk factors
is underestimated, thereby overestimating significance.
Bayesian geostatistical models relax the assumption of
independence by, for example, incorporating random
effects to measure spatial correlation as a function of
distance between locations.
The aim of this study was to assess changes in infant

mortality patterns in rural northeast South Africa over
time, determine mortality risk factors and produce
cause-specific mortality maps to identify high risk areas.
These insights can provide guidance on the best alloca-
tion of limited resources to reduce infant mortality in
this and similar areas of the country.

Methods
Study area and population
The Agincourt health and socio-demographic surveil-
lance system (HDSS), established in 1992, extends over
an area of about 400 km2 and consists of 21 villages
with approximately 11,700 households and a population
of 70,000 people at the end of 2007 (Figure 1). A full

geographic information system (GIS) covers all house-
holds within the site and is updated annually. For these
analyses the study population consisted of all infants
who were either born or migrated into the site between
1992 and 2007 and who either survived or died in their
first year of life.

Outcome measures
A verbal autopsy (VA) was conducted on every death to
determine its probable cause [34]. Interviews administered
by trained lay fieldworkers were assessed independently by
two physicians to determine probably cause-of-death.
Where consensus could not be reached, a third indepen-
dent medical assessment was made. The VA was first
validated in the mid-1990s [35] and again in 2006 with
particular reference to HIV/AIDS related mortality. Inter-
national Classification of Diseases (ICD-10) was used to
classify main or underlying, immediate and contributory
causes of death. For this study, cause-specific analysis was
limited to main causes from 1992-2006 as VA’s had not
yet been assessed for 2007.

Explanatory variables
Covariates included: infant demographic variables (gen-
der, nationality); 5-year time periods; maternal factors
(former refugee status, age at pregnancy, death in first
year of child’s life, education); fertility factors (parity,
birth intervals, sibling death); household mortality
experience, socio-economic status (SES) and food secur-
ity; distance to health facility; antenatal clinic atten-
dance; and household elevation (climatic proxy). Every
two years since 2001, an asset survey was conducted in
all households within the HDSS [36]. Information on
living conditions and assets, building materials of main
dwelling, water and energy supply, ownership of modern
appliances and livestock, and means of transport avail-
able were recoded (one being higher SES and zero lower
status), summed to give an overall score for a house-
hold, and then used to construct wealth quintiles for
SES ranked by increasing score from most to least poor.

Statistical analysis
The negative binomial is an alternative for the com-
monly used Poisson distribution, often regarded as the
default distribution for integer count data. The Poisson
assumes that expected mean equals its variance. The
negative binomial differs from the Poisson distribution
in that it allows for the variance to exceed the mean.
Since the negative binomial distribution has one more
parameter than the Poisson distribution, the second
parameter is used to adjust the variance independently
of the mean. Our data displayed evidence of being
highly overdispersed and thus the negative binomial
model was chosen.
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A preliminary negative binomial regression analysis
was carried out to assess the relationship between infant
mortality and each covariate. Covariates significant at
the 10% level (without substantial missing values) were
then incorporated into the multivariate model.
The multivariate Bayesian negative binomial model

was fitted in WinBUGS to examine the association
between the significant covariates and all-cause infant
mortality. Observation dates were used to calculate the
person-days contributed by each infant (offset). Spatial
random effects were used at a village level to take into
account spatial correlation. Temporal random effects
were also used at yearly intervals to account for tem-
poral correlation. Village specific random effects were
modelled via a multivariate Gaussian process (multivari-
ate Gaussian distribution with covariance matrix
expressed as a parametric function of distance between
pairs of village centroid points) [37]. Standard Bayesian
autoregressive (AR) approaches, with priors for the AR
(1) and AR(2) processes defined by Schotman [38] and
Zeller [39] respectively, as well as a Poisson generalized
autoregressive moving average (GARMA) approach [40],
were tested to model the temporal random effects. Var-
ious order models for the AR and MA terms were
assessed and the one that best fitted the data was used.
MCMC simulation was employed to estimate the model
parameters [41]. Further details of the statistical model-
ling approach are given in the appendix.

Model assessment and validation
Deviance Information Criterion (DIC) [42] was used as
the first step in comparison of model fit and the one

giving the lowest DIC was chosen. Models were then
also validated by fitting the models for 1992-2006 and
predicting outcomes for all infants in 2007. Credibility
intervals were constructed and the model providing the
best predictions (along with low DIC) were used as the
final model. The negative binomial models, particularly
the AR(1) and AR(2) to model the temporal random
effect, provided the lowest DIC (8618.07 and 8617.34
respectively) by some margin when compared to other
approaches such as GARMA. In Bayesian statistics, a
credible interval is a posterior probability interval which
is used for interval estimation, in contrast to point esti-
mation (confidence intervals). In other words, the cred-
ibility interval refers to the distribution of parameter
values while a confidence interval pertains to estimates
of a single value. In this study the negative binomial AR
(2) predicted the outcome much better than the AR(1)
model based on these Bayesian credibility intervals.
Thus the AR(2) process was used in the final multivari-
ate model.

Risk maps
A baseline model was used that included no covariates
but a constant and site-specific (village centroid) ran-
dom effect. All identifying features (village centroids,
geographic boundaries) were removed, and the predic-
tion area expanded irregularly (~740 km2) to double the
normal size, in order to ensure confidentiality and avoid
stigmatizing of villages. The HIV/TB map is not shown
for this reason. Simulation-based Bayesian kriging [43]
at prediction points (regular grid) within the site was
used to produce maps of mortality risk for the whole

Figure 1 Location of the Agincourt HDSS site [33], South Africa.
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HDSS site. Model estimates were exponentiated to
represent incidence rate ratios (IRR).

Software
Data extraction and management was done using
Microsoft SQL Server 2005. The analysis was carried
out in STATA 10.0, WinBUGS and R. The predictions
of the fitted spatial models were mapped in MapInfo
Professional 9.5.

Results
Demographic profile of study sample
Between 1992 and 2007 31,804 infants were either born
or migrated into the Agincourt HDSS. Of these, 26,000
(81.8%) were born within the site and half (50.4%) were
female. Just under two-thirds were South African citi-
zens (20,375; 64.2%) and a little over one-third were
born to Mozambicans (11,356; 35.8%). There were 737
infant deaths (2.3%) giving an overall mortality rate of
24.7 per 1,000 person years; of these, 175 deaths were
within the perinatal period and 202 within the neonatal
period.

Cause of death (1992-2006)
The top causes of death among infants, as assessed by
verbal autopsy, were HIV/TB (n = 116), acute diarrhoea
or malnutrition (n = 91), acute respiratory infection
(ARI) or pneumonia (n = 82) and septicemia (n = 20).
In total 300 infant deaths were attributed to infectious
and/or parasitic causes. During 1992-2006, 230 infants
(33.6%) had an unknown cause of death.

Temporal trends by cause
There was a significant increasing trend in the infant
mortality rate over the study period (IRR = 1.09, 95%CI:
1.05-1.12, p < 0.001) (Figure 2). A significant increasing
trend (at 10% level) was also observed for all-cause neo-
natal (first 28 days of life) mortality rate (IRR = 1.04,
95%CI: 1.00-1.08, p = 0.068), particularly from 1996
onwards. Mean time to death among neonates was 4.49
days (SD 6.05) indicating that most occur in the perina-
tal period (first 7 days of life). Between 1992 and 2006
the infant mortality rate due to HIV/TB significantly
increased from 0 to 10.95 deaths per 1000 person years
(IRR = 1.27, 95%CI: 1.17-1.38, p < 0.001), the increase
commencing from about 1998. No significant changes
were observed for infant deaths due to acute diarrhoea
or malnutrition and ARI or pneumonia. A significant
increasing trend was observed with infant deaths
attributed to unknown (R99) causes (IRR = 1.27, 95%CI:
1.19-1.36, p < 0.001), particularly from 1998 onwards. A
significant (IRR = 1.14, p < 0.001) and striking increase
in the mortality rate of mothers dying in the infants’
first year was also observed (Figure 3), again from 1998
onwards.

Univariate analysis
Later time period, higher number of cumulative house-
hold deaths, death of previous sibling and mother dying
in the first year of infant’s life were large and highly sig-
nificant risk factors for infant mortality (Table 1). Male
gender and increasing birth parity were also found to be
significant risk factors. Breast feeding had a protective

Figure 2 All-cause neonatal and infant mortality rates per 1,000 person years, Agincourt sub-district 1992-2007.
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influence on all-cause as well as diarrhoea and malnutri-
tion-related infant mortality (Table 1). Increasing infant
weight at birth also had a significantly protective effect.
High (post-secondary) level of maternal education,
mother attending antenatal clinic and increasing number
of antenatal clinic visits were found to be significantly
protective. Mozambican origin of mother was not found
to be a risk factor for all-cause infant mortality. How-
ever, mother having arrived from Mozambique post
1992 was found to be a significant risk factor for death
due to infectious and/or parasitic causes. Increasing dis-
tance to nearest health facility was not a significant risk
factor and no differential health care access was
observed by nationality (South African versus Mozambi-
can). Mother being a migrant was found to be signifi-
cantly protective and, conversely, increasing number of
months spent resident in the site per year by the mother
was found to be a risk. Further, migrant mothers were
found to be significantly more educated than mothers
permanently resident in the study site (p < 0.001) and
came from households with a significantly higher SES
(p = 0.0025). No significant difference was found in
antenatal clinic attendance between permanent and
migrant mothers.
There was a strong non-linear reduction in the prob-

ability of death as the infant progresses to the end of
their first year (Figure 4). This risk over time was much
higher for those infants whose mother died in their first
year, and remained elevated for the remainder of the
first year.

A significant increase in the number of years of
maternal education as well as antenatal clinic attendance
was observed over the study period (both p < 0.001).
However, significant increases in the number of mothers
dying in their infants’ first year, number of maternal
deaths (< = 42 days after infants date of birth), as well
as other household deaths over time was also observed
(all p < 0.001).
Almost a third (30.2%, n = 91) of mothers who died in

the infants’ first year died of HIV/TB; this was a signifi-
cant risk factor for infant mortality (IRR = 164.7, p <
0.001). Approximately 44% of the mothers that died in
the infant’s first year died of unknown causes, many
probably unclassified HIV-related deaths.
Household water supply consisting of raw natural

water (river, pond or dam) was a risk factor (IRR =
16.50, p = 0.010) for deaths due to acute diarrhoea and
malnutrition, although numbers were small. Mother
being of Mozambican origin also proved to be a signifi-
cant risk factor for infant death due to diarrhoea or mal-
nutrition (IRR = 1.66, p = 0.019).

Multivariate analysis
Later year of birth, mother dying in the infant’s first
year, higher number of cumulative household deaths
and previous birth being stillborn remained highly sig-
nificant in the all-cause multivariate model (Table 2).
Following multivariate adjustment, large IRR values
were again observed for mother death in the infant’s
first year, and cumulative household deaths. Death of

Figure 3 Mortality rate of mothers dying in infants’ first year per 1000 infant person-years, Agincourt sub-district, 1992-2007.
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Table 1 All-cause univariate risk factor analysis for infant mortality in the Agincourt sub-district, 1992-2007

Factor n IRR p-value signif

Temporal

1 year continuous 31,804 1.23 <0.001 *

5 year period 31,804

1992-1996 10,744 1.00

1997-2001 10,624 4.61 <0.001 *

2002-2006 10,436 10.76 <0.001 *

Demographic

Male gender 31,804 1.86 0.006 *

Mother refugee status 29,068

South African citizen 18,746 1.00

Mozambican origin 10,322 1.12 0.638

Breast feeding and birth weight

Breast fed 23,890/25,697 0.21 <0.001 *

Breast fed (diarrhoea & malnutrition) 23,890/25,697 0.38 0.001 *

Increasing birth weight (kilograms) 15,235b 0.42 <0.001 *

Maternal

Mother Mozambican in-migrated post 1992 a 10,322 4.89 0.004 *

Mother status 31,041

Mother in same household 27,076 1.00

Mother not in household 2,488 0.01 <0.001 *

Mother death 1,477 5.79 <0.001 *

Mother residency status

Permanent (> = 6 months in site) 28,852 1.00

Migrant 25,200 0.45 0.059 #

Other 2,035 0.36 0.067 #

Increasing number of months resident during the previous 12 months 28,962 1.11 0.001 *

Mother died in child’s first year 91/31,804 65.72 <0.001 *

Mother age at pregnancy 27,981 0.99 0.595

Mother education 16,971

None or primary 6511 1.00

Secondary 9561 0.90 0.677

Tertiary 899 0.13 <0.001 *

Paternal

Father died in child’s first year 59/31,804 0.69 0.834

Father died before birth 57/31,804 0.98 0.993

Household head 26,034

Male gender 16,625 0.86 0.331
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Table 1 All-cause univariate risk factor analysis for infant mortality in the Agincourt sub-district, 1992-2007 (Continued)

Mozambican origin 9,972 1.04 0.808

Age (years) 25,660

18-29 2,995 1.00

30-49 13,143 0.93 0.785

50-64 6,486 1.39 0.243

65+ 3,036 1.43 0.272

Household morbidity and mortality

Cumulative number of household deaths in year of birth (continuous) 31,804 14.64 <0.001 *

