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IV. ABSTRACT 

The human metapneumovirus is a novel paramyxovirus associated with acute 

respiratory infections in children, adults, elderly and immunocompromised 

individuals. It has a worldwide distribution and the prevalence range between 

1.5% to 25% in individuals with respiratory infections. Based on phylogenetic 

analysis 2 distinct genetic groups (A and B) that are sub-divided into four 

subgroups (A1, A2, B1 and B2) have been shown to circulate. Until recently, 

there was no information on the molecular epidemiology and the clinical 

characteristics of the hMPV in Africa, including South Africa, a region with a 

high prevalence of paediatric human immunodeficiency virus type-1 (HIV) 

infection.  

 

The molecular epidemiology and clinical characteristics of the hMPV in South 

Africa was investigated over a three period (2000-2002) in children 

hospitalized with lower respiratory tract infection. The children were part of a 

cohort participating in a phase 3 clinical trial investigating the efficacy of a 9-

valent-pneumocococcal protein-polysaccharide conjugate vaccine (PCV).  

The objectives of the study were: i. to investigate the molecular epidemiology 

of hMPV in South Africa; ii. characterize the burden of hMPV disease and 

determine the clinical features of hMPV-LRTI in children infected and not 

infected by HIV; iii. probe the role of Streptococcus pneumoniae in the 

pathogenesis of hMPV-LRTI.  
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The overall prevalence of hMPV in children hospitalized with lower respiratory 

tract infections (LRTI) was 7.4%. The mean age of children with hMPV 

associated LRTI (hMPV-LRTI) in South Africa was 13.3 months (range 1.4-

49.2 months), with HIV infected children being older than children not infected 

with HIV (mean [range] 17.6 [4.5-44.3] vs. 12.3 [1.4-49.2] months; P=0.007). 

The incidence of hMPV-LRTI was 5.0 (95%C.I.3.3-7.5) fold greater in HIV 

infected children (incidence rate: 2 504 [95%C.I. 1 683-3 577] per 100 000) 

than in HIV uninfected children (incidence rate: 505 [95%C.I. 409-618] per 

100 000, P<0.0001). Human metapneumovirus was identified less frequently 

than RSV but more commonly than other studied respiratory viruses.  

The double-blind PCV-9 vs. placebo controlled trial was used to probe the role 

of pneumococcal co-infections contributing to the pathogenesis of severe 

hMPV-LRTI. The incidence of hospitalization for hMPV-LRTI was reduced by 

46% (95%, CI, 25-63; P=0.0002) in PCV-9 vaccinees compared to placebo 

recipients. This inferred that coinfection with Streptococcus pneumoniae was 

integral to the pathogenesis of hMPV-LRTI requiring hospitalization.  

 

Both groups of the hMPV circulated during the three year period including 

concurrent circulation of multiple subtypes of the virus. There was a transition 

from group B to group A subtype virus as the dominant circulating virus over 

sequential years.  

 

Sequence analysis of the two attachment glycoproteins (F and G), showed the 

F gene protein to be highly conserved, in contrast the attachment protein gene 
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(G protein) was highly variable particularly in the extracellular domain between 

lineages. Repeat hMPV-LRTI by either homologous or heterologous strains 

within 3 months of each other suggested that natural infection did not confer 

complete immunity to hMPV. 

 

The present study demonstrated that hMPV is a leading pathogen associated 

with LRTI among children in Africa and indicated that occult pneumococcal 

co-infections’ were integral in the pathogenesis of hMPV-LRTI requiring 

hospitalization. Additionally, this is the first study to have characterized the 

molecular epidemiology of hMPV in Africa and provides insight as to issues 

that may exist regarding the design of an hMPV vaccine. 
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction 

The Global Burden of Disease (GBD) study reported that acute respiratory 

infections together with measles, diarrhea, malaria and HIV/AIDS accounted 

for more the 50% of deaths in children in 2001 (Lopez et al., 2006). Lower 

respiratory tract infections are among the leading causes of death in the low-

middle income and high-income countries and rank third and fourth 

respectively (Lopez et al., 2006). Compared to the 1990 statistics there was 

less of a decline in death rates due to acute respiratory infections in South 

Asia and sub-Saharan Africa than other areas (Lopez et al., 2006). 

 

Viruses are the most common pathogens identified in infants and young 

children with a lower respiratory tract infection (LRTI). It is estimated that 

approximately 3% of children under 1 year of age are hospitalized with severe 

viral lower respiratory tract infections in the USA (van Woensel et al., 2003). In 

South Africa viruses were identified from 30% of children hospitalized with 

severe lower respiratory tract infections (Madhi et al., 2000) . 

 

Several viruses have been shown to cause LRTI in children of which 

respiratory syncytial virus (RSV) is the most common cause (van Woensel et 

al., 2003). 
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In England RSV is responsible for 75% of hospital admission in children under 

5 years with bronchiolitis (van Woensel et al., 2003) and in South Africa RSV 

was the dominant (49.7%) respiratory viral pathogen among children not 

infected by HIV that were hospitalized for LRTI (Madhi et al., 2000). 

 

Recently a novel respiratory virus, named human metapneumovirus (hMPV), 

was isolated in the Netherlands (van den Hoogen et al., 2001). Based on the 

genome constellation and morphological features it has been classified into 

the family, Paramyxoviridae (van den Hoogen et al., 2001), subfamily 

Pneumovirinae and genus, Metapneumovirus. It is the only known species 

from this genus that infects humans and prior to its identification the only other 

known species of the Metapneumovirus genus was the avian pneumovirus 

(APV). 

 

Human metapneumovirus was initially isolated from 28 children with 

respiratory tract infections from samples collected over a 20 year period (van 

den Hoogen et al., 2001) and was identified in 10% of samples from children 

with respiratory tract infections in which no other pathogen was detected (van 

den Hoogen et al., 2001).  

 

Serological data provided evidence of infection by hMPV to be present since 

1958 among individuals across different age-groups, (van den Hoogen et al., 

2001) with almost all children having been infected by 5-10 years of age in the 

Netherlands, Japan and Ethiopian children (Ebihara et al., 2003; van den 
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Hoogen et al., 2001; Wolf et al., 2003). In South Africa a study reported an 

overall seroprevalence rate of 63.5% among children aged from 0 to 36 

months, with the highest seroprevalence rate of 92% observed among 

children age 24-36 months (IJpma et al., 2004). 

 

Following the initial identification of hMPV, it has been associated worldwide 

as an etiological agent of upper respiratory tract infections (URTI), LTRI, acute 

wheezing, asthma exacerbation as well as otitis media (Hamelin et al., 2004; 

van den Hoogen et al., 2004b). Human metapneumovirus has been identified 

as a pathogen associated with respiratory tract infections across all age-

groups as well as among immunocompromised individuals. It is however most 

prevalent in children younger than 2 years of age with respiratory illness 

(Maggi et al., 2003; Viazov et al., 2003) and has been detected in children as 

young as 3-4 months of age (Peiris et al., 2003; van den Hoogen et al., 2003). 

 

1.2. The human metapneumovirus structure 

The hMPV is an enveloped, negative sense RNA virus, with pleomorphic 

spherical or filamentous virions (Peret et al., 2002; van den Hoogen et al., 

2001) with characteristics which are similar to other Pneumoviruses (Easton 

et al., 2004). 
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1.2.1. Genome structure 

The genome of the hMPV is approximately 13kb with 93.8% of the genome 

involved in open reading frames (ORFs) that are separated by short non-

coding regions. Most of the ORFs are initiated at nucleotide (nt) 14 of its 

mRNA and terminate within a gene-end signal (termination sequence). This 

stop-restart process that guides transcription is characteristic of viruses that 

belong to the order Mononegavirus (Biacchesi et al., 2003).  

 

The genome encodes 8 mRNAs and is organized as follows: 3’-N-P-M-F-M2-

SH-G-L-5’ (Biacchesi et al., 2003; van den Hoogen et al., 2002) flanked at the 

3’ end by a leader sequence and the 5’ by a trailer sequence. These proteins 

are common to members of the subfamily, Pneumovirinae, however, the 

genomic organization is similar to avian pneumovirus (APV) (Biacchesi et al., 

2003; van den Hoogen et al., 2002; van den Hoogen et al., 2001).  

 

Based on comparisons to the ORFs of APV and RSV, the hMPV proteins are 

as follows: N= nucleocapsid RNA binding protein, P (phosphoprotein), M (non 

glycosylated matrix protein), F (fusion glycoprotein), M2-1 (transcription 

elongation factor), M2-2 (RNA synthesis regulatory factor), SH (small 

hydrophobic surface protein), G (attachment protein) and L (polymerase 

subunit).  
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1.2.1.1 The nucleoprotein (N gene) 

The nucleoprotein forms an integral part of the nucleocapsid of the virion and 

is tightly associated to the RNA genome and gives the RNA genome its helical 

structure (Easton et al, 2004). The N gene of the hMPV encodes a 394 amino 

acid protein and shares a 88% amino acid sequence identity with APV-C 

(Biacchesi et al., 2003; van den Hoogen et al., 2002) and 41% amino acid 

identity with RSV. Three conserved regions (between amino acids 160-172; 

251-263 and 278-327) in the N protein present among members of the family 

Paramyxoviridae were also present in hMPV (van den Hoogen et al., 2002). 

 

1.2.1.2 The phosphoprotein (P gene) 

Phosphoproteins of pneumoviruses are associated with the RNA genome and 

form part of the nucleocapsid and are believed to be involved in both 

replication and transcription (Easton et al., 2004). hMPV putative 

phosphoprotein contains one ORF of 294 amino acid that lacks cysteine 

residues and has a glutamate rich C terminus (van den Hoogen et al., 2002). 

Its proteome shares 68% identity with the APV-C proteome and similar to 

other pneumoviruses also has the highly conserved region between amino 

acid 185-241, thought to be involved in RNA synthesis or maintaining the 

structure of the nucleocapsid (van den Hoogen et al., 2002). 
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1.2.1.3 The matrix (M) protein 

Matrix proteins lines the inner surface of the lipid membrane that surrounds 

the core and forms a link between the nucleocapsid and the envelope 

inactivating the nucleocapsid of pneumoviruses prior to packaging (Easton et 

al., 2004). Human metapneumovirus M ORF codes a 254 amino acid protein 

with high amino acid identity to the M protein of APV. Similar to other 

members (RSV, APV and PVM) of the subfamily Pneumovirinae, two 

secondary ORF, one (54 amino acids) within and the other (33 amino acids) 

overlapping the major ORF was identified (van den Hoogen et al., 2002), 

however there have been no reports on proteins synthesized by these 

secondary ORF (van den Hoogen et al., 2002). The conserved hexapeptide 

(YTAAVQ) at residues 14-19 present in other pneumoviruses was also 

present in the putative hMPV M protein. 

 

1.2.1.4 The 22 K (M2) proteins 

The genes encoding the M2 proteins of metapneumoviruses contain two 

overlapping ORFs M2-1 and M2-2 (Easton et al., 2004). The M2-1 is involved 

in virus RNA synthesis, functioning as a transcription elongation factor 

(Easton et al., 2004). The M2-1 of hMPV encodes a 187 aa protein and 

reveals a 84% identity with M2-1 of APV (van den Hoogen et al., 2002). The 

putative M2-2 ORF is 77 aa in length and starts at nt 512 in the M2-1 (van den 

Hoogen et al., 2002) 
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1.2.1.5 The fusion (F) protein 

Fusion (F) proteins of the family Paramyxoviridae show limited identity to each 

other but are structurally similar. They are synthesized as inactive precursors 

(F0) and are cleaved by the host cell proteases generating two subunits, an 

N-terminal F2 and a larger C-terminal F1 subunit. The activated fusion protein 

is responsible for the fusion of the viral membrane and the host cell plasma 

membrane in combination with the attachment protein (Easton et al., 2004; 

Morrison, 2003). In a study using recombinant hMPV that lack SH and G 

proteins showed that the F protein may be used as sole surface protein for 

replication in vivo (Biacchesi et al., 2004b). 

 

The F gene of hMPV encodes a 539 amino acid protein that has 81% identity 

to the F protein of APV (van den Hoogen et al., 2002). Structurally it is similar 

to other members of the family Paramyxoviridae. The F protein of hMPV is 

glycosylated containing three potential N glycosylation sites. Fourteen 

cysteine residues, 12 of which are located in the F1 subunit and 2 in the F2 

subunit are present in the ORF and 8 are conserved among all 

paramyxoviruses. 

 

Unlike RSV that contains two cleavage sites, the hMPV F protein contains 

only one cleavage site, containing the residues RQSR. The primary sequence 

of the hMPV F protein contains 3 hydrophobic domains: i. the signal peptide 

located at the amino terminus of the F2 subunit; ii. a fusion and membrane 

anchor domains located in the F1 subunit at N; and iii. C termini respectively 
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(van den Hoogen et al., 2002). The fusion domain is thought to initiate fusion 

in paramyxoviruses, by inserting into the target membrane (Morrison, 2003). 

Also present in F protein of hMPV are two heptad repeat domains (HRA and 

HRB) that are believed to be essential for viral fusion. Both of these domains 

are located in the F1 subunit, with HRA located adjacent to the fusion domain 

and HRB adjacent to the membrane anchor domain at the carboxy terminal.  

 

The F protein gene of the hMPV is believed to be the major antigenic 

determinant that mediates extensive cross-lineage neutralization and 

protection (MacPhail et al., 2004; Skiadopoulos et al., 2006; Skiadopoulos et 

al., 2004). Sequencing of the F gene protein have shown it to be highly 

conserved between strains (Bastien et al., 2003a; Bastien et al., 2003b; 

Biacchesi et al., 2003; Boivin et al., 2004; Ishiguro et al., 2004; van den 

Hoogen et al., 2002; van den Hoogen et al., 2004a). Amino acid alignments of 

the predicted F ORF has revealed the presence of several conserved cysteine 

residues between groups as well as lineages and the presence of specific 

substitutions that act as signature sequences to differentiate hMPV groups 

(Boivin et al., 2004; van den Hoogen et al., 2004a). Some of these 

substitutions were present in functional domains such as at codon 122 in the 

fusion domain and codons 135 and 143 in the heptad repeat A region (Boivin 

et al., 2004). 
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1.2.1.6 The small hydrophobic (SH) protein 

The precise function of the SH protein is not known and RSV mutants lacking 

small hydrophobic protein have shown that it is not necessary for attachment, 

infectivity or virion assembly, but has been shown to impair a host response 

(Easton et al., 2004). Recombinant hMPV lacking SH have been shown to 

replicate efficiently in culture suggesting that the SH is not essential for growth 

in cell culture and when administered to hamsters replicated in upper and 

lower respiratory tracts (Biacchesi et al., 2004b). Recently it was shown in 

hamsters that SH may not be a protective antigen (Skiadopoulos et al., 2006). 

 

Human metapneumovirus SH ORF is the largest and encodes a 183 amino 

acid protein with a low sequence identity to other pneumoviruses. Despite this 

low amino acid identity, its amino acid composition is relatively similar to APV 

and RSV with high percentages of serine and threonine residues (Biacchesi et 

al., 2003; van den Hoogen et al., 2002). The SH protein of hMPV is a type II 

glycoprotein with a cytoplasmic amino terminus and extracellular carboxy-

terminus. The protein is anchored to the plasma membrane by a hydrophobic 

signal-anchor sequence at the amino terminus. The extracellular domain has 

2-4 N linked and 2-3 potential O glycosylation sites, and 9-10 cysteine 

residues (Biacchesi et al., 2003; Biacchesi et al., 2004a; van den Hoogen et 

al., 2002). 
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1.2.1.7 The attachment glycoprotein (G)  

Members of the Paramyxoviridae family encode two surface glycoproteins, a 

fusion protein as well as an attachment protein that participates in viral 

attachment. Depending on the genus of the virus the attachment protein may 

be hemagglutinin-neuraminidase (HN), hemagglutinin (H) or glycoprotein (G 

protein) (Morrison, 2001). Members of the subfamily Pneumovirinae encode 

the G protein, a type II mucin-like glycoprotein.  

 

The putative hMPV G ORF is located adjacent to the SH gene and depending 

on the strain encode a 217-236 amino acid protein (Biacchesi et al., 2003; 

Peret et al., 2004; van den Hoogen et al., 2002). The predicted hMPV G 

protein has features consistent with an anchored type II mucin like 

transmembrane protein as seen for other pneumoviruses (RSV and APV). 

Consistent with mucin like glycoproteins, the G protein is highly glycosylated 

as predicted by the high serine-threonine content and in addition has a high 

proline content (Biacchesi et al., 2003; Peret et al., 2004; van den Hoogen et 

al., 2002). Hydrophilic profiles revealed an anchored type II transmembrane 

protein pattern with an intracellular amino terminus that is hydrophilic followed 

by a short hydrophobic region of approximately 20 amino acids and a mostly 

hydrophilic extracellular carboxy terminal (Peret et al., 2004; van den Hoogen 

et al., 2002) 
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Despite the similar features the predicted hMPV protein has with other 

pneumoviruses it shows no identities with RSV or APV (van den Hoogen et 

al., 2002) and lacks some prominent features of RSV. Compared to the RSV 

the hMPV G protein lacks the second methionyl translational start codon that 

is necessary for the translation of the soluble secreted form of RSV G protein. 

The hMPV G protein contains between 1-2 cysteines residues of which one is 

conserved in the extracellular domain, unlike RSV that contains 4 conserved 

closely spaced cysteines that overlap with 13 conserved amino acids to form 

a cystine noose and include an CX3C chemokine motif (Biacchesi et al., 

2003).  

 

1.2.1.8 The polymerase protein (L) 

The L protein is the major component of the viral RNA-dependent RNA 

polymerase complex (Easton et al., 2004; van den Hoogen et al., 2002). It is a 

large protein an the hMPV L ORF encodes a 2005 aa protein (van den 

Hoogen et al., 2002). It shares the highest homology with APV (64%) and the 

4 core polymerase motifs that may be essential for polymerase function are 

well conserved in hMPV L protein (van den Hoogen et al., 2002). 

 

1.3 Molecular epidemiology of the hMPV 

The molecular epidemiology of hMPV is starting to unfold as studies have 

shown substantial genetic variability between strains particularly in the surface 
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attachment glycoprotein. It is this variability that may be responsible for the 

ability of hMPV to cause seasonal epidemics and reinfections. 

 

van den Hoogen et al. performed phylogenetic analysis on partial nucleotide 

sequences of the N, M, F and L ORFs and showed the existence of 2 distinct 

genetic groups, A and B; (van den Hoogen et al., 2001). The existence of 

these genetic groups have been confirmed by other phylogenetic studies and 

within these groups, two subgroups have been identified (type 1 and 2) 

(Bastien et al., 2003a; Bastien et al., 2003b; Biacchesi et al., 2003; Boivin et 

al., 2002; Ebihara et al., 2004b; Ishiguro et al., 2004; Maggi et al., 2003; Peret 

et al., 2002; Viazov et al., 2003). 

 

Genetic distances have also provided support for the existence of the two 

genetic groups. Sequence analysis of the genomes of strains from genetic 

groups A and B from the Netherlands (van den Hoogen et al., 2002) Canada 

(Biacchesi et al., 2003) and Japan (Ishiguro et al., 2004) showed an overall  

80% nucleotide identity between groups A and B (Biacchesi et al., 2003; 

Ishiguro et al., 2004). There was a high degree of identity within subgroups for 

all ORFs compared by Biacchesi et al. and Ishiguro et al. (Biacchesi et al., 

2003; Ishiguro et al., 2004) 

  

1.3.1 Genetic variation in the surface glycoproteins 

Reverse transcription polymerase chain reaction (RT-PCR) and nucleotide 

sequencing has been used to examine the variability of hMPV for molecular 
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epidemiology studies. Several studies have examined the degree of variation 

between clinical strains for the surface glycoproteins (F and G gene proteins).  

 

Nucleotide and amino acid identities between genetic groups based on the 

partial and full length sequences of the F gene showed a low degree of 

variability between groups, ranging from 81-85% at the nucleotide level and 

95% at the amino acid level (Bastien et al., 2003a; Bastien et al., 2003b; 

Biacchesi et al., 2003; Boivin et al., 2004; Ishiguro et al., 2004; van den 

Hoogen et al., 2002; van den Hoogen et al., 2004a).  

