i DECLARATION

I (Desmond Jo Schnugh), declare that this dissertation is my own, unaided work. It is being submitted for the Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

(Signature of candidate)

_____ day of _____ 2005

ii ABSTRACT

 α -catenin plays a crucial role in cell adhesion. Expression levels of α -catenin have been shown to be decreased in almost all tumours studied. The levels of the epidermal growth factor receptor (EGFR) were shown to be increased in oesophageal squamous cell carcinoma (OSCC) cell lines. α -catenin therefore, may play a part in linking the EGF pathway or other signal transduction pathways, bringing about some of the changes in the OSCC cell lines. The α -catenin gene from five OSCC cell lines was sequenced. Three out of five OSCC cell lines studied were found to harbour mutations. One of the mutations resulted in a change in the amino acid sequence of α -catenin. It was concluded that this alteration may not have affected the functioning of α -catenin. α -catenin was largely expressed at the plasma membrane with some weaker cytoplasm/nuclear expression occurring in all of the OSCC cell lines. Treatment of the OSCC cells with EGF for a 12 hour period resulted in no noticeable change in the expression levels of α catenin. The results obtained from this study indicated that α -catenin could play a role in signal transduction pathways in the OSCC cell lines.

iii ACKNOWLEDGEMENTS

I would like to thank Jesus Christ my Lord and saviour for the opportunities and abilities to perform this project. A special word of thanks to my fiancé Janine Gouws for her love, support, guidance and patience with this project. I would like to thank my family for all their support, love and kindness with this project. Thank you to Prof. Rob Veale for his support and mentoring in the course of this project. Thank you to Elsabe Scott and the support staff for all the hard work and support. Thank you to my laboratory colleagues for their support.

iv CONTENTS

i	Declaration		
ii	Abstract		
iii	Acknowledgements		
iv	Contents	IV	
v	List of Figures	VIII	
vi	List of Tables	Х	
vii	List of abbreviations	XI	
1	Introduction		
	1.1 Cell adhesion and cancer	1	
	1.2 Cell adhesion and its role in metastasis	2	
	1.2.1 Cell adhesive interactions	2	
	1.2.2 Adherens junction composition and role in epithelial cell	3	
	integrity	6	
	1.2.3 α -catenin's interactions with the adherens junction components	7	
	1.3 β -catenin's role in the Wnt pathway	12	
	1.4 α -catenin processing		
	1.5 α -catenins regulation of β -catenin levels	14	
	1.6 Growth factors and their effects on cell adhesion and signalling	16	
	1.6.1 The effects of EGF's on cell adhesion	16	
	1.7 Changes in adhesive properties and signalling functions of adhesive		
	molecules	18	
	1.8 Oesophageal carcinoma: A problem of epic proportion in South Africa	19	
	1.9 Objectives of this investigation		
2	Investigation of the α -catenin gene in OSCC		
	2.1 Introduction	20	
	2.2 Objectives	22	
	2.3 Methodology	23	
	2.3.1 Tissue culture	23	

	2.3.2 Extraction of RNA	23
	2.3.3 Visualisation of extracted RNA	24
	2.3.4 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)	24
	2.3.4.1 Step one, complementary DNA synthesis	24
	2.3.4.2 Step two, PCR	25
	2.3.5 PCR fragment purification	26
	2.3.6 DNA sequencing	26
	2.4 Results	27
	2.5 Discussion	36
3	Cell localization and relative levels of α -catenin protein expression	
	3.1 Introduction	40
	3.2 Objectives	41
	3.3 Methods	42
	3.3.1 Tissue culture	42
	3.3.2 Antibodies	42
	3.3.3 Indirect Immunofluorescent staining	42
	3.3.4 Cell fractionation into plasma membrane and cytoplasm/nuclear components	43
	3.3.5 Lyophilisation of plasma membrane and cytoplasm/nuclear fractions	44
	3.3.6 Estimation of concentration of proteins in the lyophilized	44
	samples	45
	3.3.7 Sodium dodecyl sulphate polyacrylamide gel electrophoresis	
	(SDS-PAGE)	46
	3.3.8 Western blot	47
	3.3.9 Laser Scanning densitometry	48
	3.4 Results	55
	3.5 Discussion	
4	Effect of EGF signaling on α -catenin expression	
	4.1 Introduction	59
	4.2 Objectives	61
		V