None 26,444 1.00

1 4,048 35.51 <0.001 *

2-3 1,232 109.34 <0.001 *

4+ 80 131.47 <0.001 *

Number of household admissions in year of birth (continuous) 2,895 1.55 0.093 #

None 2,392 1.00

1-2 402 1.51 0.464

3+ 101 17.80 0.041 *

Fertility

Birth parity (continuous) 25,083 1.22 0.170

1 25,083 1.00

2-3 16,526 2.32 0.001 *

4+ 7,663 0.55 0.313

Preceding birth interval 8,421 1.05 0.001 *

Post birth interval 7,199 0.51 <0.001 *

Previous birth stillborn 318/27,981 16.71 <0.001 *

Previous sibling died 945/27,981 7.48 0.001 *

Preceding interval sibling death 413 1.23 0.413

Mother attended antenatal clinic 24,928 0.06 <0.001 *

Number of antenatal clinic visits 17,305 0.84 <0.001 *

Socio-economic status of household

SES absolute score (quintiles) 9,397

Most poor 1,584 1.00

Very poor 1,801 0.81 0.540

Poor 1,971 0.91 0.780

Less poor 2,019 0.91 0.780

Least poor 2,022 0.98 0.940

Food security status of household

Predicted food shortage in coming year 3,481

Same amount of food 1,122 1.00

More food 377 0.31 0.091 #

Less food 1,982 1.24 0.597

Distance to nearest health facility

Minimum distance to health facility (straight-line) from household 25,749

< 5 km 24,023 1.00

> = 5 km 1,726 1.18 0.607

Minimum distance to health facility (network) from village centroid 31,804
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previous child was also a significant risk factor at the
10% level. There was more temporal than spatial corre-
lation in the final spatial-temporal model (0.44 versus
0.09). The spatial-temporal model estimated the range
(distance at which spatial correlation ceases) to be 5,224
metres (95%: 1,805-21,420) meters. AR(1) and AR(2)
parameters were between -1 and 1 indicating
stationarity.

Risk maps
All-cause
Figure 5 shows all-cause and neonatal mortality risk.
Note that with increasing distance from locations with
observed mortality (i.e. villages), the standard error of
the prediction increases. The map of all-cause infant
mortality risk reveals the highest risk to be among vil-
lages bordering the Kruger National Park to the east of
the site, running from the upper central towards the
south-east. Distinct foci of high mortality risk can be
identified in two villages in particular. Neonatal mortal-
ity displayed a similar pattern with 2 distinct foci of
higher risk. One of these foci is in close proximity to a
health facility. Figure 6 shows a distinct pattern of
higher infectious and/or parasitic causes, including HIV/
TB, towards the east of the site, again with distinct foci
of higher mortality in former refugee settlements. Acute
diarrhoea and malnutrition showed a distinct cluster of
higher mortality in the south-east. The pattern of ARI
or pneumonia infant mortality risk was less distinct,
though two foci could be observed to the east of the
study area.

Discussion
The results indicate a worsening of infant mortality: year
of birth was significantly associated with infant mortality
and risk of death increased over the study period. The

increase was particularly from 1998 onwards, and can
be largely attributed to the HIV epidemic and its impact
on mortality in the study area [9,44], both direct (verti-
cal transmission of HIV) and indirect (death of a care-
giver). Mother’s death in infant’s first year was a major
risk factor in this study, as was higher numbers of
cumulative household deaths. Results confirmed the
importance of other known risk factors [23,30]. The
protective association between increasing maternal edu-
cation and infant mortality has been previously
described [30,45] and is possibly a result of better health
awareness and utilization of health facilities [46], longer
birth intervals [47], and higher income which improves
infants’ health through ability to purchase goods and
services [48]. A significant association of higher house-
hold SES was however not observed in this study. This
has been shown elsewhere and may be explained by that
fact that unlike endogenous maternal and demographic
factors that substantially influence an infant’s risk of
death, the effects of SES factors on mortality increase as
the child gets older due to exogenous factors which par-
ents have more control over [49].
We examined health service access with respect to

primary health care generally and antenatal care specifi-
cally. Distance to nearest primary health care facility
was not a risk factor in this study. Antenatal clinic
attendance and number of ANC visits was significantly
protective, with no difference between South Africans
and former Mozambican refugees. These finding suggest
that factors other than geographic access may be key to
understanding the risks associated with health care utili-
sation. These could include quality of care, level of avail-
able care (primary versus secondary), cost and social
barriers. In South Africa, primary health care for chil-
dren under the age of six is free, as is antenatal care.
However, financial costs associated with transport and

Table 1 All-cause univariate risk factor analysis for infant mortality in the Agincourt sub-district, 1992-2007 (Continued)

<5 km 1,220 1.00

>= 5 km 30,584 1.28 0.684

Climatic

Elevation (meters) - rainfall proxy 30,583

350-399 2,554 1.00

400-449 14,202 0.43 0.072 #

450-499 4,120 0.25 0.009 *

500-549 7,202 0.17 <0.001 *

550-599 2,505 0.46 0.226

Total sample size (n = 31,804).

a: infectious and parasitic deaths only.

b: birth weight data only available for this number of infants.

* significant at the 5% level; # significant at the 10% level.
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opportunity costs associated with lengthy waiting time
[50] are some of the barriers described in this setting
[51,52]. Twine el al showed that the poorest households
were less likely to apply for social support grants than
those in higher socioeconomic strata due to barriers
such as distance from government offices, lack of official
documentation and education of caregiver and house-
hold head [51].
A recent study in Kenya found that, despite significant

spatial variations in child mortality, these were not

correlated with distance to health facilities [53]. They
concluded that geographic access to curative services
did not influence population-level mortality given the
density of health facilities in Kenya. They also suggest
that when distance access targets are met, further
improvements in child survival can only be achieved
through renewed investigation of the social, behavioural
and quality-of-care factors that may obstruct access to
health care services. Similarly in rural South Africa,
there is urgent need to evaluate and assure a high level

Figure 4 Predicted infant mortality incidence rate by day of life and mother status in first year, Agincourt sub-district.

Table 2 All-cause multivariate risk factor analysis for infant mortality in Agincourt sub-district, 1992-2007, using
WinBUGS

Spatial model Temporal model Spatial-temporal model

Covariate IRR [95%CI] signif a IRR [95%CI] signif a IRR [95%CI] Signif a

Later year of birth 1.09 [1.06,1.13] * 1.20 [1.03,1.42] * 1.25 [1.07,1.53] *

Cumulative household deaths 12.45 [9.41,16.31] * 12.52 [9.47,16.26] * 12.59 [9.53,16.49] *

Male gender 1.09 [0.84,1.4] 1.09 [0.83,1.4] 1.09 [0.84,1.4]

Mother died in infant’s first year 49.82 [7.85,204.7] * 49.62 [8,189.9] * 51.11 [8.49,200.8] *

Pregnancy parity 0.91 [0.80,1.05] 0.94 [0.82,1.08] 0.94 [0.82,1.06]

Previous child died 2.33 [0.99,4.86] # 2.07 [0.93,4.07] # 2.02 [0.89,3.96] #

Previous birth stillborn 8.13 [2.08,22.99] * 6.24 [1.55,16.99] * 6.29 [1.56,17.85] *

Constant (b0) -3.24 [-4.60,-1.82] -0.10 [-2.09,1.65] -0.63 [-3.08,0.97]

s2 (spatial) 9.15 [4.29,18.33] — 0.09 [0.03,0.22]

s2 (temporal) — 0.42 [0.14,1.05] 0.44 [0.14,1.11]

DIC b 8680.07 8617.10 8617.34

a: *significant at the 5% level; #significant at the 10% level.

b: Deviance Information Criterion.
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of health service quality, assess and strengthen referral
patterns for emergency obstetric, infant and child health
care, and identify other barriers to accessing these and
other government services.
Mothers’ physical presence or absence had a signifi-

cant impact on infant mortality: mother a temporary
migrant (largely work-related) proved significantly pro-
tective, while conversely increasing number of months
per year spent resident by the mother in the rural site
was a risk. Brockerhoff [54] describes how maternal
rural-urban migration may affect children through three
types of living arrangement: children may remain in the
village as foster-children in the care of their fathers or
other relatives; children may accompany or follow their
mothers to towns or cities; and children born after
migrant mothers settle in an urban area may remain
there through the first few years of life. (Note that in
this study, infants born to mothers in urban areas would
not be captured onto the HDSS database unless they
later migrated into the rural household). Bledsoe et al,
[55] reviewing evidence from West Africa, suggest that
while fostered children may be disadvantaged compared
to biological children (in terms of access to health care
and nutrition), they may still be better off than if they
had accompanied their migrant mothers. By staying

home, these children avoid exposure to infectious dis-
eases during a vulnerable period of their life, have con-
tinued access to economic resources of a non-migrant
father, and benefit from remittances received from the
migrant mother [55] - as well as better health care,
nutrition and enhanced maternal health knowledge [56].
In our study, migrant mothers had significantly higher
education and came from households with significantly
higher SES which may explain the protective effect of
mothers’ migration. According to Collinson et al, [57]
since 1997 there has been an increasing trend in the
number of temporary female labour migrants in the
Agincourt sub-district, a poor area with limited employ-
ment opportunities with resulting pressures to migrate
and remit wages back to the rural household.
The spatial distribution showed marked geographical

differences in all-cause mortality risk, indicating variation
even within a relatively small area. The highest infant
mortality risk was in those villages on the eastern border
of the site. Much of this spatial distribution can be
explained by the migration patterns of former Mozambi-
can refugees (who constitute about a third of the Agin-
court HDSS population) who entered South Africa via
the Kruger National Park, a wild game conservation area
situated between the eastern border of the site and

Figure 5 Maps of all-cause and neonatal mortality risk within the Agincourt sub-district 1992-2007, based on baseline models without
covariates.

Figure 6 Maps of selected cause-specific infant mortality risk within the Agincourt sub-district, 1992-2006, based on baseline models
without covariates.
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Southern Mozambique. They remained a vulnerable
group, poorer in more isolated villages with less infra-
structure and generally further away from health facil-
ities, with poor access to water and sanitation as well as
labour markets and legal rights [58]. However, our study
indicates that the all-cause infant mortality risk pattern is
not being driven by former refugee status alone, a finding
supported by Hargreaves et al [23] who found no differ-
ence in mortality rates between South African and for-
mer Mozambican refugee infants between 1992 and
2000, despite significant differences in the 1-4 year age
group. Multiple factors are driving the observed all-cause
spatial risk pattern, including Mozambican origin of
mother for certain infectious causes, maternal death in
first year of infant’s life, lower maternal education, poor
quality of and limited access to neonatal care, poor
antenatal clinic attendance, and increased vulnerability of
households with a high mortality burden. These factors
should be better elucidated and quantified in order to
contribute meaningfully to policy and programmes.
With regard to the geographical distribution of infec-

tious infant deaths (particularly HIV/TB) there was a
distinct spatial pattern of mortality with an increasing
gradient towards the east of the site where communities
appear to have increased risk and suitable interventions
need to be directed accordingly. One village in particular
had a significantly higher mortality rate (all-cause and
HIV) when compared to all other villages. Diarrhoea
and malnutrition-related mortality was clustered in the
south east of the site suggesting greater problems with
clean water and sanitation, services that need to be
assessed and addressed by local government. Breastfeed-
ing had a protective effect on all-cause as well as diar-
rhoea and malnutrition-related infant mortality (Table
1). Breastfeeding protects infants through decreased
exposure to contaminated water and food, optimal
nutrition, and improved resistance to infection however
there is risk of HIV transmission through breast milk.
In South Africa, Ministry of Health policy on breastfeed-
ing by HIV positive mothers has evolved in response to
emerging research [59]; current recommendations are to
breastfeed exclusively during the first 6 months with
administration of anti-retrovirals to HIV positive
mothers [60], especially those with low CD4 counts.
Mothers or infants receiving highly active anti-retroviral
therapy (HAART) prophylaxis should continue prophy-
laxis for one week after breastfeeding has ended [60].
Infant mortality due to diarrhoea, malnutrition and their
interaction is a complex problem in poor, HIV prevalent
African settings. Addressing this requires a multifaceted
approach including provision of clean water and sanita-
tion, promoting infant nutrition, and strengthened pri-
mary care services for mothers and infants to reduce the
risk of HIV transmission through breast milk [61].

