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ABSTRACT 

 

This work aims to provide an introduction to the methodologies used for determining the 

loss distribution of a heterogeneous portfolio of credit default swaps. For all the methods 

considered, the theory and the algorithms are presented and their computational efficiency 

and accuracy investigated. The loss distribution is then used to value synthetic CDO 

tranches. The multi-step and the default-time approach are the primary methods 

considered. For the multi-step approach, three approaches in the literature to the 

computationally demanding task of obtaining the default thresholds are compared. A 

synthetic CDO tranche was then evaluated and it was found that the choice of method 

used to determine the default thresholds is significant. The default-time approach was 

found to be computationally more efficient than the multi-step approach though with 

significant differences in the tail region of the loss distribution. Both these approaches 

rely on Monte Carlo simulation, which is computationally inefficient. Semi-analytic 

approximations to the default-time approach are considered. These are the numerical 

inversion of the characteristic function, exact recursion and the compound Poisson 

approximation. A unique presentation that aids in the understanding and implementation 

of the numerical inversion of the characteristic function is given. The approximation 

techniques though computationally more efficient than Monte Carlo, are not as accurate.   
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Chapter 1 

Introduction 

This research is concerned with the computational techniques used to obtain the 

probability distribution of losses that are incurred when corporate bonds, bank loans or 

any other asset default within a portfolio.  These assets (from the investors’ perspective) 

are risky in that their return is uncertain. Risk-free assets in this context are bonds issued 

by a government in its own currency. The loss distribution is essential for the valuation of 

synthetic collateralised debt obligations (CDOs).   

The innovations for the pricing of credit risk have primarily emanated from financial 

economics. Financial economics is the interaction of three distinct branches of financial 

risk quantification: mathematical finance, asset-pricing models and corporate finance 

(Whelan et al, 2002). Whelan et al. (2002) also highlights the importance of financial 

economics to the actuarial profession.  

This introductory chapter is organised as follows. Section 1.1 introduces the notion 

of credit risk and default risk in particular.  In section 1.2 the basic building block of the 

credit derivatives industry, the credit default swap, is introduced and in section 1.3 a 

general description of a CDO is given. An important distinguishing characteristic of a 

CDO is the effect of default correlation.  By means of a simple example, section 1.4 

demonstrates the importance of default correlation. Section 1.5 provides a rigorous 

description of the fundamental pricing problem of this research. As will be elucidated in 

subsequent chapters, actuarial science has made a contribution to the understanding of 

credit risk in general. Section 1.6 provides such an example where computational 

efficiency and accuracy is discussed. The chapter concludes with an overview of the 

subsequent chapters of this dissertation.  

1.1 Credit Risk 

Duffie & Singleton (2003) provide a definition of credit risk: 
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Credit risk is the risk of default or of reductions in market 
value caused by changes in the credit quality of issuers or 
counterparties. 

This is a broad definition of credit risk. This research deals with the risk of default.  The 

other type of credit risk the definition alludes to could be interpreted as changes in the 

credit spread of the company’s debt.  The credit spread is the excess in interest paid by 

the corporate over that paid on equivalent risk-free debt.  

1.2 Credit default swaps   

Credit derivatives are a means of transferring credit risk between two parties by means of 

bilateral agreements. Arvanitis & Gregory (2001) define a ‘credit default swap’ (CDS) as 

a bilateral contract in terms of which an entity buys default protection or insurance with 

respect to a default event from another, on a predetermined notional amount. The 

protection buyer will make periodic payments. In return the protection seller will make a 

payment to compensate the buyer if the credit event does occur. The contract has a given 

maturity, but will terminate early if default occurs. In the event of default, the contingent 

amount paid to the buyer is adjusted by a recovery rate; this amount is called the ‘loss 

given default’. This is the amount that the buyer is able to recoup. Credit events other 

than default are defined by the International Swap and Derivatives Association 

(Schönbucher, 2003).  

1.3     Risk-neutral vs historical default probabilities 

The choice of risk measure to use when valuing credit-risk-related instruments such as 

CDSs depends on the objective (Bluhm et al, 2003). For economic capital or risk-

management valuations historical probabilities is the appropriate probability measure. If it 

is pricing or hedging credit-related securities, then the model is constructed under the 

risk-neutral probability measure. Under the risk-neutral measure all individuals are 

indifferent to risk. They require no compensation for risk and the expected return on all 

securities is the risk-free rate. For credit derivative instruments risk neutrality is achieved 

by calibrating the default probabilities of individual credits with market-implied default 
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probabilities obtained from bond or CDS spreads. The actual procedure is given in 

chapter 3. 

1.4 Collateralised debt obligations  

Bluhm & Wagner (2004) provide a description. A CDO is a financial structured product 

with two main components, namely an asset leg and a liability leg. The first step in the 

creation of a CDO is to establish a legal entity, called a special purpose vehicle (SPV), 

which could be a company, trust or partnership, and which is termed the ‘issuer’. This 

entity is designed to be unaffected by the survival or otherwise of the originator of the 

assets and is thus termed ‘standalone’ or ‘bankruptcy remote’. In a cash or funded CDO 

the SPV buys assets from the originator and funds itself by the issuance of securities, 

which are the SPV’s liabilities. The asset leg always consists of a pool of credit-risky 

instruments, e.g. bonds, loans or CDSs. The securities issued to investors are divided into 

tranches or blocks of securities that have different risk levels. The investor who buys the 

riskiest security issued by the SPV will earn the highest running yield.  

The two components of a CDO are connected by means of a legal document 

describing the link between the performance of the asset leg and the performance of 

tranched securities at the liability leg of the CDO. The performance of a CDO is best 

illustrated with a cash-flow transaction. The available proceeds from the underlying assets 

are distributed at the liability leg according to rules defined in the structural 

documentation of the deal. If the asset pool underlying the CDO performs, i.e. no losses 

occur, then investors at the liability leg will receive the full promised coupon written on 

the tranche and a full repayment of their invested capital. But if defaults occur at the asset 

leg resulting in a loss, then typically some investors will lose money, either in the form of 

a reduced repayment of invested capital or of a reduced interest payment on their 

investment. The overall net return to tranche investors attains its maximum if the asset 

pool performs at its best, but decreases accordingly, if the credit risk inherent in the asset 

pool leads to defaults and losses. Further descriptive material on cash and synthetic CDOs 

may be found in Goodman & Fabozzi (2002). Synthetic CDO trading has increased since 

the inception of the iTraxx and iBoxx standardised tranche indices produced by the 
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International Index Company (Andersen & Sidenius, unpublished). These indices are an 

amalgamation of underlying CDSs in various regions and industrial sectors.  

1.5 The importance of default correlation 

The example of Andersen & Sidenius (unpublished), provides a simple explanation on 

why default matters. Consider a pool of assets with 100 companies, each of which has a 

probability of default of 2% over the next year. In the first special case, all the companies 

are completely independent, implying a default correlation of zero. In this case the 

probability that a CDO will experience some credit loss over the next year is given by the 

binomial distribution and is 

( )100
1 1 0.02 86.7%.− − =  

The probability of a loss in the case of perfect correlation is 2%. Thus the 

probability that an equity (or synonymously ‘junior’ or ‘first-loss’) tranche investor 

suffering a loss is lower in the case of perfect correlation. In general, the lower the default 

correlation, the greater the cost to insure the equity tranche against default. 

1.6 Pricing CDOs   

The following description of synthetic CDOs is based on De Prisco et al. (2005).  A 

synthetic CDO is a CDO whose underlying assets are a portfolio of CDSs. In this instance 

the issuer of the CDO is the credit protection seller. In return for selling the credit 

protection the issuer receives periodic premiums. To offset the issuer’s risk from these 

CDSs, part of the total premiums received is allocated to tranches of the CDO. There is a 

priority scheme for the tranches to absorb the portfolio losses, up to a fixed, maximum 

amount for each tranche. Losses are based on the recovery-adjusted CDS notional values 

or the loss given default amounts. The buyer of one or more of these tranches sells partial 

protection to the issuer, by agreeing to absorb up to the set amount of the portfolio’s 

losses, in exchange for periodic premium payments.   

0 1Let t 0, , , nt t T= =…  denote the premium dates, T denoting the maturity of the 

CDO, and let ( )B t  be the risk-free discounting factor at time t . Let iN  and iR denote the 
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notional amount of credit i and its recovery rate, respectively. The recovery rate is the 

amount that is recovered in the event of default. The defaulted asset does not necessarily 

have zero value. It is assumed that the recovery rates are constant. If the ith credit is in 

default, then the amount ( )1 i iR N− , is called the ‘loss given default’.   

For the purposes of this research, a portfolio of CDSs with identical losses given 

default, identical default correlations and identical risk-neutral default probabilities is 

termed ‘completely homogeneous’. If only losses given default are identical, then the 

portfolio is termed ‘homogeneous’. In all other cases, the portfolio is termed 

‘heterogeneous’.  The minimum value of each tranche is called the ‘attachment’ point and 

the maximum value is called the ‘detachment’ point. The tranche size is equal to the 

detachment point less the attachment point. The CDO that is considered in this 

dissertation consists of three tranches, into which the portfolio’s losses are absorbed in 

accordance with the size and seniority of the tranches. Let ,  and E M SN N N  denote the 

increasing detachment points for a three-tranche CDO. The intervals [ )0, EN , 

[ ),E MN N and [ , ]M SN N  are called the equity (or first loss), mezzanine and senior tranche 

respectively.  

The portfolio cumulative loss at time t  is denoted by ( )L t . For the purpose of this 

illustration, a single tranche of size S , above the detachment point LN  will be 

considered.  The total loss for this tranche is given by ( ) ( )( )( )min max ,0 ,LL t L t N S∗ = − . 

Let E  denote the risk-neutral expectation. At inception, the sum of the expected value of 

the discounted premiums or fair tranche spread for maturity T , Ts , is equal to the sum of 

the expected value of the discounted losses. This is expressed as  

( )( ) ( ) ( ) ( )
11

1 1
i

n n

T i i i i i i
i i

s t t S L B t L L B t
−

∗ ∗ ∗
−

= =

⎡ ⎤⎡ ⎤ ⎡ ⎤− − = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑E E E  

where  ( )i iL L t∗ ∗=  and 0 0.L∗ =  Solving for Ts  yields the fair tranche spread:     
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( ) ( )

( )( ) ( )

1
1

1
1

.
i

n

i i
i

T n

i i i i
i

L L B t
s

t t S L B t

−

∗ ∗

=

∗
−

=

⎡ ⎤⎡ ⎤ −⎣ ⎦ ⎣ ⎦
=

⎡ ⎤− − ⎣ ⎦

∑

∑

E E

E
 (1.1) 

The determination of the mean absorbed tranche E iL∗⎡ ⎤⎣ ⎦  and the tranche spread as 

per equation (1.1) is the focus of this research. 

In Figure 1.1 a pictorial description is given for a typical credit loss distribution of 

the equity, mezzanine and senior (or last loss) tranches.  Attention is drawn to the most 

risky tranche (first loss) and the least risky tranche (the last loss). The equity-tranche 

investor would expect to receive a higher coupon payment than that received by the 

senior-tranche investor.  

Total losses

Pr
ob

ab
ili

ty

first loss mezzanine
loss

last loss

 

Figure 1.1 The loss distribution and the respective tranches 

 

1.7   Computational efficiency and accuracy 

The main objective of this research is to evaluate the fair tranche spreads of 

heterogeneous CDO portfolios, using different techniques. The results of these different 

methods are then compared with each other with respect to their accuracy and 

computational efficiency.  The importance of computational efficiency was stressed by 

Boyle, Broadie & Glasserman (1997): 
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In practice, the evaluation of price sensitivities is often as 
important as the evaluation of the prices themselves. 
Indeed, whereas prices for some securities can be observed 
in the market, their sensitivities to parameter changes 
typically cannot and must therefore be computed. Since 
price sensitivities are important measures of risk, the 
growing emphasis on risk management systems suggests a 
greater need for their efficient computation. 

In most instances there is a trade-off between accuracy and computational 

efficiency. From a trading perspective both objectives are important and given the 

movement of interest rates and credit spreads the synthetic CDO tranches need to be 

evaluated speedily and accurately. Thus the impetus of researchers has been to determine 

fast and accurate methods.   

The use of Monte Carlo simulation to verify the accuracy of new valuation 

techniques or financial products has its roots in actuarial science. The pioneer of the 

technique in finance was Phelim Boyle. In the following extract of an interview the use of 

Monte Carlo to test the accuracy of another technique and its origins are covered.  

‘The way I picked it up was sitting for the actuarial exams – 
not the only way to learn it, and maybe not the best but it 
was there’. When Boyle was sitting for his actuarial exams 
in the late sixties Monte Carlo wasn’t actually ‘part of the 
toolkit’. The British uber-actuary Sidney Benjamin was a 
one-man pressure group for the adoption of the technique. 
At the time Boyle was at Irish Life, Monte Carlo was far 
from the industry practice, but it was in part in the exams ‘It 
was quite enlightened of them,’ muses Boyle ‘because 
usually with these professional exams they only teach you 
stuff that’s needed today – it was fortuitous that they 
included it in the exams.’  

Eduardo Schwartz needed his PDE (partial differential 
equation) checked – Monte Carlo was, to Boyle – if to no 
one else – an extremely viable tool ‘The idea’s so simple, 
you’ve seen it you remember it – you don’t need a big 
sophisticated course to learn it. Eduardo’s PDE took weeks 
to write, he didn’t need Monte Carlo to price the option. 
But Monte Carlo was a quick and dirty technique to check 
the results of the PDE – because it was so flexible.’  
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 (Tudball, unpublished). 

1.8   Outline of this research 

This dissertation is organised as follows. A survey of the literature on credit risk, 

particularly the valuation of CDOs, is reviewed in chapter 2. Also in chapter 2, the 

contribution of this research to the literature is stated. An essential ingredient necessary 

for the valuation of CDOs is the default probabilities of the individual corporate names 

that comprise the CDO portfolio. A method to extract the default probability from market 

quotes of CDSs is described and implemented in chapter 3. Chapter 4 is concerned with 

one of the first approaches to CDO valuation that appeared in the literature. This 

approach has been found to be computationally too demanding for trading purposes. The 

default-time approach is described in Chapter 5. It is demonstrated that this approach is a 

computationally more efficient simulation technique than the multi-step approach. 

Chapter 6 derives models based on a semi-analytic formulation for the default-time 

approach. These models are evaluated with techniques that should be familiar to 

actuaries. Also in this chapter, a unique presentation is given for the numerical inversion 

of the characteristic function method. This is used to determine the portfolio credit loss 

distribution. The presentation provides a rigorous discussion of the theory and the 

practical implementation of the method from a statistical perspective. This was an 

omission in the literature. The method presented is general enough to be used for known 

and unknown discrete distributions. Terms used for the various approaches to CDO 

valuation are defined in the chapters in which they are discussed. 
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Chapter 2 
Literature review 

The first synthetic collateralised debt obligation was introduced in 1997 (Smithson, 

2004). The rapid growth of the credit derivatives industry (British Bankers’ Association, 

unpublished) and particularly CDOs has led to increased research into efficient methods 

for the pricing and risk management of synthetic CDO tranches.  The resultant literature 

of models is reviewed in this chapter primarily on the criteria of accuracy and 

computational efficiency. The need for accuracy and computationally efficiency was 

captured by De Prisco et al. (2005):  

In principle, a synthetic collateralised debt obligation 
(CDO) can be valued by Monte Carlo methods. This is 
perhaps the most common approach used by practitioners 
today. The problem is that Monte Carlo methods usually 
take a significant amount of time to achieve the required 
accuracy. Hence, while such methods may lend themselves 
to pricing and structuring, they are not appropriate for risk 
management where simulation and stress testing on tranche 
values are required. 

For the purposes of this work, accuracy refers to the absolute or relative error of an 

approximate quantity (e.g. Higham, 1996).   

A brief description of the first models used to analyse single-name credit risk is 

given. This is followed by a description of synthetic CDO tranches. The difference 

between the single-name and portfolio models is that default correlation is taken into 

account. Two distinct simulation-based models are discussed. 

The disadvantage of simulation-based methods is that they are computationally 

expensive. Analytic approaches are then surveyed. The problem of calibrating models to 

market data is then explored. For this purpose, accuracy is considered to be the error 

between the fair value produced by the model and the market quote. Different 

distributional forms are then explored in order to fit the model to market observed tranche 

spreads. Finally, the hedging of synthetic CDO tranches is discussed.   
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The literature is presented in chronological order to highlight the improvement 

with respect to accuracy and computational efficiency, since 1997, in the determination of  

the prices of synthetic CDO tranches.  

This chapter concludes with the contribution of this research to the literature. 

2.1 Credit-risk models 

For the modelling of credit risk two classes of models exist: ‘structural’ and ‘reduced 

form’. The structural approach originated with Merton (1974), who applied the equity 

framework of Black & Scholes (1973) to the valuation of credit risk. Merton’s framework 

is described in the literature as the ‘option-theoretic’ or the ‘firm-value’ approach.  In this 

framework default occurs whenever the value of the firm’s assets falls below the value of 

the firm’s liabilities.  Default is determinable only at the maturity date of the debt. Black 

& Cox (1976) extended the model by allowing for default to occur at any time up until 

the maturity date of the debt. The time of default is specified as the first moment when the 

value of the firm reaches a lower predetermined bankruptcy covenant value or threshold.  

Thus the problem is transformed into an application of the first-passage-time problem as 

described in Feller (1971, chapter XIV). Bielecki & Rutkowski (2002) categorise first- 

passage-time models into those with deterministic interest rates and those with stochastic 

interest rates. Through-out this research interest rates are assumed to be deterministic as 

in Finger (unpublished), Hull & White (2001) and Arvanitis & Gregory (2001).     

In the reduced-form approach, the default event is directly modelled as an 

unexpected arrival; the relationship between the value of the firm’s assets and default is 

not considered explicitly. This class of models is attributed to Jarrow & Turnbull (1992, 

1995) and Duffie & Singleton (1999).  

Both types of models may be extended to the multivariate case. However, ‘hybrid 

models’, which are structural models calibrated to market-implied default probabilities 

are more readily accepted by financial market practitioners because of their mathematical 

tractability in higher dimensions.  The default correlations are obtained from the asset 

correlations. Since asset returns are not directly observable, the common practice is to 

proxy asset correlations using equity correlations.  
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2.2 Default probability estimation 

O’Kane & Turnbull (unpublished) and Arvanitis & Gregory (2001) describe a market 

standard method for the valuation of CDS contracts. Li (1998) utilises the market 

standard CDS valuation equation to ‘bootstrap’ the default probabilities from bond 

spreads or credit default swaps. In the review paper by Luo (2005) three different 

methods for bootstrapping these default probabilities are discussed. A term structure of 

default probabilities is a key input for the valuation of CDOs. 

2.3   Simulation methods  

In Gupton et al. (unpublished) a one-period horizon is considered. We assume that the 

default probability for each asset or entity in a portfolio is known. Each asset in the 

portfolio is assumed to follow a diffusion process. Default occurs when this process first 

crosses a certain threshold.  The ‘threshold’ (Finger, unpublished) or ‘default boundary’ 

(Iscoe & Krenin, unpublished a) or ‘default barrier’ (Avellaneda & Zhu, 2001) is 

determined as the inverse cumulative normal distribution of the default probability. Over 

the single period, for each asset, a set of pseudo-random numbers is drawn from a 

standard normal distribution with zero mean and unit variance. Those that are smaller 

than the threshold value are deemed to have defaulted. This process is repeated to obtain 

the expected loss.  

The multi-step method is described by Finger (unpublished), Hull & White (2001) 

and Arvanitis & Gregory (2001). In this approach a stepwise simulation is required. The 

pool of assets is simulated over the first period, the defaulted assets are tabulated, then 

another simulation is conducted for the next period and defaulted assets are tabulated 

again. This process is repeated over all the subsequent periods until the maturity of the 

contract. In addition default correlation is taken into account. A main numerical challenge 

in implementing the multi-step approach is the determination of the default thresholds. 

For a single period the default boundary is determined as follows. Let 1k  and 1p  denote 

the default threshold and the default probability for a single period respectively. Then the 

default threshold is given by 

( )1
1 1 ,k p−= Φ  
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where Φ  denotes the cumulative distribution function for the standard normal 

distribution. 

