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PREFACE 

 

This work was initiated as one of the outputs of the “Minimising the rockburst 

risk” project (SIM050302) of the Mine Health and Safety Council. The work 

was motivated by an incident which occurred in a deep South African gold 

mine in October 2006 where an M=2.4 seismic event caused severe damage 

to a stope, fatally injuring several mine workers. Following the investigation of 

the event, it was noted that 25 minutes prior and close to the M=2.4 event a 

M=2.0 had occurred but caused no damage to the working places, 

consequently workers were not evacuated. It was suggested that the M=2.4 

event might have been triggered by the quasi-static redistribution of stress 

following the M=2.0 event. The need for better understanding of changes in 

hazard following larger seismic events was recognised, as well as the 

formulation of guidelines regarding the evacuation of workers and re-entry 

times into working areas. This study assesses the hazard by analysing mine 

tremor aftershocks that succeed the seismic event.  

 

During the course of the dissertation, the results obtained have been 

presented in local/international conferences and technical workshops such as 

the biannual South African Geophysical Association (SAGA) conference, 

Integrated Seismic Systems International (ISSI) conference, South African 

National Institute of Rock Engineering (SANIRE) conference, the Annual 

Africa Array workshop, the 3rd Annual Seismology workshop (Council for 
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Geoscience) and the General assembly of the International Association of 

Seismology and Physics of the Earth's Interior (IASPEI). 

 

The results presented in the dissertation have also been presented in the 

following papers; Kgarume, T., and Spottiswoode, S., Density and rate of 

mine aftershocks and the implications for Seismic Hazard Assessment, Africa 

Array workshop, Jul. 2008, Kgarume, T., and Spottiswoode, S., Analysis of 

aftershock decay rates of mine seismic events, South African Geophysical 

Association, Sep. 2007 and Kgarume, T. E., Spottiswoode, S.M., and 

Durrheim, R. J., Statistical Properties of Mine Tremor Aftershocks, Pure and 

Applied Geophysics, 167, 2010, pp. 107–117, Kgarume T. E., Spottiswoode 

S. M., and Durrheim, R. J., Deterministic Properties of mine tremor 

aftershocks, 5th International Seminar on Deep and High Stress Mining, 

Santiago Chile, October 2010 (In press). The author was also honoured with 

the best young presenter award at the 2009 SANIRE conference. 
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ABSTRACT 

 

A methodology of assessing the seismic hazard associated with aftershocks 

is developed by performing statistical and deterministic analysis of seismic 

data from two South African deep-level gold mines. A method employing 

stacking of aftershocks is employed due to the small number of aftershocks 

succeeding each mainshock. Mine tremor aftershocks were found to obey 

statistical relations governing aftershocks (Gutenberg-Richter frequency-

magnitude, Modified Omori law and the density law, with the exception of 

Båth’s law) as natural earthquake aftershocks do. This analysis was used to 

approximate the time periods when the seismic hazard due to aftershocks has 

decreased to background levels. These time periods can be used to draw 

guidelines governing the re-entry periods to working areas following a larger 

seismic event. Deterministic analysis revealed that aftershock productivity is 

not strongly influenced by mining conditions (i.e. local stresses, strain rates, 

and the proximity to geological features such as faults and dykes). 
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CHAPTER 1. INTRODUCTION 

 

Seismic events in mines pose a risk to underground personnel, may damage 

underground infrastructure and lead to loss of production. Seismology in 

mines is used to asses seismic hazard associated with deep level mining, and 

has proven over the years to be an important tool in understanding the 

mechanisms of these mining related events. Seismic hazard assessments in 

mines are carried out routinely, specifically to assess likelihood of a 

mainshock occurring. Although substantial work has been carried out in 

developing methodologies for these assessments, less focus has been placed 

in developing such methodologies for assessing any change in hazard 

following the mainshock. 

 

In this work focus is placed on developing a methodology for assessing the 

seismic hazard associated with aftershocks succeeding the initiating 

mainshock. The method is developed in two phases. The first phase assesses 

the hazard by considering the statistical properties of aftershocks. In the 

second phase, a deterministic approached is followed to assess the 

dependency of aftershocks on mining conditions. 
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1.1 Motivation for study 

 

The main objective of this project is to develop a methodology to assess the 

seismic hazard posed by aftershocks following larger seismic events             

(M ≥ 2.0). The study aims to identify distances and time periods, following the 

main events, where the hazard posed by aftershocks has decreased to 

background levels. In addition, the project will also study the physical 

processes governing the behaviour of mine tremor aftershocks. Two main 

approaches were used to assess the hazard:  

• Statistical data analysis, where statistical properties of aftershocks 

were studied by analyzing the properties of stacked aftershock data.  

• Deterministic data analysis, where the hazard was evaluated by 

considering aftershock behaviour (productivity changes) in different 

mining conditions (e.g. highly-stressed mining faces versus relatively 

unstressed mining faces).  

 

This work is unusual in that it estimates the seismic hazard posed by 

aftershocks, while most studies only consider the seismic hazard posed by 

main events. 
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1.2 Summary of dissertation  

 

Chapter 1 gives a general introduction to the dissertation and the motivation 

for the study. In chapter 2, a more detailed discussion of the seismic events 

encountered in the South African gold mines is given. The discussions include 

seismic monitoring in mines, seismic source mechanisms and rock strength 

and deformation. Section 2.5 is of particular relevance to this dissertation, as 

it discusses aftershock sequences, their triggering mechanisms and most 

importantly, their statistical properties. Sections 2.7 and 2.8 provide a brief 

review of the geology of the Witwatersrand basin and the Carletonville 

goldfields (source area of the datasets). 

 

Chapter 3 discusses the data, methodology and procedures employed in the 

analysis. The procedure utilised by the custom-written computer program, 

OMORI, and the method used to account for the influence of daily blasting on 

aftershocks are discussed. Chapter 4 to Chapter 9, which make up the body 

of the dissertation, describe the analysis. The statistical approach is described 

in Chapters 4 to 8, and the deterministic data analysis in Chapter 9. 

 

Chapters 4, 5 and 6 discuss, in more detail, the Gutenberg-Richter relation, 

Båth’s law and the Modified Omori law applied to mine tremor aftershocks. 

These chapters are essential particularly for the hazard assessment following 

the mainshock. Chapter 7 discusses aftershock density decay with distance 
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from the mainshock. The rate of aftershock decay is an indicator of the stress 

transfer mechanisms and is analysed in order to understand the triggering 

mechanism of mine tremor aftershocks. Chapter 8 discusses aftershock 

probability by combining all the statistical properties of aftershocks (with the 

exception of Båth’s law) into a rate equation that gives the probability of one 

or more aftershocks occurring in the magnitude range M1 ≤ M ≤ M2, time 

range t1 ≤ t ≤ t2 and distance range r1 ≤ r ≤ r2 from the mainshock of magnitude 

Mmain. Chapter 9 investigates the dependency of aftershock productivity on 

mining conditions in an attempt to understand the physical processes 

governing the aftershock generation processes. Conclusions and 

considerations for further research are given in Chapter 10, which concludes 

the dissertation. 
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CHAPTER 2. SEISMIC EVENTS IN SOUTH AFRICAN GOLD 

MINES 

 

2.1. Induced seismicity 

 

Seismicity in mines is a consequence of the rockmass response to stresses 

induced by mining, which result in elastic and inelastic deformations of the 

rock surrounding an excavation. A seismic event results from the sudden 

release of the accumulated elastic strain energy (Jager and Ryder, 1999,    

pg. 287) and is defined as a sudden inelastic deformation within a given 

volume of rock that radiates detectable seismic waves (Mendecki, 1997, pg. 

178). To indicate the triggering effect of human activity, this type of seismic 

activity is usually called induced seismicity (Gibowicz and Kijko, 1994, pg. 1) 

and it is also encountered in other engineering operations such as amongst 

others, the filling of reservoirs, surface quarrying and the  injection and 

removal of fluids (e.g. hydrocarbons) from the subsurface. 

 

Although a systematic difference between mine events and natural 

earthquakes has not been found (Gibowicz and Kijko, 1994, preface), their 

driving forces are different. Long-wavelength stresses associated with the 

relative motions of tectonic plates provide the driving forces for natural 

earthquakes, while mine events are primarily driven by the mining and occur 

in regions where stress changes due to mining are greatest (McGarr, 
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Spottiswoode and Gay, 1975). In terms of similarity, Spottiswoode and 

McGarr (1975) found that mine events and earthquakes are similar with 

regards to stress drop, the relationship between moment and magnitude, and 

the relationship between size and magnitude. Their occurrence appears to be 

controlled by rock strength and the change in the stress field from virgin state 

(McGarr, Spottiswoode and Gay, 1975). 

 

2.2. Seismic monitoring in mines 

 

Routine seismic monitoring was introduced in underground mines for two 

main reasons: Immediate location of seismic events for guidance in rescue 

operations, and prediction of large rock mass instability (Mendecki, 1997, 

preface). Detection and analysis of seismicity can also provide useful 

information for the planning and control of mining operations (Ryder and 

Jager, 2002, pg 193). 

 

Seismology has also proven to be an important tool in understanding the 

mechanisms of seismic events. Jager and Ryder (1999, pg. 24) summarised 

three conditions which should be met for the initiation of a seismic event: 

• A zone of overstressed rock must firstly exist in a state of unstable 

equilibrium, 

• A sufficient change in stress must occur in order to trigger the event, 

and 
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• The failing structure must undergo a significant and substantial rapid 

stress drop. 

 

2.3. Source mechanisms 

 

Two practical source mechanisms have been identified in mines, namely the 

crush-type and shear-type mechanisms (Figure 2.1). 

A B

 

Figure 2.1: Simplified events mechanisms encountered in mining 

environments (section views). 

(From Jager and Ryder, 1999, pg. 24) 

 

Crush-type events, which exhibit a high degree of volumetric closure, tend to 

locate close to reef and to mining faces, and account for many small 

magnitude events (ML < 2). Shear-type events, which account for most of the 

larger events (ML > 2), tend to occur on planes of weaknesses such as faults, 

joints and dykes contacts (Jager and Ryder, 1999, pg. 24). 
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Understanding of these mechanisms and conditions required for their initiation 

requires an understanding of factors governing rock behaviour, such as rock 

stresses, rock strength and friction properties. 

