PART 2
Collection of Isoseismal Maps for South Africa

Mayshree Bejaichund¹ and Erna Hattingh
¹Council for Geoscience, South Africa
Private Bag X112, Pretoria, 0001, South Africa
E-mail: mayshree@geoscience.org.za

Published in Natural Hazards, 2009, Volume 50. Pages 403-408

Introduction

In this part a collection of isoseismal maps are presented. These maps date as far back as 1932 and capture the damage footprint of the largest earthquakes recorded by our early inhabitants. It is an essential dataset that will be used the characterise the earthquake hazard in subsequent parts of this work.

Background

Intensity measurements are based on the direct effects of the shock generated by an earthquake on man-made structures and topography. These are often referred to as macroseismic effects. The intensity is greatest within the epicentral area and usually decreases in all directions as distance from the epicentre increases.

Many seismic intensity scales have been developed. One of the most commonly used is the Modified Mercalli (MM) 12-degree intensity scale proposed by Wood and Neumann (1931) and developed further by Richter (1958). This scale provides a detailed description of the earthquake effects on people, buildings and the environment. The European Macroseismic Scale (EMS; Grunthal 1993), most recently updated in 1998, is the basis for evaluation of seismic intensity in European countries. The INQUA scale was
recently proposed (Michetti et al. 2004) with the aim to assess macroseismic intensity on the basis of only seismically induced ground effects.

In order to determine the intensities that prevailed at different places during an earthquake, questionnaires are distributed to the general public and site visits are made to investigate the epicentral region. When all the data on the effects of an earthquake have been accumulated and after these effects are expressed in intensities, the results are usually represented in the form of isoseismal maps with curves delineating areas with different intensities from each other.

Review of similar collections

The most complete catalogue of earthquake occurrences for South Africa up to 1949 is by Finsen (1950). This catalogue was supplemented with information on early tremors in the vicinity of Cape Town (Theron 1974). Several other works since then dealt with the seismic history of South Africa. A compilation of relevant works was made (Fernandez and Guzman 1976) where a macroseismic catalogue of earthquakes from 1620-1970 was provided. Other work on historical data available includes Fernandez and Guzman (1979), De Klerk and Read (1988) and Brandt et al. (2005). Specifically, for this compilation several isoseismal maps were obtained from the compilations of Krige and Maree (1948) and Fernandez and Labuschagne (1977). Since 1977, no such compilation exists. Isoseismal maps were available in isolated publications as listed in Table 1 below.

Use and potential of the map collection

The isoseismal maps are valuable complements to the instrumental record and are particularly useful in the field of earthquake engineering. South Africa has been identified as being in a stable continental environment. Hence, relatively large earthquakes occur fairly infrequently. With information from this collection one can then quickly identify those regions having experienced large ground motion historically. This ground motion is recorded as a
macroseismic effect and has thus a direct association with infrastructure damage that was experienced at the time of the earthquake. Furthermore the damage footprint is recorded in the isoseismal traces which can be very useful in modelling earthquake propagation in these regions. In addition, these maps can be used to identify targets for future palaeoseismic and neotectonic investigations. Possible improvements that will be made to this collection are the provision of a detailed catalogue of macroseismic observations from the original reports and corresponding seismograms, where available.

Compilation Procedure

When there was a large tremor, questionnaires were distributed to local towns to assess the severity of the tremor and the damage it caused. These questionnaires were then analysed, after which isoseismal maps were drawn. These isoseismal maps available in historical reports were revisited and digitised for this study. Five isoseismal maps were prepared by the authors for this study based on questionnaires alone. Most isoseismal maps in the historical record use the MM scale. All maps are therefore provided according to this scale.

Final Maps

Isoseismal maps listed in this collection date as far back as 1932. The most recent event included here is the event of 23 May 2005 that occurred in the mining district of Carletonville.