Addressing health inequities in populations is a major
challenge [62], and research that documents and quanti-
fies inequities is needed to inform policies to close
health gaps in the developing world. Evidence on redu-
cing inequities within countries is growing; successful
approaches include those that improve geographic
access to health interventions in poor communities, sub-
sidize health care and health inputs for the poor, and
empower poorer communities [63]. The results of our
study indicate the need for interventions in villages to
the east of the site, many of which have a large propor-
tion of former refugees, to reduce the higher burden of
infant deaths due to infectious and parasitic causes.
HAART for HIV began in 2007 in this district and its
impact cannot thus be captured during the time frame
of this study. This research does, however, provide use-
ful insight into spatial-temporal mortality patterns
before HAART rollout and will allow post-rollout
assessment of its impact on infant mortality. Such eva-
luation has the potential to identify areas needing
improved access to treatment, specifically prevention of
mother-to-child transmission and anti-retroviral therapy.
Of concern is the high number of neonatal deaths

(particularly in the perinatal period), their gradual
increase over the study period, and the highest risk area
being in close proximity to a health facility. This sug-
gests problems of service quality rather than geographic
access, and highlights the need to assess and improve
the capacity of sub-district health facilities for antenatal,
emergency obstetric and newborn care; improve cover-
age of deliveries by skilled birth attendants; and advise
mothers on appropriate care-seeking for sick babies.
Part of the perinatal mortality burden observed may
relate to maternal HIV since the same village experi-
enced highest risk for neonatal and infant mortality. A
meta-analysis by Brocklehurst et al [64] in 1998 found
an association between maternal HIV infection and
adverse perinatal outcomes, including low birth weight
and pre-term delivery.
A limitation of the study is the potential to miss infant

deaths, particularly neonatal deaths, which would under-
estimate the overall infant mortality burden. Infants that
are born and then die during the 12 months between
HDSS census update rounds may not be reported, parti-
cularly if the mother migrated out of the household;
similarly, death among in-migrant infants who die
before they are enumerated in the annual household
census may be missed. However, infant death ascertain-
ment has improved in the study site [36], and the pro-
portion of infants who were in-migrants decreased
significantly over time, reducing the bias towards the
end of the study period. Determination of cause of
death through verbal autopsy is more problematic for
diseases that have less specific symptoms such as HIV/
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AIDS [65]. The prevalence of HIV infection in a popula-
tion and the resulting rate of HIV-associated co-morbid-
ity and death due to malnutrition in children, for
example, may affect the performance (such as specifi-
city) of the tool. Thus it is likely that the HIV burden is
underestimated due to the misclassification of deaths as
AIDS-related conditions such as malnutrition or diar-
rhoea, or there being placed in the “unknown cause”
category. The significant increase in number of infant
deaths attributed to unknown causes since the late
1990s (Figure 2) is concurrent with the rise in HIV-
related mortality in the area. Levels of stigma associated
with HIV are high in South Africa, particularly prior to
the introduction of HAART. The ability to make a diag-
nosis on VA depends, in large part, on the quality of
information provided by the respondent. This may have
been compromised in some cases in an effort to disguise
HIV as a likely cause of death, partly explaining the
increase in unknown causes.

Conclusion
By estimating the true spatial distribution of the infant
mortality burden in rural northeast South Africa, this
study has shown variation across a relatively small geo-
graphical area. The approach used Bayesian geostatisti-
cal models in order to assess risk factors, correctly
estimate the standard errors (significance) of these risk
factors and produce smooth maps of infant mortality
risk from spatially correlated longitudinal mortality data
in a health and socio-demographic surveillance system.
Findings indicate the need for interventions targeted at
villages with excess infant mortality risk due to both a
direct and indirect impact of HIV. Essential interven-
tions include improved prevention of mother-to-child
transmission programmes, and antiretroviral therapy for
HIV positive mothers to ensure their survival during
their infants’ critical first year(s) of life. From our study,
it is clearly inadequate to consider maternal health sepa-
rately from infant and neonatal health. This is consistent
with other studies which showed that maternal health
directly affects infants’ health [66]. Policy should thus
have greater emphasis on interventions targeting the
mother-infant pair. We also conclude that the non-ran-
dom clustering of infant mortality due to diarrhoea and
malnutrition in the south-east part of the site represents
a breakdown in basic services (or, indeed, their absence);
there is hence need to assess and improve water and
sanitation in these villages. The high levels of perinatal
mortality, in some instances in close proximity to health
facilities, is of concern, indicating need to strengthen
the capacity of sub-district facilities for emergency
obstetric and newborn care. Recommendations from
this study will have applications to other similar rural
settings within South Africa and potentially beyond.

Appendix: Statistical Model
Let Yit and pit be the status and probability of mortality
of an infant i in year of birth t. We assume that Yit

arises from a negative binomial distribution, that is Yit

~NegBin[pit, r], where pit is the probability that child i
at location si is dead and r is the parameter that quanti-
fies the amount of extra Poisson variation. We modelled
the probability of death [pit] as follows:

1. logit (pit) = b0 + bXit + �it (multivariate spatial
model)
2. logit (pit) = b0 + bXit + at (multivariate temporal
model)
3. logit (pit) = b0 + bXit + �it + at (multivariate spa-
tial-temporal model)
4. logit (pit) = b0 + �it (spatial kriging model) i.e. con-
stant and spatial random effect with no covariates

where b0 is the incidence rate where all covariates are
zero (i.e. the constant), Xit denotes the covariates, b is
the vector of regression coefficients, �it the village-speci-
fic random effect, μi the individual level random effect
and at the temporal random effect. Following a Bayesian
model specification, noninformative normal prior distri-
butions were adopted for the regression coefficients b
and an informative (based on estimates from Stata) and
non-informative gamma prior distribution for the over-
dispersion parameter r were adopted and tested [lower
DIC dictating which was used]. We assume that �it has
a multivariate normal distribution, �it ~ MVN (0,Σ),
with variance-covariance matrix Σ. We also assume an
isotropic stationary spatial process, where Σkl = sw

2 exp
(-�dkl), dkl is the Euclidean distance between villages k
and l, sw

2 is the geographical variability known as the
sill, � is a smoothing parameter that controls the rate of
correlation decay with increasing distance and measures
the range of geographical dependency. A noninformative
gamma prior was adopted for phi [�], which is the
smoothing parameter that controls the rate of correla-
tion decay, as well as uniform prior with a distribution
between � min and � max [67]. Both approaches were
tested and the approach providing the best fit was then
used. The range is defined as the minimum distance at
which spatial correlation between locations is below 5%.
This distance can be calculated as 3/u meters. The sec-
ond order year level autoregressive temporal random
effect (at), for t = 1 to 16 years, was modelled as a nor-
mal distribution with mean amean [t = 3,..,16] = r0 + r
[1]*a[t-1] + r[2]*a[t-2] and a noninformative gamma
distribution for the variance parameter. The first two
autoregressive terms were specified as amean [1] <- r0 +
l[1] and amean [2] <- r0 + r[1]*a[1] + l[2]. Noninforma-
tive normal prior distributions were adopted for the r
and l coefficients [34].
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MCMC simulation was applied to fit the models. We
ran a single chain sampler with a burn-in of 5000 itera-
tions. Convergence was assessed by running the simula-
tion until the Monte Carlo error for each parameter of
interest was less than 5% of the sample standard devia-
tion. The chains thereafter were sampled every single
iteration until a sample size of 10,000 had been attained.
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Survived infancy but still vulnerable: spatial-temporal trends
and risk factors for child mortality in the Agincourt rural
sub-district, South Africa, 1992-2007
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Abstract. Targeting of health interventions to poor children at highest risk of mortality are promising approaches for enhanc-
ing equity. Methods have emerged to accurately quantify excess risk and identify space-time disparities. This provides use-
ful and detailed information for guiding policy. A spatio-temporal analysis was performed to identify risk factors associat-
ed with child (1-4 years) mortality in the Agincourt sub-district, South Africa, to assess temporal changes in child mortality
patterns within the study site between 1992 and 2007, and to produce all-cause and cause-specific mortality maps to iden-
tify high risk areas. Demographic, maternal, paternal and fertility-related factors, household mortality experience, distance
to health care facility and socio-economic status were among the examined risk factors. The analysis was carried out by fit-
ting a Bayesian discrete time Bernoulli survival geostatistical model using Markov chain Monte Carlo simulation. Bayesian
kriging was used to produce mortality risk maps. Significant temporal increase in child mortality was observed due to the
HIV epidemic. A distinct spatial risk pattern was observed with higher risk areas being concentrated in poorer settlements
on the eastern part of the study area, largely inhabited by former Mozambican refugees. The major risk factors for child-
hood mortality, following multivariate adjustment, were mother’s death (especially when due to HIV and tuberculosis),
greater number of children under 5 years living in the same household and winter season. This study demonstrates the use
of Bayesian geostatistical models for accurately quantifying risk factors and producing maps of child mortality risk in a
health and demographic surveillance system. According to the space-time analysis, the southeast and upper central regions
of the site appear to have the highest mortality risk. The results inform policies to address health inequalities in the Agincourt
sub-district and to improve access to health services. Targeted efforts to prevent vertical transmission of HIV in specific set-
tings need to be undertaken as well as ensuring the survival of the mother and father in childhood.

Keywords: Bayesian inference, autoregressive, geostatistical data, child mortality, kriging, survival, Bernoulli or logistic, spa-
tio-temporal model, health and demographic surveillance, mortality, South Africa

Introduction

Large reductions in child mortality occurred in low-
income and middle-income countries towards the end
of the last century, however more than 10 million chil-
dren still die every year. Most childhood deaths occur
in the developing world, particularly sub-Saharan
Africa (SSA), although there is considerable hetero-
geneity within the region with countries showing dif-

ferential trends in levels and age patterns of childhood
mortality. Childhood mortality rates have consider-
ably declined over the past decades in much of SSA,
but since the 1990s mortality rates have started to
increase again in parts of the continent (Ahmad et al.,
2000; WHO, 2002). This new trend has mainly been
attributed to the effects of the HIV/AIDS epidemic and
to the spread of chloroquine-resistant malaria (Müller
et al., 1999; Adetunji, 2000; Trapé, 2001). Other
prominent causes of death among children include
diarrhoea, pneumonia, measles and the underlying
cause of malnutrition for deaths among children
younger than 5 years. Most of these conditions are
either preventable or treatable with low-cost interven-
tions (Tulloch, 1999; Black et al., 2003).

Gaps between mortality of wealthier and poorer
children within most countries are unacceptably wide
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and in some areas this gap is increasing (Wagstaff,
2000). Targeting of health interventions to poorer or
higher risk individuals and/or communities and ensur-
ing universal coverage are promising approaches for
promoting equity. Successful approaches include sub-
sidised health care and health inputs, improved geo-
graphic access to health interventions in poor commu-
nities and social marketing (Victora et al., 2003).
Geostatistical models allow accurately quantifying
inequities in health, identifying risk factors for mortal-
ity within a population and predicting mortality at
unsampled locations, and ultimately generating
smoothed maps of mortality risk. Despite the increas-
ing use of Bayesian geostatistical models in risk map-
ping and prediction of parasitic diseases such as
malaria (Gemperli et al., 2006; Gosoniu et al., 2008;
Hay et al., 2009; Riedel et al., 2010), schistosomiasis
and soil-transmitted helminthiasis (Raso et al., 2005;
Clements et al., 2008; Schur et al., 2011), little or no
work has been done on mortality data from health and
demographic surveillance sites (HDSS). Geostatistical
model-based predictions of mortality at non-sampled
locations can generate smoothed maps that can be
used for identifying clusters of high mortality and
assessing effectiveness of interventions.

Child mortality in developing countries is mainly
associated with measurable socio-economic conditions
such as poor living conditions (Manda, 1999). Poor
children are more likely to be exposed to health risks,
and have less resistance to disease because of malnu-
trition and other risk factors typical of poorer com-
munities. These inequities are further compounded by
reduced access to health care in the form of preventive
and curative interventions. Other proximate determi-
nants of child mortality include maternal factors (e.g.
age, pace of childbearing and death of mother), nutri-
tional factors, environmental contamination, injury
and health care access and quality (Mosley and Chen
1984a, b; Hobcraft et al., 1985; Binka et al., 1995;
Ronsmans, 1996; Kuate Defo, 1997). Issues of access
which include accessibility (distance to facility),
affordability and acceptability of available health serv-
ices also heavily contribute to child mortality.
Geography and ethnicity can both lead to failure to
access health care, and therefore inequity in child sur-
vival. A previous study in the Agincourt HDSS, a rural
South African population, showed a higher level of
childhood mortality (particularly in those children
aged 1-5 years) among former Mozambique refugees
when compared to South African households and con-
firmed various other established risk factors
(Hargreaves et al., 2004). Indeed, Hargreaves and col-

leagues (2004) suggested that the lack of legal status,
“refugee” villages being more isolated with less infra-
structure, and lower wealth of many former
Mozambican refugees (three times more likely than
host South African households to be in the poorest
quintile of the sample) may partly explain this dispar-
ity (Kahn, 2008). This should be kept in mind when
assessing spatio-temporal trends in child mortality in
this area. Another factor is the impact of dysfunction-
al health services, while communities have geographic
access to adequate health services, they may fail to
derive any benefit from them (Penchansky et al., 1981;
Mulholland et al., 2008). There is still a need for more
research in the Agincourt sub-district and other poor
rural settings of sub-Saharan Africa to clarify the role
of factors such as distance to nearest health facility on
child morbidity and mortality as well as to identify
any poorly functioning health facilities in addition to
the traditional risk factors mentioned above. Given
the inherent spatial (households and villages) and tem-
poral (repeated measurements on a child each year)
correlation in longitudinal data, Bayesian spatio-tem-
poral models provide the most appropriate methodol-
ogy for risk factor analysis as they take into account
both sources of correlation. Standard approaches on
the other hand assume independence of outcomes such
as mortality and under/over estimate the magnitude
and precision of the of effects of risk factors.