 

2.4. Rock strength and deformation 

 

The most used criterion of failure is the Coulomb failure criterion. The criterion 

assumes that failure in rock occurs along a plane in the rock due to the shear 

stress acting along that plane (Figure 2.2). 

 

Figure 2.2: Shear failure along a plane due to the applied stresses. 

(From Brady and Brown, 2004, pg. 105) 

 

A rock mass transected by a weak plane (joint, faults or a dyke) will undergo 

slip along the plane if the plane is subjected to sufficiently high levels of shear 

stresses. The amount of slip and the severity of the seismic event resulting 
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from such a slip are dependent on the shear-strength properties of the plane 

(Ryder and Jager, 2002, pg. 225). 

The Coulomb failure criterion is given by the equation; 

nc µστ +=
 

(2.1) 

where c is the cohesion, µ  is the coefficient of internal friction and nσ  is the 

normal stress acting along the plane. The sign of the shear stress indicates 

the slip direction after failure. In earthquake seismology, the criterion has 

been used to study the distribution of aftershocks around a mainshock (e.g. 

Stein, 1999, Ganas et. al., 2008) and earthquake-induced static stress 

triggering on neighbouring faults in the vicinity of the mainshock                             

(e.g. Pollitz et. al., 2002). 

 

Rock strength and deformation characteristics are usually determined from 

laboratory experiments performed on small rock samples under uniaxial 

(confining stress σ3=0) and triaxial conditions (confining stress σ3>0). The 

strength behaviour of a rock is described by the Mohr-Coulomb failure 

criterion. The criterion (equation 2.2) is represented by a linear relationship in 

the σ1: σ3 plane where σ1 and σ3 are the principal stresses acting on the 

sample. 

31 βσσσ += c  
(2.2) 

where σc is the Uniaxial Compressive Strength (UCS) and β is the 

strengthening parameter with 3 ≤ β ≤ 5 for stronger rock types (Jager and 
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Ryder 1999, pg.14). Figure 2.3 summarises the strength behaviour of a rock 

sample. 

 

Figure 2.3: Strength behaviour of a rock sample. 

(From Jager and Ryder, 1999, pg. 13). 

 

In practice, however, it is found that the strength characteristics of intact rock 

samples display a downward curvature and the strength of the in situ 

rockmass can be less than that of small intact samples (Figure 2.3). This is 

due to geological weaknesses that usually transect the rockmass. 

 

The empirical Hoek-Brown Criterion (equation 2.3) was introduced to cater for 

these effects that the Mohr-Coulomb criterion does not address. 

3
2

31 σσσσσ cc ms ++=  

(2.3) 
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where s (typically 0.01 ≤ s ≤ 0.6) characterises the rock mass condition and m 

(typically 0.05 ≤ m ≤ 5) characterises the curvature of the curve (Jager and 

Ryder 1999, pg.14). Estimates of s and m can be determined from rock mass 

classification surveys. Brady and Brown (2005) list three important 

parameters that describe the behaviour of rock: 

• Constants relating stresses and strains in the elastic range,  

• Stress levels at which yield, fracturing and slip occurs, and 

• Post-peak stress-strain behaviour of the fractured rock. 

 

The general behaviour of a rock sample as a function of applied stress and 

strain is illustrated in Figure 2.4. 

 

Figure 2.4: Stress-strain behaviour of a rock sample. 



12 

 

A rock specimen subjected to an applied stress F/A (F is the force and A is 

the area) will undergo elastic deformation until a yield stress is reached. 

Failure (which refers to the reduction of the specimen’s load carrying capacity 

due to crack initiation and growth) occurs when the stress exceeds the static 

peak strength resulting in slip initiation. At this point irreversible and 

permanent deformation continues and a further increase in applied stress 

brings the specimen to its peak strength (point B in figure 2.4). This additional 

stress needed to bring the specimen to its peak strength is termed the 

triggering stress (In uniaxial conditions the peak-strength is defined as the 

Uniaxial Compressive Strength).  

 

Consider a point P (on the plane of slip) with the applied stress at its initial 

value iσ  at time t0 being approached by rupture (figure 2.4). As the rupture 

approaches, the stress at P rises due to dynamic stress concentration ahead 

of the propagating crack. When the rupture reaches P and the dynamic 

stresses reach yσ (point A), slip is initiated and over some critical slip 

distance L, frictional resistance changes from a static coefficient sµ  to a lower 

dynamic coefficient dµ . Assuming that the dynamic friction stress dσ remains 

constant during slip, the residual strength of the specimen (point C) is reached 

at time tB after considerable post-peak deformation and stress drop σ∆ . The 

slope of the line joining the peak strength (point B) and the residual strength 

(point C) gives the stiffness of the loading machine (Brady and Brown, 2005, 

pg. 98). Healing (cessation of slip) initiates following the termination of rupture 
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at time tC (point C). After healing, the stress increases further due to dynamic 

overshoot of the slip so that the final stress drop is greater than the dynamic 

stress drop (point D) (Scholz, 1990, pg. 175, Madariaga, 1976). After the 

overshoot the static friction increases further to a value above the dynamic 

friction (point E). This behaviour where the static friction stress sσ is greater 

than the dynamic friction stress is known as velocity weakening (Scholz, 

1990, pg. 75, Madariaga, 1976) thus the sample can sustain an increase in 

stress without failing. This behaviour is described by the rate- and state- 

dependent friction law. Examples of elastic constants and strength properties 

of rock types encountered in the gold mines are given in Table 2.1. 

 

Table 2.1: Elastic constants and strength properties of rock types encountered 

in the gold mines. 

E – Young’s modulus, v – Poisson’s ratio, UCS – uniaxial compressive 

strength. 

 

 

 

Rock type  E (GPa) ν  UCS (GPa) 

Quartzite 65 – 75 0.20 – 0.25 160 – 280 

Argillaceous Quartzite 50 – 70 0.18 – 0.22 130 – 200 

Lava 60 – 100 0.25 – 0.30 100 – 500 
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2.5. Aftershock sequences 

 

Aftershocks often occur following the main event. They can be thought of as a 

form of brittle response of the crust to stresses loaded by the mainshock. 

Scholz (1990) explains aftershocks as a process that relaxes stresses 

produced by the mainshock rupture. Aftershock sequences begin immediately 

after the main event and are concentrated in the rupture area and its 

surroundings. This distinctive behaviour of aftershocks has been used to 

estimate the source dimensions of the mainshock (Gibowicz, 1973). Having 

said that, however, some aftershocks have been found to occur at remote 

distances away from the mainshock (Freed, 2005; Hill, 2007). Such 

interaction between a mainshock and its aftershocks has been studied and 

currently three modes of triggering are accepted: static stress transfer, quasi-

static stress transfer, and dynamic stress transfer, with the stress amplitudes 

falling with distance as r-3, r-2 and r-1.5, respectively (Hill, 2007).  

 

Triggering of aftershocks by static and quasi-static stress transfer is well 

explained by the Coulomb failure criterion. The triggering is caused by 

permanent stress changes produced by the mainshock in the vicinity of a 

fault, bringing other regions closer to their Coulomb failure threshold. Static 

stress transfer occurs instantaneously, and decays rapidly with distance      

(as r-3), hence its triggering potential is limited to one or two source 

dimensions. The static model has been successfully used to explain the 

distribution of aftershocks around the region of the mainshock (Stein, 1999; 
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Stein and Lisowski, 1983), but fail to explain the triggering of events at remote 

distances. 

 

Quasi-static stress transfer, which is due to viscous relaxation of the crust 

following an earthquake (Pollitz and Sacks, 2002), decays more slowly with 

distance (as r-2) and its triggering potential extends to relatively greater 

distances. Because of the low propagation speeds of viscoelastic 

deformation, it can result in delayed triggering (Hill, 2007). Although this is an 

unlikely triggering mechanism in mines, as it generally occurs in the lower 

crust and upper mantle, viscoelastic modelling of the rock mass has been 

successfully used in the deep level tabular excavation to simulate the 

observed stope closures in the VCR and Vaal Reef (Malan, 1995). Malan 

(1999) also successfully used Elasto-viscoplastic modelling to simulate the 

time-dependent closure behaviour at these reefs, with the time-dependent 

closure data possibly indicating the stress conditions in the fracture zone 

ahead of the face. 

 

Dynamic stresses propagating as seismic waves are, however, capable of 

triggering earthquakes at remote distances as their decay with distance is 

much slower. Dynamic stresses are transient and oscillatory, altering stresses 

further from or closer to the Coulomb failure of the fault. They do not result in 

permanent stress changes, but may cause changes in the rock mass that 

bring faults closer to their Coulomb failure, and could thus explaining remote 

triggering. Felzer and Brodsky (2006) found that the density of aftershocks 
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falls off with distance from the mainshock as r-1.3, supporting the dynamic 

triggering model. 

2.6. Statistical properties of aftershocks 

 

Earthquake aftershocks have been found to satisfy three scaling relations. 

The important statistical relations are discussed below. 

 

2.6.1. Gutenberg-Richter frequency-magnitude relati on 

 

This law approximates the frequency-magnitude statistics of earthquakes very 

well. It relates the number of events to their magnitude and was proposed by 

Gutenberg and Richter (1954). 

( ) bMaMN −=≥log  (2.4) 

N (≥ M) is the number of events with magnitude greater or equal to M in a 

given time interval, b is a constant generally in the range 0.8 < b < 1.2 (Frolich 

and Davis, 1993) and of importance in earthquake hazard analysis (Guttorp, 

1987), and a is a constant which measures the regional level of seismicity and 

is given by the logarithm of the number of events with magnitude greater or 

equal to zero. 

 

 



17 

 

2.6.2. Båth’s law 

 

Båth’s law gives the relationship between a mainshock and its largest 

aftershock and states that their magnitude difference (∆M) is a constant 

independent of the mainshock magnitude. 