Extending this to the multi-period setting, it is necessary to condition on the asset 

not defaulting until the beginning of the next period. This is best illustrated with the 

description of Finger (unpublished).  Let , 1,..,
t
k t T= , denote the default thresholds and 

T  denotes the maturity date of the contract. Each company in the portfolio is modelled 

by a standard Brownian motion (where a rigorous definition is provided in section 4.1.2), 
( )i

t
W with ( )

0
0

i
W = . The instantaneous correlation between distinct companies ( )iW and 

( )j
W  is ρ . The company i defaults in the first period if ( )

1 1

i
W k< . For time 1t > , 

company i defaults in time period t if it has not defaulted during the first 1t −  periods. 

Given that the probability of default in time period t, 
t
p  is known (as these were extracted 

from CDS quotes), we have  

( ) ( ) ( )( )1 1 1 1
...

i i i

t t t t t
P W k W k W k p− −> ∩ ∩ > ∩ < = .  

To determine the thresholds , 2,..,
t
k t T= , the first threshold is ( )1

1
p−Φ , numerical 

integration has to be performed on a t-variate cumulative normal distribution. 

In determining these thresholds, Hull & White (2001) used an analytic approach to 

derive a recurrence relation for the integration. This requires numerical integration as the 

integral is not available in closed form. Arvanitis & Gregory (2001) stated that Monte 

Carlo simulation provides greater accuracy than the analytic method, although it is 

computationally slower. Avellaneda & Zhu (2001) considered a continuous-time version 

of Hull & White (2001). Iscoe & Krenin (unpublished a) used Monte Carlo simulation. In 

their approach the problem was reduced to the sequential estimation of the quantiles of 

the conditional distribution. Cheng (unpublished) compares the approaches of Avellaneda 

& Zhu (2001), Iscoe & Krenin (unpublished a) and a method that is a modified version of 

Zucca et al. (unpublished) but omits a direct comparison with Hull & White (2001) with 

respect to accuracy and computational efficiency.  Cheng et al. (unpublished) reported 

long computational times and less accuracy than that of Iscoe & Krenin (unpublished a) 

in comparison to the scheme proposed by Cheng (unpublished).  
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For the pricing of CDOs two Monte Carlo simulations would then be required: 

one for determining the default boundary and another for determining the time of default. 

The major advantage of the multi-step method is that the asset value of the firm is 

simulated. The credit quality of the firm is then determined as the distance the simulated 

value is away from the default thresholds. The further away the firm value is the better 

the credit worthiness is. However, for the valuation of CDOs only the time of default is 

required, unless changes in credit quality are also required.  

Li (2000) studied the survival time of each asset and defined the default correlation 

between two credit risks as the correlation coefficient between their survival times. A 

copula function is used to link the marginal distributions of survival times. This single-

step approach produces default times directly and provides for greater computational 

efficiency than the multi-step approach albeit with slightly different results than the multi-

step approach. This was analysed briefly in Morokoff (2003). Boscher & Ward (2002) 

applied Li (2000) to the valuation of CDO tranches. Standard and Poor’s have adopted Li 

(2000) as part of their rating methodology. 

2.4   Semi-analytic methods 

Monte Carlo methods are said to be slow for portfolios of assets larger than 100 names 

and suffer from numerical instability or variability when used to determine risk 

sensitivities (Greenberg et al, unpublished). There was an obvious need for an analytic 

method for pricing and risk management.  

Vasicek (unpublished a, unpublished b) devised an analytic method based on 

dividing the individual risk of the company as a sum of two parts: a systemic and a 

specific risk component. This analytic form was based on there being entities in the 

portfolio with equal notional amounts and default probability.   

The systemic risk factor is the risk related to the market or wider economy. The 

specific or idiosyncratic risk factor is related to the asset or entity under consideration. 

Conditional on the systemic factor being constant, the risks are independent, and this 

allows for the development of an analytic formula. In Vasicek (unpublished b) the 

analytic form developed was for the asymptotic case of homogeneous portfolios with 
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infinitely many entities. This version of Vasicek’s formula is used with a homogeneous 

correlation structure as in Greenberg et al. (unpublished). 

However, in practice most CDO portfolios are heterogeneous. Laurent & Gregory 

(2003) extend Vasicek’s approach by allowing for a heterogeneous portfolio by utilising 

the fast Fourier transform (FFT) to invert the characteristic function and reported 

significantly faster computational times with sufficient accuracy.  Wang (1998) 

previously used copula functions and the FFT to determine aggregate loss distributions in 

the insurance context. Andersen et al. (2003) used a recursion technique and reported an 

improvement over the FFT approach. This approach would however be unsuitable for 

large portfolios (Klugman et al, 2004). An omission in the literature is to determine when 

the size of the portfolio becomes too large for recursion-based techniques to be 

computationally efficient relative to competing techniques. Bulhman (1984) establishes a 

limit when the use of the Panjer recursion (Panjer, 1981) for the compound Poisson 

distribution becomes uncompetitive with that of the FFT.  

De Prisco et al. (2005) provided an analytic method based on the compound Poisson 

distribution to determine the tranche loss directly. This method differs from the other 

techniques in that the entire loss distribution is not calculated.  The method used to 

determine the values of the compound Poisson distribution is the FFT. An omission is the 

use of the Panjer recursion technique. De Prisco et al. (2005) and Iscoe & Krenin 

(unpublished b) presented a method to assess computational efficiency and accuracy with 

respect to heterogeneity that is used in this research. Heterogeneity of the asset pool 

affects both accuracy and computational efficiency. 

2.5   Calibration and risks of CDO tranches 

The Gaussian copula has been used to determine implied correlations from the tranched 

Itraxx or iBoxx indices (Marshal et al, unpublished). This is similar to extracting the 

volatility using equity prices and the Black & Scholes (1973) model.  The correlations 

implied by the observable prices of junior and senior tranches are generally higher than 

that needed to match the prices of mezzanine tranches, a phenomenon known as the 

‘correlation smile’.  The main explanation for this phenomenon is the lack of tail 

dependence of the Gaussian copula (Kalemanova, unpublished).   
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Hull & White (2004) fit a so called ‘double t’ copula, when both the systemic and 

specific factors have a t-distribution, to observed market spreads. Kalemanova et al. 

(unpublished) proposed using the normal inverse Gaussian as a computationally more 

stable and efficient solution than the double-t distribution. 

Gibson (unpublished) demonstrated by the use of a single factor Gaussian copula the 

amount of leverage in CDO tranches and the risks of CDO tranches to the business cycle.  

2.6   Actuarial science and credit risk 

The life-assurance and general-insurance branches of actuarial science are concerned with 

the losses incurred when an event such as death or accident materialises. In credit risk, the 

main event that triggers a loss is the default of the company or entity. This could be the 

non-payment of a coupon payment on a bond or loan. Li (2006) highlighted the prior and 

potential contribution of actuarial science to the field of credit risk: 

The modelling of default events using survival time 
distribution is very similar to the modelling of the death of 
a human life. A credit curve, which describes the term 
structures of default probabilities for an obligor, is very 
much like a mortality table. Pricing a default swap is not 
much different from pricing a life insurance contract. Some 
delicate issues, such as premium accrual or refund, have 
been well studied in basic actuarial textbooks, while some 
popular models like the one in Bloomberg are still based on 
some simple assumptions on the timing of default. The 
current popular credit portfolio model using copula 
functions (Li, 2000) was borrowed from the actuarial work 
of pricing joint-life annuity [sic] by considering the 
phenomenon of ‘‘broken heart’’ (Frees, Carriere, and 
Valdez, 1996). All efficient computational methods of a 
credit portfolio loss distribution under the framework of 
copula functions, such as the Fourier transformation, 
recursion or conditional normal approximation, have all 
been ‘‘reinvented’’ by credit derivative practitioners while 
they had been extensively studied by actuaries much earlier. 
Duffie and Singleton’s approach (1999) to risky bond 
pricing can be traced back to the recursive formulas for 
insurance reserving by the Hattendorf theorem (1868). In 
fact, the whole reserve issue for illiquid products, and 
various products involving extreme events or ‘‘gap risk’’ in 
credit derivatives, lacks fundamental thinking and rigor  
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compared to what has been achieved in the actuarial science 
area for similar risks . One of the most popular credit 
portfolio models, CreditRisk+ (Wilde, unpublished), was all 
based on actuarial work of the compound Poisson 
distribution approach to loss modelling, and most of the 
formulas in CreditRisk+ are taken directly from the 
actuarial book by Panjer and Willmot (1992).In summary, 
credit derivatives are becoming the ‘‘bread and butter’’ of 
the credit market. Actuaries with a long tradition and 
experience in modelling similar events should be able to 
make more of a contribution to the area, and life insurers, as 
large investors in the credit space, should be more active 
users of the technology. We are looking forward to more 
research papers that cover credit modelling in the future in 
NAAJ. 

 

2.7 Contribution of this research 

They are two categories or models considered in this research; the Monte Carlo and the 

semi-analytic approaches. The Monte Carlo approaches implemented are: 

• the multi-step approaches of Finger (unpublished), Arvanitis & Gregory (2001) 

and Hull & White (2001) as well as three methods to determine the default 

thresholds; and 

• the default-time approach (Li, 2000).  

The semi-analytic approaches implemented are: 

• the numerical inversion of the characteristic function (Laurant & Gregory, 2003); 

• the direct convolution technique via recursion (Andersen et al, 2003); 

• the Panjer recursion (Panjer, 1981) approximation to the compound Poisson 

distribution; and 

• the FFT approximation to the compound Poisson distribution process (De Prisco 

et al, 2005). 
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What has not been addressed in the literature is an overall comparison of the 

performance of the approaches identified above with respect to accuracy and 

computational efficiency using heterogeneous portfolios. 

Another omission that is rectified in this research is a guide to the implementation of 

the models. Typically, the published works omit the algorithms. 

The role of techniques that are typically used in actuarial science is highlighted. 

This research fills the voids identified in the literature. The differences in the models 

are identified and explained. The values obtained using the different techniques are 

compared. The advantages and disadvantages of the models are discussed. 

In addition, using semi-analytic techniques to value CDOs, the impact of 

heterogeneity of CDO portfolios is assessed.    

2.8   Conclusion 

The review dealt with all the major models used for the valuation of synthetic CDO 

tranches since the inception of trading. In the next chapter, the valuation of a CDS is 

described and critically a method to extract default probabilities from market quotes of 

CDSs is provided. 
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Chapter 3 

Credit Default Swaps 

CDSs play a critical role in the valuation of CDOs. They are primarily used to extract 

risk-neutral default probabilities of companies. These default probabilities are used in the 

valuation of market value of CDO tranches, which is the main purpose of this research. In 

this chapter, a valuation method for credit default swaps is given. The process of 

obtaining the risk-neutral default probabilities from CDSs quotes is demonstrated. The 

chapter concludes with the assumption of a constant or ‘flat’ CDS spread and how this 

simplifies default-probability determination.  

3.1   Hazard rate 

Li (1998) provides a method to extract default probabilities from bond spreads. Arvanitis 

& Gregory (2001) extend the approach to extracting default probabilities from CDS 

spreads.   Let T denote a continuous random variable measuring the length of time until 

default for any security. The distribution function F, is denoted by 

( ) ( ) ,  0,F t P T t t= ≤ ≥  

where P is the density function, and set  

( ) ( ) ( )1 ,  0,S t F t P T t t= − = > ≥  

where the function ( )S t  is the survival function. When  ( )0,  0 1.t S= =  The probability 

density function of the default time is defined as 

( ) ( ) ( ) ( )' '

0
lim
t

P t T t t
f t F t S t

t+Δ →

< ≤ + Δ
= = − =

Δ
. 

The hazard rate function gives the security’s default probability over the time 

interval [ ],t t t+ Δ  if it has survived to time x. It is defined as, 

( ) ( ) ( )
( )

( )
( )

.
1 1

F x t F x f t t
P t T t t T t

F x F x
+ Δ − Δ

< ≤ + Δ > = ≈
− −

 

The hazard rate function 
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( ) ( )
( )

,
1

f x
h x

F x
=

−
 

has a conditional probability interpretation as the probability density function of default at 

exact age x, given survival to that time. In actuarial science, the hazard rate is referred to 

as the force of mortality. 

The hazard rate function, the distribution function and the survival function are 

related by 

( ) ( )
( )

( )
( )

.
1

f x S x
h x

F x S x
′

= = −
−

 

The survival function can then be expressed in terms of the hazard rate function using  

( ) ( )
0

exp .
t

S t h s ds
⎡ ⎤

= −⎢ ⎥
⎣ ⎦
∫  

A common assumption is to assume that the hazard rate is constant over certain periods, 

for example [ ], 1x x + . In this case the probability density function of survival time of a 

security is  

( ) ( )exp .= −f t a at  

Bluhm et al. (2003) remark that the hazard rate ( )h t  may be regarded as the 

‘forward default rate’. It is analogous to the forward interest rate with zero-coupon bond 

prices corresponding to survival probabilities. 

3.2   Valuation of credit default swaps 

Once the hazard rate is specified, the probability of default occurring before time t  is 

given by  

( ) ( )
0

1 exp
t

F t h u du
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠
∫ . 

The premium leg of a CDS is defined as a fixed series of cash flows at times                        

1 2, , , nt t t… , which are paid until =nt T  or until default. Let ( )iB t  denote the risk-free 

discounting factor or the price of a risk-free zero-coupon bond maturing at 
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time it  and let TX  denote the CDS premium. Unlike other insurance markets, the 

premium is paid in arrears. In the event of default the protection buyer pays the protection 

seller the accrued premium. The determination of which is discussed in the next section. 

The discounted expected value under the risk neutral measure of the premium leg is  

 ( ) ( ) ( )1
1

.
n

i i T i
i

P t t X B t S t−
=

= −∑  (3.1) 

Similarly, the discounted expected value under the risk-neutral measure of the 

default leg is  

 ( ) ( ) ( ) ( )
0

1
T

D R h s S s B s ds= − ∫  (3.2) 

where R is the recovery rate (Arvanitis & Gregory, 2001). 

This represents the expectation over all possible default times.  It is possible to evaluate 

this expression via numerical integration which is computationally intensive. A simpler 

alternative is to value it approximately by evaluating it at m dates; hence the default leg is 

given by  

 ( ) ( ) ( )1
1

(1 ) −
=

⎡ ⎤= − −⎣ ⎦∑
m

j j j
j

D R F t F t B t . (3.3) 

For the premium leg, the interval used is the time between premium payment dates. 

For the default leg, the time interval )−
⎡
⎣ 1,j jt t  should be as small as possible, to 

approximate the possibility that default can occur at any time. Arvanitis & Gregory 

(2001) use a time-step of 1 day for the default leg, whereas O’Kane & Turnbull 

(unpublished) used a monthly time-step. A comparison of the accuracy of the monthly 

versus daily discretisation is given in section 3.4. For an n-year contract the number of 

daily time-steps would thus be 365 .m n=   

At equilibrium the premium leg and the default legs are should be equal. This is 

given by 

( ) ( ) ( ) ( ) ( ) ( )1 1
1 1

;  and

(1 ) .
n m

i i T i j j j
i j

P D

t t X B t S t R F t F t B t− −
= =

=

⎡ ⎤− = − −⎣ ⎦∑ ∑  



21 

 

    

This enables us to solve for the market premium of a default swap, TX , 

 
( ) ( ) ( )

( ) ( )( ) ( )

1
1

1
1

(1 )
.

1

m

j j j
j

T n

i i i i
i

R F t F t B t
X

t t F t B t

−
=

−
=

⎡ ⎤− −⎣ ⎦
=

− −

∑

∑
 (3.4) 

3.3   Accrued premium 

It has become market practice to pay the default swap premiums in arrears. In equation 

(3.4) the accrued premium is not taken into account. For example, in the event of default 

at time τ , between premium payment dates kt and 1kt + ,  the accrued premium would 

amount to 

1

k
T

k k

t X
t t
τ

+

−
−

. 

Arvanitis & Gregory (2001) derived the following approximation that should be added to 

the premium leg to take into account the accrued premium  

 ( ) ( ) ( )
( ) ( )1

1
1

1

m j Tj
j j j

j
j j

t t X
A F t F t B t

t t

∗

∗ ∗

−
−

=
−

−
⎡ ⎤≈ −⎣ ⎦ −

∑  (3.5) 

where 
j

t ∗  represents the next premium payment date after jt  and 
1∗ −j

t , the last premium 

date after 1−jt . Note that the interval )1
,

j j
t t−
⎡
⎢⎣ is smaller than the interval between premium 

payment dates,  ∗j
t  is the number rounded towards the next premium payment date.  

To determine the market premium which includes the accrued premium, denoted by 
Acc

TX , we use the fact that at inception, the sum of the expected value of the discounted 

premiums and accrued premiums is equal to the sum of the expected value of the default 

losses. This is given by  

.P A D+ =  

Substituting from equations (3.1), (3.2) and (3.5), we obtain: 
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( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1
1

1
1 1

1 1
1

(1 ) .

n
Acc

i i T i
i

Acc
m mj Tj

j j j j j j
j j

j j

t t X B t S t

t t X
F t F t B t R F t F t B t

t t

∗

∗ ∗

−
=

−
− −

= =
−

− +

−
⎡ ⎤ ⎡ ⎤− = − −⎣ ⎦ ⎣ ⎦−

∑

∑ ∑
 

Solving for the market premium yields the following expression: 

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

1
1

1 1
1

1 1
1

(1 )
.

1

m

j j j
jAcc

T
n m j j j j

i i i i j
i j

j j

R F t F t B t
X

F t F t t t
t t B t F t B t

t t

∗

∗ ∗

−
=

− −
−

= =
−

⎡ ⎤− −⎣ ⎦
=

⎡ ⎤− −⎣ ⎦− − +
−

∑

∑ ∑
 (3.6) 

3.4   Default-leg discretisation errors 

The recommendation of Arvanitis & Gregory (2001) to use a time step of one day for the 

default leg is tested against that of O’Kane & Turnbull (unpublished) who recommended 

a monthly approximation. In Table 2.1, direct integration of equation (3.2) is compared 

with that obtained by the discrete approximation of equation (3.3). The hazard rates were 

assumed to be constant over a hypothetical ten-year CDS contract. In addition a 

continuous risk-free rate of 5% p.a. and recovery rate of 30% were assumed.  

Table 3.1: Comparison of the default leg value using a daily and monthly approximation 

versus the continuous case 

Hazard Rate 

(basis points) 

Direct  
Integration 

Daily 

(%) 

Monthly 

(%) 

50 2.69214 0.01 0.21 

100 5.26386 0.01 0.21 

200 10.0676 0.01 0.20 

400 18.4623 0.01 0.21 

 

The error for both the daily and monthly approximation is consistent over the range 

of values. This analysis confirms the conclusion of O’Kane & Turnbull (2003), that given 
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the nearly 30-fold increase in computation necessary for the daily approximation, the 

monthly approximation is reasonable.  

However, for the constant hazard case the direct integration of the default leg yields 

a closed form solution. Let a be the constant hazard rate, T the maturity of the contract, 

R  the recovery rate and r the risk-free rate. Then the following result holds, 

( ) ( )( )1 1
a r T

R a e
D

a r

− +− −
=

+
. 

3.5  Default probability determination 

The observed default swap premiums reflect both the default probability and the recovery 

rate. It is not possible to extract both of these quantities from market quotes. A solution to 

this problem is to use the recovery rates based on studies by rating agencies (Hamilton et 

al, unpublished). An appropriate value is in the range 10-50% (Arvanitis & Gregory, 

2001).   

3.5.1  Bootstrapping default probabilities 

To price a CDS we need the cumulative default probabilities up to time t, ( )F t . The 

standard modelling assumption used to price CDSs, is to assume that the hazard rate is a 

piecewise function of maturity time of the CDS (Arvanitis & Gregory, 2001 and O’Kane 

& Turnbull, unpublished). Assuming that the hazard rates are constant between M 

maturity dates, 1 2[ , ,..., ]Mt t t , the hazard rate function is given by 

( ) [ ]1 0,    ,  1,... ,  where 0.k k kh u h u t t k M t−= ∈ − = =  

A combined hazard rate and time value function, ( )g u , defined as follows, is useful 

for the numerical determination of the hazard rates. Where ( )g u  is defined as,  
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( )
( )
( ) ( )

1 1 1

1 1 1 1 1 2

1 1 2 2 1 2 2 2 3

                                                    if 0
                                  if 

               if 
                                

h t u t
h t h u t t u t

g u h t h t t h u t t u t

< ≤

+ − < ≤

= + − + − < ≤

( ) ( )1 1 2 2 1 1 1

                                  
  if .M M M Mh t h t t h u t t u t− −

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪ + − + + − < ≤⎩

 

Thus,  

( ) ( )1 ig t
iF t e−= − . 

