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ABSTRACT

In this work we develop a generalised methodology for the solution of the time-

dependent second order parabolic differential equation of potential flow in

heterogeneous media using the Green element method.  Parabolic differential

equations are one class of differential equations, the others being elliptic partial

differential equations and hyperbolic differential equations.  Since elliptic

differential equations generally arise from a diffusion process that has reached

equilibrium, they can also be solved using the methodology developed, and

represent a simplification because of the steady state situation.

Potential flow problems are of great interest in many engineering applications

such as flow in aquifers, heat transfer processes, electro-magnetic field problems,

etc. Traditionally, the finite difference method and the finite element method

have proved to be powerful techniques to solve such potential flow problems, but

each has limitations and challenges which have led to continued research in

numerical methods.  The finite difference method is more applicable to domains

with regular boundary, and the finite element method, though extremely versatile,

exhibits unacceptable inaccuracies with coarse meshes, thus requiring fine meshes

with the associated high computation costs.

In view of some of the limitations with these earlier methods, several numerical

schemes are now being developed as viable alternatives to these conventional

methods.  Among such methods are the boundary element method, the finite

volume method, and the analytic element method.  The boundary element method

has been particularly promising because of its domain-reduction feature and the

second order accuracy that can generally be achieved. The domain-reduction

feature of the boundary element method, though achieved for restricted class of

problems, lends it to efficient grid generation algorithm, while its second-order

accuracy ensures reliability and consistency of the numerical solutions.
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The boundary element method in its original formulation is unable to deal with

heterogeneities in the domain.  For physical problems, especially in groundwater

flow, heterogeneities and anisotropy are a natural and frequent occurrence, and

this has fuelled research into boundary element techniques that are capable of

accommodating these features.

The Green element method is one technique which is based on the boundary

element theory and which has been proven to be very effective in handling

heterogeneities and anisotropy in 1D and 2D domains.  However, development of

techniques to implement the Green element method in 3D domains has remained

largely unexplored.  This work represents an effort in this direction.

We have investigated the adoption of the general tetrahedral and hexahedra

elements for use with the Green element method, and found that the large number

of degrees of freedom generated precludes retention of the internal normal

direction as in 1D and 2D formulations.  Furthermore, some of the complicated

surface and domain integrations with these elements can only be addressed with

quadrature methods.  The compatibility issues that arise between element faces,

which present considerable challenges to multi-domain boundary element

techniques, are innovatively addressed in the computer code that has been

developed in this work.

The Green element method is implemented for steady and time-dependent

problems using regular hexahedra elements, and the results show that the

performance is slightly better than the results obtained using FEMWATER.

FEMWATER is an established finite element method software. No attempt is

made to compare the computation efficiencies of the 3D GEM code and

FEMWATER because the two codes were not developed on a common platform.
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NOMENCLATURE

u* Fundamental solution

q* Derivative of the fundamental solution
u Potential, a scalar field

q Potential gradient, n
u

nz
u

zy
u

yx
u

x qqqq 









  ,,,

n Normal to surface

c Distance between collocation point and normal to the
surface on which integration is being done.

k Coefficient of the potential at the collocation node

AEM Analytic Element Method

FEM Finite Element Method

BEM Boundary Element Method

GEM Green Element Method

FVM Finite Volume Method

PDE Partial Differential Equation

x, y, z Global coordinate system (Coordinate System 1)

1, 2,  Local coordinate system for surface on which
integration is being done with origin at collocation
point (Coordinate System 2)

1, 2,3 Local coordinate system for a standard isoparametric
unit surface element (Coordinate System 3)

i Interpolation functions 1, 23and4

J Jacobian of 321321 ,,,,  torespectwith

 Volume integration space defined by coordinate system 1
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 Surface integration space defined by coordinate system 2

 Surface integration space defined by coordinate system 3

   212211 ,,,  ww Functions with respect to 1, 2

H, G, W Nodal potential, Flux, and Forcing term multiplier
matrices, respectively.
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1. INTRODUCTION

In this chapter an introduction to the problem of the solution of potential flow

problems is given.  The discussion starts with a brief background to the problem

which necessitated the study of partial differential equations before defining the

problem that is the subject of the current study.  Finally, the objectives of study

and a brief discussion on the format of the report are given.

1.1 Background

The study of partial differential equations began in the 18th Century with the work

of pioneers like Laplace, d’Alembert, Euler and Lagrange as a principal tool in the

study of mechanics of continua and physical sciences.  During the 19th Century,

the subject was picked up by mathematicians particularly with the work of

Riemann, as reported by Brezis and Browder (1998).  Partial differential equations

generally involve two or more independent variables, which in practice are often

space and time variables, a number of dependent variables that describe the

physical phenomena, and parameters that reflect the constitutive relationships.

Due to the fact that more than one independent variable is present, the

“derivatives” that occur are partial derivatives. Such equations are widespread in

science and engineering, and they model physical phenomena.  They also arise

frequently in the form of systems of equations whose coupling reflect the

interdependence among the dependent variables.

Seemingly distinct physical phenomena may have identical mathematical

formulations, and thus be governed by the same underlying principle.  This fact

was first stated in the late 19th century (Poincaré, 1890). Poincaré emphasized

that a wide variety of physically significant problems arising in very different

areas (such as electricity, hydrodynamics, heat transfer, magnetism, optics,

elasticity, etc) have a family resemblance that lends to treatment by common

methods.
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The most satisfactory solution of a field problem is an exact mathematical one.

The appropriate method of solution has to be determined for each particular

problem.  For example, for steady potential flow in two dimensions, the most

powerful analytical method appears to be the method of complex variables, which

involves such concepts as the velocity hodograph and conformal mapping (Bear

and Verrijt, 1988). A hodograph is a diagram that gives a vectorial visual

representation of the movement of a body or a fluid. It is the locus of one end of a

variable vector, with the other end fixed, and has found some uses in the

analytical solution of partial differential equations.  An example of its applications

can be found in the work of McCarthy (1994). A powerful method to deal with

nonsteady problems is the Laplace transform technique. However, in many

practical cases an analytical solution cannot be obtained due to the complexity of

the loading and/or the physical geometry, and we must resort to numerical

approximate solutions. To use analytical methods, the geometry must be regular,

e.g. circular, rectangular, or infinitely extensive.  The properties of the medium

must be homogeneous, or at least homogeneous in sub-regions. Knochenmus and

Robinson (1996) have pointed out that because of the idealisations necessary in

order to use analytical methods, flurries of developments of numerical methods

now abound in the literature primarily because of their ability to produce solutions

to more realistic and practical problems. Analytical solutions are however still

useful in checking solutions obtained from numerical methods.

Traditionally, the finite difference method (FDM) and the finite element method

(FEM) have proved to be powerful numerical techniques for solving potential

flow problems.   The two methods do basically the same thing, i.e. approximate

the set of partial differential equations to be solved by a set of algebraic equations.

The FDM has had and continues to have strong appeal in numerical circles

because of its ease of understanding, relying on classical calculus in

approximating differential operations, which are approximated by difference

formulae constructed from values of the dependent variable at a number of

predefined points.  This makes it most appropriate to domains that are regular.

The FEM, on the other hand, approaches the solution in a more indirect way.
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Firstly, it is not the differential operator that is approximated by difference

formulae constructed from values of the dependent variable at a number of

predefined points, but the variation of the independent variables (i.e. the given

function is approximated locally over each element by continuous functions which

are uniquely defined in terms of the values of the function and possibly its

derivatives at the nodes on each element). Secondly, the algebraic equations are

formed as the result of either the local minimisation of some appropriate energy

function natural to the physical system or the piecewise application of a weighted

residual method to the differential equations.

The FDM and the FEM each has limitations and challenges which have led to

continued research in numerical methods. In view of this, several numerical

schemes are now being developed to circumvent the limitations and challenges of

the FDM and the FEM. Among such methods are the boundary element method,

the finite volume method, and the analytic element method.  Although these new

methods do address the problems of the FDM and the FEM, each does come with

its set of limitations and challenges. The boundary element method has been

particularly promising because second order accuracy is maintained in its

formulation, which ensures reliability and consistency of the numerical solutions.

The boundary element method (BEM) in its original formulation is unable to deal

with heterogeneities in the domain. Onyejekwe (2006) has summarized the

various efforts that have been made to adapt the method to physical problems.  He

notes that the paucity of literature on BEM application to transport problems

involving media heterogeneity underscores the fact that a lot of work still needs to

be done in this area.  For physical problems, especially in groundwater flow,

heterogeneities and anisotropy are a natural and frequent occurrence, and this has

been a motivation for a lot of research into techniques to adapt the boundary

element method to deal with these situations.

To utilise the second order accuracy of the boundary element method for non-

linear heterogeneous systems, Taigbenu proposed the Green element method

(GEM) in 1990 (Taigbenu, 1990) which he defined as an element by element
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implementation of the boundary element theory over the meshes of the finite

element method. Taigbenu (1995) presented a theoretical discussion of Green

element method and demonstrated that GEM required 15% to 45% less

computational time than the standard boundary element method. Since then, some

authors have picked up on the method as a limiting case of the multi-domain

technique in boundary element analysis in which the size of the domains is taken

to the limiting case of the elements used in finite element methods (Gao and

Davies, 2000; Ramšak and Škerget, 2007; Ramšak and Škerget, 2009).

Numerical formulations that are based on the Green element method (GEM) have

been used to solve various problems of practical engineering concern, and there

are several papers which have been published which highlight the applications in

the various fields. Some examples of the publications in these various fields are

as follows.

 Heat transfer

Simulation of coupled non-linear electromagnetic heating with the Green

element method (Taigbenu, 2006). In this paper, the author demonstrated how

the flux-based Green element formulation is used to solve the non-linear

coupled differential equations that govern the problem of heat transfer in food

materials that are electrically heated.  This is a problem of major interest to the

food and related industries interested in the heating of food substances by

electrical currents.

 Stream-unconfined aquifer flows

A time-dependent Green’s function based model for stream-unconfined

aquifer flows (Taigbenu, 2003).  In this paper the author used the Green

element method to solve the non-linear stream-unconfined aquifer flow

problem, which demonstrates the computational flexibility that is achieved

with a Green element sense of implementing the boundary integral theory.
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 Petroleum Engineering

Dual reciprocity boundary element method and the Green element method

were used by Archer et al. (1999) to solve some petroleum reservoir

engineering problems. Petroleum reservoir engineering requires solutions to

the transient diffusion and convection-diffusion equations.  Traditionally these

calculations are carried out using finite difference methods.  In this paper the

authors applied the Dual Reciprocity Boundary element method and the Green

element method to flow in heterogeneous media and to the convection-

diffusion equation.  Numerical experiments showed the Green element method

to be more accurate and more stable than the Dual Reciprocity Boundary

element method at high Peclet number.  Both methods allow reservoir

heterogeneity to be treated more efficiently than with the perturbation-based

methods.

 Chemical Engineering

Application of the Green Element Method to Chemical Engineering Problems

(Abashar, 2004).  In this work the Green element method (GEM) is

implemented on chemical engineering problems. The author reports that the

method overcomes some of the limitations of classical boundary element

approach and uses the finite element methodology to achieve optimum inter

nodal connectivity. The global coefficient matrix is banded and numerical

difficulties from a densely populated matrix are eliminated. Two numerical

examples are used to demonstrate the capabilities of the method. The results

are compared with orthogonal collocation method, finite element method and

experimental data. It was shown that the Green element method is very

reliable and efficient.

The problem at hand is that there is need to extend the Green element formulation

to three dimensions, and to provide a tool for solving three dimensional potential

flow problems.  An understanding of differential equations is crucial to
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implementing such a tool, and a brief discussion on differential equations is

therefore herein provided.

1.2 Problem Definition and Importance of Study

The Green Element Method (GEM) is a new, powerful, and promising technique

for solving boundary value problems (Pecher et al., 2001). It is derived from the

Boundary Element Method (BEM) and applied over the meshes of the Finite

Element Method (FEM), the Green element method combines the second order

accuracy of the BEM with the efficiency and versatility of the FEM.  Solutions of

1-D and 2D potential flow problems using the Green element method have been

successfully implemented, and the results show that the limitations of the BEM

method in solving non-linear potential flow problems that exhibit medium

heterogeneities are overcome with the GEM, and that significant computational

gains can be achieved by using GEM instead of the standard BEM (Taigbenu,

1995). The current research project is aimed at implementing the GEM numerical

solution strategy for time-dependent three-dimensional potential flow problems

and investigating if the observed powerful advantages of the GEM do extend to 3-

Dimensional domains.

1.3 Objectives of Study

The objective of the current research project is to develop a numerical formulation

based on the Green element method for time-dependent potential flow problems

that extends the work done to date for the one and two spatial dimensions.

We have maintained the name “Green element method” for the technique of

applying the boundary element method at the scale of the elements of the finite

element method.  This is in accordance with the name originally given to the

method when it was first presented (Taigbenu, 1995).



_________________________________________________________________

-7-

Ramsak and Skerget have adopted the name “multidomain BEM” for the same

method as the Green element method (Ramšak and Škerget, 2009).  They exposed

the paucity of research papers on the subject when they stated that there are

various 2D BEM applications using the multidomain method, but that only one

3D application is found in open literature.  They refer to the work of Gao and

Davies (2000) who used more than two sub-domains in 3D for the first time.  Gao

and Davis actually used four sub-domains, and in their later work (Gao, 2004) the

multidomain approach was abandoned. (Gray and Kaplan, 2001) also make the

same observation about the paucity of research work in 3D applications of

singular integration when they state that while the analysis of two-dimensional

singular integrals is relatively easy, the three dimensional integrals are less

straight forward, and that this explains the dearth in sources for such techniques.

Furthermore, the inter-element connectivity relations in 3D are of a much higher

order of complexity than in 2D (Peratta and Popov, 2006; Ramšak and Škerget,

2009).

The hypothesis is raised that it is possible to develop a three-dimensional

formulation for the Green element method.  In the event that the three dimensional

formulation is developed, it is also the objective of the current project to test if the

computational gains that have been reported for the one-dimensional and two-

dimensional cases do extend to three dimensions.  Unknown to the author of this

thesis, some work was actually being conducted on the same subject, albeit under

the heading “multidomain BEM” instead of “Green element method” by Ramsak

and Skerget who published a paper on the subject in 2009 (Ramšak and Škerget,

2009).  In their work they have used forty-eight Gauss integration points in each

integration direction (i.e. x, y, and z directions).  In the course of the research for

this thesis over a period of four years from 2006 to 2009, we have investigated

both Gauss quadrature integration points and have also investigated the use of

analytic integration using MATHEMATICA software.
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1.4 Format of the Report

Chapter 2 of this report presents the literature reviewed both prior to the

commencement of the development of the numerical formulation based on the

Green element method for time-dependent potential flow problems in 3-

dimensions and during the development stages.  The following areas of concern

were reviewed:

 Ordinary and partial differential equations in general

 Techniques available for the solution of partial differential equations

 A more focussed review of the boundary element method and the formulations

for the 3-dimensional Laplace equation, together with the techniques for

handling domain integrals arising when inhomogeneity is introduced to the

equation.

In Chapter 3 we delve into the Green element solution of the 3D Laplace equation.

The solution developed in that chapter served as the basis for further

enhancements of the Green element formulation which incorporates the forcing

term (Poisson equation) and the temporal derivative term (diffusion or heat

conduction equation).  These numerical enhancements of incorporating the

forcing term and the temporal derivative term are presented in Chapter 4.

Chapter 5 presents numerical examples with which the performance of the

developed Green element method is compared against analytical solutions and

those of a finite element commercial package, FEMWATER.  The main findings

from the research are discussed in Chapter 6.

The computer code that has been developed to implement the 3D GEM for the

time-dependent potential problem is written in Visual Basic for Applications and

runs under Microsoft Excel.  The MS Excel platform enhanced visualization of

the output at every stage of the development of the code.
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In addition to the main programming being carried out in Visual Basic, various

utilities were developed to aid with the analysis. The discretizing elements were

built with the GID software.  A need arose for a script to output the grid built with

GID into the main Visual Basic code.  Output from GID is accomplished by

creating a set of customization text files called a “Problem Type”.  Appendix B is

the script listing of the main text file of this Problem Type, and it has the specific

purpose of outputting information from GID by generating a file that can be

processed into a form suitable for the developed Green element code.  The

processing into a form suitable for the Green element code is done by the

FORTRAN script listed in Appendix C.
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2. LITERATURE REVIEW

In view of the fact that the study of partial differential equations has been on-

going since the 18th Century, a large collection of information on the subject of

the solution of such equations is available in the literature.  The literature search

reveals that whereas analytical solutions are well developed for idealised

geometries and boundary conditions which can only be applicable to few practical

problems, numerical schemes are more suited to solving partial differential

equations that govern practically based problems.  A discussion on the available

numerical schemes in literature is provided, and special attention accorded to the

Boundary element method since this is the basis on which the Green element

method (the numerical scheme for the research work) is based.

2.1 Introduction to Ordinary and Partial Differential
Equations

2.1.1 Classification of Differential Equations

 Ordinary and Partial Differential Equations

Differential equations can be ordinary or partial.  An ordinary differential

equation (ODE) contains differentials with respect to only one variable while a

partial differential equation (PDE) contains differentials with respect to several

independent variables. In mathematical terms, a partial differential equation

(PDE) is any equation involving a function of more than one independent variable

and at least one partial derivative of that function. The order of a PDE is the order

of the highest derivative that appears in the PDE. The principal part of a PDE is

the collection of terms in the PDE containing derivatives of order equal to the

order of the PDE (Hemker, 2004).
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Ordinary differential equations that have time as the independent variable are also

called ‘initial value problems’ because the information about the behaviour of the

system is known at the initial time t0 and it is required to find the solution at times

subsequent to t0.  For a partial differential equation in more than one spatial

dimension, the problem is to solve for the dependent variable given some

boundary conditions.  The problem is therefore a ‘boundary value problem’. A

boundary value problem may also be time dependent, and to solve such a problem

we need the initial conditions specified over the entire spatial domain in addition

to the boundary conditions.   This problem is concerned with a solution technique

to partial differential equations of the latter type, ‘boundary value problems that

incorporate time as an independent variable’.

 Linear and non-linear Differential Equations

A PDE in a dependent variable u  is classified as linear if all of the terms

involving u and any of its derivatives can be expressed as a linear combination of

u in which the coefficients of the u-terms are independent of u i.e. the unknown

function and its derivatives appear to the power of unity (products are not

allowed). In a linear PDE, the coefficients can depend at most on the independent

variables. If the terms involving the dependent variables (u or any of its

derivatives) involve products of the variables then the differential equation is non-

linear.

 Classes of Differential Equations

In addition to the distinction between linear and nonlinear PDEs, it is important

for the computational scientist to know that there are different classes of PDEs.

