The copyright of the above-mentioned described thesis rests with the author or the University to which it was submitted. No portion of the text derived from it may be published without the prior written consent of the author or University (as may be appropriate). *Short quotations may be included in the text of a thesis* or dissertation for purposes of illustration, comment or criticism, provided full acknowledgment is made of the source, author and University.
THE EFFECT OF BLASTING ON THE ROCKMASS FOR DESIGNING THE MOST EFFECTIVE PRECONDITIONING BLASTS IN DEEP-LEVEL GOLD MINES

Ali Zafer Toper

A thesis submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy.

Johannesburg, June 2003
DECLARATION

I declare that this thesis is produced mainly from the results obtained from a research project funded by Safety in Mines Research Advisory Committee (SIMRAC) and that some parts of it (e.g. measurements, analysis, interpretations, etc.) were provided by other members of the research team of CSIR Division of Mining Technology (see Acknowledgements section).

It is being submitted for the Degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg.

This thesis has not been submitted before for any degree or examination in any other University but some parts of it were published in some local and international journals and presented at various seminars and conferences.

[Signature]

Ali Zafer Toprak

23rd day of JUNE

(year) 2003
ABSTRACT

According to the accident database compiled by CSIR Division of Mining Technology (Miningttek), a significant percentage of fatalities have resulted from faceburst incidents throughout the South African gold mining industry. In order to address this problem, an extensive research programme has been undertaken.

Two different preconditioning techniques have been developed; namely, face-perpendicular preconditioning and face-parallel preconditioning. Both have prevented face bursting in the areas to which they have been applied, even though several large seismic events have occurred close to the faces in some areas. In addition, minimal overall damage was observed in the preconditioned panels following these events, compared to similarly exposed unpreconditioned panels. Preconditioning has also provided some protection from distant events to the face area, through the capacity of the preconditioned ground to absorb energy.

Although the main purpose of preconditioning was to prevent facebursts, an improvement in hangingwall stability and a significant increase in the face advance rate, consistent with improved fragmentation, have been noted in preconditioned areas. During preconditioning, the average face advance rate increased significantly compared with unpreconditioned periods. Owing to this increase in face advance rate, the mining cost per area mined decreased in preconditioned panels. The effect of preconditioning on improving the drilling rate of production holes was also significant. The preconditioning experiments also indicated that it was possible to implement this method in a deep-level longwall mining environment without significant disruption to the mining cycle. Guidelines for both preconditioning techniques have been compiled.

In order to determine the optimum blast parameters for achieving the most effective preconditioning, an extensive optimisation study was carried out for the face-perpendicular preconditioning technique. While optimum values for parameters such as hole length, diameter and spacing were determined, it was ultimately concluded that the differences in results obtained by varying the
preconditioning parameters were less significant than the clear positive differences observed when comparing preconditioned areas with non-preconditioned areas.

In order to assure successful implementation of the techniques in the mining environment, a structured implementation procedure has been developed from experience gained at research sites. This procedure consists of education and training of all levels of the production personnel as well as the personnel of the training and safety departments of the mine.
In memory of all mine workers who lost their life as a result of rockburst accidents.
ACKNOWLEDGEMENTS

I would like to gratefully acknowledge that the work reported in this thesis was made possible by funding provided by Safety in Mines Research Advisory Committee (SIMRAC) and forms part of the rockburst control research programme carried out by the CSIR / MIningtek.

I wish to acknowledge the contribution of other members of the project team, namely: N. Lightfoot, D. H. Kullmann, R. D. Stewart, M. Grodner, A. L. Janse van Rensburg and the late P. J. Longmore of CSIR / MIningtek, D. J. Adams of SIMPROSS, and P. Brenchley of Anglogold, who provided me with the results of monitoring and measurements, data analysis, and invaluable insights used in this thesis. I would like to thank N. Lightfoot and D. H. Kullmann, for providing me with their contribution on the mechanism of preconditioning and the results obtained from face-parallel preconditioning experiments; R. D. Stewart, for all seismic data analysis; and M. Grodner, for all fracture mapping and hangingwall profiling studies.

The work has enjoyed the cooperation and support of the South African gold mining industry, and in particular that of Driefontein Consolidated, Mponeng (ex-Western Deep Levels South Mine) and Blyvooruitzicht gold mines where the main research sites were situated. I would like to thank the management of all three mines for their cooperation in allowing the field sites to operate on their mines. In addition, I would like to express my gratitude to the rock engineering departments and production personnel on these mines who gave valuable assistance during the course of the field experiments. Without the help of the people on the mines none of this work would have been possible.

I would like to thank Dr. J. A. L. Napier and Dr. M. K. C. Roberts of CSIR / MIningtek and Prof. T. R. Stacey of the University of Witwatersrand for reviewing this thesis and providing me with several useful comments and many helpful suggestions.
I also would like to thank Prof. R. G. Gürtunca and Dr. D. F. Malan of CSIR / Miningtek for encouraging me to finish this thesis.