The characteristics of each event (figure ID, date, location, epicentral intensity and source) are given in Table 1 below. A map showing location of the epicentre of each event is given in Figure 1. Each isoseismal event is then illustrated in the accompanying appendix.
Figure 1 Map of epicentres showing maximum intensities for all events
<table>
<thead>
<tr>
<th>Figure ID</th>
<th>Date</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Maximum Intensity</th>
<th>Region</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>31-Dec-1932</td>
<td>-28.32</td>
<td>32.40</td>
<td>VIII</td>
<td>Off Cape St. Lucia, RSA</td>
<td>The Zululand Earthquake of 31 December 1932 (Krige and Venter 1933).</td>
</tr>
<tr>
<td>A2</td>
<td>12-Jan-1936</td>
<td>-26.57</td>
<td>31.57</td>
<td>VI</td>
<td>Mooihoek, Swaziland</td>
<td>The Swaziland and Fauresmith Earthquakes of January 1936 (Krige 1936)</td>
</tr>
<tr>
<td>A3</td>
<td>16-Jan-1936</td>
<td>-29.32</td>
<td>28.13</td>
<td>VII</td>
<td>Fauresmith, Free State</td>
<td>The Swaziland and Fauresmith Earthquakes of January 1936 (Krige 1936)</td>
</tr>
<tr>
<td>A4</td>
<td>10-Feb-1938</td>
<td>-27.60</td>
<td>31.35</td>
<td>VI</td>
<td>Zululand</td>
<td>Earthquakes in South Africa (Krige and Maree 1948)</td>
</tr>
<tr>
<td>A5</td>
<td>29-Feb-1940</td>
<td>-27.83</td>
<td>38.60</td>
<td>V</td>
<td>Harrismith</td>
<td>Earthquakes in South Africa (Krige and Maree 1948)</td>
</tr>
<tr>
<td>A6</td>
<td>19-May-1940</td>
<td>32.33</td>
<td>-24.33</td>
<td>VI</td>
<td>Mozambique</td>
<td>Earthquakes in South Africa (Krige and Maree, 1948)</td>
</tr>
<tr>
<td>A7</td>
<td>10-Nov-1940</td>
<td>-23.55</td>
<td>30.30</td>
<td>VI</td>
<td>Tzaneen</td>
<td>An intensity survey following the earthquake of 17 February 1980 in the South-Eastern Transvaal. (Fernandez 1980)</td>
</tr>
<tr>
<td>A8</td>
<td>23-Oct-1941</td>
<td>-30.78</td>
<td>17.53</td>
<td>V</td>
<td>Namaqualand</td>
<td>Earthquakes in South Africa (Krige and Maree 1948)</td>
</tr>
<tr>
<td>A9</td>
<td>1-Nov-1942</td>
<td>-31.07</td>
<td>30.13</td>
<td>VI</td>
<td>Port Shepstone</td>
<td>Earthquakes in South Africa (Krige and Maree 1948)</td>
</tr>
<tr>
<td>Figure ID</td>
<td>Date</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Maximum Intensity</td>
<td>Region</td>
<td>Source</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>A10</td>
<td>24-Nov-1943</td>
<td>-29.50</td>
<td>22.95</td>
<td>IV</td>
<td>Prieska</td>
<td>Earthquakes in South Africa (Krine and Maree 1948).</td>
</tr>
<tr>
<td>Figure ID</td>
<td>Date</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Maximum Intensity</td>
<td>Region</td>
<td>Source</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>A20</td>
<td>5-Oct-1986</td>
<td>-30.50</td>
<td>28.57</td>
<td>VI</td>
<td>Transkei</td>
<td>The Transkei Earthquake of 5 October 1986 (Graham and Fernandez 1987)</td>
</tr>
<tr>
<td>A22</td>
<td>31-Oct-1991</td>
<td>-33.33</td>
<td>19.28</td>
<td>VI</td>
<td>Ceres</td>
<td>Isoseismal map compiled for this study</td>
</tr>
<tr>
<td>A24</td>
<td>11-Mar-1993</td>
<td>-29.53</td>
<td>18.45</td>
<td>VI</td>
<td>Springbok</td>
<td>Isoseismal map compiled for this study</td>
</tr>
<tr>
<td>A25</td>
<td>9-Jan-1994</td>
<td>-29.48</td>
<td>30.42</td>
<td>VII</td>
<td>Howick</td>
<td>Isoseismal map compiled for this study</td>
</tr>
<tr>
<td>Figure ID</td>
<td>Date</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Maximum Intensity</td>
<td>Region</td>
<td>Source</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>A26</td>
<td>27-Jun-1994</td>
<td>-27.93</td>
<td>26.68</td>
<td>V</td>
<td>Welkom</td>
<td>Isoseismal map compiled for this study</td>
</tr>
<tr>
<td>A28</td>
<td>1-Nov-1994</td>
<td>-27.95</td>
<td>26.75</td>
<td>IV</td>
<td>Free State gold mines</td>
<td>Visit to the Welkom – Virginia area following the occurrence of the earthquakes of 30 October and 1 November 1994 (Saunders et. al. 1994).</td>
</tr>
<tr>
<td>A29</td>
<td>7-Feb-2000</td>
<td>-26.17</td>
<td>30.62</td>
<td>V</td>
<td>Lothair</td>
<td>Isoseismal map compiled for this study</td>
</tr>
</tbody>
</table>
References