Just as different solution techniques are called for in the linear versus the

nonlinear case, different numerical methods are required for the different classes

of PDEs, whether the PDE is linear or nonlinear. The need for this specialization

in numerical approach is rooted in the physics from which the different classes of

PDEs arise. By analogy with the conic sections (ellipse, parabola and hyperbola)

partial differential equations have been classified as elliptic, parabolic and
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hyperbolic. Just as an ellipse is a smooth, rounded object, solutions to elliptic

equations tend to be quite smooth. Elliptic equations generally arise from a

physical problem that involves a diffusion process that has reached equilibrium,

for example a steady state heat transfer over a solid object. The hyperbola is the

disconnected conic section. By analogy, hyperbolic equations are able to support

solutions with discontinuities, for example a shock wave problem. Hyperbolic

PDEs usually arise in connection with mechanical oscillators, such as a vibrating

string, or in convection driven transport problems. Mathematically, parabolic

PDEs serve as a transition from the hyperbolic PDEs to the elliptic PDEs.

Physically, parabolic PDEs tend to arise in time dependent diffusion problems,

such as the transient transport of heat in accordance with Fourier's law of heat

conduction.

2.1.2 Partial Differential Equation for the Research Problem

It is intended in this research to extend the use of the Green element method to the

time-dependent second order parabolic differential equation in homogeneous

media.  The differential equation that describes potential flow problems in three

dimensional domains has the mathematical form given by equation (2.1) below.

),,,(2 tzyxf
t

u
SuK 



      in  (2.1)

Where
z
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j
x

i











 ,
t

u
S



 is the temporal derivative term, and

),,,( tzyxf  is the forcing term.  is the domain in which the equation applies

and is bounded by .  The boundary  may be divided into several section

surfaces, for example 1 and 2.  See Figure 2.1.

Equation (2.1) is a linear partial differential equation if the main domain

parameters K and S are not functions of u, and the interpretation of the quantities

K and S will depend on the engineering application to which the equation is
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applied. There are several areas of study in which the equation is applicable, for

example:

 Flow through porous media

 Heat conduction

 Ideal fluid flow

 Diffusion

 Circulation of fluid flow

 Electrostatic field

 Shaft Torsion

 Pressurized membranes

In flow through porous media (like groundwater flow), for example, K is the

hydraulic conductivity in the x, y, and z directions, u is the hydraulic head, and S

is the storativity for confined aquifers and specific yield for unconfined aquifers

(Bear, 1972).  For heat conduction problems, K is thermal conductivity, u is the

temperature, and S is the heat capacity (Drebushchak, 2009; Tsilingiris, 2006).
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Figure 2.1. Three dimensional domain under consideration for basic definitions.

2.1.3 Boundary Conditions

Differential equations usually apply to a region or domain which is either finite or

infinite, but the computational domain will have some boundaries (points, lines, or

surfaces). At these boundaries, some conditions must be imposed on the primary

variable  and/or the flux.  Without these boundary conditions, there are infinitely

many distributions of the primary variable that can satisfy the differential

equation.  The boundary conditions are, in general of three types, and it is

important to appreciate their physical implications.  A discussion on the three

types follows:

 Boundary condition of the first kind – distribution of primary variable at

boundary is known.

Mathematically, this is formulated as

Boundary
surface2

Flux qq 

Boundary
surface1

Potential uu 

Normal to the surface, n

Domain , bounded two
surfaces 1+2=

The dashes on u or q indicate that those values are known
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11 ),,,(  ontzyxuu

Where 1  is part of the boundary of the computational domain.

(2.2)

Such conditions are called Dirichlet, or essential conditions, and the physical

interpretation is that at such boundaries there is an absorbing screen such that

as t the value of the variable u within the domain (and due to such

conditions alone) will tend toward the value at the boundary (Gil et al., 2002).

 Boundary condition of the second kind – distribution of flux at boundary is

known.

Mathematically, this is formulated as

2),,,( 


ontzyxqnuK (2.3)

Where

n  is the outward pointing normal vector on the surface of the boundary

2 .  Such conditions are called Neumann, or flux conditions. They specify the

distribution of the normal flux on a part of the boundary.

 Boundary condition of the third kind – linear combination of primary

variable and flux at a boundary is known.

Mathematically, this is are formulated as

  ),,,(),,,( tzyxvnubKtzyxau 
 (2.4)

Here a and b are known coefficients and v(x,y,z,t) is a known value of the

linear combination of the primary variable and the flux.  If a=0 we get the

Neumann conditions, while if b=0 we get the Dirichlet conditions.
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2.2 Solution Techniques for Partial Differential Equations

If a solution can be developed for a partial differential governing equation,

preference is to develop an analytical solution. But unfortunately, for many

problems, it is extremely difficult, if not impossible, to get an analytic solution.

Reasons for the limitation of analytic solution techniques range from irregular

geometry, through heterogeneity of the domain to the nonlinearity of the

differential equation. Sometimes, the analytic solution may be too complicated

and one would prefer to use an approximation. Numerical methods (methods in

which approximate solutions are derived and coded on computers) have proved to

be extremely useful in overcoming the limitations of analytical solution

techniques and in addressing practically realistic problems that are on irregular

geometries, heterogeneous, and nonlinear.

In solving partial differential equations using numerical techniques, the primary

challenge is to create a set of relationships which approximates the equation of

interest so that the solution is consistently reliable with respect to the element size

and is numerically stable, implying that errors in the input data and intermediate

calculations do not accumulate and cause the resulting output to be meaningless.

There are many ways of doing this, all with advantages and disadvantages.

Kraemer (2003) has made a classification by numerical method of groundwater

flow publications to give an indication of the scale of adoption of the various

methods in groundwater flow modelling.  The distribution has been presented in

form of a pie chart, with the following percentages: finite elements (55%), finite

differences (37%), boundary elements (5%), and analytic elements (3%).  This

information was obtained from citation information obtained from SCI Journal

Citation Reports and the Web of Scientific Information (ISI) for the period 1980

to 2003.  This indicates that the finite element method enjoys the largest share of

application in groundwater flow modeling.  While this is the case, knowledge and

innovation are enhanced by continued research and development of new

computational techniques.
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The thrust of this research project is to extend the work that has been done in an

existing numerical solution technique, the Green element method (GEM), to the 3-

dimensional case. In view of the fact that the Green element method is based on

the finite element method (FEM) and the Boundary element method (BEM), brief

discussions on the FEM, BEM, and the GEM are given in the sections below.  To

complete the introduction on the various numerical techniques, brief discussions

on the finite difference method, the finite volume method, and the analytic

element method are also presented.

2.2.1 The Finite Difference Method

Finite difference methods approximate the solutions to differential equations by

replacing derivative expressions with approximate equivalent difference quotients.

They represent the oldest numerical solution techniques that elicit classical

interpretation of the derivative in calculus.  Because of their ease of

understanding, finite difference schemes continue to enjoy wide acceptance and

use in many engineering applications.  As reported by Kraemer (2003), the 37%

of all publications on groundwater flow modeling in the period 1980 to 2003 were

with the finite difference method.

Various commercial software have been developed using the finite difference

method. One of the most popular ones in groundwater applications is

MODFLOW which does modeling in 3D. Abdel-Fattah et al (2007), with the aid

of MODFLOW, utilized particle tracking techniques to evaluate transport of river

water through an alluvial aquifer in a bank infiltration testing site in El Paso,

Texas, USA, while Sun and Zheng (1999) have used a MODLOW based dynamic

optimization tool to develop policies to achieve various groundwater management

objectives.  MODFLOW is undergoing continuous development.  For example,

the recent advances in graphical user interfaces and geographic information

systems have resulted in increasingly complex MODFLOW files. Complex

source/sink data, including transient stages and pumping rates can result in a
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single MODFLOW simulation taking as much as one gigabyte of space on disk

using the standard MODFLOW text file format. Jones et al (2005) have presented

a new binary format for MODFLOW arrays and MODFLOW stress packages.

The format is based on the HDF5 library developed by the National Center for

Supercomputing Applications at the University of Illinois at Urbana-Champaign.

MODFLOW data can be saved and retrieved from this format using an API built

on top of the HDF5 object code. This results in a set of MODFLOW input files

where the bulkier parts of the files are stored in a compressed, platform

independent binary format. MODFLOW files written in this format can be read in

a few seconds and the resulting file sizes are typically less than 1-2% of the

original text file format.  Wang et al (2008) have used MODFLOW on a

geographic information system platform for groundwater evaluation in North

China Plain, China.  The simulation included water budgeting to ascertain

groundwater availability for industrial, agricultural, and domestic usage.

2.2.2 The Finite Element Method

Finite elements were first used in the 1950s in aircraft design to study stresses in

the complex airframe structures (Huebner et al., 2001; Livesley, 1983). However,

in recent years the approach has increasingly been used in other branches of

engineering.  This widening of the area of application has revealed that the finite

element method is a general procedure for obtaining approximate solutions to

partial differential equations.

The finite element method is one in which the subdivision of the region into

subdomains, finite elements, or cells is an essential part of the procedure, with

some functional representation of the solution being adopted over the elements so

that the parameters of the representation become the unknowns of problem. The

Finite element method is not based directly on the partial differential equation, but

rather on a weak (or variational) formulation of the problem.  The weakness is

achieved by a process of integration by parts that reduces (or ‘weakens’) the order
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of the continuity required for the dependent variable (Brebbia and Dominguez,

1992).

For potential flow problems, it is possible to solve for the dependent variable

using the finite element method, while the flux must be computed by numerically

differentiating the primary variable (Taigbenu and Onyejekwe, 1995). This was

the original formulation of the finite element method, and this weakness was one

of the motivations for the development of the Boundary element method.

It must also be pointed out that advanced finite element techniques, collected

under the name mixed finite element methods, have had enormous impact in

computational mechanics. The term mixed method was first used in the 1960's to

describe finite element methods in which both stress and displacement fields are

approximated as primary variable (Bergamaschi et al., 1994).  Numerous

applications are now available of the mixed finite element methods.  See for

example (Arnold, 1990; Bergamaschi et al., 1994; Maryska et al., 1995; Park,

2005; Van Criekingen and Beauwens, 2007).

2.2.3 The Boundary Element Method

Since the publication of the first book on Boundary Elements (Brebbia, 1978)

many such works have appeared in the literature, some dealing with potential

flow, others with elastostatics, and many other areas of application.  Boundary

elements are a powerful alternative to finite elements, particularly in cases where

higher accuracy is required.  The most important feature of boundary elements is

that they only require discretization of the surface rather than the volume.  Hence

boundary element codes are easier to use with existing solid modellers and mesh

generators.  This advantage is particularly important for design purposes as the

process usually involves a series of modifications (Brebbia and Dominguez, 1992;

Hsieh et al., 1992; Maduramuthu and Fenner, 2004).  Moreover, as has been

demonstrated by some authors, the conventional BEM can be enhanced to the

general BEM in which iteration is not necessary for nonlinear problems (Liao,
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1998; Zhao and Liao, 2003). This verifies the validity and great potential of the

general boundary element method for highly non-linear problems, which may

greatly enlarge application regions of the boundary element method in science and

engineering.

Green’s Functions: Basic concepts

Green’s functions play an important role in the solution of partial differential

equations, and are a key component in the development of boundary integral

equations.  Consider a linear differential equation written in the general form

ℒ(x)u(x)=f(x) (2.5)

Where ℒ(x)  is a linear, self-adjoint differential operator and f(x) is a known non-

homogeneous term  (A self-adjoint operator is one that is its own adjoint. If one

thinks of operators on a Hilbert space as "generalized complex numbers", then the

adjoint of an operator plays the role of the complex conjugate of a complex

number). Operationally, we can write the solution to the above equation as

u(x)= ℒ-1(x)f(x) (2.6)

where ℒ-1is the inverse of the differential operator ℒ. Since ℒ is a differential

operator, it is reasonable to expect its inverse to be an integral operator.  We

expect the usual properties of inverses to hold,

ℒ-1ℒ=I (2.7)
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where I  is the identity operator.  More specifically, we define the inverse operator

as

ℒ-1 f  dssfsxG )(),( (2.8)

where the kernel G(x,s) is the Green’s function associated with the differential

operator ℒ.  G(x,s) is a two-point function which depends on x and s.  To

complete the idea of the inverse operator, we introduce the Dirac delta function

)( sx  as the identity operator I.

The solution to Equation (2.5) can then be written directly in terms of the Green’s

function as






 dssfsxGxu )(),()(
(2.9)

It is to be noted as of great significance that by making use of the Green’s

function for the differential operator ℒ, an expression for the dependent variable

has been obtained without solving the differential equation (2.5).  This fact is

utilised in the development of the Boundary element method and is the basis of all

work on Green element method that has been conducted for one-dimensional and

two-dimensional domains.

2.2.4 The Finite Volume Method

The finite volume method is a method for representing and evaluating partial

differential equations in the form of algebraic equations. Similar to the finite

difference method, values are calculated at discrete positions on a meshed

geometry. "Finite volume" refers to the small volume surrounding each node point

on a mesh. In the finite volume method, volume integrals in a partial differential
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equation that contain a divergence term are converted to surface integrals, using

the divergence theorem. These terms are then evaluated as fluxes at the surfaces

of each finite volume. Because the flux entering a given volume is identical to that

leaving the adjacent volume, these methods are conservative. Another advantage

of the finite volume method is that it is easily formulated to allow for unstructured

meshes. The method is used in many computational fluid dynamics packages.

The finite volume method has been used to solve some problems of a practical

nature (Onate et al., 1994; Rühaak et al., 2008; Xia et al., 2007).  These authors

point out that finite volume methods may be considered as a particular case of

finite element methods with non Galerkin weighting.  Unlike the finite element

approach, in which the relevant conservation principle and/or equilibrium

equation of forces are only satisfied in a global sense, the finite volume procedure

is conservative from the whole-domain scale down to the cell or control volume

level.

2.2.5 The Analytic Element Method

The analytic element method (AEM) is a numerical method used for the solution

of partial differential equations and was initially developed by O.D.L. Strack at

the University of Minnesota (Strack, 1989). It is similar in nature to the Boundary

Element Method (BEM), as it does not rely upon discretization of volumes or

areas in the modeled system; only internal and external boundaries are discretized

(internally, boundaries exist at the interaction surfaces of various zones). One of

the primary distinctions between AEM and BEMs is that the boundary integrals

are calculated analytically. The analytic element method is most often applied to

problems of groundwater flow governed by the Poisson equation, though it is

applicable to a variety of linear partial differential equations, including the

Helmholtz, and biharmonic equations.

The basic premise of the analytic element method is that, for linear differential

equations, elementary solutions may be superimposed to obtain more complex
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solutions. A suite of 2D and 3D analytic solutions ("elements") are available for

different governing equations. These elements typically correspond to a

discontinuity in the dependent variable or its gradient along a geometric boundary

(e.g., point, line, ellipse, circle, sphere, etc.). This discontinuity has a specific

functional form (usually a polynomial in 2D) and may be manipulated to satisfy

Dirichlet, Neumann, or Robin (mixed) boundary conditions. Each elementary

analytic solution is of infinite extent in space and/or time. In addition, each

analytic solution contains degrees of freedom (coefficients) that may be calculated

to meet prescribed boundary conditions along the element's border. To obtain a

global solution (i.e., the correct element coefficients), a system of equations is

solved such that the boundary conditions are satisfied along all of the elements

(using collocation, least-squares minimization, or a similar approach). Notably,

the global solution provides a spatially continuous description of the dependent

variable everywhere in the infinite domain, and the governing equation is satisfied

everywhere exactly except along the border of the element, where the governing

equation is not strictly applicable due to the discontinuity.

Though powerful and easy to use, applications of the analytic element method are

not as widespread as finite-difference or finite-element models due in part to its

relative youth. Although reviews that focus primarily on the mathematical

development of the method have appeared in the literature, a systematic review of

applications of the method is not available. Hunt (2006) has given an overview of

the general types of applications of analytic elements in groundwater modelling.

While not fully encompassing, the applications described cover areas where the

method has been historically applied (regional, two-dimensional steady-state

models, analyses of ground water–surface water interaction, quick analyses and

screening models, well head protection studies) (Csoma, 2005; Fredrick et al.,

2004; Matott et al., 2006; Wuolo et al., 1995) as well as more recent applications

(grid sensitivity analyses, estimating effective conductivity and dispersion in

highly heterogeneous systems) (Jankovic et al., 2003; Luther and Haitjema, 1998).

The review of applications also illustrates areas where more method development

is needed (three-dimensional and transient simulations).
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2.2.6 Hybrid Methods

Hybridization refers to the use of more than one numeric technique in the solution

of potential flow problems.  Mixed formulations are also widely used. The term

mixed method was first used in the 1960's to describe finite element methods in

which both stress and displacement fields are approximated as primary variables.

Park (2005) applied the mixed finite element method for generalized Forchehimer

Flow in Porous Media.  Other examples of the utilization of mixed formulations

are found in the following references: (Arnold, 1990; Bergamaschi et al., 1994;

Ganis et al., 2008; Park, 2005).

Mixed-hybrid methods combine attractive features of both mixed and hybrid

methods, namely the simultaneous approximation of the flux and potential, and

the use of Lagrangian multipliers to enforce regularity constraints (Maryska et al.,

1995; Van Criekingen and Beauwens, 2007).

In the Green element method, hybridisation is effected between the finite element

method and the boundary element method.  While the boundary element method

is a powerful alternative to the finite element method, it has become apparent that

to apply the theory to more robust, practically-based, and nonlinear problems, it is

necessary to break faith with the boundary-only feature of the boundary element

method.  This is what has been done by adopting the Green element method.  The

Green element method is based on the boundary element theory, and as such the

second-order accuracy commonly associated with the boundary element method is

retained.  However, Green element method implements the theory in an element-

by-element manner (local support) so that, in contrast to the implementation

procedure of BEM in which solution information is coupled for all nodes in the

computational domain (global support), GEM couples information of nodes that

share common elements (Taigbenu, 1999). In this way domain integrations are

more easily carried out, medium variations can be readily accommodated, and

non-linear potential flow problems are easier to handle.  It is pertinent to comment

that within recent years concerted efforts are now being made to adapt the

boundary element technique to the solution of nonlinear problems (Taigbenu and
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Onyejekwe, 1999).  Taigbenu (1999) states that the difficulty in extending the

theory of the boundary element method to nonlinear problems stemmed from the

fact that the boundary element method was implemented to have “global support”,

whereas methods like FDM and FEM which proceed in an element-by-element

fashion or have “local support” are better able to handle the nonlinearity and

variation of medium parameters across elements.

The Green element implementation procedure follows that of the finite element

method. Thus the integral representations that result after applying the standard

weighting procedure to the original differential equation in each element are

assembled into a summation of the representations for all the elements.

The method briefly described above was given the name “Green element method”

by Prof. Jim Liggett of Cornell University in 1987 (Taigbenu, 1999).  Green

element method computations may be conducted in either the Cartesian or the

polar coordinate system. Onyejekwe (2006) points out that there are applications

where the use of polar coordinates ensures better accuracy.  The use of polar

coordinates is not investigated in this work.

2.3 Boundary Element Formulation for 3D Laplace
Equation

2.3.1 Basic Integral Equation

The development of the 3D Green element method formulation to the research

problem is a process that has to begin with the development of the solution for the

3D Laplace equation, which is the steady state case of the research problem with

no forcing term.   The following is standard boundary element theory for the

solution of the 3D Laplace equation.  GEM is predicated on this theory.