The hazard rates are “bootstrapped”, solving for the hazard rate for the shortest 

period and then using this result to solve for the hazard rate for the next shortest period 

and so on. This procedure is identical to that used to determine the zero-coupon interest 

rate curve (Hull, 2003). In order to implement a bootstrapping algorithm to extract the 

default probabilities, it is useful to rewrite equation (3.6) in terms of survival probabilities 

with the piecewise constant hazard rates, 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1

1

1

1
1

1 1
1

(1 ) j j

j ji

m
g t g t

j
j

T
n m j Th t g t jg t

i i i j
i j

j j

R e e B t
X

t t X
t t B t e e e B t

t t

−

∗
−

∗ ∗

− −

=

′− − −−
−

= =
−

⎡ ⎤− −⎢ ⎥⎣ ⎦
=

−⎡ ⎤− + −⎢ ⎥⎣ ⎦ −

∑

∑ ∑
 (3.7) 

3.5.2   Bootstrapping example 

The CDS quotes given in Table 3.2 (Arvanitis & Gregory, 2001) are to be used to obtain 

default probabilities. A recovery rate of 30% and semi-annual CDS premium payments 

are assumed.  



25 

 

Table 3.2: Data used in the calibration example 

Maturity (years) Market Premium (basis points p.a.) 

0.5 50 

1 60 

3 80 

5 105 

7 120 

10 140 

 

The piecewise hazard rates are obtained by equating TX  in equation (3.7) to the 

market CDS premiums. This entails solving non-linear equations in order of increasing 

maturity. Mathematica and Matlab (which are proprietary numerical analysis software 

packages), have built-in utilities, FindRoot and fsolve respectively. Alternatively, the 

algorithm may be sourced from Kelly (1995), Quarteroni et al. (2007) or Yang (2005). 

The Matlab algorithm, newtons.m of Yang (2005) was used for solving non-linear 

equations (see Appendices).   
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Figure 3.1 Bootstrapped hazard rates based on the data given in Table 3.2 

 



26 

 

Table 3.3: The results from the bootstrapping procedure for the CDS quotes in Table 3.1 

Maturity (years) Hazard rates (%) 

0.5 0.704841 

1 0.985117 

3 1.27544 

5 2.08629 

7 2.34497 

10 2.89385 

3.6   Constant default swap spread case 

An approximation for the hazard rate is derived in this section. Assuming that: 

• the CDS premium is paid continuously; 

• the protection amount is paid at the time of default; 

• the recovery rate is constant; 

• the CDS spread and hazard rate term structures are flat. 

Then,   

 

( ) ( ) ( )

( )( ) ( ) ( )( )
0 0 0

1 exp

1 1 1

T T S
r h

T

r h T r h T
T

X e ds R h hdu B s ds

X e R h e

r h r h

− +

− + − +

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

− − −
=

+ +

∫ ∫ ∫
 (3.8) 

 
( )1

TXh
R

=
−

 (3.9) 

The quality of this approximation is then checked by assuming that all the CDS 

spreads in Table 3.2 are constant for the full ten-year term. The approximated result is 

compared with that obtained using equation (3.7). 



27 

 

Table 3.4 The constant hazard approximated by the two methods. 

CDS spreads 

(basis points) 

Approximation by 
equation (3.5) (%) 

Approximation by  
equation (3.7) (%) 

Absolute deviation 
(%) 

 

50 0.70 0.71 0.01 

60 0.84 0.86 0.01 

80 1.12 1.14 0.02 

105 1.47 1.50 0.03 

120 1.68 1.71 0.04 

140 1.96 2.00 0.04 

 

The approximation developed above appears to be close to the more accurate result 

obtained using equation (3.7).  The maximum deviation is four basis points. 

3.7   Conclusion 

In this chapter the pricing of CDSs has been introduced. Approximations used have been 

explored and have been verified. The critical issue of extracting default probabilities from 

market quotes has been demonstrated. These default probabilities will be used to evaluate 

tranches of a CDO portfolio. That is the subject of subsequent chapters. 
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Chapter 4 

Monte Carlo Methods Part I: The Multi-Step model 

This chapter provides details on the first of two types of models considered in this 

research that use Monte Carlo simulation to determine the aggregate loss distribution over 

a multiple period. The other type of model, based on copula functions, is presented in the 

following chapter. In this chapter the multi-step model of Finger (unpublished), Arvanitis 

& Gregory (2001) and Hull & White (2001) is introduced. This model provides a realistic 

representation of the value of a firm and it is based on the single-period structural model 

of Merton (1974). Default occurs when the value of the firm crosses a default boundary or 

threshold, which represents its liabilities. The determination of the default thresholds is a 

computationally intensive process. Iscoe & Krenin (unpublished a), Hull & White (2001) 

and Morokoff (2003) propose different methods to determine the default boundaries. The 

literature omits an exposition of the implementation of these methods and a direct 

comparison.  In the last section a four-tranche heterogeneous synthetic CDO is evaluated.  

 

4.1      Mathematical review 

In this section a brief review of the essential mathematics used in this chapter is provided.  

4.1.1 Probability space 

A probability space is the triplet ( ), ,ωΩ P  where Ω  is a sample space, ω  is a collection 

(assumed to be an algebra) of events (each a subset of Ω ), and P is a probability function 

with domain ω  (Mood et al, 1974, p.25).  

4.1.2 Brownian motion and geometric Brownian motion 

A standard one-dimensional Brownian motion on [ ]0,T , is a stochastic process 

( ){ },0W t t T≤ ≤ with the following properties: 

i. ( )0 0;W =  
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ii. ( )W t  is a continuous function on [ ]0,T ; 

iii. the increments ( ) ( ) ( ) ( ) ( ) ( ){ }1 0 2 1 1, ,..., k kW t W t W t W t W t W t −− − − are independent 

for any k and for any 0 10 ... ;kt t t T≤ < < < ≤  

iv. ( ) ( ) ( )0,W t W s N t s− −∼  for any 0 .s t T≤ < ≤  

A consequence of (i) and (iv) is that  

( ) ( )0,W t N t∼  

for 0 t T< ≤  (Glasserman, 2004, p79; Baxter & Rennie, 1996, p.48). Brownian motion is 

also called a Wiener process (Baxter & Rennie, 1996, p.50). 

Let 1,..., nZ Z  be independent standard normal random variables. For a standard 

Brownian motion, set 0 0t = and ( )0 0.W =  Subsequent values can be generated as 

follows: 

( ) ( )1 1 1, 0,..., 1.i i i i iW t W t t t Z i n+ + += + − = −  

 

The main deficiency of using a standard Brownian motion for asset price values is 

captured by Samuelson (1965), who also proposes a solution: 

The anomaly apparently came because Bachelier had 
forgotten that stocks possess limited liability and thus 
cannot become negative, as is implied by the arithmetic 
Brownian process. To correct this, I introduced the 
“geometric” or “economic Brownian motion,” with the 
property that every dollar of market value is subject to the 
same multiplicational or percentage fluctuations per unit 
time regardless of the absolute price of the stock. 

For geometric Brownian motion the percentage changes 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2 1 3 2 1

1 2 1

, ,..., n n

n

S t S t S t S t S t S t
S t S t S t

−

−

− − −
 

 are independent for 1 2 ... nt t t< < <  rather than the absolute changes ( ) ( )1 .i iS t S t+ −  
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4.1.3 The multivariate normal distribution 

A multivariate normal distribution ( )μ ΣN ,  is specified by its mean μ  and covariance 

matrixΣ . The covariance matrix may be specified through its diagonal entries 2
iσ  and 

correlations ijρ .  The joint probability density function (pdf) of ( )1,..., Nx x  is given by: 

( )
( )

( ) ( )1
22

1
1

1 1,..., exp
22

μ Σ μ
π Σ

−⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

N

T
X Nf x x x x . 

4.1.4 Generating correlated multivariate normal random variates 

The algorithm to generate random correlated variables according to a multivariate normal 

distribution with the vector of expected value μ  and covariance matrix Σ is: 

Step 1 

Obtain the Cholesky factor for Σ , i.e., an upper triangle matrix such that Σ = TU U . 

Step2 

Generate n independent standard normal variates ( )1
,..., 0,1 .

n
Z Z N∼  

Step 3 

1
, where ,...,

TT
n

X U Z Z Z Zμ ⎡ ⎤= + = ⎣ ⎦  (Brandimarte, 2006). 

4.1.5   Discrete Fourier transforms 

The discrete Fourier and the FFT are discussed. A discrete Fourier transform (DFT) 

transforms one function to another. The main use of Fourier transforms in this research is 

to gain computational tractability via the use of the FFT.  The FFT is a computationally 

efficient implementation of the DFT. The FFT has been used in diverse fields such as the 

enhancement of digital photographs (Bracewell, 2000, p. 281). The discussion in this 

section is based on Cerny (2004, p.164). 
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4.1.5.1   The discrete Fourier transform 

Let 
2i
n

nz e
π

= and 
0 1 1
, ,...,

n
a a a −  be a sequence of n numbers. The DFT of 

0 1 1
, ,...,

n
a a a − is 

the sequence 
0 1 1
, ,...,

n
b b b − such that: 

( ) ( ) ( )0 1 1

0 1 1

21

0

1

0

...

1

1 .

nk k k
n n n n

k

in jk
n

j
j

n
jk

j n
j

a z a z a z
b

n

a e
n

a z
n

π

−

−

−

=

−

=

+ + +
=

=

=

∑

∑

 

This is commonly written as  

( ) .a b=F  

The above is referred to as the forward Fourier transform. The inverse Fourier 

transform is  

( ) ( ) ( )0 1 1

0 1 1

1

0

21

0

...

1

1 ,

nl l l
n n n n

l

n
kl

k n
k

n i kl
n

k
k

b z b z b z
a

n

b z
n

b e
n

π

−− − −
−

−
−

=

− −

=

+ + +
=

=

=

∑

∑

 

which may be written as 

( )1 .a b−= F  

4.1.5.2   The FFT 

Let 2 pn = . The Fourier transform is as given above 
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( )

( ) ( )

( )( ) ( )( )

1

0

( /2) 1 ( /2) 12 2 1

2 2 1
0 0

( /2) 1 ( /2) 1
2 2

2 2 1
0 0

1

1 1

1 1 .

n jk
k j n

j

n nj jk k
j n j n

j j

n nj jk kk
j n n j n

j j

b a z
n

a z a z
n n

a z z a z
n n

−

=

− − +

+
= =

− −

+
= =

=

= +

= +

∑

∑ ∑

∑ ∑

 

The two sums represent transforms of length / 2.n  The above could be reused to compute 

2
nk

b
+

 and noting that  

2 2
2

1

π

π

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

=
= −

n
in

n
n

i

z e

e  

and  

2

2

1

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

=

n
n
n nz z  

which follows from Euler’s formula.1 Hence, 

( )( ) ( )( )
( )( ) ( )( )

( /2) 1 ( /2) 1
2 22

2 2 1
2 0 0

( /2) 1 ( /2) 1
2 2

2 2 1
0 0

1 1

1 1 .

n nj jnk kkn
n n j n n j nk

j j

n nj jk kk
j n n j n

j j

b z a z z a z
n n

a z z a z
n n

− −
+

++
= =

− −

+
= =

= +

= −

∑ ∑

∑ ∑
 

The sums  

( )( ) ( )( )( /2) 1 ( /2) 1
2 2

2 2 1
0 0

 and 
n nj jk k

j n j n
j j

a z a z
− −

+
= =
∑ ∑  

need to be computed for 0,1,..., 2 1k n= − , the values for 2k n=  are the same with 

0,k =  as is the value for 2 1n + and 1.k =   

                                                      
1 Euler’s formula  cos sinixe x i x= + holds for any real x . When x π= , we have 

cos sin 1π π+ = −i . Euler’s identity follows from the formula: 1 0.ie π + =  
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These two sums for different k represent two Fourier transforms of length 2n . To 

obtain kb  for 0,1,..., 1k n= −  the only extra computation required is n  complex 

multiplications by the factor k
nz .  A transform of length n  requires two transforms of 

length 2n  plus n complex multiplications. This is 2n transforms of length two.  The 

algorithm is applied recursively. 

4.1.5.3   The advantages of the FFT 

Let  ( )O n  denote the number of complex multiplications required for a transform of size 

n  and ( )1 1.O =  Then 

( ) ( )
( )( )

( )
( )
( )

( )
2

2 2

2 2 2 2

4 4

2 2   (after  steps)

2 1    (since 2 )

       ( 1 =1)
log .

= +

= + +

= + +

= +

= + =

= +

= +

p p

p p

O n O n n

O n n n

O n n n

O n pn p

O pn n

pn n O
n n n

 

 

The discrete Fourier transform is quadratic i.e. ( ) 2 ,O n n=  (Press et al, 1997, p. 

504), and when this is compared to the relationship derived above, a significant reduction 

in computational time is to be observed. 

4.2 Single-period models 

The Merton (1974) model is generally given as the starting point for the modelling of 

credit risk. The concept of default threshold is illustrated for a single-entity portfolio. 

Merton allows for default only at the end of the contract.  The asset value is modelled as a 

geometric Brownian motion. Default occurs when the asset value falls below a threshold. 

Creditmetrics (Gupton et al, unpublished) is based on Merton (1974) and it determines the 

default threshold, ,k  for an asset with default probability p  as: 

( )1 ,−= Φk p  



34 

 

where 1−Φ  is the inverse of the normal cumulative distribution function with zero mean 

and unit variance. 

4.2.1   Portfolio credit risk 

When modelling portfolio credit losses it is vital to incorporate default correlation. This is 

because the changes in credit quality of the assets in the portfolio are affected in part by 

the same macro-economic variables (Gupton et al, unpublished, p.36).   

The entire correlation structure among binary variables is not completely specified 

by the pairwise correlations. For example, consider a three-asset portfolio with default 

probabilities 1 2 3,  andp p p . The correlation matrix will give the pairwise correlations 

12 13 23, andρ ρ ρ  that allow for the calculation of the probability of default for any two 

assets (Arvanitis & Gregory, 2001). The ability to calculate the probability that all assets 

default is restricted by lack of information regarding the joint default probability 123p . 

Hence, Arvanitis & Gregory (2001) assume that the default structure can be determined 

from the multivariate normal distribution. A key property of the multivariate normal 

distribution is that the correlation structure is defined by the covariance matrix; hence all 

default probabilities are uniquely determined by the pairwise correlations. The 

assumption of using the multivariate normal is implicit in Gupton et al. (unpublished).  

4.2.2    Generating the loss distribution 

Consider an -n asset portfolio ( )1,...,= nX X X . Each asset has a default 

probability, , 1,..., ,=ip i n  and common default correlationΛ . In this case we assume that 

the recovery rate is zero. The following algorithm determines by simulation the number 

of defaults that occur and hence determines the loss distribution over a single period: 

Step 1 

Determine the default thresholds for each asset ( )1   1,..., .i ik p i n−= Φ =   Denote  

the vector of thresholds as k . Determine the Cholesky factorization matrix of the 

correlation matrix A such that ,AA′Λ =  where A is a triangular matrix and A′  is 

its transpose. The cumulative loss to zero, 0.L =  
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Step 2 

For each simulation run, generate the vector of n  independent random normal 

variates, , 1,..., ,=iY i n , and multiply this vector by A . This yields a vector of 

correlated random normal variates, Y AY= with elements , 1,..., .
i
y i n=  

Step 3 

If any ≤i iy k , then default has occurred. Update the cumulative loss total to reflect 

any losses: 

{ }1
1

.
i i

n

i y k
i

L L X
≤

=

= + ∑  

Repeat steps 2 and 3.  

Step 4 

The mean and standard deviation of the cumulative loss distribution can now be 

determined.  

A similar approach for generating the loss distribution was used by the Basel 

Committee on Banking Supervision (unpublished) in their Asymptotic Single Risk Factor 

(ASRF) formula. This formula, which was developed by Gordy (2003) is used to 

determine regulatory capital. Whilst the approach outlined above can be used for a 

portfolio with assets having notional amounts of various sizes, the ASRF formula is 

useful only in cases where each asset’s nominal amount in a portfolio is approximately 

equal. Lütkebohmert (chapter 4, 2009) contains a detailed discussion of the ASRF 

formula. 

4.3 The multi-step model 

The importance of multi-step models beyond its use in credit derivatives was highlighted 

by McLeod et al. (2005), who found that those market participants that use a single-

period model  are potentially overestimating their credit risk.  
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If a high rate of default is experienced in one period, then it is likely that those 

corporate names or ‘obligors’ that did not default would have generally decreased in 

credit quality. The effect would then be that the default rate for the second period would 

also be high (Finger, unpublished).  The model considered in this section aims to capture 

this phenomenon.  

The first model to analyse portfolio credit risk over multiple periods is attributed to 

Iscoe et al. (unpublished). Their approach is a multifactor approach, similar to that of 

Moodys (Bluhm et al, 2003). The approach by Arvanitis & Gregory (2001) that is similar 

to the Creditmetrics (Gupton at al, unpublished) model extended to multiple periods is 

illustrated in this section. This model is identical to the ‘diffusion-driven Creditmetrics 

extension’ of Finger (unpublished). Hull & White (2001) developed their similar model 

independently (Arvanitis & Gregory, 2001, p158). These models have the same default 

thresholds. The differences between these models relate to the determination of the 

default thresholds. This is discussed in the next section. The firm value is treated as a 

stochastic quantity that results in a default event when the firm value is less than a certain 

threshold. For the exposition of the multi-step model, the following notation is used: 

,T  the maturity date for the transaction; 

( ),itV  the ith firm value at time t; 

,n  the number of firms in the portfolio, i=1,…,n; 

( ),iμ  the mean rate of return of the ith firm; 

( ),iσ  the volatility of the ith firm value; 

( )i
tWΔ , multivariate standard normal random variable of the ith firm in the tth time 

interval, defined by ,Λ  ( ) ( ) ( ) ( ) ( )( )
1 10, ;i ii

t j j j jW W t W t N t t− −Δ = − −∼  

i
j
k , the threshold in the interval )−

⎡
⎣ 1,j jt t , for the ith firm value; the threshold is assumed 

to be constant over the interval. 

We can now write the process for each firm value, ( )i
tV  of each underlying of the basket: 
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( )

( ) ( ) ( )
( ) μ σΔ

= Δ + Δ
i

i i it
ti

t

V t W
V

. (4.1) 

The default probabilities are bootstrapped from default swap quotes or bond spreads 

as described in chapter 3. Since the model is calibrated to the individual default 

probabilities, the firm’s capital structure and its evolution according to equation (4.1), is 

no longer needed. Changing the mean or the variance of the rate of return, or both, will 

change the position of the calibrated threshold but will not change the default probability. 

In a footnote remark on this point Arvanitis & Gregory (2001, p.181) stated:   

This point may seem unusual. However, it can be readily 
checked in a one-period model that the parameters for two 
Brownian motions do not change the joint default 
probability when the model is calibrated to each individual 
default probability. 

This is best illustrated with an example.  

Example 

Consider two Brownian motions over a single period, with default probabilities 5% and 

6% and correlation 50%. The joint distribution is a bivariate normal. The default 

threshold for each Brownian motion over this single period is the inverse of the 

(univariate) normal distribution. Two cases are considered of the joint default probability 

of a standardised and non-standard bivariate normal distribution.  

Case 1  

The standardised bivariate normal distribution has the following parameters: 

( )

( )

( )

( )

1 1

2 2

0 1 1 0.5
     

0.5 10 1

μ σ

μ σ

⎡ ⎤= =
Λ = ⎢ ⎥

= = ⎢ ⎥⎣ ⎦
, 

where Λ  is the covariance matrix.   

The individual default thresholds are:  

( )
( )

−

−

= Φ = −

= Φ = −

1 1
1
2 1
1

0.05 1.64

0.06 1.55.

k

k
 

The joint cumulative distribution function ( ) =1 2
1 1
, 0.014F k k . 
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Case 2 

In this case a non-standardised bivariate normal distribution is used, that has the 

following parameters: 

( )

( )

( )

( )

1 1

2 2

0.02 0.5 0.25 0.0625
 

0.0625 0.06250.04 0.25

μ σ

μ σ

⎡ ⎤= =
Λ = ⎢ ⎥

= = ⎢ ⎥⎣ ⎦
. 