Finally, I would like to thank my wife Şengül and my daughter Ezgi for their enthusiastic support and understanding during the writing of this thesis.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>6</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>8</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>13</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>23</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research problem
1.2 Rockburst control research programme
1.3 Objectives of this study
1.4 Outline of the content of the thesis

2 LITERATURE REVIEW

2.1 Introduction
2.2 Historical development
2.3 Early research initiatives
2.4 Rockbursts
2.4.1 Description and types of rockbursts
2.4.2 Control of rockbursts
2.5 Destressing / preconditioning
2.5.1 The principle and objectives
2.5.2 Field Trials
2.6 Summary
3 THE EFFECTS OF PRECONDITIONING BLASTS IN CONFINED ROCK

3.1 Introduction
3.2 Objectives
3.3 Test programme
3.3.1 Test site
3.3.2 Instrumentation and monitoring
3.4 Blast monitoring
3.4.1 Introduction
3.4.2 Instrumentation
3.4.3 Results of blast monitoring
3.5 Ground Penetrating Radar (GPR) investigations
3.6 Production blasts and fracture mapping
3.7 Studies on rock samples
3.7.1 Rock Quality Designation (RQD)
3.7.2 Rock testing
3.8 Stress determination studies
3.9 Numerical modelling
3.10 Summary

4 FACE-PARALLEL PRECONDITIONING

4.1 Introduction
4.2 Summary of findings from test site
4.2.1 Site description
4.2.2 Preconditioning layout
4.2.3 Instrumentation and monitoring programme
4.2.4 Summary of preconditioning activity
4.2.5 Analysis of preconditioning blasts
4.2.6 Quantitative analysis of the effects of preconditioning
4.3 Guidelines for face-parallel preconditioning
4.3.1 Introduction
4.3.2 Drilling of preconditioning holes
4.3.3 Charging of preconditioning holes 154
4.3.4 Stemming 155
4.3.5 Dealing with misfires 157
4.3.6 Assessing the effectiveness of preconditioning blasts 158
4.3.7 Blast optimisation 158
4.4 Summary 159

5 FACE-PERPENDICULAR PRECONDITIONING 161
5.1 Introduction 161
5.2 Test site 161
5.2.1 Preconditioning layout 163
5.2.2 Instrumentation and monitoring programme 168
5.3 Qualitative analysis of the effects of preconditioning 174
5.3.1 Ground conditions 174
5.3.2 Rockburst damage 176
5.3.3 Workers’ perceptions 179
5.4 Quantitative analysis of the effects of preconditioning 181
5.4.1 Seismic activity 182
5.4.2 Convergence measurements 187
5.4.3 Fracturing in the stope hangingwall 193
5.4.4 Hangingwall profiles 203
5.4.5 Stress determination 204
5.4.6 Fragmentation 207
5.4.7 Ground Penetrating Radar 209
5.4.8 Safety records 210
5.4.9 Production 212
5.4.10 Cost analysis 214
5.5 Optimisation of the technique 218
5.5.1 Seismic activity 218
5.5.2 Rockmass fracturing 227
5.5.3 Hangingwall profiles 230
5.5.4 Ground Penetrating Radar surveys 230
5.5.5 Convergence measurements 234
5.5.6 Production 235
5.6 Preconditioning in high-stopping-width areas 238
6.6.1 Summary of findings 239
5.7 Guidelines for face-perpendicular preconditioning 246
5.7.1 Introduction 246
5.7.2 Drilling of preconditioning holes 247
5.7.3 Charging of preconditioning holes 251
5.7.4 Stemming 252
5.7.5 Handling of misfires and sockets 254
5.8 Summary 254

6 THE MECHANISM OF PRECONDITIONING 258
6.1 Introduction 258
6.2 Preconditioning mechanism 259
6.2.1 Numerical modelling of the mechanics of preconditioning 259
6.2.2 Influence of stress waves and gas pressurisation 262
6.2.3 Rockmass response to preconditioning 267
6.2.4 The effect of preconditioning on stress-wave transmission through discontinuous rock 272
6.2.5 Postulated preconditioning mechanism 273
6.3 Summary 277

7 IMPLEMENTATION OF PRECONDITIONING 279
7.1 Introduction 279
7.2 Implementation experiments 280
7.3 Key issues in implementation 290
7.4 A structured implementation procedure 298
7.4.1 Preliminary evaluation 298
7.4.2 Planning of the implementation programme 298
7.4.3 Education and training seminars and workshops 299
7.4.4 Risk assessment 301
7.4.5 On-the-job training
7.4.6 Follow-up and assessment of the results
7.5 Summary

8 DISCUSSION AND CONCLUSIONS
8.1 Effects of preconditioning blasts in confined rock
8.2 Preconditioning techniques
8.3 Preconditioning mechanism
8.4 Safety and productivity
8.5 Optimisation of preconditioning
8.6 Implementation of preconditioning
8.7 Assessment of the effects of preconditioning