The objectives of this study were to assess changes in
child mortality patterns within the rural Agincourt sub-
district over a 15-year period, accurately quantify risk
factors and develop all-cause and cause-specific mortal-
ity maps to identify high risk areas within the Agincourt
area. This will provide guidance on how best to allocate
limited resources to reduce child mortality and infor-
mation on effectiveness of current health policy.

Materials and methods

Study area and population

The Agincourt HDSS was demarcated in 1992 and
comprises a mix of temporary migrant workers, for-
mer Mozambican refugees and a more stable perma-
nent population (Tollman et al., 1999) (Fig. 1). It cov-
ers an area of ~400 km2 and contains 21 villages with
approximately 11,700 households and 70,000 people.
A full geographical information system (GIS) exists for
all households within the site and is updated annually.
The study population consisted of all children (aged 1-
4 years) who were either resident, born, or in-migrat-
ed into the site between 1992 and 2007.
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Outcome measures

A verbal autopsy, validated by Kahn et al. (2000) in
the mid-1990s and again in 2005, is conducted for
each death within the Agincourt HDSS. Lay, trained
fieldworkers interviewed the closest caregiver on the
signs and symptoms of the terminal illness, as well as
lifestyle risk factors and treatment sought.
International Classification of Diseases (ICD-10) was
used to classify main, underlying and contributing
causes of death following independent assessment of
the completed questionnaires by two or three physi-
cians. Where consensus was achieved, the diagnosis
was accepted as the ‘probable cause of death’; other-
wise, the death was classified as ‘ill-defined’. Cause-
specific data (e.g. HIV/AIDS, tuberculosis, acute diar-
rhoea or malnutrition, acute respiratory infection or
pneumonia and accidents) were available from 1992
to 2006.

Explanatory variables

The following factors were included as covariates:
demographic (gender, nationality), temporal, maternal
(nationality, age at pregnancy, death while child aged
1-4 years and education), fertility (parity, birth inter-
vals and sibling death), household mortality experi-
ence, socio-economic status (SES), food security, dis-
tance to health facility, household elevation (climate
proxy) and health seeking behaviour (antenatal clinic
attendance). SES is based on information on living con-
ditions and assets, building materials of main dwelling,

water and energy supply, ownership of modern appli-
ances and livestock, and means of transport available
(Kahn, 2008). The sum of these scores for certain vari-
ables provided each household with an overall absolute
score. We also used these factors to construct a weight-
ed score using multiple correspondence analysis
(MCA). These scores were then divided into five socio-
economic strata ranked by increasing value of the score
and corresponding closely to five wealth quintiles:
most poor, very poor, poor, less poor and least poor.

Statistical analysis

The time to death was treated as discrete at monthly
intervals and Cox proportional hazards models were
fitted using dichotomous logistic regression formula-
tions (D’Agostino et al., 1990). Preliminary regression
models were applied to assess the relationship between
all-cause child mortality with each covariate.
Covariates significant at the 10% level (without sub-
stantial missing values) were then incorporated into a
multivariate geostatistical-temporal model to assess the
effects of the most significant covariates on child mor-
tality and to develop a predictive model to enable map-
ping of the mortality outcome. Spatial correlation was
modelled via village-specific random effects, which
considered as latent observations a spatial Gaussian
process. Correlation between any pairs of village loca-
tions were considered as an exponential function of
their distance and modelled by the covariance matrix
of the process (Diggle et al., 1998). Temporal correla-
tion was introduced by yearly random effects modelled

Fig. 1. Location of the Agincourt HDSS site (Kahn et al., 2007), South Africa.
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via an autoregressive process of various order
(Schotman, 1994; Zeller, 1996). A Bayesian frame-
work was used to specify the models and Markov
chain Monte Carlo (MCMC) simulation was applied
to estimate the parameters (Gelfand et al., 1990).

The order of the autoregressive process was assessed
using the deviance information criterion (DIC)
(Spiegelhalter et al., 2002). Models with the smallest DIC
indicate the best fit. Validation was carried out by fitting
the models on the subset of data during the period 1992-
2006 and calculating the proportion of villages with
observed mortality in 2007 within the 95% credible
intervals of their corresponding predictive distributions.

Autoregressive models of first and second order had
similar DICs and similar predictive ability for 2007.
However, the second order process converged faster
and was thus used in the final model. Further model-
ing details are given in the Appendix.

Simulation-based Bayesian kriging (Gelfand et al.,
1999) at numerous prediction points within the site
was used to produce smoothed maps of all-cause and
cause- specific mortality risk within the whole
Agincourt HDSS. Predictions were carried out at base-
line category of the predictors and during the periods
of 1992-1995, 1996-1999, 2000-2003 and 2004-
2007. All identifying features (village centroids,
boundaries) have been removed from the maps and
the prediction area expanded irregularly, in order to
ensure confidentiality and avoid stigmatising of vil-
lages. The HIV and tuberculosis mortality risk map is
also not shown for this reason.

Data extraction and management was done using
Microsoft SQL Server 2005. The analysis was carried
out in STATA version 10.0 (Stata Corp., 2007),
OpenBUGS (Spiegelhalter et al., 1999) and R (R
Development Core Team, 2008). The predictions of
the fitted spatial models were mapped in Map Info
Professional version 9.5 (MapInfo, 2008).

Results

Between 1992 and 2007, there were 46,675 children
aged 1-4 years in the Agincourt HDSS. Each child, on
average, contributed 23.67 person months of time
(standard deviation (SD) 13.31). There were 565
deaths (6.14 per 1,000 person years) with a mean age
at death of 2.20 years (SD 0.93 years). The sex ratio
was approximately 1:1 (21,733 females or 50.3%) as
was the breakdown of children born in the site versus
those who in-migrated (23,423 or 54.5% for the for-
mer). More than one third (15,691 or 36.8%) of the
children were born to former Mozambican refugees.

The top causes of death among children in this peri-
od (n = 535) were HIV/tuberculosis (n = 136, 25.4%),
acute diarrhoea or malnutrition (n = 135, 25.2%),
accidents (n = 31, 5.8%) and acute respiratory infec-
tion or pneumonia (n = 16, 3.0%). In total 314
(58.7%) deaths were attributed to infectious or para-
sitic causes. Fifty-seven deaths (10.7%) were classified
as unknown (i.e. R95-R99) and 106 deaths (20.3%)
had no diagnosis since a verbal autopsy could not be
conducted due to lack of a respondent or family
refusal. A significant increasing trend in the child mor-
tality rate was observed over the study period
(β = 0.05, p = 0.001). This was observed particularly
for the 1992-2003 period (Fig. 2).

Bivariate analyses indicate that winter season, hav-
ing a Mozambican mother, four or more children aged
less than 5 years living in the same household, moth-
er or father death during childhood (1-4 years) espe-
cially due to HIV/tuberculosis, father death before
birth, increasing number of cumulative household
deaths and death of previous sibling are significant
factors of child mortality (Table 1). Significant protec-
tive factors against child mortality were increasing age
of child, increasing mothers age, tertiary level educa-
tion of mother, increased post-birth interval, mother
antenatal clinic attendance as well as increased fre-
quency of antenatal clinic attendance and higher SES
quintile of household (Table 1). No significant associ-
ation was observed between distance from household
and nearest health facility. For mothers who died
while the child was aged 1-4 years (n = 259), the lead-
ing cause of death was HIV/tuberculosis (30.5%),
while 47.1% where classified as unknown. This was
similar for fathers who died before the child was born
or up to the child’s 5th birthday (n = 543, 28.7%
HIV/tuberculosis, 33.5% unknown).

Fig. 2. Child mortality rate per 1,000 person years (with linear
trend line) in Agincourt sub-district, 1992-2007.
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Table 1. All-cause bivariate and multivariate child mortality risk factor analyses in Agincourt sub-district, 1992-2007.

Factor Bivariate non-spatial model Multivariate spatio-temporal
model OR (95% BCI)

n OR (95% CI)
Temporal

By year
Winter season

Demographic
Age (continuous)
Male (gender)

Maternal
Mozambican
Mother migration (increasing number of months
spent resident in site in given year of child’s life)
By age (in years)

1-1.99
2-2.99
3-3.99
4-4.99

Mother death
Mother death in 1-4 not due to HIV/tuberculosis
Mother death in 1-4 due to HIV/tuberculosis
Mother’s age
Mother’s education

None
Primary
Secondary
Tertiary

Paternal
Father death before birth to 4
Father death before birth to 4 not due to
HIV/tuberculosis
Father death before birth to 4 due to
HIV/tuberculosis

Household demographics
Male household head
Mozambican household head
Household head age (continuous)
1-3 children in household aged <5 years
≥4 children in household aged <5 years
Household size (count of individuals)
Cumulative number of household deaths

None
1
2-3
≥4

Fertility
Pregnancy parity

1
2-4
≥5

Preceding birth interval
Post birth interval
Previous birth stillborn
Previous sibling died
Mother attended antenatal clinic
Number of antenatal clinic visits

Socio-economic status (SES) of household
SES MCAδ score quintiles

Most poor
Very poor
Poor
Less poor
Least poor

Individual variation (O2
j )

Spatial variation (O2
z)

Temporal variation (O2
t)

1,136,136
1,136,136

1,136,136
1,135,970

13,148/35,845

665,539

192,999
190,637
194,671
87,232

1,152/1,136,136
191/1,136,136
66/1,136,136

1,045,197
364,244
57,168
96,422
188,891
21,763

580/1,136,136
430/1,136,136

150/1,136,136

970,917
967,490
959,306

1,008,756
119,644

1,136,132
1,136,136
934,491
155,545
43,514
2,586

23,703
14,572
8,560
571

7,078
6,925

288/23,703
800/23,703

20,849/21,215
14,119

358,524
63,390
69,347
73,736
76,396
75,655

-
-
-

1.05 (1.04-1.07)
1.36 (1.15-1.60)

0.50 (0.46-0.55)
1.07 (0.91-1.26)

1.72 (1.39-2.12)

0.93 (0.89-0.96)

0.93 (0.88-0.98)
0.90 (0.84-0.96)
1.04 (0.89-1.22)
0.92 (0.80-1.06)
5.16 (4.03-6.61)
7.77 (4.43-13.65)

19.92 (10.40-38.19)
0.98 (0.97-0.99)
0.98 (0.96-1.01)

1.00
1.01 (0.69-1.47)
0.94 (0.67-1.33)
0.49 (0.23-1.04)

2.41 (1.53-3.82)
2.07 (1.06-4.02)

5.06 (2.48-10.41)

0.78 (0.60-1.02)
1.61 (1.24-2.09)
1.00 (0.99-1.01)

1.00
1.52 (1.21-1.91)
1.02 (1.01-1.04)

1.00
41.32 (30.77-55.49)
62.95 (45.71-86.71)

106.90 (59.28-192.77)

0.99 (0.90-1.08)
1.00

1.05 (0.86-1.28)
0.20 (0.05-0.82)
0.98 (0.95-1.01)
0.90 (0.82-0.99)
0.68 (0.25-1.84)
1.63 (1.08-2.45)
0.48 (0.28-0.83)
0.92 (0.88-0.97)

1.00
0.74 (0.51-1.07)
0.63 (0.43-0.92)
0.60 (0.41-0.87)
0.43 (0.28-0.66)

-
-
-

-
1.33 (1.12-1.57)

0.51 (0.46-0.56)
-

1.15 (0.93-1.40)

-

-
-
-
-
-

5.17 (2.84-8.29)
13.52 (7.57-21.68)

-
-

-
-
-

-

1.44 (0.73-2.41)

1.99 (0.86-3.68)

-
-
-

1.00
1.52 (1.18-1.90)

-

-
-
-

-

-
-
-
-
-
-
-
-

-
-
-
-

0.04 (0.01-0.11)
0.23 (0.10-0.48)
0.29 (0.12-0.68)

α, Infectious or parasitic child deaths only; β, no child deaths; δ, similar findings when using the absolute score index; household
head age was not significant; straight distance from household and network distance from village centroid to nearest health facility
(by category <5 and ≥5km) were not significant
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We found a strong reduction in the probability of
death as the child progresses to the age of 5 years (Fig.
3). This probability is much higher for those children
whose mother died of HIV/tuberculosis and remains
elevated throughout childhood. For those children
whose mother died in childhood due to a cause unre-
lated to HIV/tuberculosis, we observed an elevated
risk between 1-3 years of age, thereafter the risk drops
close to levels observed for children whose mother did
not die during their childhood.

Results of the multivariate Bayesian spatio-tempo-
ral model suggest that mother death between the
child’s first and fifth birthdays, particularly due to
HIV/tuberculosis, was the most prominent risk fac-
tor from the multivariate analysis (Table 1), followed
by father death due to HIV/tuberculosis, four or
more children aged less than 5 years living within the
household, Mozambican origin of the mother and
winter season. Increasing age remained highly pro-
tective. The spatio-temporal model estimated the
range or distance at which spatial correlation ceased
between villages to be approximately 8.23 km (95%
credible interval: 1.83 to 27.24 km). The autore-
gressive term was between -1 and 1 indicating sta-
tionarity.

