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On the Triggering Mechanisms of 
Upward Lightning
Carina Schumann   1, Marcelo M. F. Saba   2, Tom A. Warner3, Marco A. S. Ferro4, 
John H. Helsdon Jr.3, Ron Thomas5 & Richard E. Orville6

Upward lightning studies took place in Rapid City, South Dakota, USA and S. Paulo, Brazil during the 
summer thunderstorm seasons from 2011 to 2016. One of the main objectives of these campaigns was 
to evaluate and characterize the triggering of upward positive leaders from tall objects due to preceding 
nearby flash activity. 110 upward flashes were observed with a combination of high- and standard-
speed video and digital still cameras, electric field meters, fast electric-field antenna systems, and for 
two seasons, a Lightning Mapping Array. These data were analyzed, along with correlated lightning 
location system data, to determine the triggering flash type responsible for the initiation of upward 
leaders from towers. In this paper, we describe the various processes during flash activity that can 
trigger upward leaders from tall objects in the USA and in Brazil. We conclude that the most effective 
triggering component is the propagation of the in-cloud negative leader during the continuing current 
that follows a positive return stroke.

Upward lightning is the development of a self-propagating lightning leader from a tall object that travels upward 
toward the overlaying electrified storm cloud. Upward lightning can initiate without any preceding lightning 
activity, herein classified as self-initiated upward lightning. For self-initiated upward lightning to occur, storm 
electrification and the resulting presence of a cloud charge region is required to generate an electric field nec-
essary for the initiation and growth of an upward leader. The elevated vertical shape of the tall object enhances 
the electric field locally resulting in conditions favorable for initiation of an upward leader. However there is no 
proceeding nearby lightning activity prior to the initiation of the upward leader. An upward leader from a tall 
object can also initiate and develop in response to an electric field change created by a nearby preceding lightning 
flash (also known as the triggering flash). Since the upward leader is essentially triggered by the nearby lightning 
activity, we refer to this type of upward lightning as lightning-triggered upward lightning.

Past research efforts have sought to characterize the type of triggering flashes and electric field environment 
prior to and during the initiation of upward leaders from tall objects as well as characterize weather conditions 
favorable for upward flashes. The following is a literature review specifically relating to lightning-triggered 
upward lightning.

Wang et al.1 presented electric field changes for 14 upward flashes between 2005–2006 from a wind turbine 
and its protection tower in Japan. It was found that 4 upward flashes exhibited only a unidirectional negative field 
change (physics sign convention) that correlated with the initiation and development of an upward positive leader 
(UPL) without any preceding flash activity. They called this type of electric field change Type 1. The remaining 10 
upward flashes showed an initial positive field change in response to nearby flash activity before the field change 
reversed polarity to negative in response to the development of an UPL. They defined this second type of electric 
field change behavior as Type 2.

Later, Lu et al.2 documented direct evidence that an upward lightning flash can trigger other upward lightning 
of opposite polarity from nearby tall structures.

Wang and Takagi3 reported on 53 winter upward flashes to a wind turbine and its protection tower in Japan 
between 2005 and 2010. Here, 28 upward leaders were triggered by preceding lightning activity and 25 developed 
upward leaders without any preceding flash activity. The upward flashes that were preceded by nearby lightning 
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activity were defined as “other-triggered” (formerly Type 2) whereas the upward lightning that initiated from 
the tall objects without preceding lightning activity were defined as “self-initiated” (formerly Type 1). Negative 
upward flashes, where an upward propagating positive leader initiates from the tall object and effectively brings 
negative charge downward, was the dominate upward flash polarity.

Zhou et al.4 reported on 205 upward flashes from the Gaisberg Tower from 2005 to 2009. Only a small minor-
ity, 26/205 (13%), were triggered by preceding lightning activity. Of those 26 lightning-triggered upward lightning 
flashes, 15 upward positive leaders were triggered by a preceding positive cloud-to-ground (+CG) flash and 9 
upward positive leaders were triggered by a preceding intracloud (IC) flash. One of the 9 upward positive leaders 
triggered by a preceding IC flash experienced a reversal of current (negative then positive) during the flash and 
was therefore a bipolar upward flash. Furthermore, one upward negative leader (UNL) was triggered by a negative 
cloud-to-ground (−CG) flash and one upward negative leader was triggered by an IC flash. Therefore, 24 of the 
26 lightning-triggered upward lightning events (92%) began with the development of an upward positive leaders 
and only two (8%) began with the development of an upward negative leaders.