4.3	Meth	ods	61
	4.3.1	Tissue culture	61
	4.3.2	EGF treatment	61
	4.3.3	Cell fractionation into plasma membrane and cytoplasm/nuclear	61
		components	
	4.3.4	Lyophailisation of plasma membrane and cytoplasm/nuclear	62
		fractions	
	4.3.5	Estimation of protein concentration	62
	4.3.6	Western blot	62
	4.3.7	LASER scanning densitometry	62
4.4	Resu	lts	63
4.5	Discu	ission	67
Sub	-clonir	ng of α -catenin for over-expression	
5.1	Intro	duction	69
5.2	Objec	ctives	70
5.3 Methods		70	
	5.3.1	Complete Control® inducible mammalian expression system	70
		(Stratagene)	
	5.3.2	Endonuclease restriction digestions	73
	5.3.3	Gel purification	74
	5.3.4	Dephosphorylation of the linearised pEGSH vector	75
	5.3.5	End filling	75
	5.3.6	Spectrophotometric analysis of extracted samples	76
	5.3.7	Ligation	76
		5.3.7.1 Manual ligation	76
		5.3.7.2 FAST-LINK [™] DNA ligation and Screening kit	77
		(Epicentre Technologies)	
		5.3.7.3 Rapid ligation kit (Roche)	77
	5.3.8	High-voltage electroporation	77
	5.3.9	PCR analysis of transfected cells	78
	5.3.10) DNA sequencing	78
			VI

5

	5.3.11 Transfection of the WHCO5 OSCC cell line	79
	5.4 Results	79
	5.4.1 Sub-cloning of the EGFP control	79
	5.4.2 Sub-cloning of α -catenin	81
	5.5 Discussion	84
6	Overall discussion	
	6.1 Outcomes of the investigation	89
	6.2 Investigation of the α -catenin gene in OSCC	90
	6.3 Cell localization and relative levels of α -catenin protein expression	91
	6.4 Effects of EGF signaling on α -catenin expression	92
	6.5 Sub-cloning of α -catenin for over-expression	95
	6.6 Concluding statements	96
7	Appendix	98
	1	
	2	
	3	
8	References	119

v LIST OF FIGURES

Figure 1.1	Representation of an epithelial cell adherens junction	4		
Figure 1.2	β-catenin degradation			
Figure 1.3	The Wnt pathway 1			
Figure 1.4	The EGF pathway	15		
Figure 2.1	Schematic representation of α -catenin indicating the various binding	21		
	sites located on it			
Figure 2.2	Separation of RNA extracted from the OSCC and CC cell lines	28		
Figure 2.3	Separation of cDNA produced by RT utilising RNA extracted from	29		
	the OSCC and CC cell lines			
Figure 2.4	Separation of the PCR fragments produced from the 5' term and 3'	31		
	term amplifications performed on the OSCC and CC cell lines			
Figure 2.5	Separation of the fragments produced from the VZA amplification	33		
	utilizing the OSCC cell lines as template and the separation of the			
	same fragments post purification			
Figure 2.6	Portion of the electrophoretogram obtained from the WHCO6 OSCC	34		
	cell line containing the DNA sequence depicting the single mutation			
	at nucleotide 2220			
Figure 3.1	Indirect immunofluerescent staining of α -catenin in the OSCC and	49		
	CC cell lines			
Figure 3.2	SDS-PAGE separation of plasma membrane fractions obtained from	50		
	the OSCC and CC cell line			
Figure 3.3	SDS-PAGE separation of the cytoplasm/nuclear fractions obtained	51		
	from the OSCC and CC cell lines			
Figure 3.4	Western blots depicting α -catenin expression in the plasma	52		
	membrane and cytoplasm/nuclear fractionates obtained from the			
	OSCC and CC cell lines			