Distinct foci of higher all-cause mortality risk can be
observed (Fig. 4) in the central northern and
south-eastern parts of the Agincourt study site. The
villages in the southeast of the site are comprised
mostly of former Mozambican refugees (>90% of vil-
lage occupants). With increasing distance from the vil-
lage centroids the standard error of the mortality risk
prediction increases.

Child mortality risk due to infectious and/or para-
sitic causes was higher in the southeast corner of the
site towards the Kruger National Park boundary. One
additional focus of higher mortality was observed in
the central northern part of the site. Distinct foci of
reduced child mortality risk due to infectious or para-
sitic causes were also observed.

HIV/tuberculosis mortality risk showed two distinct
foci: one in the upper central part of the site and a
grouping in the southeast corner of the site. Acute diar-
rhoea or malnutrition mortality risk was mostly con-
centrated in the southeast corner of the site (Fig. 5). A
small additional foci was also observed in the upper
central part of the site. Mortality risk for acute respi-
ratory infection or pneumonia child deaths was highest
in the southeast, upper central and lower southwest of
the site (Fig. 5). Accidental mortality risk showed a less
distinct pattern however foci of higher mortality risk
can be clearly observed across the site (Fig. 5).

Fig. 6 shows the distribution of higher risk foci of
mortality by period. While the focus of high risk in
the southeast corner of the site persists across the
period, by 2004 it has spread to surrounding villages.
In addition, a new high risk area more upper central-
ly located emerges in the 2000-2003 period, and
intensifies in the next period. Distinct foci of persist-
ing and emerging lower mortality risk are also
observed.

Discussion

In this study Bayesian spatio-temporal models were
fitted to assess the geographical patterns and trends of
all-cause and cause-specific child mortality in
Agincourt HDSS. Results confirmed strong geograph-
ic differences in mortality risk and the importance of a
number of risk factors such as maternal and paternal
death (largely due to HIV), poorer SES and high
household mortality burden.

A statistically significant increase in child mortality
was observed over the study period, particularly
between 1996 and 2003 largely due to the HIV epi-

Fig. 4. Smoothed map of all-cause child mortality risk within
Agincourt HDSS based on the baseline Bayesian model without
covariates.

Fig. 3. Probability of death by age during 1-4 years and moth-
er’s cause-of-death based on a classical discrete-time logit model
which included these two covariates
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demic. The leading causes of death were HIV/tubercu-
losis, followed by diarrhoea/malnutrition. One limita-
tion of this study is the HIV/tuberculosis-related
deaths misclassified by the verbal autopsy as
unknown, which would underestimate the true bur-
den. Almost half of all child deaths in this area could
be attributed to infectious or parasitic causes.
Interventions to reduce child mortality targeting infec-
tious causes, specifically HIV and diarrhoea, are there-
fore urgently needed.

These findings confirm a number of risk factors doc-
umented in previous studies (Mosley and Chen,
1984a, b; Hobcraft et al., 1985; Binka et al., 1995;
Ronsmans, 1996; Kuate Defo, 1997; Manda, 1999).
There was a strong decreasing probability of mortali-
ty with increasing age of the child and higher proba-
bility of mortality associated with winter season. This
is likely due to the increase in respiratory illness dur-
ing this period, as well as environmental or household
pollution due to the burning of fuel (e.g. coal, wood

Fig. 6. Smoothed maps of all-cause child mortality risk within Agincourt HDSS by period based on the baseline Bayesian model
without covariates.

Fig. 5. Smoothed maps of selected cause-specific child mortality risk within Agincourt HDSS based on baseline Bayesian models
without covariates.
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and paraffin) for indoor heating and cooking. Results
from a previous study in South Africa suggest that
exposure to cooking and heating smoke from pollut-
ing fuels is significantly associated with <5 year mor-
tality (Wichmann et al., 2006).

The spatial analysis indicated two distinct pockets
of higher mortality burden towards the southeast and
upper central parts of the site. This was consistent
with the cause-specific mortality risk distribution we
observed for HIV/tuberculosis, diarrhoea/malnutrition
and acute respiratory infection/pneumonia. According
to the space-time analysis, recent trends indicate the
need to target interventions in the southeast corner
(high risk throughout the period) and upper central
(emerging risk from 2000 onwards) parts of the site
which experience the highest mortality burden. This
evolving space-time risk distribution is likely being
driven by the evolving HIV epidemic.

A strong geographical pattern with regards to high-
er infectious disease mortality risk (particularly
HIV/tuberculosis and diarrhoea) in the former
Mozambican settlements lying to the east of the site
was observed. We also found a significant risk for all-
cause child mortality associated with having parents
of Mozambican origin. Many refugees fleeing the civil
war in Mozambique from 1983 onwards settled in the
northeast of South Africa, including in Mpumalanga
province. Despite voluntary repatriation programmes
following a formal peace agreement in 1992, it was
estimated that by 2000 more than 200,000 former
Mozambican refugees were still living in the province
(Johnston, 2000). They have remained a poorer and
more vulnerable group, living in isolated villages with
less or weaker in frastructure, poor access to water
and sanitation, generally further away from health
facilities and labour markets, with limited legal rights
and experience barriers to accessing social grants, edu-
cation and health services (Dolan et al., 1997,
Hargreaves et al., 2004; Kahn, 2008). Hargreaves and
colleagues (2004) have demonstrated higher mortality
rates among children from Mozambican-headed
households when compared to South African-headed
households; lack of legal status and poorer SES of
many former Mozambican refugees partly explains
this disparity. Although primary health care is free,
transport costs are high which represents a problem as
the Mozambican settlements are generally further
away from health services. Lack of legal status means
Mozambican children do not have the same access to
child support grants, which puts them at a further dis-
advantage relative to their South African counterparts.
Hence, despite equity-orientated health and social

policies in the southern part of the study site, it would
appear that generally those children who are hardest
to reach, both physically and socially, are also those
with the highest mortality. Policy amendments are
therefore needed to address inequity and any differen-
tial access to various services.

Death of the child’s mother (and father to a smaller
extent) between their first and fifth birthdays (specifi-
cally due to HIV/tuberculosis) was the most promi-
nent risk factor in this study. Vertical transmission of
HIV and/or loss of the primary care giver (leading to a
loss of direct care as well as indirectly through house-
hold income lost) are the most likely explanation for
this finding. Access to voluntary counselling and test-
ing and anti-retroviral treatment to mothers and
fathers in these settlements needs to be increased.
About half of children infected with HIV through ver-
tical transmission develop AIDS symptoms and die
within 2 years (UNAIDS, 2002). Fig. 3 illustrates this
issue. A comprehensive approach to prevention of
mother-to-child transmission (PMTCT), including a
combination of antiretroviral therapy (ART) from
early pregnancy, elective caesarean section and highly
active anti-retroviral therapy (HAART) for mother or
infants during breastfeeding (Coovadia et al., 2007;
WHO, 2010), can significantly reduce transmission
rates in this sub-district (European Collaborative
Study, 2005; Navér et al., 2006; Newell et al., 2007).
In resource-poor settings, the risks and costs of surgi-
cal procedures are barriers to considering caesarean
sections as a feasible strategy for preventing MTCT.
The avoidance of breastfeeding in absence of HAART
must also be balanced against the risks associated with
replacement feeding such as cost and lack of access to
clean water (Thior et al., 2006; Coovadia et al., 2007)
which we have shown to be a problem in the south
east region of the site.

The strong clustering of diarrhoea/malnutrition-
related mortality risk in the southeast corner of the
site, again in former Mozambican refugee settlements,
points to a deficiency in water and/or sanitation infra-
structure, which needs to be further assessed and
addressed by local government. We recommend rou-
tine testing and improved water supply to reduce these
unnecessary deaths. Rehydration fluid (ORT) and
dietary management are key aspects in the treatment
of acute diarrhoea, particularly those episodes which
persist. The capabilities and resources of health facili-
ties, specifically those situated near to the southeast
corner of the site, to effectively manage children pre-
senting with diarrhoea and/or malnutrition needs to
be improved.
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The association between SES, maternal education
and mortality has been previously described by Farah
and Preston (1982). Higher education may result in
better health awareness and utilisation of health facil-
ities (Jain, 1988), higher income and the ability to pur-
chase goods and services that improve children’s
health (Schultz, 1979), longer birth intervals and, pos-
sibly, higher maternal ages (Cleland et al., 1989).

Death of household members other than the mother
or father also appeared to be a significant risk in this
study. Thus death of these members places additional
strain (including financial burden of medical services
and funerals, and loss of income) on the household,
which negatively impacts on the child’s health out-
come. High mortality households require both finan-
cial and social support to reduce the indirect impact
on their children.

There are several studies relating geographical
access to use of health facilities. As one would expect,
members of communities that are more distant use the
facilities less than those that live nearer, but this does
not necessarily translate into increased mortality risk
(Stock, 1983; Becher et al., 2008). In this study no sig-
nificant increased risk of child mortality was found
with increasing distance of household to the nearest
primary health care clinic as well as district hospitals
located outside the site. The same holds true for infant
mortality (Sartorius et al., 2010). This suggests that
quality of health services may be influencing child
mortality rather than geographical access. Evaluation
of primary health care services with attention to qual-
ity improvements is needed.

Conclusion

Our study has demonstrated the considerable poten-
tial of spatial statistical methods for analysing longitu-
dinal health and socio-demographic data, and is one
of only a few studies to have used geostatistical mod-
elling on HDSS mortality data. Based on the space-
time analysis the southeast and upper central regions
of the site appear to have the highest child mortality
risk at present. These maps are particularly helpful in
identifying high mortality areas to guide efficient allo-
cation of limited resources in child survival pro-
grammes. The risk factor results can also contribute to
policies to address health inequalities in rural South
Africa and to improve access to health services.
Targeted efforts to prevent vertical transmission of
HIV in specific villages need to be introduced, as well
as programmes to ensure the survival of the mother
and father through children’s childhood, as both

emerged as prominent risk factors for child mortality.
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Appendix: Statistical model

Let Yijt be the mortality status of child i in village j at time
interval t. We assume that Yijt arises from a Bernoulli distribu-
tion, Yijt ~ Be(pijt) where pit is the probability of death of child
i at interval t. We model covariates Xit, temporal random effect
αt, village ϕt and child εt random effects on the logit of pijt, that
is logit(pijt) = XT

it + β + αt + ϕj + εi , where β is the vector of
regression coefficients. We assume that ϕi has a multivariate
normal distribution, ϕ ~ MVN(0, Σ) with variance-covariance
matrix Σ. We also assume an isotropic stationary spatial
process, where Σkl ~ σ 2

ϕ exp(-ρdkl), dkl is the Euclidean distance
between villages k and l, σ 2

ϕ is the geographical variability
known as the sill, ρ is a smoothing parameter that controls the
rate of correlation decay with increasing distance and measures
the range of geographical dependency (Diggle et al.., 1998). The
range is defined as the minimum distance at which spatial cor-
relation between locations is below 5%. This distance can be
calculated as 3/ρ and is expressed in meters. The year level tem-
poral random effect αt t = 1, 2, ..., 16, was modelled via a sec-
ond order stationary autoregressive process that is αt ~ N(γ1 αt-1

+ γ2 αt-2 , σ
2
ϕ ), t > 2, where -2 < γ1 < 2 and  -1 < γ2 < 1 - |γ1|

(Harvey, 1993) and the child random effects via independent
normal distributions εi ~ N(0, σ 2

z ) with variance σ 2
z . Uniform

prior distributions were adopted for γ1 , γ2, vague Normal dis-
tributions for the β, inverse gamma priors for the variance
parameters and a uniform prior for ρ. The model was fitted
using MCMC in OpenBUGS. A burn in of 5,000 was chosen
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and run until the Monte Carlo error was <5% SD for each
covariate, thereafter run until sample of 10,000 obtained.
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Abstract 
 
Background: Adult mortality is an important indicator for the assessment of the overall 
health and mortality patterns within a population, for evaluating variations in access to 
health services and planning health care interventions. Despite its important implications 
adult mortality has been neglected in many developing countries where data are often 
absent.  
 
Methods: Younger and older adult (15-49 and 50-64 years) data were used from the 
Agincourt health and socio-demographic surveillance system for the period 1992-2008. 
Levels, causes and trends of mortality were assessed. A Bayesian hierarchical 
geostatistical parametric survival model was used to identify factors associated with adult 
mortality. Simulation-based Bayesian kriging was used to map high or emerging risk 
areas. 
 