 

In contrast, there was a high degree of variability at the nucleotide and amino 

acid level for the attachment glycoprotein. Sequence diversity between group 

A and B clinical isolates of hMPV were between 50-57% at nucleotide level 

and 30-37% amino acid level in the Netherlands (van den Hoogen et al., 

2004a), 52-58% at nt level and 31-38% at amino acid level in Canada (Peret 

et al., 2004) and 56-60% at nt level and 31-35% at amino acid level in Japan 

(Ishiguro et al., 2004).  

 

Within groups higher percentage difference in identities were observed at the 

nt level (74-100%) compared to the amino acid level (61-100%) (Ishiguro et 

al., 2004; Peret et al., 2004; van den Hoogen et al., 2004a).  

Different lengths of ORFs were also reported between groups. Group A ORFs 

ranged between 217-235 polypeptides and groups B ORF between 220-236 

polypeptides (Ishiguro et al., 2004; Peret et al., 2004; van den Hoogen et al., 
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2004a) and are due to either nucleotide substitutions, use of alternative 

transcription codons or insertions (Ishiguro et al., 2004; Peret et al., 2004; van 

den Hoogen et al., 2004a). Most of the variation observed in the G protein 

was in the extracellular domain with the intracellular and transmembrane 

domains being conserved. 

 

From these studies conducted on hMPV strains isolated from countries in the 

northern hemisphere the variation may be due to host immunity and extensive 

glycosylation may reduce its antigenicity by shielding the virus protein with 

host specific sugars as has been suggested for RSV (Easton et al., 2004). 

 

1.4 Diagnosis of the human metapneumovirus 

The use of rapid sensitive diagnostic methods for detection of respiratory 

viruses is essential. hMPV was originally cultured on tertiary monkey kidney 

(tMK) cells in the unusual presence of trypsin and induced a cytopathic effect 

postinfection (van den Hoogen et al., 2001). Subsequently it has been shown 

to induce cytopathic effects on LLC-tMK2 cell and Vero cells (Hamelin et al., 

2004; van den Hoogen et al., 2004a) and can grow efficiently on Hep-2 cells 

without inducing a cytopathic effect (Chan et al., 2003). The advantage of viral 

culture is that it will allow for the detection of unknown hMPV lineages, 

however, the standard culture procedures are difficult and laborious.  

The use of monoclonal antibodies (MAbs) for the diagnosis of hMPV has been 

performed (Percivalle et al., 2005), is rapid and may provide a result within 2 

hours after NPA collection (Gerna et al., 2006). The use of MAbs was recently 
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shown to be less sensitive than molecular approach using RT-PCR, detecting 

only about 1/3 of the samples positive by RT-PCR (Gerna et al., 2006). 

Further, as mentioned, by 5-10 years of age all individuals are exposed to 

hMPV. Therefore serological assays for the diagnosis of current hMPV 

infections are limited and would require acute and convalescent samples, thus 

being of limited clinical value.  

 

Reserve transcriptase polymerase chain reaction (RT-PCR) is the current 

method of choice for the diagnosis of hMPV. Primers sequences from several 

genes (L, N, F) based on the sequence of the prototype strain from the 

Netherlands (NL/01/00) have been designed and used for the detection of 

hMPV, however there is concern that the genetic variability displayed by some 

genes of hMPV may underestimate its prevalence (Hamelin et al., 2004) and 

certain primers pairs may not detect both lineages of hMPV (Sarasini et al., 

2006; van den Hoogen et al., 2003). Therefore if RT-PCR is used, the primers 

should be able to detect both genetic groups of the hMPV with good specificity 

and sensitivity. 

 

Recently the sensitive and rapid real RT-PCR assay which employs the use of 

fluorescent labeled probes has been used for the detection of hMPV (Boivin et 

al., 2003; Cote et al., 2003; Kuypers et al., 2005; Mackay et al., 2003; 

Maertzdorf et al., 2004). This technology may be best suited for diagnosis as 

carefully designed probes may be used to detect the different lineages of the 
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virus, it does however, require the use expensive equipment that may not be 

readily available in all laboratories, particularly in developing countries.  

 

Although PCR may be the goal standard for diagnosing infections, its 

sensitivity may be a limitation for as it may detect an infection that is currently 

not causing illness. Further, factors such as degradation of RNA during 

specimen transport or the stage of patients illness which cannot be controlled 

for may results in false negatives (Kuypers et al., 2005). 

 

1.5 Clinical epidemiology of hMPV 

The hMPV has been identified as the causative pathogen in a substantial 

proportion of lower respiratory tract infections in young children. Although the 

mean age of hMPV-associated LRTI is greater than for RSV-LRTI the clinical 

symptoms of hMPV are indistinguishable from RSV and hMPV is second only 

to RSV as the cause of bronchiolitis in children (Kahn, 2006). 

 

The prevalence of hMPV has been reported worldwide with a range as low as 

1.3% to infection rates as high as 43% in individuals with respiratory tract 

infections (Table 1.1). Differences in the reported prevalence may be related 

to differences in the study design and study population between studies. Most 

of the studies investigated the prevalence of hMPV in hospitalized children; 

however some studies included all patients enrolled whereas others limited 

their investigation to samples that were negative for other respiratory viruses. 

Other factors that may impact on the reported prevalence are i) some studies 
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were limited to respiratory season, ii) the different ages of children for whom 

the hMPV was investigated and iii) the diagnostic methodology used (viral 

culture, RT-PCR, serology) differed between studies.  

 

In addition the frequency of hMPV in the general community has also been 

reported with differing results. A study conducted in the United Kingdom 

identified the hMPV in 1.3% of patients with influenza-like illness (ILI) in the 

(Stockton et al., 2002), in Canada 2.9% of all respiratory tract infections in the 

community were due to hMPV (Boivin et al., 2003). The differences in 

prevalence of hMPV between the above two studies may be due to the study 

in the United Kingdom being restricted to patients with influenza-like illness.  

In Germany the prevalence of the hMPV in the general community was 1% in 

children <3 years of age with LRTI who were negative for other known 

respiratory pathogens (Konig et al., 2004). 

 

Lung disease, premature birth, underlying heart disease and a compromised 

immune system are risk factors for severe hMPV disease (Beckham et al., 

2005; Dollner et al., 2004; Kahn, 2006; Ulloa-Gutierrez et al., 2004). Human 

metapneumovirus has been identified in an immunocompromised child with 

acute lymphoblastic leukemia who presented with bronchiolitis and died due 

to severe pneumonitis (Pelletier et al., 2002). Human metapneumovirus was 

also identified in nine percent of adults with haematological malignancies and 

respiratory tract infections tested, including three of whom died (Williams et 

al., 2005). In a prospective study conducted on high risk children in Argentina, 
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hMPV was found to be infrequent (12/567 episodes) but was a severe agent 

of lung disease (Klein et al., 2006). 

 

The burden of disease of respiratory viruses in South Africa has been shown 

to be increased in HIV infected children who have a poorer outcome and more 

severe disease (Madhi et al., 2000), however, there is no information on the 

impact of HIV on hMPV.  

 

1.5.1 Seasonality and circulation of the hMPV 

Data collected in recent reviews show that the hMPV season overlap with 

RSV and similar to influenza virus A/B and RSV causes seasonal epidemics 

(Hamelin et al., 2004; Hamelin and Boivin, 2005; Principi et al., 2006; van den 

Hoogen et al., 2004b) In temperate regions most of the viral activity was 

reported during the winter-spring month (Hamelin et al., 2004; Hamelin and 

Boivin, 2005; Principi et al., 2006; van den Hoogen et al., 2004b). In most of 

these studies, surveillance for hMPV has been limited to the respiratory 

season which was confirmed in a recent study conducted over a three period 

(October 2000-June 2003), showing higher hMPV activity in late winter-spring 

months (Garcia-Garcia et al., 2006). In contrast, viral activity was reported 

during the late spring-summer months in the subtropics (Peiris et al., 2003). 

 

The ability of hMPV to cause annual epidemics may be due to its genetic 

variation in the G protein and the existence of two major genetic groups and 

minor subgroups. 
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Table 1.1 The Prevalence of human metapneumovirus 

 
Study period1  Country  Prevalence (%)2  Study population/Comments  Type of study  References 
 
 
2000 (winter)  Netherlands 7/68 (10)  Children with ARTI   Retrospective  (van den Hoogen  2001) 
 
2000-2001 (winter) Canada  20/862 (2.3)  hMPV recovered from culture  Retrospective  (Boivin et al., 2002) 
        2 bacterial coinfections 
 
2001   Australia  23/00 (1.5)  Children with ARTI   Retrospective  (Nissen et al., 2002) 
 
09/00-05/01  Finland  10/132 (8)  Hospitalized children   Prospective  (Jartti et al., 2002) 
        with acute wheezing 
 
10/00-03/01  UK  9/405 (2.2)  All ages with ILI    Prospective  (Stockton et al., 2002) 
        Samples negative for other viruses. 
        HMPV detected in ages <1->65y 
        Community surveillance 
 
11/01-02/02  France  19/337 (6.6)  Hospitalized children with  ARTI  Retrospective  (Freymouth et al., 2003) 
        Negative for other respiratory viruses     
 
12/01-05/02  Canada  12/208 (5.8)  Hospitalized children <3y with ARTI  Prospective   (Boivin et al., 2003)
        0/51 control hMPV positive   Case control 
        2/12 co-infected with other viruses 
        Real time PCR 
 
10/01-02/02  USA  19/296 (6.4)  Children <5y    Laboratory based  (Esper et al., 2003) 
        1 nosocomial infection 
        2/19 co-infected 
 
05/01-08/02  Hong Kong 32/587 (5.5)  Children ≤18y with ARTI   Prospective  (Peiris et al., 2003) 
        Samples collected 1 or 2 a week. 
        2/32 co infected 
        1 case of nosocomial transmission 
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Study period1  Country  Prevalence (%)2  Study population/Comments  Type of study  References 
 
 
01/02-05/02  Germany 11/63 (17.5)  Hospitalized children <2 y with ARTI Retrospective  (Viazov et al., 2003) 
        hMPV detection by nested RT-PCR 
        3 children co-infected 
 
01/00-05/02  Italy  23/90 (25)  Children with ARTI   Retrospective  (Maggi et al., 2003) 
        Incidence varies over 3 years 
        37% in 2000, 7% in 2001 and 
        43% in 2002 
        9/23 co-infected 
        hMPV also detected in 7 plasma samples 
 
10/01-04/02  Canada  66/445 (14.4)  All ages with ARTI   Laboratory based  (Bastien et al., 2003b) 
        Specimens collected from 4 
        laboratories 
 
09/00-02/02  Netherlands 48/685 (7.0)  Persons all ages with ARTI  Laboratory based  (van den Hoogen 2003) 
        Most of hMPV<2y 
        6/48 co-infected 
 
1999-2001  USA  984 (4.5)  Young and elderly adults   Prospective  (Falsey et al., 2003) 
winter season       9/217 asymptomatic were hMPV 
        infected 
 
04/02-05/02   Brazil  19/111 (17)  Children <3 years ALRTI   Laboratory based  (Cuevas et al., 2003) 
        Study period correspondence   cross sectional study 
        to rainy season 
        8 coinfected with RSV 
 
1976-2001  USA  49/248 (20)  Children LRTI    Retrospective  (Williams et al., 2004) 
        Negative for other viruses 
        Estimated that 12% of LRTI  
        due to hMPV 
        15% of URTI due to hMPV 
        3 episodes of recurrent infection 
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Study period1  Country  Prevalence (%)2  Study population/Comments  Type of study  References 
 
 
06/00-05/03  Japan  57/637 (8.9)  Hospitalized and outpatients  Laboratory based  (Ebihara et al., 2004b) 
        children with ARTI 
        Samples collected from 3 
        different geographical areas 
 
06/02-08/02  South Africa 8/137 (5.8)  Hospitalized children   Prospective  (IJpma et al., 2004)
        between ages 15d-13.9y 
        13 tested HIV positive 
        1/8 hMPV infected 
        was HIV positive 
 
08/00-09/01  USA  26/668 (3.9)  Hospitalized children <5y   Population based- (Mullins et al., 2004) 
        with ARI/ARI-related   prospective 
        from 2 US cities 
        Nose and throat swabs 
        and not NPA 
        8/26 >1 mo premature 
 
11/02-04/03  Norway  50/236 (21)  Hospitalized children ARTI   Prospective  (Dollner et al., 2004) 
        41/50 had LRTI 
        10/50 co-infected with 
        other viruses 
        17/50 had CRP 66mg/l 
        on admission (pneumonia) 
 
11/01-10/02  USA  54/668 (8.1)  Children 5 years    Retrospective  (Esper et al., 2004) 
        Specimens previously negative 
        for other viruses 
        3 children had 2 specimens test 
        positive 7-54 days apart 
 
1998-2002  Argentina 11/100 (11)  Children <5 years with ARTI  Retrospective  (Galiano et al., 2004) 
        Samples were negative for 
        Respiratory virus 
 
 



 22 

 
 
Study period1  Country  Prevalence (%)2  Study population/Comments  Type of study  References 
 
 
10/00-4/01  Germany 2/620 (<1)  Hospitalized and outpatient  Prospective  (Konig et al., 2004) 
        children <3 years    multicenter 
        Negative for other viruses 
        Community acquired 
        hMPV infections 
 
10/00-08/02  USA  54/868 (6.2)  Children ≤18 years   Retrospective study (McAdam et al., 2004) 
 
12/02-05/03  USA  52/719 (7.2)  Patients 1d-20 years old   Evaluation study  (Kuypers et al., 2005) 
        Real time RT-PCR 
 
11/02-03/03  Italy  42/1505 (2.8)  Children <15 years   Prospective  (Bosis et al., 2005) 
        7/42 coinfected 
        
 
08/97-03/00  Korea  26/166 (15.7)  Children < 5years with LRTI  Retrospective  (Kim and Lee, 2005) 
        5/26 coinfected with other viruses 
 
10/00-06/03  Spain  69/494 (14)  Hospitalized children   Prospective  (Garcia-Garcia , 2006) 
        <2y with ARTI 
        18/69 co-infected 
        1 child bacteremia 
        by S pneumoniae 
 
03/02-06/04  USA  202/3740 (5.45)  Children     Retrospective  (Agapov et al., 2006) 
        Real time PCR 
 
01/02-11/03  Peru  12/420 (2.9)  All ages (1-<89y)    Retrospective  (Gray et al., 2006b) 
        ILI 
        6/12 grew in culture 
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Study period1  Country  Prevalence (%)2  Study population/Comments  Type of study  References 
 
 
1982-2001  USA  118/2384 (5)  Infants and children with URTI  Retrospective  (Williams et al., 2006) 
        prospectively followed 
        from average 2.4y old 
        Real time PCR 
        Reinfection with homologous 
        and heterologous strains 
 
11/03-10/04  France  50/589 (8.5)  Hospitalized children <5y   Prospective  (Foulongne et al., 2006) 
        with RTI 
        16/50 dual infections 
        with other viruses 
        15 co infected with RSV 
 
06/03-05/05  Argentina 12/567 (2)  Premature infants and   Prospective  (Klein et al., 2006) 
        children with CHD and CLD 
 
11/01-10/02  Israel  68/517 (13)  Hospitalized children <5y   Prospective  (Wolf et al., 2006) 
        with LRTI 
        209/517 community acquired 
        pneumonia 
        16/68 co infected with other viruses 
 
12/03-05/04  Italy  40/306 (13.1)  Infants and young children   Prospective  (Sarasini et al., 2006) 
        10/40 coinfected with other viruses 
 
06/04-05/05  Japan  29/144 (20)  Children <17 y with RTI   Prospective  (Kaida et al., 2006) 
        103/141 children <3y 
        Nested RT-PCR 
 
10/01-05/04  USA  24/1294 (2.60  All ages     Retrospective  (Gray et al., 2006a) 
        21/24 grew in culture 
 
Footnote. 1 Study period refers to the month/year, eg.05/00 refers to May 2000. 2. The prevalence is based on the positive hMPV detected/ by either the total number of 
episodes or number of individuals and the value in parenthesis is the percentage. 
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Although all subgroups have been observed circulation in single communities 

in a single epidemic (Boivin et al., 2002; Esper et al., 2004; Gerna et al., 2005; 

Mackay et al., 2006; Mackay et al., 2004; Peret et al., 2004; Sarasini et al., 

2006; Williams et al., 2006) a single subgroup has been shown to 

predominate (Mackay et al., 2004; Peret et al., 2004). In Canada, subgroup 

B2 viruses predominated during the 1998 epidemic and in 2001 –2002 

epidemics subgroup A1 predominated (Peret et al., 2004). In Australia the co-

circulation of all four subgroups over 4 consecutive years (2001-2004) was 

observed with one subgroup predominating in each year (2001 subgroup A1; 

2002 subgroup A2; 2003 subgroup A2 and B1 and 2004 subgroup B1) 

(Mackay et al., 2006). Recently a study conducted over a 20 year period in the 

USA by Williams and co-workers report that all four subgroups have circulated 

in the community over 20 years with a single lineage dominating (Williams et 

al., 2006). Similarly a switch in predominant genotype from group A in 2003 to 

group B in 2004 was reported in another USA study (Agapov et al., 2006) This 

evidence suggests that like RSV (Sullender, 2000) strains from both groups of 

the hMPV can co-circulate in a single epidemic with a switch in predominant 

strain providing evidence that suggests that the hMPV may evade pre-existing 

community immunity through a switch in viral genotype  

 

1.5.2 Dual infection of human metapneumovirus with other respiratory 

pathogens 

Because of overlapping seasons of respiratory viruses, co-infection with 

multiple viruses may be common (Hamelin et al., 2004; Hamelin and Boivin, 

2005; Principi et al., 2006; van den Hoogen et al., 2004b).  
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Similarly hMPV has been identified in the presence of other respiratory 

viruses (Table 1.1). There is however conflicting data regarding the clinical 

significance of dual viral infection involving hMPV compared to illness that 

involves hMPV alone (Bosis et al., 2005; Maggi et al., 2003; Williams et al., 

2004; Xepapadaki et al., 2004).  

 

In the United Kingdom 70% of children with RSV bronchiolitis who required 

admission to the intensive care unit were co-infected with hMPV (Greensill et 

al., 2003). This increased severity due to co-infection between RSV and 

hMPV was replicated by Semple et al. who found that co-infected children 

required admission to ICU for mechanical ventilation (Semple et al., 2005). 

This increased severity was not observed in two other studies which did not 

detect hMPV in severe RSV-LRTI (Lazar et al., 2004; van Woensel et al., 

2006). 

 

In a prospective study involving children younger than three years of age, co-

infection with RSV and hMPV was associated with more severe disease, 

including 60% of co-infected infants requiring ICU admission (Konig et al., 

2004). Additionally, co-infection of hMPV with coronavirus in individuals with 

severe acute respiratory syndrome (SARS) was reported in Hong Kong and 

Canada (Chan et al., 2003; Chan et al., 2004; Poutanen et al., 2003).  

Studies in macaques with the SARS-associated coronavirus did not however 

result in more severe disease following subsequent infection by hMPV 

(Fouchier et al., 2003). In contrast, other studies did not find an increase in 

hMPV associated disease severity being linked with other concurrent viral 
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infections (Bosis et al., 2005; Maggi et al., 2003; Williams et al., 2004; 

Xepapadaki et al., 2004) and recently a co-infection rate of 26% was also not 

associated with more severe disease (Garcia-Garcia et al., 2006). 

 

1.5.3.Bacterial coinfections in viral- associated pneumonia 

Epidemiological studies as well as in vitro and animal studies have reported 

that viral infections predispose to bacterial disease probably by bacterial 

adherence induced by viruses (Beadling and Slifka, 2004; Hament et al., 

1999; Peltola and McCullers, 2004).  

 

Mechanisms through which superinfection might occur are poorly understood 

but may include physical damage to respiratory tract epithelium by viruses, 

virus induced immunosupression as well as the up regulation of bacterial host 

cell receptors through inflammatory response to viral infections  (Beadling and 

Slifka, 2004; Hament et al., 1999; Peltola and McCullers, 2004). Recently, 

Navarini et al used a mouse model to examine the enhanced susceptibility to 

bacterial superinfection. They showed that the production of IFN I due to viral 

infection caused apoptosis of granulocytes, resulting in the inability to control 

bacterial superinfection (Navarini et al., 2006). 