Finsen WS (1950), The geological Distribution of some South African Earthquakes" Circular No. 110, Union Observatory, Johannesburg

Figure A1 Isoseismal map of earthquake of 31-Dec-1932

Source: Krige and Vorster, 1933
Figure A2 Isoseismal map of earthquake of 12-Jan-1936
Figure A3 Isoseismal map of earthquake of 16-Jan-1936
Figure A4 Isoseismal map of earthquake of 10-Feb-1938

Source: King and Matee, 1948
Figure A5 Isoseismal map of earthquake of 29-Feb-1940

Source: Krog and Muree, 1948
Figure A6 Isoseismal map of earthquake of 19-May-1940

Source: Kingsley Matese, 1948
Figure A8 Isoseismal map of earthquake of 23-Oct-1941
Figure A9 Isoseismal map of earthquake of 1-Nov-1942
Figure A10 Isoseismal map of earthquake of 24-Nov-1943

Isoseismal map of earthquake of 24 November 1943
Source: Ingel and Matee, 1948

Figure A10 Isoseismal map of earthquake of 24-Nov-1943
Figure A11 Isoseismal map of earthquake of 17-Sep-1944

Source: Kingsland Matee, 1948
Figure A12 Isoseismal map of earthquake of 12-Nov-1944
Figure A13 Isoseismal map of earthquake of 29-Sep-1969

Source: Keast, 1972
Figure A14 Isoseismal map of earthquake of 1-Jul-1976
Figure A15 Isoseismal map of earthquake of 8-Dec-1976

Isoseismal map of earthquake of 8 December 1976
Source: Fernández and Guzmán, 1977

Figure A15 Isoseismal map of earthquake of 8-Dec-1976
Figure A17 Isoseismal map of earthquake of 2-Mar-1977
Figure A19 Isoseismal map of earthquake of 17-Feb-1980

Isoseismal map of earthquake of 17 February 1980
Source: Fernández, 1980
Figure A20: Isoseismal map of earthquake of 5-Oct-1986
Figure A21 Isoseismal map of earthquake of 29-Sep-1989

Isoseismal map of earthquake of 29 September 1989

Source: Fernández et al., 1990
Figure A22 Isoseismal map of earthquake of 31-Oct-1991
Figure A23 Isoseismal map of earthquake of 7-Mar-1992
Figure A25 Isoseismal map of earthquake of 9-Jan-1994
Figure A26 Isoseismal map of earthquake of 27-Jun-1994
Figure A27 Isoseismal map of earthquake of 30-Oct-1994
Figure A28: Isoseismal map of earthquake of 1-Nov-1994

Source: Saunders et al., 1994
Figure A29 Isoseismal map of earthquake of 7-Feb-2000
Figure A30 Isoseismal map of earthquake of 6-Sep-2004
Figure A31 Isoseismal map of earthquake of 9-Mar-2005
Figure A32: Isoseismal map of earthquake of 23-May-2005
PART 2
Collection of Isoseismal Maps for South Africa

Mayshree Bejaichund1 and Erna Hattingh
1Council for Geoscience, South Africa
Private Bag X112, Pretoria, 0001, South Africa
E-mail: mayshree@geoscience.org.za

Published in Natural Hazards, 2009, Volume 50. Pages 403-408

Introduction

In this part a collection of isoseismal maps are presented. These maps date as far back as 1932 and capture the damage footprint of the largest earthquakes recorded by our early inhabitants. It is an essential dataset that will be used to characterise the earthquake hazard in subsequent parts of this work.