Results: Adult mortality increased significantly with time due to HIV/AIDS. Prominent 
risk factors were male gender, migrancy, increasing number of household deaths, 
household head death and distance from household to nearest health facility more than 
6km. Protective factors identified were higher household socio-economic status, having a 
male or older (40 plus years of age) household head, increasing education status in 15-49 
age-group and Mozambican nationality in 50-64 age-group. Distinct foci of higher spatial 
mortality risk were observed in six villages. These were fairly dispersed, except for one 
cluster of three villages in the upper central region. 
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Discussion and conclusions: HIV/AIDS has had a major impact on adult mortality in this 
rural sub-district. There are strong geographical and temporal differences in mortality that 
vary even across a relatively small area. A complex interaction of factors, for example 
HIV-poverty-education-migration, appears to be driving communicable adult mortality in 
space-time and resulting in vulnerable households and villages. Mozambican nationality 
was protective in the older age-group (50-64) indicating that the generally lower SES of 
Mozambicans may protect them from lifestyle related non-communicable disease 
mortality compared to the less poor South Africans. The risk maps generated can be used 
by decision-makers for planning of ART rollout, specifically ensuring access for the six 
higher risk villages. Greater distance to nearest health facility was a significant risk, 
indicating the need to address inequalities related to access. 
 
Keywords: adult mortality; health and demographic surveillance; survival modelling; 
Bayesian inference; risk kriging; South Africa 
 
Introduction 
 
The level of adult mortality is becoming an important indicator for the assessment of the 
overall health and mortality status of a population, for evaluating variations in 
accessibility to quality health care services and planning health care interventions (1-3) 
Despite the important implications of adult mortality, this phenomenon has been 
neglected in many developing countries. In addition to the socio-economic burden of 
younger adult mortality on households and society, it impacts negatively on the young 
and elderly in a number of direct and indirect ways including funeral and medical 
expenditures; indirect costs providing care to ill adult children, fostering of grandchildren, 
and the loss of remittances and income (4-5). Furthermore, burden of disease data is vital 
to understanding rapidly evolving health transitions. In particular, HIV/AIDS has reduced 
life expectancy in many African countries in recent times, with South Africa particularly 
severely affected (6-7). The growing importance of this indicator is also particularly 
highlighted by the increasing burden of non-communicable diseases among economically 
productive adults by ageing trends and health transitions (8). In sub-Saharan Africa, 
despite the HIV epidemic, non-communicable disease among adults is increasing due to 
population ageing and potentially changes in lifestyle risk factors (9-10). However, 
knowledge of adult mortality levels to inform local and national policy is hampered by 
absent or incomplete vital registration systems and delays in death statistics in sub-
Saharan Africa (10). Health and socio-demographic surveillance systems HDSS) 
implementing a verbal autopsy (VA) to determine probable cause of death are therefore 
often the only means to determine cause-specific mortality on a longitudinal basis (10-
11) , and thus a valuable tool for assessing mortality trends. Longitudinal data is 
particularly useful for monitoring chronic diseases, for which the least is probably known, 
as they allow one to study the life course and accumulation of risk and also provide 
accurate time sequences of events and intra-individual change over time which is 
important for causal inference (12). Given the empirical basis for public health policies 
and interventions in sub-Saharan Africa is essentially absent, verbal autopsy has great 



 3 

potential to promote an understanding of adult cause-specific mortality (10), how it is 
evolving in space and time and what factors may be driving this process. 
 
Knowledge of risk factors driving adult mortality in developing countries is fundamental 
for planning interventions and monitoring their impact. The use of survival analysis in the 
health field is extensive; however, few studies have assessed risk factors for adult 
mortality in Africa where data are often lacking. Spatial and spatial-temporal disease or 
mortality maps can provide researchers and policy makers with visual images displaying 
the evolving patterns of adult mortality as well as causal processes and space-time 
geostatistics can also often help improve missing or imperfect data (13). A number of 
methods from epidemiology, geostatistics and small area modelling have converged to 
provide powerful new, though complex and time consuming, models with which are 
capable of analyzing health data (13-16). In particular, the development of Markov chain 
Monte Carlo (MCMC) simulation methods and software, such as OpenBUGS, and 
Bayesian approaches, are being applied to the analysis of social and health problems, 
disease mapping, modelling or kriging (14). The widespread use of geographic 
information systems (GIS) that link to statistical packages has also advanced spatial data 
analysis. While the use of geostatistical spatial modelling in epidemiological research has 
increased in recent years (16-22), there has been little advanced spatial analysis of adult 
mortality using longitudinal HDSS data and very few risk factor studies for adult 
mortality with correct estimation of predictor significance using correlated longitudinal 
data.  
 
The application of this methodology will contribute to our understanding of factors 
associated with adult mortality, identifying high risk areas for more precise targeting of 
public health interventions. Space-time changes in adult mortality can highlight emerging 
trends and future hot spots.  The analysis aims to provide feedback to assess the 
effectiveness of existing public health policy; and to provide guidance as to the best 
allocation of limited resources in a poor rural setting where inequalities may exist.  
 
Methods 
 
Study area and population 
 
The Agincourt HDSS, located in northeast South Africa, was established in 1992. There 
was a baseline census in 1992 that collected data on all individuals and households in the 
population (23). This has been followed by annual updates of births, deaths, in and out-
migrations.  It is a poor rural sub-district that includes former Mozambican refugees, 
temporary migrant workers and a more stable permanent population (24). The site covers 
an area of about 400km2 and contains 25 villages, 13,500 households and 84,000 
individuals. There is a full geographic information system (GIS), containing locations of 
all households within the site, which is updated annually. A household is defined as a 
group of people who reside and eat together, plus the linked temporary migrants who 
would eat with them on return. Verbal autopsies (VA) were introduced in 1993. A full 
VA is conducted on every death recorded during the annual census update. This is carried 
out by a specially trained fieldworker who interviews the closest caregiver of the 
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deceased (25). VA’s are assessed by three medical practitioners. Two doctors 
independently review the information and assign a probable cause to each death. If the 
diagnoses agree then it is accepted, however should they differ, then the two clinicians 
discuss in an effort to reach consensus. If this proves unsuccessful then a third 
practitioner, blind to earlier findings, assesses the VA. If the third assessment is 
congruent with one other, it is accepted as the “probable cause of death”; if not, the cause 
is coded as “ill-defined” (25). Causes of death (main, immediate and/or contributing) are 
coded to be consistent with the International Classification of Diseases (ICD-10).  
 
The study population comprised all adults (15-49 and 50-64 years) in 21 villages during 
the period 1992-2008. Data from four new villages added to the site since 2007 were not 
included in the analysis since death ascertainment was incomplete. 
 
Outcome and explanatory variables 
 
The outcome in this study was defined as time (in years) contributed by an adult during 
the study period until right censoring (0) or death (1). The time to right censoring was set 
to either the date of permanent outmigration during the study period or as 31 December 
2008 if the individual was present and alive at this endpoint. The explanatory variables 
included individual level factors (age, gender, nationality, education years, migrant 
patterns), household level factors (size, household age, deaths, socio-economic status 
(SES), household head demographics, distance to nearest health facility) and village level 
factors (size, number of deaths, proportion of deaths attributed to HIV/TB, migration 
patterns). A temporary migrant is defined as a labor migrant who resides in the household 
for less than six months of the year but whose return is assumed by the household 
respondent i.e. retains a significant link to their base household (26). A permanent 
migrant is defined as a person who enters or leaves a household with a permanent 
intention of entering or leaving. Household SES s was based on living conditions and 
assets including building materials of main dwelling, water and energy supply, ownership 
of modern appliances and livestock, and means of transport. These assets were used to 
construct an SES index using Multiple Correspondence Analysis (MCA). The MCA 
index was selected as it makes fewer assumptions about the underlying distributions of 
the indicator variables and was more suitable given the categorical nature of the HDSS 
asset status module (27-29). 
 
Risk factor analysis 
 
Selected explanatory variables (e.g. education years by gender or ethnicity) were 
compared against one another using the standard t-test to better identify any potential 
significant underlying causal processes as suggested by the risk factor analysis.  
 
The risk factor analysis was split into two age groups, namely 15-49 and 50-64 years to 
better address the different risk profile associated with each. A preliminary non-
parametric Cox survival analysis was initially conducted to assess the relationship 
between adult mortality and each covariate. Time contributed by adults was split into 
discrete continuous segments to incorporate any changes to household location. 
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Covariates significant at the 10% level (without substantial missing values) were then 
incorporated into the multivariate model. The assumption of proportional hazards was not 
upheld in the multivariate model and various parametric survival models were tested with 
the one providing best fit finally adopted. 
 
Given the inherent spatial and temporal correlation of longitudinal HDSS data, problems 
arise when using standard statistical methods as they assume independence of outcome 
measures (e.g. mortality). Objects in close proximity are often more alike and common 
exposures (measured or unmeasured) may influence adult mortality similarly in 
households of the same geographical area, introducing spatial correlation in mortality 
outcomes. Including the spatial effect of proximity is important for efficient estimation of 
parameters and prediction (30). Ignoring this correlation introduces bias in the risk factor 
analysis as the standard error of the covariates is underestimated, thereby overestimating 
the significance of the risk factors. Geostatistical models relax the assumption of 
independence and assume that spatial correlation is a function of distance between 
locations. They are highly parameterised models and their full estimation has only 
become possible in the last decade by formulating them within a Bayesian framework 

(31) and estimating the parameters via Markov chain Monte Carlo (MCMC) simulation. 
With the development of MCMC methods and software such as OpenBUGS (32), 
Bayesian approaches are being applied to the analysis of many social and health problems 
in addition to disease mapping and modelling or kriging (14). Thus Bayesian 
geostatistical multivariate models are needed to analyse longitudinal data in order to 
address these problems.   
 
A Bayesian hierarchical geostatistical parametric model, assuming the widely used 
Weibull distribution for the underlying hazard, was used to examine the multivariate 
association between the significant covariates and adult mortality. A spatial random 
effect at the village level was included to take account of spatial correlation and was 
modelled using a multivariate Gaussian distribution with a covariance matrix expressed 
as a parametric function of the distance between pairs of village centroids points (31). 
Furthermore, an unstructured household-level random effect was included to take into 
account repeated household observations where time episodes were split to incorporate 
any time varying issues such as change of household physical location. Markov Chain 
Monte Carlo (MCMC) simulation (33) was employed to estimate the model parameters 
using OpenBUGS (32). Further details of the statistical modelling approach are given in 
Appendix 1. 
 
Model assessment 
 
Model comparison in Stata was based on the Akaike Information Criterion (AIC).  We 
selected the model with smallest value of AIC and then graphically examined model fit in 
Stata using Cox-Snell residual plots. The Deviance Information Criterion (DIC) was used 
to assess the various multivariate models (34). Both the AIC/DIC are a measure of the 
relative goodness of fit of a statistical model.  Generally the smaller the AIC/DIC, the 
better the model fit. 
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Risk maps 
 
Simulation-based Bayesian kriging (35) at numerous grid prediction points within the site 
was used to produce smoothed maps of all-cause and cause-specific adult mortality risk 
within the whole HDSS area. All-cause and cause-specific baseline models were used 
that included no covariates except a constant and spatial random effect. All identifying 
features (such as village centroids, boundaries) have been removed from the maps to 
ensure confidentiality and avoid stigmatising of high risk villages. The HIV and 
tuberculosis mortality risk map is also not shown for the abovementioned reason. Model 
estimates were exponentiated to hazard ratios (HR) given the time to event (survival) 
approach.  A HR of less than one indicates a lower than baseline risk i.e. fewer than 
expected events, a value of one indicates baseline risk, while >one indicates higher than 
baseline risk. A grayscale is applied to the location specific HR prediction with darker 
areas (black representing maximum risk) reflecting increasingly higher risk and 
increasingly lighter areas (white representing the minimum risk) indicating lowering risk. 
A simple map showing the spatial risk of all-cause adult mortality as a function of 
straight-line distance to nearest health facility using circular buffer zones around health 
facilities was also constructed. 
 
Software 
 
Data were extracted using Microsoft SQL Server 2005. The analysis was carried out in 
STATA version 10.0 SE (Stata Corp., 2007) and OpenBUGS (32). The predictions of the 
fitted age-specific or cause-specific spatial models were constructed in MapInfo 
Professional version 9.5 (MapInfo, 2008). 
. 
Results 
 
Descriptive analysis 
 
Between 1992 and the end of 2008 there were 88,509 adults within the 21 villages 
originally set up as the Agincourt study site. There were 86,883 records as certain 
individuals changed location within the site on one or more occasions. The mean age at 
the start of their residence within the site was 26.1 years (Std. Dev. 12.1) with a median 
age of 22.4 (IQR: 15.1-32.0). The majority were female (49,890 or 57.4%). Of those 
whose nationality was known, 33.3% or 28 287 were of Mozambican origin with the 
remainder virtually all being South African. The average number of years of education 
attained by the adult study sample (15-64 years) was 6.2 (Std. Dev. 4.5) with this mean 
being significantly higher in males compared to females (6.29 versus 6.06, p<0.001). 
Similarly the mean years of education attained by South Africans was significantly higher 
than that of their Mozambican counterparts (7.14 versus 4.30, p<0.001). Males were 
significantly more likely to spend on average fewer resident months within the site each 
year compared to females (mean of 9.76 versus 7.98, p<0.001). Similarly, South African 
adults were more likely to spend on average fewer resident months within site compared 
to Mozambicans (8.93 versus 9.01, p<0.001). 
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Cause of death (COD) 
 
Of the 4,873 adult deaths (15-64 years) that occurred before 2008, the majority were 
attributed to communicable causes (44% or 2,134), largely due to HIV/TB (39% or 
1,876). In the 15 to 49 and 50 to 64 year age-groups, 43% (1,552) and 25% (324) 
attributed to HIV/TB respectively. Non-communicable diseases were responsible for 16% 
(759) of all adult deaths pre-2007. Older Mozambican adults (50-64 years) had a lower 
proportion of non-communicable disease mortality when compared to South African’s, 
21% (67) and 33% (317) respectively. Older female adults had a higher proportion of 
mortality attributed to non-communicable disease than males, 33 % (172) versus 28% 
(212). 
 