9 RECOMMENDED FUTURE RESEARCH

APPENDIX A: CRITERIA BY WHICH PRECONDITIONING BLASTS WERE JUDGED

APPENDIX B: SUMMARY INFORMATION FOR EACH PRECONDITIONING BLAST

APPENDIX C: EDUCATION AND TRAINING MODULE

APPENDIX D: AN EXAMPLE OF RISK ASSESSMENT ON PRECONDITIONING

REFERENCES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.4.1</td>
<td>Scaled section of the blastholes from each test</td>
<td>70</td>
</tr>
<tr>
<td>Figure 3.4.2</td>
<td>Schematics of the tunnel faces, showing the relative positions of the blasthole, accelerometer and doorstopper holes</td>
<td>71</td>
</tr>
<tr>
<td>Figure 3.4.3</td>
<td>Schematic section through an instrument hole, showing the installation technique for accelerometers</td>
<td>72</td>
</tr>
<tr>
<td>Figure 3.4.4</td>
<td>Peak accelerations vs. distance from blasthole</td>
<td>76</td>
</tr>
<tr>
<td>Figure 3.4.5</td>
<td>Peak velocities vs. distance from blasthole</td>
<td>77</td>
</tr>
<tr>
<td>Figure 3.4.6</td>
<td>The detonation velocities measured during the 1st, 2nd and 3rd test blasts</td>
<td>80</td>
</tr>
<tr>
<td>Figure 3.6.1</td>
<td>Ground Penetrating Radar scans before (left) and after (right) the third test blast</td>
<td>82</td>
</tr>
<tr>
<td>Figure 3.6.2</td>
<td>Schematic view of induced fracturing by test blasts (not to scale)</td>
<td>84</td>
</tr>
<tr>
<td>Figure 3.7.1</td>
<td>Rock Quality Designation (RQD) and average core sample lengths, before (BB) and after (AB) the second test blast</td>
<td>86</td>
</tr>
<tr>
<td>Figure 3.7.2</td>
<td>Rock Quality Designation (RQD) and average core sample lengths, before (BB) and after (AB) the third test blast</td>
<td>86</td>
</tr>
<tr>
<td>Figure 3.8.1</td>
<td>Principal stresses calculated from strain gauge measurements (1.5 m away from blasthole), Test blast 1</td>
<td>89</td>
</tr>
<tr>
<td>Figure 3.8.2</td>
<td>Principal stresses calculated from strain gauge measurements (1.5 m away from blasthole), Test blast 2</td>
<td>89</td>
</tr>
<tr>
<td>Figure 3.8.3</td>
<td>Principal stresses calculated from strain gauge measurements (2 m away from blasthole), Test blast 2</td>
<td>89</td>
</tr>
<tr>
<td>Figure 3.8.4</td>
<td>Principal stresses calculated from strain gauge measurements (1 m away from blasthole), Test blast 3</td>
<td>90</td>
</tr>
<tr>
<td>Figure 3.8.5</td>
<td>Principal stresses calculated from strain gauge measurements (1.5 m away from blasthole), Test blast 3</td>
<td>90</td>
</tr>
<tr>
<td>Figure 3.8.6</td>
<td>Principal stresses calculated from strain gauge measurements (2 m away from blasthole), Test blast 3</td>
<td>90</td>
</tr>
</tbody>
</table>
Figure 3.8.7 Principal stresses calculated from strain gauge measurements at varying distances away from blasthole, Test blast 3

Figure 3.8.8 Principal stresses calculated from strain gauge measurements at 5 m depth (1 m away from blasthole), Test blast 4

Figure 3.8.9 Principal stresses calculated from strain gauge measurements at 4 m depth (1.5 m away from blasthole), Test blast 4

Figure 3.8.10 Principal stresses calculated from strain gauge measurements at 5 m depth (1.5 m away from blasthole), Test blast 4

Figure 3.8.11 Principal stresses calculated from strain gauge measurements at 6 m depth (1.5 m away from blasthole), Test blast 4

Figure 3.8.12 Principal stresses calculated from strain gauge measurements at 5 m depth (2 m away from blasthole), Test blast 4

Figure 3.8.13 Principal stresses calculated from strain gauge measurements at various distances from blasthole, Test blast 4

Figure 3.8.14 Principal stresses calculated from strain gauge measurements at various depths (1.5 m away from blasthole), Test blast 4

Figure 3.8.15 Orientation of principal stresses before and after test blasts 1 & 2

Figure 3.8.16 Orientation of principal stresses before and after test blast 3

Figure 3.8.17 Orientation of principal stresses before and after test blast 4

Figure 3.8.18 Orientation of principal stresses before and after test blast 4

Figure 3.9.1 Plot of stress vectors (Model 1: no bedding plane, blast pressure = 500 MPa)

Figure 3.9.2 Plot of displacement vectors (Model 1: no bedding plane, blast pressure = 500 MPa)

Figure 3.9.3 Plot of major principal stress contours (Model 1: no bedding plane, blast pressure = 500 MPa)
Figure 3.9.4 Plot of minor principal stress contours (Model 1: no bedding plane, blast pressure = 500 MPa)

Figure 3.9.5 Plot of stress vectors (Model 2: bedding planes: 0°, blast pressure = 500 MPa)

Figure 3.9.6 Plot of displacement vectors (Model 2: bedding planes: 0°, blast pressure = 500 MPa)

Figure 3.9.7 Plot of major principal stress contours (Model 2: bedding planes: 0°, blast pressure = 500 MPa)

Figure 3.9.8 Plot of minor principal stress contours (Model 2: bedding planes: 0°, blast pressure = 500 MPa)

Figure 3.9.9 Plot of stress vectors (Model 3: bedding planes: 30°, blast pressure = 500 MPa)

Figure 3.9.10 Plot of displacement vectors (Model 3: bedding planes: 30°, blast pressure = 500 MPa)

Figure 3.9.11 Plot of major principal stress contours (Model 3: bedding planes: 30°, blast pressure = 500 MPa)

Figure 3.9.12 Plot of minor principal stress contours (Model 3: bedding planes: 30°, blast pressure = 500 MPa)

Figure 3.9.13 Plot of stress vectors (Model 4: bedding planes: 30°, blast pressure = 1000 MPa)

Figure 3.9.14 Plot of displacement vectors (Model 4: bedding planes: 30°, blast pressure = 1000 MPa)