Background

Intensity measurements are based on the direct effects of the shock generated by an earthquake on man-made structures and topography. These are often referred to as macroseismic effects. The intensity is greatest within the epicentral area and usually decreases in all directions as distance from the epicentre increases.

Many seismic intensity scales have been developed. One of the most commonly used is the Modified Mercalli (MM) 12-degree intensity scale proposed by Wood and Neumann (1931) and developed further by Richter (1958). This scale provides a detailed description of the earthquake effects on people, buildings and the environment. The European Macroseismic Scale (EMS; Grunthal 1993), most recently updated in 1998, is the basis for evaluation of seismic intensity in European countries. The INQUA scale was
recently proposed (Michetti et al. 2004) with the aim to assess macroseismic intensity on the basis of only seismically induced ground effects.

In order to determine the intensities that prevailed at different places during an earthquake, questionnaires are distributed to the general public and site visits are made to investigate the epicentral region. When all the data on the effects of an earthquake have been accumulated and after these effects are expressed in intensities, the results are usually represented in the form of isoseismal maps with curves delineating areas with different intensities from each other.

Review of similar collections

The most complete catalogue of earthquake occurrences for South Africa up to 1949 is by Finsen (1950). This catalogue was supplemented with information on early tremors in the vicinity of Cape Town (Theron 1974). Several other works since then dealt with the seismic history of South Africa. A compilation of relevant works was made (Fernandez and Guzman 1976) where a macroseismic catalogue of earthquakes from 1620-1970 was provided. Other work on historical data available includes Fernandez and Guzman (1979), De Klerk and Read (1988) and Brandt et al. (2005). Specifically, for this compilation several isoseismal maps were obtained from the compilations of Krige and Maree (1948) and Fernandez and Labuschagne (1977). Since 1977, no such compilation exists. Isoseismal maps were available in isolated publications as listed in Table 1 below.

Use and potential of the map collection

The isoseismal maps are valuable complements to the instrumental record and are particularly useful in the field of earthquake engineering. South Africa has been identified as being in a stable continental environment. Hence, relatively large earthquakes occur fairly infrequently. With information from this collection one can then quickly identify those regions having experienced large ground motion historically. This ground motion is recorded as a
macroseismic effect and has thus a direct association with infrastructure damage that was experienced at the time of the earthquake. Furthermore the damage footprint is recorded in the isoseismal traces which can be very useful in modelling earthquake propagation in these regions. In addition, these maps can be used to identify targets for future palaeoseismic and neotectonic investigations. Possible improvements that will be made to this collection are the provision of a detailed catalogue of macroseismic observations from the original reports and corresponding seismograms, where available.

Compilation Procedure

When there was a large tremor, questionnaires were distributed to local towns to assess the severity of the tremor and the damage it caused. These questionnaires were then analysed, after which isoseismal maps were drawn. These isoseismal maps available in historical reports were revisited and digitised for this study. Five isoseismal maps were prepared by the authors for this study based on questionnaires alone. Most isoseismal maps in the historical record use the MM scale. All maps are therefore provided according to this scale.

Final Maps

Isoseismal maps listed in this collection date as far back as 1932. The most recent event included here is the event of 23 May 2005 that occurred in the mining district of Carletonville.