The individual default thresholds are:  

 

( )
( )

−

−

= = −

= = −

1 1
1 1
2 1
1 2

0.05 0.80

0.06 0.35,

k N

k N
 

where 1 2 andN N  are normal distributions ( )1 0.02,0.5N and ( )2 0.04,0.25N respectively, 

1
1
−N  and 1

2
−N  is the inverse normal distribution function of 1 2andN N . Attention is 

drawn to the higher thresholds than that obtained in Case 1. The joint cumulative 

distribution function ( ) =1 2
2 2
, 0.014F k k , which is the same as in Case 1.  
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Figure 4.1: Evolution of the asset value of a single firm that eventually defaults 

In Figure 4.1 the changes in asset value of a defaulting firm are illustrated. The 

evolution of the firms’ asset value is illustrated. The time of default is when the asset 

value is below the default threshold. 
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We therefore take the mean to be zero and the variance to be equal to one, so that 

the return on the firm value, or its assets, is again represented by the standard normal 

variables. Assume that we have a series of S thresholds, which change over time. The 

time interval [ ]0,T  is divided into S  time steps, [ ]0 1, ,..., St t t , where 0 0 andt =  .=St T  At 

each time step, each firm value changes by ( )i
tWΔ . The default probability in the sub 

period )1,j jt t−⎡⎣  at time j for the underlying i  in the basket is denoted by 1,
i
j jp − . The first 

threshold can be determined by: 

( )1
1 0,1
i ik p−= Φ . 

 

This ensures that  

1 1 0,1E[ ]< =i i iV k p , 

i.e., the probability of the firm value being less than the threshold is equal to the 

probability of default. The next threshold has to be conditioned on the survival of the firm 

in the previous period. For example, the second threshold is determined so that  

1 1 2 2
1 1 2 2 1,2P[ ] E[1 1 ] .

> <
< ∩ < = =i i i i

i i i i i
V k V k

V k V k p
 

In general to find any threshold i
jk , we apply the following formula: 

 
1,

1

{ } { }
1

E 1 1i i i i
j jl l l l

j
i
t tk V k V

l

p
−

−

≥ <
=

⎡ ⎤⎛ ⎞
=⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∏ . (4.2) 

 

The determination of the default thresholds is the subject to the next section.  

Default occurs for the i th firm in period d if for the first time the correlated Wiener 

process,   

( )
1,d

i i
t d dV k −< . 

The time of default 
i
τ  of the i th firm is given by, 

( ){ }min 0 : , 0,1,..., 1
d

i i
i d t dt V k d Sτ = ≥ < = − . 
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4.4 Default threshold determination 

The default threshold is determined by solving for each i
jk  in equation (4.2). These 

thresholds may be determined by simulation or by semi-analytic formula (so called, as 

numerical methods are needed). In this section the approaches of Iscoe & Krenin 

(unpublished a), Morokoff (2003), Hull & White (2001) are investigated. For each 

approach the theory and the steps involved in its implementation are discussed, the 

computational time is recorded using a common portfolio and finally the most 

computationally efficient approach is identified. 

4.4.1   Hull-White scheme  

As before we have n companies and the time interval of the derivative contract is divided 

into S discrete intervals.  The first step is to discretise the default probability densities so 

that defaults only happen at times jt  ( )1 j n≤ ≤ .  The initial point is defined as 0 0=t  and 

the time-step is given by 1j j jt tδ −= − . Let i
jq  be the risk-neutral probability of default by 

a company i at time jt  and ( )i
jV  describe ith company’s value at time t . Hull & White, 

(2001) define this as the credit worthiness index of the company i. It is assumed that 
( )

0 0=iV  and that the risk-neutral process for ( )i
jV  is a Wiener process with zero drift and 

variance of 1 per year. 

Let i
jk be the value of the default barrier for a company at time jt . Denote the risk-neutral 

probability density function for ( ) byi i
j jV f . The values of the variables i

jk  and i
jf  are 

determined inductively from the risk-neutral density probabilities i
jq . Given the process 

for ( )( ) ( )
1 1, 0,i iV V N δ∼   is normally distributed with mean zero and a variance of 1δ . 

Then,  

( )
2

12
1

1

1
2

δ

πδ

−

=
v

if v e , 

and 
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1
1δ

⎛ ⎞
= Φ⎜ ⎟⎜ ⎟

⎝ ⎠

i
ji k

q . 

This implies that  

( )1
1 1 1δ −= Φ ik q . 

For 2 ≤ ≤j S  we calculate 1 1and from , and .− −
i i i i i
j j j j jk f q k f  The relationship between 

andi i
j jk f  is    

 ( )
1

1 .
δ

−

∞

−

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∫
i
j

i
ji i

j j
jk

k u
q f u N du  (4.3) 

The integral in the above equation is evaluated by numerical techniques for a given 

value of .i
jk  An iterative procedure can then be used to find the value of i

jk that solves the 

equation. The density function is i
jf  

 ( ) ( ) ( )2

1
1 exp

2πδ δ

∞

−

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∫
i
j

i i
j j

j jk

v u
f x f u du  (4.4) 

for .> i
jv k  The equations (4.3) and (4.4) are solved numerically. Instead of direct 

numerical integration, Hull & White (2001) propose a discrete scheme.  The details are 

provided below. 

For each company we consider M values of ( )i
jV  between i

jk and 5 jt where M is 

several hundred. Let jmv  be the mth value of ( )( ) 1 and π≤ ≤i
j jmV m M  the probability that 

( ) =i
j jmV v with no earlier default. The discrete versions of equations (4.3) and (4.4) are 

1,
1,

1
π

δ
−

−
=

⎛ ⎞−
⎜ ⎟= Φ
⎜ ⎟
⎝ ⎠

∑
iM
j j m

j j m
m j

k v
q   

and 

, 1,
1

π π −
=

=∑
M

j m j m jmn
m

p , 

where jmnp is the probability that ( )i
jV moves from 1,−j mv at time 1jt − to jnv at time .jt We set  
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( ) ( ), , 1 1, , , 1 1,0.5 0.5

δ δ
+ − − −

⎡ ⎤⎡ ⎤+ − + −
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

ijn i j n i j m jn j n j m
jmn

i j

v v v v v v
p N N  

where 1 .< <n M  When =n M , 

( )1, 1 1,0.5
1

δ
− − −

⎡ ⎤+ −
⎢ ⎥= −
⎢ ⎥⎣ ⎦

jn j n j m
jmn

j

v v v
p N  

and when 1=n , 

( ), 1 1, , 1,0.5

δ δ
+ − −

⎡ ⎤ ⎡ ⎤+ − −
⎢ ⎥ ⎢ ⎥= −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

jn j n j j m j j m
jmn

j j

v v v k v
p N N . 

The implementation is the direct application of the above formula.  A Newton-Raphson 

scheme is used to solve for the thresholds. 

4.4.2 Default threshold problem 

Iscoe & Krenin (unpublished a) reduced the problem of default boundary estimation to a 

sequential estimation of conditional default probabilities.  

4.4.2.1 Isoce & Kreinin model  

For a given random process ( )0t tη > , the inverse problem is formulated as follows:  

given a known probability distribution function, ( ) ,P t  find a boundary, ( )b t , such that 

the first hitting time ( ){ }0inf :t tt b tτ η>= <  satisfies the equation 

{ } ( ) , 0P t P t tτ ≤ = > . 

Consider a discrete-time, mean-zero process, 0, 0,1, 2,..., ,nS n S=  having a finite 

variance 2
nσ  at time .nt  The standard process taking the value nη  at time ,nt  

0, 1, 2,...; 0n
n

n

S nη η
σ

= = =  

satisfies the relation 
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[ ]
2

0

1, 1,2,...
n

n n

η

η

=

⎡ ⎤ = =⎣ ⎦

E

E
 

Assuming that S  has independent increments, the process nη is determined by 

 
1

1 , 1,2,...
n

n i
in

nη ε
σ =

= =∑  (4.5) 

where iε  is an  independent random variable. A particular case of interest, which is 

considered below, arises when ( ) 10, , .i i i i it t t tε −Ν Δ Δ = −∼  Iscoe & Krenin (unpublished 

a) state the problem of boundary determination formally as follows.  

The Default Boundary Problem.  

Suppose that a sequence ( ) , 1, 2,...,P n n N=  is given and satisfies the conditions 

( ) ( ) ( ) ( )0 0 1 2 ... 1P P P P N= ≤ ≤ ≤ ≤ <  

Let ,  1,...,η =n n N  be defined as in equation (4.5).  The boundary 1 2, ,..., Nk k k  is 

determined so that the distribution ( ) , 1, 2,...,τ ≤ =nP t n N of the first crossing time τ , 

satisfies the relation 

( ) ( ) , 1, 2,...,τ ≤ = =nP t P n n N  

so that the sequence ( )P n describes the cumulative probability of default. 

4.4.2.2   Computation of default probability 

The algorithm for computing the default boundary is obtained via the sequential 

estimation of quantiles of the conditional default distributions.  

Let ( ) ( )ˆ and  π τ τ τ= = = = ≥n n n n nP t P P t t  and consider the discrete-time process 

( )1, 2,...η =n n  defined as in equation (4.5). 

Lemma 

The boundary ,  1,...,=kb k N  satisfies the equation 
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{ }
1

1

, , 1,2,..., .
n

n t t n n
t

P k k n Nπ η η
−

=

⎧ ⎫
= ≥ < =⎨ ⎬

⎩ ⎭
∩  

The probabilities nπ and ( )P n  satisfy the following equations: 

( ) ( )1 , 1, 2,3..., ;π = − − =n P n P n n N  

( )
ˆ , 1, 2,3,..., .

1 1
n

nP n N
P n
π

= =
− −

 

The problem of this approach is that a large amount of data are stored in memory 

and this grows with each simulation. 

4.4.2.3   Recursive Monte Carlo algorithm 

The Iscoe & Krenin (unpublished a) method is implemented as follows. 

Step 1  

The first threshold is determined analytically, from the relation 

( ) { }11 nP P kη= ≤ . 

If the cumulative distribution function for the first threshold is a normal 

distribution and is denoted by Φ , then 1b is obtained from 

( )( )1
1 1k P−= Φ .  

This was also the case for the Hull & White method. 

Step 2 

Compute conditional probabilities 

( )
ˆ , 2,..., .

1 1
n

nP n N
P n
π

= =
− −

 

The conditional default probabilities are required in Step 4.  

For this research constant hazard rates have been assumed at equidistant valuation 

dates. In this case the above formula reduces to 
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( ) ( )
( )
( )

( )
( 1)

( 1)

( 1)

( 1)

1ˆ
1 1

1 1

1 1

1 ,

n

hn h n

h n

h n hn

h n

h

P n P n
P

P n

e e

e

e e
e
e

− − −

− −

− − −

− −

−

− −
=

− −

− − −
=

− −

−
=

= −

 

and hence is constant for equidistant valuation dates. 

Step 3 

Suppose that the default boundary tk has already been computed for 1,..., 1t n= −  

and it is required to determine the value of nk . Generate a large number, M, of 

independent and identically distributed sample paths of Wiener processes,  

( ) ( ) ( ) ( )( ) ( )1 2, ,..., , 1, 2,...,nm m m m m Mη η η η= = , 

and retain only those vectors ( )mη that satisfy the inequality 

 ( ) , 1,2,..., 1.t tn m k t n≥ = −  (4.6) 

Step 4 

Denote by ( )Ψn x  the conditional empirical cumulative distribution function of a 

random variable nη  that satisfies equation (4.6). The boundary nb is determined as 

the quantile of the distribution ( )Ψn x  corresponding to the conditional 

probability ˆ :nP  

( )1 ˆ .−= Ψn n nk P  

4.4.3 Convolution  

Morokoff (2003) exploits the fact that from the second threshold onwards a truncated 

distribution is always convolved with a standard normal distribution.  
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This section begins with two theorems: the first theorem derives the convolution for 

the sum of two independent random variables and the second is the convolution theorem, 

which importantly uses Fourier transforms. The implementation and results are then 

discussed.  

4.4.3.1 Theorem 

If X and Y are independent continuous random variables, with density functions ( )Xf x , 

( )Yf y  respectively and Z X Y= + , then  

( ) ( ) ( ) ( )z X Y Y yf z f z f z y f y dy
∞

+
−∞

= = −∫ . 

Proof:  (Mood et al. (1974), p. 186).  

4.4.3.2 The Convolution Theorem  

Let ( )1f x  and ( )2f x  have Fourier transforms 1g  and 2g , respectively. Then the Fourier 

transform g  of the convolution of ( )1f x  and ( )2f x , is the product ( ) ( ) ( )1 2g g gω ω ω= . 

Proof:  (Bracewell, 2000, p.117) 

4.4.3.3 Convolution algorithm 

The approach adopted is based on the convolution algorithm of Ruckdeschel et al. (2006)2  

contained in the distr module of the statistical software package R. Their implementation 

is for the n-fold convolution of continuous distributions. 

The approach considered here is based on analytically determining the threshold 

from the conditional-default probability. This approach is an analytic approximation to 

the conditional probability approach of Iscoe & Krenin (unpublished a) and has the 

advantage of not requiring computationally expensive simulations.  

The probability distribution of the asset return after say, n  time-steps, is the 

convolution of the density at time 1n −  with a standard normal distribution. Once the 

                                                      
2 R is an open-source statistical program available at http://cran.r-project.org 
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distribution is known at time n , the threshold is computed such that the probability of 

being below the threshold is the conditional probability of survival over the period 1n −  

and .n  The computational costs of direct convolution are quadratic. However, Morokoff 

(2003) propose the application of the convolution theorem and fast Fourier transforms 

(FFT) that reduces the computational cost. Cerny (2004) provides an introduction to the 

use of FFT to finance. Robertson (1992) and later Wang (1998) demonstrated the use of 

the FFT in actuarial science in determining the aggregate loss distributions.  Robertson 

(1992, p. 64) demonstrates the use of discrete Fourier transforms (DFT) in determining 

convolutions. Due to the convolution theorem, convolutions can be determined with DFT, 

F , 

( ) ( ) ( )
( ) ( )( )1 .−

⊗ = ×

⊗ = ×

F F F

F F F

U V U V

U V U V
 

Suppose  we  have  the  cumulative  distribution  function  ( ) ( ) ,τ= ≤ nP n P t

1,2,...,=n N  of the probability of default at discrete times 1 2, ,..., Nt t t , for asset i . The 

associated asset value of the log return process follows a Wiener process. A company i  

defaults during the period [ )1,d dt t−  if the asset return ( )i
dR  at time dT  is less than some 

threshold i
dk , while ( ) >i i

d dR k  for all ,<i d  implies no previous default. The relationship 

to the cumulative default probabilities is, 

( ) ( )1 11 ,...,i i i i
d d dP R k R k P t− > > = . 

Assuming that the distribution 1
i
dR − , conditional on no defaults up to time 1dt − , is 

known, then the distribution of i
dR ,  conditional on no defaults up to time 1dt − , is given by 

1i i
d d dR R ϕ−= +  

where  dϕ  is an independent increment with a normal distribution with zero mean and 

standard deviation 1−−d dt t . 

 Then the default threshold i
dk  may be obtained from the equation 
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( ) ( ) ( )
( )

1
1 1 1 1

1

,...,
1

−
− −

−

−
≤ > > =

−
d di i i i i i

d d d d
d

P t P t
P R k R k R k

P t
. 

Once i
dk has been determined, the distribution of i

dR , conditional on no defaults up 

to dt , can be determined by truncating the distribution of i
dR  conditionally on no defaults 

up to time 1.dt −  This procedure is repeated until all the thresholds are determined.  

4.4.3.4   Default threshold determination algorithm using FFT 

The actual implementation of an FFT algorithm is not discussed here as the FFT 

algorithm is ‘perhaps, the most ubiquitous algorithm in use today’ (Rockmore, 2000). The 

details of using the FFT to calculate the default thresholds are discussed below.  

Step1 

The first threshold as in section 4.4.2.3 is obtained analytically. Thus 

( )( )1
1 1k P−= Φ . 

Step 2 

An acceptable level of truncation error ε  is chosen, and then the upper and lower 

bounds are found, such that 

( ),
2

F l ε
−∞ =   and ( ),

2
F u ε

∞ = . 

Discretise the interval [ ],l u  using some number of points, 2mM = . Let  

.
2m

u lh −
=  

Define the vector y , with values , 0,1,..., 2= + = m
jy l jh j . 

The distribution, conditional on there being no default in the previous period, is 

then used to determine the next threshold. This truncated distribution is convolved 

with a standard normal distribution. The algorithm given in section 4.4.3.3 is used 

to reduce the computational time of the convolution.  

Step 3 
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Using the previous threshold and empirical distribution, truncate the distribution 

at the previous threshold. Truncation is defined by Loève (1977, p.245) as, 

truncate X  at 0c > (finite) when we replace by or 0cX X X=  according as 

X c<  or X c≥ ,  and iscX X truncated at c . Denote the vector of the 

truncated cumulative distribution as ( ) ( )1i y−Φ .  Then, obtain the value of the 

cumulative distribution function of a standard normal distribution, ( )yΦ . Both 

these vectors have 1M + elements. 

Step 4 

Obtain the probability density function of ( ) ( )1−Φ i y  and ( )Φ y  from the above 

vectors. For example the probability distribution function of the normal 

distribution is:  

( ) ( ) ( )  
1

, 0,1,...,2m
j j j
y y y jφ −= Φ − Φ = . 

This discretisation is called ‘forward difference’ (Dutang et al, 2008). 

The size of the vectors is now .M  Let these vectors by 1 2and p p respectively and 

let F  be the FFT implementation of F . The probability density function, f , of 

the convolution is given by 

( ) ( )( )1
1 2

f p p−= F F F  

The cumulative sum of this vector is the cumulative distribution function.  

Step 5 

Additional accuracy is reported by applying a continuity correction (Kohl et al, 

unpublished).  

The values are linearly interpolated on { }2 0.5 ,2 1.5 ,...,2 0.5 ,2l h l h u h u+ + −   

to get a continuous approximation of the distribution function 1 2F F F= ⊗ . 

Step 6 
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Once F is known, the threshold ik  is determined by the inverse cumulative 

distribution function or quantile function. This threshold is used to truncate the 

empirical cumulative distribution function F . This conditional cumulative 

distribution function is used in Step 3 to determine the next threshold. This 

process is repeated until the final threshold is calculated. 

4.4.4   Numerical comparison of the methods 

In this section numerical experiments are conducted. The objective is to identify the 

computationally most efficient method subject to an acceptable level of accuracy. The 

following measures of accuracy are used: 

Definition 

Let x̂  be an approximation to a real number x . The absolute error  

( )ˆ ˆ ,
abs
E x x x= −  

and its relative error 

( )
ˆ

ˆ
rel

x x
E x

x

−
= . 

A simple hypothetical example is first used to test the relative accuracy of all the 

methods outlined above using a direct convolution method.  

The cumulative default probabilities of a hypothetical entity are listed in Table 4.1. 

The conditional default probabilities, n̂P , are obtained from the cumulative default 

probabilities, ( ) ( ) ,τ= ≤ nP n P t at times , 1,...5,
n
t n =  and τ is the time of default defined 

previously, by application of: 

( ) ( )
( )

1ˆ
1 1

− −
=

− −n

P n P n
P

P n
. 



51 

 

Table 4.1 Conditional and cumulative default probabilities 

Term (Years) 1 2 3 4 5 

Cumulative Probability  5% 10% 15% 20% 25% 

Conditional Probability 5.00% 5.26% 5.56% 5.88% 6.25% 

 

The default thresholds are given in Table 4.2 based on the data given in Table 4.1. 

This was determined using a direct convolution. As the direct method is deemed most 

accurate, the results of the previously described methods of Hull & White (2001), Iscoe & 

Krenin (unpublished a) and Morokoff (2003) are compared to it.   

Table 4.2 Default thresholds obtained via direct convolution 

Term (Years) Default threshold 

1 -1.64485 

2 -2.03202 

3 -2.17211 

4 2.181324 

5 -2.10199 

 

The direct convolution is impractical due to the extraordinary amount of 

computational time required.  The results of this method were obtained using the quadgk 

function3 in Matlab, and it took approximately 34 hours to calculate.  In a practical 

example of a 5-year CDO contract, which typically has quarterly payment dates, there are 

20 thresholds to compute for each entity in the portfolio. The use of the direct method is 

therefore unfeasible. 

4.4.4.1    Relative error determination 

For the approach of Hull & White (2001), the number of discrete points is the main 

parameter determining accuracy, as is the case for Morokoff (2003). The main parameter 

                                                      
3 quadgk is Matlab’s implementation of the adaptive Gauss-Kronrod quadrature. 
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for Iscoe & Krenin (unpublished a) is the number of simulations. In this section these 

parameters are successively increased until the maximum accuracy is achieved for each 

approach. 