Jiang et al.5 reported on 4 lightning-triggered upward flashes from a 325 m tall tower in Beijing China during 
two different storms in 2012. In two cases, an upward positive leader was preceded by a nearby +CG flash, and 
the other two cases by intracloud lightning flashes.

In 2013, a comprehensive field campaign at a windfarm in Kansas, USA sought to address wind turbine light-
ning attachment from both downward and upward lightning6. Assets included a 10-station Lightning Mapping 
Array (LMA), 8-station slow antenna network, 2 electric field meters (EFMs), multiple high- and standard-speed 
video cameras, in situ lightning current transient measurements for all turbines, and National Lightning 
Detection Network (NLDN) data. Rison et al.7 reported on three observed negative upward flashes. For one case, 
an IC flash resulted in negative leaders passing over the windfarm and a single UPL initiated from one wind tur-
bine coincident with the passage of the leaders. For the two other cases, +CG flashes resulted in the initiation of 
UPLs from multiple turbines during the same flash.

Saba et al.8 observed upward lightning cases in both Brazil and the United States and found that 61 out of 72 
(84%) and 15 out of 28 (53%), respectively, were caused by a +CG flash within 1 s before and after the initiation 
of the upward lightning, at a distance within 80 km. Yuan et al.9 found that 14 out of 19 (75%) of upward lightning 
flashes from a 325-m tower in Beijing (from 2012 to 2016) were triggered by +CG lightning flashes.

Recently, Qi et al.10 reported a three-dimensional development characteristics of an upward lightning trig-
gered by +CG flash. Wu et al.11 reported on a multiple lightning-triggered upward flash from 7 tall structures 
preceded by a very intense +CG flash.

The present work describes which triggering flash type is more effective and the various processes during flash 
activity that can trigger upward leaders from tall objects in Brazil and USA.

Data Presentation
The data presented here were obtained during the upward lightning studies in Rapid City, South Dakota, USA 
and in S. Paulo, Brazil from 2012 to 2016. Description of our experimental setup is found in the section titled 
“Methods” below.

A timeline of events for each upward flash was created by combining data from each of the recording assets 
(the description of a case is presented below as an example). The high- and standard-speed optical assets pro-
vided the time of initial brightness increase associated with a triggering flash, leader spatial propagation behav-
ior when visible below the cloud base (from here on, referred to as the T-leader), and the initiation time of the 
upward leaders from the towers. In some cases, the exact initiation time of the upward propagating leaders was 
not possible due to the low luminosity of the initial developing leader and/or poor visibility due to rain or back 
lighting. In these cases, an initiation time was estimated based on the leader’s position and speed once its lumi-
nosity increased to detectable levels. Once upward leaders developed, the optical assets provided further infor-
mation on the development and behavior of these leaders in relation to the triggering flash. The fast antenna 
systems provided the time of the first field change associated with triggering flashes and the electric field change 
polarity and magnitude preceding upward leader initiation and during the development of the upward leaders. 
The challenge of interpreting field change data during lightning-triggered upward flash is that once an upward 
leader develops, the field change is influenced by both the ongoing triggering flash and the upward leaders that 
are developing from the towers. The placement of fast electric-field sensors and of electric field meters (EFMs) at 
multiple locations at varying distances from the towers helped to differentiate the relative contribution of each. 
The LMA provided the time and location of triggering flash initiation and its spatial development relative to the 
towers. Particularly at the moment upward leaders initiated from the towers as determined by the optical assets.

Lightning Detection Network (LDN) data was analyzed comparatively to the timeline created from the other 
assets. LDN event timing, polarity and magnitude (i.e. estimated peak current) were compared with fast antenna 
data and high-speed optical observations to further characterize impulsive events that took place during trig-
gering flashes and upward leader development. LDN location data for these events further quantified the spatial 
development of these flashes.