 

Pneumonia is a major cause of childhood morbidity and mortality, causing 

over 2 million deaths annually worldwide (Obaro and Madhi, 2006). Bacterial 

and viral vaccines are effective in limiting disease severity (Beadling and 

Slifka, 2004). A major obstacle to understanding the efficacy of vaccines 

against pneumonia and defining the role of bacterial coinfection is the lack of 
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sensitive tools to diagnose bacterial pneumonia. The WHO recommended 

tachypnoea with chest –wall indrawing as a clinical screening tool for the 

management of lower respiratory tract infections (WHO, 1990), however, 

laboratory confirmation of the bacterial etiology of pneumonia is limited. 

Although blood cultures may be specific, they lack sensitivity (10-15%) for 

confirming the bacterial etiology of pneumonia. The usefulness of chest 

radiographs in pneumonia is also controversial. Recently Madhi (2006) 

reported that in South Africa the sensitivity of chest radiograph-confirmed 

alveolar consolidation (CXR-AC) underestimated the burden of pneumococcal 

pneumonia prevented by pneumococcal conjugate vaccine (PCV) by up to 

63% (Madhi, 2006).  

 

Although controversial, biochemical markers such as C-reactive protein (CRP) 

and procalcitonin have been shown to be useful for diagnosis of 

pneumococcal pneumonia (Madhi et al., 2005a; Simon et al., 2004). 

Examining the efficacy of a nine-valent pneumococcal conjugate vaccine, 

Madhi et al. showed that the efficacy of 9-PCV associated with CXR-AR 

among HIV uninfected children compared to controls was 21% (P=0.04) and 

increased to 38% (P=0.05) when associated with CXR-AR and CRP (level ≥ 

120mg/l).  

 

The efficacy of the vaccine increased considerably to 64% (P=0.006) when 

procalcitonin (level 5.0ng/ml) was added to CXR-AR and CRP. More recently, 

it has been also been shown that a CRP level of ≥ 40mg/l may provide a 
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better assessment of the effect of PCV in preventing pneumonia compared to 

chest radiographs and procalcitonin (Madhi et al., 2006).  

 

The use of vaccine as a probe to define the burden of disease may be a 

powerful tool due the lack of sensitive laboratory diagnostic tools (Obaro and 

Madhi, 2006). This method also has its shortcoming and may also 

underestimate the burden of disease as the proportion of disease preventable 

by the vaccine will only be equal to disease burden when the vaccine is 100 % 

effective (Obaro and Madhi, 2006). Using the 9-valent PCV to examine the 

role of Streptocococcus pneumoniae in the etiology of viral pneumonia, Madhi 

and Klugman showed a 31% overall reduction in the incidence of 

hospitalization for viral associated pneumonias in all children (HIV infected 

and HIV uninfected) among the vaccinees (Madhi and Klugman, 2004). This 

suggested that receipt of PCV-9 reduced the risk of superimposed 

pneumococcal infection from occurring among PCV-9 vaccinees in children 

that may have been infected with the respiratory viruses in the community. 

Overall there was a 45% (p=0.01) reduction in Influenza A, 22% (p=0.08) 

reduction in RSV and 44% (p=0.02) reduction in PIV types 1-3 associated 

pneumonia in (Madhi and Klugman, 2004).  

 

There is little evidence of the importance of bacterial co-infections in children 

with hMPV-associated LRTI. Boivin et al. reported on two cases in whom 

Streptococcus pneumoniae and Staphylococcus aureus was present in 

respiratory secretions from 12 samples concurrent with hMPV infection (Boivin 

et al., 2002). Dollner et al. reported that children with hMPV-associated 
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pneumonia had high CRP levels (median, 105.5mg/l [ranged <5-281 mg/l]) 

most likely reflecting undiagnosed bacterial coinfection in those children. 

Further in that study children with hMPV-associated LRTI had high 

temperatures (mean, 39.9oC) (Dollner et al., 2004), a known predictor of 

bacterial infection (Banya et al., 1996).  

 

1.5.4 Antigenic characteristics  

The observed genetic variability may lead to antigenic variability and the two 

hMPV genetic clusters may represent two distinct antigenic groups. There is 

conflicting evidence as to whether the two genetic clusters are in fact two 

antigenic groups.  

 

Using antisera raised in ferrets against the two genetic groups for virus 

neutralizing assays, van den Hoogen and coworkers showed that the two 

genetic groups (A and B) were antigenically different based on the definition 

that a homologous to heterologous neutralization titer of >16 defines a 

serotype (van den Hoogen et al., 2004a). The antigenic diversity was also 

addressed by Bastein et al. using western blot analysis and 

immunoprecipitation of the G protein with polyclonal antibodies raised against 

strains specific to each group isolated in Canada (Bastien et al., 2004).  

This study showed that the detection of the G protein was group specific and 

also demonstrated that the G protein is N and O linked glycosylated (Bastien 

et al., 2004). MacPhail et al. studying the replication of hMPV in different 

animals reported that in Syrian golden hamsters there was cross protection 

between hMPV subgroups A or B, suggesting that there was no antigenic 
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difference between the groups and a vaccine based on either group may be 

effective (MacPhail et al., 2004). A study designed to address the antigenic 

relatedness of the two groups found them to be highly related antigenically 

(48% in hamsters and 64%-99% in non-human primates) demonstrating a 

high level of cross protection (Skiadopoulos et al., 2004). This study also 

showed that the hMPV F gene is the major neutralization antigen and 

conferring substantial neutralization and protection across lineages, a finding 

that was subsequently confirmed (Skiadopoulos et al., 2006), and also 

showed that the G protein was not a major neutralizing or protective antigen. 

The antigenic relatedness of the two groups needs to be addressed further as 

this conflicting evidence may have implications for the development of an 

effective vaccine. 

 

1.5.5 Reinfection with hMPV  

Serological data has shown that the hMPV antibody titer was higher in older 

individuals (>2 years) compared to younger individuals (Ebihara et al., 2003), 

suggesting a booster effect probably due to re-infection. Re-infection with the 

hMPV was reported in a 7 month old immunocompromised child who had 

severe LRTI and was infected with two genetically distinct hMPV strains 

(Pelletier et al., 2002).  

 

The symptoms of the first episode was a cold that progressed to bronchiolitis, 

the second episode which occurred about 10 months later also started with a 

common cold but deteriorated to bilateral pneumonitis and death (Pelletier et 

al., 2002). Another study reported a 9 month old girl re-infected with a 
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heterologous strain of hMPV in a space of 19 days (Ebihara et al., 2004a). 

Subgroup A1 hMPV was identified as the cause of the initial illness and the 

second illness was caused by a subgroup B2 virus. The re-infection with 

subgroup B2 strain was associated with a more severe illness, resulting in the 

onset of wheezy bronchitis and pneumonia (Ebihara et al., 2004a). Studies by 

William et al reported that among children with hMPV-LRTI associated illness 

a recurrent infection was associated with upper respiratory tract (URT) several 

months/years of age later. This indicated primary immunity induced by 

infection of the LRTI (lower respiratory tract infection) reduced the severity of 

subsequent infections and limited the replication of hMPV to the URT 

(Williams et al., 2004; Williams et al., 2006).  

 

1.5.6 Virulence difference 

It is possible that there may be an association between disease severity and 

hMPV subgroup; however, this remains to be addressed fully. It has been 

suggested that subgroup A2 may be linked to more severe disease as it has 

been detected more often than other subgroups (Mackay et al., 2004) 

Recently a study designed to examine the difference found that group A 

viruses were more virulent than group B and the difference in severity was not 

due to underlying medical conditions (Vicente et al., 2006).  

 

In contrast a study in Japan did not find any significant difference for rates of 

hospitalization between the groups to suggest a difference in severity (Ebihara 

et al., 2004b) and a study from St Louis, USA found similar rates of illness for 

either group (Agapov et al., 2006). Such conflicting evidence has also been 
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reported for RSV (Sullender, 2000) and it has been suggested that difference 

may be due to the inclusion of only hospitalized patients that were severely ill 

(Cane, 2001) or that host genetic factors may influence the susceptibility 

(Stark et al., 2002). Alternatively if studies are not done over an extended time 

period, the introduction of a new subgroup of virus into the community may be 

temporally related to more severe disease being observed for that subgroup 

of virus.  

 

1.5. Objectives 

The objectives of this study were:  

i. to investigate the molecular epidemiology of hMPV in South Africa;  

ii. characterize the burden of severe hMPV associated LRTI; and determine 

the clinical features of hMPV-LRTI in children infected and not infected by 

HIV;  

iii. probe the role of Streptococcus pneumoniae in the pathogenesis of hMPV-

LRTI.  
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CHAPTER 2 

STUDY MATERIALS AND METHODS 

2.1. Study population 

The nasopharyngeal aspirates (NPAs) used in this study were collected from 

children participating in a phase 3 study of which the primary objective was to 

determine the efficacy of a PCV-9 in preventing invasive pneumocococcal 

disease and radiographically confirmed pneumonia in South Africa. Details of 

the study have been previously published (Klugman et al., 2003; Madhi and 

Klugman, 2004). Briefly stated, recruitment of 39836 children was started on 

the 1 March 1998 and enrolment of all the subjects was completed by October 

2000, with the last child being immunized in December 2000. The first dose of 

study vaccine was administered at a mean age of 6.6 (standard deviation 

[S.D.] 1.2) weeks and a further two doses of study-vaccine were administered 

at 11.2 (S.D. 2.5) and 15.9 (S.D.3.8) weeks respectively, with no booster dose 

of PCV given. Surveillance for study-outcome cases was hospital-based and 

continued until 15th November 2001, at which stage the data were analyzed 

for the primary objectives of the study. Thereafter, investigators and laboratory 

staff remained blinded to the randomization arm of the individual subjects and 

surveillance continued until October 2005. All children that were hospitalized 

were clinically evaluated by one of the study-doctors who used a standardized 

form for documenting signs and symptoms. The decision to hospitalize 

children was done as part of routine patient management by the attending 

physicians and independent of the study.  
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Children would either have been referred from a primary health-care clinic or 

self-referred directly to the hospital by the parent. There is no known 

difference in clinical criteria for hospitalization of HIV infected and HIV 

uninfected children. The present study is limited to surveillance that occurred 

from 1st January 2000 until 31st December 2002 as prior to this period 

samples were not routinely archived. 

 

2.2 Collection of nasopharyngeal aspirates 

Nasopharyngeal aspirates were collected within 24 hours of admission to 

hospital and surveillance was conducted by a study staff doctor at the Chris 

Hani-Baragwanath hospital. Nasal secretion samples were obtained using a 

nasogastric tube (FG 8 x 10 cm in length, Ven Medical Products, South 

Africa), attached to a 5 ml syringe containing 3ml of normal saline. The saline 

was injected into the nasopharynx and aspirated immediately. An aspirate of 

1-2 ml was obtained from the children. On arrival at the laboratory the 

samples were aliquoted and tested for other respiratory viruses. An aliquot 

was stored at –70oC was subsequently used for the testing of hMPV in this 

study. 

 

2.3 Respiratory virus identification 

The NPA samples were used to test for common respiratory viruses. The 

specimens were centrifuged and the pellet was spread onto a microscope 

slide and fixed. Initially screening was performed by a direct pooled 

immunofluorescent test for respiratory viruses.  
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Positive samples were tested for RSV by means of mouse anti-RSV 

monoclonal fluorescent antibody (Chemicon International Inc; Temecula, 

California, USA). Specimens that tested negative for RSV were subsequently 

examined for each of seven respiratory viruses (RSV, influenza A and B, PIV 

1,2,3 and adenovirus) using specific monoclonal fluorescein conjugated 

antibodies (Chemicon International; Temecula, California, USA).  

 

2.4. Identification of hMPV 

2.4.1 RNA extractions 

Viral RNA was extracted from the stored frozen nasopharyngeal aspirates 

using the QIAamp viral RNA kit (Qiagen). Viscous NPAs that were difficult to 

pipette were homogenized with QIAshredder homogenizer columns (Qiagen, 

Hilden, Germany) and the flow-through was used for viral RNA extraction. The 

extraction was performed according to the manufacturer’s instructions. A 

volume of the thawed NPA was treated for RNases and lysed with a buffer 

provided by the manufacturer. This was followed by the addition of ethanol for 

precipitation of the viral RNA. Following centrifugation the viral RNA becomes 

attached to a membrane with the help of the carrier RNA. The attached viral 

RNA was washed twice and eluted with RNase-free water provided by the 

manufacturer and stored at –20oC.  

 

2.4.2. RT-PCR and nested PCR: F gene 

A nested RT-PCR with primers designed for the fusion (F) gene was used for 

the identification of hMPV from NPAs. The F gene is highly conserved and a 
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nested RT-PCR assay was necessary to increase the sensitivity for detection 

and increase the yield of PCR product for sequencing. 

2.4.2.1 RT-PCR: F gene 

Single step RT-PCR assays have an advantage over a two step RT-PCR as it 

is fast and decreases the risk of contamination. To prevent the possibility of 

contamination, a single step RT-PCR assay was considered because of its 

advantages over a two-step assay. hMPV viral RNA was amplified using the 

SUPERSCRIPT One-Step RT-PCR kit (Invitrogen). The viral RNA was initially 

amplified by RT-PCR in a 50μl reaction mix as recommended by the 

manufacturer and was subsequently optimized for a 25μl reaction, 

considerably reducing the cost for each reaction. The primers used for the 

primary RT-PCR reaction span the F gene and correspond to nucleotide 

sequences position 3052-3069 (primer Fatg) and 3844-3862 (primer Frev) in 

the NL/1/00 genome (accession number AF371337) and are shown in Table 

2.1 were used for the diagnosis of hMPV. 

 

Each 25μl reaction contained 12.5μl of a 2X reaction mix that was provided by 

the manufacturer of the kit, 0.6μM of each primer (final concentration, 

Fatg/Frev Table 2.1), 3mM MgSO4 (final concentration), 0.4mM dNTPs 

(dTTP, dATP, dGTP, dCTP at final concentrations), 0.25μl of RT/Taq enzyme 

mix and 5μl of viral RNA all made up to 25μl with sterile water. 

 

The RT-PCR reaction was performed in an Eppendorf Mastercycler 

(Eppendorf) as follows: reverse transcription at 50oC for 30 min, an initial 

denaturation step at 94oC for 2 min, followed by 35 cycles at 94oC for 30 sec, 
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45oC for 45 sec and 68oC for 1min. No template controls (NTCs) and a 

negative control (specimens that were negative for hMPV) was included. 

2.4.2.2 Nested PCR: F gene 

To increase the sensitivity and the yield for sequencing, a second round of 

PCR was performed. Two microliters of the RT-PCR product was used as the 

starting template for the nested PCR. A 50μl reaction containing at final 

concentrations the following reagents: 1X reaction buffer, 3mM MgCl2, 400μM 

dNTP, 0.6μM each primer (Ffor/Fnest Table 2.1, corresponding to nucleotide 

positions 3130-3149 and 3794-3810, respectively in the NL/1/00 genome, 

accession number: AF371337) and 1.25U Taq made up to volume with sterile 

water, was prepared for each reaction.  

 

The cycling parameters were as follows: initial denaturation for 2 min at 94oC, 

followed by 30 cycles at 94oC, 48oC and 72oC for 1 min each and a final 

extension at 72oC for 7 min. 

 

2.4.3 RT-PCR:G protein gene 

The G gene was also analyzed using a nested RT-PCR approach. The 

primers for the detection of the G gene are shown in Table 2.1 and 

correspond to nucleotide position 6262-6285 (HMPVGunivF) and 7181-7204 

(HMPVGunivR) in the NL/1/00 genome accession number, AF371337, this 

primer amplified an 800-1000bp region of the hMPV G protein gene. 
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The viral RNA was reverse transcribed at 50oC for 30 min, followed by an 

initial denaturation at 95oC for 3 min, 38 cycles of PCR as follows: 94oC for 1 

min, 59oC for 1 min and 72oC for 2 min and a final extension at 72oC for 7 min. 

To increase the yield for sequencing a nested PCR was performed using the 

same primers set. 

 

2.5 Analysis of the PCR product 

The nested PCR products for both the F and G genes were visualized on a 

2% ethidium bromide stained agarose gel on a UV transilluminator and 

photographs of the gels were taken with a Kodak polariod camera. In addition 

to the positive control a molecular weight marker (DNA molecular marker VI, 

Roche diagnostics, Mannheim, Germany) was included to verify a positive 

result.  

 

2.6 Nucleotide sequencing 

The F and the G gene were sequenced in this study. The PCR products were 

purified using the QIAquick gel extraction kit (QIAGEN, GmbH) and 

sequenced in both directions. Cycle sequencing for the F gene was performed 

with the nested primers (Ffor and Frev) and for the G gene the primers used 

for detecting the G gene (HMPVGunivF and R) in Table 2.1. Sequencing of 

the PCR product was carried out using the BigDye Terminator Cycle 

sequencing kit v3.1 (Applied Biosystems, Foster City, Calif) on the ABI 310 

Genetic Analyzer (Applied Biosystems). The nucleotide sequences were 
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edited using Chromas version 1.43 software and saved as text files in FASTA 

format. 

 

2.6.1 Nucleotide sequence accession numbers 

The hMPV nucleotide sequences from this study have been deposited in 

Genbank under the following accession numbers AY694693 to AY694784 for 

the F gene and AY848859 to AY848919 for the G gene. 

 

2.7 Phylogenetic analysis and genetic identities 

Nucleotide sequences from F and G genes were aligned with CLUSTAL X 

1.64b (Thompson et al., 1997) using the multiple alignment option. 

Phylogenetic trees were constructed on the aligned nucleotide sequences 

with the neighbour-joining (NJ) method using the Nucleotide: Kumira 2-

parameters in MEGA version 2.1 (Kumar et al., 2001a). Statistical evaluations 

of the NJ trees were carried out by bootstrap evaluation (500 bootstrap 

replicates). 

 

Genetic identities for both nucleotide and amino acid were computed on the 

aligned sequences with Bioedit software. The identities were determined as 

the proportion of differences, i.e. the number of pair-wise nucleotide or amino 

acid differences divided by the total number of nucleotides or amino acids in 

the sequenced region. 
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The potential structure of the attachment protein (G protein) was predicted 

using the hydropathy plot of Kyte and Doolittle (Kyte and Doolittle, 1982) in 

the Bioedit software package. The hydrophobicity score for the amino acids 

were between -4.5 and 4.5. 

2.8 HIV testing 

The HIV infection status of individual subjects who were hospitalized was 

determined using two HIV ELISA test (Axsym® and Murex* HIV 1+2, Murex 

Diagnostic Limited, Dartford, England). A HIV PCR (Roche Amplicor version 

1.5, Nutley, NY) test was used to confirm the infections status of children <18 

month of age if the ELISA test was reactive or if any child had a non-reactive 

HIV ELISA test despite the presence of stigmata of acquired 

immunodeficiency virus syndrome (AIDS).  

 

2.9 C-reactive protein (CRP) 

C-reactive protein (CRP) tests were performed using immunoturbidometry 

(717 Automated Analyzer, Boehringer Mannheim/Hitachi, Mannheim, 

Germany) at the National Health Laboratory Service, South Africa.  

Samples were sent for testing either by the attending physician at the time of 

admission of the child to hospital or serum that was obtained within 12 hours 

of admission that was stored at -700C was retrospectively analyzed for CRP 

when available. 
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Table 2.1 Sequences of primers used for the detection and sequencing of human metapneumovirus 

Primers Gene NL/1/00 corresponding nucleotide positions Sequence (5’-3’) 

Fatg Fusion protein (F gene) 3052-3069 

 

ATGTCTTGGAAAGTGGTG 

Frev Fusion protein (F gene) 3844-3862 

 

CCATGTAAATTACGGAGC 

Ffor Fusion protein (F gene) 3130-3149 

 

TCATGTAGCACTATAACT 

Fnest Fusion protein (F gene) 3794-3810 

 

TCTTCTTACCATTGCAC 

HMPVGunivF Attachment protein (G gene) 6262-6285 

 

GAGAACATTCGRRCRATAYATG 

HMPVGunivR Attachment protein (G gene) 7181-7204 

 

AGATAGACATTRACAGTGGATTCA 
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Figure 2.1 A 2% ethidium bromide stained agarose gel showing the nested 

PCR product as amplified using primers spanning the F gene. Lanes 1-9 are 

different patient samples that are positives for hMPV. Lane 10 is a positive 

control sample provided by Dr Guy Boivin, lane 11 is a NTC and lane 12 is a 

100 bp molecular weight marker.  

