The copyright of the above-mentioned described thesis rests with the author or the University to which it was submitted. No portion of the text derived from it may be published without the prior written consent of the author or University (as may be appropriate). Short quotations may be included in the text of a thesis or dissertation for purposes of illustration, comment or criticism, provided full acknowledgement is made of the source, author and University.
"In everything you do, put God first, and he will direct you and crown you with success."

Proverbs 3: 6
THE OLIGOMERISATION OF 1-ALKENES TO HIGH VISCOSITY OILS

Karin Strachan

A thesis submitted to the faculty of Chemistry, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy

Sasolburg, 1997
Dedicated to Kobus and Liam
I declare that this thesis is my own, unaided work. It is being submitted for the Degree of Doctor of Philosophy in the University of Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university.

(Signature of candidate)

------------------- day of ------------------- 1997
Abstract

The Phillips catalyst which has been used for the polymerisation of ethylene has interested many researchers and has been extensively studied over the past 40 years. By contrast there is little literature available on the oligomensation of alkenes in the presence of this catalyst and no intensive studies have been reported in the open literature to determine the effect of various reaction conditions on the oligomerisation reaction and on the characteristics of the oligomerisation product.

In this study a chromium impregnated extrudated support was developed and tested for the oligomerisation of, specifically, 1-hexene. Deactivation of the catalyst was rapid, and a possible explanation for this was found by means of various characterisation techniques. The active chromium sites were found to deactivate due to the formation of inactive Cr₂O₃.

Both a "one-factor-at-a-time" and a statistical design approach were used to determine the effect of various reaction conditions on the 1-hexene oligomerisation reaction. The statistical design approach was novel in the sense that it has not been applied to the CrOₓSiO₂ catalysed oligomerisation reaction previously. Many significant conclusions could be drawn from the results obtained. One of the most interesting effects observed was that an increase in the reaction temperature resulted in the formation of a yellow coloured oligomer product. An explanation for this coloured product could not be found with certainty, although a predominating presence of olefins in the oligomer was identified in the high temperature product.

The presence of a large number of 1-hexene isomeric oligomer products was observed as a result of extensive isomerisation after the oligomensation reaction had taken place. The Ziegler-Natta head-to-tail mechanism was identified as the mechanism predominating during the Cr/SiO₂ catalysed oligomerisation of 1-hexene.
Attempts were made to assess the use of zeolites for the oligomerisation of 1-hexene. The zeolites proved not to be suitable for the oligomerisation reaction due to a very high selectivity for dimer formation. The catalysts also had short cycle times. Zeolites were also sensitive towards oxygenates in the reactant stream and were deactivated by the presence of heavy products in the pores.
Die Phillips katalisator wat gebruik word vir die polimerisasië van etileen het al verskeie navorsers interesseer en is veral die afgelope 40 jaar intensief bestudeer. Daar is egter weinig literatuur beskikbaar oor die oligomerisasië van alkene in die teenwoordigheid van hierdie katalisator, en geen intensiewe ondersoek is al gedoen om die effek van verskeie reaksie kondisies op die reaksie en die eienskappe van die produk te bepaal nie.

In Soliede draer is in hierdie studie ontwikkel waarop die chroom impregneer is en in hierdie vorm vir aktiwiteit in die oligomerisasië van spesifiek 1-hekseen getoets kon word. Deaktivering van die katalisator het egter vinniger plaasgevind as wat verwag was, en 'n moontlike verklaring hiervoor is gevind by wyse van verskeie karakteriseringsstegnieke. Die aktiewe chroom punte het deaktiveer weens die vorming van onaktiewe Cr₃O₅.

Beide 'n 'een-faktor-op-'n-tyd" en 'n statistiese optimisorings benadering is gevolg om was te stel wat die effek is van verskeie reaksie kondisies op die oligomerisasië reaksie. Die statistiese benadering was uniek in die sin dat dit nog nie voorheen toegepas is op die CrO₃/SiO₂ gekataliseerde oligomerisasië reaksie nie. Een van die mees interessante verskynsels wat waargeneem is was die effek van 'n toename in die reaksie temperatuur op die produk eienskappe. Hoe temperature lei tot die vorming van 'n oligomeer produk met 'n geel klour. 'n Verklaring vir hierdie verskynsel kon nie met sekerheid verkry word nie, alhoewel 'n hoë konsentrasie olefine in die oligomeer waargeneem is in die hoë temperatuur produk.