CONSTANTMMM asms ≈−=∆ max

 
(2.5) 

For earthquakes, ∆M typically has a value of about 1.2 (Båth, 1965, 

Shcherbakov et al., 2006). 

 

2.6.3 Modified Omori’s Law  

 

This law describes the temporal decay of aftershock activity. 

( )
( )pct

K
tn

+
=  

(2.6) 

t is the time after the mainshock, n(t) is the number of events occurring at time 

t, K and c are parameters and p is a rate constant of aftershock decay   

(Nanjo et al., 1998) and has a value close to 1. 
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2.7. General geology of the Witwatersrand Basin 

 

The Witwatersrand basin (Figure 2.5) hosts the world’s largest deposits of 

gold and uranium. During deposition, a large inland sea drained an auriferous 

terrain of Basement granites and greenstone belts. It is currently accepted 

that the Witwatersrand basin formed in a compressive foreland setting, 

possibly related to the collision of the Zimbabwe and Kaapvaal Cratons 

(McCarthy, 2006, pg. 179). 

 

Figure 2.5: The geology of the Witwatersrand basin.  

(From McCarthy, 2006, pg. 157) 

 

The basin has been dated to the Archean between 3074 million years and 

2714 million years (Robb and Robb, 1998, pg. 299). 
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2.8. Carletonville Goldfields 

 

This study was undertaken on mines of the Carletonville goldfield (also known 

as the West Wits Line). The goldfield is situated between the Potchefstroom 

gap in the west and the West Rand fault (Figure 2.5). The most important 

gold-bearing reefs being mined are the Carbon Leader Reef (CLR) at the 

base of the Main Formation and the Ventersdorp Contact Reef (VCR) at the 

base of the Ventersdorp Supergroup. 

 

The Ventersdorp Contact Reef occurs in the northwest and western margins 

of the basin in the West Rand, Klerksdorp and Carletonville goldfields. The 

VCR lies unconformably on the Witwatersrand sediments and is considered to 

be the basal reef of the Ventersdorp Supergroup (Jager and Ryder, 1999,    

pg. 29). The reef is separated from its lava hanging-wall by a band of quartzite 

up to 1 metre thick. The footwall is composed of a strong argillaceous 

quartzite. Hazardous hangingwall conditions are often encountered due to the 

bedding-parallel faulting that occurs in the quartzite and extends into the lava 

hangingwall.  

 

The Carbon Leader Reef (CLR) is a narrow, carbon-rich conglomerate band, 

rarely exceeding 10 cm in thickness in the Carletonville area (Robb and Robb, 

1998). The hanging-wall consists of a pebbly grit, invariably overlain by a 

shale band known as the Green Bar. 
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CHAPTER 3. DATA AND METHODOLOGY 

 

Large seismic events in deep-level gold mines are often followed by an 

increased rate of seismicity. The number of aftershocks following any single 

mainshock is usually quite small, typically fewer than five aftershocks of ML>0 

for each ML>2.5 mainshock, which is too few for reliable statistical analysis 

such as frequency-magnitude relationship of aftershock sequences (Figure 

3.1). 

faults
dykes

22

100 m
 

Figure 3.1: Aftershock-mainshock sequences showing the typical small 

number of aftershocks following each mainshock.  

Large and smaller circles represent mainshocks and aftershocks respectively. 

The colours indicate the different days of occurrence of the clusters. 
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To overcome this limitation, a method of data stacking was used where 

mainshock-aftershock sequences are stacked at the origin in time and space 

(Figure 3.2). This allows for the study of aftershocks sequences with time and 

distance away from the mainshock epicentre. 

A B

Figure 3.2: Stacking of different mainshock-aftershock sequences.  

(A) Cartoon showing mainshocks-aftershock clusters overlaid on a mine plan 

(red stars and blue circles represent mainshock and aftershocks respectively). 

Monthly positions of stope advance (mining steps) are represented by 

rectangular bands.  

(B) ML > 0.0 aftershocks stacked at the origin in space.  

 

The stacking procedure was facilitated by a custom-written program Omori 

(software written by Spottiswoode, 2002, adapted from work by Spottiswoode, 

2000) that stacks mainshocks temporally and spatially, and reports on the 
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time and distance behaviour of aftershocks following a mainshock. A 

simplified flow chart of the program is shown in Figure 3.3. 

Simplified flow-chart for 
program OMORI

Before running: edit a header 
line into seismic catalogue file

Read seismic catalogue file into 
arrays for date, time & seismic 
parameters

Read Input 
parameters

Refer all events to mainshocks 
at X=Y=t=0 (stacking)

Sort by increasing time

Bin by time & distance from 
main shocks & report

Graphing & plotting
EXCEL

& 
Contouring

EDIT

Omori

 

Figure 3.3: A simplified flow chart for the program Omori. 

(From Spottiswoode, 2000). 

 

Following the editing step, the program refers all mainshocks to the origin in 

space and time. Input parameters for the stacking procedure are: 
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• Upper and lower threshold magnitudes for mainshock and 

aftershocks, 

• Maximum time for listing of aftershocks following the mainshock, 

• Maximum distance for listing of aftershocks from mainshock, 

• Bin size (number of events within a bin), 

• Range of distance for focus to mining face, and 

• Range of face Energy Release Rate (explained in detail in later 

chapter). 

 

In the search through the catalogue, a mainshock is defined as an event with 

magnitude less than the upper threshold magnitude and greater than the 

lower threshold magnitude. Aftershocks are events within the maximum time 

and distance limit from the mainshock with magnitude less than the 

mainshock magnitude.  

 

Aftershocks are then sorted by increasing time from the mainshocks, binned 

by time and distance away from the mainshocks, and reported. Another 

important factor considered in the stacking procedure is the increasing 

seismicity following blasting. It should be noted that blasting-relating events 

(events occurring during blasting time) were not considered in this study as 

their influence serves to contaminate the seismic activity of interest. Blasting-

related events were rejected from the analysis using the method developed by 

Richardson and Jordan (2002) and refined by Spottiswoode and Linzer 

(2006). Their influence on aftershocks is discussed next. 
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3.2. Influence of blasting on aftershocks 

 

It is important to consider the effects of blasting on seismicity so that their 

effect can be corrected to achieve accurate analysis. Two kinds of blasting 

occur in underground mines; development blasting (e.g. for the development 

of tunnels), and production blasting (e.g. for the advancement of the stope 

faces). The blasting periods can be clearly identified by observing the 

distribution of the number of aftershocks by hour of day in a 24 hour period.  

 

Figure 3.4 illustrates the effect of blasting on the number of mine tremor 

aftershocks, with a significant increase at the onset of blasting at 18h00 at 

VCR (mine1) and at 12h00 at CLR (mine 2). Bins are referenced to the start 

of each hour, e.g. bin 1 contains the number of events between 00:00:00 and 

01:00:00. 
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Figure 3.4: Distribution of ML≥ 0.0 aftershocks by hour of day within 1000 m of 

the mainshock epicentre. 

 

The broader distribution at mine 2 is probably due to different blasting 

techniques. It can be seen from the plotted cumulative number of events that 

blasting has the effect of doubling the number of events following its onset. 

Mainshocks occurring during the identified blasting periods or in the period 4 

hours prior to the onset of blasting are then excluded from the analysis to 

avoid inclusion of the undesired seismicity triggered by normal production 

blasting from aftershock sequences. 
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3.3. Datasets 

 

Seismic datasets from two deep-level gold mines situated in the Carletonville 

mining district, where mining is at depths of about 3,5 km, were provided for 

the analysis. Although triaxial geophones (typically 4.5 Hz) are employed to 

give better location accuracy and parameter estimates, seismic stations are 

mostly located close to the reef plane. This tends to increase the location 

error in the z-component, although decreasing it in the reef plane.  

 

Although there are different measures of the magnitude of an event, such as 

body wave magnitude Mb or surface wave magnitude Ms, South African mines 

tend to favour the more widely used local magnitude, ML which was 

introduced by Richter (1935) and adjusted accordingly for the mines. Table 

3.1 gives a summary of the two catalogues used in the analysis. 

 

Table 3.1: Summary of data catalogues used in the analysis. 

 

 

 

Reef mined  VCR CLR 

Start time 2002/08/01 1998/01/02 

Total number of events recorded 10196 20611 
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CHAPTER 4. GUTENBERG-RICHTER RELATION 

 

4.1. Introduction 

 

The Gutenberg-Richter relation (equation 2.4) successfully approximates the 

frequency-magnitude statistics of earthquakes, except at high magnitudes 

where it often overestimates the likelihood of the occurrence of large events 

(Gibowicz, 1994, pg. 302). The b-value is usually determined by the method 

of least squares (Shcherbakov et. al, 2005, 2006), where b is found from the 

least squares fit of a straight line to equation (2.4) and given by the slope of 

the regression line. 

 

A more accurate estimate of the b-value was suggested by Aki (1965) using 

the method of maximum likelihood where seismic events are assumed to be 

independent, identically distributed random variables with probability density 

function ),( βMf expressed by; 

( ) MMeMf MM ≤= −−
min,),( minβββ  

(4.1) 

The parameter β  is given by 

e
b

10log=β  
(4.2) 

and the best statistical estimator of b is the maximum likelihood estimator 

(MLE) of β  given by 
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min

1ˆ
MM −><

=β  
(4.3) 

where the sample mean ∑
=

>=<
N

i

i
N

MM
1

 and minM is the minimum 

magnitude of the events. Aki (1965) showed that the 95 % confidence limits of 

β̂ are given by 

( ) ( )
minmin

/1ˆ/1

MM

Nd

MM

Nd

−><
+≤≤

−><
− εε β  

(4.4) 

where ε =95% is the confidence interval and εd =1.96 for the ε  confidence 

interval. The b-value is then given by 

min

10log
MM

e
b

−><
=  

(4.5) 

and the standard deviation of b is given by e10logˆβσ , where βσ̂ is the 

standard deviation of β̂ which is approximately normally distributed about its 

mean value equal to equation 4.2 (Gibowicz, 1994, pg. 304). 