 

 1       2        3       4        5       6       7      8      9      10       11     12  
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2.10 Statistical Analysis 

Statistical analysis was performed using Epi Info version 6.04c (Atlanta, 

Georgia, USA), SAS (SAS Institute, Cary, North Carolina, USA) and STAT 

version 8.0 (StataCorp LP, College Station, TX, USA). Continuous and 

categorical variables were analyzed using unpaired Student t-test and Mantel-

Haenszel chi-square test, respectively. Fisher’s exact test was used when a 

cell had an expected value of fewer than five observations. Median (25th-75th 

centiles) were used for all age-related analyses and the mean and standard 

deviation (S.D) were calculated for continuous variables. Relative risks (R.R) 

and 95% confidence intervals (CI95%) were used in describing risk differences 

between HIV infected and HIV uninfected children. 

 

As receipt of PCV may have impacted on the epidemiology of hMPV 

associated hospitalization as has been described for other respiratory viruses 

(Madhi and Klugman, 2004), the calculation of the incidence rate of 

hospitalization for hMPV-LRTI was limited to placebo recipients. 

 

2.10.1 Vaccine Efficacy (VE) 

Vaccine efficacy was calculated using the vaccine efficacy calculation in Epi 

Info version 6.04d for cohort studies. This is based on the formula: V.E. (%) = 

(incidence rate in the unvaccinated – incidence rate in the vaccinated)/ 

incidence rate in unvaccinated} x 100. All children that were randomized were 

included in the intent-to-treat (ITT) analysis from the day of receiving their first 

dose of study vaccine.  
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Children were considered to be fully vaccinated and included in the per 

protocol (PP) analysis if the event occurred more than 14 days following the 

third dose of study vaccine and the child received all the study- vaccines as 

per planned schedule.  

 

Only the first episode of any clinical syndrome was included in the respective 

“vaccine efficacy” calculation. Trends in hMPV-LRTI between vaccinees and 

placebo recipients among children <6.0 months, 6.1-12.0 months, 12.1-24 

months and >24.0 months of age at the time of hospitalization were calculated 

using Mantel-Haenszel chi-square. An alpha of ≤ 0.05 was considered as 

significant. 

 

2.11 Definitions  

The clinical definitions of the spectrum of LRTI listed below have been 

previously defined by Madhi et al. and have been adopted for this study as 

well (Madhi, 2003). 

 

2.11.1 Severe lower respiratory tract infection (LRTI) 

The diagnosis of LRTI was based on WHO clinical criteria, which was 

complemented by pulse oximetry. Children were enrolled if they had a history 

of cough of less than two weeks duration and fulfilled at least one of the 

following criteria: 1) tachypnea – defined as a respiratory rate >50/breath/min 

between 2-12 months of age and 40 breaths/min in older children; and the 

presence of lower chest wall in drawing (and/or intercostals recession in 
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malnourished children); 2) An arterial oxygen saturation of <90% room air, as 

measured by pulse oximetry. 

 

2.11.2 Respiratory viral associated LRTI 

Children with LRTI in whom respiratory virus antigen was detected by 

immunofluorescence from NPAs were categorized as having viral associated 

LRTI. 

 

2.11.3 Bronchiolitis 

A clinical diagnosis of bronchiolitis was made if the child was less than two 

years of age and had bilateral diffuse wheezing with or without the presence 

of bilateral crackles, or in the presence of clinical and/or radiographic signs of 

hyperinflation the absence of any adventitious sounds and other evidence of 

airspace infiltration on chest radiograph. 

 

2.11.4 Pneumonia 

Children who have evidence of crackles in the absence of wheezing, or no 

adventitious sounds on chest auscultation in the presence of any airspace 

consolidation on chest radiograph, or alveolar consolidation on chest 

radiograph were categorized as having pneumonia. 
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CHAPTER 3 

PREVALENCE AND BURDEN OF DISEASES OF THE 

HMPV IN HIV UNINFECTED AND HIV INFECTED 

CHILDREN HOSPITALIZED WITH LRTI OVER A 3 

YEAR PERIOD IN SOUTH AFRICA 

3.1 Study sample 

Figure 3.1 gives a summary of the children that were hospitalized with LRTI 

(bronchiolitis and pneumonia) during the study period January 2000 to 

December 2002. During this period there were 3176 episodes of LRTI 

requiring hospitalization of which NPA were performed on 3069 (96.6%) 

samples. Of the 3069 episodes, 2715 (88.5%) samples were available for 

hMPV testing. The HIV status was available for only 2678 (98.6%). There was 

no significant difference (P > 0.99) between the samples for which NPA were 

done and the samples that were available for hMPV testing, both overall and 

between HIV infected and HIV uninfected.  

 

Children in whom NPA samples were unavailable for further hMPV testing 

(354 [11.5%] of 3069) were younger median [range] age-months: 9.3 [1.4-

54.7] vs 13.8 [1.2-56.1], P <0.001) and were 1.9 fold (95% C.I 1.5-2.5) more 

likely to have one of the other respiratory viruses identified (133 [37.65] of 354 

vs 645 [23.8%] of 2715; P<0.0001) than in whom NPA were available for 

hMPV testing. These differences were evident in HIV infected as well as in 
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HIV uninfected children. There was however no clinical or demographic 

differences regarding LRTI episodes for which NPA were unavailable. 

 

3.2 hMPV in hospitalized children  

Overall a total of 3302 NPA samples were tested for hMPV in children with 

respiratory illness of which 2715 samples were from children with LRTI. This 

study is limited to children with LRTI as the samples from children with other 

respiratory illness were not done in a systematic manner. 

 

Human metapneumovirus was identified from 230 NPA samples tested in 

children with a respiratory tract illness. A clinical diagnosis of LRTI was made 

in 202 (87.8%) of the 230 hospitalizations associated with hMPV and the 

remaining 28 (12.2%) episodes were associated with respiratory symptoms in 

children with a non-LRTI illness. Except for a single HIV infected vaccine 

recipient with lymphocytic interstitial pneumonitis, the remaining 27 non-LRTI 

cases of hMPV-associated hospitalization occurred in HIV uninfected children. 

The spectrum of illness’ (including multiple diagnosis) observed in these HIV 

uninfected children included: nine children with acute exacerbation of hyper-

reactive airway disease/asthma, eight episodes of upper respiratory tract 

infection, eight episodes of febrile convulsions, two episodes each of break-

through epileptic seizures or gastroenteritis and one case each of 

pneumococcal septicemia and tuberculosis meningitis.  
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Figure 3.1: Summary of children hospitalized for lower respiratory tract infection that were investigated for human metapneumovirus 

infection in South Africa1LRTI episodes= total number of lower respiratory tract infections (bronchiolitis or pneumonia). 2NPA done= 

nasopharyngeal aspirate performed to test for respiratory viruses other than hMPV. 3RT-PCR done= Number of NPA samples that 

were available for reverse-transcriptase polymerase chain reaction (RT-PCR) assay to detect hMPV.  
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3.3 Prevalence of hMPV in episodes of LRTI  

Among the 2715 episodes of LRTI, 202 (7.4%) samples were positive for 

hMPV (Figure 3.1). hMPV was identified in 154 (9.1%) of 1686 samples in HIV 

uninfected children compared to 45 (4.5%) of the 992 samples in HIV infected 

children (P=0.001). Overall hMPV was identified in 76 children that were given 

the PCV and 126 that were given placebo (P=0.01). Of the 76 PCV recipients 

positive for the hMPV, 60 (78.9%) were HIV uninfected and 16 (21.1%) were 

HIV infected compared to placebo recipients where 94 (76.4%) were HIV 

uninfected and 29 (23.6%) were HIV infected. The HIV infection status was 

unknown for three of the children with hMPV that had received placebo. 

 

3.4 Burden of hMPV-LRTI hospitalization in HIV-infected and –

uninfected children not vaccinated with PCV 

The data from children that were given the placebo were used to investigate 

the burden of hMPV. Samples were available for hMPV testing in 2715 

(85.5%) of the 3176 episodes of LRTI hospitalizations. Among the placebo 

recipients that were available for hMPV testing, 1409 (85.8%) of the 1643 

episodes of LRTI required hospitalization. There was no difference in the 

proportion of LRTI episodes for which samples were available for hMPV 

testing between HIV uninfected children (851 [87.5%]) of 973) and HIV 

infected children (536 [84.4%] of 635, P=0.08). Human metapneumovirus was 

identified in a lower proportion of HIV infected children (29 [5.4%] of 536) than 

HIV uninfected children (94 [11.1%] of 973, P=0.004; Table 3.1).  
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Table 3.1: Prevalence of identifying human metapneumovirus (hMPV) compared to other studied respiratory viruses in children not 

vaccinated with a pneumococcal conjugate vaccine. 

Virus identified                      Overall1     HIV uninfected children2  HIV infected children3 

 N  (%)4 O.R. (95% C.I.)5 N (%)4 O.R. (95%C.I.)5 N (%)4 O.R. (95%C.I.); P=5 

RSV6 240 (15.1) 0.55 (0.44-0.70)8  201 (21.1) 0.46 (0.35-0.61)8 31 (5.1) 1.07 (0.62-1.86); P=0.79 

Influenza A virus   73 ( 4.6) 2.04 (1.50-2.78)8  46 ( 4.8) 2.44 (1.67-3.58)8 22 (3.6) 1.59 (0.87-2.91); P=0.10 

PIV 1-37   52 ( 3.3) 2.56 (1.82-3.62)8  33 ( 3.5) 3.45 (2.26-5.31)8 18 (2.9) 1.89 (1.0-3.59); P=0.04 

Adenovirus   32 ( 2.0) 4.79 (3.18-7.26)8  27 ( 2.8) 4.25 (2.69-6.75)8   5 (0.8) 6.96 (2.54-20.6); P<0.0001

HMPV 126  (8.9)    Not applicable  94 (11.1) Not applicable 29 (5.4) Not applicable 

  1Total 1 643 LRTI episodes of which 1 593 tested for viruses other than hMPV and 1409 samples available for hMPV testing.  2 Total 973 LRTI episodes of 

which 951 tested for viruses other than hMPV and 851 samples available for hMPV testing.  3 Total 635 episodes of LRTI of which 613 episodes tested for 

viruses other than hMPV and 536 samples available for hMPV testing. 4Number in column refers to number of isolates and value in parenthesis is a 

percentage of the number of samples tested for that virus. 5Refers to comparing prevalence of identifying the specified virus relative to that of identifying 

hMPV. [Odds ratio (O.R.) 95% confidence interval (95%C.I.); P value (P=)]. 6RSV: respiratory syncytial virus. 7 PIV: parainfluenza virus type 1-3. 8P value 

<0.0001 
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The overall incidence of hMPV-LRTI was however 5.0 (95%C.I.3.3-7.5) fold 

greater in HIV infected children (incidence rate: 2 504 [95%C.I. 1 683-3 577] 

per 100 000) than in HIV uninfected children (incidence rate: 505 [95%C.I. 

409-618] per 100 000, P<0.0001). The estimated incidence of hMPV-LRTI in 

these children, after adjusting for those episodes of LRTI for which specimens 

were unavailable for hMPV testing, was 2 936 [95%C.I.2 042-4 079] per100 

000 in HIV infected children and 575 [95%C.I. 472-695] per 100 000 in HIV 

uninfected children, R.R.5.4; 95%C.I. 3.5-7.5, P<0.0001. 

 

3.5 Seasonality off hMPV in relation to other studied 

respiratory viruses 

Figure 3.2 shows the seasonality of hMPV in relation to the other viruses, 

including all episodes of LRTI that were investigated for the other viruses. 

Human metapneumovirus was identified throughout each of the three years; 

however identification of hMPV peaked during the autumn-winter months 

(April-August). The season appears to follow the RSV season and precede 

the influenza and parainfluenza seasons.  

 

3.6 Prevalence of hMPV in relation to other studied respiratory 

viruses 

Among all the children not vaccinated with PCV, hMPV was identified (126 

[8.9%] of 1 409, Figure 3.1) less frequently than RSV (15.1%; P<0.0001), but 

more commonly than influenza A/B virus (4.6%; P<0.0001), PIV 1-3 virus 

(3.3%; P<0.0001) and adenovirus (2.0%; P<0.0001; Table 3.1).  
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Similarly, identification of hMPV (11.1%) was less common than RSV (21.1%; 

P<0.000) but more frequent than any of the other studied viruses (P<0.0001, 

Table 3.1) in HIV uninfected children. Among HIV infected children hMPV 

(5.4%; Table 3.1) was identified more commonly than parainfluenza type 1-3 

(2.9%; P=0.04) and adenovirus (0.8%; P=0.001). These comparisons did not 

differ significantly when restricting the analyses to only those episodes of LRTI 

for which samples were available for hMPV testing (data not shown) 
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Figure 3.2: Seasonal variation in identifying different respiratory viruses in 

children hospitalized for lower respiratory tract infection between January 

2000 until December 2002. 

Legend: ——■——:respiratory syncytial virus (RSV); - - -▲- - - :influenza A 

virus; - - -♦ - - -: human metapneumovirus (hMPV);    ——□——:parainfluenza 

virus type 1-3.  

Note: Includes all the respiratory viruses that were identified during this study 

period in the cohort of children participating in the phase 3 pneumococcal 

conjugate vaccine efficacy study. Samples were only available on a subgroup 

of children (N=2 715 [88.5%] of 3 069 children on whom nasopharyngeal 

swabs were performed) for human metapneumovirus testing. 
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3.7 Clinical features of human metapneumovirus associated 

lower respiratory tract infections  

Among children in whom hMPV was identified, the only statistically significant 

difference in the clinical features listed in Table 3.2 between PCV and placebo 

recipients was that HIV infected PCV recipients were less likely  (2 [12.5%] of 

16 vs. 13 [44.8%] of 29, P=0.05) to have alveolar consolidation on chest 

radiographs. The data from PCV and placebo recipients were therefore 

combined when analyzing the demographic and clinical features of children 

with hMPV-LRTI (Table 3.2). The overall mean age of children with hMPV-

LRTI was 13.3 months and HIV infected children with hMPV-LRTI were older 

(mean 17.6 months) than HIV uninfected children (12.3 months; P=0.007). 

Furthermore, HIV infected children had a longer duration of hospital stay (5.8 

vs. 4.1 days, P=0.003) as well as a higher mortality rate (4.4 vs. 0%, P=0.05) 

compared to HIV uninfected children (Table 3.2). Both of the children who 

died were HIV infected and were males aged 4.5 and 21.7 months. The 

younger of these children had concurrent Pneumocystis jiroveci pneumonia 

(PCP). The older HIV infected child who died was not investigated for PCP. 

The only child that required mechanical ventilatory support was a 4 month old 

HIV uninfected child from whom RSV was concurrently identified from the 

nasal aspirate.  

 

Additional differences observed between HIV infected children and HIV-

uninfected children are shown in Table 3.2. These included the observations 

that HIV infected children were more likely to have concurrent bacteremia 

(16.3% vs. 0%, P<0.0001), had higher median CRP levels (43mg/l; P=0.04) 
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nd were more likely to present with pneumonia than bronchiolitis (P=0.0001). 

Pneumocystis jiroveci pneumonia was diagnosed in two (25%) of eight HIV 

infected children with hMPV-LRTI in whom an immunofluorescence assay 

was performed to identify Pneumocystis jiroveci cysts. Concurrent respiratory 

viral infections occurred in one HIV infected child and 12 (7.8%) of 154 HIV 

uninfected children. This mainly involved the co-presence of respiratory 

syncytial virus (8 [61.5%] of 13], Table 3.2. 

 

3.8 Discussion 

Serological diagnostic testing requires paired sera (acute and convalescent 

sample) and hMPV replicates slowly in culture and may also yield false 

positives (Ebihara et al., 2004b) making both of these methods unsuitable for 

clinically investigating for hMPV-associated disease. RT-PCR is sensitive, 

less labour intensive and does not require sophisticated equipment. It has 

been used by most studies that have investigated the prevalence of hMPV 

(Hamelin et al., 2004; Hamelin and Boivin, 2005). The present study used a 

nested RT-PCR assay to detect for hMPV RNA isolated from stored 

nasopharyngeal aspirates. The primary RT-PCR was done using a one step 

approach to avoid contamination that may have arisen due to the high 

throughput (2715 samples) of samples. The nested PCR was used to 

increase the sensitivity of PCR as the yield of RNA from stored NPA may be 

suboptimal. 
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Table 3.2: Demographic and clinical characteristics of human immunodeficiency virus type-1 (HIV) infected and -uninfected children 

hospitalized for human metapneumovirus (hMPV) associated lower respiratory tract infections 

Demographic/ clinical feature Overall                          

N=202 

HIV infected              

N=45 

HIV uninfected          

N=154 

P value1 

Median age (range)- months 13.3 (1.4-49.2) 17.6(4.5-44.3) 12.3 (1.4-49.2) 0.007 

Male: female 1.3:1 1.4:1  1.3:1  0.84 

Gestational age <37 weeks at birth (%)  42  (20.8) 11 (24.4) 31  (20.1) 0.53 

Mean  (S.D.) oxygen saturation2 92.0 (4.2) 90.8 (6.0) 92.4 (3.4) 0.03 

Mean (S.D.) axillary temperature oC 37.4 (0.8) 37.6 (0.9) 37.4 (0.8) 0.18   

Bronchiolitis (%)   80 (39.6)   7 (15.6) 73 (47.4) 0.0001 

Clinical pneumonia (%) 119 (58.9) 38 (84.4) 81 (52.6) 0.0001 

Median (range) CRP-mg/l3 23 (1-435) 43 (2-435) 18 (1-405) 0.04 

Median (range) WCC x109 cells/ml4 10 (3-30) 10.2 (3-21.3)  10 (4.3-30) 0.81 
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Median (range) procalcitonin –ug/ml5 0.2 (0.1-85.1) 1.3 (0.1-85.1) 0.2 (0.1-43.0) 0.62 

Alveolar consolidation on CXR (%) 6 49 (24.3) 15 (33.3) 34 (22.1) 0.12 

Bacteria from blood culture7   7  (3.7)   7 (16.3)   0 (0)   <0.0001 

Other viruses cultured8 13 (6.4)  1 ( 2.2) 12 (7.8) 0.30 

Mean (range) hospital stay- days  3.5 (1-35) 5.8 (1-21) 4.1 (1-35) 0.003 

Case fatality rate (%)  2 (0.01)   2 (4.4)   0  (0) 0.05 

1Comparing HIV infected to HIV uninfected children. 2 Measured by a pulse oximeter in room-air upon admission to hospital. 3C-reactive protein 

(CRP) test performed in 27 HIV infected and 91 HIV uninfected children. 4Involves 10 observations in HIV infected and 19 observations in HIV 

uninfected children. WCC=white cell count.5Involved 9 observations in HIV infected and 83 observations in HIV uninfected children. 6Alveolar 

consolidation on chest radiograph using study-specific interpretation and definition criteria.(Cherian et al., 2005)7 Involved 189 observations overall, 

43 in HIV infected children and 146 in HIV uninfected children in whom blood cultures were performed. Bacteria cultured in HIV infected children 

were Streptococcus pneumoniae (n=4), Salmonellla sp. (n=2) and Streptococcus viridans (N=1). Further 20 contaminants cultured in HIV infected 

and uninfected children each.8 Other viruses identified were respiratory syncytial virus (1 in HIV infected and 8 in HIV uninfected children), and three 

influenza A virus and one adenovirus in HIV uninfected children.  
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Although more sensitive quantitative methods may be used to detect hMPV 

RNA, detecting hMPV in as low as 5 copies of RNA (Cote et al., 2003; 

Mackay et al., 2003; Maertzdorf et al., 2004), these methods require the used 

of expensive real time detection systems. Therefore the use of a nested PCR 

assay may be sufficient to detect for the presence of hMPV RNA used in the 

present study and reported elsewhere (Kaida et al., 2006). However despite 

the sensitivity of the methods used it is still possible that factors such as 

storage and transport of samples may lead to the underestimation of the 

prevalence of hMPV in the present study. 