Figure 3.9.15 Plot of major principal stress contours (Model 4: bedding planes: 30°, blast pressure = 1000 MPa)

Figure 3.9.16 Plot of minor principal stress contours (Model 4: bedding planes: 30°, blast pressure = 1000 MPa)

Figure 3.9.17 Plot of stress vectors (Model 5: bedding planes: 60°, blast pressure = 500 MPa)

Figure 3.9.18 Plot of displacement vectors (Model 5: bedding planes: 60°, blast pressure = 500 MPa)

Figure 3.9.19 Plot of major principal stress contours (Model 5: bedding planes: 60°, blast pressure = 500 MPa)

Figure 3.9.20 Plot of minor principal stress contours (Model 5: bedding planes: 60°, blast pressure = 500 MPa)
Figure 3.9.21 Plot of stress vectors (Model 6: bedding planes: 90°, blast pressure = 500 MPa) 112
Figure 3.9.22 Plot of displacement vectors (Model 6: bedding planes: 90°, blast pressure = 500 MPa) 112
Figure 3.9.23 Plot of major principal stress contours (Model 6: bedding planes: 90°, blast pressure = 500 MPa) 113
Figure 3.9.24 Plot of major principal stress contours (Model 6: bedding planes: 90°, blast pressure = 500 MPa) 113
Figure 4.2.1 Plan of 17-24W stopa (test site) and layout of the microseismic network around the mining faces 118
Figure 4.2.2 Preconditioning layout at the test site (17-24W stopa) 120
Figure 4.2.3 Plan of the preconditioning test site, showing the geophone positions for the PSS network 120
Figure 4.2.4 Comparison of the recorded preconditioning blast event magnitudes with the amount of explosive used for each blast 125
Figure 4.2.5 Seismic data recorded during and following a preconditioning blast at the test site on 20 November 1992 126
Figure 4.2.6 Seismic data recorded during and following a preconditioning blast at the test site on 22 December 1993 127
Figure 4.2.7 Seismic data recorded during and following a preconditioning blast at the test site on 31 March 1993 128
Figure 4.2.8 Seismic data recorded during and following a preconditioning blast at the test site on 28 October 1994 129
Figure 4.2.9 Seismic data recorded during and following a preconditioning blast at the test site on 10 January 1995 130
Figure 4.2.10 Seismic data recorded during and following the preconditioning blasts at the test site on 11 April and 15 April 1994 132
Figure 4.2.11 The stopa face appearance after a preconditioning blast 137
Figure 4.2.12 Three-dimensional surface plots of the stopa face for (a) before and (b) after a preconditioning blast 138
Figure 4.2.13 A contoured plot of the difference in measurements before and after a preconditioning blast 139
Figure 4.2.14 Schematic view of fracture groups (not to scale) 140
Figure 4.2.15 (a) Sketch plan showing the orientation of the various fracture groups in relation to the 17-24W pillar, (b) Plot of seismic events (blue circles) recorded after a preconditioning blast (red star)

Figure 4.2.16 Plot of the straight ray apparent velocity measured between common shot and receiver hole numbers, showing the velocity variation from east to west (after Maxwell and Young, 1995)

Figure 4.2.17 Straight ray velocity image produced from the seismic tomography survey (after Maxwell and Young, 1995)

Figure 4.2.18 Plan of the locations of the larger seismic events recorded prior to seismic tomography experiment

Figure 4.2.19 Time section along line A-B of Figure 4.2.18

Figure 4.2.20 Velocity image of Figure 4.2.17 reconstructed through curved ray tracing (after Carneiro, 1995)

Figure 4.2.21 Straight ray tomographic image of the velocity change following the preconditioning blast (after Maxwell and Young, 1995)

Figure 4.2.22 Plan of the seismicity (filled circles) recorded after the preconditioning blast (filled star)

Figure 4.3.1 Face-parallel preconditioning layout in an overhand mining sequence (not to scale)

Figure 4.3.2 Effects of positioning a large (~89 mm diameter) preconditioning hole at varying distances ahead of the stope face

Figure 4.3.3 (a) Use of second hole, parallel to main hole, to precondition stemmed area. (b) Use of additional holes, perpendicular to panel face, to precondition stemmed area

Figure 5.2.1 Test site (87-49W slope), showing different phases of mining

Figure 5.2.2 Ground Penetrating Radar scans before and after the last blast

Figure 5.2.3 Layout of face-perpendicular preconditioning holes, showing radius of influence of each hole (r = 1.5 m) and the recommended spacing between holes (i.e. 3 m)
Figure 5.2.4 Section of stope face showing the preconditioning hole prior to blasting

Figure 5.2.5 Preconditioning as an integral part of ordinary fuse and igniter cord tie-up system

Figure 5.2.6 Plan of a portion of the Mponeng gold mine, showing the positions of the 84-49W stability pillar and of the 87-49W stope, which is the preconditioning experiment site

Figure 5.2.7 Plan of the preconditioning site, showing the layout of the PSS network monitoring the experiment. The triaxial geophone positions are indicated by squares labelled 'OS11' to 'OS55'.