Reference is made to Figure 2.1 on page 14. Consider that we are seeking to find

the solution of the Laplace equation in a 3D domain.
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02  u (2.10)

with the following conditions on the   boundary:

(i) Essential conditions of the type 1 onuu

(ii) Natural conditions of the type 2



 onq
n

u
q

Where n is the normal to the boundary 21  and the dashes indicate that

those values are known.  More complex boundary conditions such as a

combination of the above, (i.e. Vqu   where  and   are known

parameters, and V represents a known value) could be included but will not be

considered for the sake of simplicity.

The error introduced in the above equation if the exact but unknown values of u

and q are replaced by an approximate solution can be minimised by

orthogonalising them with respect to a weighted function u*, with normal

derivative
n
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q
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If R are the residuals, then in general
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(2.11)

A standard weighting procedure can then be carried out and the following

expression is obtained (Brebbia and Walker, 1980; Brebbia and Dominguez,

1992):





12

***2 )()()( dquuduqqduu (2.12)
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Or, after passing the derivatives on u to the weighting function u* by the process

of carrying out integration by parts twice we get

 
 


122 1

*****2 )( dquduqdquduqudu (2.13)

Our aim is now to render equation (2.13) into a boundary integral equation, and

this is done by using a special type of function u* called the fundamental solution

which reduces the integral 


 duu )( *2 to values of u on the boundary.

2.3.2 Fundamental Solution

The fundamental solution u* satisfies Laplace’s equation and represents the

solution generated in an infinite space by a concentrated unit forcing function

acting at a point ix  commonly referred to as the source point. Stating this in

mathematical terms, the fundamental solution is obtained from:

ii uoru  *,0* 22
(2.14)

Where  ii xx  is the unit forcing function or Dirac delta function which

comprises two arguments, namely the spatial field x and the source point xi.  It is a

particularly interesting function that takes a value of zero everywhere except at

the source point where it is infinite, yet its integral over the spatial domain is

unity. That is:




 1di (2.15)

Further, integrating the product of the Dirac delta function and any other function

results in the value of the latter at point xi, hence:
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ii ududuu  
 

)(*)( 2
(2.16)

Equation (2.13) can now be written as:

 
 


2 112

**** dquduqdquduqui (2.17)

The 1D, 2D, and 3D fundamental solutions for isotropic media are as given in the

equations below (Brebbia and Walker, 1980; Taigbenu, 1999).  In these equations

xi is the source node and r is the distance from the source node to the field node.

2
* ixx

u


             (1D)
(2.18)

r
u

1
ln

2

1
*


             (2D) (2.19)

r
u

4
1

*   (3D) (2.20)

In the case of anisotropic problems, or if the governing equation has nonconstant

coefficients or nonlinear terms, such a straightforward fundamental solution is not

available.  Shiah et al. (2008) point out that the main impediment to the

development of efficient algorithms for the stress analysis of 3D anisotropic

elastic solids using the BEM over the years is the complexity of the fundamental

solutions and the computational burden to evaluate them.  To illustrate the

complexity which the fundamental solution takes for anisotropic media, reference

is made to the work of Wang and Schweizerhof (1995) who have presented

fundamental solutions for laminated anisotropic shallow shells.  Some authors

have presented approximations whereby fundamental solutions for isotropic

media can be used for anisotropic media (Narayanan et al., 1992; Schclar and
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Partridge, 1993). Schclar and Partridge proceeded to express the anisotropic

constants as a sum of average isotropic values and residuals, thus permitting the

use of an isotropic fundamental solution to solve 3D anisotropic elasticity

problems with the dual reciprocity boundary element method.  In this work,

anisotropy is not considered.

2.3.3 Boundary Integral Equation

Equation (2.17) is valid for any point xi in the 3D domain Ω.   In boundary

element theory, it is preferable to apply the equation on the boundary, and hence

we need to investigate what happens when xi is on the boundary.  A way to

achieve this is to place xi on the boundary Γ, and then to assume that the point xi

is at the centre of a sphere of radius ε as presented in Figure 2.2.  As ε tends to

zero, the resulting equation becomes the special case of (2.17) on the boundary Γ.

Treatment of corner points is tackled at a later stage.

Figure 2.2. Boundary points for the three dimensional case, augmented by a

small hemisphere.
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Two types of boundary integrals can be identified in Equation (2.17). They

include the primary variable u and the normal flux q which can be considered not

to have been applied on any part of the boundary, i.e.:




 dquduqui
** (2.21)

The integral of the type shown on the right of Equation (2.21) tends to zero as ε

tends to zero, as shown by the following derivation:
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(2.22)

The left hand side behaves in a different manner when ε tends to zero, as

demonstrated below:
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Thus the type of integral on the left hand side of equation (2.21) produces a free

term.  For this reason, we can write the following expression as the boundary

integral equation for three dimensional problems:




 dquduqui
**

2

1 (2.24)
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In general, the singular integral equation for a source point for the Laplace

equation is:




 dquduqkui
** (2.25)

Notice that the coefficient 0.5 on ui has been replaced by a general coefficient k

because 0.5 only applies for the case when the included angle is 180 degrees.

Liggett and Liu (1983) have shown that the general case when the included angle

is not 180 degrees is  2
0

00

lim RAk s
R 

  where As is the surface area of the portion

of a sphere of radius R0 that lies inside the domain under consideration.  For a

domain discretised in the manner of the finite element method, each of the

elements represents a domain in its own right.

For completeness, we present the form of equation (2.25) for a 1D spatial domain

 Lx ,0  and for a 2D spatial domain  with boundary .  They are:

    Lx

x

Lx

xi quuqku






  0
*

0
* (2.26)

for 1D (where k=1 when xi is within the domain, and 0.5 when it is at the end

points) and




 dquduqkui
** (2.27)

for 2D where k=1 when the source point is within the domain, 0.5 on a smooth

boundary, and



2

 at a corner point with nodal angle .
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2.3.4 Dual Reciprocity Boundary Element Formulation

The boundary element formulation is based on singular integrals, and these are

intimately connected with the study of partial differential equations. Broadly

speaking, a singular integral is an integral operator as already given in Equation

(2.9), and repeated below for ease of reference,






 dssfsxGxu )(),()(
(2.9)

whose kernel function G is singular along the diagonal x = s. Calderon and

Zygmund (1952) noted that while solutions for functions of one variable were

readily available, the corresponding problems for functions of several variables

had little been investigated, and proceeded to present work on functions in two

variables.

Between 1952 to date, problems of two variables have been reasonably resolved

and the solutions have been applied with adequate success to the solutions of

potential flow problems in 2D domains.  Solutions to problems in 3D using the

singular integral theory have remained largely unresolved.

One of the disadvantages of employing the BEM is that the fundamental solution

of the given differential operator is required.  This, in principle, means that only

homogeneous linear differential equations can be solved by the BEM.  There are

various ways to extend the applicability of the BEM to other types of partial

differential equations.  Where the differential equation has a forcing term on the

right hand side of equation (2.10) (Poisson equation) and/or a temporal derivative

term (diffusion equation), the relevant boundary integration requires evaluation of

a domain integral, and BEM looses most of its attractiveness due to the fact that

domain discretization and integrations are required (Chen et al., 2003).

Techniques for handling this problem of non-homogeneous terms include

methods for transferring the domain integral to the boundary, and singularity
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programming. Among various methods for converting domain integrals into

boundary integrals in the BEM for inhomogeneous PDEs, the most successful one

is the so-called dual reciprocity boundary element method (DRBEM), which was

first proposed Brebbia and Nardini (1983).  While many variations, such as the

Laplace transform dual reciprocity method, the separation of variables dual

reciprocity method, and the perturbation dual reciprocity method have been

proposed since its birth, the DRBEM is still evolving and many researches are

currently actively involved in this area of research (Liu and Zhu, 2002).

The main idea of the DRBEM is to divide the solution into two parts: a known

particular solution of the inhomogeneous PDE plus a complementary solution of

its homogeneous counterpart (Portapila and Power, 2007).  Since particular

solutions to complex problems are very difficult or sometimes impossible to

obtain, the inhomogeneity is approximated by a series of simpler radial basis

functions of the form )(
1

xf
n

j
jj



 in which )(xf j are interpolation functions and

j are the coefficients to be determined. The particular solutions for the basis

functions can easily be determined.

There are many ways of choosing the basis functions )(xf j , but it has been shown

that while the interpolation functions work well for 2D problems, they become

non-differentiable in 3D. In the series of radial basis functions )(
1

xf
n

j
jj



 ,

LNn   and consists of the N boundary collocation and L internal nodes.  To

ensure the accuracy of the DRBEM solution, some internal nodes normally have

to be included.  A new technique without any internal collocation points, called

the Multiple Reciprocity boundary element method has been proposed by Nowak

and Brebbia (1992).  The MRBEM can be thought of as an extension of the idea

of DRBEM.  However, instead of approximating the source term by the set of

RBFs, a sequence of functions related to the fundamental solution is introduced.

These functions constitute a set of higher order fundamental solutions which

permit the second Green’s identity to be applied to each term of the sequence.  As
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a result, the MRBEM leads, in the limit, to the exact boundary only formulation of

the domain integrals and therefore no internal collocation points are needed.

Numerous applications of the DRBEM are now available (Natalini and Popov,

2007; Niku and Adey, 1996).

Singularity programming applies to the case where the right hand side is from a

singular forcing function, for example borehole operation, and decomposes the

solution into singular and non-singular components (Archer and Horne, 2000;

Archer and Horne, 2002).   The boundary element solution scheme is used to

solve for the nonsingular solution, while the singular solution is known (Dake,

1978).

The keen interest in the boundary element method has lead some researchers to

pursue developments for meshless integrations.  Some such methods require the

mesh only for background evaluation of the integrals appearing in their weak

form, while others completely eliminate the use of a mesh by approximating the

domain integral by a summation of products of weights and the values of the

integrand at a set of nodes.  The weight at each node represents the fraction of the

total area associated with that node (Dai et al., 2004; Dolbow and Belytschko,

1999; Hu et al., 2007; Khosravifard and Hematiyan, 2009; Rosca and Leitao,

2008).  Such methods are applicable to domains of homogeneous structure and

can not be adopted for the solutions of potential flows in field aquifers where

inhomogeneity is common.
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3. SOLUTION OF THE 3D LAPLACE EQUATION

The objective of the current research project is to develop a numerical formulation

based on the Green element method for time-dependent potential flow problems

that extends the work done to date for the one dimensional and two dimensional

cases.  First the hypothesis was raised that it is possible to develop a three-

dimensional formulation for the Green element method.  Assuming that the three

dimensional formulation could be developed, it was also the objective of the

current project to test if the computational gains that have been reported for the

one dimensional and two-dimensional cases do extend to three dimensions.

To accomplish the goal of developing a solution to the 3D Laplace equation, a

number of objectives were undertaken.  These objectives are listed below:

- development of the Green element formulation for the 3D Laplace equation

- the selection and generation of discretization elements

- development of a naming convention for potentials and fluxes to ensure ease

in the handling of these variables during computations

- integrations for the solutions of the partial differential equations within the

elements

- matrix manipulations

The result of the work in these objectives is outlined in the sections below.

3.1 Green Element Formulation for 3D Laplace Equation

The essence of Green element method is an element by element implementation

of the boundary element theory.  All the above theory for BEM is still applicable.

The relevant integral equation expressed globally for the entire domain (see

Section 2.3.3) as
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


 dquduqkui
** (2.25)

is equally applicable to any isolated part of the domain, which in our case is a 3D

element denoted as j  with boundary j , that is:





jj

dquduquk ij
** (3.1)

This equation can be referred to as the element or discretised integral equation.

However, it is of interest to obtain the global solution that comprises the solutions

at prescribed positions of all elements used to discretize the entire domain  .

That solution is obtained by aggregating the contributions of equation (3.1) for all

the elements in such a way that the continuity of the potential u and the

compatibility of the flux are maintained across inter-element boundaries.  This is a

huge challenge which is not as easy to implement as stated.  It has been addressed

in section 3.4 with the help of a carefully devised flux and potential labelling

convention.

3.2 Selection of Discretization Elements

The choice of an element depends on the type of problem, the number of elements

desired, the accuracy required, and the available computing resources. In 3D

analysis, an element can refer either to the surfaces enclosing the domain as

opposed to curvilinear elements for 2D problems, or the solids created by

discretizing the domains.  The surface elements are usually of two types:

quadrilateral and triangular, and both can be either flat or curved.  In this research,

quadrilateral and triangular flat surface elements have been adopted.  An element

can also refer to the solids.  We need to use solid polyhedrons.  A polyhedron is

any 3D body made up entirely of plane surfaces. A polyhedron is named after its

number of faces.  Thus a tetrahedron is composed of four triangular faces, three of
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which meet at each vertex, and a hexahedron has six plane faces. Prisms are a

subset of polyhedrons, and they are defined as solid figures whose bases or ends

have the same size and shape and are parallel to one another, and each of whose

sides is a parallelogram.  A prism is named according to the name of its base (i.e.

shape of its cross-section).

Figure 3.1. Examples of polyhedra shapes

For our purposes, we have investigated the usage of tetrahedral and hexahedra

elements.  For hexahedra elements, a special kind of the elements, in which the

plane faces are quadrilateral (four-sided), are used.

Tetrahedral elements are the most adaptable type of elements to use for any

domain shape, and would be preferable over hexahedra elements.  For this reason,

the investigation started with the adoption of tetrahedral elements, and thereafter

the hexahedral elements were investigated.

Tetrahedron

Rectangular prism
Triangular prism

Hexahedrons
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The study of triangular and quadrilateral elements calls for a technique by which

we can pass from the x, y, and z global coordinate system (coordinate system 1) to

an element-localised system 1, 2, 3 where 1, 2, are coordinates in a plane

parallel to the plane of the surface and 3 is the normal to the plane (see Figure

3.2).  The 1, 2, 3 system has been referred to as coordinate system 2.  In the

process of deriving standardized integration procedures with the aid of Jacobians,

it became necessary to do a further pass between coordinate system 2 and a

standardized system with either an isometric triangle of lengths 1x1x1 or a

quadrilateral element of size 2x2 with a local origin at (0,0) and corner points at

(1,-1), (1,1), (-1,1), and (-1,-1).  Hence we define 1, 2, 3 coordinate system as

Coordinate System 3 which relates to the standardized first order elements as

shown in Table 3.1.

Figure 3.2. Triangular surface elements for 3D problems.

A choice of triangular and quadrilateral elements has been made for this research,

since these are adequate for the type of problem being addressed.  A further



_________________________________________________________________

-39-

advantage of the choice of these elements is that a grid generation program, GID,

can be utilised for the chore of grid generation.

Table 3.1 shows some of the triangular and quadrilateral surface elements which

can be used, together with their interpolation polynomials.  The choice of first

order surfaces elements has been made.  The signs within the parenthesis of each

of the equations for are easily remembered because they correspond to the signs

of 1 and 2 for the quadrant in which the node is located.  It must be noted that

the elements in Table 3.1 are standardized unit elements.

Table 3.1. Triangular and quadrilateral surface elements for 3D problems.

Type Triangular Quadrilateral

Zero Order

Constant

Elements

11  11 

First Order

Bilinear

Elements

213

22

11

1 







)1)(1(

)1)(1(

)1)(1(

)1)(1(

214
1

4

214
1

3

214
1

2

214
1

1














3.3 Generation of Discretization Elements

Development and generation of discretization elements have been the subject of

considerable studies and in this research it sufficed to procure an element

generation algorithm.  Various grid generation algorithms available on the market

were studied and the results are provided in Appendix A.
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From the investigations, GID grid generation program developed by the

International Centre for Numerical Methods in Engineering (CIMNE) was

selected. CIMNE is an autonomous research and development centre dedicated to

promoting and fostering advances in the development and application of

numerical methods and computational techniques for the solution of engineering

problems in an international context.

3.4 Potential and Flux Labelling Conventions

The labelling convention for the flux is straightforward.  At any node x in the

discretised domain the potential is denoted by ux.

(Lorinczi et al., 2009) adopted the following labelling scheme for fluxes in 2D

domains.  The x components of the flux at an internal node are denoted by LT
xq

and LB
xq  for the left-top and the left bottom components of xq in the positive x

direction, and by RT
xq  and RB

xq for the right-top and the right-bottom components

of xq  in the negative x direction, respectively. Similarly, for the y components of

the flux, the left-bottom and the right-bottom components of the of yq in the

positive y direction are denoted by LB
yq  and RB

yq , and the left-top and the right-top

components of yq in the negative y direction by LT
yq  and RT

yq respectively.

Needless to say, such a labelling system cannot be adopted in 3D domains where

the concept of left, right, top, and bottom becomes confusing.  We have developed

a flux labelling system as explained below.

The first step in our flux-labelling system is to identify the unique surfaces in the

discretised domain, and to label them sequentially.  Two elements in contact with

each other do so across one unique surface, not across two surfaces as would

result if we allowed a surface from each of the elements.  Our grid generation

program, GID, generates 3D elements defined by their surfaces, and this generates

duplicate surfaces even though the surface numbers do not repeat.  We have
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created a script in FORTRAN to identify and remove the duplicate surfaces, and

to label them appropriately.  This script is provided in provided in Appendix C.

The next step is to associate each surface with a reference element.  This is

important because in the computations, the positive direction for flux is assumed

to be in the direction normal to the surface and out of the volume.  Hence if it is

established in the computations that the surface is not referenced to the element

the sense of the flux will be reversed.

The final step in the flux labelling scheme is to note the node at which the flux is

positioned.  Thus in Figure 3.3 q2-6 is referenced to element 1 and refers to the

flux that is normal to surface 2 and located at node 6.  The variable is stored with

information about the element to which it is referenced.

Figure 3.3. Flux labelling convention.
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3.5 Element Integrations for Tetrahedra Elements in 3D
Domains

Figure 3.4. Example of tetrahedral volume elements generated by GID

software.

For the tetrahedral volume elements selected, the plane surfaces are triangles.  To

ease the computations, a local coordinate system is defined for each surface over

which the integral is being carried out.  The local coordinate is defined in such a

way that the origin is at the collocation point, the 1 and 2 coordinates are in a

plane parallel to the surface over which the integration is being carried out but

passing through the collocation point, and the 3  coordinate is perpendicular to

the surface (Figure 3.2).  By choosing the local coordinate system in this manner,

the derivative nr  /  in three-dimensional space reduces to a derivative in two-

dimensional space over the surface, because the normal distance from the

collocation point to the surface is a constant. The derivation of the derivative for

the fundamental solution q* follows from the expression of the fundamental

solution as follows:



_________________________________________________________________

-43-

The fundamental solution for the Laplace equation, as has already been observed

in Section 2.3.2, is given by:

r
u

4
1*  (2.20)

The derivative of the fundamental solution over the surface is given by:
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In Equation (3.2) r is the distance from the collocation point to the surface.  With

the local coordinate system defined, we note that over the surface r is given by:
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Because of the choice of coordinate System 2,  over the surface is a constant,

denoted by c. Therefore, from Equation (3.2) and Equation (3.4), it follows that
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This is the same as for hexahedra elements.