 Hull & White (2001) suggested using ‘several hundred’ discrete points.  For 

verification, the parameter M was increased by 100 and the relative errors were noted. 

The results are presented in Figure 4.2 below.  
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Figure 4.2: Relative error of the Hull & White default thresholds 

The relative error appears constant when the number of grid point is greater than 

700. However, the results indicate an increase in relative error as the number of 

thresholds is increased. The behaviour of the 5th threshold could be attributed to round-off 

error. This assertion could be tested by doing all calculations using a multi-precision 

environment.4    

For the approach of Iscoe & Kreinin (unpublished a) (illustrated in Figure 4.3) a 

standard Monte Carlo approach was implemented. A very large number of simulations (of 
65 10× ) is required to achieve relative errors of less than 32 10−× .  

                                                      
4 An extended precision toolbox for Matlab is available at 

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=6446. This allows for 

arbitrary precision. 
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Figure 4.3: Iscoe & Kreinin, plain Monte Carlo approach 

A simple way of improving Monte Carlo estimates is by using antithetic variates 

(Ross, 2006). This method saves computational time by effectively doubling the number 

of random numbers generated, provided the variates are negatively correlated.  

Figure 4.4 below, demonstrates the decrease in the relative error brought about by 

the usage of antithetic variates. The relative error using antithetic variates with 
63 10× simulations is similar to that obtained using the vanilla Monte Carlo approach with 
65 10× simulations. Thus using antithetic variates the number of simulations chosen is 
63 10× . 
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Figure 4.4: Iscoe & Kreinin, Monte Carlo using antithetic variates 

The relative error of the approach by Morokoff (2003), illustrated in Figure 4.5, is 

vastly superior to that of the competing methods. A parameter value of 162  is adequate for 

relative error to be less than 71.5 10 .−×  As with the other methods the relative error 

increases as the threshold number increases. 
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Figure 4.5: Morokoff approach using FFT 
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The results for the relative errors obtained when compared to that obtained by direct 

convolution are summarised in Table 4.3. The method of Morokoff (2003) produces the 

smallest relative error. 

Table 4.3: Relative errors of the 3 methods relative to the direct method 

Hull & White Iscoe & Kreinin Morokoff 

7.21E-06 6.04E-04 2.98E-09 

1.32E-05 3.68E-04 2.11E-10 

1.44E-04 6.76E-04 9.57E-09 

2.00E-03 4.64E-04 1.39E-07 

 

4.4.4.2   Computational efficiency 

The computational time depends directly on the number of simulations or the grid points 

used. Once the accuracy has been established, the focus then is on computational 

efficiency. The methods described above together with the parameters chosen are 

compared with respect to computational efficiency. This is accomplished by measuring 

the total computational time. The results are in Table 4.4 below.  

Table 4.4: Comparison of the computational times in seconds 

Hull & White Iscoe & Kreinin Morokoff 

1.64 2.11 0.87 

 

4.4.4.3   Summary  

The results obtained above could be summarised as follows. The simulation method of 

Iscoe & Kreinin (unpublished a) is slower but more accurate than that of Hull & White 

(2001). Morokoff (2003) is both more accurate and faster than the techniques that 

preceded it. This supports the statement by Arvanitis & Gregory (2001, p. 162): 
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In equation (4.2) the calculation of the thresholds can be 
done numerically via the same Monte Carlo simulation as is 
used for the pricing. Alternatively, an analytical approach 
can be used, such as that described by Hull and White 
(2001). We have found that the numerical calibration of the 
thresholds is slower but gives superior accuracy. 

The issue of pricing of CDO tranches is to be dealt with in the next section. The 

technique of Morokoff (2003) appeared after the work of Arvanitis & Gregory (2001) and 

given its superior performance in terms of accuracy and computational efficiency, this 

technique is to be used for pricing of synthetic CDO tranches. 

4.5   CDO valuation 

By using the default thresholds we are now able to value a synthetic CDO. In this section 

a description of how a CDO is evaluated using the multi-step approach is provided. In 

addition the three methods described earlier to determine the default thresholds are used. 

The aim is to evaluate to what extent the accuracy of the default thresholds affects CDO 

tranche pricing.   

4.5.1 Loss distribution and the pricing of CDOs 

The description in this section is based on that of Cherubini et al. (2004).  Consider n  

reference obligors with nominal amount 
i
A  and a recovery rate 

i
R  with 1,... .i n=  

( )1
i i i
L R A= −  denotes the loss given default or the net loss for the i th credit. Let 

i
τ  be 

the default time of the i th name and ( ) { }i
i t
N t

τ <
= 1 be the counting process which jumps 

from 0 to 1 at the default time of name i . Then ( )L t , which is a pure jump process, 

denotes the cumulative loss on the collateral portfolio at time :t  

( ) ( )
1

.
n

i i
i

L t LN t
=

= ∑  

Let us consider a tranche of a CDO, where the default leg pays all the losses that 

occur on the collateral portfolio above a threshold C  and below a threshold D , where 

1
0

n

ii
C D A

=
≤ ≤ ≤ ∑ . 
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When 0C =  the tranche in consideration is the equity tranche; if 0C >  and 

1

n

ii
D A

=
< ∑ we are considering the mezzanine tranche. When 

1

n

ii
D A

=
= ∑ we consider 

the senior tranche.  

Let ( )M t  be the cumulative loss on a given tranche, hence, 

( ) ( )
( )

( )
( )
( )( )( )

⎧ ≤
⎪

= − < ≤⎨
⎪ − >⎩

= − −

if 

if 

if  

0

min max ,0 ,

L t C

M t L t C C L t D

D C L t D

D L t D C

 

or equivalently: 

( ) ( )( ) ( ( ) ( ) ( )
1

, ,
n

ii
C D D A

M t L t C L t D C L t
=

⎛ ⎤⎤⎦ ⎜ ⎥⎝ ⎦

= − + −
∑

  . 

Given that ( )L t  is a jump process, it follows that ( )M t  is a jump process as well. 

There is a default payment on every jump of ( )M t .  A Riemann-Stieltjes integral could 

be defined with respect to ( )M t , as it is an increasing process.  As  ( )M t  is constant 

between jump times, the Riemann-Stieltjes integral with respect to ( )M t  is a discrete 

sum with respect to every jump time. 

Let ( )B t  be the discount factor for the maturity t , and let T denote the maturity of 

the CDO. The value of the default leg of the given tranche is 

( ) ( )
0

T
B t dM t⎡ ⎤

⎢ ⎥⎣ ⎦∫ , 

The value of the premium leg t time 0, assuming that the premium s is paid 

continuously is  

( ) ( )( )
0

T
s B t g L t dt⎡ ⎤

⎢ ⎥⎣ ⎦∫ , 

where ( )( ) ( )( )( )min max ,0 , .g L t D L t D C= − −  The fair value of the premium s of the 

tranche is given by 
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( ) ( )

( ) ( )( )
0

0

T

T

B t dM t
s

B t g L t dt

⎡ ⎤
⎢ ⎥⎣ ⎦=

⎡ ⎤
⎢ ⎥⎣ ⎦

∫

∫




. 

Assuming that the portfolio is evaluated at m  discrete premium dates, 

0 1t 0, , , mt t T= =…  then the above expression becomes 

( )( ) ( )( )( ) ( )

( ) ( )( )( ) ( )

1
1

1
1

m

i i i
i

m

i i i i
i

g L t g L t B t
s

t t S g L t B t

−
=

−
=

⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦
=

⎡ ⎤− − ⎣ ⎦

∑

∑

E E

E
, 

which is similar to equation (1.1) 

4.5.2 Description of the multi-step model 

The default thresholds for all the assets in the portfolio are calculated.  The pool of assets 

is simulated over the first period. The defaults, if any, are tabulated, then the remaining 

non-defaulting assets are simulated over the next period and checked if any has defaulted. 

This process continues until the maturity date of the contract.  

4.5.3 Assumptions  

The multi-step model described thus far assumes that: 

- default can happen at any set of discrete dates; 

- the recovery rate is constant; 

- the default process is independent of the interest-rate; 

- the interest-rate is deterministic; 

- the hazard rates are constant over the term of the contract; 

- default correlation between companies is constant throughout the term of the deal. 
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4.5.4 Algorithm  

Assume that we have a portfolio of n assets, and a CDO contract that has premium 

payment dates =, 1,...,
j
t j S  The algorithm to determine the fair tranche spreads is 

illustrated below. 

Step 1 

Generate the correlated random Brownian motion for each of the n  companies in 

the portfolio at each of the S time-steps. These numbers are stored in a matrix A  

that has dimension n S× . The path of the Brownian motion till time 
S
t  is given 

by the sum across the columns of A .  Define a matrix D  that has dimensions 

2n × . Set all the elements of D  to zero. The first column of D represents the 

state of the company, the value one represents default and zero non-default.  The 

second column is left for the time of default.  

Step 2 

For each company , 1,...,i i n=  in the portfolio, and at each time-step 

=, 1,...,
j
t j S , evaluate ( ) =, 0D i j . If this is false then the company has already 

defaulted and the next company is considered. If this is true then check if 

( ) ( )<, ,A i j k i j  is true. If false, then consider there is no default. If true then 

update the matrix D by changing its default state and storing the time of default, 

( ) =,1 1D i  and ( ) =,2 .
j

D i t    

At the end of checking each company at each time step, the default times and the 

default amounts are known. 

Step 3 

The matrix D is then used with the equation  (1.1) to determine the present value 

of the premium and default legs. 

Step 4 

The present values are kept in a running total.  
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Steps 5 

Steps 1 through 4 are repeated M  times, where M is the number of simulations. 

For the example that follows, it is assumed that the default correlation between each 

company in the portfolio is 50% and the recovery rate is constant at 30%. The portfolio is 

split into four tranches covering losses: 0–25, 25–75, 75–150 and 150–400. The other 

parameters for the model are a term of five years with quarterly payments.  The portfolio 

is presented in Table 4.5. 

4.5.5  Default leg 

For each simulation, the default time and the defaulted asset amounts are collected, in 

2 n×  matrix, where n is the number of defaults. The discounted value of the default leg of 

the CDO is determined via this matrix of times and the associated defaulted amount (net 

of recoveries).   

4.5.6   Premium leg 

The premium is paid on the remaining size of outstanding portfolio. As defaults increase 

the size of the premium reduces proportionately.  
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Table 4.5: The data for credit default swap portfolio 

Company Notional Basis Points Company Notional Basis Points 
      
1 15 40 26 5 130 
2 15 50 27 10 220 
3 15 50 28 5 300 
4 15 50 29 5 160 
5 10 60 30 10 100 
6 10 60 31 5 80 
7 10 80 32 10 130 
8 10 70 33 5 120 
9 10 90 34 10 190 
10 10 100 35 5 120 
11 10 90 36 5 125 
12 10 80 37 5 80 
13 5 60 38 5 250 
14 5 50 39 5 100 
15 5 80 40 10 250 
16 5 60 41 5 165 
17 10 100 42 5 250 
18 10 60 43 10 190 
19 5 80 44 10 150 
20 5 60 45 10 180 
21 5 70 46 5 155 
22 10 150 47 10 190 
23 5 110 48 5 250 
24 10 200 49 5 375 
25 10 170 50 5 550 

4.5.7   Results from the methods 

In this section the expected loss of four tranches of a heterogeneous portfolio (as defined 

earlier) of a CDS is evaluated.  Table 4.6 illustrates the fair spreads obtained by 

simulation. The simulation consisted of 100 000 simulation runs.  Although the Hull & 

White approach used to calculate the default boundaries was found to be inaccurate, this 

did not have a significant impact on the results apart from a small increase in the equity 

tranche spread relative to the other approaches.   
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Table 4.6: Fair tranche spread comparison 

Tranche Hull & White Iscoe & Kreinin Morokoff 

0–25 1382.18 1362.90 1369.34 

25–75 364.86 359.45 357.22 

75–150 82.51 82.90 80.86 

150–400 3.79 3.60 3.69 

 

Table 4.7 below produces the relative error of the fair tranche spreads of the Hull & 

White (2001) and Iscoe & Kreinin (unpublished a) relative to that of Morokoff (2003), 

which was found to be the most accurate method.  

Table 4.7 : The fair tranche spreads relative to that obtained using Morokoff (2003) 

Tranche Hull & White Iscoe & Kreinin

0–25 0.94% 0.47% 

25–75 2.14% 0.62% 

75–150 2.04% 0.74% 

150–400 2.71% 1.36% 

 

 

4.6   Conclusion 

In this chapter the multi-step model for determining the credit loss distribution and using 

it to value a four-tranche CDO was explored. In addition three schemes were discussed 

for determining the default boundary. A simple contrived example was used to 

demonstrate that the direct convolution method for determining the default thresholds is 

impractical as it is computationally expensive. The method of Iscoe & Krenin 

(unpublished a) was enhanced by using the simple technique of antithetic variates.  
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The approximation of the convolution by FFT was identified as the fastest and most 

accurate method of determining the default thresholds. 

It was found that the accuracy of the three methods did impact the results of the 

pricing of CDO tranches. Using the result of Morokoff (2003) as the most accurate, the 

Hull & White (2001) method produced errors that increased from approximately 1% for 

the equity tranche to 3% for the senior tranche. The range for the method of Iscoe & 

Kreinin (unpublished a) was approximately 0.5–1.4% (Table 4.7). 

In the next chapter the default time model of Li (2000) is introduced and compared 

in terms of accuracy and computational efficiency with the multi-step approach.   
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Chapter 5 

Monte Carlo methods Part II: Default-time approach 

A multi-step model was introduced in the previous chapter, which allowed for the time of 

default to be determined implicitly: for each obligor in the portfolio, the first instance of a 

simulated Brownian-motion path crossing a certain boundary or threshold was taken to be 

the time of default. Thus two calculations are needed: one to determine the thresholds and 

another to simulate Brownian-motion paths to determine the time of default. In the 

default-time model of Li (2000) the default times of the entities in a portfolio were 

determined explicitly. Hence this model is called ‘single-step’.  This model is compared 

with that of the multi-step model with respect to accuracy and computational efficiency.  

It is found that although the default-time approach is much faster, there are differences in 

the results. An attempt is made to explain the results.  

5.1   The copula function 

A copula is used, as a general way of formulating a multivariate distribution, in such a 

way that various types of dependence may be represented (Nelson, 1999).  

5.1.1 Skar’s Theorem 

A theorem attributed to Sklar (1959) is ‘central to the theory of copulas, and is the 

foundation of many, if not most, of the applications of that theory to statistics’ (Nelson, 

1999, p. 14).  

Theorem 5.1  Sklar’s Theorem 

Let F be a multivariate -dimensionalm distribution function with marginals 1,..., mF F . 

Then there exists a copula function C  such that 

( ) ( ) ( )( ) ( )1 1 1 1,..., ,...,        ,..., .m m m mF x x C F x F x x x= ∈  

Conversely, for any copula C  and marginal distribution functions 1,..., ,mF F  the 

function 
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( ) ( ) ( )( ) ( )1 1 1 1,..., ,....,        ,...,m m mF x x C F x F x x x= ∈  

defines a multivariate distribution function with marginals 1,...., mF F  

(Blum, 2003, p.104). 

Proof: (Nelson, 1999, p.15) 

Of particular interest is the Gaussian copula. The multivariate copula function 

( ) ( ) ( ) ( )( )1 1 1
1 2 1 2, ,..., , ,..., ,m m mC u u u u u u− − −= Φ Φ Φ Φ Σ  

where mΦ is the -dimensionalm  normal distribution function with correlation coefficient 

matrix Σ , Φ  is the univariate normal distribution function and 1−Φ  is the inverse of the 

univariate normal distribution function.  

5.1.2   General simulation algorithm 

This section provides details of an algorithm used to generate defaults using the 

multivariate normal copula. It is based on Li (2000). 

We assume that we have a portfolio of n credits, and that each credit has a hazard-

rate function for survival time iT . The distribution function of iT  is ( )iF t . Using a copula 

function C  we also obtain the joint distribution of the survival times as 

( ) ( ) ( ) ( )( )1 2 1 1 2 2, ,..., , ,..., .n n nF t t t C F t F t F t=  

If the normal copula function is used then we have  

( ) ( )( ) ( )( )( )1 1
1 1 1,..., ,...,n n n nF t t F t F t− −= Φ Φ Φ , 

where Φn  is the -dimensionaln  cumulative distribution function with correlation 

coefficient matrix .Σ  

To simulate the correlated survival times we introduce another series of random 

variables 1 2, ,..., nY Y Y  such that 

( )( ) ( )( ) ( )( )1 1 1
1 1 1 2 2 2, ,..., n n nY F T Y F T Y F T− − −= Φ = Φ = Φ . 



66 

 

There is a one-to-one mapping between 1 2 1 2, ,...  and , ,... .n nT T T Y Y Y  Simulating  

{ }1,2,...,iT i n= is equivalent to simulating{ }1,2,...,iY i n= . The simulation algorithm is as 

follows: 

Step 1 

Simulate 1 2, ,... nY Y Y  from an -dimensionaln normal distribution with correlation 

coefficient matrix ∑ . As was the case in the multi-step model, correlated random 

variables need to be generated. 

Step2 

Obtain 1 2, ,..., nT T T  using ( )( )1 ,  1,.. .i i iT F Y i n−= Φ =  This step requires the inverse 

cumulative distribution function (cdf) of the default distribution. In chapter 2 this was 

given as 

( ) ( )0
1 exp

t
F t hdu= − −∫  

where h is the constant hazard rate. The inverse cdf of the above (exponential 

distribution) is  

( )( ) ( )( )1 1 Y
F Y

h
− − −Φ

Φ = ,  

noting that ( )0 1Y≤ Φ ≤ . 

With each simulation the default times for all the entities in the portfolio are known. 

As in the previous chapter, the time of default and the amount at default is all the 

information needed to determine the loss distribution that is used to evaluate CDO 

tranches.  

5.2 Pricing of synthetic CDO tranches 

The portfolio used in chapter 4 to demonstrate the multi-step pricing model is used. The 

two methods are applied to the portfolio. A computationally efficient method to 

determine the default thresholds was identified as the convolution technique of Morokoff 

(2003).  The number of grid points used was 122 .  The 95% nonparametric confidence 
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interval for the credit spreads was found by using the 2.5th and the 97.5th percentile of 

the simulated results. The simulation run (each consisting of 100 000) was repeated 100 

times with different seeds and the midpoint of the confidence interval was then taken as 

the price for that tranche rounded to the nearest basis point (De Prisco et al, 2005). The 

tranche spreads of the above simulation are presented in Table 5.1, where the confidence 

interval is denoted by CI and the Monte Carlo simulation result is denoted by MC. The 

differences in the results are considered in the next section. 

 

Table 5.1: Comparison of the tranche spreads,  in basis points, between the multi-step and 

default-time approaches 

Tranche 

attachment points 
Multi-Step (MS) Default-time (DT) 

Relative 

(MS-DT)% 

error 

Lower Upper CI MC CI MC  

0 25 [1348,1372] 1360 [1280,1299] 1289 5.2 

25 75 [353,362] 358 [358,367] 362 -1.1 

75 150 [79,83] 81 [88,93] 91 -12.3 

150 400 [4,4] 4 [5,5] 5 -25.0 

 

In assessing the computational efficiency of each approach the simulation time was 

recorded for each tranche for the 100 simulation runs. The average time of these 400 

observations is reported in Figure 5.2 for the respective approaches.   

Table 5.2: The average computational time in seconds 

Multi-Step Default-time

41.3 15.5 
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The default-time approach is computationally more efficient than the multi-step 

approach.5   

5.2.1   Comparison of the default-time and multi-step approaches 

In order to explain the differences of the results, a numerical exercise was conducted.  For 

this exercise 610  simulations were conducted and the probability density function (pdf) 

was constructed for both methods. The two methods yield slightly different probability 

distributions. The results are shown in Figure 5.1.  
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Figure 5.1 Comparison of the default-time and multi-step approach for generating defaults 

The graph demonstrates that the default-time approach produced a higher probability 

of a single default than the multi-step method. However, the probability of two or more 

defaults is less than that of the multi-step approach. In the upper tail region of the pdf, 

which is applicable to the upper or senior tranches of a CDO, the probability of default is 

higher for the default-time method. This appears to explain the results for the tranches in 

Table 5.1. The default-time method produces lower values for the equity tranche and 

higher values for other tranches. The graph in Figure 5.2 from Morokoff (2003) compares 

the cumulative distribution function of the two approaches using a high-yield portfolio 

(i.e. high default probability).  The results for the portfolio used above are similar to that 

in Figure 5.2. 