All the upward leaders from the towers in Rapid City and in S. Paulo during the summer observations devel-
oped in response to preceding lightning activity. Based on the analysis of the data, each triggering flash was 
assigned a flash type of either intracloud (IC) or cloud-to-ground (CG). Once a flash type was assigned, a trigger-
ing flash component responsible for the initiation of the upward propagating leaders was determined based on 
the spatial and temporal analysis.

In this study, we observed that the flash components that trigger the upward leader are either the propagation 
of a T-leader or the return stroke of the triggering flash. The propagation timeframe for these two possible trigger-
ing flash components (T-leaders or return strokes) are quite different. Leaders propagating in virgin air travel at 
speeds in the 104–105 ms−1 range and can cover large distances exceeding 100 km12,13. Therefore, this component 
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can have a timeframe typically in the 10 s or 100 s of milliseconds lasting up to a second or more for an entire 
flash. On the other hand, a return stroke travels in the 107–108 ms−1 regime and is confined to the T-leader net-
work formed prior to its initiation. Thus, the timeframe for a return stroke flash component is limited from tens 
of microseconds up to a couple of milliseconds for the case of a horizontally extensive T-leader network12. If the 
upward leader starts 3 milliseconds after the return stroke, the triggering component assigned is the continuing 
current. This threshold used is based on high speed video data of past studies on continuing current and it avoids 
contamination of what could just be return-stroke pulse tails14,15.

To summarize, for each of the 110 upward flashes recorded, a triggering flash type, and the triggering flash 
components were assigned based on analysis of the correlated data (from high- and standard-speed video cam-
eras, digital still image cameras, fast electric-field sensors, electric field meters, lightning mapping array and 
lightning detection networks).

Dataset and Case Study
The following analysis of an upward lightning case will be shown to illustrate how the instrumentation described 
in the section “Methods” was used in this work. On 15 June 2014 at 02:17:14 UT in Rapid City, USA, upward posi-
tive leaders developed from Towers 1 and 4 (Fig. 1). Analysis of LMA data (Fig. 2) indicated that the flash initiated 
at an altitude of 4 km, 20 km south of Tower 4. This negative T-leader activity increased in altitude to 6 km while 
traveling northeast. At 02:17:14.747 UT, the NLDN registered a 23 kA estimated peak current +IC event 19 km 
south of Tower 4. A fast electric field antenna measurement (Fig. 3) and a standard-speed video showed that this 
event was in fact a +CG return stroke. Following the +CG return stroke, negative leader activity continued to 

Figure 1.  High speed video frames showing the occurrence of the triggering flash and the upward lightning 
flashes from Towers 1 and 4. The UTC time of each video frame (stamped at the end of the frame integration) is 
given as hh:mm:ss.xxx (xxx digits are milliseconds).

Figure 2.  LMA source data plot of an upward flash on 15 June 2015 at 02:17:14 UT. Green + signs are tower 
locations.

https://doi.org/10.1038/s41598-019-46122-x
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extend northeast and traveled to a point 15 km east of Tower 4 before turning southwest and propagating near 
the towers at 02:17:14.900 UT. UPLs developed from Towers 1 and 4 at approximately 02:17:14.903 UT, 156 ms 
after the +CG return stroke. The fast antenna data showed the narrow positive field change associated with the 
+CG return stroke followed by a period of little field change lasting 100 ms. An increasing positive field change 
then began at 02:17:14.850 UT and peaked at 02:17:14.930 UT. This large field change was associated with the 
passage of negative leader activity near the towers as shown in the LMA data display and observed visually with 
the optical assets. Both the EFMs at Location 1 and Location 2 showed at positive change before reversing polarity 
following the development of UPLs from Towers 1 and 4. Optical assets showed that the UPL that developed from 
Tower 4 traveled west toward the Location 1 sensor site while the UPL from Tower 1 propagated east-northeast. 
The Mobile EFM located 6 km south of Tower 4 only showed a positive change associated with triggering flash 
activity (See Fig. 4).

For this case, negative leader activity during the continuing current of a +CG return stroke further extended 
the leader network that formed prior to the return stroke. The +CG return stroke failed to produce a large enough 
field change at the tower locations to cause the initiation of the UPLs. 156 ms following the +CG return stroke, 
however, the negative leader passed near the towers and caused a large positive field change at the tower locations 
resulting in the initiation of UPLs from Towers 1 and 4. Therefore, the triggering flash was a +CG flash and the 
triggering component was negative leader activity during the continuing current of a +CG return stroke.