For a discretised integration domain, Equation (2.25) can be written as:

  
  
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dquduqku
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1
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(3.6)

The solutions for u and q are unknown, but can be written in terms of the nodal

values using interpolating functions as given in Table 3.1.  Our goal is then to

solve for these unknown nodal values.  The solution will be a mixed solution,

because the nodal values of both the potential u and the flux q will be obtained.

From Equation (3.6), and using the interpolation functions 1, 2, and 3 for the

elements, we obtain the following result for the term 


duq* .

 















 

 
3

2

1
*

321
*

u

u

u

dqduq 
(3.7)

If the product of the interpolation functions  and q* is denoted by h, then we can

write:
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(3.8)

     Where i= source node

j= Surface on which integration is being done

   1, 2, 3= Boundaries of surface j
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Similarly, for the term 


dqu* we have

 















 

 
3

2

1

321
*

q

q

q

dgggdqu ijijij

(3.9)

To perform the integrations, it is necessary to obtain the equation of the surface on

which the integrations are being done, the coordinates of the collocation point,

and the coordinates on which the normal line from the collocation point intersects

the surface, all in the global coordinate system (Coordinate System 1) initially,

and then using this information to define the local Coordinate System 2 with

origin at the collocation point.  All integrations are done in the Coordinate system

3 in a standard fashion.  After the integrations are done there is need to scale the

result to the Coordinate system 2.  Therefore, the Jacobian of System 2 with

respect to Coordinate System 3 is evaluated.

The equation of a plane in the global coordinate System 1 is given by

0 DCzByAx (3.10)

Where A, B, C, and D are constants and can be computed using the three corner

coordinates of the surface.  In Equation (3.10) A, B, and C represent the

components of the vector normal to the plane.  Because of this,

222

222

222

/)(

/)(

/)(

CBAcCZIZP

CBAcBYIYP

CBAcAXIXP







(3.11)

Where (XP, YP, ZP) denotes the intersection point on the plane, (XI, YI, ZI)

denotes the collocation point, and c denotes the distance from the collocation

point to the intersection point on the plane (see Figure 3.2).
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Expressing Equations (3.10) and (3.11) in matrix notation we have











































































ZI

YI

XI

D

c

ZP

YP

XPCBA

CBA

C
CBA

B
CBA

A

222

222

222

100

010

001

0

(3.12)

Thus XP, YP, ZP and c can be evaluated in one sweep using matrix algebra.  With

XP, YP, and ZP evaluated we proceed to calculate 3
1

2
1

1
1 ,,  and 3

2
2
2

1
2 ,,  as

coordinates of corner nodes 1, 2, and 3 of the surface element in the coordinate

System 2.  The superscripts represent the nodes, while the subscripts represent the

axes.

Finally, isoparametric mapping is done.  The transformation is achieved by the

following relationships:

 

















3
1

2
1

1
1

3211





 and  

















3
2

2
2

1
2

3212






(3.13)
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 















 Coordinate
System 3

Coordinate
System 2

Figure 3.5. Transformation from Coordinate System 3 to System 2.

Since 3
1

2
1

1
1 ,,  and 3

2
2
2

1
2 ,,   are constants for any surface element, the

above equations yield relationships between 1 and 1, 2 and between 2 and 1,

2.  This relationship arises because the interpolating functions 1, 2, and 3 are

functions of 1 and 2.

Hence the Jacobian J of 1,2 system (System 2) with respect to the standardised

1, 2 (System 3) can be evaluated.

The transformation is given by the equations
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 
 

212

211

2122

2111

210

210

,

,







BBBw

AAAw

Where

w

w







(3.14)

A0, A1, A2 and B0, B1, B2 are constants given by

3
2

2
2

3
2

1
2

3
2

3
1

2
1

3
1

1
1

3
1

2

1

0

2

1

0

























B

B

B

A

A

A

(3.15)

The required Jacobian J is defined as

J=































2

2

1

2

2

1

1

1













(3.16)

This has been evaluated as

1*22*1 BABAJ  (3.17)

The above considerations lead to the following expressions for the integrals
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jik
ij
k dqh

j

 


* and jik
ij
k dug

j

 


* . (3.18)

To achieve transformation from Coordinate system 3 over the standardised

surface  to Coordinate System 2 over the surface  , we use the following

relationship.

       212122112121 **,,,,  ddJwwfdf 


 (3.19)

Where    21222111 ,,  wandw   as given by (3.14) above.  The

integrals are listed in Table 3.2.

 Table 3.2. Representations for surface integrals ij
kh  and ij

kg .

Item Coordinate

 System 2

Coordinate

 System 3

Exact Representation

ijh1




dqi
*

1
21

*
1

0

1

0

1  dJdq   







dd
kkkkkk

J
c

1

1

0

1

0
2/32

25
2

1421322110

1**
16  





ijh2




dqi
*

2
21

*
1

0

1

0

2  dJdq   







d
kkkkkk

J
c

1

1

0

1

0
2/32

25
2

1421322110

2**
16  





ijh3




dqi
*

3
21

*
1

0

1

0

3  dJdq 
 

  21

1

0

1

0
2/32

25
2

1421322110

211
**

16







dd
kkkkkk

J
c

 




ijg1




dui
*

1
21

*
1

0

1

0

1  dJdu   







dd
kkkkkk

J 1

1

0

1

0
2/12

25
2

1421322110

1**
16

1
 



ijg2




dui
*

2
21

*
1

0

1

0

2  dJdu   







dd
kkkkkk

J 1

1

0

1

0
2/12

25
2

1421322110

2**
16

1
 



ijg3




dui
*

3
21

*
1

0

1

0

3  dJdu 
 

  





dd
kkkkkk

J 1

1

0

1

0
2/12

25
2

1421322110

211
**

16

1
  



Because 1 and 2 are given by (3.14) above, 543210 ,,,,, kandkkkkk in Table

3.2 above have the following expressions.
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 
 
 

22
5

22
4

3

2

1

222
0

22

11

2*12*1*2

2*02*0*2

1*01*02

00

BAk

BAk

BBAAk

BBAAk

BBAAk

BAck











(3.20)

The Jacobian (J) is used to make the scaling from coordinate system 3 to

coordinate system 2.  The exact representations of the integrals are given in

column 4 of the table.  The integrations were done with Mathematica suite of

numerical analysis. One of the important features of Mathematica is that it can do

symbolic as well as numerical calculations (Wolfram Research, 2010). Symbolic

computation or algebraic computation relates to the use of machines, such as

computers, to manipulate mathematical equations and expressions in symbolic

form, as opposed to manipulating the approximations of specific numerical

quantities represented by those symbols (Watt, 2006). Such a system is useful for

symbolic integration or differentiation, substitution of one expression into

another, simplification of an expression, etc. Mathematica can handle algebraic

formulas as well as numbers.

When an attempt was made to reconcile the degrees of freedom with the number

of generated equations at an internal node, it was found that there are four (4)

discrete equations and sixteen (16) degrees of freedom (12 for the fluxes, and 4

for the potentials). In any mesh, rules exist that relate the number of internal and

external sides, vertices, etc. and the total number of elements.  These have been

given explicitly for plane meshes of triangles and quadrilaterals, and for solid

meshes of tetrahedral and cuboidal elements (Ewing et al., 1970).  Thus, for solid

meshes of T elements having Fb boundary and Fi internal faces,
iV  internal nodes,

Ei internal and Eb boundary edges, and H through holes and h cavities, the

following relationships relate the number of elements to the number of faces, the

number of internal nodes, and the number of boundary edges.  Holes that go
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through a domain (H) and cavities that are internal (h) are frequent stress

concentrators that require careful analysis. The relationships are

   1
2

1

8

1
2

6

1
 hHVEEFFT iibib

(3.21)

for cuboidal elements, and

  1
3

1
2

4

1
 hHVEEFFT iibib

(3.22)

for tetrahedral elements.

The number of nodes represents the number of integral equations that allow for

nodal solution computations, while the number of internal faces is directly related

to the number of unknown fluxes by a factor of three for tetrahedral elements four

for cuboidal elements.  Therefore, when an attempt is made to calculate all normal

fluxes, a closure problem is encountered as there are too few integral equations

than unknowns.

This problem of too many degrees of freedom is one that was recognised in 1D

and 2D formulations of the Green element method.  The resolution for 2D

formulations is presented in Taigbenu (2008).  In his work, Taigbenu presented

what he termed the flux-correct Green element formulation for linear and

nonlinear heat transport in heterogeneous media, together with a methodology to

resolve the closure problem.  He goes further to explain that in the past this

closure problem was one among other reasons why it was unattractive to carry out

direct calculations of the normal derivatives of the primary variable within

internal boundaries in singular boundary integral formulations.  The alternative to

retaining the internal fluxes is approximating them by a finite difference expressed

in terms of the nodal potentials as presented in Taigbenu (1995).  Although this is

a viable approach for the 3D tetrahedral elements, it is only explored in this work
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for the simpler cuboidal elements.  This approach for the cuboidal elements is

presented in a subsequent section.

3.6 Element Integrations for Hexahedra Elements in 3D
Domains

Figure 3.6. Example of  hexahedral volume elements generated by GID software.

As earlier done for tetrahedral elements, the Green element calculations for

hexahedra elements involves surface integrations, but this time over quadrilateral

surfaces as opposed to triangular surfaces. To ease the computations, a local

coordinate system is defined for each surface over which the integral is being

carried out (Figure 3.7).
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Figure 3.7. Quadrilateral surface elements for 3D problems.

The local coordinate is defined in such a way that the origin is at the collocation

point, the 1 and 2 coordinates are in a plane parallel to the surface over which

the integration is being carried out but passing through the collocation point, and

the 3 coordinate is perpendicular to the surface as was done in Section 3.5 above.

This is illustrated by equations (3.2) to (3.5) in that section.

From Equation (3.6), and using the interpolation functions 1, 2, 3, and 4 for

the elements, we obtain the following result for the term 


duq* .



_________________________________________________________________

-54-

 




















 


4

3

2

1

*
4321

*

u

u

u

u

dqduq  (3.23)

The nodal values of the potential have been taken out of the integral operator

because they do not depend on the spatial variables.

If the product of the interpolation functions  and q* is denoted by h, then we can

write:

 




















 
 

4

3

2

1

4321
*

u

u

u

u

dhhhhduq ijijijij

(3.24)

Where i= source node

j= Surface on which integration is being done

   1, 2, 3, 4= Boundaries of surface j

Similarly, for the term 


dqu* we have

 




















 
 

4

3

2

1

4321
*

q

q

q

q

dggggdqu ijijijij

(3.25)

To perform the integrations, a procedure similar to what was followed in the

previous section is followed.  Use is made of the Jacobian (J) of coordinate

System 2 with respect to System 3.
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The equation of a plane in the global coordinate System 1 is also obtained in the

same fashion as was done in section 3.5 for tetrahedral elements.  Thus XP, YP,

ZP and c can be evaluated in one sweep using matrix algebra, and with XP, YP,

and ZP evaluated we proceed to calculate 4
1

3
1

2
1

1
1 ,,,  and 4

2
3
2

2
2

1
2 ,,,  as

coordinates of corner nodes 1, 2, 3 and 4 of the surface element in the coordinate

System 2.  The superscripts represent the nodes, while the subscripts represent the

axes.

The interpolation functions given in Table 3.1 for bilinear elements are used to

achieve isoparametric mapping between Coordinate System 2 and Coordinate

System 3.  Isoparametric mapping is achieved by the following relationships:

 























4
1

3
1

2
1

1
1

43211






 and  























4
2

3
2

2
2

1
2

43212






 (3.26)

Since 4
1

3
1

2
1

1
1 ,,,  and 4

2
3
2

2
2

1
2 ,,,   are constants for any surface element, the

above equations yield relationships between 1 and 1, 2 and between 2 and 1,

2 as has been explained before. Hence the Jacobian J of 1,2 system (System 2)

with respect to the standardised 1, 2 (System 3) can be evaluated.

The transformation is given by the equations

 
 

21212

21211

2122

2111

3210

3210

,

,







BBBBw

BBBBw

where

w

w







(3.27)

A0, A1, A2, A3 and  B0, B1, B2, B3 are constants given by
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 
 
 
 
 
 
 
  4/3

4/2

4/1

4/0

4/3

4/2

4/1

4/0

4
2

3
2

2
2

1
2

4
2

3
2

2
2

1
2

4
2

3
2

2
2

1
2

4
2

3
2

2
2

1
2

4
1

3
1

2
1

1
1

4
1

3
1

2
1

1
1

4
1

3
1

2
1

1
1

4
1

3
1

2
1

1
1

































B

B

B

B

A

A

A

A

(3.28)

The required Jacobian J is already defined by Equation (3.16)

J=































2

2

1

2

2

1

1

1













(3.16)

This has been evaluated as

21 210  LLLJ  (3.29)

where L0, L1, and L2 are constants evaluated as

3*22*32

)31(*11

1*22*10

BABAL

AABL

BABAL





(3.30)

Note the simplicity of the Jacobian for the coordinate transformation for the

tetrahedral elements with triangular surfaces in Equation (3.17) compared to that

for the hexahedral elements with quadrilateral surfaces in Equation (3.29).

The above considerations lead to the following expressions for the integrals
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jik
ij
k dqh

j

 


* and jik
ij
k dug

j

 


* . (3.31)

To achieve transformation from Coordinate system 3 to Coordinate System 2, we

use the following relationship.

       212122112121 **,,,,  ddJwwfdf 


 (3.32)

Where    21222111 ,,  wandw  are as given by Equation (3.27) above.

 and   represent the standardised surface in Coordinate system 3  and the

integration surface in Coordinate System 2 respectively.  The integrals are listed

in Table 3.3.
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Table 3.3. Representations for surface integrals ij
kh  and ij

kg .

Item Coordinate

 System 2

Coordinate

 System 3

Exact Representation

ijh1




dqi
*

1
21

*
1

1

1

1

1  dJdq 
 

  
  21

1

1

1

1 2/32
2

2
1

2

212121 2101
*

16







dd
c

LLLc
   



ijh2




dqi
*

2
21

*
1

1

1

1

2  dJdq 
 

  
  21

1

1

1

1 2/32
2

2
1

2

212121 2101
*

16







dd
c

LLLc
   



ijh3




dqi
*

3
21

*
1
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Similar to the previous section, the Jacobian (J) is used to make the transformation

from coordinate system 3 to coordinate system 2.  The exact representations of the

integrals are given in column 4 of the table.  A transformation of the denominator

of the integrand into Coordinate system 3 rendered the integrand highly

complicated to handle, even with the use of MATHEMATICA integration

routines.  However, when the generalised hexahedral elements were restricted to

cuboids, the symmetry of the elements enabled replacement of those integrals
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which had complex (imaginary) results with the simpler versions, simply by

consideration of symmetry.

When an attempt was made to reconcile the degrees of freedom with the number

of generated equations at an internal node, it was found that there are six (6)

discrete equations and thirty (30) degrees of freedom (24 for the fluxes, and 6 for

the potentials).  Approximating the fluxes by a differencing operation along the

lines of (Taigbenu, 1995) is straightforward in this case, provided that cuboid

elements are used.  This provides the motivation for the adoption of cuboid

hexahederal elements.  As was noted in 3.5, mesh rules exist that relate the

number of internal and external sides, vertices, etc. and the total number of

elements.  These have been given explicitly for plane meshes of triangles and

quadrilaterals, and for solid meshes of tetrahedral and cuboidal elements (Ewing

et al., 1970).
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4. POISSON AND THE TIME-DEPENDENT POTENTIAL
FLOW EQUATIONS

To date most applications of GEM are in 1D and 2D domains in which time

dependent and nonlinear problems in heterogeneous domains have been

addressed.  This chapter describes the 3D GEM formulation for the Poisson and

time dependent potential problems.

4.1 General Considerations

Up to Chapter 3, a formulation of the Green element method for the solution of

the Laplace equation has been presented. Attempts to incorporate the more

general tetrahedral or hexahedral elements into the formulation meets with the

challenges of expressing the internal fluxes in terms of the nodal potentials.

However, this is easier addressed when cuboid hexahedral elements are used.

Extension of the developed methodology to the Poisson equation (with a forcing

term) and time-dependent second order parabolic differential equation follows

naturally, and is of more practical application since a lot of problems in real life

involve externally-induced dynamic forces that alter equilibrium states from time

to time (Azoury, 1992; Incropera et al., 2006).  For this reason, the extension was

carried out to solve the equation as first introduced in Section 3.1.2, but repeated

below for ease of reference.

),,,(2 tzyxf
t

u
SuK 



      in  (2.1)

Where
z

k
y

j
x

i











 ,
t

u
S



 is the temporal derivative term,

and ),,,( tzyxf  is the forcing term.
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We note that the left hand side of Equation (2.1) has been the subject of the work

carried out in Chapter 3, and that it now remains to evaluate the terms on the right.

Three approaches can in general be followed.  The first involves eliminating the

temporal derivative by taking the Laplace transform of the governing equation so

that it becomes an elliptic one.  In that case a Poisson equation is solved.  Many

authors have followed this approach in Boundary element circles for 2D problems

(Davies and Honnor, 2002; Davies and Crann, 2004; Moridis, 1992; Pozrikidis,

2006; Tanaka et al., 1991).  The additional challenge of this approach is

recovering the real solution from the Laplace transformed space.

The second approach involves treating the right hand side of Equation (2.1) as a

forcing term so that it requires solving the Poisson equation.  In that case the

Green’s function for the Laplacian operator is used to construct integrations.  The

latter is particularly numerically unattractive in boundary element circles, hence

the use of dual reciprocity principles to transform the domain integrals to

boundary ones (see Section 2.3.4). In Green element circles where the source

node always lies in the element over which integration is done, the domain

integration is straight forwardly carried out (Archer, 2005; Taigbenu, 1990).  That

does not preclude the use of dual reciprocity principles as has been carried out by

Popov and Power (Popov and Power, 1996; Popov and Power, 1998; Popov and

Power, 1999).

The third approach involves using the time-dependent fundamental solution to

construct the integral equations.  That fundamental solution is given as

 
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)(4
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
 
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
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



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rr

rtru
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(4.1)

in which ),( iii yxr   is the source node, ),( yxr  is the field node, m is the

spatial dimension number, and )(tH is the Heaviside function (Carslaw and

Jaeger, 1959). The approach is more complicated than that of the Laplace
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operator and presents greater challenges in evaluating the integrals. It still

requires evaluating domain integrals of the distribution of the potential at the

initial time, and the forcing term. In 2D, this approach has been pursued by

(Bozkaya and Tezer-Sezgin, 2008; Carrer and Mansur, 2002; Gatmiri and Van

Nguyen, 2005; Taigbenu, 2001; Taigbenu, 2004; Young et al., 2004).

The second approach is followed in this work. The Green’s function of the

Laplacian operator has been used, implying that the boundary integrations from

the previous chapter remain applicable.

On applying the fundamental solution to Equation (2.1) and applying the standard

weighting procedure in the same fashion as was done in Equation (2.12), the

following equation is the result.