                                                      
5 The computer used has a 1.66GHz dual core processor and 1 Gigabyte of RAM. 
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Figure 5.2 The cdf of the default-time and multi-step approaches for generating correlated 

defaults  (Source: Morokoff (2003)) 

 

5.3   Conclusion 

In this chapter a four-tranche CDO was evaluated using the approach of Li (2000) and the 

multi-step approach described in the previous chapter. The differences between these 

approaches were significant in the tail regions, whilst the default-time approach was 

significantly faster.  

The Monte Carlo simulation method is the most general of all approaches and is 

applicable to all types of CDO structures, however it suffers from the disadvantage of 

being computationally expensive. As the valuation of CDO tranches amounts to the 

determination of the loss distribution, further research into efficient analytic methods to 

determine the loss distribution has been undertaken.  These techniques that are used in the 

insurance industry to determine the aggregate loss of claims are to be explored in the next 

chapter. 
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Chapter 6 

Semi-analytic methods 

This chapter introduces and compares a variety of analytic approximations that are used 

to determine the credit loss distribution.  These approximations require numerical 

solutions as opposed to the Monte Carlo simulation; hence they are termed ‘semi-

analytic’. The methods considered here in the credit-derivatives context have traditionally 

been used to calculate the aggregate loss distribution for insurance claims. 

The computational efficiency and accuracy (relative to the results of the previous 

chapter) are examined. The methods used here are the numerical inversion of 

characteristic functions, exact recursion and the compound Poisson approximation.  

6.1    Introduction 

The motivation for the single-factor approach is to derive a solution without resorting to 

simulation, which is computationally expensive.  The contribution to the literature of this 

chapter is that the valuation methods are collated, described and compared. In addition 

the presentation differs from that of the original authors in that the description here is 

given from an actuarial perspective and is influenced by the presentation of Klugman et 

al. (2004, chapter 6). 

This chapter is organised as follows. The next section describes the single-factor 

model of Vasicek (unpublished a, 2002) and the conditional-independence framework. 

Section 6.3 introduces the three semi-analytic methods: the numerical inversion of 

characteristic functions, exact recursion and the compound Poisson approximation. Each 

of these methods is implemented and the values of the CDO tranches and computational 

time recorded. These results are compared with those obtained in the previous chapter. 

Section 6.4 provides a summary of the results and the chapter concludes with section 6.5. 

6.2   The single-factor model 

Let N  be the number of assets in a portfolio with the kth asset having a default 

probability of 
k
p  for a given time horizon T. This default probability is for the same 
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horizon as that of the desired portfolio loss distribution. Each asset has an associated 

normalised credit-risk indicator, kV , for the horizon .T  The lower 
k
V is, the higher the 

credit risk of asset k . The asset k defaults if 
k
V  falls below the default threshold 

k
α . As 

k
V  is normally distributed, ( )( ) ( )α α− −= Φ < = Φ1 1

k k k k
P V p . 

In the single-factor model the credit risk of each asset can be decomposed into 

systemic and an idiosyncratic risk. By ‘systemic’, as the word implies, this risk is 

attributed to macro-economic factors, such as interest rates or a financial index. The 

idiosyncratic risk is also called ‘specific risk’. This risk is peculiar to that asset. The 

systemic risk factor V and the idiosyncratic risk factor 
k
ε  are assumed to be independent 

normally distributed random variables with zero mean and unit variance (Finger, 

unpublished).  

The central assumption of the single-factor model is that the credit risk is assumed to 

be:     

θ ε= +k k k kV w V  

where kw  is the correlation between and kV V  and θk  is the weight of the idiosyncratic 

risk for the k th asset. Given that ,
k
V V and 

k
ε  are all normally distributed, 21 .θ = −k kw  

This is obtained by direct application of the following result that the distribution of a 

linear function of n  independent random variables 1… nx x  where jx  is distributed 

normally with zero mean and variance 2σ j  is normally distributed. Let the linear function 

be:  

1 1= + +… n nz a x a x , 

where 
j
a are constants, then ( )2 20,

j j
z N a σ∑∼  (e.g. Stuart & Ord, 1994, p.378). 

6.2.1   The conditional-independence framework  

We assume that the change in the normalised asset value can be expressed by: 

1k k k kV w V w ε= + − . 
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From the above ( ) ( )kk kP V F tα< = , where ( )kF t  is the probability of default 

occurring before time t  for asset k , and since kV  has a standard normal probability 

distribution, then ( )-1  = ( )k kF tα Φ .  For a given state of the economy V , the thk  asset 

will default if k kV α< , i.e.  

( )
21

k k
k

k

w

w

α
ε

−
<

−
. 

Given that kε  is normally distributed with zero mean and unit variance, 

the default probability of the thk debtor, conditional to V , is given by 

( )
2

 = 
1

k V k k
t

k

w
p

w

α⎛ ⎞−
⎜ ⎟Φ
⎜ ⎟−⎝ ⎠

. 

6.2.2   The conditional independence applied to CDO valuation 

Once we have obtained the conditional default probability, we have three broad 

approaches to the determination of the unconditional probability-of-loss distribution that 

have found widespread use amongst market practitioners. In all these approaches, the 

entire loss distribution is calculated.  The problem of computing the value of synthetic 

CDO tranches is equivalent to determining the portfolio loss distribution. In this chapter 

the problem is solved using semi-analytic techniques. This is meant to be without the use 

of Monte Carlo, but with the use of numerical methods.  The problem is stated 

mathematically as follows, where the probability of loss x  of the portfolio at time t  is 

given by 

( )( )=∫P L t V x dV , 

where ( ) = + + +
1 2

...
n

L t X X X , n  is the number of loans in the portfolio and 

, 1,...,kX k n=  are the notional amounts of the loans in the portfolio.  Once the loss 

distribution is known at any time t, the fair tranche spread Ts  for maturity T is given by 

equation (1.1). 
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6.3   Computation of the unconditional loss distribution 

This section defines the individual and collective risk models. These models, traditionally 

used in risk theory, form an appropriate building block for the development of the semi-

analytic formula.  

Definition 6.1 Collective risk model  

Let S denote the aggregate losses as a sum of a random number N of individual payment 

amounts ( )1 2
, ,...,

N
X X X . Then the collective risk model has the following 

representation: 

1 2
... , 1,2,...,

N
S X X X N= + + + =  

where 0S =  when 0,N =  and  , 1,2,...,
j
X j N= , are independent identically distributed 

random variables, unless otherwise specified.  The independence assumptions are: 

1. For a given value of ,N n=  the random variables 
1 2
, ,...,

n
X X X are i.i.d. random 

variables. 

2.  For a given value of ,N n=  the common distribution of the random variables 

1 2
, ,...,

n
X X X  does not depend on n. 

3. The distribution of N does not depend in any way on the values of 
1 2
, ,...,

n
X X X  

Definition 6.2  Individual risk model 

The individual risk model represents the aggregate loss as a sum 
1 2

...
n

S X X X= + + +  

of a fixed number, ,n  of insurance or financial derivative contracts. The loss amounts for 

the n  contracts are ( )1 2
, ,...

n
X X X  where the  , 1,2,...,

j
X j n=  are assumed to be 

independent but not assumed to be identically distributed. The distribution of the 

 , 1,2,...,
j
X j n=  usually has a probability mass at zero, corresponding to the probability 

of no loss or payment. 

(Klugman et al, 2004, p. 134-135). 
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As presented above, once the factor is fixed, the determination of the conditional 

loss distribution is similar to the determination of the aggregate loss distribution in the 

individual risk model.  In this section the following methods are illustrated: inversion of 

the characteristic function, exact recursion, and compound Poisson approximation to the 

individual risk model. Conditional on a particular scenario the numerical inversion of the 

characteristic function and the exact recursion methods are essentially the valuation of the 

loss distribution in an individual risk model. The (unconditional) aggregate loss 

distribution is then evaluated at all possible scenarios. This requires numerical 

integration.  The performance of these techniques is compared using the same portfolio of 

names given in chapter 4, with respect to accuracy and computational efficiency.  

6.3.1   Numerical inversion 

This approach to pricing CDO tranches was proposed by Laurent & Gregory (2003). It is 

based on the single-factor model and a semi-analytic formula is derived that avoids 

computationally expensive Monte Carlo simulations. An overview of the properties of 

characteristic functions is given, followed by a derivation of the characteristic function 

under the conditional-independence framework.  A discussion of the theory and 

numerical implementation issues then follows. Klugman et al. (2004, p.191) describes the 

approach followed here without further elaboration: 

Through the use of transforms, both the FFT and inversion 
methods are able to handle convolutions efficiently. For 
example, suppose a reinsurance agreement was to cover the 
aggregate losses of three groups, each with unique 
frequency and severity distributions. If  , 1,2, 3

i
S i =  are 

the aggregate losses for each group, the characteristic 
function for the total aggregate losses 

1 2 3
S S S S= + +  is 

( ) ( ) ( ) ( )
1 2 3S S S S

z z z zϕ ϕ ϕ ϕ= and so the only extra work is 

the inversion step. 

6.3.1.1   Properties of characteristic functions 

Selected properties are introduced pertaining to the conditions that are necessary for the 

existence of characteristic functions. The inversion formula is also described. 
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Definition 6.3 Characteristic function 

The characteristic function of a random variable X is  

( ) ( ) ( )ϕ = = +cos sin ,iuX
X
u E e E uX i uX  

where 1i = − (Chung, 2001, p.150). 

Definition 6.4   

For any continuous function ( )f x , the Fourier transform is the mapping 

( ) ( )
∞

−∞

= ∫ iuxf u f x e dx  

(e.g. Panjer, 2006, p. 184). 

 

The original function can be recovered from its inverse Fourier transform as 

( ) ( )π

∞
−

−∞

= ∫
1

.
2

iuxf x f u e du  

When ( )f z is a probability density function, ( )f z  is its characteristic function. If 

( )f x  is a probability mass function, with discrete probabilities at , 1,2,...
j
x j =  then its 

Fourier transform, ( )f z  is defined as  

( ) ( )
∞

=

= ∑
1

jiux

j
j

f u f x e  

(e.g. Stuart & Ord, 1994, p. 128). 

The theorem below provides a one-to-one correspondence between characteristic 

functions and distribution functions. 

Theorem 6.1  The uniqueness theorem 

Two distribution functions ( )1F x  and ( )2F x  are identical if, and only if, their 

characteristic functions ( )1 uφ  and ( )2 uφ  are identical. 

Proof: Lukacs (1970, p. 28) 
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Theorem 6.2  The inversion theorem 

Let ( )f t  be the characteristic function of the distribution function ( )F x . Then  

( ) ( ) ( )1 1
,

2

ith
itae

F a h F a e f t dt
itπ

−∞ −

−∞

−
+ − = ∫  

Provided that a and ( )0a h with h+ >  are continuous functions. (Lukacs, 1970, p.31) 

 

Theorem 6.3  Inversion formula for density functions 

If a characteristic function ( )φ t  is absolutely integrable over ( ),−∞ +∞ then the 

corresponding distribution function ( )F x  is continuous and the formula 

( ) ( ) ( )φ
π

∞ −

−∞
′= = ∫

1
2

itxf x F x e t dt  

expresses its density ( )f x  in terms of the characteristic function.  

Proof: Lukacs (1970, p.31-33) 

Theorem 6.4  Convolution theorem 

A distribution function F is the convolution of two distributions 
1
F  and 

2
F , that is  

( ) ( ) ( )
( ) ( )

1 2

2 1

1 2

F z F z x dF x

F z x dF x

F F

∞

−∞
∞

−∞

= −

= −
= ⊗

∫
∫  

if, and only if, the corresponding characteristic functions satisfy the relation 

( ) ( ) ( )φ φ=
1 2

.f t t t  

Proof: Lukacs (1970, section 3.3, p.36) 
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The following definition and three theorems are particularly useful for implementation of 

the algorithm used in the numerical determination of the loss distribution. These results 

are omitted from the presentation of DeBuysscher & Szegö (unpublished) and Laurant & 

Gregory (2003). 

Definition 6.5   

The support of the probability mass function of the discrete distribution of X  is the 

subset, x∈  such that ( ) 0p x > . Let this subset be denoted by S . This implies 

that ( ) 0p x = for any x S∉ . 

(e.g. Paolella, 2006, p.116) 

Definition 6.6 

A discrete probability distribution is said to be of the lattice type if, and only if, its 

support is in an arithmetical progression. It is completely atomic (i.e. discrete) with all the 

atoms located at points of the form { }a jh+ where a  is real, 0,h > and j  ranges over a 

certain nonempty set of integers. The characteristic function of a distribution of lattice 

type is given by  

( ) ait jait
j

j

f t e p e
∞

=−∞

= ∑  

where 0jp ≥ and  

1jj
p∞

=−∞
=∑  

(Chung, 2001). 

Theorem 6.5  

A characteristic function is that of a lattice distribution, if and only if, there exists a 

0 0t ≠ such that ( )0 1.f t =  

Proof: (Chung, 2001, p. 183) 

Theorem 6.6 
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There is an 0h >  such that ( ) 1f h =  and ( ) 1f t <  for 0 t h< < . In this case X has a 

lattice distribution with span 2 .hπ  

Proof: (Durret p.131) 

 

Theorem 6.7 

Let the random variable X have a lattice distribution with possible values of the form 

( )0, 1, 2,... .a kh k+ = ± ±  Then 

 ( ) ( ){ } ( )exp
2
hP X a kh iu a kh f u du

π

ππ −

= + = − +∫  (6.1) 

for every integer k , where ( )f u is the characteristic function of the random variable .X  

(Proof: Petrov, 1975 p. 12 or Feller, 1971, p. 511) 

There are two cases worthy of highlighting.  If 0=a  and h  is any real number then the 

distribution is termed ‘arithmetric’ (Feller, 1971, p. 138). A special case of the arithmetic 

distribution is the case 0=a  and 1=h . This is called the integer lattice distribution (e.g. 

Chung, 2001, p.184).  The characteristic function of such a random variable X  has 

period 2π and the following inversion formula holds for each integer k : 

( ) ( ) ( )1 exp
2

π

ππ −

= = −∫P X k iuk f u du . 

Common discrete distributions such as the binomial and Poisson distributions are 

integer lattice distributions.  

6.3.1.2   Characteristic functions and credit loss distributions 

Assume a portfolio with the following features: 

n  : number of assets in the portfolio; 

kN  : nominal value of the kth asset; 

{ }1
kk tX τ ≤=  : default indicator for asset k at time t; 
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kR  : recovery rate for asset k; 

(1 ) k k kM N R= −  : exposure at default on the kth name; 

1

( )
n

k k
k

L t M X
=

=∑  : accumulated loss at time t. 

 

The characteristic function, conditional on a particular state V , is independent. For a 

given state of the economy V v= , the conditional Fourier transform of the portfolio loss 

distribution is: 

( )1 1 2 2

( )
( ) ( )
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iuL t
L t V v

iu M X M X M X

f u e

e

−
=

− + + +
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E

E …
 

( ) ( )At  time ,  1  or  0 1 .k V k V
k t k tt P X V p P X V p= = = = −  Therefore,  

( )
1

1 1 .

k k k

k

k V k ViM X u iM u
t t

k V iM u
t

e V p p e

p e

−⎡ ⎤ = − +⎣ ⎦

= + −

E
 

Here we are assuming fixed recovery rates and hence fixed loss given defaulted 

amounts. Therefore, by independence of the state of the economy, the unconditional 

characteristic function of the accumulated loss at time t  is:  
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( )

( ){ }

( )

1

1
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1 1

1 1 ( ) ,    

k

k
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k

f u e

p e

p e V dVϕ

=

∞

=−∞

⎡ ⎤= ⎣ ⎦
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

= + −

∏

∏∫

E

E  

where ( )Vϕ  is the standard normal density function.   

The above integral is evaluated using the Gauss-Hermite quadrature technique. 

Thus, using K  nodes, 



80 

 

 ( ){ }( )
1

( ) 1 1j k

K
k x iM u

L t t j
j

f u p e w
=

= + −∑ , (6.2) 

where jw and jx are the weights and abscissas respectively.6 

By theorems 6.5 and 6.6, it may be confirmed that this characteristic function is of 

lattice type with period 2 hπ . 

6.3.1.3   Numerical determination of the inverse characteristic function 

The inverse characteristic function of a distribution of lattice type is the probability mass 

function (pmf). The pmf is obtained as the inverse Fourier transform of the characteristic 

function  in equation (6.2). The pmf of the loss function is given by 

 ( )( ) ( ) ( )exp ( )
2

h

L t

h

hP L t kh iukh f u du
π

ππ −

= = −∫  (6.3) 

The integral in equation (6.3) may be determined directly by numerical integration. This 

however is computationally inefficient. The FFT routine is a particularly efficient at the 

computation of Fourier transforms.  Direct numerical integration requires ( )2O N  

operations whilst the FFT requires ( )2logO N N  operations to compute N  pmf values 

(Mittnik et al, 1999). In order to use the FFT the integral in equation (6.3) needs to be 

discretised. 

For a given time t  we seek to determine the pmf at points 

( )= − =1 , 1,..., .
k
x k h k N  Let 2u πω= , then equation (6.3) becomes  

 ( )( ) ( )2 1
( )1 (2 )

h
i k h

L t

h

P k h h e f d
π

π

π

πω ω− −

−

− = ∫  (6.4) 

The integral in equation (6.4) can be approximated by the left-hand Riemann sum for 

N points with spacing s  as follows: 

                                                      
6 Appendix A provides details on the Gauss-Hermite quadrature. 
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( )

1
1 2 1

N
i n k hs

L t
n

P k h hs f s n e ππ − − −

=

− ≈ −∑ .  

By setting 1hs N −= , 

 ( )( ) ( )( ) ( )( )2 1 1
( )

1

11 2 1
N

i n k N
L t

n
P k h f s n e

N
ππ − − −

=

− ≈ −∑  (6.5) 

The form of equation (6.5) is identical to that of the inverse FFT function of Matlab.  The 

summation may be efficiently computed by applying the inverse FFT to the sequence  

( )( )( ) 2 1 , 1,..., .L tf s n n Nπ − =  

6.3.2   Recursion 

This approach was first presented by Andersen et al. (2003). As was the case for the 

numerical inversion of the characteristic function, conditional on a particular scenario, the 

individual assets in the portfolio are independent. This allows for the use of the ‘exact’ 

recursive method for determining the convolution. The method is called exact because the 

overall potential losses are some multiple of a discretised loss unit. Let u denote the loss 

unit and let the loss weight be given by ( ) kw k M u= , where x  denotes the nearest 

integer to x . Where the distribution of losses in a portfolio is of a lattice type, the 

rounding to the nearest integer would not be needed. The maximum portfolio loss is 

max max1
,n

kk
L M u l

=
= = ⋅∑  where  ( )max 1

n

k
l w k

=
= ∑ . Andersen et al. (2003) provide a 

method to choose a loss unit subject to a discretisation error, when the distribution of 

losses is not of a lattice type. Their approach is given in Appendix B.  

This technique has been used by actuaries in the context of the individual risk model 

(Panjer & Willmot, 1992).  As in the previous section, the losses in the portfolio need to 

be of a lattice type.  

The probability density function of the aggregate loss conditional on the scenario V  

at time t  is given by 

( ) ( )
1 2

...= ⊗ ⊗ ⊗
nS X X Xf x V f f f x V , 

where 
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The amount jb is the amount lost in the event of the jth entity defaulting. The above 

density can be calculated recursively over the partial sums 1 ,j j jS S X−= +  

for 2,3,...,j n=  beginning with 1 1.S X=  
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 (6.6) 

Once the loss unit, u , is determined, the algorithm to calculate the loss distribution 

as multiples of the loss unit at time t, for each scenario as given by the number of nodes in 

the Gaussian quadrature, K , follows below, after the definition of the notation to be used 

is given.7 Define a matrix A  with dimensions ( )max 1 ,l n+ ×  where n  is the number of 

assets in the portfolio. The rows of A  represent the range of discretised losses that range 

from max0 to l . The algorithm is as follows: 

1. determine the conditional default probability for each asset; 

2. the value of 1,1A is initialised with the probability of no loss, whilst the value of 

( ),1 = =j jA P X b , which is the probability of default for the asset determined in 

step 1, is such that the rest of the values are set to zero;  

3. for assets 2,... ,j n=   the recursion of equation (6.6) is used to add assets to obtain 

the conditional probabilities, this will be the column n of the matrix A ;  

4. the conditional probabilities (column n of the matrix A) are stored in another 

matrix, say B, with dimensions ( )max 1 ;l K+ ×  

5. steps 2 to 4 are repeated K  times;  

                                                      
7 For practical purposes, this is taken to be the coupon dates of the CDO contract. 
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6. the unconditional probability for the loss amount, max0,...,l l= is given by 

( )
1

,
K

j
j

B l j w
=

×∑ , where the jw  are the weights of the Gaussian quadrature.  