 

The Gutenberg-Richter relation, which implies a fractal relationship between 

the number of earthquakes and the size of the rupture area (Turcotte, 1997), 

has also been found to hold for mine seismic events. The constant b or the “b-

value” was suggested by Aki (1981) to be related to the fractal dimension D of 

the source region by equation 4.6 below. 

bD 2=  (4.6) 
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A b-value of 0.5, which corresponds to D = 1, would be related to seismic 

events distributed along a one-dimensional linear source. For a b-value of 1.0, 

D = 2, and is related to seismic events distributed within a two-dimensional 

planar source. A b-value of 1.5, corresponding to D = 3, suggests 

volumetrically distributed sources (Legge and Spottiswoode, 1987). 

 

If b = 0.5, D = 1 and planar seismic source zones with L(length) » W(width) 

are indicated. This situation arises when there is extensive mining parallel to a 

fault or dyke. The excess shear stress lobes produced by the excavations 

extend for hundreds of metres in the strike direction of the fault or dyke (L), 

but only for tens of metres in the dip-direction (W). If b = 1, D = 2 and planar 

seismic source zones with L and W are indicated. This situation arises where 

the source dimension parallel to the mining face (L) is limited to tens of metres 

by the leads and lags between adjacent panels. If b = 1.5, D = 3 and 

volumetrically distributed sources are indicated with L and W and S, where S 

is the shear-zone spacing. In practical terms, this means that the volume of 

rock contributing to each event is further limited by the presence of shear 

zones. 

 

4.2. Results and discussions 

 

Analysis of the Gutenberg-Richter frequency-magnitude was performed on 

ML≥ 0.0 aftershocks following ML≥ 2.0 mainshocks from the two mines. The  
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b-values of the data were estimated using the least squares and maximum 

likelihood methods. Figure 4.1 and Figure 4.2 show the Gutenberg-Richter 

frequency-magnitude of events that occurred within 1 hour and 1000 m of    

ML ≥ 2.0 mainshocks. These events are temporally close to the mainshock 

and thus considered as aftershocks. Also plotted are events occurring more 

than 6 hours following ML ≥ 2.0 mainshocks and considered to be background 

events. 
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Figure 4.1:Gutenburg-Richter frequency-magnitude relation of aftershock and 

background seismicity at the VCR mine. 
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Gutenburg-Richter relation, CLR mine
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Figure 4.2: Gutenburg-Richter frequency-magnitude relation of aftershock and 

background seismicity at the CLR mine. 

 

The data shows an upper magnitude limit for the aftershock data (around M = 

3.0) and background data (around M = 3.5). Table 4.1 and Table 4.2 give the 

summary of the data parameters and the estimates of the a- and b values of 

the Gutenburg-Richter frequency-magnitude determined by the methods of 

least squares and maximum likelihood. 
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Table 4.1: Least squares estimates of the a- and b-parameters of the 

Gutenburg-Richter frequency-magnitude relation for the VCR and CLR mines. 

Ventersdorp contact reef  

Parameter Aftershocks Background 

N  297 2819 

minM  0 0 

b  0.82 0.84 

a  2.47 3.45 

Carbon Leader reef  

N  480 4362 

minM  0 0 

b  0.65 
0.62 (ML ≤ 2.0) 

1.25 (ML ≥ 2.0) 

a  2.76 3.65 (ML ≤ 2.0) 
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Table 4.2: Maximum likelihood estimate of the b-parameter of the Gutenburg-

Richter frequency-magnitude relation (VCR). 

Ventersdorp Contact reef  

Parameter Aftershocks Background 

N  297 2819 

>< M  0.57 0.52 

minM  0 0 

β̂  1.74 1.92 

95 % confidence 95.1ˆ55.1 ≤≤ β  99.1ˆ85.1 ≤≤ β  

b  0.76 0.83 

σ  0.04 0.02 

 

Table 4.3: Maximum likelihood estimate of the b-parameter of the Gutenburg-

Richter frequency-magnitude relation (CLR). 

Carbon Leader reef  

Parameter Aftershocks Background 

N  480 2819 

>< M  0.57 0.52 

minM  0 0 

β̂  1.2 1.4 

95 % confidence 39.1ˆ17.1 ≤≤ β  47.1ˆ39.1 ≤≤ β (ML ≤ 2.0) 

b  0.56 
0.71 (ML ≤ 2.0) 

1.27 (ML ≥ 2.0) 
σ  0.03 0.01 
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The least squares estimate of the aftershock and background data show no 

large difference in the b-values with bA ≈ 0.82 and bB ≈ 0.84 for aftershock 

and background seismicity respectively for the VCR data. A similar behaviour 

is observed for the CLR data with bA ≈ 0.65 and bB ≈ 0.62 for aftershocks and 

M ≤ 2.0 background seismicity respectively. Background data from the CLR 

mine however shows a different behaviour in that it exhibiting a bi-modal 

distribution evident from the change in the b-value at about ML = 2.0 from       

b = 0.62 to b = 1.25. Further analysis was done to check if the bi-modal 

distribution about ML = 2.0 was an artefact of the minimum mainshock 

magnitude (Mmain ≥ 2.0) chosen for the analysis. The same behaviour was still 

observed for different minimum mainshock magnitudes. The Gutenburg-

Richter frequency-magnitude relation satisfactorily fits the aftershock and 

background data from the two mines. 

 

A more detailed comparison using the maximum likelihood method shows that 

the b-values (for the aftershocks and background data) are statistically 

different from each other at 95% confidence when considering their standard 

deviations.  

 

4.3. Conclusions 

 

Mine tremor aftershocks, similarly to natural earthquake aftershocks, obey the 

Gutenburg-Richter frequency-magnitude relation with b-values close to 1. 
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Although the b-values of the aftershock and background data are 

approximately equal, statistical comparison of the aftershock and background 

data shows a statistically significant difference when compared at the 95% 

confidence level. In practical terms this difference is not large enough to 

indicate different physical processes. The approximately equal b-values 

suggest that the mechanisms involved in the generation process for the two 

groups are the same. 

 

The phenomenon of bi-modal distribution evident in the background data from 

the CLR mine has been previously observed in mine events. It can be 

attributed to factors such as different source mechanisms, site effects or 

breakdown in self-similarity (Sellers et al., 2005). Understanding of this 

phenomenon of mine events still requires further research. 
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CHAPTER 5. BÅTH’S LAW 

 

5.1. Introduction 

 

The relationship between a mainshock and its largest aftershock was studied 

by Båth (1965). Båth (1965) found that the magnitude difference between a 

mainshock and its largest aftershock was, on average, 1.2 magnitude units 

(equation 2.5). The importance of Båth’s law is clear as it attempts to 

anticipate the magnitude of the largest aftershock following a mainshock, that 

is, is the aftershock likely to be damaging. 

 

Although some studies have validated the application of Båth’s law to natural 

earthquakes, discrepancies have also been found on other studies. The model 

by Console et. al. (2003), where all events are assumed to belong to the self-

similar set of earthquakes following the Gutenburg-Richter distribution, shows 

a large dependency of ∆M on the magnitude thresholds chosen for 

mainshocks and aftershocks. Here we test the validity of Båth’s law for mine 

aftershocks. 
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5.2 Results and discussions 

 

The investigation of the applicability of Bath’s law to mine aftershocks was 

performed on aftershocks within 400m of and 1 hour following M ≥ 2.0 

mainshocks. The extended time window and distance at the VCR mine was 

done to accommodate the small number of events. The selection criterion 

ensures that aftershocks are not contaminated by the background seismicity. 

The figure below shows data from the VCR mine where mainshocks are 

plotted along with their largest aftershock succeeding them. On average the 

value of ∆M is found to 1.57 ± 0.59. Also shown on the figure are the line 

representing Bath’s ∆M = 1.2 and ∆M = 1.57 found for mine aftershocks. 

Similar results are obtained for the CLR mine with ∆M = 1.66 ± 0.68      

(Figure 5.2). 
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Figure 5.1: Bath’s law analysis of M ≥ 0.0 aftershocks within 1000 m of and 2 

hour following 163 M ≥ 2.0 mainshocks (VCR mine). 
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Figure 5.2: Bath’s law analysis of M ≥ 0.0 aftershocks within 400 m of and 1 

hour following 517 M ≥ 2.0 mainshocks (CLR mine). 
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A noticeable trend from the two figures is the gradual increase of ∆M with 

increasing mainshock magnitude around M ≥ 3, which is more pronounced at 

the CLR (Figure 5.3). Because of the use of lead and lags and regional 

stabilizing pillars to limit the extent of ruptures (Durrheim et. al., 1998) and 

reduce the sizes of ESS lobes (Jager and Ryder, 1999, pg 53), larger seismic 

events tend to occupy the entire source area resulting in little residual ESS 

(ESS measures the levels of shear stresses on planes of weaknesses) being 

released as aftershocks.  
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Figure 5.3: Increase of ∆M with increasing mainshock magnitude. 

 

5.3 Conclusions 

 

It was found that Bath’s law was not applicable to mine aftershock. The 

average magnitude difference between a mainshock and its largest aftershock 

found to be greater than that predicted by Bath’s law. Furthermore it was 

found that the magnitude difference tends to increase as the mainshock 

magnitude increases, notably at about 3.0. 
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The increase in ∆M, suggests that the larger events (with M ≥ 3.0) tend to be 

succeeded by smaller magnitude aftershocks. This behaviour is due to the 

exhaustion of the ESS lobes as larger events tend to occupy the entire source 

area, which is limited by the panel length. This results in little residual ESS 

being released as aftershocks since the panel length reduces the sizes of 

ESS lobes. 
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CHAPTER 6. MODIFIED OMORI LAW 

 

6.1. Introduction 

 

To propose a methodology of assessing the seismic hazard associated with 

aftershocks, the Modified Omori law was used to estimate time periods 

following larger seismic events during which re-entry to working areas should 

be postponed. 