Survival and temporal trend analysis 
 
During the period 1992-2008, there were 5,923 adult deaths, a total of 615,496 person-
years and a mortality rate of 962.3 adult deaths per 100,000 person-years. The mean and 
median time at risk was 6.96 and 5.47 years respectively (range:  0.003-17.0 years). The 
Kaplan-Meier function estimates a 25% chance of an adult dying after duration of 17.0 
years. Mortality significantly increased in both age groups over the study period; however 
the most pronounced increase occurred from 1999 onwards (Figure 1). Older adult 
mortality (50-64) was stable overall and by gender (higher in males though) until 1999 
(1,161 deaths per 100,000 person-years). Rates increased from 2000 to reach a plateau of 
2,977 deaths per 100,000 person-years in 2005 with similar levels observed through to 
2008. This change was largely due to the more pronounced increase in mortality rates 
among males (Figure 1). There was little difference in the mortality rates of younger adult 
males and females (15-49) and overall a steady significant increase was observed from 
around 1996 (344 deaths per 100,000 person-years) to reach a maximum in 2007 of 1,152 
deaths per 100,000 person-years. 
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Figure 1: Annual mortality rates per 100,000 person-years by adult age group and gender, 
Agincourt sub-district, 1993-2008 
 
Univariate analysis 
 
The most prominent and significant risk factors from the univariate analysis were later 
time period, older age, male gender, being a migrant (i.e. spending six months or more on 
average outside the Agincourt sub-district each year), increasing number of household 
deaths, death of household head and villages with a mortality proportion due to HIV/TB 
above the median value (Table 1). Increasing wealth status of household, male gender of 
household head and household head age above 40 years were significant protective 
factors in both younger and older age groups. Increasing education status was protective 
in the 15-49 year age-group only while Mozambican nationality was protective in the 
older age-group only (50-64 years). Distance to nearest health facility (>6km) was a 
significant risk factor in the 15-49 age-group and appeared to increase the mortality risk 
in the 50-64 year age group (not significant at the 10% level due to small numbers of 
deaths).  
 
Multivariate analysis 
 
The multivariate analysis for both age-groups using classical and Bayesian approaches 
yielded similar findings with wider confidence intervals for the Bayesian approach, as 
would be expected, given the correction for spatial and unstructured correlation (Table 2 
and 3).  
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The most prominent risk factor for 15-49 year mortality following multivariate 
adjustment were later time period, male gender, being a migrant, increasing number of 
household deaths, death of household head and distance to nearest health facility (>6km). 
Increasing wealth of household, household head being male and older than 40 years were 
significant and prominent protective factors. No significant difference was observed 
between Mozambicans and South Africans. Villages with a mortality proportion of 
HIV/TB above the median value remained at a significantly higher risk. 
 
The most prominent risk factors for 50-64 year mortality following multivariate 
adjustment were later time period, male gender, being a migrant and death of the 
household head. Increasing wealth of household, household head being male and older 
than 40 years were again prominent protective factors. Mozambican nationality appeared 
to have significantly lower risk in this age group compared to South Africans. 
 
Spatial risk maps of adult mortality 
 
The distribution of gender-specific mortality risk based on Bayesian kriging was similar 
for males and females (Figure 2). Five distinct foci of higher mortality in the 15-49 year 
age-group can be seen in Figure 3. Three are in the central to upper central region of the 
site and two in the south east. These correlate to areas with higher risk of infectious 
disease mortality, (Figure 4), largely HIV/TB, with a strong clustering in three villages in 
the upper central region. One village in particular has repeatedly emerged as a mortality 
hotspot, especially in recent years. This village has a significantly younger and highly 
mobile migrant population (p<0.001) compared to all other villages. A similar pattern 
was seen in the 50-64 age-group except for one village in the south east that was no 
longer higher risk and one additional village in the upper central region emerged as high 
risk. This distribution was also largely driven by rising chronic infectious disease 
(HIV/TB) mortality. Higher non-communicable disease mortality risk in the older adult 
age-group was observed in three distinct foci in the upper central , central and south east 
of the site (Figure 4). Based on the circular buffer zones around health facilities (to relate 
straight-line distance to health facility seen in risk factor analysis) we see that households 
in five villages in particular appear to have a higher mortality risk as a function of 
increased distance to the nearest local primary health care clinic (Figure 5). These 
specific areas are numbered in this figure.
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Table 1: Bivariate analysis of risk factors for adult mortality by age groups 15-49 and 50-
64 years, Agincourt sub-district, 1992-2008 
 

 15-49   50-64   
Factors n HR (95% CI) p-value n HR (95% CI) p-value 
Period α       
  1992-1997 55798 Ref  4415 Ref  
  1998-2003 24067 2.63 (2.45,2.81) <0.001 1181 2.00 (1.72,2.33) <0.001 
  2004-2008 20129 5.52 (4.93,6.19) <0.001 1226 3.67 (2.77,4.86) <0.001 
Age α 99994 1.06 (1.06,1.07) <0.001 6822 1.04 (1.03,1.05) <0.001 
Male gender 46188 1.19 (1.13,1.26) <0.001 2760 1.83 (1.65,2.05) <0.001 
Mozambican nationality 31219 1.06 (1,1.13) 0.053 2415 0.77 (0.68,0.87) <0.001 
None or primary level maximum education 48531 Ref  6391 Ref  
  Secondary or higher level maximum education 50183 0.54 (0.51-0.57) <0.001 344 0.67(0.50-0.90)  0.007 
Average months per years outside site 99233 1.08 (1.08,1.09) <0001 6779 1.04 (1.03,1.06) <0.001 
Migrant (>=6 months per year on average outside site) 25397 1.74 (1.64,1.85) <0.001 1254 1.55 (1.35,1.78) <0.001 
       
Household size 99747 0.97 (0.96,0.97) <0.001 6797 0.99 (0.98,0.99) <0.001 
Household duration α 99994 0.89 (0.89,0.90) <0.001 6821 0.92 (0.91,0.93) <0.001 
Number of other household deaths       
  None 56492 Ref  4019 Ref  
  1-4 42860 1.08 (1.02,1.14) 0.008 2776 1.02 (0.91,1.13) 0.777 
  5+ 642 1.97 (1.56,2.49) <0.001 27 1.04 (0.52,2.09) 0.912 
Household head male 61937 0.63 (0.6,0.67) <0.001 4054 0.75 (0.67,0.83) <0.001 
Household head age >=40years α 55541 0.82 (0.77,0.86) <0.001 5390 0.32 (0.28,0.35) <0.001 
Household head Mozambican  32543 1.07 (1,1.13) 0.044 2397 0.76 (0.67,0.87) <0.001 
Household head death (excluding the individual) 3351 4.62 (4.28,4.99) <0.001 402 3.58 (3.15,4.08) <0.001 
Maximum household MCA SES category       
   Most poor 4861 Ref  452 Ref  
   Poor 12790 0.55 (0.47,0.63) <0.001 935 0.81 (0.62,1.06) 0.121 
   Least poor 32376 0.37 (0.32,0.42) <0.001 1687 0.71 (0.56,0.91) 0.007 
Straight-line distance to nearest health care facility (<5km) 69444 Ref  4471 Ref  
   >= 5km 4690 1.07 (0.94,1.21) 0.305 280 1.17 (0.99,1.39) 0.064 
Straight-line distance to nearest health care facility (<6km) 69581 Ref  3516 Ref  

   >= 6km 4553 7.51 (4.04-
13.99) <0.001 1235 4.97 (0.70- 

35.34) 
0.109 

       
Average migrant months per year per village individual 99994 1.14 (1.03,1.25) 0.008 6822 0.97 (0.8,1.18) 0.769 
Proportion of village deaths due HIV/TB (<17%) β 54903 Ref  3789 Ref  
    >=17% 45091 1.12 (1.06,1.18) <0.001 3033 0.99 (0.89,1.11) 0.912 

α: at residence censorship start; β: median split
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Table 2: Multivariate analysis of risk factors for younger adult mortality (15-49 years), 
Agincourt sub-district, 1992-2008 
 

 Non-spatial model  
(Stata) 

Non-spatial model 
(OpenBUGS α) 

Spatial model  
(OpenBUGS α) 

Factors HR (95% CI) p-value HR (95% CI) signif β HR (95% CI) signif β 
Period γ       

  1992-1997 1.00  1.00  1.00  
  1998-2003 2.60 (2.41-2.80) <0.001 2.47 (2.30,2.65) * 2.61(2.42,2.83) * 
  2004-2008 4.81 (4.24-5.45) <0.001 3.00 (2.64,3.43) * 2.90 (2.52,3.32) * 

Age γ 1.07 (1.06-1.07) <0.001 1.07 (1.06,1.07) * 1.07 (1.06,1.07) * 
Male gender 1.48 (1.39-1.58) <0.001 1.46 (1.37,1.56) * 1.47 (1.38,1.56) * 
Mozambican 0.96 (0.89-1.04) 0.304 0.97 (0.90,1.04)  0.94 (0.87,1.02)  
Migrant δ 1.15 (1.08-1.23) <0.001 1.18 (1.10,1.26) * 1.17 (1.09,1.25) * 
Secondary or higher level education 0.90 (0.84-0.97) 0.003 0.95 (0.88,1.03)  0.98 (0.91,1.05)  

       
Household total 1.00 (0.99-1.00) 0.459 1.00 (1.00,1.01) # 1.00 (1.00,1.01) # 
Number of other household deaths       

  None 1.00  1.00  1.00  
  1-4 1.19 (1.11-1.27) <0.001 1.15 (1.08,1.23) * 1.17 (1.09,1.25) * 
  5+ 1.78 (1.40-2.28) <0.001 1.76 (1.37,2.19) * 1.81 (1.39,2.30) * 

Household head death 4.38 (4.04-4.75) <0.001 4.52 (4.16,4.91) * 4.52 (4.16,4.91) * 
Maximum household SES category       
    Most poor 1.00  1.00  1.00  
    Poor 0.66 (0.57-0.77) <0.001 0.80 (0.73,0.88) * 0.76 (0.69,0.84) * 
    Least poor 0.53 (0.46-0.61) <0.001 0.69 (0.63,0.75) * 0.65 (0.58,0.71) * 
    Unknown 1.97 (1.73-2.25) 0.001 1.45 (1.25,1.67) * 1.48 (1.26,1.71) * 
Household head male 0.51 (0.48-0.55) <0.001 0.50 (0.47,0.53) * 0.50 (0.47,0.53) * 
Household head age >=40years γ 0.63 (0.59-0.67) <0.001 0.64 (0.60,0.68) * 0.63 (0.59,0.67) * 
Distance nearest health facility  
(>= 6km) 5.17 (2.77-9.65) <0.001 5.34 (3.11-9.98) * 5.34 (3.11-9.98) * 

       
Average migrant months per year per 
village individual 0.97 (0.89-1.06) 0.510 0.96 (0.88-1.07)  0.95 (0.87-1.07)  

Proportion of village deaths due 
HIV/TB (<17%) β 1.00  1.00  1.00  

    >=17% 1.04 (0.98-1.10) 0.221 1.07 (1.02,1.13) * 1.92 (1.40,2.69) * 
       

Shape parameter 1.89 (1.84-1.93) --- 1.91 (1.87,1.94) --- 1.93 (1.86,1.99) --- 
Individual variation (σ2ε) --- -- 0.09 (0.07,0.12) --- 0.11 (0.08,0.14) --- 
Spatial variation (σ2φ) --- --- --- --- 2.21 (1.09,4.11) --- 
AIC(Stata)/DIC(WinBUGS) 28360.7 --- 49668.60 --- 49576.00 --- 

α Burn in 5000, then run until MC error <5% of standard deviation for each covariate, thereafter run until 
sample of 10000 obtained 
β * significant at 5% level, # significant at 10% level 
γ: censorship start 
δ: >=6 months per year on average outside site 
ε: median split 
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Table 3: Multivariate analysis of risk factors for older adult mortality (50-64 years), 
Agincourt sub-district, 1992-2008 
 

 Non-spatial model 
(Stata) 

Non-spatial model  
(OpenBUGS α) 

Spatial model  
(OpenBUGS α) 

Factors HR (95% CI) p-value HR (95% CI) signif β HR (95% CI) signif β 
Period γ       

  1992-1997 1.00  1.00  1.00  
  1998-2003 2.59 (2.20-3.05) <0.001 2.56 (2.15-3.00) * 2.59 (2.16-3.08) * 
  2004-2008 5.48 (4.06-7.40) <0.001 4.37 (3.10-5.77) * 4.07 (2.85-5.60) * 