Figure 3.5	Relative levels of α -catenin expression in the plasma membrane and	54	
	cytoplasm/nuclear fractions obtained from the OSCC and CC cell		
	lines		
Figure 4.1	Western blots depicting the presence of α -catenin in the EGF treated	64	
	and untreated plasma membrane and cytoplasm/nuclear fractions		
Figure 4.2	Comparison of relative levels of α -catenin expression in the plasma	65	
	membrane and cytoplasm/nuclear fractions obtained from the EGF		
	treated and untreated OSCC cell lines		
Figure 5.1	Map of the pERV 3 vector (Stratagene)	71	
Figure 5.2	Map of the pEGSH vector (Stratagene)	72	
Figure 5.3	Endonuclease restricted α -catenin, EGFP fragments and pEGSH	80	
	vector and their respective gel purified samples		
Figure 5.4	PCR analysis of the transforming factors contained in the transformed	82	
	<u>E.coli</u> cells		
Figure 5.5	Sequence of the pEGSH-EGFP construct 83		
Figure 6.1	Hypothesized mechanism for EGF's breakdown of the adherens	93	
	junction		
Figure 7.1	Standard curve of BSA concentration used to estimate the	112	
	concentration of proteins contained in the plasma membrane fractions		
	obtained from the OSCC and CC cell lines		
Figure 7.2	Standard curve of BSA concentration used to estimate the	113	
	concentration of proteins in the cytoplasmic/nuclear fractions		
	obtained from the OSCC and CC cell lines		
Figure 7.3	Standard curve of molecular weight of the low molecular weight	114	
	marker (Pharmicia) versus the distance migrated by the marker.		

IX

vi LIST OF TABLES

Table 2.1	Mutational status of α -catenin's vinculin, ZO-1 and actin binding	35
	domains as amplified from the OSCC cell lines	
Table 7.1	Estimated protein concentrations of the plasma membrane and	115
	cytoplasm/nuclear fractions obtained from the OSCC and CC cell	
	lines and the volumes loaded onto the SDS-PAGEs	
Table 7.2	Estimated concentration of plasma membrane extracted fractions	116
	from the EGF treated OSCC cell lines	
Table 7.3	Estimated concentration of cytoplasm/nuclear extracted fractions	117
	from the EGF treated OSCC cell lines	

Table 7.4Composition of the FuGENETM 6/pERV 3 mixtures118

vii ABBREVIATIONS

А	А	Absorbance
	А	Adanine
	Ala	Alanine
	APC	Adenomatous Polyposis Coli
	ATP	Adenosine triphosphate
В	BLAST	Basic Local Search Alignment Tool
	Bis	NN-methylene Bisacrylamide
	bp	Base pair
	BSA	Bovine serum albumin
	βTrCP	Ubiquitin ligase
С	С	Cystine
	°C	Degrees celcius
	Ca ²⁺	Calcium ion
	CC	Colon cancer
	Cdc	Cyclin dependent kinase
	cDNA	Complementary deoxy riobonucleic acid
	CE	Concentration of estimated sample in $\mu g/\mu l$
	CF	Concentration factor
	CH ₃ COONa. 3H ₂ O	Sodium acetate
	CKIE	Casein Kinase Iɛ
	CIP	Calf intestine alkaline phosphatase
	CL	Cell line
	Clu 1	Ubiquitin conjugating enzyme
	CO_2	Carbon dioxide
	CS	Concentration of samples in µg/µl
D	dH ₂ O	Distilled water
	DLD	D. L. Dexter
	DNA	Deoxy ribonucleic acid

	dNTP	Deoxynucleotide triphosphate
	DTT	Di thio threatol
	Dvl	Dishevelled
E	EDTA	Ethylene diamine tetra-acetic acid sodium salt
	EGF	Epidermal growth factor
	EGFP	Enhanced green fluorescent protein
	EGFR	Epidermal growth factor receptor
	E/GRE	ecdysone/glococorticoid responsive elements
	Elk 1	elk 1 transcription factor
	EtBr	Ethidium bromide
	Erk	Extracellular signal-regulated kinase
F	F	Fraction
	Fer	Src like protein kinase
	FITC	Fluorescine isothiocyanate
	5' term	Amplification of α -catenin's 5' terminus
	f1 ori	f1 origin of ss-DNA replication
	Fyn	p59 src like protein tyrosine kinase
G	G 1	Gap 1 phase
	G 2	Gap phase 2
	GrB	Adaptor molecule
	GSK-3β	Glycogen synthase kinase 3β
Н	HCl	Hydrochloric acid
	H ₂ O	Water
Ι	IgG	Immunoglobulin G
	IRES	internal ribosome entry site
J	JNK	c-Jun N-terminal kinase
	JUNKK	Jun kinase kinase
K	KCl	Potassium chloride
	KH ₂ PO ₄	Potassium dihydrogen orthophosphate
L	L	Litre
	LA	Luria burtani medium containing ampicillin