 

The decay of aftershock occurrence with time was studied by Omori (1894) 

and found that it was inversely proportional to the time following the 

mainshock (i.e. rate ~ 1/t). This simple relation was later modified by Utsu 

(1961) with an addition of the constants c and p (equation 6.1). 

( )
( )pct

K
tn

+
=  

(6.1) 

t is the time after the mainshock, n(t) is the number of events occurring at time 

t, K and c are parameters and p is a rate constant of aftershock decay (Nanjo 

et al., 1998) and has a value close to 1. 

 

 Although the Modified Omori model is widely accepted by seismologists, 

other functions have also been found to fit the aftershocks decay rates (e.g. 

Gross and Kisslinger, 1994). 
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Although the equation proposed by Omori (1894) in its simplest form is a 

reasonable approximation of the aftershock decay, it results in a singularity at 

the time of a mainshock (i.e. t=0). The addition of a constant c to the original 

form avoids the singularity but has also been questioned whether it bears any 

physical meaning or if it is simply due to instrumental inadequacy (Kagan, 

2004). Kagan (2004) suggested that the c-parameter is due to missing 

aftershocks, especially those with small magnitudes as their detection is 

obstructed by the mainshock coda waves directly after its occurrence. 

Analysis by Shcherbakov et. al. (2006) showed that c increases with 

decreasing lower aftershock magnitude cut-off and suggested that it 

characterizes the time for the establishment of Gutenburg-Richter scaling for 

aftershocks. 

 

6.2. Results and discussions 

 

6.2.1 Effect of bin size on aftershock event rate 

 

The aftershock stacking procedure described in chapter 3, explained how 

aftershocks are binned into time and distance bins. This discussion 

investigates how the binning procedure, specifically the number of events in 

each bin affects the calculation of the event rate.  
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The limits of each time bin were adjusted to ensure that each bin contained 

the same number of events. The end of the bin was moved until the specified 

number of events was found. The time for each bin is given by the average 

time of events in each bin. The event rate, expressed as the number of 

aftershocks per day, is calculated by dividing the number of events in each bin 

by the difference between the start and end times of the bin. The event rate is 

normalised by the number of mainshocks used in the particular analysis. 

Figure 6.1 is a plot of aftershock decay rate with time following the mainshock. 

Plotted on the same graph are the event rates computed using bins with size 

5, 10, 20 events per bin. As expected the larger number of events per bin 

results in a smooth decay curve. Beyond 100 000 seconds, the bin size was 

increased as the time or distance from the mainshock increased to adjust for 

large number of events at late times (since the log-log scale is used). 
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Figure 6.1: Effect of number of events per bin on the event rate decay curve. 
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The number of events per bin has a trade-off effect between statistical 

accuracy and temporal resolution with the general decay trend still preserved. 

Small number of events per bin increases the number of points on the curve 

giving a better temporal resolution, while increasing the number of events per 

bin reduces the number of points on the curve but giving better statistical 

accuracy.  

6.2.2 Influence of blasting on aftershock event rat e 

 

As discussed in chapter 3.2, seismicity doubles following the onset of blasting. 

This increased rate of seismicity also manifests in the aftershock decay rate 

and is clearly identifiable at later times (shaded area in figure 6.2). To 

estimate the background rate, the influence of blasting is corrected by 

averaging over the long-term seismicity rate (seismicity occurring at later 

times after the aftershock decay) and then halving the rate (Figure 6.2). The 

result is the background rate which would have been followed if there had 

been no influence of blasting events. 
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Figure 6.2: Estimation of the background rate. Long-term average determined 

by averaging over long-term seismicity (shaded area). 

 

6.2.3 Omori c-parameter 

 

To determine the c-parameter, aftershock magnitudes are plotted against their 

occurrence time following the mainshock (Figure 6.3 and Figure 6.4). The     

c-parameter, demonstrated by the time delay following the mainshock, shows 

that small magnitude aftershocks are not detected immediately following the 

mainshock. This suggests that the c-parameter has no physical significance 

but is an instrumentation artefact caused by the system-triggering logic. This 

is due to the automatic adjustments in the triggering algorithm of the system. 
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Figure 6.3 shows the determination of the c-parameter from the plot of 

aftershock magnitude against their occurrence time following the mainshock. 

The data shows that the recording systems take at most 20 seconds to 

achieve catalogue completeness following a larger event for aftershock cut-off 

magnitude of Mc= 0.0. Figure 6.3 (b) demonstrates that this time increases 

with decreasing aftershock minimum threshold magnitude. Figure 6.4 shows a 

similar behaviour for aftershocks at the VCR mine. 

Aftershock magnitude vs time after mainshock, CLR m ine

0

0.5

1

1.5

2

2.5

3

3.5

4

1 10 100 1000 10000

time after mainshock (s)

A
fte

rs
h

oc
k 

m
ag

ni
tu

de

c

Aftershock magnitude vs time after mainshock, CLR m ine

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1 10 100 1000

time after mainshock (s)

af
te

rs
ho

ck
 m

ag
ni

tu
d

e

c

A B

 

Figure 6.3: Time-magnitude distribution of aftershocks (CLR mine).  

(A) Aftershocks with cut-off magnitude Mc = 0.0. (B) Aftershocks with cut-off 

magnitude Mc = -1.0. 
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Aftershock magnitude vs time after mainshock, VCR m ine
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Figure 6.4: Time-magnitude distribution of aftershocks (VCR mine).  

(A) Aftershocks with cut-off magnitude Mc = 0.0. (B) Aftershocks with cut-off 

magnitude Mc = -1.0. 

 

The interpretation of the c-parameter as an instrumentation artefact is in 

agreement with Kagan (2004). Furthermore its increase with aftershock 

magnitude cut-off also agrees with Shcherbakov et. al. (2006). 

 

6.2.4 Aftershock event rate 

 

The decay rate of aftershocks following mainshocks with magnitude threshold 

M = 1.0, M = 2.0 and M = 3.0 are shown in figure 6.5. Aftershocks with 

minimum magnitude M = 0.0 within 1 day and 1000 m of the mainshock were 

considered. The p-values are estimated by fitting a least squares regression 

line through the event rate curve. Figure 6.6 investigates the rate decay of 
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different lower aftershock threshold magnitudes. The zone of influence of the 

mainshock on the rate decay shows no significant influence of the p-values 

(Figure 6.5). 
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Aftershock rate decay from mainshock magnitudes
 M ≥ 1.0, M ≥ 2.0 and M ≥ 3.0

1

10

100

1000

10000

10 100 1000 10000 100000

time(s)

E
ve

nt
s/

da
y

M≥ 1.0
M≥ 2.0
M≥ 3.0
Background

p = 1

p = 0.8

 

Figure 6.5: M ≥ 0.0 aftershock rate decay following mainshocks with threshold 

magnitudes M ≥ 1.0, M ≥ 2.0, and M ≥ 3.0. The lines representing p = 1 and 

the estimated background level are also shown. 
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Figure 6.6: M ≥ -0.5, M ≥ 0.0 and M ≥ 0.5 aftershock rate decay following 

mainshocks with magnitude M ≥ 1.0. The line representing the estimated 

background level is also shown. 



50 

 

M ≥ 0.0 aftershock rate decay within different radii 
distances from mainshocks
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Figure 6.7: M ≥ 0.0 aftershock rate decay within different radial distances from 

M ≥ 1.0 mainshocks. The line representing the estimated background level is 

also shown. 

 

The above results have been giving rates calculated within a fixed distance 

from the mainshock (1000 m). The results can be extended to two-dimensions 

by calculating the event rate within distance bins from the mainshock. This 

allows for simple and quick estimations of the rate within certain times and 

distances following the mainshock.  

 

Figure 6.8 and Figure 6.9 give contour plots of the events rate versus time 

and distance following 2.0 ≤ M ≤ 3.0 and 3.0 ≤ M ≤ 4.0 mainshocks at the 

VCR mine. The contours represent the rate presented on a logarithmic scale 
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with a minimum rate of 0.1 events/day. A similar behaviour is also observed 

for aftershocks at the CLR mine (Figure 6.10 and Figure 6.11). 
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Figure 6.8: Event rate contour plots as a function of time and distance from 

2.0 ≤ M ≤ 3.0 mainshocks (VCR mine). 
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Figure 6.9: Event rate contour plots as a function of time and distance from 

3.0 ≤ M ≤ 4.0 mainshocks (VCR mine). 
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Figure 6.10: Event rate contour plots as a function of time and distance from 

2.0 ≤ M ≤ 3.0 mainshocks (CLR mine). 
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Figure 6.11: Event rate contour plots as a function of time and distance from 

3.0 ≤ M ≤ 4.0 mainshocks (CLR mine). 

 

Proposing a methodology of assessing the hazard posed by aftershocks 

following the mainshock, the events rate curves are used to identify time 

periods for which the rate has decreased to acceptable levels (Figure 6.12). 

The dashed lines A and B are used to determine time periods where the rate 

is 10× and 3× the estimated background rate respectively. 
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Figure 6.12: Determination of time periods where the event rate has 

decreased to background levels. 

 

Using this method, a table giving the time periods when the rate is 10× and 3× 

the background as a function of time and distance ranges from the mainshock 

was constructed (Table 6.1). The rate of 10× and 3× background were chosen 

to demonstrate the principle of the method. In practice the rates used as 

benchmarks should be selected through a consultative process involving 

employees, labour and regulators. 

 

Due to small sample statistics encountered for larger events, re-entry times 

tend to be larger. Time periods marked with an asterisk are less reliable as 
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they are due to small number of aftershocks. In practice, time periods greater 

than 1 hour will possibly lead to a loss of a working shift. 

 

Table 6.1: Time periods required for the aftershock event rate to reach 10× 

and 3× the background rate. 