Figure 5.2.8 Plan of a portion of Mponeng gold mine, showing the updated configuration of the preconditioning site seismic network

Figure 5.2.9 The relative positions of all convergence stations installed at the project site

Figure 5.3.1 The improvement in hangingwall conditions brought about by the introduction of preconditioning

Figure 5.3.2 A comparison of hangingwall conditions in unpreconditioned and preconditioned portion of a panel

Figure 5.3.3 Improved face and hangingwall conditions in a preconditioned panel

Figure 5.3.4 Schematic plan of West 2 diagonal panel where a rockburst resulted in extensive damage and five injuries (not to scale)

Figure 5.3.5 Seismic events of M>1 recorded from the test site between 26/08/96 and 20/10/96

Figure 5.4.1 Plan of the seismicity recorded from the preconditioning test site during 1995 (seismic events of magnitude M ≥0 are shown)

Figure 5.4.2 Plan of preconditioning site, showing mining faces

Figure 5.4.3 Measurements from convergence station A

Figure 5.4.4 Measurements from convergence station B

Figure 5.4.5 Measurements from convergence station C

Figure 5.4.6 Measurements from convergence station D

Figure 5.4.7 Positions of convergence stations
Figure 5.4.8 Plot of convergence measurements, showing the effect of seismicity on total convergence rate and comparison of elastic and inelastic components of total convergence

Figure 5.4.9 Average convergence rates of all (51) stations at the preconditioning test site

Figure 5.4.10 Schematic view of fracture groups (not to scale)

Figure 5.4.11 Summary of orientation data of fractures mapped prior to and after the initiation of preconditioning (after Grodner, 1997)

Figure 5.4.12 Pie charts of orientations of fractures prior to and after preconditioning (after Grodner, 1997)

Figure 5.4.13 Orientation of face-parallel fractures in diagonal and up-dip panels

Figure 5.4.14 Graph showing relative abundance of the various fracture groups in normal and preconditioned areas

Figure 5.4.15 Variation in profile length and gradient between preconditioning holes

Figure 5.4.16 Solid inclusion cell designed to measure strain changes in fractured rock

Figure 5.4.17 Calibration of solid inclusion cell at the test laboratory

Figure 5.4.18 The measured strains of the three strain gauges in the B90 rosette (on a plane parallel to face)

Figure 5.4.19 Stress profile ahead of an advancing face as obtained from strain measurements taken underground

Figure 5.4.20 The averaged projected areas (size) of fragments from preconditioned and unpreconditioned panels

Figure 5.4.21 The fragment size distribution in preconditioned and unpreconditioned panels

Figure 5.4.22 Ground Penetrating Radar scan of an unpreconditioned panel face and a preconditioned panel face, showing the density of open fractures

Figure 5.4.23 Ground Penetrating Radar scan of a preconditioned panel face, showing the depth of the reactivated fracture zone

Figure 5.5.1 Seismic data recorded from 26/08/96 to 20/10/96 by Portable Seismic System
Figure 5.5.2 Plan of the test site, showing three actively mined up-dip panels

Figure 5.5.3 Seismic data recorded between 26/08/96 and 20/10/96 from the test site by PSS

Figure 5.5.4 Frequency-magnitude distribution of seismic data recorded from the test site between 26/08/96 and 20/10/96 by PSS

Figure 5.5.5 Cumulative number of seismic events recorded from the test by PSS

Figure 5.5.6 Diurnal distribution of seismic data recorded from the test stope between 26/08/96 and 20/10/96 by PSS

Figure 5.5.7 Plan of the test stope showing the seismogenic regions

Figure 5.5.8 Plan of test site stope showing seismic activity recorded during four phases of the preconditioning optimisation study

Figure 5.5.9 Seismic events of M>1 recorded from the test site between 26/08/96 and 20/10/96 by PSS

Figure 5.5.10 Diurnal distribution of seismic data recorded from the test stope W3 panel between 26/08/96 and 20/10/96 by PSS

Figure 5.5.11 Schmidt-nal (lower hemisphere projection) of poles to all fractures mapped during the optimisation phase

Figure 5.5.12 Rose diagrams showing orientation of fractures mapped during the optimisation phase

Figure 5.5.13 Gradient and profile lengths measured during the optimisation phase

Figure 5.5.14 Ground Penetrating Radar scan, showing ineffective preconditioning when the spacing is greater than 4 m

Figure 5.5.15 Ground Penetrating Radar scan, showing the zone of influence of preconditioning holes

Figure 5.5.16 Convergence measurements in the test panel during optimisation work

Figure 5.5.17 Actual drill times spent per crew to drill 32 production and three preconditioning holes