Die teenwoordigheid van 'n groot hoeveelheid 1-hekseen isomeriese oligomeer produkte is waargeneem weens 'n groot mate van isomerisasië wat plaasvind na afdop van die oligomerisasië reaksie. Die Ziegler-Natta kop-aan-stert mekanisme is idetifiseer as die oorheersende mekanisme tydens die Cr/SiO₂ gekataliseerde
oligomerisasië van 1-hekseen.

Pogings is aangewend om die gebruik van zeolite vir die oligomerisasië van 1-hekseen te toets. Die zeolite was nie geskik vir die oligomerisasië reaksie nie weens 'n baie hoge selektiwiteit vir dimer vorming. Die katalisatore het ook kort siklus tye gehad. Zeolite was ook gevoelig vir die teenwoordigheid van oksigenate in die reagens voer en was deaktiveer deur die teenwoordigheid van lang oligomeerkettings in die poriën.
Acknowledgements

I would like to express my gratitude to the following people and institutions who made the production of this thesis possible:

God, my Creator, who inspired me and gave me the wisdom and courage to complete this journey of knowledge.

My supervisor, Prof. N.J. Coville, for his dedication and interest. His help was crucial in making this study a success.

My line manager at SASOL, Dr. R. de Haan, whose enthusiasm for the project helped me through. His advice and interest was a great help and inspiration to me.

SASOL, in particular the management of SASTECH R & D, for allowing me to submit the results of my research as a thesis. Not only their financial help, but also the time they allowed me to spend on this project is greatly appreciated. I also wish to thank SASOL for the opportunity they gave me to gain experience in the field of zeolite chemistry in the Netherlands.

Mr. K. Visagie, my friend and co-worker at ACR, for his interest and advice on the project and his enthusiasm when new and interesting results were discovered. Dr. M. Jansen van Vuuren also for his help and encouragement.

The personnel from BCR, in particular Ms. B. Breedt, Ms. V. Bezuidenhout and Ms. R Visagie for their effort with the catalyst characterisation and for making their Rotavap and ovens available whenever they were needed for my catalyst preparations.

Dr. M. Vosloo for her help with the statistical design. Her advice and interest helped me
develop a better understanding of such an experimental approach.

Mr. P. Gravett and Mr. P. Morgan from SASOL OIL R & D for the use of their viscosity apparatus and for their help with the characterisation of the oligomer product.

The ladies from Instrumental Techniques, Ms. M. Kirk, Ms. L. Tincul, Ms. V. Hrestak and Ms. M. le Roux for their analytical help. In particular Ms. V. Hrestack who helped a great deal by obtaining the GC spectra of the oligomer products. The help and advice of Drs. N. Prinsloo and I. Laubscher is also appreciated. Dr. H. Retief and Mr. D. Bryssinck from Instrumental Techniques for their XRD, SEM and UV determinations.

The ladies and gent from the SASTECH Research Library, Ms. S van Vuuren, Ms. S. Roux, Ms. H. Coetzee and Mr. J. Labuschagne, who were always willing to help with any requests that I had.

Ms. A. Ranwell from Product Beneficiation who offered assistance on the shortpath distillation equipment.

The driver, Mr. S. Mthubi, who fetched fresh 1-hexene from Secunda every three weeks.

The ACR process controllers for continiously monitoring the reactors 24 hours a day and for solving technical problems.

My friends and colleagues in the catalysis research group. Each one of them has provided me with assistance of some kind during the course of this investigation.

My mother Heidi, and my brother, Rubin, both from Pietermaritzburg, for their interest. Their daily phone calls were a great encouragement.