VCR mine 
10 ×  

time in minutes 

3 ×  

time in minutes 

D (m) 

Mmain 

0-200 200-400 0-200 200-400 

1.0 ≤ M < 2.0 5 2 24 30 

2.0 ≤ M < 3.0 16 5 180 162 

3.0 ≤ M < 4.0 48 60 300 480 * 

CLR mine  10 ×  3 ×  

D (m) 

Mmain 

0-200 200-400 0-200 200-400 

1.0 ≤ M < 2.0 3 2 16 78 * 

2.0 ≤ M < 3.0 10 3 48 15 

3.0 ≤ M < 4.0 60 24 120 120* 

Note: asterisk indicates less reliable time periods as they are due to small 

number of aftershocks. 

 

Aftershock event rate increases with increasing mainshock magnitude and 

increases as the minimum threshold magnitude for aftershocks decreases. 
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The radius of influence does not significantly affect the event rate. The data 

also shows that varying these parameters has no influence of the decay rate 

exponent p, which has values close to 1. The contour plots show that the 

event rate increases with increasing mainshock magnitude. As an example for 

2.0 ≤ M < 3.0 mainshocks (figure 6.8), a 100 events/day contour is reached 

after about 3 minutes and around 200 meters of the mainshock.                  

For 3.0 ≤ M < 4.0 mainshocks the contour is reached after about 16 minutes 

and around 600 meters from the mainshock. 

 

The results given in Table 6.1 also agree with the above results that the time 

taken for the rate to reach a specific level (e.g. 10× or 3× the background) 

decreases as the distance ranges from the mainshock increases. Because of 

a small number of larger magnitude aftershocks, time periods for                 

3.0 ≤ M ≤ 4.0 mainshocks tend to be longer. 

 

6.3. Conclusions 

 

The c-parameter for mine aftershocks shows an increase with a decreasing 

aftershock cut-off magnitude, consistently at the two mines. Furthermore it is 

found that c has no physical significance but results from instrumentation 

inadequacy. This is in agreement with the suggestion by Kagan (2004). 
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The rate decay of mine tremors aftershocks was found to follow the Modified 

Omori law with p-values close to unity. Mainshocks are followed by an 

increased rate of seismicity immediately after their occurrence, typically in 

excess of 1000 events/day for M ≥ 3.0 mainshocks. Using Omori’s law, tables 

giving time period taken for the rate to decrease to background levels can be 

constructed. These tables can be used as guidelines for re-entry times into 

working areas after the occurrence of a seismic event. 
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CHAPTER 7. AFTERSHOCK DENSITY DECAY 

 

7.1 Introduction 

 

The physics of aftershock triggering has been mostly understood in terms of 

static stress transfer and used to explain the distribution of aftershocks around 

a mainshock (Ganas et. al, 2008). Earthquake triggering is generally classified 

into three stress transfer modes; Static stress, Quasi-static stress and 

Dynamic stress transfer modes (Hill, 2007). Static and quasi-static triggering 

is explained by the Coulomb failure criterion. Triggering is caused by the 

stress changes loaded by the mainshock in the vicinity of a fault which is 

close to its Coulomb failure threshold.  

 

Static stresses decay rapidly with distance as r-3 and hence their triggering 

potential is limited to one or two source dimensions (Hill, 2007). Quasi-static 

stress, which is due to viscous relaxation of the crust following an earthquake, 

decay more slowly with distance as r-2. Their triggering potential extends to 

greater distances and because of their low viscoelastic propagation speeds, 

they can result in delayed triggering (Pollitz and Sacks, 2002). Although these 

models succeeded in explaining aftershock triggering in the near field, 

triggering has also been evident at distances much greater than the triggering 

potential of the two models. 
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The dynamic stress model offers an explanation for this phenomenon. 

Dynamic stresses propagating as seismic waves have the potential to trigger 

seismicity from the near field to greater distances than the other two modes. 

The amplitudes of dynamic stresses decrease slowly with distance as r-2 for 

body waves and r-1.5 for surface waves (Hill, 2007). Because dynamic 

stresses are oscillatory, bringing stresses further from or closer to the 

Coulomb failure of a fault, they result in no permanent stress changes. A 

study by Felzer and Brodsky (2006) on aftershock density supported dynamic 

triggering as the density was found to fall-off with distance as r-1.3, comparable 

to the decay of maximum seismic wave amplitude, a proxy for dynamic stress. 

 

To understand the triggering mechanism of mine tremor aftershocks, 

aftershock density decay was measured with distance from the mainshock. 

The density is measured by determining the frequency of aftershocks within 

given distances. The density data points are plotted at the centre of each bin. 

 

7.2 Results and discussions 

 

A time window of one week was selected for the analysis. The longer time 

period allows for better background correction. Events within two hours of the 

mainshock were selected as possible aftershocks and the other events taken 

as the background. Aftershock density (expressed as events/min) was 

normalised to background density. Aftershock density fall-off with distance 
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was determined from the ratio of the normalised number of aftershocks to the 

density decay predicted by two numerical models of the mining-induced 

seismicity (Spottiswoode et al., 2008). Numerical models are essential as they 

solve problems which cannot be solved analytically, allow for analysis of the 

rockmass under different conditions, and allow for confirmation of assumed 

rockmass behaviour.   

 

The “active” model considers the strain energy released by recent mining to 

be the principal driver of both mainshocks and aftershocks. An area is defined 

as “active” if mining took place in the month prior to the mainshock. The 

normalised number of events predicted by this model was found to be similar 

to the observed background seismicity (green circles in figure below). Similar 

results are obtained for the VCR data. The density fall-off with distance is well 

fitted by a power law: 

( ) qArr −=ρ  
(7.3) 

where A is a constant which depends on the number of aftershocks. The 

decay exponent is q = 1.37 for the CLR data and q = 1.34 for the VCR data. 

The line representing the fall-off that would have been followed if the 

triggering was due to static stresses is also shown on the figures. 
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Figure 7.1: Aftershock density as a function of distance from the mainshock.  

The background seismicity is modelled as a function of strain energy released 

associated with “active mining”. 

 

The “stationary” model (applied to the same data as figure 7.1) considers the 

possibility that aftershocks may also be triggered in the stressed ground 

around old mining faces. On-reef stress in excess of 300 MPa was considered 

to be sufficiently stressed to be in a state of incipient failure. The normalised 

number of events in this model is considerably smaller than the observed 

background seismicity (green circles and blue squares in figure 7.2). A fit to 

the data shows a constant fall-off as r-1.62. 
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Figure 7.2: Aftershock density as a function of distance from the mainshock.  

The background seismicity is modelled as a function of strain energy released 

associated with “stationary mining”. 

 

Density decay with distance shows a much slower r-1.37 fall-off when 

considering active mining as the driver of aftershocks. The fall-off increases to 

r-1.6 when considering aftershocks to be triggered in the stressed ground in the 

vicinity of old mining faces. Both models support the dynamic triggering mode 

as the driver for aftershock triggering. The decay exponents are similar to 

those determined by Felzer and Brodsky (2006) in the study of natural 

earthquake aftershocks. 

 



63 

 

7.3. Conclusions 

 

Aftershock density is found to fall-off with distance as r-1.3 in both the CLR and 

VCR datasets. This fall-off rate is similar to that of Felzer and Brodsky (2006) 

for natural earthquake aftershocks. The analysis, like that of Felzer and 

Brodsky (2006), supports the notion that most aftershocks are triggered by 

dynamic stresses rather than by quasi-static stress redistribution. The results 

supports the conclusion of Spottiswoode et al. (2008) that seismicity is driven 

primarily by the strain energy changes due to active mining, rather than by 

high stresses, which are found in both active and old mining environments. 
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CHAPTER 8. AFTERSHOCK PROBABILITY 

 

8.1 Introduction 

 

The probability of aftershock occurrence was studied by Reasenberg and 

Jones (1989) for hazard assessment following a mainshock. The method 

combines the Gutenberg-Richter relation and the Modified Omori law into a 

rate equation giving the rate λ of aftershocks with magnitude M or larger, at 

time t following the mainshock of magnitude Mm.  

( )( ) pMMba ctMt m −−+ +=10),(λ  
(8.1) 

The various constants in the equation are as explained previously. Using 

equation 8.1, Reasenberg and Jones (1989) determined the probability of one 

or more aftershocks occurring in the magnitude range M1 ≤ M ≤ M2 and time 

range t1 ≤ t ≤ t2 (equation 8.2). 
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where the Omori equation integrates to; 
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(8.3) 

Equation 8.2 gives the aftershock probability as a function of parameters that 

describe an earthquake sequence, namely the initiating mainshock 
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magnitude, magnitudes of the succeeding aftershocks and their time of 

occurrence following the mainshock. In chapter 7, aftershock density fall-off 

was found to have an r -1.3 dependency on the distance. The Reasenberg and 

Jones model (R & J model) is applied to mine aftershocks with modification to 

incorporate the density fall-off dependency on distance (equation 7.3). 

 

The rate equation modified to incorporate the density decay law is then given 

by; 

( )( ) qpMMba rctMrt m −−−+ +=10),,(λ  
(8.4) 

and the decay law integrates to  
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(8.5) 

The exponent q = 1.34 and q = 1.32 for VCR and CLR respectively. The 

probability equation 8.2 then modifies to equation 8.6 below. 

]),,(exp[1
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(8.6) 

 

8.2 Results and discussions 

 

The parameters used for the probability calculations are estimated for each 

sequence of the magnitude ranges considered. The Gutenberg-Richter 

parameters are estimated using the maximum likelihood method and the       
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p-values are determined from the Omori decay curves. Summaries of the 

parameters used are given in the tables below. 

 

Table 8.1: Summary of the parameters used in the probability models      

(VCR mine). 

 

 

 

 

 

VCR mine  Input parameters  

G-R relation 2.0 ≤ Mm ≤ 2.5 3.0 ≤ Mm ≤ 3.5 

b 0.72 0.81 

a 2.4 2.3 

Modified Omori   

t 1 day 1 day 

p 0.70 0.73 

c 20 20 

Density law   

q 1.34 1.34 
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Table 8.2: Summary of the parameters used in the probability model        

(CLR mine). 

 

Figure 8.1 gives the aftershock probabilities determined from a stack of       

2.0 ≤ M ≤ 2.5 and 3.0 ≤ M ≤ 3.5 mainshocks calculated using equation 8.6 for 

the VCR mine. Data from the CLR mine shows similar probability behaviour 

(Figure 8.2). 