Figure 5.8.1 An example of overhanging hangingwall conditions where the preconditioning hole was drilled at a distance greater than 1 m below the contact between the reef and hangingwall
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 5.6.2</td>
<td>An example of overhanging hangingwall conditions where the preconditioning hole was drilled at a distance greater than 1 m below the contact between the reef and hangingwall</td>
</tr>
<tr>
<td>Figure 5.6.3</td>
<td>Examples of improved hangingwall conditions where the preconditioning hole was drilled at about 60 cm below the contact between the reef and hangingwall</td>
</tr>
<tr>
<td>Figure 5.6.4</td>
<td>Decay of the seismicity with time, following the preconditioning blasts</td>
</tr>
<tr>
<td>Figure 5.6.5</td>
<td>Cumulative number of events as a function of time</td>
</tr>
<tr>
<td>Figure 5.6.6</td>
<td>Spatial migrations of the seismic events ahead of the face</td>
</tr>
<tr>
<td>Figure 5.7.1</td>
<td>Diagrams showing the face-perpendicular preconditioning layout for a three-day cycle</td>
</tr>
<tr>
<td>Figure 5.7.2</td>
<td>Face-perpendicular preconditioning layout for various mining layouts</td>
</tr>
<tr>
<td>Figure 5.7.3</td>
<td>Cross-section ahead of the stope face, illustrating the relative positions of the production and preconditioning holes</td>
</tr>
<tr>
<td>Figure 5.7.4</td>
<td>Hand-held percussion drill machine</td>
</tr>
<tr>
<td>Figure 5.7.5</td>
<td>Examples of the recommended tie-up configuration of (a) fuse and igniter cord or electric (b) Nonel for integrating the blasting of preconditioning and production holes</td>
</tr>
<tr>
<td>Figure 6.2.1</td>
<td>The mesh used for the “preconditioning” analyses (after Kullmann et al., 1995)</td>
</tr>
<tr>
<td>Figure 6.2.2</td>
<td>Maximum principal stress contours in an unaltered discontinuum model (after Kullmann et al., 1995)</td>
</tr>
<tr>
<td>Figure 6.2.3</td>
<td>Contours of maximum principal stress after applying a pore pressure in the fracture zone immediately ahead of the face (after Kullmann et al., 1995)</td>
</tr>
<tr>
<td>Figure 6.2.4</td>
<td>Contours of maximum principal stress after applying a pore pressure to the confined rock well ahead of the stope face (after Kullmann et al., 1995)</td>
</tr>
<tr>
<td>Figure 6.2.5</td>
<td>Comparison of total fracture length derived from a model with actual recorded seismicity subsequent to blasting (after Malan and Spottiswoode, 1997)</td>
</tr>
<tr>
<td>Figure 6.2.6</td>
<td>Comparison of modelled to actual convergence profiles</td>
</tr>
</tbody>
</table>
Figure 6.2.7 Typical time-dependent convergence data measured with an instrument that records in a continuous fashion (after Malan, 1998) 270
Figure 6.2.8 Relationship between continuous (solid line) and daily (dotted line) convergence measurements (after Malan, 1998) 271
Figure 6.2.9 Stress redistribution brought about by preconditioning 274
Figure 7.2.1 Implementation site (Case example 5) 284
Figure 7.2.2 Implementation site (Case example 6) 286
Figure 7.2.3 Implementation site (Case example 8) 287
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.2.1</td>
<td>Statistics of rock-related accidents and resulting fatalities in South African gold mines from 1990 to 1997 (both incl.)</td>
<td>27</td>
</tr>
<tr>
<td>Table 3.4.1</td>
<td>Detail of blast parameters</td>
<td>69</td>
</tr>
<tr>
<td>Table 3.4.2</td>
<td>The peak accelerations obtained from the test blasts</td>
<td>75</td>
</tr>
<tr>
<td>Table 3.4.3</td>
<td>The detonation velocities measured during the first test blast</td>
<td>78</td>
</tr>
<tr>
<td>Table 3.4.4</td>
<td>The detonation velocities measured during the second test blast</td>
<td>78</td>
</tr>
<tr>
<td>Table 3.4.5</td>
<td>The detonation velocities measured during the third test blast</td>
<td>79</td>
</tr>
<tr>
<td>Table 3.7.1</td>
<td>Mechanical properties of intact rock before and after the test blasts</td>
<td>87</td>
</tr>
<tr>
<td>Table 3.9.1</td>
<td>Parameters used for DIGS models</td>
<td>100</td>
</tr>
<tr>
<td>Table 4.2.1</td>
<td>Summary of preconditioning blast ratings per panel</td>
<td>123</td>
</tr>
<tr>
<td>Table 4.2.2</td>
<td>Occurrence of large ($M \geq 1.0$) seismic events of the preconditioning site</td>
<td>133</td>
</tr>
<tr>
<td>Table 4.2.3</td>
<td>Occurrence of large ($M \geq 1.0$) seismic events in association with preconditioning and production activity</td>
<td>134</td>
</tr>
<tr>
<td>Table 4.2.4</td>
<td>Average induced daily convergence as a result of production and preconditioning blasting</td>
<td>135</td>
</tr>
<tr>
<td>Table 4.2.5</td>
<td>Summary of the various fracture groups</td>
<td>139</td>
</tr>
<tr>
<td>Table 5.4.1</td>
<td>Comparison of seismic data recorded by two adjacent PSS networks on WDL South Mine</td>
<td>184</td>
</tr>
<tr>
<td>Table 5.4.2</td>
<td>Summary of seismic data recorded before and after the initiation of preconditioning panel 'E' of the test site</td>
<td>186</td>
</tr>
<tr>
<td>Table 5.4.3</td>
<td>Summary of characteristics of major fracture types at preconditioning test site (after Grodner, 1997)</td>
<td>196</td>
</tr>
<tr>
<td>Table 5.4.4</td>
<td>Summary of the characteristics of the various fracture groups</td>
<td>200</td>
</tr>
<tr>
<td>Table 5.4.5</td>
<td>Hole shapes in preconditioned and unpreconditioned panels</td>
<td>209</td>
</tr>
<tr>
<td>Table 5.4.6</td>
<td>Safety record for the test site after the start of the preconditioning in May 1995</td>
<td>212</td>
</tr>
<tr>
<td>Table 5.4.7</td>
<td>Average cost for timber-supported slopes (stores and labour)</td>
<td>215</td>
</tr>
<tr>
<td>Table 5.4.8</td>
<td>Normalised cost to drill and blast one 3.0 m preconditioning hole</td>
<td>216</td>
</tr>
<tr>
<td>Table 5.4.9</td>
<td>Total cost of preconditioning for one production blast</td>
<td>216</td>
</tr>
<tr>
<td>Table 5.4.10</td>
<td>Comparison of the cost of preconditioning to normal stoping costs</td>
<td>217</td>
</tr>
<tr>
<td>Table 5.4.11</td>
<td>Comparison of total costs per m² with and without preconditioning</td>
<td>217</td>
</tr>
<tr>
<td>Table 5.5.1</td>
<td>Summary of seismic data recorded during preconditioning optimisation study</td>
<td>226</td>
</tr>
<tr>
<td>Table 5.5.2</td>
<td>Comparison of face advance rates in preconditioned and preconditioned adjacent panels in the test stope</td>
<td>236</td>
</tr>
<tr>
<td>Table 5.5.3</td>
<td>Comparison of drilling rates of preconditioning holes</td>
<td>237</td>
</tr>
<tr>
<td>Table 5.5.4</td>
<td>Comparison of drilling rates of production holes for adjacent preconditioned and unpreconditioned panels</td>
<td>237</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