	LB	Luria burtani
	Lef	Lymphoid enhancer factor
М	MAP	Mitogen-activated protein
	MCS	Multiple cloning site
	Mek	Met-enkephalin
	Mekk 1	MAP kinase kinase 1
	MgCl ₂	Magnessium chloride
	$MgSO_4$	Magnessium sulphate
	m HSP	minimal heat shock promoter
	μl	Micro leter
	μg	Micro grams
	min	Minutes
	ml	Milli liters
	mM	Milli molar
	MMLV-RT	Moloney Murine Virus Reverse Transcriptase
	mRNA	Mesenger RNA
	mV	Mili volts
N	Ν	Normal
	NaCl ₂	Sodium chloride
	Na ₂ HPO ₄ .12H ₂ O	Sodium dihydrogen orthophosphate dihydrate
	NaOH	Sodium hydroxide
	neo/kan	neomycin/kanamycin resistance ORF
0	ORF	Open reading frame
	OSCC	Oesophageal squamous cell carcinoma
	OV	Origional sample
Р	Р	Phosphate group
	p90 ^{rsk}	p90 ribosomal S6 kinase
	PBS	Phosphate buffered saline
	P bla	bla promoter
	p CMV	CMV promoter
	PCR	Polymerase chain reaction.

	pEGSH	Not supplied by manufacturer
	pERV 3	Not supplied by manufacturer
	PMSF	Phenylmetha-sulfonyl fluoride
	P SV40	SV40 promoter
	P TK	HSV-thymidine kinase promoter
	P UC ori	pUC origin of replication
R	\mathbf{R}^2	Degree of fit of the line or regression
	Ras	Ras tyrosine kinase
	Raf	Raf tyrosine kinase
	RNA	Ribonucliec acid
	RNAsin®	RNase inhibitor (Promega)
	RT-PCR	Reverse transcriptase polymerase chain reaction
	RXR	retinoid-x-receptor
S	S	Synthesis phase
	SAPK	Stress activated protein kinase
	SDS	Sodium dodecyl sulphate
	SDS-PAGE	Sodium dodecyl sulphate polyacrylamide gel electrophoresis
	Sek	Adaptor molecule
	SHC	Src homology 2
	SH2	Smad-interacting, multi-zinc finger protein I
	SIP 1	Ubiquitin activating enzyme
	Skp 1	Guanine nucleotide releasing factor
	Sos	Son of Sevenless
	SP1	Sp1 binding sites
	SV40 pA	SV40 poly a signal
Т	TAE	Tris-acetate/EDTA eletrophoresis buffer
	TC	Tissue culture medium
	TCA	Tri-chloroacetic acid
	Tcf	T cell factor
	TE	Tris-EDTA
	TEMED	NNNN-tetramethylene-diamine

	TkpA	HSV-thymidine kinase (TK) poly A signal
	3' term	Amplification of the 3' terminus of α -catenin
	Tris.Cl	Tris(hydroxymethyl)-aminomethan chloride
U	Ub	Ubiquitin
V	V	Volts
	VgEcR	ecdysone-receptor element
	VL	Volume lyophilized
	VR	Volume required to obtain 5µg of protein
	VZA	Amplification of α -catenin's vinculin, ZO-1 and actin
		binding domains
W	WHCO	Wits human carcinoma of the oesophagus
	Wnt	Wnt-wingless pathway
Х	Х	multiply
	x g	Times gravity
Ζ	ZnCl ₂	Zinc chloride
	ZO-1	Zonular occludens 1