Results and Discussion
After applying a similar analysis, as mentioned above, for the whole dataset, we observed that the flash compo-
nents that trigger the upward leader are either T-leader propagation or the return stroke. The scheme in Fig. 5 
shows the triggering flash components that cause the upward leader initiation. It also shows when T-leader prop-
agation triggers an upward flash (explained in the following section).

Triggering flash component - Leader propagation.  The triggering of an upward propagating leader by 
T-Leader (Figs 6 and 7) occurs in three different situations:

	 1.	 T-Leader during an intracloud flash (Fig. 6c.1)
	 2.	 T-Leader before a return stroke of a CG flash (Fig. 6c.2)
	 3.	 T-Leader during the occurrence of a continuing current event (Fig. 7)

Figure 3.  INPE fast antenna data plot from 15 June 2014 at 02:17:14 UT.

Figure 4.  Electric field meter traces during an upward flash on 15 June 2014 at 02:17:14.747. The Mobile EFM 
(blue trace) was located 10 km south of Tower 4.
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When a T-Leader associated with an intracloud flash or T-Leader preceding a return stroke does not trigger 
an upward leader, the triggering occurs due to T-Leader development during the continuing current of a return 
stroke (Fig. 8). In this situation, an extension of the upper portions of the previously formed T-Leader network 
can occur if breakdown of virgin air continues after the return stroke reaches the outer extent of the upper portion 
of the T-Leader network16. In this latter case, if the return stroke channel path remains conductive and connected 
to ground, continuing current results and the T-Leader network expands further due to continued breakdown of 

Figure 5.  Triggering flash components that cause the upward leader initiation.

Figure 6.  (a) Bidirectional intracloud leader development begins with positive (red) and negative (blue) leaders 
expanding from an initiation point. (b) The approach of negative leader initiates and upward positive leader 
(red) during an intracloud flash (c.1) or prior to a return stroke of a CG flash (c.2).

Figure 7.  (a) Bidirectional intracloud leader development begins with positive (red) and negative (blue) leaders 
expanding from an initiation point. (b) The positive leader approaches the ground prior to initiating a return 
stroke. (c) The return stroke (orange) traverses the leader network. (d) Negative leader growth following the 
return stroke (blue extension beyond the return stroke channel path) passes near the tower and initiates an 
upward positive leader (red rising leader).
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virgin air. In the case of a +CGRS, extension will take place as continued negative breakdown of virgin air in the 
negative upper portion of the bipolar T-Leader network that formed prior to the return stroke.

Triggering flash component - Return Stroke.  When the electric field change (associated with the 
T-leader activity that propagated near the towers before the return stroke) does not reach the threshold for 
upward leader initiation, this threshold may be reached by the return stroke that subsequently traverses the 
T-leader network. The return stroke’s rapid electric field change serves as the triggering mechanism for upward 
leader initiation. (Fig. 8).

Occurrence of triggering flash types and components.  Based on the analysis of 110 cases in US and 
in Brazil, we observed that the majority of triggering flash types were +CG flashes (Table 1). This result is not too 
different from what was found in Austria although only 13% of the total number of observed upward flashes were 
triggered by preceding lightning activity.

Both in USA and in Brazil, most of the upward flashes were triggered by T-leader propagation. In almost 
half of the cases the T-leader propagation occurs during the continuing current that follows a return stroke. The 
percentage of triggering components in each flash type is shown in Table 2. Note that in Rapid City the number 
of triggering components (42) is higher than the number of upward flashes (38). This is because different compo-
nents of a triggering flash can cause leader initiation in more than one tower.

Summary
Based on the analysis of 110 cases of triggered upward flashes in US and in Brazil, we observed that the majority 
of triggering flash types were +CG flashes and that the component of +CG flash that causes the required electric 
field change to initiate upward leaders from towers are either the nearby T-leader propagation above towers or the 
return stroke. The triggering of an upward propagating leader by propagating T-leaders occurs in three different 
situations: (a) during an intracloud flash; (b) before a return stroke of a CG flash, and (c) during the occurrence 
of a continuing current event. When the electric field change associated with the leader activity that propagated 
near the towers before the return stroke does not reach the threshold for upward leader initiation, a return stroke 

Figure 8.  (a) Bidirectional intracloud leader development begins with positive (red) and negative (blue) leaders 
expanding from an initiation point (b,c). The positive leader approaches the ground prior to initiating a return 
stroke with the negative end of the leader passing near the tower (d). The return stroke traverses the leader 
network and initiates an upward positive leader from the tower (red rising leader).