South Africa is one of the largest gold producers in the world. The South African gold ore is found in a geological setting called "The Witwatersrand Basin" and consists of extensive, narrow, tabular deposits generally called reefs. Extensive mining has occurred at shallower depths over the last 100 years and today much of the mining occurs at great depth. The mining of reefs at depths in excess of 2000 m induces extremely high stresses on the rockmass in the vicinity of any excavation. In stopes, in particular, such high stresses induced by mining increase the strain energy stored in the rockmass and result in a state of unstable equilibrium. The release of excessive energy in the rockmass can be in the form of the extending of the fracture zone ahead of the stope face and/or the displacement of pre-existing discontinuities either violently or non-violently. The violent release of accumulated strain energy can be described as a seismic event that may result in a rockburst, depending on the magnitude, the distance between the source and the excavation and existing ground conditions around that excavation. If a seismic event results in a rockburst, it can cause extensive damage to underground workings, and varying degrees of injuries and even fatalities.

Although a number of solutions have been suggested by various investigators in the past and some of them have been successfully implemented, the rockburst problem still poses a serious and ongoing hazard to the gold mining industry in South Africa.

1.1 Research problem

The violent release of accumulated strain energy can be in the form of ejection of mining faces into the mine openings at a very high velocity and this phenomenon is called a faceburst.

Data from a rock-related fatal accident database that was compiled by CSIR / Miningtek shows that a total of 216 rock-related fatalities resulted from 134
faceburst incidents throughout the South African gold mining industry during the period 1990 - 1997 (see Table 1.2.1). This figure represents more than 27 percent of the total of 793 rockburst fatalities recorded during this period. The rockburst fatalities are 44 percent of a total of 1808 rock-related fatalities over the same period. The author believes that facebursts comprise a much greater percentage of total rockbursts than this data would lead us to believe because many of the faceburst fatalities were more generally classified as rockburst fatalities. Thus, facebursting is a major concern for the South African gold mining industry. The most problematic reefs are the Ventersdorp Contact Reef (VCR), Carbon Leader (CL) and Composite reefs in which more than two-thirds of all faceburst fatalities occurred.

1.2 Rockburst control research programme

Since 1987, an extensive research project has been carried out by a group of researchers within the Chamber of Mines Research Organisation (COMRO) which, in 1993, became the Division of Mining Technology (known as Miningtek) of the Council for Scientific and Industrial Research (CSIR). The philosophy adopted by researchers working on this project accepts that rockbursts can neither be predicted nor prevented with current knowledge and technology, but may be controlled. Thus, the main objective of the research programme was to develop rockburst control methods to enable mines to operate in areas which are at most risk from seismicity and the resulting rockbursts. In other words, the intention was to control the time and size of seismic events that could result in rockbursts, as well as to minimise the potential damage resulting from such events.

Preconditioning, also called “destress blasting”, is a rockburst control technique that involves setting off designed blasting ahead of the stope face. In this way, preconditioning is intended to transfer the stresses further away from the stope face through remobilising the existing fractures in the rockmass.
Table 1.2.1 Statistics of rock-related accidents and resulting fatalities in South African gold mines from 1990 to 1997 (both incl.)