CLR mine  Input paramete rs  

G-R relation 2.0 ≤ Mm ≤ 2.5 3.0 ≤ Mm ≤ 3.5 

b 0.59 0.57 

a 2.7 1.8 

Modified Omori   

t 1 day 1 day 

p 0.55 0.68 

c 20 20 

Density law   

q 1.37 1.37 
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Figure 8.1: M ≥ 0.0 Aftershock probabilities for VCR mine within 1 day 

following, (a) 2.0 ≤ M ≤ 2.5 mainshocks and (b) 3.0 ≤ M ≤ 3.5 mainshocks) 2.0 

≤ M ≤ 2.5 mainshocks and (b) 3.0 ≤ M ≤ 3.5 mainshocks.. 
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Figure 8.2: M ≥ 0.0 Aftershock probabilities for CLR mine within 1 day 

following, (a) 2.0 ≤ M ≤ 2.5 mainshocks and (b) 3.0 ≤ M ≤ 3 .5 mainshocks. 
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Aftershock probability is dependant on mainshock magnitude and distance 

and less so on time (i.e. probability is remains the same for time scales of 

minutes to hours). The probability increases as the mainshocks magnitude 

increases. Probabilities decrease drastically as the radii distance from the 

mainshock increases.  

 

For 3.0 ≤ M ≤ 3.5 mainshocks, the model shows a 50% probability of one or 

more M ≥ 2.0 aftershocks occurring within 1 day and 0-200 m of the 

mainshock. For the same mainshock magnitudes, probability is four times less 

within 200-400 m of the mainshock. This indicates a high dependency of the 

probability on the distance. A similar behaviour is evident for the data from the 

CLR mine although the probabilities particularly for 3.0 ≤ M ≤ 3.5 mainshocks 

show relatively low values compared to the CLR mine. This may be due to the 

small sample statistics as the small number of high magnitudes mainshocks 

are followed by a small number of aftershocks at that mine.  

 

8.3. Conclusions  

 

The Reasenberg and Jones model for aftershock probability has been 

modified to incorporate the density decay dependency of aftershocks on 

distance. The modified model gives the probability by considering all the 

parameters defining an aftershock sequence namely; the initiating mainshock 

magnitude, aftershock magnitude, time of aftershocks following the 
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mainshock and the distance decay of aftershocks. The model also 

incorporates all the relation defining aftershock sequences namely; the 

Gutenberg-Richter relation, Modified Omori law and the density law. The 

probability increases as the mainshocks magnitude increases and decrease 

with increasing distance from the mainshock. The high probability within         

0 – 200 m of the mainshocks could be influenced by the fact that 200 m is 

within the source region for mainshock magnitudes considered with their 

approximate source length given by 1
2

log10 +≈ M
Ls , where Ls is the source 

length in metres (Jager and Ryder, 1999, pg. 251). 
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CHAPTER 9. AFTERSHOCK PRODUCTIVITY 

 

9.1. Introduction 

 

Productivity of an earthquake relates to the amount of seismicity following the 

initiating mainshock. Persh and Houston (2004), in a study of deep crustal 

earthquakes, found that aftershock productivity showed a dependency on 

mainshock depth. In their study, productivity showed a decrease around 300 

km and increased abruptly at around 550 km. These changes were correlated 

to a change in earthquake generation mechanism near 300 km depth and a 

major change in the rupture mechanism at around 550 km (Persh and 

Houston, 2004). 

 

Yang and Ben-Zion (2009) found that for seismogenic zones with similar 

lithology, aftershock productivity showed an inverse relationship with mean 

heat flow (Figure 9.1). 
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Figure 9.1: Dependency of aftershock productivity on mean heat flow for 5 

regions in Southern California. 

(From Yang and Ben-Zion (2009)). 

 

Aftershock productivity is a useful parameter as it gives a measure of the 

anticipated seismicity following a mainshock. Mining provides a more 

controlled environment than natural tectonics and this enables us to study the 

influences of stresses, strains and geological features (faults and dykes) on 

aftershocks. It is known that seismicity has a dependency on these conditions 

(Ryder and Jager, 2002, pg. 254, Jager and Ryder, 1999, pg. 16). High ERR, 

high strain rates and geological features tend to increases seismicity. This 

chapter is focused on studying the dependency of aftershock productivity on 
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these mining conditions. This study is carried out to give insight into the 

science of the physical generation processes of aftershocks and the 

engineering implications of it. 

 

To study the influences of these conditions, mainshocks were separated into 

three subsets defined by the mining conditions; 

• Stress influences, 

• Strain rate influences, 

• Geological discontinuity influences. 

 

In each subset mainshocks were divided into two groups based on their 

location with reference to the three conditions above. In each categorisation, 

mainshocks were divided into two contrasting groups (e.g. high stress 

environment versus low stress environment) based on their locations for each 

of the three conditions. These categorisations of mainshocks enable us to 

study the influence of the conditions on aftershock productivity. To study the 

stress influence, mainshocks locating in high stress environments are 

separated from those locating in low stress environments (Figure 9.2(A)). To 

study the strain influence, mainshocks locating at high strain environments 

(active faces) are separated from those locating in low strain environments 

(stationary faces) (Figure 9.2(B)). The influence of geological features is 

studied by separating mainshocks based on their proximity to geological 

features (Figure 9.2(C)). 



74 

 

The productivity of a mainshock is measured by the constant K of the 

Modified Omori law (equation 2.6). Productivity is then compared for the two 

mainshock populations of each subset to study its dependency on those 

mining conditions (Figure 9.2). In figure 9.2 (A), mainshock circled with a red 

colour is located in high a stress environment while those circled with a blue 

colour are located in a low stress environment. In figure 9.2 (B), mainshocks 

circled with a red colour are located in actively mined faces while that circled 

with a blue colour is located in a stationary face. In figure 9.2 (C), mainshocks 

circled with a red colour are located in close proximity of a dyke and a fault 

while those circled with a blue colour are located away from dykes and faults. 

  A B C
Low stresses

High stresses

High strain rates

Low strain rates

Close to geological features

Away from geological features

dykes
Faults

Active 
mining

 

Figure 9.2: Subsets defining three mining conditions. (A) Stress influence (red 

and blue colour represent high and low stress conditions respectively), (B) 

Strain rate influence (blue colour represent active mining) and (C) Geological 

discontinuity influence. 
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The division of the two mainshock populations is based on the median value 

giving the condition parameter (e.g. median ERR value of mainshocks). The 

median is preferred as it divides the mainshocks into equal populations. 

Figure 9.3 demonstrates the mainshock division based on the median ERR 

value. Population 1 represents mainshocks locating at high stressed faces 

and population 2 represents mainshocks locating at low stress faces. Also 

shown on the figure is the apparent stress of the mainshocks, computed using 

the equation; 

0M
WG R

A =σ  (9.1) 

Where G = 3.0 ×1010 Pa is the average modulus of rigidity of the rock types at 

the two reefs (Milev and Spottiswoode, 2002, Spottiswoode et. al., 2008), WR 

and M0 are the released seismic energy and seismic moment of the 

mainshock. Apparent stress is a measure of the dynamic stress release 

during the occurrence of an event (Ryder & Jager, 2002, pg 221). Population 

1 shows a decrease in apparent stress with increasing ERR, while population 

2 shows a constant apparent stress (each data point represents an apparent 

stress value averaged over 24 mainshocks) with increasing ERR values. The 

difference in apparent stress between the two populations gives a physical 

parameter that distinguished the two populations.  
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Figure 9.3: Division of mainshocks into two populations to study the influence 

of geological discontinuities on aftershock productivity.  

The median distance of mainshocks from geological features is used to define 

the two mainshock populations. 

 

In figure 9.3, the two population groups are defined by computing the median 

ERR value (10.6 MJ/m2) of the mainshocks. This median ERR value divides 

the populations into two equal percentages of mainshocks (shaded areas in 

figure 9.3).  

 

The extraction of rock as mining progresses results in stress redistributions 

from mined out to un-mined ground. These energy changes lead to high 

stress concentrations particularly at mining faces. ERR, measured in MJ/m2 

provides a measure of these energy changes and stress concentrations. ERR 
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generally measures the severity of mining conditions, particularly the stress 

concentrations at mining faces (Ryder and Jager, 2002, pg. 229,233). In some 

studies, ERR was found to show a positive correlation with seismicity (Jager 

and Ryder, 1999, pg. 48). 

 

ERR is calculated by considering the extraction of an area ∆A from a 

horizontal stope with a resulting volume change ∆V from overlaying strata 

sag.  The change in the potential energy of the overlaying strata is given by  

qv∆V, where qv is the virgin vertical stress. For mining with no backfill or any 

considerable support, one-half of the energy change is stored as strain energy 

in the rockmass. The other half is released in different forms such as shearing 

and heating. This released energy is called the Energy Release Rate and 

given by: 

A
VqERR v ∆

∆=
2

1
 

(9.2) 

Although ERR presents a measure of expected mining conditions, it suffers 

major shortcoming associated with local geological conditions. ERR is 

insensitive to geological discontinuities which are often found in the rockmass 

and are associated with increased levels of seismicity.  
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9.2 Results and discussions 

 

Following the method by Yang and Ben-Zion (2009), productivity K is 

determined by integrating equation 2.6 and given by the slope of the line 

(equation 9.3). Linearization of equation 2.5 assumes p=1. 

1)]ln()[ln()( 0 =+−+= pctctKtN K  (9.3) 

where t0 is the initial time. 

It was found that the assumption is valid as mine tremor aftershocks have          

p-values of about 1 (Figure 9.4). The assumption that p=1, is validated by 

computing the confidence interval of p. The interval is computed by linearising 

equation 2.6 where logarithms are taken on both sides of the equation. This 

allows for p to be determined from the slope of the curve using the method of 

least-squares and the confidence interval to be constructed. The confidence 

interval of least-squares estimate 

∧
p  of the aftershock decay is given by; 

],[ 22 −

∧

−

∧

∧∧ +− n
p

n
p

TspTsp  
(9.4) 

where 
∧
p

s
is the standard deviation of 

∧
p , n is the number of data points and 

2−nT
 is the Student’s t-value with n-2 degrees of freedom. The standard 

deviation of 

∧
p  is given by; 
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(9.5) 

where it
 is the time of occurrence of aftershocks, 

_

t  is the mean time of 

occurrence and 
2

iε
 is the square of the residuals of the aftershocks event rate. 