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


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dquuduqq

dutzyxf
t

u
Su

( 4.2)

It is noted that what remains to be evaluated are the 3D domain integrals as given

below.

dxdydzutzyxfI *
1 ),,,(

dxdydzu
t

u
SI  











 *
2

(4.3)

I1 accounts for the forcing term while I2 for the temporal derivative term.
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4.2 The Forcing Term

The forcing term could either arise from source/sink as in the case of operating

wells or from a distributed input as in the case of recharge from precipitation into

an aquifer.  In the first case, the forcing term can be represented by making use of

the Dirac delta function discussed earlier.  In that case:

)( kkkk rrFF  (4.4)

where and kF  is the strength of the source kth source/sink at ),,( kkkk zyxr 

**
1 )( ikkkk uFdurrFI  



(4.5)

where
)(4

1*

ki
ik rr

u





.

For the second case, the forcing term in the domain is expressed in terms of the

nodal values of the function using 3D interpolation functions. Using the 3D

interpolation functions 1, 2, 3, 4 5, 6, 7, and 8 for the hexahedra element

(Figure 4.1), we obtain the following result for the term

dxdydzutzyxfI *
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Where Fi represents the nodal values of the forcing term, and have been taken out

of the integral operator because they do not depend on the spatial variables.

The interpolation functions 1, 23, 4 5, 6, 7, and 8 for a linear hexahedra

element with nodes labelled as given in Figure 4.1 and listed in Table 4.1.

Coordinates

Node1 (0,0,0)

Node2 (a,0,0)

Node3 (a,b,0)

Node4(0,b,0)

Node5 (0,0,c)

Node6 (a,0,c)

Node7 (a,b,c)

Node8 (0,b,c)

Figure 4.1.Interpolation functions for a hexahedral element.

Table 4.1. Interpolation Functions
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Since the fundamental solution is given by
r

u
4
1*  , a generic expression for the

term  dxdydzui
*  can be obtained by using the term

   
  2/1222

*

zyx

czbyax
ui




 and allowing either a, b, or c in the numerator to

assume a value of zero depending on the expression of the i  as given in Table

4.1 above.  This results in the generic expression for  dxdydzui
*  as

given by Equation (4.7)

 



 dxdydz

zyx

abcabzacybcxayzbxzcxyxyz
dxdydzui 2/1222

* (4.7)

Mathematica was then used to evaluate the integrations of each of the eight terms

represented in Equation (4.7).

4.3 The Temporal Derivative Term

The temporal derivative can be evaluated in a manner similar to that for the

distributed forcing term.  Using the 3D interpolation functions 1, 2, 3, 4 5, 6,

7, and 8 for the linear hexahedra element, we perform the following analysis to

derive an expression of the term dxdydzu
t

u
SI  











 *
2  in Equation (4.3):

We have

)(),,( tuzyxu jj (4.8)

or



_________________________________________________________________

-66-
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Therefore:
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dxdydzu
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The distribution of u throughout the medium at initial time t0 is known and our

aim is to start with this known distribution and match forward to determine the

distribution of u at the next time step.  Once the distribution of u at this time step

is known we can match forward to the next time step.  In general, given the

distribution of u at a previous time step t, our aim is to match forward to the

current time step (t+1).

Representing
dt

du j by a finite difference expression, ie
t

uu
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du t
j

t
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Incorporating the forcing term and the temporal derivative term into Equation

(3.6) results in:
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To simplify the expression, we adopt the following abbreviations for matrices in

Equation (4.13) above.
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With these simplifications Equation (4.13) becomes

jij
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t

uu
SWFWuHku i 
















1
(4.15)

We utilize an implicit generalized time-differencing scheme to solve the equation.

Explicit methods calculate the state of a system at the current time from its state at

the previous time, while an implicit method finds it by solving an equation

involving both the previous and current states of the system. Mathematically, if

ut
 is the previous system state and ut+1

 is the current state (Δt is a small time

step), then, for an explicit method

tt Fuu 1
(4.16)

while for an implicit method one solves an equation of the form

  0, 1 tt uuG (4.17)

and requires matrix manipulations in order to evaluate ut+1
(Burden and Faires,

2001).

It is clear that implicit methods require extra computations, making them much

harder to implement. Implicit methods are used because many problems arising in

real life are stiff, for which the use of an explicit method requires impractically
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small time steps Δt to keep the error in the result bounded (achieve numerical

stability).  For such problems, to achieve a given level of accuracy, it takes much

less computational time to use an implicit method with larger time steps, despite

the additional computational effort from solving a matrix equation of the form

(4.17) at each time step.   This is the reason why an implicit scheme is used in this

work.

If the interval between the current time step (t+1) and the previous time step t is

denoted by t , equation (4.15) can be written at any point within the time interval

for an implicit scheme.  If 1t
iu , 1t

iq represent the state of the potential and flux at

a node at the current time (t+1), and t
iu , t

iq represent the state at the previous time

t, and  is the time weighting factor representing the fraction of t between t and

t+1 where the equation is written, linear interpolation between (t+1) and t dictates

that Equation (4.15) may be re-written as Equation (4.18) below.
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After gathering all the unknowns to the left and all the knowns to the right,

equation (4.18) can be re-written as Equation (4.19) below.
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  takes a value between 0 and 1. 0  results in the explicit scheme.

Equation (4.19) represents 3D Green element formulation for potential flow which

takes into account the forcing term and the temporal derivative term
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4.4 Implementation of the Time-Dependent Green Element
Formulation

Figure 4.2 below demonstrates how the left hand and the right hand sides of

Equation (4.19) were incorporated into the matrices for the solution of the

potentials at each time step.  The algorithm begins with the original H and G

matrices that were developed for the steady state situations.  This applies to both

the left hand and right hand sides of the equation.

In incorporating the time factor into the Green element method calculations, we

assume a quasi-steady state model for performing dynamic simulations.  A quasi-

steady state model is defined as a sequence of steady-state profiles (Walsum and

Groenendijk, 2008).  In our case this implies that we assume that at each time step

the potentials and the fluxes throughout the domain satisfy the governing partial

differential equation in such a way that instantaneous potential and flux values

would represent the steady-state values if the prevailing boundary conditions at

that instance were to be held constant.

In this work we have assumed that the conditions of steady-state at each time step

are applicable.  This assumption has come into question in recent years (Seibert et

al., 2003).  In his work, Seibert tested this assumption with an analysis of detailed

groundwater level data along two opposing hillslopes along a stream reach in a

Swedish till catchment at Svartberget. Groundwater levels in areas close to the

stream followed the dynamics of the runoff. The correlation between groundwater

level and runoff decreased markedly for wells further than approximately 40 m

from the stream. The levels were often independent of streamflow: Upslope area

groundwater could be rising when riparian groundwater and runoff were falling,

and vice versa. There was a high degree of correlation between groundwater

levels at similar distances from the stream. Despite the widespread acceptance of

the steady state assumption previously in this and other study catchments,

Seibert’s study shows that it is not valid for the investigated hillslope site.
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4.5 Matrix Manipulations

In this work, matrices have been used for the storage of the information required

for the analyses.  Data such as the element types, node lists, element connectivity,

element surfaces, and potential and flux variable lists and values are all stored in

matrices.

A feature of numerical computation based on discretization elements is the

generation of a large number of simultaneous equations, and matrix solvers are

required to solve for the unknowns. In this work, the need to solve simultaneous

equations arises in two instances.  These instances are:

- the determination of the collocation point and the plane on which surface

integration is being done,

- the calculation of the potentials and the fluxes using the potential and flux

coefficient matrices within steady and transient simulation situations.

These applications of matrix algebra are straightforward and have been

implemented with matrix manipulations using a simple matrix solving routine that

utilises the Gauss elimination method and provides for interchanging rows when a

zero diagonal coefficient is encountered.  The routine is called several times as the

need arises to solve a particular set of linear equations.

A matrix solver that solves a system of linear equations in the manner that has

been implemented in this work is called a direct solver. Adopting a commercial

direct solver for our work would yield some benefit, because such solvers

normally employ a sparse matrix storage technology.  Since the potential and flux

coefficient matrices that are generated by our GEM routines are very sparse, the

data access efficiency would increase significantly.  Commercial direct solvers

also come with significant implementation specialties aimed at taking advantage

of the structure of the matrices and of the computer architecture.
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Iterative solvers use a different approach to solving large systems of linear

equations.  They start with an initial guess which may be a zero vector and go

through an iterative process to update the solution vector using the system matrix

and a pre-conditioner matrix to achieve solution converge.  A convergence

criterion is used to determine whether a solution has been reached.  If a pre-

determined maximum number of iterations is reached without obtaining the

desired accuracy, the solver exits.  For a discussion on the preconditioned

conjugate method see Golub and Van Leon (1989).

The decision of whether to use a direct or an iterative solver in a given situation is

not an easy one.  The decision depends heavily on the analysis type and model

characteristics.  Ketkar (1993) has shown that in thermal analysis work, for stiff

thermal problems the direct solution technique converges much faster than the

iterative one and for problems with severe nonlinearities and/or large number of

nodes the iterative approach is more efficient.
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Figure 4.2. Implementation of Equation (4.19)

Left Hand Side
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time step (t+1)
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5. RESULTS AND DISCUSSION

Numerical examples serve to demonstrate the computational robustness of the 3D

GEM that has been formulated in the previous chapters.  As a start, the examples

have been constructed so they have analytical solutions with which accuracy

comparison can be made.  These examples are in domains that have regular

geometries.  Additional benchmarking is made against FEMWATER finite

element package on the basis of solution accuracy, but no attempt is made to

compare the computational efficiencies of FEMWATER and our GEM because of

their different coding platforms.

5.1 Steady-State Examples

5.1.1 Example 1 – 1D steady flow with potential drop

To test the 3D GEM model herein developed, a three dimensional 5mx10mx5m

cuboid figure (Figure 5.1) is used and potentials are applied on the opposite ends

of the 10m length, while all the other boundaries are specified as zero flux

boundaries. This example is one in which 1D steady flow over a 10m distance

occurs because of a potential drop from 8m at one end to 4m at the other.  It is

assumed the hydraulic conductivity is unity for simplicity and the exact solution is

a linear distribution of potential with uniform velocity of 0.4 m/s in the direction

of the potential drop. The domain is discretised with a coarse mesh of twelve

elements each of size 5.2 m by 5m by 67.1 m.  It was observed that the Green

element method replicated the expected result almost exactly, while the

commercial finite element package, FEMWATER, produced results with relative

error ranging from 0.09% to 1.84%.  This illustrates the high accuracy that can be

expected of the Green element method.
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Figure 5.1 Computational domain of 1D steady problem.

Table 5.1. Comparison of the solutions of Example 1 by FEMWATER and

GEM.

Node
ID X Y Z

Velocity,
EXACT

Velocity,
FEMWATER

Error,
FEMWATER

Velocity,
GEM Error, GEM

1 2 3 5 0.400000000 0.399637000 0.09% 0.400000180 0.000045%
8 7 3 5 0.400000000 0.399632000 0.09% 0.400000006 0.000001%
32 7 13 5 0.400000000 0.400369000 0.09% 0.400000006 0.000001%
25 2 13 5 0.400000000 0.400364000 0.09% 0.400000006 0.000001%
20 7 3 10 0.400000000 0.399250000 0.19% 0.400000006 0.000001%
36 7 13 10 0.400000000 0.392658000 1.84% 0.400000006 0.000001%
31 2 13 10 0.400000000 0.396478000 0.88% 0.400000006 0.000001%
9 2 3 10 0.400000000 0.399521000 0.12% 0.399999917 0.000021%

5.1.2 Example 2 – 2D steady heat conduction

Next we considered the problem of determining the steady-state heat distribution

in a thin square metal plate with dimensions 0.5mx0.5m (Burden and Faires,

2001).  Two adjacent boundaries (left and bottom) are held at 0oC, and the
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temperature on the other two boundaries increases linearly from 0oC at one corner

to 100oC at the top right corner where the sides meet.  It is assumed that the

thermal diffusivity K for the medium has a unit value. If we place the sides with

zero boundary conditions along the x- and y- axes, the problem is expressed as

0
2

2

2

2









y

u

x

u (5.1)

with the boundary conditions yyuxxuxuyu 200),5.0(,200)5.0,(,0)0,(,0),0( 

The analytical solution to the above problem is known, and is xyu 400 .

Since the GEM method that was developed is for 3D problems, it was necessary

to specify a dimension in the z-direction (Figure 5.2).  A dimension of 0.5m was

specified in the z-direction, while prescribed boundary conditions were adopted

on the x=0, y=0, x=0.5 and y=0.5 planes.  The z=0 and z=0.5 planes were kept as

no-flux boundaries. A grid with 4x4x4 cells in the x, y, and z direction was then

created (64 elements).

Figure 5.2 Discretisation of a 0.5mx0.5mx0.5m metallic cube
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The heat fluxes in the x and y directions are obtained by differentiating the exact

solution.

0

400

400
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










z

u

x
y

u

y
x

u

(5.2)

Table 5.2. Exact solution to Example 2.

Node x y z u du/dx du/dy du/dz Magnitude

7 0.125 0.375 0 18.8 150 50 0 158.1139
14 0.250 0.375 0 37.5 150 100 0 180.2776
33 0.375 0.375 0 56.3 150 150 0 212.132
16 0.125 0.250 0 12.5 100 50 0 111.8034
22 0.250 0.250 0 25 100 100 0 141.4214
45 0.375 0.250 0 37.5 100 150 0 180.2776
32 0.125 0.125 0 6.25 50 50 0 70.71068
40 0.250 0.125 0 12.5 50 100 0 111.8034
64 0.375 0.125 0 18.8 50 150 0 158.1139

The performance of the GEM method is given in Table 5.3 below for all the

internal nodes on the z=0 plane.  It is evident that the GEM reproduces the exact

solution.  The values for potentials and fluxes are dimensionless, in line with the

governing equation which is dimensionless.

Table 5.3. Performance of the GEM on Example 2.

Node x y z u du/dx du/dy du/dz Magnitude

7 0.125 0.375 0 18.8 150 50 0 158.1139
14 0.250 0.375 0 37.5 150 100 0 180.2776
33 0.375 0.375 0 56.3 150 150 0 212.132
16 0.125 0.250 0 12.5 100 50 0 111.8034
22 0.250 0.250 0 25 100 100 0 141.4214
45 0.375 0.250 0 37.5 100 150 0 180.2776
32 0.125 0.125 0 6.25 50 50 0 70.71068
40 0.250 0.125 0 12.5 50 100 0 111.8034
64 0.375 0.125 0 18.8 50 150 0 158.1139
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5.1.3 Example 3 – 3D potential flow example

In this third example, a known analytic solution for the potential of the Laplace

equation is used to generate the boundary conditions for the numerical model

which then calculates the potential and velocity at some specified grid points.

Although this example is better analysed in spherical coordinates, it is nonetheless

simulated in Cartesian coordinates with GEM and FEMWATER.

Given a scalar field u, the Laplace equation in Cartesian coordinates is

0
2

2

2

2

2

2













z

u

y

u

x

u (5.3)

The known analytic solution is (Kreysig, 1988)

K
r

c
u  (5.4)

where c and k are constants and 222 zyxr  .

The fluxes in the x, y, and z directions are easily derived and given by Equation

(5.5).
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(5.5)

To avoid the singularity presented by the analytical solution when any of the

nodes is at the origin in the Cartesian coordinate system, the element was

displaced by 2m in the x-direction, 3m in the y and 5m in the z-direction.  The
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domain is discretised uniformly into 16 elements (element size 2.5mx2.5mx2.5m)

in both GEM and FEMWATER (Figure 5.3).

Figure 5.3 Domain discretization for Example 3 (3D potential flow problem).

Taking values of c and K to be 558.1 and 24.2 respectively, the complete solution

is tabulated in Table 5.4 below.

Table 5.4 Exact solution of Example 3.

External
Nodes x y z r u xu  yu  zu  Magnitude

36 2 3 5 6.16441 114.7323 -4.7649 -7.1474 -11.9123 14.6864
42 7 3 5 9.11043 85.4568 -5.1663 -2.2141 -3.6902 6.7239
10 7 13 5 15.58846 60.0002 -1.0313 -1.9153 -0.7366 2.2966
1 2 13 5 14.07125 63.8604 -0.4006 -2.6040 -1.0015 2.8186
45 7 3 10 12.56981 68.5979 -1.9670 -0.8430 -2.8101 3.5322
22 7 13 10 17.83255 55.4949 -0.6889 -1.2794 -0.9841 1.7550
11 2 13 10 16.52271 57.9758 -0.2474 -1.6084 -1.2372 2.0443
41 2 3 10 10.63015 76.6992 -0.9292 -1.3938 -4.6460 4.9388

Internal
Nodes x y z r u

8 4.5 10.5 7.5 13.66565 65.0375
19 4.5 8 7.5 11.85327 71.2818
30 4.5 5.5 7.5 10.33199 78.2143
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The Green element method and FEMWATER were used to simulate the flow

velocities and internal nodal potentials in a 5m X 10m X 5m cuboid similar to that

of Figure 5.3. The Dirichlet conditions derived from the analytical solution were

specified at the boundary nodes of the finite Element mesh, and the GEM and

FEMWATER solutions for the velocity at the external nodes and internal node

potentials were examined.  The results are presented in Table 5.5.  It is observed

that for the same discretization of mesh sizes of 2.5mx2.5mx2.5m (16 elements)

the Green element method produced an average error of 10.5% while

FEMWATER produced an average error of 13.9%.  To find out how fine the

FEMWATER grids would need to be to replicate the results of the Green element

method, we performed two more runs with FEMWATER, the second with mesh

sizes of 2.5mx2mx2.5m (20 elements) and the third with 2.5mx2mx1.7m (30

elements).  At thirty elements the results of the finite element method matched

those of the Green element method at 16 elements.  Thus in this case the Green

element method was able to replicate the finite element method with only 47% of

the discretization.

Table 5.5. GEM and FEMWATER solutions for velocity at external nodes of

Example 3.

EXACT GEM FEM, Mesh 1 FEM, Mesh 2 FEM, Mesh 3
Node
 ID Velocity Velocity Error Velocity Error Velocity Error Velocity Error
36 14.6864 13.2293 9.9% 10.7951 26.5% 9.9066 32.55% 10.4997 28.5%
42 6.7239 7.3320 9.0% 6.7942 1.0% 6.6305 1.39% 6.8716 2.2%
10 2.2966 2.4678 7.5% 2.3875 4.0% 2.3468 2.18% 2.3775 3.5%
1 2.8186 3.3095 17.4% 3.1438 11.5% 3.0499 8.21% 3.1051 10.2%
45 3.5322 3.8035 7.7% 4.2570 20.5% 4.2317 19.80% 4.0132 13.6%
22 1.7550 1.7622 0.4% 1.9517 11.2% 1.9271 9.81% 1.8943 7.9%
11 2.0443 2.1673 6.0% 2.4090 17.8% 2.3597 15.43% 2.3036 12.7%
41 4.9388 6.2293 26.1% 5.8595 18.6% 5.6402 14.20% 5.2299 5.9%

Average Error 10.5% 13.9% 12.95% 10.6%
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Table 5.6. GEM and FEMWATER solutions for potential at some internal

nodes of Example 3.