Location Number

Triggering flash type

+CG −CG IC

This work
Rapid City 38 29 (76%) 1 (3%) 8 (21%)

Sao Paulo 72 65 (90%) 0 (0%) 7 (10%)

Zhou et al.4 Austria 26 15 (58%) 1 (4%) 10 (38%)

Table 1.  Number of upward flashes and triggering flash type.

Number of Triggering 
Components

Rapid City Sao Paulo

42 72

Leader propagation 69% (29) 78% (56)

during an IC 19% (8) 10% (7)

before a RS 5% (2) 13% (9)

during a CC 45% (19) 55% (40)

Return Stroke 31% (13) 22% (16)

+CG 29% (12) 22% (16)

−CG 2% (1) 0% (0)

Table 2.  Triggering components occurrence in Rapid City and in Sao Paulo.
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that traverses a previously formed T-leader may cause the triggering of an upward flash. Both in USA and in 
Brazil, most of the upward flashes were triggered by leader propagation. In almost half of the cases the T-leader 
propagation occurs during the continuing current that follows a return stroke.

Methods
The instrumentation used during the upward lightning studies in Rapid City, South Dakota, USA and in S. 
Paulo, Brazil were composed of optical instruments, electrical field sensing and some auxiliary instrumentation 
described in this section.

Optical sensing.  Optical assets included high- and standard-speed video cameras along with digital still 
image cameras. In South Dakota, USA, up to five high-speed cameras operating between 1,000 and 35,000 images 
per second (ips) were used to record lightning flash activity. Cameras were grouped into two mobile platforms, 
which were positioned at various locations from 600 m to 9 km from the towers. The two vehicles were spatially 
separated so that recordings could provide some level of 3-dimensionality when comparatively analyzed. Four of 
the most common locations used by the two vehicles are shown in Fig. 1a. Variable locations were chosen based 
on storm direction of movement, storm type and expected visibility. Each vehicle had at least two high-speed 
cameras with one having a wide field of view, and the other having a moderate field of view on selected towers. 
Each vehicle also had one camera that operated in the 1,000–2,000 ips range and another in the 10,000–35,000 ips 
range. The two vehicles also contained standard-speed video cameras recording in standard- and high-definition 
that provided 60 ips continuous video at extremely wide field of views and moderate field of views on selected 
towers. A single digital still camera located in each vehicle captured entire flashes on single images using sequen-
tial continuous shooting at night or via infrared trigger during the day.

Three fixed optical sites located on opposite sides of Rapid City captured continuously-recorded wide field of 
view standard-speed video at 60 ips as well as digital still images. Distances from these sites to each of the towers 
ranged from 2.5 km to 11 km.

In São Paulo, Brazil, optical assets included two high-speed cameras operating between 1,000 and 10,000 ips 
and a single digital still camera and two standard-speed video cameras recording in standard-definition that pro-
vided 60 ips continuous video at extremely wide field of views. All cameras were grouped into a platform, which 
was positioned at 5 km from two towers (Fig. 9b).

Figure 9.  (a) Location of instrumentation in Rapid City (the trucks show the location of the most commonly 
used observation spots for the high-speed cameras; the numbered pins indicate the towers and the yellow 
squares show the position where the electric field antennas were installed); (b) Location of instrumentation in 
S. Paulo (the red pin indicates the tower, the yellow square 1 shows the location of the video cameras and yellow 
square 2 indicates where the electric field antennas were installed). Images from Map data ©2019 Google.
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Electrical field sensing.  In South Dakota, USA, the National Institute for Space Research (INPE) oper-
ated two flat-plate, fast antenna systems with a sample rate of 5 million samples/second and a lower and upper 
frequency bandwidth of 306 Hz and 1.5 MHz respectively. A high-gain and low-gain fast antenna were placed 
together approximately 5 km west of the towers (Fig. 9a). At this location (yellow square 1), the dual gain system 
provided increased dynamic range for sensing electric field changes primarily associated with triggering flashes. 
A low-gain fast antenna was placed between towers 1 and 2 (Fig. 9a – yellow square 2). At this location 2, the sen-
sor was within 1.6 km of the three towers that historically produced the most upward leaders (Towers 1, 4 and 6). 
This optimizes the recording of both the triggering flash field change near the tower locations and the field change 
resulting from the development of the upward leaders. Co-located with the fast antenna systems were electric field 
meters (EFMs), that sample the ambient electric field at 20 samples/sec. An additional EFM was also located on 
one of the mobile vehicles.