 

The overall prevalence of hMPV RNA among the children hospitalized with 

LRTI over the study period (2000-2002) was 7.4%. Among the placebo 

vaccinated group, there were more cases of hMPV–LRTI associated 

hospitalization in HIV uninfected (11.1%) compared to HIV infected children 

(5.4%), however the overall measured incidence rate was 5.0 fold higher for 

HIV infected children than HIV uninfected, emphasizing the increase burden 

of hMPV associated LRTI in HIV-1 infected children. 

 

The overall estimated probable incidence of hMPV in HIV uninfected children 

in the present study (505-575 per 100 000) was greater than that reported by 

Peiris et al. in Hong Kong for children <6 years of age (i.e. 422 per 100 000) 

(Peiris et al., 2003). Furthermore, the present study probably underestimated 

the incidence of hMPV related hospitalizations since the estimates focused on 

hMPV-LRTI and excluded children hospitalized for non-LRTI hMPV related 

respiratory illness, e.g. asthma. Recently, Williams et al. observed that only 
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2% of children with hMPV associated LRTIs required hospitalization (Williams 

et al., 2004) suggesting that the overall incidence of hMPV-LRTI in HIV 

uninfected children may be as high as 28 750 per 100 000 children as the 

present study was limited to hospitalized children. As children with non-LRTI 

illness were not systematically investigated for respiratory viruses during the 

course of this study it is not possible to provide an estimate of the overall 

burden of hMPV associated hospitalizations. 

 

The peak period for hMPV-LRTI appeared to occur after the peak for RSV 

LRTI and preceded the peak observed for influenza virus associated LRTI in 

the years 2000 and 2001, the imbalance in sample availability between 

episodes of LRTI associated with the presence and absence of the other 

viruses, makes it difficult to draw any definite conclusions on the exact timing 

of the hMPV epidemics. Nevertheless, the data indicate that hMPV was 

identifiable throughout the year and the peak period for hMPV-LRTI 

hospitalizations occurred within the same window period when the incidence 

of hospitalization peaked for respiratory syncytial virus, influenza virus and 

parainfluenza virus associated LRTI. Similar to the findings from a Canadian 

study,(Boivin et al., 2003) the RSV epidemic was more prolonged than the 

hMPV epidemic. In addition, perennial identification of hMPV coupled with 

peak periods as identified in the present study have also been reported in 

Hong Kong and North America (Peiris et al., 2003; Williams et al., 2004). 

 

In the present study the hMPV was second to RSV as the most frequently 

identified respiratory virus in HIV uninfected children (11.1% vs. 21.1%); and 
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as common as RSV (5.1% vs. 5.4% for hMPV) in HIV infected children, thus 

highlighting it’s importance to the pathogenesis of LRTI. It is possible that the 

importance of the role of hMPV in children with LRTI compared to the other 

studied viruses may be over-estimated due to differences in the methods used 

for identifying the various viruses. Although the sensitivity of direct 

immunofluorescence testing is reported to be greater than 90% (Gardner, 

1970) the use of RT-PCR for identifying hMPV may however have resulted in 

a bias in favor of detecting hMPV. 

 

Despite identifying hMPV less frequently in HIV infected compared to HIV 

uninfected children with LRTI, the absolute burden of hMPV-LRTI was 5.0-5.4 

fold greater in HIV infected than –uninfected children This observation is in 

keeping with our findings for other respiratory viruses (Madhi et al., 2000). 

This is due to the heightened susceptibility of HIV infected children to other 

respiratory pathogens, hence, viruses being proportionately less common 

among these children compared with HIV uninfected children. The differences 

in the clinical spectrum of hMPV-LRTI observed between HIV infected and 

HIV uninfected children were similar to observations of differences in the 

clinical presentation of other respiratory viruses between HIV infected and HIV 

uninfected children (Madhi et al., 2002a; Madhi et al., 2002b; Madhi et al., 

2001). The complexity of pneumonia in HIV infected children is once again 

highlighted by the higher prevalence of bacterial co-infections including the 

broader repertoire of bacteria which cause infections in HIV infected children, 

as well as that concurrent Pneumocystis jiroveci was identified in 25% of the 

HIV infected children who were investigated for PCP. These factors may 
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explain the higher median CRP levels, longer duration of hospitalization and 

the higher mortality rate in HIV infected compared to HIV uninfected children 

hospitalized for hMPV-LRTI. The older median age of hMPV-LRTI is most 

likely due to HIV infected children remaining at risk of developing hMPV-LRTI 

beyond the age-group period when the risk of hMPV-LRTI is reduced in HIV 

uninfected children. The clinical characteristics described in Table 3.2 did not 

differ statistically between PCV and placebo recipients except for 

radiologically confirmed pneumonia. Nevertheless, the inclusion of PCV 

recipients in this analysis may have inadvertently biased the clinical 

presentation toward a milder illness as shown later in this thesis PCV 

vaccination was associated with a 58% reduction in hMPV–LRTI 

hospitalization (Chapter 5). 

 

In conclusion the present study demonstrates that the human 

metapneumovirus is a common respiratory pathogen in South Africa that is 

associated with a higher risk of LRTI associated hospitalizations among HIV 

infected than HIV uninfected. 
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CHAPTER 4 

MOLECULAR EPIDEMIOLOGY OF HUMAN 

METAPNEUMOVIRUS IN SOUTH AFRICA 

4.1 Human metapneumovirus genotyping 

92 (40%) of the 230 samples that tested positive for the hMPV by RT-PCR 

were randomly selected from each month for which hMPV was isolated and 

genotyped by sequencing part of the F gene using primers as described in 

chapter 2. Forty (43.4%) samples were selected from the 2000 epidemic, 34 

(37%) samples from 2001 and 18 (19.6%) samples from 2002. Due to the 

limited amount of RNA only 61 (66%) of the 92 hMPV positives were available 

for sequencing of the attachment glycoprotein (G) gene.  

 

4.2 Phylogenetics Analysis based on the sequences of hMPV 

F gene 

Phylogenetic analysis based on the partial sequences of the hMPV F gene for 

the 92 selected strains demonstrated the presence of two major genetic 

groups (A and B) and 2 subgroups (1 and 2) in South Africa during the study 

period. The presence of these groups (A and B) and subgroups (1 and 2) 

were supported by bootstrapping (bootstrap values of 100%) and the 

clustering with prototype strains from the Netherlands and Canada.  
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The nomenclature adopted in this study to classify or genotype the South 

African strains (viz: A1, A2, B1 and B2) has been used by van den Hoogen et 

al and proposed by Mackay et al as the standard nomenclature to define the 

groups and subgroups (Mackay et al., 2004; van den Hoogen et al., 2004a). 

 

Most of the strains, 56 (60.9%) clustered together with the prototype A strains 

(NL/1/00, NL/17/00, hMPV13-00 and CAN97-83) from the Netherlands and 

Canada. The remaining 36 (39.1%) strains clustered with the group B 

prototypes (NL/1/99, NL/1/94, CAN95-98 and hMPV33-01) from the 

Netherlands and Canada. Thirty eight (67.9%) of the 56 group A strains 

clustered with the group A1 prototypes from the Netherlands (NL/1/00) and 

Canada (hMPV13-00). The other 18 (32.1%) group A strains clustered with 

prototypes strains NL/17/00 and CAN97-83, representing subgroup A2. The 

majority of the group B strains (91.7%) clustered with prototype strains B2 

from the Netherlands (NL/1/94) and Canada (CAN75-98) and the other 2 

groups B strains, clustered with the subgroup B1 prototypes. 

 

From the topology of the tree (Figure 4.1) subgroup B2 was the most 

divergent and although the South African hMPV strains clustered with both 

Canadian and Netherlands prototypes, the South African subgroup A1 virus 

clustered more closely with the Canadian prototype. 
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4.3 Multiple genotypes of hMPV based on attachment 

glycoprotein (G) gene 

Phylogenetic analysis based on the sequence of the G gene supported the 

existence of two distinct genetic lineages and two sub lineages. From the 

topology of the tree (Figure 4.2) and supported by bootstrap values 70-100%, 

it appears that multiple genotypes may exist within each group as described 

for RSV (Sullender, 2000). Applying the method describe for RSV to assign 

genotypes (sequences that clustered together with bootstrap value of 70-

100% (internal nodes at the internal branches) are considered a genotype 

(Peret et al., 2000; Peret et al., 1998) to the hMPV, multiple lineages may also 

exist for hMPV. From the topology and supported by bootstrap values, 

subgroup A1 may be divided into 5 genotypes, subgroup A2 into 2 genotypes, 

B1 into 2 genotypes and B2 into 6 possible genotypes. 
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Figure 4.1. Neighbour-joining trees based on nucleotide sequences from the 

partial F gene open reading frame from 61 South African hMPV isolates. The 

trees were computed with MEGA version 2.1 using the Nucleotide: Kumira 2-

parameters (Kumar et al., 2001a). Bootstrap probabilities for 500 replicas are 

shown at the branch nodes. Only values of 70-100% are indicated. Isolates 

from South Africa are indicated by RSA followed by the isolate number and 

year (e.g. RSA/18/02). The viruses from Canada (CAN97-83, hMPV13-00, 

CAN75-98 and hMPV33-01) and the Netherlands (NL/1/00, NL/17/00, NL/1/99 

and NL/1/94) are prototypes from each subgroup. 
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Figure 4.2. Neighbour-joining trees based on nucleotide sequences from the 

G gene open reading frame from 61 South African hMPV isolates. The trees 

were computed with MEGA version 2.1 using the Nucleotide: Kumira 2-

parameters (Kumar et al., 2001a). Bootstrap probabilities for 500 replicas are 

shown at the branch nodes. Only values of 70-100% are indicated. Isolates 

from South Africa are indicated by RSA followed by the isolate number and 

year (e.g. RSA/18/02). The viruses from Canada (CAN97-83, hMPV13-00, 

CAN75-98 and hMPV33-01) and the Netherlands (NL/1/00, NL/17/00, NL/1/99 

and NL/1/94) are prototypes from each subgroup 
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4.3 Genetic diversity in the hMPV  

Genetic variability was determined by nucleotide sequencing of a 581 base 

pair fragment in the F gene and the entire G gene protein. The predicted 

amino acid sequence was determined using MEGA version 2.1 (Kumar et al., 

2001b). 

 

4.3.1 Variability of the fusion gene protein 

Only part of the F gene was sequenced, therefore the identities presented 

here are estimates of the entire gene. From the partial sequence an amino 

acid alignment presenting amino acids (44-236 of the prototype Netherlands 

strain (NL/1/00)) was compared with the prototypes as shown in Appendix 1 

(only strains that differed are shown).  

 

The estimated nucleotide and amino acid identities showed a high percentage 

identity for the F gene (Table 4.1). Between the major groups (A and B), the 

estimated identities ranged between 83-85% at the nucleotide level and 

between 93.2-95.8% at the amino acid level. Within groups (Table 4.1) 

identities ranged between 93-95% between A1-A2 and 98-100% between B1-

B2 at the nucleotide level. At the amino acid level the identities were 93.3-

97.9% between A1-A2 and 98.4% between B1-B2. 

 

Of the 92 South African hMPV that were sequenced, the predicted amino acid 

alignments are only shown for strains that differed from the Netherlands 

prototypes (Appendix 1). Within this region, between amino acid 44-236 

(corresponding to NL/1/00), cysteine residues were conserved in all South 
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African strains at position 60 and 182. Two potential conserved N linked 

glycosylation sites in the predicted F protein were observed in all the South 

Africa strains. Group specific amino acid residues were present at positions 

122, 135, 139, 167, 175 and 233 differentiating between groups A and B. 

Amino acid substitutions at various positions were exclusive to subgroups A1 

(amino acids [aa] 61, 82, 143), A2 (aa 61, 143, 185) and subgroups B1 (aa 

46, 143, 179) and B2 (aa 143).  

 

4.3.2 Variability of the G gene protein 

Sequence data showed the G gene to be high variable (Table 4.1). The G 

gene identities were 45.1-53.1% between groups at the nucleotide level and 

22.4-27.6% at the amino acid level. There was also variability within groups, 

however not as high as between groups (Table 4.1). 

 

The predicted G ORF amino acid alignments of unique South African strains 

with prototypes from Netherlands and Canada are shown in Appendix 2. 

Sequence variation due to nucleotide substitutions and insertions led to 

variable lengths in polypeptides ranging from 228 amino acid residues 

(subgroup A2) to 240 amino acid residues (subgroup B2). The hMPV G ORF’s 

of subgroups A2 and B1 terminated using the TAA codon whereas the 

subgroup B2 isolates terminated by TAG codon. For both genetic groups (A 

and B) a conserved cysteine residue was present in the intracellular domain. 

A second cysteine residue was present in all but two group B viruses 

(RSA/71/00 and RSA/90/00) were observed. 
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Table 4.1 The human metapneumovirus (hMPV) F and G gene nucleotide and 

amino acid identities of the South African strains over three consecutive years 

(2000-2002) 

 

% nucleotide (amino acid) identities 

 

 

                    

                    

Subgroups 

 

A1                                      A2                                      B1                                     B2 

 

Gene 

     

 

F 

 

A1 

 

99-100 (98.4-100) 

 

93-95 (96.3-97.9) 

 

83.8-84.1 (93.2-

94.3) 

 

82.7-84.5 (94.3-

95.8) 

          A2  99-100 (99.4-100) 83-83.8 (94.3) 83.1-85 (95.3-95.8) 

          B1   98-100 (100) 93-95 (98.4) 

          B2    96-100 (99.4) 

 

G 

 

A1 

 

95.4-100 (87.5-100) 

 

72.8-74.7 (55-63.6) 

 

45.9-47.8 (24.3-

26.2) 

 

47.4-48.7 (22.4-

26.7) 

 A2  95-100 (88.6-98.1) 50.3-51.8 (25.4-

27.7) 

51-53.1 (23.6-27.6) 

 B1   93.2 (87.9) 77.4-80.5 (58.2-

62.8) 

 B2    93.2-100 (82.8-100) 
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The predicted G ORF revealed a high serine and threonine content ranging 

from 30.7-34.9% for group A and from 30.6-36.6% for group B isolates. The 

proline content varied among the subgroups with subgroups A2 ranging from 

7.6-9.0%, A1 ranging from 9.0-9.9%, B1 from 7.8-8.7% with B2 containing the 

lowest proline content ranging from 3.7-5.2%. There was only one conserved 

potential N-linked glycosylation site that was located at the junction of the 

intracellular and transmembrane domain.  

 

The potential structure of the G protein was predicted using hydrophobicity 

plots using the procedure of Kyte and Doolittle (Kyte and Doolittle, 1982) was 

determined using Bioedit version 5.09 (Hall, 1999) for all subgroups A1, A2, 

B1 and B2 (Figure 4.3-4.6). Based on these plots the G protein has a 

transmembrane domain. Present in all subgroups was a hydrophilic N 

terminus followed by a short hydrophobic region of 20 amino acid and a C 

terminus that was predominantly hydrophilic. 
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Figure 4.3 A Hydrophobicity plot from the hMPV subgroup A1 (RSA54/01) G 

protein. The hydrophobic region is above the zero value on the y axis and 

hydrophilic below the zero value. The scale on the x axis indicates the amino 

acid residues beginning with the N-terminal. 
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Figure 4.4 A Hydrophobicity plot from the hMPV subgroup A2 (RSA7/00) G 

protein. The hydrophobic region is above the zero value on the y axis and 

hydrophilic below the zero value. The scale on the x axis indicates the amino 

acid residues beginning with the N-terminal. 
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Figure 4.5 A Hydrophobicity plot from the hMPV subgroup B2 (RSA4/00) G 

protein. The hydrophobic region is above the zero value on the y axis and 

hydrophilic below the zero value. The scale on the x axis indicates the amino 

acid residues beginning with the N-terminal. 
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Figure 4.6 A Hydrophobicity plot from the hMPV subgroup B1 (RSA23/02) G 

protein. The hydrophobic region is above the zero value on the y axis and 

hydrophilic below the zero value. The scale on the x axis indicates the amino 

acid residues beginning with the N-terminal.B1 RSA23/02 
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4.4 Circulation pattern of genotypes over 3 years in a single 

South African community 

All subgroups circulated over the study period, and at least two of the 4 

subgroups co-circulated in each year, with one subgroup dominating (Table 

4.2). Subgroup B2 and A2 co-circulated during the 2000 epidemic, with 72.5% 

of the circulating viruses belonging to subgroup B2. In 2001 three subgroups 

of hMPV co-circulated, A1, A2 and B2 with the majority of infections caused 

by the A1 (67.7%). Subgroup B2 viruses significantly declined (4 [11.8%] of 

34) in 2001 compared to 2000 (29 [72.5%] of 40; P<0.0001). The number of 

infections in 2002 was down and subgroup A1 and B1 co-circulated, with 

subgroup A1 responsible for 83.3% of all infections. Subgroups A2 and B2 

were not detected in 2002 

 

4.5 Discussion 

Genetic variability is a strong indicator of positive selection and affects the 

ability of a virus to continue circulating in a population. Such variability poses 

a challenge for the future development of vaccines against hMPV as 

molecular epidemiology studies, including in South Africa, indicate there to be 

a broad diversity of genetic groups in sequential epidemics. 

 

The hMPV is a novel respiratory pathogen that resembles the RSV causing 

seasonal epidemics with symptoms that are indistinguishable from RSV.  

Molecular genetic studies have shown that like RSV, there are two distinct 

genetic groups of hMPV that cause the seasonal epidemic. These studies 
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have been limited to the developed world and no studies have investigated 

the molecular epidemiology of hMPV in countries that have high prevalence of 

paediatric HIV infection. 

 

The present study reports on the largest community-based phylogenetic study 

of hMPV in Africa that examines both surface glycoproteins and provides 

evidence for the circulation of hMPV in a single African community over 3 

consecutive years. Based on phylogenetic analysis and genetic distances two 

distinct genetic groups (A and B) and subgroups (1 and 2) were found. This is 

consistent with reports from elsewhere (Bastien et al., 2004; Bastien et al., 

2003a; Boivin et al., 2002; Esper et al., 2004; Gerna et al., 2005; Mackay et 

al., 2004; Peret et al., 2004; Peret et al., 2002; van den Hoogen et al., 2004a). 

The clustering of the South African strains with strains from the Netherlands 

and Canada suggests a temporal distribution of hMPV variants. Furthermore, 

in addition to the 4 lineages (A1, A2, B1 and B2) multiple sub lineages (Huck 

et al., 2006) may exist for hMPV that needs to be characterized at the 

antigenic level and the clinical impact characterized. 

 

The existence of these two major genetic groups (A and B) and the presence 

of multiple lineages observed here and reported by others (Bastien et al., 

2004; Huck et al., 2006; Schildgen et al., 2004) impacted on the ability of 

hMPV to cause seasonal epidemics in South Africa. 
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Table 4.2 Distribution of human metapneumovirus (hMPV) genotype 

subgroups over three consecutive years (2000-2002) in a single community 

 
                                                                       Subgroups 
       

 
Year 

 

 
Total 

 
A1 

 
A2 

 
B1 

 
B2 

 
2000 

 
40 

 
0 

 
11(27.5)1 

 
0 

 
29(72.5) 

 
2001 

 
34 

 
23(67.7) 

 
7(20.5) 

 
0 

 
4(11.8) 

 
2002 

 
18 

 
15(83.3) 

 
0 

 
3(16.7) 

 
0 

 
2000-2002 

 
92 

 
38 

 
18 

 
3 

 
33 
 

1Value in parenthesis is a percentage of individual subgroups of virus in 

relation to the rest of the viruses identified in a particular year. 
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The study shows the co-circulation of both groups A and B in the same 

epidemic in a single community consistent with other reports (Boivin et al., 

2002; Esper et al., 2004; Gerna et al., 2005; Mackay et al., 2006; Mackay et 

al., 2004; Peret et al., 2004; Sarasini et al., 2006; Williams et al., 2006). 

Although all four sub-lineages were found to circulated in South Africa during 

the study they did not all co-circulate in each year as was observed in 

Australia (Mackay et al., 2006) and in Italy (Gerna et al., 2005). In South 

Africa three subgroups co-circulated in 2001 and two subgroups in other 

years. The present study showed that in 2000 subgroup B2 predominated 

(72.5% of circulating strains) but declined in 2001 (11.8% of circulating 

stains). In 2001 subgroup A1 emerged and replaced subgroup B2 as the 

predominant strain, predominating in 2001 and 2002. The emergence of B1 

strains in 2002 and its absence in previous years may have been due to pre-

existing community immunity and not to diagnostic assay limitations as was 

suggested by others (Mackay et al., 2004).  