The characteristics of each event (figure ID, date, location, epicentral intensity and source) are given in Table 1 below. A map showing location of the epicentre of each event is given in Figure 1. Each isoseismal event is then illustrated in the accompanying appendix.
Figure 1 Map of epicentres showing maximum intensities for all events
<table>
<thead>
<tr>
<th>Figure ID</th>
<th>Date</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Maximum Intensity</th>
<th>Region</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>31-Dec-1932</td>
<td>-28.32</td>
<td>32.40</td>
<td>VIII</td>
<td>Off Cape St. Lucia, RSA</td>
<td>The Zululand Earthquake of 31 December 1932 (Krige and Venter 1933).</td>
</tr>
<tr>
<td>A2</td>
<td>12-Jan-1936</td>
<td>-26.57</td>
<td>31.57</td>
<td>VI</td>
<td>Mooihoek, Swaziland</td>
<td>The Swaziland and Fauresmith Earthquakes of January 1936 (Krige 1936)</td>
</tr>
<tr>
<td>A3</td>
<td>16-Jan-1936</td>
<td>-29.32</td>
<td>28.13</td>
<td>VII</td>
<td>Fauresmith, Free State</td>
<td>The Swaziland and Fauresmith Earthquakes of January 1936 (Krige 1936)</td>
</tr>
<tr>
<td>A4</td>
<td>10-Feb-1938</td>
<td>-27.60</td>
<td>31.35</td>
<td>VI</td>
<td>Zululand</td>
<td>Earthquakes in South Africa (Krige and Maree 1948)</td>
</tr>
<tr>
<td>A5</td>
<td>29-Feb-1940</td>
<td>-27.83</td>
<td>38.60</td>
<td>V</td>
<td>Harrismith</td>
<td>Earthquakes in South Africa (Krige and Maree 1948)</td>
</tr>
<tr>
<td>A6</td>
<td>19-May-1940</td>
<td>32.33</td>
<td>-24.33</td>
<td>VI</td>
<td>Mozambique</td>
<td>Earthquakes in South Africa (Krige and Maree, 1948)</td>
</tr>
<tr>
<td>A7</td>
<td>10-Nov-1940</td>
<td>-23.55</td>
<td>30.30</td>
<td>VI</td>
<td>Tzaneen</td>
<td>An intensity survey following the earthquake of 17 February 1980 in the South-Eastern Transvaal. (Fernandez 1980)</td>
</tr>
<tr>
<td>A8</td>
<td>23-Oct-1941</td>
<td>-30.78</td>
<td>17.53</td>
<td>V</td>
<td>Namaqualand</td>
<td>Earthquakes in South Africa (Krige and Maree 1948)</td>
</tr>
<tr>
<td>A9</td>
<td>1-Nov-1942</td>
<td>-31.07</td>
<td>30.13</td>
<td>VI</td>
<td>Port Shepstone</td>
<td>Earthquakes in South Africa (Krige and Maree 1948)</td>
</tr>
<tr>
<td>Figure ID</td>
<td>Date</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Maximum Intensity</td>
<td>Region</td>
<td>Source</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>A10</td>
<td>24-Nov-1943</td>
<td>-29.50</td>
<td>22.95</td>
<td>IV</td>
<td>Prieska</td>
<td>Earthquakes in South Africa (Krige and Maree 1948).</td>
</tr>
<tr>
<td>Figure ID</td>
<td>Date</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Maximum Intensity</td>
<td>Region</td>
<td>Source</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>A20</td>
<td>5-Oct-1986</td>
<td>-30.50</td>
<td>28.57</td>
<td>VI</td>
<td>Transkei</td>
<td>The Transkei Earthquake of 5 October 1986 (Graham and Fernandez 1987)</td>
</tr>
<tr>
<td>A22</td>
<td>31-Oct-1991</td>
<td>-33.33</td>
<td>19.28</td>
<td>VI</td>
<td>Ceres</td>
<td>Isoseismal map compiled for this study</td>
</tr>
<tr>
<td>A24</td>
<td>11-Mar-1993</td>
<td>-29.53</td>
<td>18.45</td>
<td>VI</td>
<td>Springbok</td>
<td>Isoseismal map compiled for this study</td>
</tr>
<tr>
<td>A25</td>
<td>9-Jan-1994</td>
<td>-29.48</td>
<td>30.42</td>
<td>VII</td>
<td>Howick</td>
<td>Isoseismal map compiled for this study</td>
</tr>
<tr>
<td>Figure ID</td>
<td>Date</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Maximum Intensity</td>
<td>Region</td>
<td>Source</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>A26</td>
<td>27-Jun-1994</td>
<td>-27.93</td>
<td>26.68</td>
<td>V</td>
<td>Welkom</td>
<td>Isoseismal map compiled for this study</td>
</tr>
<tr>
<td>A28</td>
<td>1-Nov-1994</td>
<td>-27.95</td>
<td>26.75</td>
<td>IV</td>
<td>Free State gold mines</td>
<td>Visit to the Welkom – Virginia area following the occurrence of the earthquakes of 30 October and 1 November 1994 (Saunders et. al. 1994).</td>
</tr>
<tr>
<td>A29</td>
<td>7-Feb-2000</td>
<td>-26.17</td>
<td>30.62</td>
<td>V</td>
<td>Lothair</td>
<td>Isoseismal map compiled for this study</td>
</tr>
</tbody>
</table>
References