EXACT GEM FEM, Mesh 1
Internal
Nodes Potential Potential Error Potential Error

8 65.0375 65.25383 0.33% 60.59915 6.82%
19 71.2818 71.71393 0.61% 67.79269 4.89%
30 78.2143 78.66682 0.58% 75.9464 2.90%

Comparison of the GEM and FEMWATER solutions for potentials at internal

nodes is done only with the 16-element discretization; these internal nodes did not

correspond to grid points in the 20-element and 30-element discretizations.  The

calculated potentials at the internal nodes by GEM and FEMWATER are

presented in Table 5.6.  GEM shows higher accuracy than FEMWATER.

Graphical representation of the solutions for the flux and potential by the three

methods is not easy to achieve in this case because the coordinate systems take up

the three dimensions and the computed potential or flux becomes an item in the

fourth dimension.  However, to get a feel of the solution, graphical representations

of the solutions at the z-axis elevation of 5.0 were made and the results for the

potential are shown in Figure 5.4.

Figure 5.4. Plot of potentials at the elevation of 0.5z  for Example 3.
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In Figure 5.4 it is observed that the results generated by the three methods, namely

the exact solution, the GEM solution, and the FEMWATER solutions are

indistinguishable from each other for the potentials computed.  A plot was also

made of the fluxes computed by the three methods and presented in Figure 5.5.

Bottom layer=Exact, Middle layer=GEM, Top layer=FEMWATER.

Figure 5.5. Plot of fluxes at elevation of 0.5z  for Example 3.

It is observed that the GEM produces results that are similar to those generated by

FEMWATER, although the GEM does perform slightly better.

5.1.4 Example 4 – 2D Poisson equation example

A 2D potential flow problem that is governed by the Poisson equation is used to

validate the 3D GEM model.  The flow differential equation is

4
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u (5.6)
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in the domain 20,10  yx . The boundary conditions are:

20,)1(),1(,),0(

10,)2()2,(,)0,(
22

22





yyyuyyu

xxxuxxu (5.7)

For this differential equation, the exact solution is known and is equal to

2)(),,( yxzyxu  (Burden and Faires, 2001).  The example is numerically

solved in 3D by specifying a z-dimension of unit length.  The z=0 and z=1 planes

have zero flux prescribed on them, while the specified boundary conditions are

appropriately specified on other external planes.

The domain was uniformly discretised into 64 elements each of size

0.25x0.50x0.25 as shown in Figure 5.6 below.

Figure 5.6. Domain discretization for Example 4 (2D Poisson equation).

The following were the comparisons between the computations from the three

methods for the potential at some selected internal nodes.



_________________________________________________________________

-84-

Table 5.7. Comparisons between the computations of the potential from exact solution,

GEM, and FEMWATER at some selected internal nodes.

FEMWATER GEM
Node
ID X Y Z Exact Value Error Value Error
12 0.25 1.50 0.25 1.5625 1.843985 18% 1.744653 12%
16 0.50 1.50 0.25 1 1.369952 37% 1.239443 24%
17 0.25 1.50 0.50 1.5625 1.84465 18% 1.744676 12%
22 0.50 1.50 0.50 1 1.371357 37% 1.239496 24%
27 0.75 1.50 0.25 0.5625 0.844555 50% 0.692075 23%
28 0.25 1.50 0.75 1.5625 1.84547 18% 1.744669 12%
34 0.50 1.50 0.75 1 1.373688 37% 1.239491 24%
37 0.75 1.50 0.50 0.5625 0.847233 51% 0.692075 23%
38 0.25 1.00 0.25 0.5625 0.895536 59% 0.777557 38%
48 0.25 1.00 0.50 0.5625 0.896619 59% 0.777546 38%
49 0.50 1.00 0.25 0.25 0.691167 176% 0.512837 105%
50 0.75 1.50 0.75 0.5625 0.851287 51% 0.692087 23%
51 0.50 1.00 0.50 0.25 0.693214 177% 0.512809 105%

It is observed that at all nodes the Green element method performed better than

the finite element method.

Listed in Table 5.8 below are the comparisons between the computations from the

three methods for the flux at the same internal nodes as in Table 5.7 above, and

listed in Table 5.9 are the comparisons between computations at some external

nodes.  A graphical representation is given below to illustrate the results of the

computations.  As already pointed out, graphical representation of the solutions by

the three methods is not easy to achieve for three dimensional analysis because the

coordinate systems take up the three dimensions and the computed potential or

flux becomes an item in the fourth dimension.  To develop a feel of the

computation results, graphical representations are made at one elevation, in this

case at z=0.25.
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Bottom layer=Exact, Middle layer=GEM, Top layer=FEMWATER.

Figure 5.7. Plot of potentials at the elevation of z=0.25 for Example 4.
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Table 5.8 Comparisons between the flux computations from the three methods at the same internal nodes as in Table 5.7

Exact FEMWATER GEM
Node
ID vx vy vz Mag vx vy vz Mag vx vy vz Mag

12 -2.5 2.5 0 3.535534 1.93437 -2.25413 -0.00191 2.970336 2.02139 -1.93419 -0.00009 2.7977

16 -2 2 0 2.828427 2.070375 -1.59461 -0.00375 2.613283 2.02084 -1.45321 -0.00021 2.4891

17 -2.5 2.5 0 3.535534 1.931897 -2.25318 -0.00351 2.968006 2.0213 -1.93426 0.00003 2.7977

22 -2 2 0 2.828427 2.067264 -1.59299 -0.00697 2.609836 2.02072 -1.45337 0.00002 2.4891

27 -1.5 1.5 0 2.12132 2.21534 -1.15354 -0.00439 2.49768 2.18947 -0.76868 0 2.3205

28 -2.5 2.5 0 3.535534 1.928443 -2.25172 -0.00334 2.964649 2.02132 -1.93423 0.00012 2.7977

34 -2 2 0 2.828427 2.062267 -1.59026 -0.00699 2.604212 2.02071 -1.45337 0.00003 2.4891

37 -1.5 1.5 0 2.12132 2.21433 -1.14974 -0.00833 2.495041 2.18968 -0.76873 -0.00005 2.3207

38 -1.5 1.5 0 2.12132 0.665098 -1.52379 -0.00254 1.662618 0.88977 -1.13047 0.00004 1.4386

48 -1.5 1.5 0 2.12132 0.662094 -1.5233 -0.00497 1.660974 0.88982 -1.13046 -0.00003 1.4387

49 -1 1 0 1.414214 0.998358 -1.0006 -0.00444 1.413485 1.05888 -0.61806 0.00011 1.2261

50 -1.5 1.5 0 2.12132 2.205499 -1.14232 -0.00814 2.483785 2.18962 -0.76879 -0.00021 2.3207

51 -1 1 0 1.414214 0.995108 -1.00088 -0.00815 1.411406 1.05895 -0.61799 0 1.2261
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Table 5.9 Comparisons between the flux computations from the three methods at some external nodes

Exact FEMWATER GEM
Node
ID vx vy vz Mag vx vy vz Mag vx vy vz Mag

11 -2.5 2.5 0 3.535534 1.935228 -2.25442 0 2.971114 2.2006 -2.00603 0 2.977721

13 -2 2 0 2.828427 2.071382 -1.59519 0 2.614432 2.17708 -1.53536 0 2.664024

36 -1.5 1.5 0 2.12132 0.666071 -1.52383 0 1.663042 1.21267 -1.11086 0 1.644557

42 -1 1 0 1.414214 0.999354 -1.0003 0 1.413969 1.23574 -0.56881 0 1.360366

46 -2.5 2.5 0 3.535534 1.92646 -2.25082 0 2.962674 0.22844 -2.16983 0 2.181824

52 -2 2 0 2.828427 2.058092 -1.58793 0 2.599474 1.68192 -1.962 0 2.584238

57 -0.5 0.5 0 0.707107 1.3338 -0.476497 0 1.416359 0.8128 -0.13446 0 0.823847

61 -1.5 1.5 0 2.12132 2.192552 -1.13506 0 2.468936 -0.85635 -2.60431 0 2.741488

68 -1.5 1.5 0 2.12132 0.652808 -1.51474 0 1.649423 -0.4319 -1.75669 0 1.809006

71 -1 1 0 1.414214 0.97915 -0.992006 0 1.393847 1.26625 -1.05741 0 1.649695

75 -0.5 0.5 0 0.707107 -0.21432 -0.844958 0 0.871715 0.43438 -0.15781 0 0.462158

78 0 0 0 0 -0.07199 -0.404772 0 0.411124 0.15164 0.29301 0 0.329925

82 -0.5 0.5 0 0.707107 1.287295 -0.469022 0 1.370077 0.42827 -1.6284 0 1.683776

84 0.5 -0.5 0 0.707107 0.064188 0.254087 0 0.262069 -0.05589 0.89007 0 0.891819

94 -0.5 0.5 0 0.707107 -0.20528 -0.810477 0 0.836069 0.08149 -0.33426 0 0.344046

96 0 0 0 0 -0.06525 -0.39325 0 0.398626 -0.13232 -0.02542 0 0.13474

99 0.5 -0.5 0 0.707107 0.059989 0.237861 0 0.245309 1.57025 1.38471 0 2.093589
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Black=Exact, Grey=GEM, Hatched=FEMWATER

Figure 5.8. Plot of fluxes at elevation of 25.0z

5.2 Time-Dependent Examples

The performance of the Green element model is assessed for transient potential

flow examples.  The first example, for which no exact numerical solution is

available, is the transient simulation of the problem earlier solved for the steady

state in Section 5.1.4, and the last two numerical examples, for which analytical

solutions are available as provided by Carslaw and Jaeger (1959), address the

problem of transient linear diffusion in a bar of unit length.
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5.2.1 Example 1 - Transient decay to Poisson equation

Our first example addresses the problem that was solved for the steady state

situation in Section 5.1.4.  The problem was set at an initial potential of 1.5 for all

the internal nodes, while the boundary conditions were maintained as in Section

5.1.4.  In this case the analytical solution for the transient variation of the nodal

unknowns is not available, so it is assessed whether the transient solutions from

GEM and FEMWATER converged to their steady state results.  The models were

run with a time weighting factor of =0.5 and a time step of t=0.25, and the

results were as tabulated in Table 5.10.

As is expected, the solution does converge to the steady state values of the nodal

potentials.  The model was also run with FEMWATER as a check, and the results

are listed in the same table.

Table 5.10. Comparisons between transient potentials fluxes at Node 17 and

Node 28 as computed by GEM and FEMWATER.

Node 17
Potential Flux

Step No. Time GEM FEMWATER GEM FEMWATER
0 0 1.5 1.5 2.166191 2.298097
1 0.25 1.745856 1.845869 2.786336 2.956004
2 0.5 1.744749 1.844698 2.797471 2.967817
3 0.75 1.74471 1.844657 2.797612 2.967967
4 1 1.74469 1.844636 2.797667 2.968025
5 1.25 1.744682 1.844627 2.797688 2.968047
6 1.5 1.744678 1.844623 2.797696 2.968056
7 1.75 1.744677 1.844622 2.797699 2.968059
8 2 1.744676 1.844621 2.7977 2.96806
9 2.25 1.744676 1.844621 2.7977 2.96806
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Node 28
Potential Flux

Step No. Time GEM FEMWATER GEM FEMWATER
0 0 1.5 1.5 2.168639 2.298097
1 0.25 1.745816 1.846651 2.786366 2.952699
2 0.5 1.744738 1.845511 2.797476 2.964473
3 0.75 1.744702 1.845473 2.797611 2.964616
4 1 1.744682 1.845452 2.797666 2.964674
5 1.25 1.744675 1.845444 2.797687 2.964696
6 1.5 1.744671 1.84544 2.797695 2.964705
7 1.75 1.74467 1.845439 2.797698 2.964708
8 2 1.744669 1.845438 2.797699 2.964709
9 2.25 1.744669 1.845438 2.7977 2.96471

An attempt was made to model the effect of varying the time weighting factor 

and the time step size t on the convergence characteristics of the GEM. There

was no noticeable change in the manner in which the numerical results converged

to their steady state values.  This example does not demonstrate the accuracy of

transient solutions of the GEM; it only serves to show that the transient simulation

does replicate the solutions at steady state.

5.2.2 Example 2 - Transient diffusion with Dirichlet conditions

Our second transient example is one of heat conduction in a bar of unit length in

which temperatures at both ends are maintained at certain values (steady Dirichlet

boundary conditions).  The problem is described by

t

u

x

u








2

2
(5.8)

The boundary conditions are 0,0),1(,1),0(  ttutu and the condition at

0t is 0)0,( xu .

The exact solution is derived by method of Laplace transform, and is given by
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(5.9)

Our Green element method has been formulated to solve problems in 3D domains,

but the problem with the known solution as outlined above is in one dimension.

To use our model to simulate the one-dimensional flow, two opposite faces of the

domain (shaded faces in Figure 5.9) have prescribed potentials, while the other

four faces are described as zero-flux boundaries.

Figure 5.9 Boundary value description to simulate one-dimensional flow, and
domain discretization.

Domain discretization was done with GID software, and the node labelling is as

shown in Figure 5.9.  The exact, GEM, and FEMWATER solutions for the

potential (heat) are as listed Table 5.11 and as shown in Figure 5.10 and Figure

5.11.  At t=0 the potential (temperature) will be zero everywhere in the domain

except at x=0 where u=1 as specified by the boundary conditions, and will begin

to rise steadily with time. Figure 5.10 shows that GEM reflects this transient heat

conduction better than FEM.  The final state will be that the temperature will vary

linearly from u=1 at x=0 to u=0 at x=1.

x

y

z

Faces x=0 and x=1 have prescribed fluxes.  All other faces are zero-flux
faces
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Table 5.11 Computed potentials at selected time values, Dirichlet conditions.

Exact GEM FEM

Time x u u ERROR u ERROR

t=0.1 0 1 1 0.0% 1 0.0%

0.1 0.82304 0.85627 4.0% 0.889972 8.1%

0.2 0.65466 0.71787 9.7% 0.783263 19.6%

0.3 0.50219 0.59037 17.6% 0.679169 35.2%

0.4 0.37075 0.4737 27.8% 0.577714 55.8%

0.5 0.26276 0.37025 40.9% 0.478593 82.1%

0.6 0.17797 0.27949 57.0% 0.381243 114.2%

0.7 0.11387 0.19945 75.2% 0.285144 150.4%

0.8 0.06635 0.12826 93.3% 0.190183 186.6%

0.9 0.03027 0.06273 107.2% 0.095248 214.7%

1 0 0 0.0% 0 0.0%

t=0.2 0 1 1 0.0% 1 0.0%

0.1 0.8726 0.88582 1.5% 0.89985 3.1%

0.2 0.74791 0.77376 3.5% 0.79963 6.9%

0.3 0.62834 0.66373 5.6% 0.69952 11.3%

0.4 0.51583 0.55711 8.0% 0.59954 16.2%

0.5 0.41157 0.45546 10.7% 0.49975 21.4%

0.6 0.31596 0.35766 13.2% 0.40014 26.6%

0.7 0.22857 0.26424 15.6% 0.30054 31.5%

0.8 0.14813 0.17455 17.8% 0.20105 35.7%

0.9 0.07274 0.08668 19.2% 0.10091 38.7%

1 0 0 0.0% 0 0.0%

t=0.4 0 1 1 0.0% 1 0.0%

0.1 0.8962 0.89683 0.1% 0.90018 0.4%

0.2 0.79278 0.79574 0.4% 0.80024 0.9%

0.3 0.69006 0.69407 0.6% 0.70033 1.5%

0.4 0.58832 0.59431 1.0% 0.60048 2.1%

0.5 0.48772 0.49324 1.1% 0.50071 2.7%

0.6 0.38832 0.39463 1.6% 0.40102 3.3%

0.7 0.29006 0.29565 1.9% 0.30127 3.9%

0.8 0.19278 0.19704 2.2% 0.20155 4.5%

0.9 0.0962 0.09866 2.6% 0.10118 5.2%

1 0 0 0.0% 0 0.0%

The average of the error from GEM and FEM were calculated at each time step,
and these averages were plotted against time (Figure 5.10, Plot D).  The results
show that the errors diminish asymptotically to zero with time because the values
are tending to the steady state condition.
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Figure 5.10 Computed potentials at selected time values: 1.0t  and 2.0t , Dirichlet conditions.
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Figure 5.11 Computed potentials at selected time values 4.0t and absolute error vs. time, Dirichlet conditions.
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The exact, GEM, and FEMWATER solutions for the heat flux were as listed in

Table 5.12 and as shown in Figure 5.12 and Figure 5.13.

Table 5.12 Computed heat fluxes at selected time values, Dirichlet conditions.

Exact GEM FEM

Time x q q ERROR q ERROR

t=0.1 0 1.784286 1.4398736 19.3% 1.097148 38.5%

0.1 1.740318 1.4061601 19.2% 1.072786 38.4%

0.2 1.614894 1.330073 17.6% 1.04929 35.0%

0.3 1.425954 1.2237977 14.2% 1.02292 28.3%

0.4 1.1989 1.0952456 8.6% 0.994034 17.1%

0.5 0.9614077 0.9679867 0.7% 0.97681 1.6%

0.6 0.7386564 0.8494519 15.0% 0.960945 30.1%

0.7 0.5501937 0.7490586 36.1% 0.948331 72.4%

0.8 0.4089574 0.6741125 64.8% 0.939369 129.7%

0.9 0.3221266 0.6274037 94.8% 0.933145 189.7%

1 0.2928997 0.6094826 108.1% 0.928381 217.0%

t=0.2 0 1.278567 1.1343853 11.3% 0.994346 22.2%

0.1 1.264827 1.1291886 10.7% 0.994586 21.4%

0.2 1.224993 1.1097501 9.4% 0.994544 18.8%

0.3 1.16307 1.0779984 7.3% 0.993583 14.6%

0.4 1.085249 1.0376378 4.4% 0.992154 8.6%

0.5 0.9992553 0.9948146 0.4% 0.991228 0.8%

0.6 0.9135457 0.9509114 4.1% 0.990356 8.4%

0.7 0.8364701 0.9123683 9.1% 0.990442 18.4%

0.8 0.7754672 0.8827474 13.8% 0.990458 27.7%

0.9 0.7363778 0.8617718 17.0% 0.990011 34.4%

1 0.7229224 0.8546944 18.2% 0.986845 36.5%

t=0.4 0 1.038593 1.0140806 2.4% 0.991087 4.6%

0.1 1.036704 1.012638 2.3% 0.991647 4.3%

0.2 1.031222 1.0106372 2.0% 0.992012 3.8%

0.3 1.022684 1.0055702 1.7% 0.991718 3.0%

0.4 1.011926 1.0015112 1.0% 0.991411 2.0%

0.5 0.9999997 0.9937334 0.6% 0.991392 0.9%

0.6 0.988074 0.9896604 0.2% 0.991442 0.3%

0.7 0.9773158 0.9847891 0.8% 0.992339 1.5%

0.8 0.968778 0.9801909 1.2% 0.992903 2.5%

0.9 0.9632965 0.9777798 1.5% 0.992822 3.1%

1 0.9614077 0.9740249 1.3% 0.989721 2.9%

Note from Figure 5.10 that the gradient of the u plots at small time values near

x=0 is much greater than at greater time values neat x=1.  This manifests in the
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flux values being greater at x=0 than at x=1 as is evident in Figure 5.12.  This

variation is captured much better by GEM than FEM.  The flux tends to the value

of unit with time everywhere within the domain because of the constant potentials

applied at the ends of the rod.