Age γ 1.04 (1.03-1.06) <0.001 1.04 (1.03-1.06) * 1.04 (1.02-1.06) * 
Male gender 2.82 (2.49-3.20) <0.001 2.98 (2.61-3.39) * 3.03 (2.64-3.48) * 
Mozambican 0.62 (0.54-0.71) <0.001 0.60 (0.51-0.69) * 0.59 (0.50-0.70) * 
Migrant δ 1.23 (1.06-1.44) 0.007 1.24 (1.05-1.47) * 1.23 (1.04-1.44) * 
Secondary or higher education 0.58 (0.43-0.78) <0.001 0.55 (0.42-0.77) * 0.56 (0.40-0.77) * 
Household head death 6.09 (5.26-7.05) <0.001 6.64 (5.65-7.74) * 6.74 (5.70-7.92) * 
Maximum household MCA SES  
category       
    Most poor 1.00  1.00  1.00  
    Poor 0.75 (0.57-0.99) 0.043 0.79 (0.57-1.06)  0.78 (0.58-1.05)  
    Least poor 0.73 (0.56-0.95) 0.021 0.77 (0.56-1.05)  0.78 (0.58-1.03)  
    Unknown  0.93 (0.71-1.21) 0.571 0.99 (0.71-1.33)  1.01 (0.75-1.35)  
Household head male 0.41 (0.36-0.46) <0.001 0.40 (0.35-0.45) * 0.40 (0.35-0.45) * 
Household head age >=40years γ 0.16 (0.15-0.19) <0.001 0.15 (0.13-0.17) * 0.15 (0.13-0.17) * 
Household size 1.00 (0.99-1.01) 0.893 1.00 (0.99-1.01)  1.00 (0.99-1.01)  

       
Shape parameter 1.87 (1.79-1.96) --- 1.89 (1.81-1.98) --- 1.92 (1.83-2.01) --- 
Individual variation (σ2ε) --- --- 0.13 (0.08-0.19) --- 0.16 (0.10-0.27) --- 
Spatial variation (σ2φ) --- --- --- --- 0.25 (0.11-0.56) --- 
Range (meters) --- --- --- --- 18930 (2350-29610) --- 
AIC/DIC 5403 --- 10204 --- 10193 --- 

α Burn in 5000, then run until MC error <5% of standard deviation for each covariate, thereafter run until 
sample of 10000 obtained 
β * significant at 5% level, # significant at 10% level 
γ: censorship start 
δ: >=6 months per year on average outside site 
 
Female              Male 

 
1.20 plus 1.05-1.19 0.95-1.04 0.45-0.94  

Figure 2: Spatial risk (HR) of gender specific adult mortality (15-64 years) based on 
prediction estimates from the Bayesian spatial kriging model, Agincourt sub-district, 
1992-2008 
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Figure 3: Spatial risk (HR) of age-specific adult mortality (15-49 and 50-64 years) based 
on prediction estimates from the Bayesian spatial kriging model, Agincourt sub-district, 
1992-2008 
 
Communicable (15-49)           Non-communicable (15-64)  

 
 

Figure 4: Spatial risk (HR) of broad cause-specific adult mortality by age-group based on 
prediction estimates from Bayesian spatial kriging models, Agincourt sub-district, 1992-
2008 
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Figure 5: Household (black dots) and health facility (white cross) locations with 
concentric circles showing the 5km capture zone of these health facilities, Agincourt sub-
district. Note: potentially higher risk household areas discussed above are numbered 1-5. 
 
Discussion and conclusions 
 
This study demonstrates the use of Bayesian geostatistical survival models in assessing 
risk factors and producing smooth maps of adult mortality risk in a health and socio-
demographic surveillance system. Results showed strong geographical and temporal 
differences in adult mortality risk and indicates that these can vary in even a small 
geographical area. Some key differences in the determinant profile of identified mortality 
hotspots were also found such as lower age and higher migrancy in one particular village 
in the upper central region which has emerged as a focal point for HIV/TB in this rural 
sub-district and impacted surrounding villages. 
 
A substantial and significant increase in adult mortality was observed in the Agincourt 
sub-district over the study period, in line with other areas of the country and nationally 
(36-37). Furthermore, the increase appeared to begin suddenly around 1999/2000 and 
levelled out around 2006. The additional deaths occurred in younger adult ages and were 
largely attributed to HIV/TB – which was the highest cause of death in both 15-49 and 
50-64 year age-groups. This is similar to findings from rural Kwazulu Natal where 
increases in adult mortality in the late 1990’s were determined by verbal autopsy, with 
the largest cause of death being HIV/TB (37). The levelling out of adult mortality could 
possibly be linked to ART rollout which began in South Africa round 2004. However the 
plateau in adult mortality in Agincourt preceded ART rollout which began in this area 

1 2 

3 

4 
5 
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only in 2007; before this, individuals would have accessed ART outside the Agincourt 
sub-district. Future studies will assess the long term impact of ART rollout on mortality. 
 
Distinct spatial foci of increased adult mortality risk were observed in the upper central 
and south east regions of the Agincourt sub-district - specifically six villages displayed a 
higher mortality risk based on Bayesian kriging. These risk maps can be used by decision 
makers for the design and implementation of relevant interventions, in this case ART 
rollout. The spatial distribution is being driven by a complex web of interacting factors 
that include increased communicable disease mortality (HIV/TB) and non-communicable 
disease mortality (in the older age-group) in particular high risk areas. 
 
Villages with higher HIV mortality burden (a proxy for prevalence), greater than 6km’s 
from the nearest health facility, lower socio-economic status (SES), corresponding low 
levels of education, high household mortality burden, and high labour migration 
(spending on average more than 6 months per year away). Increased sexual risk 
behaviour and exposure to HIV appear to be driving communicable disease (HIV/TB) 
mortality and this has been documented in this area previously (38).  
 
Poor SES and high unemployment have led to external migration for work while low 
education levels may have led to false perceptions of HIV exposure risk. -  a previous 
study found that over 90 percent of men perceived little or no personal risk of HIV 
infection (38). This has potentially increased HIV transmission to long term migrants 
through increased number of partners while away, thus leading to increased transmission 
to their partners in Agincourt when they return, thus increasing the mortality burden 
among these households  and villages. This in turn impacts these households as they have 
lost bread winners which further decreasing their SES.  
 
The association between temporary migration and HIV has been shown previously in 
South Africa (39) with males more likely to be migrants than females. A previous study 
in Agincourt has shown that the level of reported risk behaviour among migrants varies 
with frequency of return to their rural home; those long-distance migrants who return 
once or twice a year report more partners than those who work in nearby destinations (38). 
However, resident employed men also reported more partners, indicating that increased 
risk may not be among long term migrants only. Collinson et al concluded that high 
levels of male labour migration, coupled with a low frequency of return home and low 
personal HIV risk perception, have led to an explosive spread of HIV in this and other 
rural settings (38). Strategies that enable more frequent contact between migrant men and 
their rural families - though very difficult to implement in reality - are urgently needed, as 
are HIV prevention and awareness raising activities amongst all men in this area (38).  
 
Adult populations in mortality hotspots likely experienced differential access to health 
care as larger distance from the nearest health facility emerged as a significant risk factor. 
This has been shown in other studies on adult mortality (40) and specifically with regards 
to ART access in South Africa (41). This study found that with increasing distance from 
treatment site adults were significantly less likely to access ART and more likely to die. 
The finding that increased mortality risk was associated with distance to nearest health 
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facility has major implications for ART rollout; inequalities in service access need to be 
addressed. Bayesian kriging predictions based on distance from nearest health facility can 
highlight specific areas at increased adult mortality risk of adult mortality; this 
information can be used by policy makers.  
 
Mozambican nationality was no longer a risk factor in the 15-49 year age-group 
following multivariate adjustment. Previous studies in this area have shown an increased 
risk of mortality among Mozambican children between the age of 1 and 5 (42-43). Thus 
is would appears this relative increased risk when compared to South Africans reduces as 
they enter early adulthood.  This is likely due to the adjustment for lower education and 
SES in the model, more evident among Mozambicans, and to these settlements being 
further away from health facilities. The risk for adult mortality was higher in the poorest 
villages (defined by lower SES status from asset status module data) than in wealthier 
villages, suggesting that the benefits of improved health care are not evenly distributed 
throughout the study area. Hosegood et al suggest that poorer households trying to cope 
with adult deaths are more vulnerable to dissolution and migration (44).  
 
Mozambicans in the older age group had a significantly lower risk of mortality compared 
to South Africans. Given the general lower SES standing of Mozambican households, 
this suggests that lifestyle-related mortality among more affluent South African 
households may be driving the observed risk of non-communicable disease-related 
mortality, that remains evident despite the pronounced impact of HIV/TB (9). Further 
research into the underlying reasons for lower risk among older adult Mozambicans may 
inform interventions to reduce risk more broadly 
 
Mortality in all-age groups was higher in households headed by women and where the 
head was younger than 40 years. In contrast, our study reveals, adult mortality 
significantly higher for males than females with no difference in the spatial pattern of 
male and female mortality risk. A cycle of greater male deaths (migrancy and/or lifestyle 
related disease), leading to more female headed households is likely. Given that male 
household head conferred a survival advantage to adults and that male migrants are at 
increased risk, this could potentially compound adult mortality over time as household 
head dynamics change. This cycle coupled with the direct and indirect impacts of adult 
mortality on children and the elderly is leading to vulnerable households within this rural 
sub-district that should be targeted for social support. Female headed households also 
need to be targeted as they appear to be more vulnerable and at higher risk for child, adult 
and overall mortality.  
 
Physician-coded verbal autopsies have known limitations, such as relying heavily on 
household recall of medical records and related information, which affects its 
applicability in low-resource settings (45). Misclassification could thus have occurred in 
our data, especially with regards to underestimating non-specific HIV/AIDS related and 
non-communicable disease. However, a previous validation study of the VA in Agincourt 
has shown that it performs well in this high HIV prevalence setting (46). This validation 
found that for HIV/TB (often combined most HDSS analysis of HIV related death due to 
the difficulty of disentangling deaths due to these two causes) the sensitivity, specificity 
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and PPV were all high  at 78, 80 and 85% respectively. Other studies have also confirmed 
that VA data can be used to reasonably estimate the distribution of AIDS- and non-AIDS-
related deaths even in a rural population with relatively low levels of education (37,47). 
One area that also needs to be addressed is how the tool could be modified to take into 
account the influence of HIV/AIDS when estimating the sensitivity for conditions such as 
diarrhoea, ALRI/pneumonia and malnutrition that are unrelated to HIV/AIDS. 
 
The findings of this study suggest that even in a small geographic area, such as the 
Agincourt sub-district, we see spatial disparities with regards to mortality risk and that 
this appear to be related to differences in the underlying risk profile of these individuals, 
households and villages. The emerging trends are also likely to be impacted by a complex 
interaction of these factors including potential disparity with regards to health care access 
and ART. Health programmes need to take account of this when assessing and further 
planning the comprehensive plan to prevent and treat HIV/AIDS in this and other rural 
populations. 
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Appendix 1: Multivariate Statistical Model 
 
We analysed the data assuming a parametric Weibull distribution for the survivor 
function, where tikj is the failure time of an adult i (for censored observations the survival 
distribution is a truncated Weibull with an upper bound corresponding to the censoring 
time) for residence episode k at location j with covariate vector Xik and β is a vector of 
unknown regression coefficients and including a village level spatial random effect wj in 
the exponent of the hazard model as follows 
 
 tikj ~ Weibull(ρ,μikj)    i = 1,...,N;  
 
           with a baseline hazard function of the form  
 
 l0(tikj) = ρtikjr - 1 
   
            and means for the various models as follows 
 
1) multivariate non-spatial model log(µikj) = β0 + βXik 
2) mutlivariate spatial model              log(µikj) = β0 + βXik + wj 
3) spatial kriging model                      log(µikj) = β0 + wj 
 
where β0 is ~Normal(0,0.1) and wj has a multivariate normal distribution, wj~MVN(0,Σ), 
with variance-covariance matrix Σ expressed as a parametric function of distance 
between pairs of the 25 village centroids points. We also assume an isotropic stationary 
spatial process, where Σmn = σw

2 exp(−φdmn), dmn is the Euclidean distance between 
villages m and n, σw

2 is the geographical variability known as the sill, φ is a smoothing 
parameter that controls the rate of correlation decay with increasing distance and 
measures the range of geographical dependency. We specified φ as a uniform distribution 
between φ min and φ max (48). The range is defined as the minimum distance at which 
spatial correlation between locations is below 5%. This distance can be calculated as 3/u 
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meters. A non-informative gamma prior was adopted for σw
2 with a mean and variance of 

0.01. The regression coefficients were given non-informative normal priors, namely 
β~Normal(0,0.1). 
 
The shape parameter of the survival distribution (ρ) was given a non-informative gamma 
distribution with a mean and variance of 1. 
 
MCMC simulation was applied to fit the models. We run a single chain sampler with a 
burn-in of 5000 iterations. Convergence was assessed by running the simulation until the 
Monte Carlo error for each parameter of interest was less than 5% of the sample standard 
deviation. The chains thereafter were sampled every single iteration until a sample size of 
10 000 had been attained. 
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