In São Paulo, Brazil, the same high-gain and low-gain fast antenna system as well as an EFM (sampling the 
ambient electric field at 50 samples/sec) were placed together approximately 11 km from the towers (Fig. 9b).

The field meters were factory calibrated but not calibrated to account for local field enhancement at each 
individual sensor site. Therefore, they were not absolutely calibrated so that electric field magnitude could only 
be compared relatively between the three different site locations. Data obtained from the EFMs provided insight 
into the initial electric field polarity as well as direction and magnitude of change during upward flashes at varying 
distances and directions from the towers.

The physics sign convention12 will be used when referring to the electric field and its change. A positive elec-
tric field is an upward pointing field when the ground is positively charged and there is negative charge overhead. 
A positive field change would result if there were an increase in negative charge overhead.

Auxiliary instrumentation.  For the 2014 observation season in USA, a nine station Lightning Mapping 
Array (LMA) provided by New Mexico Tech was installed with the centroid approximately 50 km east-southeast 
of the towers17,18.The LMA centroid was not located over the towers due to additional research objectives not 
related to the Upward Lightning Triggering Study (UPLIGHTS)19. This required that it be placed further eastward 
onto the high-plains. This location did, however, provide good 3-dimensional resolution of lightning generated 
source points for triggering and upward flashes from the towers. The LMA system recorded using 80 µs time 
windows20.

For the 2011 observation season in Brazil, a ten station Lightning Mapping Array (LMA) also provided by 
New Mexico Tech was installed with the centroid approximately 50 km east-southeast of the towers21,22.

Lightning detection network stroke data23,24 for a 200 km radius around the towers was obtained and analyzed 
for this study. Analysis provided timing and location of impulsive events detected by the networks during trigger-
ing and upward flashes in Brazil and in USA.

Data Availability
Data for this study is available on request. Please contact the corresponding author for details.

References
	 1.	 Wang, D., Takagi, N., Watanabe, T., Sakurano, H. & Hashimoto, M. Observed characteristics of upward leaders that are initiated 

from a windmill and its lightning protection tower. Geophys. Res. Lett. 35, L02803, https://doi.org/10.1029/2007GL032136 (2008).
	 2.	 Lu, W. T., Wang, D. H., Zhang, Y. & Takagi, N. Two associated upward lightning flashes that produced opposite polarity electric field 

changes. Geophys. Res. Lett. 36, L05801, https://doi.org/10.1029/2008GL036598 (2009).
	 3.	 Wang, D. & Takagi, N. Characteristics of Winter Lightning that Occurred on a Windmill and its Lightning Protection Tower in 

Japan. IEEJ Transactions on Power and Energy. 132(6), 568–572, https://doi.org/10.1541/ieejpes.132.568 (2012).
	 4.	 Zhou, H., Diendorfer, G., Thottappillil, R., Pichler, H. & Mair, M. Measured current and close electric field changes associated with 

the initiation of upward lightning from a tall tower. J. Geophys. Res. 117, D08102, https://doi.org/10.1029/2011JD017269 (2012).
	 5.	 Jiang, R. et al. Characteristics of upward lightning from a 325-m-tall meteorology tower. J. Atmos. Res. 149, 111–119, https://doi.

org/10.1016/j.amtosres.2014.06.007 (2014).
	 6.	 Cummins, K. L. et al. Overview of the Kansas Windfarm 2013 Field Program, In 15th International Conference on Atmospheric 