The computed standard derivation gives a confidence interval of (0.82, 1.19) 

at the 95% confidence level which validates the assumption. 

M ≥ 0.0 Aftershock decay rate
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p =1.01 ± 0.11

 

Figure 9.4: M ≥ 0.0 aftershock decay rate following 2.0 ≤ M ≤ 3.0 mainshocks.  

 

Figure 9.5 shows the cumulative seismicity (normalised to the number of 

mainshocks) used for the determination of K. The green curve gives the 

cumulative data (sum of aftershocks and background data). At later times 
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(gray area), the background dominates the aftershock data such that equation 

9.2 alters to equation 9.6 which includes the background term tβ (blue 

curve).  

tctctKtN β++−+= )]ln()[ln()( 0  
(9.6) 

The background grows exponentially on the logarithmic scale due to its 

constant behaviour on a linear scale. To obtain a more confident fit, data is 

de-trended by removing the long-term average background (blue curve) to 

obtain the de-trended aftershock data (red curve, Figure 9.5). 

Aftershock productivity 
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Figure 9.5: Aftershock productivity within 1000 m and 1 day following M ≥ 2.0 

mainshocks. 

The green curve represents the cumulated data, the blue curve represents the 

background data and the red curve represents the de-trended aftershock 

data. 
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Figure 9.6 shows the comparison of aftershock productivity for high stress 

versus low stress environments, as measured by ERR. The two mainshock 

populations are separated from each other based on the median ERR value 

of 9.4 MJ/m2 and 10.6 MJ/m2 for VCR and CLR mines respectively. 
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Figure 9.6: Aftershock productivity dependency on stress environments. 

 

Productivity K, given by the slopes of the curves shows a similar value for the 

two contrasting mainshock populations. Figure 9.7 shows a similar 

relationship between aftershock productivity and proximity to geological 

features.  
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Figure 9.7: Aftershock productivity dependency on geological discontinuities. 

 

Mainshocks near actively mined faces are in a high strain rate environment 

while mainshocks locating further from actively mined faces or in stationary 

faces are in a low strain environment. As a proxy for strain rate, the distance 

to the face (D) was used. This consistency was also noted when considering 

the dependency of productivity on strain rates (Figure 9.8). 
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Figure 9.8: Aftershock productivity dependency on strain environments. 
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To investigate whether the difference in the similar values of the slopes of the 

contrasting populations are statistically significant, the confidence intervals 

associated with the least-squares estimate of the productivity K are computed. 

The confidence interval of the least-squares estimate 
∧

K  of productivity is 

computed using the equation similar to 9.3; 

],[ 22 −

∧

−

∧

∧∧ +− n
K

n
K

TsKTsK  
(9.7) 

where ∧
K

s is the standard deviation of 
∧
K , n is the number of aftershocks and 

2−nT  is the Student’s t-value with n-2 degrees of freedom. The standard 

deviation of 
∧

K  is given by; 
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(9.8) 

where ix  is the time of occurrence of aftershocks, 
_

x  is the mean time of 

occurrence of aftershocks and 
2

iε  is the square of the residuals of the 

normalized cumulated aftershocks. The table 9.1 summarizes the results of 

the comparisons. The confidence intervals of the slopes are computed at the 

95% confidence level. 
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Table 9.1: Statistical comparison of aftershock productivity for contrasting 

mining environments. 

Orebody   VCR  CLR 

  n 95% confidence interval of K n 95% confidence interval of K 

643 < 9.4 0.163 ≤ 0.164 ≤ 0.165 769 < 10.6 0.164 ≤ 0.165 ≤ 0.166 ERR 

(MJ/m2) 683 > 9.4 0.154 ≤ 0.158 ≤ 0.162 769 > 10.6 0.106 ≤ 0.107 ≤ 0.108 

739 < 51.0 0.188 ≤ 0.190 ≤ 0.192 792 < 43.0 0.142 ≤ 0.143 ≤ 0.144 
Geol (m) 

684 > 51.0 0.143 ≤ 0.145 ≤ 0.147 733 > 43.0 0.132 ≤ 0.133 ≤ 0.134 

686 < 46.3 0.170 ≤ 0.173 ≤ 0.176 643 < 26.1 0.135 ≤ 0.136 ≤ 0.137 
D (m) 

748 > 46.3 0.193 ≤ 0.195 ≤ 0.197 796 > 26.1 0.123 ≤ 0.124 ≤ 0.125 

 

Comparisons based on the confidence intervals of the slopes show that 

although the productivity is not highly influenced by the mining environment, 

the productivity is however statistically different when compared at a 95% 

confidence level. Productivity of mainshocks locating in environments with 

values less than the median value of the parameter tend to have a 

significantly higher slope. The only exception is the comparison between the 

slopes of the strain environments at the VCR where the slope is higher for 

mainshocks locating further away from actively mined faces. 

 

The results obtained are rather unexpected as they suggest that the number 

of aftershocks following a mainshock is not highly dependant on the 

conditions of which the mainshocks locates. As an example, the results imply 

that approximately the same number of aftershocks will follow the mainshock 
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whether the mainshock locates far from or in close proximity to geological 

features. 

 

Productivity can also be measured as the proportion of aftershocks in the 

entire recorded seismic catalogue. To measure what percentage of the 

seismic catalogue are aftershocks, aftershock proportion is determined with 

reference to the 3× and 10× background rates. Equation (9.9) is used to 

determine the aftershock proportion. 

Where tA is the time taken for the aftershock decay rate to reach 3× and     

10× the background rate, NA is the number of aftershocks occurring within tA 

and Ntotal is the total number of seismic events in the catalogue (Table 3.1). 

The following tables give the proportion of aftershocks in the total catalogue 

with reference to the 3× and 10× the background rates. 

 

 

 

 

 

 

 

 

total
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(9.9) 
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Table 9.2 : Proportion of aftershocks (VCR mine) 

1.0 ≤ M ≤ 2.0 NA(tA)  Proportion of aftershocks (%)  

3 × BG 124 0.96 

10 × BG 67 0.55 

2.0 ≤ M ≤ 3.0   

3 × BG 88 0.40 

10 × BG 47 0.23 

3.0 ≤ M ≤ 4.0   

3 × BG 39 0.15 

10 × BG 22 0.12 

 

Table 9.3: Proportion of aftershocks (CLR mine) 

1.0 ≤ M ≤ 2.0 NA(tA)  Proportion of aftershocks (%)  

3 × BG 198 1.21 

10 × BG 114 0.65 

2.0 ≤ M ≤ 3.0   

3 × BG 84 0.86 

10 × BG 49 0.46 

3.0 ≤ M ≤ 4.0   

3 × BG 31 0.38 

10 × BG 25 0.21 

 

Table 9.3 shows that for 2.0 ≤ M ≤ 3.0 mainshocks, 0.86 % of the seismic 

events are aftershocks with reference to the 3 × the background rate. For     

3.0 ≤ M ≤ 4.0 mainshocks, 0.38 % of the seismic events are aftershocks with 
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reference to the 3 × the background rate. A practical implication for these 

tables would be for example, if re-entry times are postponed until the hazard 

declines to 3 × the background reference levels, then 0.86 % of the seismic 

hazard posed by aftershocks would be avoided. 

 

9.3. Conclusions 

 

Unexpectedly, aftershock productivity shows no dependency on the three 

mining conditions investigated. This is shown by a similar value of the slope of 

the curves (giving the aftershocks productivity) compared for the two 

contrasting populations. Although the statistical comparison shows a 

significant difference between the productivity of the contrasting mainshocks 

when compared at the 95% confidence level, productivity is not highly 

influenced by these mining parameters. These results are unexpected when 

considering the fact that seismicity depends on ERR, strain rates and 

geological discontinuities and that mining close to geological structures tend 

to increase the level of seismicity (Jager and Ryder, 1999, pg 51). 
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CHAPTER 10. CONCLUSIONS AND FURTHER RESEARCH 

 

A methodology of accessing the seismic hazard posed by aftershock following 

larger seismic events has been developed by consideration of statistical and 

deterministic analysis of mine tremor aftershocks. Statistical analysis 

considered the statistical properties of aftershocks. Mine tremor aftershocks 

obeyed the empirical relations; Gutenberg-Richter frequency-magnitude, 

Modified Omori law and the density law, same as natural earthquakes do. 

However, Båth’s law was violated and the violation found to be manifested in 

the mining geometry, particularly the panel length. It was also found that 

generally the mining geometry also tends to limit the maximum aftershock 

magnitude to less than 4.0, as shown by the frequency-magnitude relation 

analysis. 

 

Deterministic analysis was performed in order to study the dependency of 

mine tremor aftershocks on mining conditions (stresses, strain rates and 

proximity to geological features (faults and dykes)), particularly the 

productivity. It was found that aftershock productivity is not highly influenced 

by local stresses, strain rates and proximity to geological features.  

 

Using the statistical properties of aftershocks, time periods following the 

mainshocks where the seismic hazard has decreased to background levels 

were estimated. These time periods can be used to postpone re-entry to 
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working areas following the evacuation of underground personnel after the 

occurrence of a larger seismic event. In the case where the event occurs 

while people are in their working areas, it is recommended that people should 

take cover at safer areas or closest support structures. 

  

Further research is needed in understanding the physical mechanisms 

governing aftershock generation and triggering. Phenomenon like the            

bi-modal nature (two different b-values for the same dataset) of mine events 

still requires further research and understanding of the physics behind its 

occurrence. Understanding of stress perturbations due to the mainshock also 

needs further research in order to give insight to aftershock triggering 

mechanisms in the near and far fields. 
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