My husband, Kobus, for his interest, his love and his encouragement. His help around
the house and with the printing of this thesis helped a great deal. Our baby son, Liam, whose friendly smiles gave me the courage not to give up.
CHAPTER 1

The oligomerisation of 1-alkenes to high viscosity oils

1.1. INTRODUCTION p.1

1.2. MOTIVATION FOR THIS STUDY p.2

1.3. OVERVIEW p.3
CHAPTER 2

Literature review on oligomerisation and polymerisation reactions in the presence of \(\text{CrO}_3/\text{SiO}_2 \)

2.1. INTRODUCTION p.6

2.2. GENERAL p.7

2.2.1. Polymerisation and oligomerisation in general p.7

2.2.2. Types of polymerisation reactions p.9

2.3. METAL CATALYSED OLIGOMERISATION/POLYMERISATION p.9

2.3.1. General p.9

2.3.2. Heterogeneous 1-alkene oligomerisation catalysed by a \(\text{CrO}_3/\text{SiO}_2 \) catalyst p.10

2.3.3. Oligomerisation and polymerisation in the presence of \(\text{CrO}_3/\text{SiO}_2 \) p.15

2.3.3.1. Oxidation state of chromium in the \(\text{Cr}/\text{SiO}_2 \) catalyst p.15

2.3.3.2. Initiation, propagation and termination p.20

i). Chain initiation p.20

ii). Chain propagation p.21

iii). Termination p.25

2.3.4. Factors that affect the oligomerisation/polymerisation activity of the \(\text{CrO}_3/\text{SiO}_2 \) catalyst p.26

2.3.4.1. The support p.27

2.3.4.2. Impregnation and drying p.31

Contents
2.3.4.3. The chromium oxide loading p.32
2.3.4.4. Calcination p.35
2.3.4.5. The calcination temperature p.37
2.3.4.6. Time of calcination p.39
2.3.4.7. Reduction to the active state p.39
2.3.4.8. The reducing agent p.42
2.3.4.9. The reduction temperature p.44
2.3.4.10. The influence of the reduction time p.45
2.3.4.11. Regeneration of the spent catalyst p.45
2.3.4.12. The oligomerisation/polymerisation temperature p.47
2.3.4.13. The addition of modifiers or co-catalysts to the Cr/SiO₂ catalyst p.47
 i). Fluoride p.47
 ii). Aluminium p.48
 iii). Titanium p.48
 iv). Metal alkyls p.49
 v). Tri-alkyl borane compounds as co-catalysts p.49
2.3.4.14. Addition of hydrogen to the reactant gas p.50
2.3.4.15. Oligomerisation/polymerisation pressure p.50
2.3.4.16. Nature of the monomer p.50

2.4. POISONING OF THE Cr/SiO₂ CATALYST p.61
2.4.1. Carbon monoxide p.51
2.4.2. Hydrocarbon monomer p.51
2.4.3. Polymer/oligomer product p.51
2.4.4. Oxygen p.51
2.4.5. Water p.52
2.4.6. Others p.52

Contents
CHAPTER 3

Molecular sieves and their properties

3.1. INTRODUCTION p.56

3.2. MOLECULAR SIEVES IN GENERAL p.56

3.2.1. Characteristics p.56
3.2.2. Preparation of molecular sieves p.57
3.2.3. Special properties of zeolites p.58
3.2.4. Characterisation of zeolites p.60

3.3. CHARACTERISTICS OF SPECIFIC ZEOLITES USED IN THIS STUDY p.62

3.3.1. Zeolite X and Y (Faujasite) p.62
3.3.2. ZSM-5 p.63
3.3.3. MCM-41 p.64

3.4. APPLICATIONS OF ZEOLITES p.67

3.4.1. General p.67
3.4.2. Oligomerisation in the presence of zeolites p.68
CHAPTER 4

Experimental procedure

4.1. INTRODUCTION p.73

4.2. PREPARATION AND TESTING OF Cr/SiO$_2$ AND ZEOLITIC CATALYSTS p.73

4.2.1. Chemicals and silica supports p.73
4.2.2. Gases p.75
4.2.3. Preparation methods p.76
4.2.3.1. Catalyst preparation p.76
4.2.3.2. Preparation of an extruded silica support p.77
4.2.3.3. Zeolite preparation p.79
4.2.4 Catalyst activation p.80
4.2.5. Catalyst testing p.83
4.2.6. Regeneration of the catalyst p.86