Electricity, USA, June (2014).
	 7.	 Rison, W. et al. LMA and Slow Antenna Observations of Naturally Induced Upward Positive Leaders from Wind Turbines. In 23nd 

International Lightning Detection Conference, USA (2014).
	 8.	 Saba, M. M. F. et al. Upward lightning flashes characteristics from high-speed videos. J. Geophys. Res. Atmos. 121, 8493–8505, 

https://doi.org/10.1002/2016JD025137 (2016).
	 9.	 Yuan, S. et al. Characteristics of upward lightning on the Beijing 325 m meteorology tower and corresponding thunderstorm 

conditions. J. Geophys. Res. Atmos. 122, 12093–12105, https://doi.org/10.1002/2017JD027198 (2017).
	10.	 Qi, Q. et al. Three-dimensional optical observations of an upward lightning triggered by positive cloud-to-ground lightning. 

Atmospheric Research. 214, 275–283, https://doi.org/10.1016/j.atmosres.2018.08.003 (2018).
	11.	 Wu, B. et al. Synchronized two‐station optical and electric field observations of multiple upward lightning flashes triggered by a 

310‐kA CG flash. J. Geophys. Res. Atmos. 124, https://doi.org/10.1029/2018JD029378 (2019).
	12.	 Rakov, V. A. & Uman M. A. Lightning: Physics and Effects, Cambridge Univ. Press, New York (2003).
	13.	 Armstrong, R. A. & Lyons, W. A. Satellite and Ground-Based Data Exploitation for Nudet Discrimination Characterizing 

Atmospheric Electrodynamic Emissions from Lightning, Sprites, Jets and Elves, Final Report, Contract # DE-AC04-98AL79469, 
Department of Energy, DoE/Albuquerque Operations Office (2000).

	14.	 Ballarotti, M. G., Saba, M. M. F. & Pinto, O. Jr. High-speed camera observations of negative ground flashes on a millisecond-scale. 
Geophys. Res. Lett. 32, L23802, https://doi.org/10.1029/2005GL023889 (2005).

	15.	 Saba, M. M. F., Pinto, O. & Ballarotti, M. G. Relation between lightning return stroke peak current and following continuing current. 
Geophys. Res. Lett. 33, L23807, https://doi.org/10.1029/2006GL027455 (2006).

	16.	 Lu, G. et al. Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective 
system. Geophys. Res. Lett. 36, L15805, https://doi.org/10.1029/2009GL038880 (2009).

	17.	 Krehbiel, P. R. et al. GPS-based mapping system reveals lightning inside storms. Eos Trans. AGU 81, 21–25, https://doi.
org/10.1029/00EO00014 (2000).

	18.	 Thomas, R. J. et al. Accuracy of the Lightning Mapping Array. J. Geophys. Res. 109, D14207, https://doi.org/10.1029/2004JD004549 
(2004).

https://doi.org/10.1038/s41598-019-46122-x
https://doi.org/10.1029/2007GL032136
https://doi.org/10.1029/2008GL036598
https://doi.org/10.1541/ieejpes.132.568
https://doi.org/10.1029/2011JD017269
https://doi.org/10.1016/j.amtosres.2014.06.007
https://doi.org/10.1016/j.amtosres.2014.06.007
https://doi.org/10.1002/2016JD025137
https://doi.org/10.1002/2017JD027198
https://doi.org/10.1016/j.atmosres.2018.08.003
https://doi.org/10.1029/2018JD029378
https://doi.org/10.1029/2005GL023889
https://doi.org/10.1029/2006GL027455
https://doi.org/10.1029/2009GL038880
https://doi.org/10.1029/00EO00014
https://doi.org/10.1029/00EO00014
https://doi.org/10.1029/2004JD004549


9Scientific Reports |          (2019) 9:9576  | https://doi.org/10.1038/s41598-019-46122-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

	19.	 Warner, T. A., Helsdon, J. H. Jr., Bunkers, M. J., Saba, M. M. F. & Orville, R. E. UPLIGHTS – Upward Lightning Triggering Study. 
Bull. Amer. Meteor. Soc. 94, 631–635 (2013).

	20.	 Warner, T. A. et al. Upward Lightning Triggering Study (UPLIGHTS): Project Summary and Initial Findings, In 25th International 
Lightning Detection Conference & 7th International Lightning Meteorology Conference, USA (2018).