The averages of the absolute errors for the flux values show a similar trend to that

shown by the absolute errors of the potentials for the same reason sited there.
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Figure 5.12 Computed heat fluxes at selected time values: 1.0t  and 2.0t , Dirichlet conditions.
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Figure 5.13 Computed heat fluxes at selected time value 4.0t  and absolute error vs. time s, Dirichlet conditions.

Plot C: t=0.4

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

1.20000

1.40000

1.60000

1.80000

2.00000

0.0 0.2 0.4 0.6 0.8 1.0 1.2

x

q

Exact

GEM

FEM

Plot D: Absolute error vs time

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 0.5 1 1.5 2

t ime

Er r or

GEM

FEM



_________________________________________________________________

-99-

5.2.3 Example 3 – Transient diffusion with Neumann
conditions

Our third example is similar to that of the second, except that unit magnitude of

flux of heat is maintained at the ends of the bar (Neumann boundary conditions).

The problem is thus described by

t

u

x

u








2

2
(5.10)

The boundary conditions are 11
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u
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x

u
.  The initial condition is

0)0,( xu .

The exact solution is derived by method of Laplace transform, and is given by
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(5.11)

The same discretization for Example 2 of transient diffusion with Dirichlet

conditions was used in this example (Figure 5.9).  The exact, GEM, and

FEMWATER solutions for the potential (heat) were as listed in Table 5.13 and as

shown in Figure 5.14 and Figure 5.15.   It is apparent from Figure 5.14 that when

Neumann conditions are specified, the both GEM and FEM are able to calculate

potentials better than when Dirichlet conditions are specified, as is evidenced by

the fact that the shapes of the curves by GEM and by FEM approximate the exact

solution well.  As has been the case in all absolute error plots so far, the error from

GEM is less than the error from FEM.
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Table 5.13 Computed potentials at selected time values, Neumann conditions.

Exact GEM FEM

Time x u u ERROR u ERROR

t=0.1 0 0.348941 0.413126 18.4% 0.477796 36.9%

0.1 0.256337 0.317784 24.0% 0.379409 48.0%

0.2 0.177798 0.229515 29.1% 0.281930 58.6%

0.3 0.111219 0.148043 33.1% 0.185021 66.4%

0.4 0.053327 0.070500 32.2% 0.087830 64.7%

0.5 0.000000 -0.005049 N/A -0.010109 N/A

0.6 -0.053327 -0.081118 52.1% -0.108976 104.4%

0.7 -0.111219 -0.160113 44.0% -0.209093 88.0%

0.8 -0.177798 -0.244153 37.3% -0.310545 74.7%

0.9 -0.256337 -0.334851 30.6% -0.413614 61.4%

1 -0.348941 -0.432728 24.0% -0.518159 48.5%

t=0.2 0 0.443701 0.466880 5.2% 0.491764 10.8%

0.1 0.346457 0.369298 6.6% 0.392478 13.3%

0.2 0.254454 0.273602 7.5% 0.292760 15.1%

0.3 0.166909 0.179784 7.7% 0.192768 15.5%

0.4 0.082603 0.087122 5.5% 0.091819 11.2%

0.5 0.000000 -0.005192 N/A -0.010388 N/A

0.6 -0.082603 -0.098020 18.7% -0.113651 37.6%

0.7 -0.166909 -0.192108 15.1% -0.217766 30.5%

0.8 -0.254454 -0.288496 13.4% -0.322680 26.8%

0.9 -0.346457 -0.386616 11.6% -0.428052 23.6%

1 -0.443701 -0.488584 10.1% -0.533684 20.3%

t=0.4 0 0.492180 0.492080 0.0% 0.492717 0.1%

0.1 0.392562 0.392381 0.0% 0.393391 0.2%

0.2 0.293673 0.293320 0.1% 0.293536 0.0%

0.3 0.195403 0.194060 0.7% 0.193346 1.1%

0.4 0.097583 0.094860 2.8% 0.092166 5.6%

0.5 0.000000 -0.005148 N/A -0.010317 N/A

0.6 -0.097583 -0.105717 8.3% -0.113872 16.7%

0.7 -0.195403 -0.206842 5.9% -0.218296 11.7%

0.8 -0.293673 -0.308367 5.0% -0.323469 10.1%

0.9 -0.392562 -0.410667 4.6% -0.429007 9.3%

1 -0.492180 -0.512607 4.2% -0.534654 8.6%
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Figure 5.14 Computed potentials at selected time values: 1.0t  and 2.0t , Neumann condition
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Figure 5.15 Computed potentials at selected time values 4.0t and absolute error vs. time, Neumann condition.
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The exact, GEM, and FEMWATER solutions for the heat flux for this second

example were as listed in Table 5.14 and as shown in Figure 5.16 and Figure 5.17.

Table 5.14 Computed heat fluxes at selected time values, Neumann
conditions.

Exact GEM FEM

Time x q q ERROR q ERROR

t=0.1 0 1.000000 1.000000 0.0% 1.000000 0.0%

0.1 0.853310 0.917726 7.5% 0.984659 15.4%

0.2 0.721013 0.847391 17.5% 0.976776 35.5%

0.3 0.616066 0.791330 28.4% 0.969494 57.4%

0.4 0.548714 0.755657 37.7% 0.962982 75.5%

0.5 0.525513 0.743157 41.4% 0.961595 83.0%

0.6 0.548714 0.754671 37.5% 0.962636 75.4%

0.7 0.616066 0.791211 28.4% 0.969162 57.3%

0.8 0.721013 0.847946 17.6% 0.975097 35.2%

0.9 0.853310 0.921111 7.9% 0.989371 15.9%

1 1.000000 1.000000 0.0% 1.000000 0.0%

t=0.2 0 1.000000 1.000000 0.0% 1.000000 0.0%

0.1 0.945345 0.972472 2.9% 1.001771 6.0%

0.2 0.896040 0.947738 5.8% 1.002976 11.9%

0.3 0.856912 0.929529 8.5% 1.004637 17.2%

0.4 0.831789 0.917837 10.3% 1.004617 20.8%

0.5 0.823133 0.913121 10.9% 1.004611 22.0%

0.6 0.831789 0.917878 10.3% 1.004470 20.8%

0.7 0.856912 0.929592 8.5% 1.005165 17.3%

0.8 0.896040 0.949799 6.0% 1.004356 12.1%

0.9 0.945345 0.973940 3.0% 1.004391 6.2%

1 1.000000 1.000000 0.0% 1.000000 0.0%

t=0.4 0 1.000000 1.000000 0.0% 1.000000 0.0%

0.1 0.992408 0.996765 0.4% 1.002775 1.0%

0.2 0.985559 0.993351 0.8% 1.004500 1.9%

0.3 0.980123 0.993069 1.3% 1.006746 2.7%

0.4 0.976634 0.991287 1.5% 1.007282 3.1%

0.5 0.975431 0.990303 1.5% 1.007470 3.3%

0.6 0.976634 0.991342 1.5% 1.007411 3.2%

0.7 0.980123 0.992524 1.3% 1.007880 2.8%

0.8 0.985559 0.995118 1.0% 1.006266 2.1%

0.9 0.992408 0.997914 0.6% 1.005329 1.3%

1 1.000000 1.000000 0.0% 1.000000 0.0%
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In Figure 5.14 the V shapes of the flux plots are explained by the fact that the
values at the boundaries have been specified.  The exact solution shows that GEM
is able to handle transients better than FEM.  This is evident because the flux plot
for GEM is closer to the exact solution that that of FEM.  The average absolute
errors for the fluxes at each time step is less than that in all the previous cases.
This is because of the specification of the Neumann boundary conditions.

That the average errors tends to zero with time is because this problem is
essentially in 1D and the errors in the computations do not accumulate to
significant values as has been evident with other 3D simulations in this work.
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Figure 5.16 Computed heat fluxes at selected time values: 1.0t  and 2.0t , Neumann conditions.
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Figure 5.17 Computed heat fluxes at selected time values 4.0t and absolute error vs. time, Neumann conditions.
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6. CONCLUSION

Although the study of partial differential equations began in the 18th Century, the

development of methods for their solution in practically based problems continues

to be a subject of major interest in the research today. Two such partial

differential equations are the Laplace equation and its variant the Poisson

equation, and the time-dependent diffusion equation.  The fact that these equations

continue to arouse great interest today is understandable, considering the fact that

the equations describe phenomena in various branches of the physical science and

engineering.

A number of techniques and methods, as reviewed in this project, are under

development for the solution of these differential equations, and numerical

techniques have proven to be particularly helpful in producing solutions to

practically based potential flows governed by such equations  One such technique

is the Green element method, which is based on the theory of the boundary

element method but is implemented in an element by element method in the

fashion of the Finite element method.

The objective of the research project was to develop a numerical formulation

based on the Green element method for time-dependent potential flow problems

that extends the work done to date for the one dimensional and two dimensional

cases to three dimensions.  The hypothesis was raised that it is possible to develop

a three-dimensional formulation for the Green element method and in the event

that the three dimensional formulation is developed, it was also the objective of

the project to test if the computational gains that have been reported for the one

dimensional and two-dimensional cases do extend to three dimensions.

In this project, extension of the Green element method to three-dimensional

domains has been accomplished. The performances of GEM and FEMWATER

were compared on a number of simple potential flow problems for which

analytical solutions are available.  In all cases GEM performed better than

FEMWATER. It was observed that with similar discretization, the Green element
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method generally produces more accurate solutions than the Finite element

method.  Therefore, the computational gain in terms of accuracy that has been

reported for the one dimensional and the two-dimensional cases do indeed extend

to three dimensions.  In real world potential flow problems where the solution is

often not known, the ability to generate an accurate solution becomes particularly

important. Given the second order accuracy of boundary element theory that is

utilised by GEM, and the flexibility offered by the element by element

implementation of the theory in the manner of FEM, GEM is able to handle

heterogeneities arising in real world groundwater aquifers.

It is also worth noting that the computational gain observed comes at the expense

of a large flux coefficient matrix, which results due to the utilisation of all the

fluxes normal to the computation planes of the elements for all planes that meet at

an internal node.  This leads to the closure problem whereby more unknowns are

generated than the available number of equations as elaborated in this report.  For

1D and 2D GEM analysis, this closure problem has been effectively resolved by

previous researchers (Taigbenu, 2008), but this is not the case with 3D analysis.

The closure problem has been circumvented in this project by adopting cuboidal

hexahedra elements and approximating the fluxes by their potential difference

expressions. Another advantage of adopting cuboidal hexahedral elements is that

it becomes possible to avoid the integrals which generate results with imaginary

components simply by taking advantage of the symmetry of the elements.  This

allows the replacement of those integrals which have complex (imaginary) results

with the simpler versions. There is thus need to resolve the closure problem either

along the lines of what Taigbenu accomplished for 2D cases, or along the lines of

expressing the fluxes at each node only in terms of three flux variables namely qx,

qy, and qz (Pecher et al., 2001), and to implement better integration methods which

can handle the imaginary components. Thus, we note that although the Green

element method is a very promising new method for the solution of potential flow

problems governed by the Laplace equation and its variants, two major challenges

still need to be resolved, namely the need to resolve the closure problem and the

domains integration which result in imaginary components.  The resolution of
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these challenges will make it possible to utilise the more general tetrahedra and

hexahedra elements without the need to approximate the fluxes by their potential

difference expressions and without the need to rely on the symmetry of the

elements.  These will be subject of future research to achieve a more robust 3D

GEM.

A novel system to implement surface compatibility issues has been developed and

implemented.  This involves associating each surface with a unique surface

identity code, thereby precluding duplication of surfaces.  This means that where

two elements interact, they do so across one surface shared between the two

elements.  With this system, it becomes possible to identify the fluxes using the

surface to which they are perpendicular, and the node at which they are taken.

Ramsak and Skerget (2009) have observed that the procedures for resolving these

compatibility issues have not hitherto been developed, and that this has been one

of the issues that has led to the non development of boundary element techniques

for multi-domain systems in 3D problems.  This report represents the resolution of

this problem that has slowed down the development of the Green element method

for 3D domains.
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Appendix A. Information on some grid generation software available on the market.

Software: Description: Author : Availability: Platforms:

ADMesh Processes
triangulated solid
meshes in STL
file format

Anthony D. Martin
(amartin@engr.csu
lb.edu)

Via http from
http://www.varlog.
com/products/adme
sh/

Has been
compiled on
SunOS 4.1.3 and
IRIX 5.2 but
should compile
and run on any
Unix-like system,
and perhaps even
under DOS or
Windows.

AMR1D Adaptive Mesh
Refinement for a
fluid element
code. Solves the
1D Euler
equations on an
unstructured
grid. Primarily
intended as a
learning tool.

Download from
http://sdcd.gsfc.nasa.gov/ES
S/exchange/contrib/de-
fainchtein/adaptive_mesh_r
efinement.html

BAMG Two-
dimensional
mesh generation
and refinement.

Frederic Hecht.
English
documentation is
available

The C++ source may be
downloaded from the
BAMG website

Casca A 2D mesh
generator and
preprocessor for
FRANC2D (qv)
and FRANC2DL
(qv). Casca can
be used as a
mesh generator
for other FE
programs.
Source code may
be available on
request

Paul Wawrzynek
and Luiz Martha at
Cornell.

Binaries may be
downloaded through the
FRANC2DL homepage. See
also the CFG Web page. or
the Cornell ftp site in the
appropriate directory (SUN,
HP, IBM etc).

Include
Windows95/NT
PC's and Sun, HP,
DEC Alpha, SGI
and IBM
workstations.

Chalmesh A 3D
overlapping grid
generator.

Anders Peterson at
the Chalmers
University of
Technology.

Source code compilation
requires the HDF library
and OpenGL or Mesa 3D.
Compiled versions for
Sun/Solaris and PC/Linux
as well as other platforms
(SGI, HP, DEC).

See the Chalmesh
homepage.

mailto:amartin@engr.csu
http://www.varlog
http://sdcd.gsfc.nasa.gov/ES
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Software: Description: Author : Availability: Platforms:

COG COGeometry is a
2D/3D Delaunay
grid generation
package
including local
mesh refinement.
COG is intended
as an eventual
replacement for
IBG (qv).

Ilja Schmelzer The package may be
downloaded via the COG
Webpage.

Source code (C++)
available. Suitable for
Unix/Linux OS.

CUBIT CUBIT is a mesh
generating
program for 2D
and 3D grids.
Both a graphical
and command
line interface are
available. Grids
can be exported
to a number of
finite element
packages,
including
SEACAS (qv),
ABAQUS (qv),
LS-DYNA (qv)
and Patran (qv).

Sandia National
Laboratories

Linux, Solaris, HP-UX,
IRIX, MicroSoft
Windows, MacOS X

While the software can
be used freely by
approved government
and academic sites,
there is a $300.00
distribution fee, and a
license must be
obtained. See the
licensing page for more
information.

EasyMesh Delaunay-based
mesh generator.
Unstructured
high quality 2D
mesh generation
in general
domains

Bojan Niceno From the web site
http://www-
dinma.univ.trieste.it/~nirft
c/research/easymesh/

Genie++ Genie++
multiblock, 3D,
structured grid
generation
package.
Genie2D is a PC
version for MS-
Windows, which
will not generate
3D grids

Primary author
Bharat K. Soni.
Others include
Nadesan
Narenthiran, Ming-
Hsin Shih, Hugh
Thornburg, and
Tzu-Yi Yu.

Outside the U.S., only
executables are available.
Contact Dr. Soni for more
information.

Silicon Graphics (SGI)
workstations with GL,
or Sun workstations
with X11 (X-Genie++).
Genie2D for Windows
3.0 or higher.

http://www-
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Software: Description: Author : Availability: Platforms:

GEOMPAC
K

Widely used 2D triangular
/ 3D tetrahedral finite
element mesh generation
programs. Postscript user's
guide and other
documentation available.
The newer version does not
include source and is
licensed as freeware

Barry Joe
(bjoe@allstream.n
et)

See the homepage
for the new
version
Geompack++
(supersedes
Geompack90).

The older version
ran under Unix.
The newer one runs
under Windows
NT/95/98.

GiD GiD is a pre/post
processing environment
(including mesh
generation) which can be
adapted to the requirements
of specific finite
element/difference/volume/
point analysis programs.
GiD can be configured by
the user to write data in any
format, hence it is
compatible with all FE
software provided the user
defines the connection by
the means of a problem
type. GiD generates all the
information (2D/3D
structured/unstructured
meshes, boundary and
loading conditions,
material types, result
visualisation etc) required
for the analysis of any
problem using numerical
methods.

International
Centre for
Numerical
Methods in
Engineering.

UNIX
workstations
(Silicon Graphics,
DEC Alpha, Sun,
HP, AIX) and
PC's running
Windows 95/NT
or Linux.

GiD is a fully-
featured but low-
cost commercial
package. For
details on pricing
etc see the GiD
homepage. A trial
of the professional
version of GiD is
available for
download from this
website. A free
academic version
(limited number of
elements) may also
be downloaded.

GrAL - Grid
Algorithms
Library

GrAL is a generic library
for grid data structures and
algorithms operating on
them. In this context,
"generic" means that
algorithms are decoupled
from grid data structures,
and can be used with any
grid data structure. GrAL
has been inspired by the
C++ STL.

Guntram Berti Available via the
web at
http://www.math.t
u-
cottbus.de/~berti/g
ral. This is
released under an
Open Source
license, and
includes C++
source code and
documentation.
The current
version is 0.2.

mailto:bjoe@allstream.n
http://www.math.t


_________________________________________________________________

-131-

Software: Description: Author : Availability: Platforms:

GRUMMP Generation and
Refinement of
Unstructured Mixed-
element Meshes in
Parallel. GRUMMP
features simplicial mesh
generation in 2D,3D;
mesh quality
assessment; mesh
manipulation; mesh
improvement etc. A
User's Guide is
available

Carl Ollivier-
Gooch at UBC

GRUMMP is
distributed in source
(C/C++) form. It has
been successfully built
on systems running
Linux 2.0.x, SunOS
4.1.4 and IRIX 6.2.

By ftp from
ftp://tetra.mech.ubc
.ca/pub/GRUMMP/
or via the
GRUMMP
homepage

gmsh Gmsh is a 3D meshing
program. Line, surface
and volume meshing
are available, using
lines, triangles and
tetrahedral. Requires
the OpenGL library.
Also does post
processing of scalar or
vector fields.
Released under the
GPL
Complete reference
manual is available
the code can be
compiled natively on
Mac OS X (in addition
to Windows and
UNIX/Linux)
Gmsh provides its own
scriptable CAD engine
and post-processor;
meshes can now also be
generated by extrusion
(i.e. generate
quadrilaterals,
hexahedra and prisms).
See also GetDP.