4.3. CHARACTERISATION OF THE Oligomerisation catalysts and ZEOLITES p.86

4.4. CHARACTERISATION OF THE FEED p.88

4.4.1. Determination of oxygenates in the feed p.88
4.4.2. Specification analysis p.90
4.4.3. Hydrocarbon distribution p.91
4.4.4. Solubility of water in 1-hexene p.93

4.5. Oligomer CHARACTERISATION p.94
CHAPTER 5

Preliminary studies on the CrO₃/SiO₂ catalyst

5.1. INTRODUCTION

5.2. EXPERIMENTAL

5.3. RESULTS AND DISCUSSION

5.3.1. Testing of the catalysts
5.3.2. Characterisation of the active oligomerisation catalysts:

Catalysts 8 and 12

i) XPS Analysis of catalyst 8

ii) XRD and SEM measurements of unreacted catalysts 8 and 12

iii) TPR profile of unreacted catalysts 8 and 12

iv) Infra-red (IR) analysis of catalysts 8 and 12

v) DTG and DSC determinations of catalysts 8 and 12

vi) Temperature Programmed Desorption (TPD) of catalyst 12

5.3.3. Catalyst deactivation

5.3.3.1. Surface area and pore volume determinations

5.3.3.2. Extraction of oligomeric product from the catalyst surface

5.3.3.3. Differential Thermogravimetric Analysis (DTG)
CHAPTER 6

Effect of reaction conditions on the oligomerisation of 1-hexene in the presence of CrO₃/SiO₂

6.1. INTRODUCTION

6.2. EXPERIMENTAL

6.3. RESULTS AND DISCUSSION

6.3.1. Effect of the number of catalyst regenerations on the oligomerisation reaction and oligomer products

6.3.1.1. Conversion as a function of the number of regenerations

6.3.1.2. Carbon number distribution in the product as a function of the number of catalyst regenerations
6.3.1.3. **Viscosity of the product as a function of the number of catalyst regenerations**

6.3.2. **Effect of the reaction temperature on the oligomerisation reaction**

6.3.2.1. **Conversion of 1-hexene to oligomer product**

6.3.2.2. **Carbon number distribution**

6.3.2.3. **Viscosity and viscosity index of the oligomer product**

6.3.2.4. **Probability of chain growth**

6.3.2.5. **Colour and other characteristics of the oligomer product**

i). **Colour of the product**

ii). **HPLC analysis**

iii). **NMR analyses**

iv). **Bromine number determination**

v). **Infra-red spectroscopy**

vi). **Acid number**

vii). **Copper corrosion**

viii). **Conradson carbon residue**

ix). **Pour point**

6.3.3. **Effect of chromium loading on the oligomerisation reaction**

6.3.4. **Effect of using H₂ as reducing agent**

6.3.5. **Effect of H₂ during the reaction**

6.3.6. **Effect of the presence of oxygen and oxygen-containing compounds on the reaction**

6.3.6.1. **Effect of oxygenates (acetone)**

6.3.6.2. **Effect of water**

6.3.6.3. **Effect of air**

6.3.6.4. **Commercial 1-hexene as feed**

6.3.7. **Effect of a variation in the reduction temperature**

Contents
6.3.8. Effect of activation (calcination and reduction) conditions
6.3.9. Effect of pressure on the reaction
6.3.10. Effect of a variation in the LHSV on the viscosity of the product

6.4. CONCLUSION

CHAPTER 7

Statistical optimisation experiments

7.1. INTRODUCTION

7.1.1. Statistical design experiments
7.1.1.1. General factorial designs and designs at two levels
7.1.1.2. Response surface methods

7.2. EXPERIMENTAL

7.2.1. Statistical optimisation of the reduction conditions for the activation of a CrO$_3$/SiO$_2$ catalyst for 1-hexene oligomerisation
7.2.2. Statistical optimisation of the reaction conditions in the oligomerisation of 1-hexene by the CrO$_3$/SiO$_2$ catalyst

7.3. RESULTS AND DISCUSSION

7.3.1. Activation conditions
7.3.1.1. Conversion as a function of time
7.3.1.2. Activity as a function of time p.193
7.3.1.3. C_{18} selectivity p.194
7.3.1.4. Other response surface plots p.195
7.3.1.5. Viscosity index p.199
7.3.2. Attempts to generate a model for the activation results obtained p.200
7.3.2.1. Conversion as a function of time p.200
7.3.3. Optimisation of the oligomerisation conditions p.205