6.3.3   Collective-risk-model approximation to the individual risk model  

In practice the computational burden of large portfolios becomes onerous especially using 

the recursion technique outlined above. It has become popular (Klugman et al. p. 203) to 

approximate the distribution of losses in the individual risk model by using the compound 

Poisson distribution (CPD). The CPD can be calculated by a recursive procedure or by 

the FFT. This section begins with a description of the mathematics of the Poisson and 

compound Poisson distributions. This is followed by a description of the theory and 

numerical implementation of the Panjer recursion and FFT methods when determining 

the compound Poisson distribution. 

6.3.3.1   Properties of the Poisson distribution 

The probability function kp  denotes the probability that exactly k events occur. Let N  be 

a random variable representing the number of such events. Then  

( )Pr ,   0,1,2,...kp N k k= = =  

The probability generating function (pgf) of a discrete random variable N with 

probability function kp is 

( ) ( )
0

.N k
N k

k
P z P z p z

∞

=

= =∑  

Of particular interest is the pgf of the Poisson distribution that is 
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The mgf is ( ) ( ) ( )1λ −
= =

tet
X XM t P e e . 

6.3.3.2   The link between generating and characteristic functions 

The theorem below provides the relationship between the characteristic function 
X

ϕ  and 

the pgf 
X
P . It is especially useful when computing the conditional aggregate loss 

distribution via the FFT. 

 

Theorem 6.8   

If the probability generating function exists for a random variable X , then 

( ) ( )lnXP z i zϕ= −  and ( ) ( )iz
X z P eϕ = . 

(Proof: Panjer, 2006, p.146). 

If the random variable X has a discrete distribution with values 1 2, ,...,x x  with 

associated probabilities 1 2, ,...,p p  then  

( )
.

n

n

itx

itx
n

n

f t E e

p e

⎡ ⎤= ⎣ ⎦
=∑

 

6.3.3.3   Compound model for aggregate losses 

Let S  denote the aggregate losses associated with a set of N  observed losses 

1 2, ,..., NX X X  satisfying the assumption that, given that there are n  losses, the loss sizes 

are mutually independent random variables whose common distribution does not depend 

on .n  The random sum   

1 2 ... NS X X X= + + +  

has distribution function 
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p P S x N n
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 (6.7) 

where ( ) ( )SF x P X x= ≤  is the common distribution of ,  1, 2,...,jX j N=  and 

( ).np P N n= =  n
XF ∗  is the ‘n-fold convolution’ of the cdf of X . It can be obtained as 

0 0 0,
1 1 0,X

x
F ∗ <⎧

= ⎨ ≥⎩
 

and  

 ( ) ( ) ( ) ( )1  for 1, 2,...
∞

∗ −∗

−∞

= − =∫ kk
X X XF x F x y dF y k  (6.8) 

In the case of discrete random variables with positive probabilities at 0,1,2,…, 

equation (6.8) reduces to  

( ) ( ) ( ) ( )1

0

 for 0,1,...,  2,3,...
x

kk
X X X

y

F x F x y f y x k∗ −∗

=

= − = =∑  

The corresponding probability function is 

( ) ( ) ( ) ( )1

0

for 0,1,...,  2,3,...
x

kk
X X X

y

f x f x y f y x k∗ −∗

=

= − = =∑  

The distribution equation (6.7) is called a compound distribution, and the probability 

function for the distribution of aggregate losses is 

( ) ( )
0

.n
S n X

n
f x p f x

∞
∗

=

= ∑  

The pgf of S  is given by  
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 (6.9) 

( ) ( ) and N XP z P z  are referred to as the primary and secondary distributions, 

respectively. 

The characteristic function is used in the next section. It is given by 

( ) ( )
( ) .

izS
S

N

z E e

P z

ϕ

ϕ

=

= ⎡ ⎤⎣ ⎦
 

6.3.3.4   Properties of the CPD 

A recursive formula attributed to Panjer (1981) is the most widely used method of 

determining values for the CPD. Another method that is frequently used as the processing 

power of computers increases and its costs decrease, is numerical inversion by the FFT of 

the CPD characteristic function. In this section the above two methods will be described.  

Panjer recursion 

The probability of exactly k losses can be written as  

( ) ( )
( ) ( )

0

1 2
0

... .

n

N
n

P S k P S k N n

P M M M k N n P N n

∞

=
∞

=

= = = =

= + + + = = =

∑

∑
 

 

Let ( ) ( ),
n n
g P S n p P N n= = = =  and ( )n

f P M n= = . Then the above formula 

may be written as 



87 

 

0

n
k n k

n

g p f
∞

∗

=

= ∑ , 

where , 0,1,2...n
k
f k∗ = is the n-fold convolution of the function , 0,1,...

k
f k = This means 

that the probability that the sum of n independent and identically distributed random 

variables each with probability function 
k
f will take on the value .k  

Definition 6.7  ( ), , 0a b class of distributions 

Let 
k
p be the probability mass function of a discrete random variable. It is a member of 

the ( ), , 0a b class of distributions if constants a and b  exist such that 

 
1

, 1,2, 3,...k

k

p b
a k

p k−

= + =  (6.10) 

(Panjer, 2006, p.115) 

When ( )N
P z  is a member of the ( ), , 0a b class then the above relationship holds for 

its pmf. 

Theorem 6.9  Panjer recursion 

If the primary distribution is a member of the ( ), , 0a b class then the recursive formula to 

calculate the compound distribution probabilities is given by 

 
10

1
, 1,2, 3,...

1

k

k j k j
j

bj
g a f g k

af k −
=

⎛ ⎞
= + =⎜ ⎟− ⎝ ⎠

∑  (6.11) 

Proof: (Panjer, 2006, p.127) 

If the primary distribution is Poisson, we have = 0,a  and λ=b , then the formula in 

equation (6.11) becomes  

1

,
k

k j k j
j

g jf g
k
λ

−
=

= ∑  

with starting values  
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Distributions of this type are called compound Poisson distributions. 

6.3.3.4.1 Numerical inversion of the characteristic function 

Given a random sum 
1 2

...
N

X X X+ + +  that has the distribution k
k

U p F ∗= ∑  with 

common characteristic function ( )tϕ , then the corresponding characteristic function for 

U is  

( ) ( )( )S N X
z P zϕ ϕ= .  

For the case in which the primary distribution is Poisson, we have 

( ) ( )( )1X z

S
z e

λ ϕϕ −
= . 

(Feller, 1971, p. 504) 

 

6.3.3.5 Literature on the numerical computation of the CPD 

Prior to the advent of the FFT and the Panjer recursion technique, the determination of the 

CPD had traditionally been determined directly, an example of which is given in 

Klugman et al. (2004, p.145). 

The usual method of evaluating the distribution function 
requires the computation of many convolutions of the 
conditional distribution of the amount of a claim given that 
a claim has occurred.  

(Panjer, 1981) 

 The first published article identified, during the course of this research, with respect 

to the computation of the CPD was that of Panjer (1981). The recursive technique was a 
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major advance. Prior references to the inversion of the characteristic function by the FFT 

did not address the CPD directly. Bühlmann (1984) provided an analysis of the 

comparison of the FFT and Panjer recursion with respect to computational efficiency. 

Embrechts & Frei (2007) updates and extends the comparison to include aliasing error 

and exponential tilting.8   Belov & Galkin (1991) reviews all the available algorithms and 

comments that the Panjer recursion is the simplest to implement. 

6.3.3.6 Obtaining the pdf of a compound Poisson distribution 

The probability distribution is obtained by inverting the characteristic function of the 

compound Poisson distribution. To test the code the example from Klugman et al. (2004, 

p. 187, Example 6.28) was implemented in Matlab.9  

Example:  Suppose the random variable X takes on values 1, 2 and 3 with 

probabilities 0.5, 0.4 and 0.1 respectively. Further suppose the number of claims has the 

Poisson distribution with parameter 3.λ =  Use the FFT to obtain the distribution of S 

using n=8 and n=4096. 

 

                                                      
8 In addition the authors provide examples of the CPD implemented in the R programming language using 

the actuar package. 
9 The program implemented in Matlab  is as follows:  
M=4096; f1=[0,0.5,0.4,0.1,zeros(1,M-4)]; 
fhat1=fft(f1); 
P1=exp(3*(fhat1-1)); 
g1=ifft(P1); 
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Table 6.1 Published and calculated values of the CPD using the FFT 

 Sf  Matlab implementation 

 n = 4096 n = 4096 

0 0.04979 0.04979 

1 0.07468 0.07468 

2 0.11575 0.11575 

3 0.13256 0.13256 

4 0.13597 0.13597 

5 0.12525 0.12525 

6 0.10558 0.10558 

7 0.08305 0.08305 

 

6.3.3.7   Valuation of a synthetic CDO portfolio using the CPD 

De Prisco et al. (2005) first introduced the CDP to the pricing of CDO tranches. In their 

implementation the entire loss distribution is not calculated. The implementation in this 

research differs from this approach. The other methods considered all determine the loss 

distribution so an equivalent comparison can be made.  

6.3.4     Summary     

The numerical inversion of the characteristic function and the recursion technique yielded 

identical results in Table 6.2 below, based on the example given in chapter 5. This was 

also the case for the CPD computed via recursion and using the Panjer recursion.   
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Table 6.2 The tranche spreads in basis points. 

Tranche 

attachement 

points 

Default-time 
Numerical 

inversion 

Exact 

recursion 
CPD 

 MC FFT Exact Panjer FFT 

0–25 12.90095 12.67298 12.67298 12.55555 12.55555 

25–75 3.60897 3.59998 3.599979 3.57876 3.57876 

75–150 0.91889 0.91665 0.916652 0.91621 0.91621 

150–400 0.04970 0.04992 0.049917 0.05208 0.05208 

 

The results presented in Table 6.3 indicate that the Panjer recursion is eclipsed in 

terms of the computational efficiency by the FFT method. The recursive method is 

competitive purely because there are fewer ‘for loops’10 in its implementation. Ideally the 

computer code should therefore be written in a lower-level language such as C.  Another 

issue with the Panjer recursion is that of underflow or overflow which occurs when the 

initial probability is too small to be represented in a computer. Solutions to this problem 

have been addressed in Panjer & Willmot (1986).  

 

Table 6.3 The time in seconds for each tranche spread calculation. 

Default-time Numerical 

inversion 
Recursion CPD 

Monte Carlo FFT Exact Panjer FFT 

15.98 1.36 0.73 3.13 0.40 

 

                                                      
10 Matlab is particularly slow at executing ‘for loops’. A possible solution is to remove ‘for loops’ via a 

process called ‘vectorization’.  
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Table 6.4 Relative errors with respect to Monte Carlo simulation estimates 

Tranche attachment points Recursion CPD 

Lower Upper Exact FFT 

0 25 1.767% 2.677% 

25 75 0.249% 0.837% 

75 150 0.244% 0.292% 

150 400 0.439% 4.788% 

 

Table 6.4 indicates that the CPD does not perform well when pricing the junior and 

senior tranches.   

6.4   Numerical experiments 

The portfolio used thus far is of a lattice type as per Definition 6.6. This is not the case for 

most portfolios. The semi-analytic methods presented in this chapter is applicable when 

the distribution of losses is of a lattice type.  Andersen et al. (2003) provided an algorithm 

to transform the distribution of losses to a lattice type subject to a chosen error. The 

algorithm is reproduced in Appendix B. 

In this section, contrived portfolios are used to evaluate the accuracy and 

computational efficiency of the respective algorithms. Two portfolios are used. The 

numbers of names in these two portfolios are 125 and 250 respectively. The recovery rate 

increases linearly, for both portfolios, from 10–30%. All the names in the portfolio have a 

common notional amount of 100 and a constant default probability of 220 basis points 

over the five-year term. Given that the recovery rate is different for each entity in the 

portfolio the hazard rate will also be different. This is determined using the method 

described in chapter 2. The loss unit used was five.  

For both portfolios, a Monte Carlo simulation was run 100 times where each 

simulation consisted of 100 000 iterations. The mid point of the 95th percentile was 

chosen as the value for the tranches. The following tranches were evaluated: 0–500, 500–

2500, 2500–5000 and 5000–10000. 



93 

 

 

Table 6.5 The fair tranche spread and the computational times for the portfolio consisting of 

125 names 

Tranche 

attachment 

points Monte Carlo Recursion 

Numerical 

inversion CPD 

0–500 21.86507 21.17588 21.17579 21.12751 

500–2500 6.55731 6.62159 6.62159 6.56823 

2500–5000 1.89889 1.83851 1.83851 1.82446 

5000–10000 0.27605 0.26534 0.26534 0.271015 

     

Time (seconds) 21.11220 6.51059 34.15806 0.53831 

 

Table 6.6 The fair tranche spread and the computational times for the portfolio consisting of 

250 names 

Tranche 

attachment 

points Monte Carlo Recursion 

Numerical 

inversion CPD 

0–500 30.24512 29.10335 29.10335 29.06861 

500–2500 11.13897 10.90346 10.90346 10.88929 

2500–5000 4.879363 5.120008 5.120008 5.07228 

5000–10000 1.881993 1.80306 1.80306 1.79583 

     

Time (seconds) 36.32774 25.00510 60.46545 0.80254 
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Table 6.7 The relative errors of the recursion and CPD methods with respect to Monte 

Carlo simulation estimates for the 125 and 250 name portfolios 

125 250 

Recursion CPD Recursion CPD 

3.152% 3.373% 3.775% 3.890%

0.980% 0.167% 2.114% 2.241%

3.180% 3.920% 4.932% 3.954%

3.882% 1.825% 4.194% 4.578%

 

The method using the inversion of the characteristic function is omitted given that it 

was slower than the recursive method, and it produces values that are identical to the 

recursive method. Tables 6.5–6.7 present the results of using the numerical inversion of 

the characteristic function, the recursive and compound Poisson approximation. 

6.5   Conclusion 

The CPD evaluated using the FFT proved to be the most efficient (as per the bottom row 

of Tables 6.5 and 6.6) with a loss of accuracy (as per Table 6.7) that is modestly higher 

than that produced by the next most competitive method; that of Andersen et al. (2003). 

The Panjer evaluation of the CPD proved computationally too demanding. This was also 

the case for the numerical inversion of the characteristic function via the FFT. Increasing 

the number of names in the portfolio diminishes the performance of the recursive method. 

 

The CPD evaluated using the FFT proved to be the most efficient (as per the bottom row 

of Tables 6.5 and 6.6) with a loss of accuracy (as per Table 6.7) that is modestly higher 

than that produced by the next most competitive method; that of Andersen et al. The 

Panjer evaluation of the CPD proved computationally too demanding. This was also the 
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case for the numerical inversion of the characteristic function via the FFT. Increasing the 

number of names in the portfolio diminishes the performance of the recursive. 
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Chapter 7 

Conclusion 

This research has considered the most cited models in the literature that are being used to 

determine the credit loss distribution and value of synthetic CDO tranches in the financial 

industry. Two major omissions in the literature have been identified. These are an overall 

comparison of the models with respect to computational efficiency and accuracy and the 

elucidation of their algorithms. This was the primary research objective of this research. 

A secondary objective was to highlight the contribution of actuarial science to the credit 

risk valuation field. 

This chapter is organised as follows. The first four sections review and summarise 

the results of this work.  The extensions to the models are also elaborated on. In the fifth 

section, topics for future of research are suggested. The events in the financial markets 

since August 2007, which have caused major losses for the financial institutions, revealed 

that the models used have been inadequate.  The chapter concludes with a discussion on 

the financial crisis and the shortcomings of the models discussed in this dissertation. 

7.1 Obtaining default probabilities 

A method for obtaining default probabilities from market quotes of CDSs was illustrated 

in chapter 3. This method utilises the survival-function approach which is familiar to 

actuaries to obtain the hazard rate. The hazard rate is then converted to a default 

probability. A common approximation method was tested against the accurate method 

and it was established that this satisfactorily estimated the default probability. The 

approximation described in this chapter was used throughout this research.  

7.2 Multi-step approach 

The multi-step approach could also be described as the first-passage-time model applied 

to successive intervals.  The use of this approach for the valuation of CDOs has two steps: 

the determination of the default thresholds and the loss distribution.  
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This research tested all the published methods of determining the default threshold 

with respect to accuracy and computational efficiency using a contrived example. The 

methods tested are Hull & White (2001) (an analytic approximation), Iscoe & Krenin 

(unpublished a) (a simulation technique) and Morokoff (2003) (a convolution method that 

is approximated by the FFT). For each of these methods, the key parameters are the 

number of grid points, the number of simulations and the number of nodes.  In addition, 

the Monte Carlo method was enhanced using antithetic variates. For all the methods 

tested, the parameters were chosen so that no additional accuracy was observed by 

increasing the parameter values (which would increase the computational time). The 

methods were discussed and their algorithms exposed. Given that Morokoff (2003) 

omitted implementation details, the exposition given may increase the usage of the 

convolution technique.  

The method of Iscoe & Krenin (unpublished a) was found to be slower but more 

accurate than that of Hull & White (2001). The method that used the FFT was found to be 

computationally efficient and accurate. A further observation made was that different 

methods used to determine the default thresholds yielded different results with respect to 

accuracy.  Morokoff (2003) proved to be the most accurate.  

The method of Morokoff (2003) was then used as the benchmark to price synthetic 

CDO tranches. For the example used, it was found that CDO tranche prices using Hull & 

White (2001) produced errors that increased from approximately 1% for the equity 

tranche to 3% for the senior tranche. The range for the method of Iscoe & Kreinin 

(unpublished a) was approximately 0.5 to 1.4%. 

7.3   Default time 

It was shown that the default-time approach improved the computational efficiency of 

determining the prices of the tranches of CDOs when compared to that of the multi-step 

approach. However, there were significant differences in their respective credit loss 

distributions in the tail regions.     
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7.4   Semi-analytic methods 

The efficiency of the default-time approach and its wide spread use made it the focus of 

many researchers who sought to develop semi-analytic approximations. This was done 

primarily for computational efficiency. Different techniques were implemented to assess 

the accuracy and computational efficiency of the semi-analytic methods with respect to 

the standard Monte Carlo implementation of the default-time model.  

The methods that were implemented are numerical inversion of the characteristic 

function, exact recursion and the compound Poisson approximation. The compound 

Poisson approximation was implemented using the Panjer recursion and the FFT method. 

  In addition, the algorithms for these methods were described. In all the published 

literature, none of the algorithms for the methods considered are published. The 

implementation of the numerical inversion of the characteristic function using the FFT 

proved particularly difficult. The standard reference used for the numerical inversion of 

characteristic function in the credit-risk context, DeBuysscher & Szegö (unpublished), 

omits theorems that are essential to its understanding and successful implementation. This 

is ameliorated by the presentation given in chapter 6.  The other semi-analytic methods 

analysed proved easier to implement.  

The compound Poisson approximation, implemented using the FFT, was seen to be 

the computationally most efficient though it was the least accurate.  The Panjer recursion 

implementation of the compound Poisson approximation proved to be computationally 

inefficient. This was the case for a 50-entity portfolio, and hence was not considered for 

larger portfolios that were subsequently examined.  For the heterogeneous portfolio that 

was not of a lattice type, the numerical inversion of the characteristic function and the 

exact recursion method produced identical results when a common loss unit was used.  

All the methods were implemented in Matlab. This was the main reason why the 

numerical inversion of the characteristic function was slower than the exact recursion 

method. This is because Matlab is slower at executing ‘for loops’.  

 The findings confirm that of Glasserman & Ruiz-Mata (2006) that the accuracy and 

computational efficiency of the Monte Carlo method is still preferred when computational 

time is fixed.  
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7.5   Future research 

This research investigated the computational efficiency and accuracy of the most cited 

models pertaining to the valuation of the credit loss distribution and the pricing of 

synthetic CDO tranches. As stated above Matlab’s major deficiency is its implementation 

of for loops. An invaluable exercise would be to implement these models in a lower-level 

language such as C or C++. This might improve the performance of the FFT method.  

The models discussed for this research in the context of credit risk may be 

considered ‘static’. The default correlations and probabilities are constant. In the literature 

‘dynamic’ models have appeared. These models extend the Heath-Jarrow-Morton model 

(1992) used to value interest-rate financial instruments to the valuation of credit risk. 

These models are not as mathematically tractable as the ones considered for this research. 