	21.	 Albrecht, R. I. et al. Thunderstorm Characteristics of Summer Precipitating Systems During Chuva-Glm Vale do Paraiba Field 
Campaign. In 16th International Conference on Clouds and Precipitation, Brazil (2012).

	22.	 Schumann, C., Saba, M. M. F., Warner, T. A. & Ferro, M. A. S. Upward flashes triggering mechanisms. In 2017 International 
Symposium on Lightning Protection (XIV SIPDA), 304–307, https://doi.org/10.1109/SIPDA.2017.8116941 (2017).

	23.	 Cummins, K. L. & Murphy, M. J. An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-
Depth Look at the U.S. NLDN. IEEE Trans. Electromag. Compat. 51, 499–518 (2009).

	24.	 Naccarato, K. P. & Pinto, O. Jr. Improvements in the detection efficiency model for the Brazilian lightning detection network 
(BrasilDAT). Atmospheric Research. 91, 546–563 (2009).

Acknowledgements
The authors would like to acknowledge and thank Lie Bie (Benny), Amanda Paiva, Guilherme Aminger, Kleber 
Naccarato, Hugh Hunt, Alana Ballweber, Chip Redmond, John Hamilton and Ryan Lueck, for their assistance in 
obtaining some of these observations. The authors would like to thank Claude Leon Foundation and University 
of the Witwatersrand. The authors would also like to thank Fundação de Amparo à Pesquisa do Estado de São 
Paulo (FAPESP) for supporting the research through the projects 2012/15375-7 and 2013/05784-0. This research 
was made possible through National Science Foundation (NSF) grant AGS-1048103. Additional funding came 
from NSF grant ATM – 0813672, which provided funding for concurrent high-speed optical spectra observations 
during UPLIGHTS.

Author Contributions
Dr. Carina Schumann produced all the figures and together with Tom A. Warner, collected and analysed data. 
Post analysis discussion involved Dr. Marcelo M.F. Saba, Dr. Marco Ferro, Dr. Carina Schumann and Tom A. 
Warner. Dr. Carina Schumann, Tom A. Warner and Dr. Marcelo M.F. Saba wrote the manuscript. Dr. John H. 
Helsdon Jr. and Tom A. Warner were Rapid City UPLIGHTS principle investigators. Ron Thomas provided the 
LMA and the collected LMA data and Richard E. Orville provided one of the high speed cameras used. All 
authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-46122-x
https://doi.org/10.1109/SIPDA.2017.8116941
http://creativecommons.org/licenses/by/4.0/

	On the Triggering Mechanisms of Upward Lightning

	Data Presentation

	Dataset and Case Study

	Results and Discussion

	Triggering flash component - Leader propagation. 
	Triggering flash component - Return Stroke. 
	Occurrence of triggering flash types and components. 

	Summary

	Methods

	Optical sensing. 
	Electrical field sensing. 
	Auxiliary instrumentation. 

	Acknowledgements

	Figure 1 High speed video frames showing the occurrence of the triggering flash and the upward lightning flashes from Towers 1 and 4.
	Figure 2 LMA source data plot of an upward flash on 15 June 2015 at 02:17:14 UT.
	Figure 3 INPE fast antenna data plot from 15 June 2014 at 02:17:14 UT.
	Figure 4 Electric field meter traces during an upward flash on 15 June 2014 at 02:17:14.
	Figure 5 Triggering flash components that cause the upward leader initiation.
	Figure 6 (a) Bidirectional intracloud leader development begins with positive (red) and negative (blue) leaders expanding from an initiation point.
	Figure 7 (a) Bidirectional intracloud leader development begins with positive (red) and negative (blue) leaders expanding from an initiation point.
	Figure 8 (a) Bidirectional intracloud leader development begins with positive (red) and negative (blue) leaders expanding from an initiation point (b,c).
	Figure 9 (a) Location of instrumentation in Rapid City (the trucks show the location of the most commonly used observation spots for the high-speed cameras the numbered pins indicate the towers and the yellow squares show the position where the electric f
	Table 1 Number of upward flashes and triggering flash type.
	Table 2 Triggering components occurrence in Rapid City and in Sao Paulo.