<table>
<thead>
<tr>
<th>Accident Type</th>
<th>Reef Type</th>
<th>Incidence Number</th>
<th>Incidence per 10^6 m²</th>
<th>Fatality Number</th>
<th>Fatality per 10^6 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock-related</td>
<td>Basal</td>
<td>193</td>
<td>7.26</td>
<td>214</td>
<td>8.05</td>
</tr>
<tr>
<td></td>
<td>Carbon Leader</td>
<td>159</td>
<td>20.24</td>
<td>245</td>
<td>31.19</td>
</tr>
<tr>
<td></td>
<td>Composite</td>
<td>15</td>
<td>8.09</td>
<td>20</td>
<td>10.78</td>
</tr>
<tr>
<td></td>
<td>Main</td>
<td>56</td>
<td>10.30</td>
<td>66</td>
<td>12.14</td>
</tr>
<tr>
<td></td>
<td>Vaal Reef</td>
<td>192</td>
<td>8.63</td>
<td>225</td>
<td>10.11</td>
</tr>
<tr>
<td></td>
<td>VCR</td>
<td>297</td>
<td>15.58</td>
<td>374</td>
<td>19.52</td>
</tr>
<tr>
<td></td>
<td>Other reefs*</td>
<td>152</td>
<td>3.88</td>
<td>328</td>
<td>8.37</td>
</tr>
<tr>
<td></td>
<td>Off-reef**</td>
<td>160</td>
<td>-</td>
<td>336</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total / Avg.**</td>
<td>1224</td>
<td>8.70</td>
<td>1608</td>
<td>12.04</td>
</tr>
<tr>
<td>Rockburst</td>
<td>Basal</td>
<td>25</td>
<td>0.94</td>
<td>48</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td>Carbon Leader</td>
<td>109</td>
<td>13.88</td>
<td>202</td>
<td>25.72</td>
</tr>
<tr>
<td></td>
<td>Composite</td>
<td>12</td>
<td>6.47</td>
<td>17</td>
<td>9.17</td>
</tr>
<tr>
<td></td>
<td>Main</td>
<td>16</td>
<td>2.94</td>
<td>19</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Vaal Reef</td>
<td>45</td>
<td>2.02</td>
<td>85</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td>VCR</td>
<td>157</td>
<td>8.24</td>
<td>242</td>
<td>12.70</td>
</tr>
<tr>
<td></td>
<td>Other reefs*</td>
<td>42</td>
<td>1.07</td>
<td>64</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>Off-reef**</td>
<td>56</td>
<td>-</td>
<td>116</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total / Avg.**</td>
<td>462</td>
<td>3.32</td>
<td>793</td>
<td>5.54</td>
</tr>
<tr>
<td>Faceburst</td>
<td>Basal</td>
<td>4</td>
<td>0.15</td>
<td>10</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>Carbon Leader</td>
<td>27</td>
<td>3.44</td>
<td>52</td>
<td>6.62</td>
</tr>
<tr>
<td></td>
<td>Composite</td>
<td>7</td>
<td>3.77</td>
<td>11</td>
<td>5.93</td>
</tr>
<tr>
<td></td>
<td>Main</td>
<td>4</td>
<td>0.74</td>
<td>4</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>Vaal Reef</td>
<td>13</td>
<td>0.59</td>
<td>19</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>VCR</td>
<td>53</td>
<td>2.78</td>
<td>82</td>
<td>4.30</td>
</tr>
<tr>
<td></td>
<td>Other reefs</td>
<td>12</td>
<td>0.31</td>
<td>21</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>Off-reef**</td>
<td>14</td>
<td>-</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total / Avg.**</td>
<td>134</td>
<td>0.98</td>
<td>216</td>
<td>1.62</td>
</tr>
</tbody>
</table>

* Other reefs category also contains unspecified reefs.

** Off-reef values are included in total but excluded in average calculations.
Preconditioning techniques have been used in different mining environments around the world since the 1950s and, in many cases, have been found to be very effective in controlling and minimising the effects of rockbursts. The main idea behind these techniques is to detonate a preconditioning blast ahead of a mining face to re-distribute the stress peak further into the solid region ahead of the stope face by eliminating the strain energy “lock-ups” in the asperities of pre-existing or mining-induced fracturing.

In order to quantify the success of preconditioning in highly stressed rock, a better knowledge of the effects of a blast in confined rock is required. An understanding of the genesis and sequence of blast-induced fracturing and the effect of blasting on pre-existing fracturing is crucial for the design of effective preconditioning methods, and for the assessment of the success of preconditioning blasts.

The design of preconditioning blasts involves making a decision on the charge mass, type, hole spacing and diameter, and the position of the charge in the rockmass, as well as the initiation of the charged holes. The quantification of the actual effects of preconditioning on rockmass requires a knowledge of the effect of explosives on rock. Dynamic computer codes can provide insights into the effect of explosives on rock under confined conditions, but very few physical measurements have been made of the effects of explosives under such conditions.

1.3 Objectives of this study

The ultimate objective of this work was to develop and implement preconditioning techniques to control facebursts for the achievement of safer mining in seismically hazardous areas. In order to achieve this main objective, the following goals were also set:

- an investigation of the actual effect of the explosives in the confined and highly stressed rock;
- an understanding of the faceburst and preconditioning mechanisms;
- proving the concept by actual preconditioning experiments at different sites;
- a quantification of the effects of the preconditioning blast on the local rockmass;
- verification of the effects of preconditioning blasts by numerical simulations;
- an optimisation of the preconditioning blasts by varying charge mass, type, hole spacing and diameter, position of the charge in the rock and the initiation sequence of the charges;
- the transfer of the knowledge and experience gained of preconditioning to the mining industry for implementation;
- the development of guidelines for the implementation of preconditioning techniques and determining the requirements for the successful implementation of preconditioning in the industry.

1.4 Outline of the content of the thesis

This thesis consists of 9 chapters. Following this introductory chapter, a summary of an extensive literature review is given in Chapter 2.

The author's initial involvement in the Rockburst Control Research Programme was at the research site established at West Driefontein Gold Mine, where the effects of controlled test blasts were investigated. The findings from these activities are given in Chapter 3. However, this research work had to be stopped after one year, as no funding was made available for continuing the research activities at this site.

The majority of knowledge and experience gained on preconditioning was from the site investigations carried out at the research sites established at Rhyndui and Mponeng Gold Mines. The results obtained from an extensive monitoring of actual preconditioning blasts in these sites are given in Chapters 4 and 5. While the author had very limited involvement in the investigations on the face-parallel preconditioning discussed in Chapter 4, he headed the research activities involving face-perpendicular preconditioning at Mponeng Gold Mine.