 

The predominance of subgroup A1 during 2001 was not restricted to South 

Africa as it was also detected as the predominating circulating virus in 

Australia and Italy during the same year (Gerna et al., 2005; Mackay et al., 

2004) suggesting a global distribution in the same year. 

 

The annual change in the circulation pattern and a switch in predominating 

strains in successive years reported here and by others (Gerna et al., 2005; 

Mackay et al., 2006; Mackay et al., 2004; Peret et al., 2004) provide evidence 

that pre-existing immunity may result in a change in dominant hMPV.  
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Similar findings in changes of the dominant group of virus that emerges, 

fostered by a high prevalence of pre-existing community immunity to the other 

viral group, has been documented for RSV (Cane et al., 1994; Coggins et al., 

1998; Peret et al., 2000; Peret et al., 1998) 

 

The significance of the higher number of group A strains (60.1%) compared to 

group B strains (39.1%) detected in the present study period is unclear, but 

may be due to differences in virulence between the 2 groups or to immunity in 

the community. Several studies have proposed that group A viruses may be 

more virulent than group B virus (Esper et al., 2004; Mackay et al., 2004; 

Vicente et al., 2006), however, this observation has not been noted by others 

(Agapov et al., 2006; Ebihara et al., 2004b). An association between viral 

genotype and clinical severity cannot be made from the present study as the 

patients used in the present study were all hospitalized with LRTI.  

 

Genetic diversity may lead to antigenic variability and surface glycoproteins 

are believed to be the major neutralizing and protective antigens. To address 

the genetic variability of strains from South Africa strains the fusion gene and 

the entire attachment glycoprotein were sequenced. The F protein gene of the 

hMPV is a surface glycoprotein and believed to the major antigenic 

determinant that mediates extensive cross-lineage neutralization and 

protection (MacPhail et al., 2004; Skiadopoulos et al., 2006; Skiadopoulos et 

al., 2004). The low variability observed here for the F gene is in keeping with 

other studies that have shown it to be highly conserved (Bastien et al., 2003a; 

Biacchesi et al., 2003; Boivin et al., 2004; Peret et al., 2004; van den Hoogen 
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et al., 2004a). Further, the structural features based on the partial sequence of 

the hMPV F protein were similar to those reported by others within this region 

(between amino acids 44-236). The two potential N-linked glycosylation sites 

as well as the conserved cysteine residues at amino acid positions 60 and 

182 were also present in strains from other geographical regions (Boivin et al., 

2004) 

 

The presence of specific amino acids in the F gene that may distinguish the 

hMPV between groups appears to be universal as these specific amino acids 

have also been observed in isolates from other geographical areas (Boivin et 

al., 2004). In addition to the group and subgroup specific amino acids 

observed in the partial sequence of the F gene in the present study other 

amino acids in other regions of the F protein have also been identified as 

group differentiation markers (van den Hoogen et al., 2004a). 

 

In contrast to the F gene protein, a high degree of variation was observed for 

the G gene in this study, confirming reports by other (Biacchesi et al., 2003; 

Peret et al., 2004; van den Hoogen et al., 2004a). Most of the variation was 

observed in the extracellular domain and was due to nucleotide substitutions, 

in frame insertions and the use of alternative termination transcription codons 

(TAA or TAG) producing polypeptides of variable lengths. The high level of 

variation observed in the present study for the hMPV G gene from clinical 

samples also confirms that the variation, as observed by another study (Peret 

et al., 2004), was not due the passage of hMPV in cell culture. This high level 
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of variation particularly at the amino acid level for the G gene protein may be 

due to positive selection, which may be the result of immunological pressure.  

 

The structural features of the hMPV G protein such as the high serine-

threonine content, high proline content and a variable number of possible N-

linked glycosylation sites together with hydrophilic amino and carboxy termini 

as the observed here for both groups (A and B) are consistent with previous 

studies (Bastien et al., 2004; Peret et al., 2004; van den Hoogen et al., 2004a) 

that suggest the G attachment protein to be an anchored type II mucin like 

transmembrane protein.  

 

In summary, this is the first study to describe the molecular epidemiology of 

the hMPV over three consecutive seasons in Africa. The study shows that four 

genetic sub lineages of hMPV circulate in Africa with a switch in 

predominating group in successive seasons. The high genetic variability in the 

G gene causing amino acid changes suggests strong selective pressure.  

 

 

 

 

 

 

 

 

 



 85

CHAPTER 5  

PNEUMOCOCCAL CO-INFECTION WITH HUMAN 

METAPNEUMOVIRUS 

5.1 Study Aim  

This aspect of the study aimed at defining the minimal role of pneumococcal 

co-infection in the pathogenesis of hMPV-associated LRTI, by using PCV-9 as 

a probe to determine the role of S. pneumoniae in hMPV associated LRTI.  

Of the 202 samples that were positive for hMPV, 149 were from children that 

had been fully vaccinated per protocol; i.e. the child received all three study 

doses of vaccine within protocol defined periods. 195 children were included 

in the intent-to-treat (ITT) analysis; i.e. following receipt of the first dose of 

study vaccine. The HIV status was available for 199 (98.5%) of the 202 

children in whom hMPV was identified. 

 

5.2 The effect of pneumococcal conjugate vaccine on the 

incidence of hospitalization for hMPV-associated pneumonia 

In fully vaccinated children, the incidence of hospitalization for at least one 

episode of hMPV-associated LRTI was reduced by 46% (P = 0.0002) overall, 

45% (P=0.002) in HIV uninfected children and by 53% (P=0.035) in HIV 

infected children (Table 5.1). The intent-to-treat (ITT) estimates (Table 5.2) of 

vaccine efficacy (VE) for most of the outcomes were not significantly different 

to the estimates in the per-protocol (PP) analysis.  
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There were no differences observed in the vaccine efficacy intent-to-treat 

analysis for hMPV LRTI across the various age-groups overall (P=0.58), in 

HIV uninfected children (P=0.51) or in HIV-infected children (P=0.98). There 

was a trend to a lesser effect of the vaccine in reducing the incidence of 

hMPV-associated LRTI in vaccine recipients <6.0 months of age, compared 

with that in older children (Table 5.3). 

 

Overall there was a significant reduction in clinical pneumonia among 

vaccinees (58%; P=0.0001), in HIV uninfected children (55%; P=0.003) and in 

HIV infected children (65%; P=0.02). In addition, using the WHO criteria for 

severe/very severe pneumonia as an outcome, a 44% (P=0.003) reduction 

was observed overall, 40% (P=0.02) in HIV uninfected children and 53% 

(P=0.04) in HIV infected children (Table 5.1).  

 

5.2.1 The impact of PCV on the incidence of hMPV associated “bacterial 

pneumonia” 

The impact of PCV on the incidence of hMPV-associated “bacterial 

pneumonia” was assessed using outcomes that are more specific for 

“bacterial pneumonia”; viz radiologically confirmed pneumonia (CXR-AC) and 

LRTI associated with an elevated CRP of ≥40mg/l. 

 

5.2.1.1 Chest radiograph confirmed pneumonia 

Chest radiographs were available for 176 (90.3%) of the 195 children with 

hMPV LRTI, 134 (89.9%) of 149 HIV uninfected children and 39 (90.7%) of 43 

HIV infected. Overall a 56.0% (P=0.02) reduction in hMPV pneumonia
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Table 5.1: Percentage efficacy of pneumococcal conjugate vaccine by per protocol analysis in the prevention of human metapneumovirus 

associated respiratory tract infections. 

             Overall          HIV uninfected              HIV infected hMPV    
associated 
measured Vaccine  Placebo  Efficacy 

95%C.I. 
P 
value 

Vaccine  Placebo  Efficacy 
95%C.I. 

P 
value 

Vaccine Placebo  Efficacy 
95%C.I. 

P 
value 

LRTI1 52 97 46           
25; 62 

0.0002 41 74 45           
19; 62 

0.002 11 23 53          
3; 77 

0.035

Clinical 
pneumonia  

26 62 58           
34; 73 

0.0001 19 42 55          
22; 74 

0.003 7 20 65          
19; 85 

0.020

CXR-AC2 11            
[47]5 

25            
[88] 

56          
11; 78 

0.02 9              
[36] 

15            
[68] 

40           
-37; 74 

0.31 2             
[11] 

10           
[20] 

80          
10; 96    

0.04 

Bronchiolitis 26 35 26           
-23; 55 

0.25 22 32 31           
-18; 60 

0.17 4 3 -24         
-83;238 

0.99 

WHO severe 
pneumonia3 

41 73 44           
18; 62 

0.003 31 52 40           
7; 62 

0.02 10 21 53          
0; 78 

0.04 

CRP ≥40mg/l4 9             
[31] 

26            
[59] 

65           
26; 84 

0.007 7              
[23] 

18            
[46] 

61           
7; 84 

0.05 2             
[8] 

8             
[13]         

75          
-16; 95 

0.11 

1LRTI=lower respiratory tract infection. 2hMPV LRTI associated with alveolar consolidation on chest radiograph (CXR-AC). 3World Health 

Organization clinically diagnosed LRTI.  4hMPV LRTI with C-reactive protein (CRP) ≥40mg/l. 5Value in squared parenthesis is total number of 

the LRTI episodes for which the test was performed. 
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 associated with CXR-AC was observed (Table 5.1). There was also a 

significant reduction of 80% (P=0.04) in HIV infected children with the CXR-

AC outcome. A significant reduction was not observed (40%, P=0.31) for HIV 

ninfected children for radiologically confirmed pneumonia, but the power of the 

study to detect a significant difference of this magnitude was only 17%. 

 

5.2.1.2. LRTI associated with elevated CRP 

Overall measurements for CRP levels were available for 116 (59.5%) of the 

195 hMPV infected, 88 (59.1%) of the 149 HIV-1 uninfected children and 27 

(62.8%) of the 43 HIV-1 infected children. There was a 65% (P=0.007) 

reduction in the incidence of hMPV pneumonia with a CRP level of ≥ 40 mg/l 

in fully vaccinated recipients (Table 5.1). A significant reduction was only 

observed for the HIV uninfected (61%, P=0.05). There was no difference in 

the proportion of children tested for CRP between PCV and placebo recipients 

(Table 5.1 and 5.2).  

 

5.2.2 Effect of PCV on bronchiolitis 

A non-significant reduction in the incidence of hospitalization for hMPV-

associated bronchiolitis among vaccinees recipients in the entire study 

population (VE, 25%, P=0.21) and HIV uninfected children (VE, 25%, P=0.23) 

was observed (Table 5.2). 
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5.2.3 Coinfection with other pathogens 

Streptococcus pneumoniae was isolated from 4 (2.1%) of the 189 episodes of 

hMPV-associated LRTI for which bacterial blood cultures were performed on 

children. All of the episodes of S. pneumoniae bacteremia in children with 

LRTI occurred in HIV infected children, including 1 (6.3%) of 16 in PCV-9 

recipients and 3 (11.1%) of 27 in placebo recipients. 

 

Overall, among children investigated for all episodes (first and subsequent) of 

hMPV-associated LRTI, the prevalence of co-infection with other respiratory 

viruses was 4.1-fold (95%, CI, 1.1-18.8) greater in PCV-9 recipients (9 

[11.8%] of 76) than placebo recipients (4 [3.2%] of 126) (P=0.02). Similarly, 

HIV uninfected vaccine recipients with hMPV associated LRTI were 3.5 fold 

(95% CI, 0.9-16.4) more likely to be co-infected with other respiratory viruses 

(8[13.3%] of 60) than were placebo recipients (4 [4.3%] of 94) (P=0.06).  

In addition there was one HIV infected PCV-9 recipient with hMPV-associated 

LRTI in whom a viral co-infection was identified. 
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Table 5.2: Percentage efficacy of pneumococcal conjugate vaccine by intent-to-treat analysis in the prevention of human metapneumovirus 
associated respiratory tract infections. 

             Overall          HIV uninfected              HIV infected HMPV 
associated    
outcome  Vaccine  Placebo Efficacy 

95%C.I.
P 
value 

Vaccine  Placebo Efficacy 
95%C.I.

P 
value 

Vaccine Placebo Efficacy 
95%C.I.

P 
value 

LRTI1 72 123 42           
22; 56 

0.0002 57 92 38           
14; 56 

0.004 15 28 47           
1; 72 

0.04 

Clinical 
pneumonia 

38 78 51           
28; 67 

0.0002 27 52 48           
7; 67 

0.005 11 25 56          
12; 78 

0.02 

CXR-AC2 14            
[63]5 

33           
[113] 

58           
21; 77 

0.005 12            
[49] 

21            
[85] 

43           
-16; 72  

0.12  2            
[14] 

12           
[25] 

84           
26, 96 

0.015

Bronchiolitis 34 45 25          
-18; 52 

0.21 30 40 25           
-20; 53  

0.23      4 3 -24          
-83;237 

0.99 

WHO severe 
pneumonia3 

56 93 39           
16; 57 

0.002 42 65 35           
5; 56 

0.03 14 25 45          
-6; 71 

0.07 

CRP ≥40mg/l4 14            
[42] 

32           
[74] 

56           
18; 77 

0.008 10            
[32]          

21            
[56] 

52           
-1; 77 

0.05 4            
[10] 

10          
[17] 

60           
-26; 88 

0.17 

1LRTI=lower respiratory tract infection. 2hMPV LRTI associated with alveolar consolidation on chest radiograph (CXR-AC). 3World Health 

Organization clinically diagnosed LRTI.  4hMPV LRTI with C-reactive protein (CRP) ≥40mg/l. 5Value squared parenthesis is total number of the 

LRTI episodes for which the test was performed.   
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Table 5.3: Percentage efficacy of pneumococcal conjugate vaccine by intent-to-treat analysis in the prevention of human 

metapneumovirus associated lower respiratory tract infections by age-groups at time of hospitalization. 

             Overall          HIV uninfected children              HIV infected children Age-group 

Vaccine  Placebo  Efficacy 

95%C.I. 

P 

value 

Vaccine  Placebo  Efficacy 

95%C.I. 

P 

value 

Vaccine  Placebo  Efficacy 

95%C.I. 

P 

value 

<6.0 mo. 19 22 14        -

59; 53 

0.63 17 18 6              

-83; 51 

0.87 2 3 34            

-295;89 

0.65 

6.1-12.0 mo. 17 35 52          

14; 73   

0.012 13 27 52            

7; 75 

0.027 4 7 43            

-93; 83 

0.36 

12.1-24.0 mo. 23 38 40            

-1; 64 

0.053 20 30 33            

-17; 62 

0.16 3 7 58            

-64; 89 

0.20 

>24.0 mo. 17 31 45            

1; 70 

0.04 10 19 47            

-13; 76 

0.09 7 12 42            

-46; 77 

0.24 



 92

5.3 Discussion 

Animal-model and in vitro studies have shown that respiratory viral infections 

increase the susceptibility to bacterial co-infections (Beadling and Slifka, 

2004; Hament et al., 1999). Defining the role of bacterial coinfection in 

humans is hindered by the absence of sensitive tools to diagnose bacterial 

pneumonia. Experimental tools aimed at improving the sensitivity of diagnosis 

of bacterial pneumonia indicate that approximately one-third of children with 

RSV-associated pneumonia may have pneumococcal co-infections (Juven et 

al., 2000; Michelow et al., 2004). Validating the sensitivity and specificity these 

experimental assays is problematic in the absence of a reference standard 

against which they can be evaluated. 

 

Recently, Madhi and Klugman showed that 3 doses of PCV could reduce the 

incidence of hospitalization for respiratory viral associated pneumonia by 31% 

(95% CI=15-43%; P=0.00009) (Madhi and Klugman, 2004) suggesting that 

prevention of pneumococcal pneumonia by vaccination reduced the severity 

of viral infections and likelihood thereof progressing to severe pneumonia 

requiring hospitalization. By inference, superimposed bacterial infection, 

including S. pnemoniae, appear to be important in the pathogenesis of 

respiratory viral associated pneumonia.  

 

The current study suggests that bacterial co-infection, particularly S. 

pneumoniae, is an integral part in the pathogenesis of hMPV infections 

progressing to pneumonia. The estimated 58% overall reduction in clinical 

pneumonia in vaccinees provides only a conservative estimate of the 
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prevalence of pneumococcal co-infections in children with hMPV associated 

pneumonia. The true prevalence of pneumococcal co-infections in children 

with hMPV associated pneumonia may be even higher than that inferred here. 

Factors that may have resulted in under-estimating the importance of 

pneumococcal co-infections in children with hMPV associated pneumonia 

include: (i) the PCV used in our study only includes 9 of 90 different 

pneumococcal serotypes, albeit those most commonly responsible for 

invasive disease; (ii) PCV efficacy against non-bacteremic pneumococcal 

pneumonia may be less than that observed against invasive disease (83-98%) 

(Madhi and Klugman, 2004; Madhi et al., 2005b) and (iii) there may be an 

excess of non-bacteremic pneumonias due to non-vaccine pneumococcal 

serotypes in the vaccinees. 

 

The role of CRP in discriminating between viral and bacterial infections is 

controversial (Simon et al., 2004) probably due to the lack of sensitive tools 

for identification of bacterial infections, Madhi et al. reported that CRP is 

useful and improves the specificity of chest radiographs in diagnosing 

penumococcal pneumonia (Madhi et al., 2005a). The present study shows 

that PCV reduced the incidence of hMPV pneumonia when CRP levels were ≥ 

40 mg/l, suggesting that the findings by Dollner et al most likely reflected 

undiagnosed bacterial coinfection in those children (Dollner et al., 2004). In 

contrast, CRP levels have been found to be lower in children with hMPV-

associated bronchiolitis (Dollner et al., 2004; Jartti et al., 2004), providing 

indirect evidence that bacterial coinfections may be less important in children 

with bronchiolitis.  
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In summary, the findings of this study suggest that children hospitalized for 

hMPV-associated pneumonia should be treated with antibiotics to cover for 

superimposed pneumococcal infections.  
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CHAPTER 6  

REINFECTION WITH HOMOLOGOUS AND 

HETEROLOGOUS STRAIN OF HMPV 

6.1 Repeat hospitalization for hMPV associated illness 

Eight children had repeated episodes of hospitalization for hMPV associated 

illness which was spaced 30 and 307 days apart. Two of the 8 children with 

repeated episodes of hMPV hospitalization were HIV infected children and six 

were HIV uninfected. Fifteen (88.2%) of the 17 episodes of hospitalization for 

hMPV associated illness in these eight children presented as LRTI.  The ages 

of the children at first diagnosis ranged from 5.8 months to 26.5 months, with 

the second illness occurring between 30-307 days apart.  

 

Adequate samples were only available for further hMPV genotyping analyses 

in 10 of these 17 episodes and genotypes for recurrent episodes were only 

available for 4 children (1 HIV infected and three HIV uninfected).  