7.4. CONCLUSION p.206

7.4.1. Optimisation of the reduction conditions p.208
7.4.1.1. Reduction temperature p.208
7.4.1.2. Reduction time p.209
7.4.2. Optimisation of the oligomerisation conditions p.211
7.4.2.1. Oligomerisation temperature p.211
7.4.2.2. Pressure p.213
7.4.2.3. LHSV p.214

7.5. SUMMARY p.214

CHAPTER 8
Oligomerisation mechanism: Theoretical evaluation of the product slate

8.1. INTRODUCTION p.218
8.2. Proposed structures of the hexene dimer and trimer fractions p.219

8.2.1. Dimer p.219
8.2.2. Trimer p.221

8.3. Previous literature studies on the structure determinations of the oligomer product formed from 1-hexene p.222

8.4. Structural analyses p.224

8.4.1. GC-MS analyses p.225
8.4.2. NMR spectroscopy p.236

8.4.2.1. 1H spectrum (Figure 8.11) p.237
i). Nature of the R groups p.240
ii). Olefinic substituents p.240
iii). CH_2 and CH_3 ratio p.241

8.4.2.2. 13C NMR spectrum (Figure 8.12) p.242
i). Methyl and methylene CH_2, 13C spectrum p.246
ii). Olefinic 13C spectrum p.246

8.4.2.3. DEPT spectra p.247

8.4.3. Effect of reaction temperature on the NMR spectra of the products p.250

8.4.3.1. GC-MS spectra p.250
8.4.3.2. 1H spectra p.253
i). Clear product (88°C) p.253
ii). Yellow product (124°C) p.254

8.4.3.3. 13C NMR spectra p.256
CHAPTER 9

Oligomerisation with other α-olefins

9.1. INTRODUCTION p.259

9.1.1. General p.259

9.2. EXPERIMENTAL p.259

9.2.1. Industrial C₅ p.259
9.2.2. Industrial C₅/C₆ feed p.261
9.2.3. C₅/C₆ mixture mixed from industrial C₅ and C₆ p.262
9.2.4. Commercial C₁₀ p.262
9.2.5. Industrial C₁₀ cut p.263

9.3. RESULTS AND DISCUSSION p.263

9.3.1. Industrial C₅ p.263
9.3.2. Industrial C₅/C₆ feed p.266
9.3.3. C₅/C₆ mixture mixed from industrial C₅ and C₆ products p.273
9.3.4. Commercial C₁₀ p.277
9.3.5. Industrial C₁₀ cut p.280

9.4. CONCLUSION p.282
CHAPTER 10

Oligomerisation with molecular sieve catalysts

10.1. INTRODUCTION p.285

10.2. EXPERIMENTAL p.286

10.2.1. Preparation of the zeolites p.286
10.2.2. Characterisation of the prepared zeolites p.287
10.2.3. Characterisation of the solid acid catalyst p.288
10.2.4. Pre-treatment and testing of the catalysts p.288
10.2.4.1. H-Y p.288
10.2.4.2. H-ZSM-5 p.288
10.2.4.3. H-MCM-41 p.289
10.2.4.4. Solid acid catalyst p.289
10.2.4.5. 1.1 % Cr on H-MCM-41 p.289
10.2.4.6. 0.21 % Ni on H-ZSM-5 p.290
10.2.4.7. 1.3 % Cr on H-ZSM-5 p.290
10.2.4.8. 1.1 % Cr on H-Y p.290

10.3. RESULTS AND DISCUSSION p.291

10.3.1. Characterisation of the molecular sieves p.291
10.3.1.1. Zeolite H-Y (Sample 4) p.291
i) Elemental analysis (AAS) p.291
ii) Adsorption studies p.292
iii) BET surface Area p.292
iv) Ammonia TPD p.292
10.3.1.2. H-ZSM-5 p.293
Elemental analysis (AAS) p.293
iv). Adsorption studies p.293
vii). BET surface Area p.293
vii). Ammonia TPD p.294

10.3.1.3. H-MCM-41 p.294
i). Elemental analysis (AAS) p.294
ii). Adsorption studies p.295
iii). BET surface Area p.295
iv). Ammonia TPD p.296