Finsen WS (1950), The geological Distribution of some South African Earthquakes" Circular No. 110, Union Observatory, Johannesburg

Richter CF (1958) Elementary Seismology, Freeman W.H., San Francisco 768pp

Figure A1 Isoseismal map of earthquake of 31-Dec-1932
Figure A2 Isoseismal map of earthquake of 12-Jan-1936
Figure A4 Isoseismal map of earthquake of 10-Feb-1938
Figure A5 Isoseismal map of earthquake of 29-Feb-1940
Figure A6 Isoseismal map of earthquake of 19-May-1940

Isoseismal map of earthquake of 19 May 1940
Source: Kingsland & Moseley, 1948
Figure A7 Isoseismal map of earthquake of 10-Nov-1940

Source: Fernández, 1980
Figure A8 Isoseismal map of earthquake of 23-Oct-1941
Figure A9 Isoseismal map of earthquake of 1-Nov-1942

Source: King and Mathe, 1948
Figure A10 Isoseismal map of earthquake of 24-Nov-1943
Figure A11 Isoseismal map of earthquake of 17-Sep-1944
Figure A12 Isoseismal map of earthquake of 12-Nov-1944

Source: Krige and Maree, 1948
Figure A13 Isoseismal map of earthquake of 29-Sep-1969
Figure A14 Isoseismal map of earthquake of 1-Jul-1976
Figure A15 Isoseismal map of earthquake of 8-Dec-1976

Isoseismal map of earthquake of 8 December 1976
Source: Fernandez and Guzman, 1977
Figure A16 Isoseismal map of earthquake of 25-Jan-1977

Source: Fernández and Lebotsane, 1977
Figure A17 Isoseismal map of earthquake of 2-Mar-1977

Source: Fernández and Labuschagne, 1977
Figure A18 Isoseismal map of earthquake of 6-Jul-1979

Source: Labuschagne and Lopez-Casado, 1980
Figure A19 Isoseismal map of earthquake of 17-Feb-1980
Figure A20 Isoseismal map of earthquake of 5-Oct-1986

Source: Graham and Fernandez, 1987
Figure A21 Isoseismal map of earthquake of 29-Sep-1989

Source: Fernández et al., 1990
Figure A22 Isoseismal map of earthquake of 31-Oct-1991
Figure A23 Isoseismal map of earthquake of 7-Mar-1992

Source: Fernandez et al., 1992
Figure A24 Isoseismal map of earthquake of 11-Mar-1993
Figure A25 Isoseimal map of earthquake of 9-Jan-1994
Figure A26 Isoseismal map of earthquake of 27-Jun-1994
Figure A27 Isoseismal map of earthquake of 30-Oct-1994

Source: Saunders et al., 1994
Figure A28 Isoseismal map of earthquake of 1-Nov-1994

Source: Saunders et al., 1994
Figure A29 Isoseismal map of earthquake of 7-Feb-2000
Figure A30 Isoseismal map of earthquake of 6-Sep-2004

Source: Hattingh et al., 2005
Figure A32 Isoseismal map of earthquake of 23-May-2005

Source: Saunders and Molea, 2005