 

6.2 Phylogenetic analysis 

Phylogenetic analysis performed on partial F gene sequences for the 10 

strains are shown in Figure 6.1 and genotypes in Table 6.1. Nine of the 10 

strains clustered with subgroup B2 and the other with subgroup A1. Identities 

between the subgroup B2 viruses ranged from 98.9%-100%. Four of the 8 

patients had genotypes for both initial and subsequent infections.  
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Figure 6.1. Neighbour-joining trees based on nucleotide sequences from the 

partial F gene 10 South African hMPV isolates. The trees were computed with 

MEGA version 2.1 using the Nucleotide: Kumira 2-parameters (Kumar et al., 

2001a). Bootstrap probabilities for 500 replicas are shown at the branch 

nodes. Only values of 70-100% are indicated. Isolates used in the analysis for 

repeated infections are indicated by Bara (e.g. Bara01-1 refers to subject 1 in 

Table 6.1 and the virus from the 1st illness, with Bara01-2 indicating the virus 

from the 2nd illness from the same subject, etc). The viruses from Canada 

(CAN97-83, hMPV13-00, CAN75-98 and hMPV33-01) and the Netherlands 

(NL/1/00, NL/17/00, NL/1/99 and NL/1/94) are prototypes for each subgroup. 
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Table 6.1: Repeat episodes of human metapneumovirus (hMPV) associated hospitalizations in children 

N
um

ber 

Age at 1st         

episode         
(months) 

Days          
between     
episodes 

Sex GA1 HIV2          
Infection    
status 

PCV 3           
vaccination  
status 

Virus            
Subgroup      
1st/ 2nd/3rd      
episode 

First Illness                
Diagnosis 

Second Illness           
diagnosis 

Underlying 
or                  
concurrent    
illness  

1  5.8 30 M 40 Negative Placebo NA/NA4 Bronchiolitis Bronchiolitis None 
2 26.5 68 M 35 Infected Placebo B2/NA Bronchopneumonia Lobar pneumonia Ex-prem  
3  5.1 81 F 40 Negative PCV NA/B2 Bronchiolitis and       

gastroenteritis 
Bronchiolitis None 

4 10.9   92 M 40 Negative Placebo B2/B2 Lobar pneumonia Bronchiolitis None 
55 14.0 121 and  

163 
F 40 Infected PCV NA/B2/B2 Bronchopneumonia 

and gastroenteritis 
Bronchopneumonia 
 and gastroenteritis 

Pulmonary  
tuberculosi
s 

6 17.4 244 F 40 Negative PCV B2/A1 Bronchiolitis Bronchopneumonia Concurrent   
RSV              
during 1st 
illness 

7 12.8 304 F 40 Negative PCV B2/B2 Lobar pneumonia Bronchiolitis None 
8 7.4 307 M 34 Negative PCV NA/NA Bronchiolitis Asthma Ex-prem 

and                
concurrent    
RSV              
during 1st 
illness 
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Table 6.1 footnote: 1GA=gestational age at birth. 2HIV: Human 

immunodeficiency virus type-1. 3PCV=pneumococcal conjugate vaccine. 

4NA=sample not available for genotyping. 5Subject had three episodes of 

which sample were only available for the 2nd and 3rd for genotyping. Intervals 

are between the 1st and 2nd and 2nd and 3rd episodes of hospitalization when 

hMPV was identified. Diagnosis at time of 3rd episode was lymphocytic 

interstitial pneumonitis and pulmonary tuberculosis. 
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Patient 4 a male at age 10.9 months had lobar pneumonia caused by a 

subgroup B2 virus and 92 days the second episode of hMPV associated 

illness (diagnosis bronchiolitis) was also due to a virus from subgroup B2. 

Patient 5 had three episodes of hospitalization for hMPV associated illnesses.  

The first episode occurred at age 14 months with the second and third 121 

and 163 from first episode respectively. The hMPV strain causing the first 

episode could be genotyped and genotypes were only available for second 

and third episodes. The virus recovered from these 2 episodes clustered with 

subgroup B2. In addition this patient was HIV seropositive diagnosed with 

bronchopneumonia, gastroenteritis and was concurrently diagnosed with 

pulmonary tuberculosis. Patient 6, a female first episode was at age 17.4 

months caused by B2 virus was diagnosed with bronchiolitis and 

bronchopneumonia 244 days was the second episode caused by an A1 virus. 

This patient was also co-infected with RSV during the first illness. 

Patient 7 also a female was infected 304 days apart on both occasions with a 

B2 virus. 

 

6.5 Discussion 

Animal studies have shown that cross protective immunity between major 

lineages was possible (MacPhail et al., 2004; Skiadopoulos et al., 2004; van 

den Hoogen et al., 2004a). The mechanism by which re-infection occurs is not 

know but may be due to waning of immunity or the initial lack of developing 

immunity following the primary infection. Alternatively there may be prolonged 

shredding of the hMPV.  
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The present study shows that reinfection can occur within 3 months with 

either homologous or heterologous strains in both HIV uninfected and HIV 

infected children. The finding that at least two HIV uninfected children were 

hospitalized for recurrent episodes of LRTI associated with subgroup B2 virus 

with only minor differences in the percent sequence identity of the F protein 

indicate that immunity following a primary infection may be incomplete. This 

may be a result of a poor primary immune response to the viral infection, or of 

waning immunity as these episodes occurred between 92 and 304 days apart. 

Another possibility is prolonged shedding in the subject in whom the episodes 

occurred 92 days apart - for which there was 99.8% identity in the nucleotide 

sequence of studied F protein of the virus identified in each of the episodes. 

The subject with repeat hMPV episodes that occurred 304 days apart, for 

which there was 98.9% identity of the F protein nucleotide sequence studied, 

had two additional episodes of hospitalization for respiratory tract infections 

between these episodes for which nasopharyngeal samples tested negative 

for hMPV, making repeat infections rather than prolonged shedding more 

likely in this subject. The repeat episodes of hMPV-associated hospitalization 

in an HIV infected child with 3 episodes (subject 5 in Table 6.1), especially 

documentation of subgroup B2 virus on the second and third episodes for 

which there was 100% homology in the nucleotide sequence of the F protein 

indicates that identification of hMPV in this child may have been due to 

prolonged shedding of the virus for at least 163 days. Falsey et al. have in 

contrast reported that hMPV was not detected more than 14 days after onset 

of illness in otherwise healthy individuals (Falsey et al., 2006). 
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Re-infection with heterologous strains of hMPV has been reported in an 

immunocompromized child (Pelletier et al., 2002) and recently in a 9 month 

old child who had repeat infections one month apart (Ebihara et al., 2004a). 

Williams et al. reported heterologous hMPV re-infections in a 20 year follow-

up study of children with upper respiratory tract infections, as well as two 

children with homologous re-infection due to subgroup B1 and A2 hMPV 

(Williams et al., 2006). Williams et al. also suggested that primary immunity 

induced following hMPV infection of the LRTI reduced subsequent infections 

in lower respiratory tract and limited the replication of hMPV to the upper 

respiratory tract. In contrast the present study which is limited to children with 

LRTI shows that subsequent infections may also occur in the lower respiratory 

tract. Although the immune response to hMPV infections is unclear for 

humans, animal studies using BALB/c mouse model indicate that the cytotoxic 

T lymphocyte and antibody response to hMPV infection is delayed (Alvarez 

and Tripp, 2005). 

 

In conclusion, the data suggest that similar to RSV (Scott et al., 2006) re-

infection can occur with homologous and heterologous strains of hMPV and 

that prior infection with hMPV is not adequate to protect against subsequent 

infections in some children.  
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CHAPTER 7  

STUDY LIMITATIONS 

The limitations of this study may be due either to molecular or clinical aspects 

and will be discussed below. 

  

7.1 Molecular limitations 

The prevalence of the hMPV-associated LRTI may be underestimated in this 

study probably due the collections, transport as well as the method for 

identification of hMPV used in this study. RNA is unstable and it is possible 

that the transport and storage of NPAs could have compromised the RNA 

yields and detection of true positives despite the use of a sensitive nested RT-

PCR approach. Using a nested PCR approach you also run the risk of 

detecting false positives due to contamination. To reduce the risk of 

contamination, RNA isolation, primary RT-PCR and nested PCR were 

performed in separate laboratories. Further to control for false positives and to 

examine the specificity of the primers, hMPV positives were sequenced. 

 

Although a significant number (40% of all hMPV positives) of hMPV were 

sequenced it still possible that the distribution of the genotypes may be biased 

thus affecting the conclusions on the circulation pattern over the course of the 

study. Another limitation may be the design of the primers, however, it is 

unlikely that this could have any effect on the study as similar results were 

obtained from sequencing and phylogenetic analysis of the both surface 
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glycoproteins, i.e. for example, samples that were genotyped as belonging to 

A1 for the F gene were confirmed as A1 for the G gene. 

 

The present study also describes the F gene to be highly conserved based on 

the identities from the partial sequences of this gene. Although the entire F 

gene was not sequenced a study by van den Hoogen et al. showed that 

similar identities could be obtained from partial and full length sequencing of 

the F gene (van den Hoogen et al., 2004a). 

 

7.2 Clinical limitations  

Although samples were available for hMPV testing in the majority of HIV 

infected and HIV uninfected children, the differences observed between LRTI 

episodes for which samples were and were not available may have some 

implications regarding the study conclusions. These include that younger 

children with hMPV may have been missed and this may have 

underestimated the incidence of hMPV-LRTI in our population since hMPV 

illness is more common during infancy (Williams et al., 2004). The reasons for 

the unavailability of samples in this study may be due to: i. smaller volumes of 

saline being used and/or retrieved when that aspirates were performed in very 

young children; ii. most of the retrieved sample may have been used for 

identifying specific viruses once the pooled respiratory virus screening test 

indicated the presence of one of the viruses which were being studied 

prospectively; and this more commonly occurred in younger children.  
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The prevalence of co-infections with other respiratory viruses may have been 

under-reported in this thesis and may be due to the different methods used for 

detection of other viruses. Co-infection may be particularly important 

regarding the duration of hospitalization and outcome of subjects since, 

although controversial,(Lazar et al., 2004) dual infections with RSV have been 

found to result in more severe disease (Greensill et al., 2003; Konig et al., 

2004). The lack of any difference in the duration of hospitalization or case 

fatality rate of those LRTI episodes for which samples were and were 

unavailable among HIV infected and HIV-uninfected children in this study 

however makes this unlikely. Nevertheless, the differences observed in this 

study between tested and untested episodes of LRTI highlights the problem 

associated with drawing conclusions and making comparisons with the many 

other retrospectively conducted studies which may also have been biased in 

their findings based on the samples available for hMPV testing.  

 

Limitations of the study include differences in the ages of subjects and in the 

prevalence of other respiratory viruses in those LRTI episodes for which 

nasopharyngeal samples were unavailable for hMPV testing. It is, therefore 

possible that the vaccine efficacy in younger children may be lower than that 

observed in the overall population, as suggested by the age group analysis in 

Table 5.3. Possible explanations for this lesser effect in young children may 

be due to the following: 1) hMPV is an independent cause of severe LRTI in 

very young infants; 2) PCV is less able to protect against pneumococcal 

pneumonia in very young infants, since some may not have completed their 

full series of primary vaccination; and 3) coinfections with other viruses, 
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especially RSV which commonly infects infants <6.0 months of age may also 

result in severe LRTI (Cuevas et al., 2003; Greensill et al., 2003). That the 

latter may occur independently of pneumococcal coinfection is indirectly 

supported by in this study, in children hospitalized with hMPV-associated 

LRTI, the prevalence of coinfection with other respiratory viruses was 4.1 

greater among PCV recipients than placebo, suggesting that viral coinfection 

may have been involved in the pathogenesis of severe hMPV-LRTI among 

the PCV recipients. Since some specimens from younger children were 

unavailable for hMPV testing, the bias introduced by the exclusion of those 

samples may have led to a conservative estimate of the association between 

hMPV and other viral pneumonias. 
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CHAPTER 8 

CONCLUDING REMARKS 

Human metapneumvirus was initially isolated from nasopharyngeal aspirates 

collected from 28 children in the Netherlands with respiratory tract infections 

(van den Hoogen et al., 2001). The virus was illusive prior to 2001 due to its 

specific cell culture requirements, but has been circulation in humans for at 

least 50 years (van den Hoogen et al., 2001).  

 

Although not an emerging pathogen in the true sense, the hMPV is still new 

and the epidemiology is still being investigated. Following, its initial isolation 

the hMPV has been shown to circulate worldwide and isolated as the major 

cause of upper and lower respiratory tract infections. Clinically it is 

indistinguishable from RSV, and is second to RSV as the cause of RTI. Its 

seasonality overlaps with RSV and appears to cause infections in children 

that are older than RSV. 

 

The common respiratory viruses such as RSV, influenza A/B, parainfluenza 

types 1-3 have been shown to have a major impact on the morbidity and 

mortality of HIV in South Africa (Madhi et al., 2001). The present thesis 

describes the molecular epidemiology of the hMPV in South Africa and 

examines the impact it has on the burden of disease in HIV infected and 

uninfected children.  
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Using PCR as a diagnostic tool, the hMPV RNA was detected overall in 7.4% 

of children hospitalized with LRTI’s, of which 9.1% where HIV uninfected and 

4.5% HIV infected. The mean age of children with hMPV-LRTI was 13.3 

months and hMPV-LRTI occur at an early age in HIV uninfected (12.3 

months) than HIV infected children (17.6 months; P=0.007). The overall 

measured incidence rate of hMPV-LRTI was higher for HIV infected children 

than HIV uninfected despite hMPV being a less common cause of LRTI in HIV 

infected children compared to HIV uninfected children, a finding in keeping 

with studies of other respiratory viruses in South Africa (Madhi et al., 2000). 

Similarly, hMPV disease was shown be more severe in HIV infected children 

than HIV uninfected children. There was higher mortality rate (4.4 vs 0%; 

P=0.05) and longer duration of hospitalization (5.8 vs. 4.1 days, P=0.003) for 

HIV infected children compared to HIV uninfected. HIV infected children were 

more likely to have concurrent bacteremia (16.3% vs. 0%, P<0.0001), had 

higher median CRP levels (P=0.01) therefore more likely to be co-infected 

with bacteria and were more likely to present with pneumonia than 

bronchiolitis (P=0.0001). In addition, Pneumocystis jiroveci pneumonia (PCP) 

was diagnosed in two (25%) of eight HIV infected children with hMPV-LRTI in 

whom an immunofluorescence assay was performed to identify Pneumocystis 

jiroveci cysts.  

 

hMPV was as common as RSV in being identified in HIV infected children with 

pneumonia and was second to RSV as the most frequent virus identified in 

HIV uninfected children. Similar to RSV, it was shown capable of causing 

repeated infections as described in Chapter 6. This chapter shows that prior 
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infection with hMPV is not sufficient to prevent from subsequent infections, 

even within the same season. The study reports that the hMPV is capable 

causing repeated infections in a space of 3 months by either homologous or 

heterologous strains. 

 

Pneumococcal co-infections were also shown to be an essential part of the 

pathogenesis of most severe hMPV infections progressing to pneumonia. 

Using PCV as a probe to define the role of pneumococcocal coinfections as 

described in Chapter 5. The study observed a 58% reduction (58%) in clinical 

pneumonia among hMPV infected children that were given PCV compared to 

hMPV infected children that were given the placebo (P-0.0001). PCV also had 

an impact on hMPV associated bacterial pneumonia as overall a 56.0% 

(P=0.02) reduction in hMPV pneumonia associated with CXR-AC was 

observed and a 65% (P=0.007) reduction in the incidence of hMPV 

pneumonia with a CRP level of ≥ 40 mg/l in fully vaccinated recipients was 

also observed. The present study also demonstrates that coinfection of hMPV 

with pneumococci in children >6 months of age progressed to pneumonia that 

necessitates hospitalization. An implication of this observation is that children 

hospitalized for hMPV-associated pneumonia should be treated with 

antibiotics.  

 

In South Africa, hMPV had a perennial circulation, peaking during the autumn-

winter months after the RSV peak season and prior to the influenza and 

parainfluenza peak season. The molecular epidemiology as examined in 

Chapter 4 provides evidence for the ability of the hMPV to survive and cause 
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annual epidemics. The study shows that all subgroups circulate in South 

Africa and that annual epidemics were caused by the switching of 

predominating hMPV strains in subsequent years (B2 in 2000 to A2 in 2001). 

Further sequence of the two surface glycoproteins demonstrated that the 

fusion gene protein (F gene) was conserved whereas the attachment 

glycoprotein (G) was highly variable particularly in the extracellular domain 

suggestive of positive selection probably due to immunological pressure. 

Therefore, the F gene may be a target for a vaccine as it is conserved and 

has been shown to be the major neutralization antigen that confers substantial 

neutralization and protection across lineages (Skiadopoulos et al., 2006). 

 

In conclusion the hMPV is also a major cause of LRTI among children in 

South Africa and can be added to the vast list of pathogens that can cause 

pneumonia thus impacting on the HIV epidemic in sub-Saharan Africa.  
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APPENDICES 

APPENDIX 1: AMINO ACID ALIGNMENT OF FUSION PROTEIN 

Alignment of the F proteins of representative samples of SA hMPV isolates 

and prototype sequences from the Netherlands (NL/1/00, NL/1/99, NL/1/94 

and NL/17/00) and Canada (hMPV13-00, CAN97-83, hMPV33-01 and 

CAN75-98). Only amino acid residues that differed from the Netherlands 

prototypes for each subgroup are shown and identical amino acids are 

represented by periods and dashes indicate gaps. The proposed fusion 

domain is indicated in bold. Potential glycosylation sites are underlined. 

Numbers indicate the amino acid position in the F open reading frames 

corresponding to the Netherlands prototype isolates 

 

A1.1 hMPV Group A1 

NL/1/00         YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
hMPV13-00       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/9/02        YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/39/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/14/02       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/10/02       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/11/02       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/1/02        YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/44/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/7/02        YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/53/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/20/02       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/21/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/3/02        YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/8/02        YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/33/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/19/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/4/02        YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/11/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/34/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/24/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/51/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/22/02       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/46/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/30/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/45/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/15/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/17/02       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/36/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/31/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
RSA/54/01       YTNVFTLEVGDVENLTCADGPSLIKTELDLTKSALRELRTVSADQLAREEQIENPRQSRF 60 
                ************************************************************ 
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NL/1/00         VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
hMPV13-00       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/9/02        VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/39/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/14/02       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/10/02       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/11/02       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/1/02        VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/44/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/7/02        VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/53/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/20/02       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/21/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/3/02        VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/8/02        VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/33/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/19/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/4/02        VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/11/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/34/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/24/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/51/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/22/02       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/46/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/30/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/45/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/15/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/17/02       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/36/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/31/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/54/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKKTNEAVSTLGNGVRVLATAVR 120 
                ************************************************************ 
 
NL/1/00         ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
hMPV13-00       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRKVLNVVRQFSDNAGITPAISLDLMT 180 
RSA/9/02        ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/39/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/14/02       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/10/02       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/11/02       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/1/02        ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/44/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/7/02        ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/53/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/20/02       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/21/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/3/02        ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/8/02        ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/33/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/19/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/4/02        ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/11/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/34/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/24/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPSISLDLMT 180 
RSA/51/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/22/02       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/46/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/30/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/45/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/15/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/17/02       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/36/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/31/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/54/01       ELKDFVSKNLTRAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
                ***********************************  *************** ******* 
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NL/1/00         DAELARAVSNMPT 193 
hMPV13-00       DAELARAVSNMPT 193 
RSA/9/02        DAELARAVSNMPT 193 
RSA/39/01       DAELARAVSNMPT 193 
RSA/14/02       DAELARAVSNMPT 193 
RSA/10/02       DAELARAVSNMPT 193 
RSA/11/02       DAELARAVSNIAT 193 
RSA/1/02        DAELARAVSNMPT 193 
RSA/44/01       DAELARAVSNMPT 193 
RSA/7/02        DAELARAVSNMPT 193 
RSA/53/01       DAELARAVSNMPT 193 
RSA/20/02       DAELARAVSNMPT 193 
RSA/21/01       DAELARAVSNMPT 193 
RSA/3/02        DAELARAVSNMPT 193 
RSA/8/02        DAELARAVSNMPT 193 
RSA/33/01       DAELARAVSNMPT 193 
RSA/19/01       DAELAIAVSNMPT 193 
RSA/4/02        DAELARAVSNMPT 193 
RSA/11/01       DAELARAVSNMPT 193 
RSA/34/01       DAELARAVSNMPT 193 
RSA/24/01       DAQLARAVSNMPT 193 
RSA/51/01       DAELARAVSNMPT 193 
RSA/22/02       DAELARAVSNMPT 193 
RSA/46/01       DAELARAVSNMPT 193 
RSA/30/01       DAELARAVSNMPT 193 
RSA/45/01       DAELARRVSNMPT 193 
RSA/15/01       DAELARAVSNMPT 193 
RSA/17/02       DAELARAVSNMPT 193 
RSA/36/01       DAELARAVSNMPT 193 
RSA/31/01       DRELARAVSNMPT 193 
RSA/54/01       DAELARAVSNMPT 193 
                *  **  ***  * 
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A1.2 hMPV GROUP A2 

NL/17/00        YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
CAN97-83        YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/7/00        YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/7/01        YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/5/00        YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/26/00       YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/20/01       YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/44/00       YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/27/00       YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/20/00       YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/48/00       YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/49/00       YTNVFTLEVGDVENLTCSDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
                ************************************************************ 
 