10.3.1.4. Solid acid catalyst p.296
i). BET surface area p.296
ii). Catalyst composition p.296
iii). Ammonia TPD p.297

10.3.2. Oligomerisation of 1-hexene catalysed by molecular sieves p.297
10.3.2.1. Zeolite H-Y p.297
10.3.2.2. H-ZSM-5 p.299
10.3.2.3. H-MCM-41 p.303
10.3.2.4. Solid acid catalyst p.304
10.3.2.5. Comparison between H-Y, H-ZSM-5, H-MCM-41 and the solid acid catalyst p.306
10.3.2.6. 1.1 % Cr on H-MCM-41 p.309
10.3.2.7. 0.21 % Ni on H-ZSM-5 p.313
10.3.2.8. 1.3 % Cr on H-ZSM-5 p.315
10.3.2.9. 1.1 % Cr on H-Y p.316
10.3.2.10. Comparison between the catalysts 1.1 % Cr/H-MCM-41, 1.3 % Cr/H-ZSM-5, 1.1 % Cr/H-Y and 0.21 % Ni/H-ZSM-5 p.318

10.4. CONCLUSION p.318
List of Figures

Chapter 2

Figure 2.1: Orbital overlap between the metal d_{xy} orbital and the alkyl σ bonding orbital p.23

Figure 2.2: Polymer yield as a function of time with various supports (Dalla Lana et al., 1993) p.28

Figure 2.3: Cr^{6+} saturation coverage as a function of the chromium loading (McDaniel, 1982 c) p.34

Figure 2.4: Cr^{6+}/OH concentration as a function of the activation temperature (McDaniel, 1982 c) p.37

Figure 2.5: Formation of different catalyst species during catalyst preparation (Groeneveld et al., 1979) p.42

Figure 2.6: Product yield as a function of the number of regenerations (Pelrine & Wu, 1991) p.46

Chapter 3

Figure 3.1: Illustration of the 26-hedral cavities of the faujasite structure (Barrer, 1968; Wallau & Schuchardt, 1995) p.62

Figure 3.2: Crystallisation field diagram for the Na_2O-SiO_2-Al_2O_3-H_2O system (Breck, 1974) p.63
Chapter 4

Figure 4.1: Reactor used for performing the oligomerisation reaction

Figure 4.2: Temperature profile over the reactor when loaded with 24 grit carborundum

Figure 4.3: Cross-sectional view of the reactor system as seen from above

Figure 4.4: Reaction setup used for testing the oligomerisation reaction

Figure 4.5: Reactions involved in the determination of alcohols in the feed

Figure 4.6: Solubility of water in 1-hexene at various temperatures

Chapter 5

Figure 5.1: Activity and effectiveness of catalyst 12 for each of the 4 cycles listed in Table 5.4

Figure 5.2: Conversion as a function of time for the results obtained in cycle 3 (Table 5.4)
Figure 5.3: XPS spectrum of fresh catalyst 8
Figure 5.4: H_2 TPR of fresh catalyst 8
Figure 5.5: H_2 TPR of fresh catalyst 12
Figure 5.6: IR spectrum of unreacted catalyst 8
Figure 5.7: DRIFTS spectrum of fresh catalyst 12
Figure 5.8: TPD spectrum of fresh catalyst 12
Figure 5.9: XPS spectrum of spent catalyst 8
Figure 5.10: IR spectrum of spent catalyst 8
Figure 5.11: DRIFTS spectrum of spent catalyst 12 after CO adsorption
Figure 5.12: TPR spectrum of $\text{Cr}_2\text{O}_3/\text{SiO}_2$

Chapter 6

Figure 6.1: Conversion of 1-hexene to oligomer product as a function of the number of regenerations
Figure 6.2: Effect of reaction temperature on the conversion of 1-hexene to oligomer products as a function of time in the third cycle of each run
Figure 6.3: Carbon number distribution of the oligomer as a function of various reaction times in cycle 3
Figure 6.4: Effect of reaction temperature on the carbon number distribution of the oligomer product in each of the 4 oligomerisation cycles (Samples taken at point of maximum catalyst activity in each cycle)

List of Figures