Christophe
Geuzaine and Jean-
Francois Remacle

Several UNIX systems,
including Linux,
Solaris, Tru64, AIX,
HPUX, Mac OS X and
IRIX. Also available on
Windows 95/98/NT.

Via the web page
at
http://www.geuz.or
g/gmsh/.

http://www.geuz.or
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Appendix B.  Script listing of the utility to output grid information from GID software for
further processing by a utility in FORTRAN.

Elements
Total:  *nelem
ElemID    Face1   Face2    Face3    Face4    Face5    Face6
*set elems(all)
*loop elems
*Set var face1=((ElemsNum-1)*6+1)
*Set var face2=((ElemsNum-1)*6+2)
*Set var face3=((ElemsNum-1)*6+3)
*Set var face4=((ElemsNum-1)*6+4)
*Set var face5=((ElemsNum-1)*6+5)
*Set var face6=((ElemsNum-1)*6+6)
*format "%6i%8i%8i%8i%8i%8i%8i"
*ElemsNum *Face1 *Face2 *Face3 *Face4 *Face5 *Face6
*end elems

Faces
Total:  *Operation(6*nelem)
Face |Elem |Node Stat       Value |Node Stat       Value |Node
Stat       Value |Node Stat     Value |
*set elems(hexahedra)
*set var face=0
*set var Stat1=0
*set var Val1=0.0
*set Cond Flux
*loop elems
*set var face=face+1
*set var Nod1=elemsconec(1)
*set var Nod2=elemsconec(4)
*set var Nod3=elemsconec(3)
*set var Nod4=elemsconec(2)
*format "%4i%5i%5i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e"
*face *ElemsNum *Nod1 *Stat1 *val1 *Nod2 *Stat1 *Val1 *Nod3 *Stat1
*Val1 *Nod4 *Stat1 *Val1
*set var face=face+1
*set var Nod1=elemsconec(1)
*set var Nod2=elemsconec(5)
*set var Nod3=elemsconec(8)
*set var Nod4=elemsconec(4)
*format "%4i%5i%5i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e"
*face *ElemsNum *Nod1 *Stat1 *val1 *Nod2 *Stat1 *Val1 *Nod3 *Stat1
*Val1 *Nod4 *Stat1 *Val1
*set var face=face+1
*set var Nod1=elemsconec(1)
*set var Nod2=elemsconec(2)
*set var Nod3=elemsconec(6)
*set var Nod4=elemsconec(5)
*format "%4i%5i%5i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e"
*face *ElemsNum *Nod1 *Stat1 *val1 *Nod2 *Stat1 *Val1 *Nod3 *Stat1
*Val1 *Nod4 *Stat1 *Val1
*set var face=face+1
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*set var Nod1=elemsconec(2)
*set var Nod2=elemsconec(3)
*set var Nod3=elemsconec(7)
*set var Nod4=elemsconec(6)
*format "%4i%5i%5i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e"
*face *ElemsNum *Nod1 *Stat1 *val1 *Nod2 *Stat1 *Val1 *Nod3 *Stat1
*Val1 *Nod4 *Stat1 *Val1
*set var face=face+1
*set var Nod1=elemsconec(3)
*set var Nod2=elemsconec(4)
*set var Nod3=elemsconec(8)
*set var Nod4=elemsconec(7)
*format "%4i%5i%5i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e"
*face *ElemsNum *Nod1 *Stat1 *val1 *Nod2 *Stat1 *Val1 *Nod3 *Stat1
*Val1 *Nod4 *Stat1 *Val1
*set var face=face+1
*set var Nod1=elemsconec(5)
*set var Nod2=elemsconec(6)
*set var Nod3=elemsconec(7)
*set var Nod4=elemsconec(8)
*format "%4i%5i%5i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e%4i%4i%12.5e"
*face *ElemsNum *Nod1 *Stat1 *val1 *Nod2 *Stat1 *Val1 *Nod3 *Stat1
*Val1 *Nod4 *Stat1 *Val1
*end elems

Nodes
Total:  *npoin
NodeID             X              Y               Z      Stat
Potential
*Set Cond Potential
*loop nodes
*Set var Status=Cond(1,int)
*Set var Poten=Cond(2,real)
*format "%5i%14.5e%14.5e%14.5e%9i%14.5e"
*NodesNum *NodesCoord(1,real) *NodesCoord(2,real)
*NodesCoord(3,real) *Status *Poten
*end nodes

Known Boundary Fluxes
*Set Var Tot=0
*Set Cond Flux *elems
*loop elems *OnlyInCond
*Set Var Tot=Tot+1
*end elems
Total:  *Tot
Count  Node1   Node2   Node3         Flux
*loop elems *OnlyInCond
*format "%4i%7i%7i%7i%12.5e"
*elemsnum *globalnodes(1) *globalnodes(2) *globalnodes(3) *cond(2)
*end elems

Connectivities
Total:  *nelem
ElemID    Node1    Node2    Node3    Node4    Node5    Node6
Node7    Node8
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*loop elems
*set var Nod1=elemsconec(1)
*set var Nod2=elemsconec(2)
*set var Nod3=elemsconec(3)
*set var Nod4=elemsconec(4)
*set var Nod5=elemsconec(5)
*set var Nod6=elemsconec(6)
*set var Nod7=elemsconec(7)
*set var Nod8=elemsconec(8)
*format "%6i%8i%8i%8i%8i%8i%8i%8i%8i"
*ElemsNum *Nod1 *Nod2 *Nod3 *Nod4 *Nod5 *Nod6 *Nod7 *Nod8
*end elems

Fluxes
Total:  *Operation(4*face)
Count  Face   FromNode     ToNode
*set var face=0
*loop elems
*set var face=face+1
*set var From1=elemsconec(5)
*set var From2=elemsconec(8)
*set var From3=elemsconec(7)
*set var From4=elemsconec(6)
*set var To1=elemsconec(1)
*set var To2=elemsconec(4)
*set var To3=elemsconec(3)
*set var To4=elemsconec(2)
*format "%5i%5i%10i%10i"
*Operation(4*face-3) *face *From1 *To1
*format "%5i%5i%10i%10i"
*Operation(4*face-2) *face *From2 *To2
*format "%5i%5i%10i%10i"
*Operation(4*face-1) *face *From3 *To3
*format "%5i%5i%10i%10i"
*Operation(4*face) *face *From4 *To4
*set var face=face+1
*set var From1=elemsconec(7)
*set var From2=elemsconec(3)
*set var From3=elemsconec(2)
*set var From4=elemsconec(6)
*set var To1=elemsconec(8)
*set var To2=elemsconec(4)
*set var To3=elemsconec(1)
*set var To4=elemsconec(5)
*format "%5i%5i%10i%10i"
*Operation(4*face-3) *face *From1 *To1
*format "%5i%5i%10i%10i"
*Operation(4*face-2) *face *From2 *To2
*format "%5i%5i%10i%10i"
*Operation(4*face-1) *face *From3 *To3
*format "%5i%5i%10i%10i"
*Operation(4*face) *face *From4 *To4
*set var face=face+1
*set var From1=elemsconec(8)
*set var From2=elemsconec(4)
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*set var From3=elemsconec(3)
*set var From4=elemsconec(7)
*set var To1=elemsconec(5)
*set var To2=elemsconec(1)
*set var To3=elemsconec(2)
*set var To4=elemsconec(6)
*format "%5i%5i%10i%10i"
*Operation(4*face-3) *face *From1 *To1
*format "%5i%5i%10i%10i"
*Operation(4*face-2) *face *From2 *To2
*format "%5i%5i%10i%10i"
*Operation(4*face-1) *face *From3 *To3
*format "%5i%5i%10i%10i"
*Operation(4*face) *face *From4 *To4
*set var face=face+1
*set var From1=elemsconec(5)
*set var From2=elemsconec(1)
*set var From3=elemsconec(4)
*set var From4=elemsconec(8)
*set var To1=elemsconec(6)
*set var To2=elemsconec(2)
*set var To3=elemsconec(3)
*set var To4=elemsconec(7)
*format "%5i%5i%10i%10i"
*Operation(4*face-3) *face *From1 *To1
*format "%5i%5i%10i%10i"
*Operation(4*face-2) *face *From2 *To2
*format "%5i%5i%10i%10i"
*Operation(4*face-1) *face *From3 *To3
*format "%5i%5i%10i%10i"
*Operation(4*face) *face *From4 *To4
*set var face=face+1
*set var From1=elemsconec(6)
*set var From2=elemsconec(2)
*set var From3=elemsconec(1)
*set var From4=elemsconec(5)
*set var To1=elemsconec(7)
*set var To2=elemsconec(3)
*set var To3=elemsconec(4)
*set var To4=elemsconec(8)
*format "%5i%5i%10i%10i"
*Operation(4*face-3) *face *From1 *To1
*format "%5i%5i%10i%10i"
*Operation(4*face-2) *face *From2 *To2
*format "%5i%5i%10i%10i"
*Operation(4*face-1) *face *From3 *To3
*format "%5i%5i%10i%10i"
*Operation(4*face) *face *From4 *To4
*set var face=face+1
*set var From1=elemsconec(1)
*set var From2=elemsconec(2)
*set var From3=elemsconec(3)
*set var From4=elemsconec(4)
*set var To1=elemsconec(5)
*set var To2=elemsconec(6)
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*set var To3=elemsconec(7)
*set var To4=elemsconec(8)
*format "%5i%5i%10i%10i"
*Operation(4*face-3) *face *From1 *To1
*format "%5i%5i%10i%10i"
*Operation(4*face-2) *face *From2 *To2
*format "%5i%5i%10i%10i"
*Operation(4*face-1) *face *From3 *To3
*format "%5i%5i%10i%10i"
*Operation(4*face) *face *From4 *To4
*end elems
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Appendix C. Script listing in FORTRAN of the utility to convert output from GID into a
form suitable for the developed Green element method software

C
C ---------------------------------------------------------------------
C  THIS PROGRAM RE-WRITES TETRAHEDRA OUTPUT FROM GID
C   FOR USE IN POTENTIAL AND FLUX COMPUTATIONS.
C
C  40 Elements, 40*4=160 Faces, 40*4=160 nodes, 40*12=480 Fluxes
C    ALT = Alternative Face Identities

PROGRAM ReWrite

USE MSFLIB
USE MSFNLS

C ****************** DECLARATIONS

c **Element variables
INTEGER Elems(40), ElemFaces(40,4)

c **Face Variables
Character Sig*20(160)
INTEGER Faces2(160),RefElem2(160),FaceNodes2(160,3)
INTEGER Faces(160),RefElem(160),FaceNodes(160,3)
INTEGER Alt(160),Renum2(160),Renum(160)
Integer QStatus2(480)
Real DFI2(480)
Integer QStatus(480)

      Real DFI(480)
c **Node Variables

INTEGER AllNodes(160),UStatus(480)
Real X(160),Y(160),Z(160),FI(160)

CHARACTER
FILENAME*12,FILEIN*12,FILEOUT*12,FILEOUT2*12,TString*10

CHARACTER St1*5,St2*5,St3*5
Integer Nd1, Nd2, Nd3, P1, P2, P3

Integer NElem
Logical Same
Integer NFaces2,NFaces,JJ

      Integer NNodes
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C ****************** READ THE DATA
      WRITE(*,100)
  100 FORMAT(2X,'Enter Name of Output File from GID =>',/)
      READ(*,*)FILENAME

FILEIN=Trim(FILENAME) // '.dat'
FILEOUT=Trim(FILENAME) // '.txt'
FILEOUT2=Trim(FILENAME) // '.res'

      OPEN(5,FILE=FILEIN,STATUS='OLD')
COUNT=DELFILESQQ(FILEOUT)
COUNT=DELFILESQQ(FILEOUT2)
OPEN(6,FILE=FILEOUT,STATUS='NEW')
OPEN(7,FILE=FILEOUT2,STATUS='NEW')

READ(5,*)TString              !Read 'Elements'
READ(5,150)TString,NElem   !NElem

  150 FORMAT(A6,I6)
Write(*,*) TString,NElem
Read(5,160)TString   !Read Element labels

  160 Format(A6)
Write(*,*) TString

      DO 200 I=1,NElem
Read(5,140) Elems(I)
1,ElemFaces(I, 1),ElemFaces(I, 2)

     2,ElemFaces(I, 3),ElemFaces(I, 4)
  140 Format(I6,4I9)

Write(*,140) Elems(I)
1,ElemFaces(I, 1),ElemFaces(I, 2)

     2,ElemFaces(I, 3),ElemFaces(I, 4)

  200 Continue
Read(5,160)TString !A Blank line

READ(5,160)TString  ! "Faces"
READ(5,150)TString,NFaces2

Write(*,*) TString,NFaces2

Read(5,160)TString !Read Face Labels
Write(*,*) TString

      DO 300 I=1,NFaces2
Read(5,310) Faces2(I),RefElem2(I)

     1,Nd1,QStatus2(3 * I - 2),DFI2(3 * I - 2)
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     2,Nd2,QStatus2(3 * I - 1),DFI2(3 * I - 1)
     3,Nd3,QStatus2(3 * I),DFI2(3 * I)
      FaceNodes2(I, 1) = Nd1
      FaceNodes2(I, 2) = Nd2
      FaceNodes2(I, 3) = Nd3

Write(*,310) Faces2(I),RefElem2(I)
     1,Nd1,QStatus2(3 * I - 2),DFI2(3 * I - 2)
     2,Nd2,QStatus2(3 * I - 1),DFI2(3 * I - 1)
     3,Nd3,QStatus2(3 * I),DFI2(3 * I)
  300 Continue
  310 Format(I5,I6,3(I5,I5,ES13.5))

Read(5,160)TString  !Should read blank
Read(5,160)TString
Write(*,*) TString

READ(5,150)TString,NNodes
Write(*,*) TString,NNodes

Read(5,160)TString
Write(*,*) TString

      DO 350 I=1,NNodes
      Read(5,360) AllNodes(I),X(I),Y(I),Z(I),UStatus(I),FI(I)
      Write(*,360) AllNodes(I),X(I),Y(I),Z(I),UStatus(I),FI(I)

  350 Continue
  360 Format(I5,3E16.5,I8,E15.5)
c      Pause
C ***************CREATE FACE SIGNATURES
      DO 500 I=1,NFaces2
      Nd1 = FaceNodes2(I,1)
      Nd2 = FaceNodes2(I,2)
      Nd3 = FaceNodes2(I,3)

P1=Nd1
C Find the smallest
      If (P1>Nd2) P1=Nd2

   If (P1>Nd3) P1=Nd3
C Swap
      If (P1 .eq. Nd2) Nd2=Nd1
      If (P1 .eq. Nd3) Nd3=Nd1
      Nd1=P1
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      P2 = Nd2
C Find the smallest
      If (P2>Nd3)  P2=Nd3
C Swap
      If (P2 .eq. Nd3)  Nd3=Nd2
      Nd2=P2

      P3=Nd3

write(St1, '(I5)') P1
write(St2, '(I5)') P2
write(St3, '(I5)') P3

      Sig(I)=(Trim(St1)//Trim(St2)//Trim(St3))
c Pause
  500 CONTINUE
C ***************FIND ALTERNATIVE NODE IDENTITIES
      Alt(1) = Faces2(1)
      Do 550 I=2,NFaces2
      Do 530 K=1,(I - 1)

Same = MBLEQ(Sig(I),Sig(K))
If (.not. Same) goto 520

      Alt(I) = Faces2(K)    !if same
      Exit
  520 Alt(I)=Faces2(I)
  530 Continue
  550 Continue
C ***************RENUMBER
      JJ=0

do 600 I=1,NFaces2
      If (Alt(I) .ne. Faces2(I)) Goto 580

JJ=JJ+1
Renum2(I)=JJ
goto 590

580   continue
do 585 K=1,I
 if (Alt(I) .eq. Faces2(K)) Renum2(I)=Renum2(K)

585 Continue
590   Continue
600   continue

C *********** EXTRACT UNIQUE FACES FROM FACES2 TO FACES
      NFaces=0

 DO 630 I=1,NFaces2
If (Faces2(I) .ne. Alt(I)) goto 620
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 NFaces=NFaces+1
 Faces(NFaces)=Renum2(I)
 Renum(NFaces)=Renum2(I)

      RefElem(NFaces) = RefElem2(I)
      FaceNodes(NFaces,1) = FaceNodes2(I,1)
      FaceNodes(NFaces,2) = FaceNodes2(I,2)
      FaceNodes(NFaces,3) = FaceNodes2(I,3)

      QStatus(3 * NFaces - 2) = QStatus2(3 * I - 2)
      QStatus(3 * NFaces - 1) = QStatus2(3 * I - 1)
      QStatus(3 * NFaces) = QStatus2(3 * I)

      DFI(3 * NFaces - 2) = DFI2(3 * I - 2)
      DFI(3 * NFaces - 1) = DFI2(3 * I - 1)
      DFI(3 * NFaces) = DFI2(3 * I)

620 Continue
630   continue
c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

do 640 I=1,NFaces
      Write(7,*) I,Faces(I),Renum(I)
640   continue
c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C ****************** DELETE EXTRA FACES
c *****On the Elements
      Do 700 I=1,NElem
      do 680 J=1,4 !4 faces for a tetrahedron

      do 650 K = 1,NFaces2
      If (ElemFaces(I,J) .EQ. Faces2(K)) ElemFaces(I,J)=Renum2(K)
 650  Continue
 680  Continue
 700  Continue

C ****************** RE-WRITE THE DATA
      Write(6,805) 'Elements'
 805  Format(A8)
 806  Format(A45)

Write(6,150) 'Total:',NElem
Write(6,806) 'ElemID    Face1    Face2    Face3    Face4'
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Do 830 I=1,Nelem
Write(6,140) Elems(I)
1,ElemFaces(I, 1),ElemFaces(I, 2)

2,ElemFaces(I, 3),ElemFaces(I, 4)
 830 Continue
      Write(6,835) ''
      Write(6,835) 'Faces'
 835  Format(A5)

Write(6,150) 'Total:',NFaces
Write(6,836) 'Face |Elem |Node Stat       Value |Node Stat
1Value |Node Stat       Value |'

 836  Format(A82)
DO 910 I=1,NFaces
Write(6,310) Faces(I),RefElem(I)

     1,FaceNodes(I,1),QStatus(3 * I - 2),DFI(3 * I - 2)
     2,FaceNodes(I,2),QStatus(3 * I - 1),DFI(3 * I - 1)
     3,FaceNodes(I,3),QStatus(3 * I),DFI(3 * I)
 910  Continue

      Write(6,835) ''
 Write(6,835) 'Nodes'

Write(6,150) 'Total:',NNodes
Write(6,936) 'NodeID         X              Y              Z
1Stat      Potential'

 936  Format(A74)
DO 1010 I=1,NNodes

      Write(6,360) AllNodes(I),X(I),Y(I),Z(I),UStatus(I),FI(I)
 1010 Continue

PAUSE

END
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Appendix D. Integrations of the product of the interpolating functions and the fundamental
solutions for surface and volume integrals as performed by MATHEMATICA software.
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