NL/17/00        VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
CAN97-83        VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/7/00        VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/7/01        VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/5/00        VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/26/00       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/20/01       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/44/00       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/27/00       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/20/00       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/48/00       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/49/00       VLGAIALGVATAAAVTAGVAIAKTIRLESEVTAIKNALKTTNEAVSTLGNGVRVLATAVR 120 
                ************************************************************ 
 
NL/17/00        ELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
CAN97-83        ELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/7/00        ELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/7/01        ELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/5/00        ELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/26/00       ELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/20/01       ELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/44/00       ELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/27/00       ELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/20/00       ELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/48/00       ELKDFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/49/00       ELKNFVSKNLTRAINKNKCDIDDLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
                *** ******************************************************** 
 
NL/17/00        DAELARAVSNMPT 193 
CAN97-83        DAELARAVSNMPT 193 
RSA/7/00        DAELARAVSNMPT 193 
RSA/7/01        DAELARAVSNMPT 193 
RSA/5/00        DAELARAVSNMPT 193 
RSA/26/00       DAELARAVSNMPT 193 
RSA/20/01       DAELARAVSNMPT 193 
RSA/44/00       DAELARAVSNMPT 193 
RSA/27/00       DAELARAVSNMPT 193 
RSA/20/00       DAELARAVSNMPT 193 
RSA/48/00       DAELARAVSNMPT 193 
RSA/49/00       DAELARAVSNMPT 193 
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A1.3 hMPV Group B1 

RSA/21/02       YTYVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/23/02       YTYVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
NL/1/99         YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
hMPV33-01       YINVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
                *  ********************************************************* 
 
RSA/21/02       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKQTNEAVSTLGNGVRVLATAVR 120 
RSA/23/02       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKQTNEAVSTLGNGVRVLATAVR 120 
NL/1/99         VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKQTNEAVSTLGNGVRVLATAVR 120 
hMPV33-01       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKQTNEAVSTLGNGVRVLATAVR 120 
                ************************************************************ 
 
RSA/21/02       ELKEFVSKNLTSAINRNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/23/02       ELKEFVSKNLTSAINRNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
NL/1/99         ELKEFVSKNLTSAINRNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
hMPV33-01       ELKEFVSKNLTSAINRNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
                ************************************************************ 
 
RSA/21/02       DAELARAVSYMPT 193 
RSA/23/02       DAELARAVSYMPT 193 
NL/1/99         DAELARAVSYMPT 193 
hMPV33-01       DAELARAVSYMPT 193 
                ************* 
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A1.4 hMPV Group B2 

NL/1/94         YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
CAN75-98        YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/1/00        YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/4/00        YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/91/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/19/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/16/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/15/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/71/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/93/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/29/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/55/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/23/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/12/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/90/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/54/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/52/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/24/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/17/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/3/00        YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/58/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
RSA/37/00       YTNVFTLEVGDVENLTCTDGPSLIKTELDLTKSALRELKTVSADQLAREEQIENPRQSRF 60 
                ************************************************************ 
 
NL/1/94         VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
CAN75-98        VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/1/00        VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/4/00        VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/91/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/19/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/16/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/15/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/71/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/93/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/29/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/55/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/23/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/12/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/90/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/54/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/52/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/24/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKTTNEAVSTLGNGVRVLATAVR 120 
RSA/17/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/3/00        VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/58/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKKTNEAVSTLGNGVRVLATAVR 120 
RSA/37/00       VLGAIALGVATAAAVTAGIAIAKTIRLESEVNAIKGALKKTNEAVSTLGNGVRVLATAVR 120 
                *************************************** ******************** 
 
NL/1/94         ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
CAN75-98        ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/1/00        ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/4/00        ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/91/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/19/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/16/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/15/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/71/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/93/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/29/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/55/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/23/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/12/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/90/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/54/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/52/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/24/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/17/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/3/00        ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/58/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
RSA/37/00       ELKEFVSKNLTSAINKNKCDIADLKMAVSFSQFNRRFLNVVRQFSDNAGITPAISLDLMT 180 
                ************************************************************ 
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NL/1/94         DAELARAVSYMPT 193 
CAN75-98        DAELARAVSYMPT 193 
RSA/1/00        DAELARAVSYMPT 193 
RSA/4/00        DAELARAVSYMPT 193 
RSA/91/00       DAELARAVSYMPT 193 
RSA/19/00       DAELARAVSYMPT 193 
RSA/16/00       DAELARAVSYMPT 193 
RSA/15/00       DAELARAVSYMPT 193 
RSA/71/00       DAELARAVSYMPT 193 
RSA/93/00       DAELARAVSYMPT 193 
RSA/29/00       DAELARAVSYMPT 193 
RSA/55/00       DAELARAVSYMPT 193 
RSA/23/00       DAELARAVSYMPT 193 
RSA/12/00       DAELARAVSYMPT 193 
RSA/90/00       DAELARAVSYMPT 193 
RSA/54/00       DAELARAVSYMPT 193 
RSA/52/00       DAELARAVSYMPT 193 
RSA/24/00       DAELARAVSYMPT 193 
RSA/17/00       DAELARAVSYMPT 193 
RSA/3/00        DAELARAVSYMPT 193 
RSA/58/00       DAELARAVSYMPT 193 
RSA/37/00       DAELARAVSYMPT 193 
                ************* 
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APPENDIX 2: AMINO ACID ALIGNMENT OF THE G PROTEIN 

Alignment of the G proteins of representative samples of SA hMPV isolates 

and prototypes sequences from the Netherlands (NL/1/00, NL/1/99, NL/1/94 

and NL/17/00) and Canada (hMPV13-00, CAN97-83, hMPV33-01 and 

CAN75-98). Only amino acid residues that differed from the Netherlands 

prototypes for each subgroup are shown and identical amino acids are 

represented by periods and dashes indicate gaps. The proposed intracellular, 

transmembrane and extracellular domains are indicated by arrows above the 

alignment. Potential N-linked glycosylation sites are underline. Numbers 

indicate the amino acid position in the G open reading frames corresponding 

to the Netherlands prototype isolates 

 

A2.1 hMPV subgroup A1 

                     Intracellular ><    Transmembrane  >< Extracellular 
NL/1/00         IDMLKARVKNRVARSKCFKNASLVLIGITTLSIALNIYLIINYKMQKNTSESEHHTSSSP 70 
RSA/54/01       .......L...............I......................E............. 70 
RSA/30/01       ............................................................ 70 
RSA/8/02        ............................................................ 70 
RSA/20/02       ..............................................K............. 70 
RSA/22/02       ..............................................E............. 70 
RSA/33/01       ............................................................ 70 
RSA/7/02        ............................................................ 70 
RSA/53/01       ............................................................ 70 
RSA/17/02       ............................................................ 70 
RSA/3/02        ............................................................ 70 
RSA/4/02        ............................................................ 70 
hMPV13-00       .......V...................................T................ 70 
RSA/21/01       ...........................................K................ 70 
RSA/19/01       ............................................................ 70 
RSA/31/01       ............................................................ 70 
RSA/34/01       ............................................................ 70 
RSA/36/01       ..........................................H................. 70 
RSA/10/02       ..........................................YT................ 70 
RSA/14/02       ............................................................ 70 
RSA/11/02       ............................................................ 70 
RSA/9/02        ............................................................ 70 
RSA/1/02        ............................................................ 70 
RSA/44/01       ............................................................ 70 
                ******* *************** ******************  ** ************* 
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NL/1/00         MESSRETPTVPTDNSDTNSSPQHPTQQSTEGSTLYFAASASSPETEPTSTPDTTNRPPFV 130 
RSA/54/01       ..................PGS.Y...........H..................AS..L.. 130 
RSA/30/01       ............................................................ 130 
RSA/8/02        ..................................................L......... 130 
RSA/20/02       ..................................................P......... 130 
RSA/22/02       .............................G.....P........................ 130 
RSA/33/01       .............................E.....F.................T...... 130 
RSA/7/02        ............................................................ 130 
RSA/53/01       ............................................................ 130 
RSA/17/02       ...............................F............................ 130 
RSA/3/02        ............................................................ 130 
RSA/4/02        ...............................S............................ 130 
hMPV13-00       .........................................................P.. 130 
RSA/21/01       ....................................V....................L.. 130 
RSA/19/01       ....................................A....................... 130 
RSA/31/01       ......................H..................................... 130 
RSA/34/01       ...............................................I............ 130 
RSA/36/01       ..........L...........Y........................T............ 130 
RSA/10/02       ..........PM..........H............S...T...G......S......PL. 130 
RSA/14/02       ............................................................ 130 
RSA/11/02       ............................................................ 130 
RSA/9/02        .........................................................A.. 130 
RSA/1/02        ......................Y............F.......E.............PF. 130 
RSA/44/01       .......................................A.................... 130 
                **********  ******   * ****** * **   ** *** *** ** **  **  * 
 
NL/1/00         DTHTTPPSASRTKTSPAVHTKNNPRTSSRTHSPPRATTRTARRTTTLRTSSTRKRPSTAS 190 
RSA/54/01       ............R..........L.I.P......W.M...V.G........I.....A.. 190 
RSA/30/01       ............................................................ 190 
RSA/8/02        ...................................................T........ 190 
RSA/20/02       ............................................................ 190 
RSA/22/02       .......................P...............................L.... 190 
RSA/33/01       .......................L...........................I...P.... 190 
RSA/7/02        ............................................................ 190 
RSA/53/01       ............................................................ 190 
RSA/17/02       ............................................................ 190 
RSA/3/02        ...................................................T........ 190 
RSA/4/02        .......................P...........................I........ 190 
hMPV13-00       .......................LK................................T.. 190 
RSA/21/01       ........................R................................... 190 
RSA/19/01       ..................Y....P....K............................... 190 
RSA/31/01       ..................H....L.T..R..................H...T........ 190 
RSA/34/01       ...............................................R............ 190 
RSA/36/01       .......................P.................................... 190 
RSA/10/02       .........................I......S...T....................... 190 
RSA/14/02       ................................P........................... 190 
RSA/11/02       ............................................................ 190 
RSA/9/02        ............................................................ 190 
RSA/1/02        ...................................................I........ 190 
RSA/44/01       ............K............T.................................. 190 
                ************ ***** ****   *  *** * * *** * **** *** *** * ** 
 
NL/1/00         VQPDISATTHKNEEASPASPQTSASTTRIQRKSVEANTSTTYNQT 235 
RSA/54/01       ....S......H....SV........A.P...------------- 222 
RSA/30/01       ................P...............------------- 222 
RSA/8/02        ................................------------- 222 
RSA/20/02       ................................------------- 222 
RSA/22/02       ................................------------- 222 
RSA/33/01       ................................------------- 222 
RSA/7/02        .......................-N.......------------- 221 
RSA/53/01       .......................AS.......------------- 222 
RSA/17/02       ................................------------- 222 
RSA/3/02        ................................------------- 222 
RSA/4/02        ................................------------- 222 
hMPV13-00       ......T.........................GMEASTSTTHNQT 235 
RSA/21/01       .R....A.........................------------- 222 
RSA/19/01       .Q..............................------------- 222 
RSA/31/01       ................................------------- 222 
RSA/34/01       ................................------------- 222 
RSA/36/01       ......................P.........------------- 222 
RSA/10/02       ......................S.......GR------------- 222 
RSA/14/02       ................................------------- 222 
RSA/11/02       ...........Q....................------------- 222 
RSA/9/02        ...........H....................------------- 222 
RSA/1/02        ................................------------- 222 
RSA/44/01       ................................------------- 222 
                * ** * **** ****  ****   * * *                
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A2.2 hMPV subgroup A2 

        Intracellular ><    Transmembrane  >< Extracellular 
NL/17/00        VKNRVARSKCFKNASLILIGITTLSIALNIYLIINYTIQKTTSESEHHTSSPPTEPNKEA 77 
RSA/7/00        .......................................................S.... 77 
RSA/26/00       .........................M.................................. 77 
RSA/27/00       .........................I.................................. 77 
RSA/7/01        .......................................................P.... 77 
RSA/20/01       .......................................................S.... 77 
RSA/44/00       ............................................................ 77 
RSA/5/00        ............................................................ 77 
RSA/48/00       ............................................................ 77 
RSA/49/00       ............................................................ 77 
CAN97-83        .........................................S.................. 77 
RSA/20/00       .....................................M...T.................. 77 
                ************************* *********** *** ************* **** 
 
NL/17/00        STISTDNPDINPSSQHPTQQSTENPTLNPAASASPSETEPASTPDTTNRLSSVDRSTAQP 137 
RSA/7/00        ............N...S........................................... 137 
RSA/26/00       ............................................................ 137 
RSA/27/00       .....N...................................................... 137 
RSA/7/01        .....................................I..............A....... 137 
RSA/20/01       .....................................T..............V....... 137 
RSA/44/00       ......................................................S..... 137 
RSA/5/00        ....................Y.................................R..... 137 
RSA/48/00       ....................S.........................I........P.... 137 
RSA/49/00       ..............................................T........S.... 137 
CAN97-83        ................P...............V........................... 137 
RSA/20/00       ................................A...................A....... 137 
                ***** ****** *** *** *********** **** ******** ***** *  **** 
 
NL/17/00        SESRTKTKPTVHTINNPNTASSTQSPPRTTTKAIRRATTFRMSSTGKRPTTTLVQSDSST 197 
RSA/7/00        ..........A..R...S....I.....A..........L.................... 197 
RSA/26/00       .......E..V...........T.L................................... 197 
RSA/27/00       .......................................F.................... 197 
RSA/7/01        ..............................M.....................P......I 197 
RSA/20/01       ........................F.....T.....................S......T 197 
RSA/44/00       ....A..............T.....S..........................L....... 197 
RSA/5/00        ....T..K........S..S.....P..........................S....... 197 
RSA/48/00       ...................A.....Q..........................L....... 197 
RSA/49/00       ........................SP.................................. 197 
CAN97-83        ................P...................................S....... 197 
RSA/20/00       ........L..............................L.T..........P....I.. 197 
                **** **  * ** **  * ** *  ** * ******** * ********** **** *  
 
NL/17/00        TTQNHEETGSANPQASASTMQN--------- 219 
RSA/7/00        ................V.....QHTNNTKPN 211 
RSA/26/00       ......................QHTNNTKPN 211 
RSA/27/00       ......................QHTNNTKPN 211 
RSA/7/01        ................A.....QHTNNTKPN 211 
RSA/20/01       ..........T.....V.....QHTNNTKPN 211 
RSA/44/00       ..........A...........QHTNNIKPS 211 
RSA/5/00        ................A.....QHTNNIKPN 211 
RSA/48/00       ......................QHTNNIKPN 211 
RSA/49/00       ...................I..QHTNNIKPN 211 
CAN97-83        ................V..M..HTNN-IKPN 210 
RSA/20/00       ................A.....--------- 202 
                ********** ***** ** **          
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A2.3 hMPV subgroup B1 

               Intracellular ><    Transmembrane   >< Extracellular 
NL/1/99         SRCYRNATLILIGLTALSMALNIFLIIDHATLRNMIKTENCANMPSAEPSKKTPMTSTAG 84 
hMPV33-01       ............................................................ 84 
RSA/23/02       ............................................................ 84 
RSA/21/02       .............................................P.........I.... 84 
                ********************************************* ********* **** 
 
NL/1/99         PNTKPNPQQATQWTTENSTSPVATPEGHPYTGTTQTSDTTAPQQTTDKHTAPLKSTNEQI 144 
hMPV33-01       .S...................A..L......E....P...........Y..LS....... 144 
RSA/23/02       ...............................G................H...P....... 144 
RSA/21/02       .N......................P....H.............................. 144 
                * ******************* ** **** * **** *********** **  ******* 
 
NL/1/99         TQTTTEKKTIRATTQKREKGKENTNQTTSTAATQTTNTTNQIRNASETITTSDRPRTDTT 204 
hMPV33-01       .......K.T...P.R.K.......Q..............................I.I. 204 
RSA/23/02       .......R.....TPKKG.R.....P..............................T.T. 204 
RSA/21/02       .......K......QRRE.......Q................K..I............S. 204 
                ******* * ***     * ***** **************** ** ********** * * 
 
NL/1/99         TQSSEQTTRATDPSSPPHHA------- 224 
hMPV33-01       ...........E.GF.....RRGAGPR 231 
RSA/23/02       ..........A...SS.Y..RRGAGPR 231 
RSA/21/02       ..........TD.S.P.HR.QGSAKPK 231 
                **********  *   *  *        
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A2.4 hMPV subgroup B2 

                 Intracellular ><      Transmembrane  >< Extracellular 
NL/1/94         SSKCYRNATLILIGLTALSMALNIFLIIDYAMLKNMTKVEHCVNMPPVEPSKKTPMTSAV 60 
CAN75-98        ..............S................TS........................... 60 
RSA/4/00        ..............L.................L..V........................ 60 
RSA/29/00       ............................................................ 60 
RSA/90/00       .........................................W.................. 60 
RSA/71/00       ............................................................ 60 
RSA/12/00       .........................................C............L..... 60 
RSA/23/00       ............................................................ 60 
RSA/54/00       ...................................M..................P..... 60 
RSA/93/00       ............................................................ 60 
RSA/24/00       ............................................................ 60 
RSA/3/00        ...............................M..........I................. 60 
RSA/17/00       ............................................................ 60 
RSA/37/00       ..........................................V................. 60 
                ************** ****************  ** *****  *********** ***** 
 
NL/1/94         DLNTKPNPQQATQLAAEDSTSLAATSEDHLHTGTTPTPDATVSQQTTDEYTTLLRSTNRQ 120 
CAN75-98        .P............TT.........L.......................H......T... 120 
RSA/4/00        .L...L...................S.N.......Q.S...I..............I... 120 
RSA/29/00       ............................................................ 120 
RSA/90/00       ....................................I....................... 120 
RSA/71/00       ............................................................ 120 
RSA/12/00       ................................................K........... 120 
RSA/23/00       ................................................E........... 120 
RSA/54/00       .......L...........................P........................ 120 
RSA/93/00       .I............N............................................. 120 
RSA/24/00       YL.....P......T............D................................ 120 
RSA/3/00        D.............................L.....IP...V...A..........T... 120 
RSA/17/00       ........................................T................... 120 
RSA/37/00       .S...........................S......TS.T.....T.............. 120 
                  *** * ******  ** **  ** * *  ****   * * *** **  ****** *** 
 
NL/1/94         TTQTTTEKKPTGATTKKETT-----RTTSTAATQTLNTTNQTSYVREATTTSARSRNSAT 175 
CAN75-98        .....A.....R....KETT-----..........L.......NGR...........N.. 175 
RSA/4/00        .....T.....G.I..KEKE---TT..........P.........K.......G...G.. 177 
RSA/29/00       ................KEKE---TT............................R...... 177 
RSA/90/00       ................KEKE---TT.........................I......... 177 
RSA/71/00       I...............KEKE---TT.........................T......... 177 
RSA/12/00       T...............KEKE---TT................................... 177 
RSA/23/00       ................KEKE---TT................................... 177 
RSA/54/00       ................KEKE---TT....................R.............. 177 
RSA/93/00       ................KEKEKETTT................................... 180 
RSA/24/00       ................KEKE---TT....I.........................K.... 177 
RSA/3/00        ................-EKE---TT....T.....L...................R..V. 176 
RSA/17/00       ................KEKE---TT................................... 177 
RSA/37/00       .......N......A.---E---TT..........P..............K...P..GA. 174 
                 **** * *** *  *         **** ***** *******   **** **   *  * 
 
NL/1/94         .QSSDQTTQAADPSSQPHHTQKSTTTTYNTDTSSPSS 212 
CAN75-98        ..S.............SQ.........H......... 212 
RSA/4/00        ..N....I.......KPH................... 214 
RSA/29/00       ..................................... 214 
RSA/90/00       ..................................... 214 
RSA/71/00       ..................................... 214 
RSA/12/00       ..................................... 214 
RSA/23/00       ...........................Y......... 214 
RSA/54/00       ............S..............H......L.. 214 
RSA/93/00       ............P........................ 217 
RSA/24/00       .......T...................Y......P.. 214 
RSA/3/00        .........T.....Q.Y................SN. 213 
RSA/17/00       ..................................... 214 
RSA/37/00       .R..........Q......................S. 211 
                *  **** * ** **   ********* ******  * 
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