An example of this type of model is presented in Bennani (2006).11 A key feature of 

models actually used is that they are easy to implement. These models do not fall into this 

category. 

A topic for further investigation is to assess whether other variance-reduction 

techniques could be applied to the inverse of the default boundary problem as presented 

by Iscoe & Kreinin (unpublished a). Arvanitis et al. (unpublished) discuss the use of 

importance sampling to improve the computational efficiency in determining the credit 

loss distribution.  

Further research into the use of the CPD used for credit risk may entail improving 

the approximation by reducing the errors. Schaller & Temnov (2008) compares 

techniques that reduce errors when determining convolutions particularly of compound 

distributions. 

This research also highlighted the significant contribution of actuarial science to the 

credit-risk valuation field. The use of the conditional independence framework introduced 

in chapter 6 may have use in actuarial science, for example, in the valuation of insurance 

contracts that depend on a systemic event. 

                                                      
11 Bennani, N. “The Forward Loss Model: A Dynamic Term Structure Approach for the 

Pricing of Portfolio Credit Risk,” Working Paper, The Royal Bank of Scotland (2006) 
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7.6   Models and the financial crisis of 2007 – 2008   

This research introduced the major models that were used to evaluate the credit risk of 

entities in a portfolio. In the light of the financial crisis and the complicity of these types 

of models used in the valuation of portfolio credit risk, the models discussed in this 

research have been shown to be inadequate. The shortcomings of the models are: 

• the use of constant correlation; 

• the use of continuous processes; 

• assuming that asset returns are Gaussian; 

• the absence in the models of any input from behavioural finance. 

The financial crisis had many other causes, but the following appear most frequently in 

the media:   

• the asymmetry of information between buyer and seller; 

• the effects of contagion; 

• the complicity of regulators12 (The Economist, October 2008).  

The asymmetries of information led to a widespread breakdown of trust in the 

money market. Trust is the—if not the only—key ingredient of the banking industry. 

Seabright (2004)13 provided a plausible reasoning as to the origins of banking and the 

importance of trust in banking: 

Borrowing and lending are as old as communal living, as 
deeply embedded in social life as the sharing of meat from 
a kill. But banks are a remarkable and much more recent 
innovation; no records can tell us when they first began, but 
a plausible guess is that it was after the invention of 
agriculture and before, not after, the invention of money. 
They may have begun simply as storehouses (certainly that 
was true of the first recorded banks). Their subsequent 
transformation into proper banks may even have been the 
fruit of deceit, the ingenuity of a warehouse owner who 
realized that he could lend out some of the grain he was 

                                                      
12 Beddoes, Z.A., (2008), The World Economy Special Report, The Economist, 11 October 
13 Seabright, P. (2004) The Company of Strangers, Princeton University Press, New Jersey 
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storing on others’ behalf without the knowledge of its 
owners.  

However as Frydman, Goldberg & Phelps (2008)14 state: 

In searching for clues to the financial disaster, attention has 
focused on predatory practices in originating mortgages and 
on investment banks’ ‘cosy’ relationship with the agencies 
entrusted to rate their structured assets. But there is another 
cause: failure to acknowledge that market participants – 
including financial institutions – and regulators alike have 
only imperfect knowledge about the forces and mechanisms 
driving asset values and the broader economy. 

Greenspan (2008)15 remarks that the task to quantify financial risk is unattainable: 

We will never be able to anticipate all discontinuities in 
financial markets. Discontinuities are, of necessity, a 
surprise. Anticipated events are arbitraged away. But if, as I 
strongly suspect, periods of euphoria are very difficult to 
suppress as they build, they will not collapse until the 
speculative fever breaks on its own. Paradoxically, to the 
extent risk management succeeds in identifying such 
episodes, it can prolong and enlarge the period of euphoria. 
But risk management can never reach perfection. It will 
eventually fail and a disturbing reality will be laid bare, 
prompting an unexpected and sharp discontinuous response. 

The complicity of the regulators occurred in a general environment of deregulation 

where it was adjudged that the market would be able to regulate itself with minimum 

intervention by governments. Regulators believed that credit risk would best be managed 

if it were allowed to be dispersed throughout the financial system, the so-called ‘originate 

and distribute’ model. Also, the ratings of the credit rating agencies were codified into the 

Basel capital regulations. The well known conflict of interest between the rating agency 

and their paymasters (the originators) was left unresolved. The highest rated assets, those 

rated AAA say, were given a low capital weighting. They were believed to be almost 

risk-free. The opposite was true of lowly rated assets. The industry sought to repackage 

                                                      
14 Frydman, R., Goldberg M.  & Phelps, E, (2008) We must not rely on the rosiest ratings, Financial Times, 

19 October 
15 Greenspan, A (2008) We will never have a perfect model of risk, Financial Times, 16 March 
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their balance sheets into CDOs and sell the lowest rated tranche. The most highly rated 

tranches were kept on the financial institutions’ balance sheets as they attracted the least 

capital charge. This worked for a brief period until the repackaged assets such as those 

CDOs containing United States subprime mortgages began to default. As the number of 

defaults increased, the senior tranches of CDO structures began to suffer losses as well. 

Those institutions that invested or insured certain tranches of CDOs also suffered losses, 

such as American Insurance Group. As the situation became apparent to the rating 

agencies, they started to downgrade CDO tranches and institutions that sold credit 

protection on CDO tranches. This resulted in an increase in the capital requirement of 

financial institutions, which in turn left less capital available to fund their business. When 

most financial institutions reduced or stopped lending to each other, the interbank funding 

market seized.  This was termed the ‘credit-crunch’.16 The crisis began to be first noticed 

in the money market. Other parts of the financial markets were soon also affected due to 

the contagion. 

Derman (2005)17 warned about the use of mathematical models in finance and 

accused the economics profession of ‘physics envy’: an overzealous desire for 

mathematical rigor:  

But economists seem to have embraced formality and 
physics envy without the corresponding benefits of 
accuracy or predictability. In physics, Maxwell’s theory and 
quantum mechanics allow you to predict the way an 
electron spins about its own axis inside a hydrogen atom to 
an accuracy of 12 decimal places. Something that accurate 
isn’t just a model—it’s a law. In economics, by contrast, 
there are no laws at all, only models, and you’re immensely 
lucky if you can predict up from down. 

Seabright (2004) provided a prescient warning of the fragility and faith that is placed 

with financial institutions: 

But lending money is risky in its own way. Its anonymity 
and the ease with which it can be concealed make fraud all 
the more tempting. So banks have not completely displaced 

                                                      
16 e.g., Tett, G (2008) Big Freeze part 1: How it began, Financial Times, 3 August 
17 Derman, E (2005) Beware of Economists Bearing Greek Symbols, Harvard Business Review, October 
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that old standby of peasant societies, the storeroom in the 
comer of your house. Over a billion peasants around the 
world will store food at the end of the harvest for as long as 
the supply holds out. Even those who sell produce often 
feel the money is less safe in a bank than under a mattress. 
In rich industrial countries it is safer in the bank—most of 
the time. For banks have flourished because of their 
ingenious capacities for helping people to live with risk. 
Like many of the human institutions that do so, they have 
reduced everyday risks to levels low enough to make us 
forget that risk exists at all, sometimes leaving us startlingly 
unprepared for the more unusual hazards, whose impact can 
be very large. 

Thomson (2004) distinguishes between two types of science, the traditional and the 

modelling approach. In this framework, the physics that Derman (2005) refers to would 

fall into the traditional approach. Thomson (2004) defines actuarial science as a science 

which adopts a modelling approach to decision making with the use of professional 

judgement.  

This offers a way forward for financial economics, which has been rooted in the 

frequentist approach to probability theory. The financial crisis has forced a reassessment 

of the mathematics and the assumptions used, e.g. that asset returns are normally 

distributed (a criticism of this assumption and other assumptions used in finance is given 

in Taleb (2007)18). The key elements that are at the heart of the financial crisis which 

were not captured by the existing models used in finance—such as imperfect knowledge 

and euphoria—may be accommodated by a Bayesian approach to modelling and the use 

of behavioural finance. In the Bayesian approach, the prior distribution would need to 

incorporate the contingencies that were not previously considered. The use of the 

actuarial control cycle, being an application of the Bayesian approach, would seem the 

most appropriate path forward.  

                                                      
18 Taleb, N (2007) The Black Swan, Random House, New York 
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Glossary 

CDO Collateralised debt obligation, p.3. 

CDS Credit default swap, p.2.  

CPD Compound Poisson distribution, p. 83. 

DFT Discrete Fourier transform, p. 29. 

FFT Fast Fourier transform, p. 30. 

SPV Special purpose vehicle, p. 3. 



 

 105 

105

Appendix A 

An introduction to Gauss-Hermite quadrature 

 

The portfolio Fourier transform (or characteristic function) requires the computation of 

improper integrals such as: 

( ) ( )g x x dxφ
∞

−∞
∫  

where ( )
21 exp .

22
xxφ

π
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

 

This integral does not have an analytic expression and must be computed numerically. A 

typical approach would be to use formula like: 

( ) ( )
0

N

j
j

h x dx h x
∞

=−∞

≈Δ∑∫  

where 0 ,   0,1,...,jx x j j N= + Δ =  for ( ) ( ) ( )h x g x xφ= . This approach however is 

computationally inefficient when compared with the Gaussian quadrature approach 

(DeBuysscher, et al. 2003).  

The Gaussian quadrature consists in approximating the integral: 

( ) ( )g x W x dx
∞

−∞
∫  

where ( )W x  is the weight function and is known, by the formula:  

( ) ( ) ( )
0

N

j j
j

g x W x dx g x w
∞

=−∞

≈∑∫ , 

where the , 0,1,2,...,jx j N=  are appropriately chosen abscissas and the , 0,1,...,jw j N=  

are the corresponding appropriate weights. The abscissas and weights have been 

determined for different functions ( )W x . Of particular interest is the Hermite function 

( ) 2xW x e−= . For this function Abramowitz & Stegun (1972, Table 25.10) has published 
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values for up to the first twenty polynomials. Chapter 6 of Fusai & Roncoroni (2007) 

provides an accessible introduction to quadrature methods.  
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Appendix B 

Choosing the loss unit 

If all losses in default for individual names are some multiples of the loss unit, there will 

be no approximation error arising from the discretisation of the loss distribution. In 

practice, however, this will not be the case.  

Andersen et al. (2003) provide the following algorithm to determine a suitable loss 

unit subject to an error ε . This is to be chosen. When there is no approximation error the 

algorithm is identical to that of the greatest common divisor.  

For a given loss unit u the error for a loss  kW  is given by  

k kW w u−  

where kw  is the ratio kW u  rounded to the nearest integer. If W is the smallest loss value 

( )ε> , define , 1, 2,3,...nu W n n= = and ( )n
kw  as the integer rounded ratio .k nW u  Let n  

be the smallest integer such that ( )n
k k nW w u ε− <  for all .k  Then the loss unit is  
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Appendix C 

Computer Code 

 

This section contains the listings of the program code used in this dissertation. The 

following two programs were not written by the author: consolidator.m and qrule.m. They 

are listed in the appropriate sections. The rest of the programs were written by the author.  
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C.1 Extraction of default probabilities from market CDS quotes 

function y= NonLinearEqnsCDS(x) 
  
% The inputs are: 
%  delta:          The daycount convention. It is taken to be constant 
%                     between coupon payment dates. 
% Spreads:       A vector of the spreads.  
% n:                 The number of coupon payments (assuming no default). 
% m:                The term of the contract in a smaller time-step than 
%                      delta. 
% x:                  The initial values (guess) for each of the piecewise constant 
%                      hazard rates to be used in the Newton solver. 
%  
% Output:      The piecewise constant hazard rates. 
% Program Dependencies: 
%  piecewise.m 
%  newtons.m  
%The newtons.m code is as per 
% Yang, W.Y, Cao, W, Chung, TS & Morris, J. (2005) "Applied Numerical 
% Methods using Matlab", John Wiley & Sons, Inc , New Jersey  
 
delta =0.5; 
Rec=0.3; 
r=0.05; 
spreads=[0.005,0.006,0.008,0.0105,0.0120,0.0140]; 
  
y(1)= npvCDS(delta,spreads(1),1,182,x,r,Rec); 
y(2)= npvCDS(delta,spreads(2),2,365,x,r,Rec);   
y(3)= npvCDS(delta,spreads(3),6,1095,x,r,Rec); 
y(4)= npvCDS(delta,spreads(4),10,1825,x,r,Rec); 
y(5)= npvCDS(delta,spreads(5),14,2555,x,r,Rec); 
y(6)= npvCDS(delta,spreads(6),20,3650,x,r,Rec); 
 

function y= npvCDS(delta,spread,n,m,x,r,Rec) 
  
% This program calculates the Net Present Value of a Credit Default Swap 
% Inputs: delta - The day count convention-assumed constant for the 
%                        contract. 
%             spread- scalar, specific to the maturity of the term of the 
%                         market premium of the CDS 
% 
%             n- The number of coupon payments under the CDS assuming 
%                  no-default. 
%             m- The protection leg discretization frequency. Assumed 
%                   daily. 
%              r- risk free interest rate, assumed constant 
%              Rec- The recovery rate. 
%-----------------------------------------------------------------------------------------           
  
y1=0; 
  
for i = 1:n 
     
    y1 = delta*spread*exp(-i*delta*r-piecewise(i*delta,x))+y1; 
     
end    
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y2=0; 
for j=1:m 
     
    y2=  -delta*spread*(exp(-piecewise((j-1)/365,x))-exp(-piecewise(j/365,x)))*exp(-
r*j/365)*((j/365)-ceil((j/365)/delta)*delta)/delta... 
        +(1-Rec)*(exp(-piecewise((j-1)/365,x)) - exp(-piecewise(j/365,x)))*exp(-r*j/365)+y2; 
end    
     
y=y2-y1; 
 

 

function hh=piecewise(t,x) 
%--------------------------------------------------------------------- 
% This is the implementation of the piecewise hazard rate function. 
% The inputs are:  
%      t     Time (scalar) 
%      x     The hazard  rate (vector). Input due to initial starting 
%             values. 
% The method implemented does away with if statements. 
%---------------------------------------------------------------------- 
  
hh = (t>=0 && t<=0.5).*x(1) *t + (t>0.5 && t<=1).*(0.5*x(1)+ x(2)*(t-0.5))... 
        +(t>1 && t<=3).*(0.5*(x(1)+x(2))+x(3)*(t-1))... 
        + (t>3 && t<=5).*(0.5*(x(1)+x(2))+2*x(3)+x(4)*(t-3))... 
        +(t>5 && t<=7).*(0.5*(x(1)+x(2))+2*x(3)+2*x(4)+x(5)*(t-5))... 
        + (t>7 && t<=10).*(0.5*(x(1)+x(2))+2*x(3)+2*x(4)+2*x(5)+x(6)*(t-7)); 
 

function [x,fx,xx] = newtons(f,x0,TolX,MaxIter,varargin) 
%newtons.m to solve a set of nonlinear eqs f1(x)=0, f2(x)=0,.. 
%input: f = 1^st-order vector ftn equivalent to a set of equations 
% x0 = the initial guess of the solution 
% TolX = the upper limit of |x(k) - x(k - 1)| % MaxIter = the maximum # of iteration 
%output: x = the point which the algorithm has reached 
% fx = f(x(last)) 
% xx = the history of x 
h = 1e-4; TolFun = eps; EPS = 1e-6; 
fx = feval(f,x0,varargin{:}); 
Nf = length(fx); Nx = length(x0); 
if Nf ~= Nx, error('Incompatible dimensions of f and x0!'); end 
if nargin < 4, MaxIter = 100; end 
if nargin < 3, TolX = EPS; end 
xx(1,:) = x0(:).'; %Initialize the solution as the initial row vector 
fx0 = norm(fx); %(1) 
for k = 1: MaxIter 
dx = -jacob(f,xx(k,:),h,varargin{:})\fx(:);%/;%-[dfdx]ˆ-1*fx 
for l = 1: 3 %damping to avoid divergence %(2) 
dx = dx/2; %(3) 
xx(k + 1,:) = xx(k,:) + dx.'; 
fx = feval(f,xx(k + 1,:),varargin{:}); fxn = norm(fx); 
if fxn < fx0, break; end %(4) 
end %(5) 
if fxn < TolFun | norm(dx) < TolX, break; end 
fx0 = fxn; %(6) 
end 
x = xx(k + 1,:); 
if k == MaxIter 
    fprintf('The best in %diterations\n',MaxIter) 
end 
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function g = jacob(f,x,h,varargin) %Jacobian of f(x) 
if nargin < 3, h = 1e-4; end 
h2 = 2*h; N = length(x); x = x(:).'; I = eye(N); 
for n = 1:N 
g(:,n) = (feval(f,x + I(n,:)*h,varargin{:}) ... 
-feval(f,x - I(n,:)*h,varargin{:}))'/h2; 
end 
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C.2 Determining the default threshold by direct integration 

function DirectInteg1 
  
a=norminv(0.05) 
options = optimset('Display','iter','TolX',1e-8); 
b=fzero(@(t)h1(t,a),a,options);  
c=fzero(@(t)h2(t,b,a),b,options) 
vpa(c) 
end 
  
function y=f1(x) 
   y = normpdf(x); 
end 
  
function y= h1(t,a) 
 y = quadgk(@(x)f1(x).*normcdf(t-x),a,Inf)-0.05; 
end 
  
function z=f2(x,a) 
    n=length(x);  z=zeros(size(x)); 
    for j=1:n 
        h=@(u)(f1(u).*normpdf(x(j)-u)); 
        z(j)=quadgk(h,a,Inf,'RelTol',1e-12,'AbsTol',1e-12); 
    end 
  
end 
  
function y =h2(t,b,a) 
 integrand = @(x,y) f1(x).*normpdf(t-x)*normcdf(t-y); 
  y = dblquad(integrand,a,Inf,b,Inf,'quadgk')-0.05; 
 end 
   
 function z=f3(x,b,a) 
    n=length(x);  z=zeros(size(x)); 
    for j=1:n 
        h=@(u)(f2(u,a).*normpdf(x(j)-u)); 
        z(j)=quadgk(h,b,Inf,'RelTol',1e-12,'AbsTol',1e-12); 
    end 
 end 
   
function y =h3(t,c,b,a) 
 y= quadgk(@(u)(f3(u,b,a).*normcdf(t-u)),c,Inf)-0.05; 
end 
  
 function z=f4(x,c,b,a) 
    n=length(x);  z=zeros(size(x)); 
    for j=1:n 
        h=@(u)(f3(u,b,a).*normpdf(x(j)-u)); 
        z(j)=quadgk(h,c,Inf,'RelTol',1e-12,'AbsTol',1e-12); 
    end 
end 
   
function y =h4(t,d,c,b,a) 
  y= quadgk(@(u)(f4(u,c,b,a).*normcdf(t-u)),d,Inf)-0.05; 
  end 
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C.3 Hull & White (2001) method for determining the default 

thresholds 

tic 
clear all; 
t=1:1:5;   
p = ones(1,5)*0.05; 
deltaT=1; 
I=5; 
n=5; 
M =2000; 
K(1)=norminv(p(1))*sqrt(deltaT); 
pi=ones(n,M); 
x=zeros(n, M); 
for m=1:M 
    x(1, m)=(5*sqrt(t(1))-K(1))*m/M +K(1);  
end  
  
    for i=1:M 
             temp =0; 
        if(i==M) 
              pi(1, i) = 1.0-0.5*erf(-(0.5*(x(1,i)+x(1, i-1))/sqrt(deltaT))/sqrt(2)); 
        elseif(i==1) 
              pi(1, i) = 0.5*erfc(-(0.5*(x(1, i)+x(1,i+1))/sqrt(deltaT))/sqrt(2))-0.5*erfc((-
K(1)/sqrt(deltaT))/sqrt(2)); 
        else 
             pi(1, i)= 0.5*erfc((-0.5*(x(1, i)+x(1,i+1))/sqrt(deltaT))/sqrt(2))-0.5*erfc(-
(0.5*(x(1,i)+x(1, i-1))/sqrt(deltaT))/sqrt(2)); 
        end  
    end 
     
for i=2:I 
   m=1:M; 
   x(i-1, m)=(5*sqrt(t(i-1))-K(i-1))*m/M +K(i-1);  
         for m=1:M 
               pi(i-1, m)=  piUpdater2(i,m,pi,x,K,deltaT,M);              
         end %for m  
        K(i) = fzero(@(k)defaultBcalc(k,i,pi,x,p,deltaT),-2); 
end %for i  
toc 
K 
 
 
function y=piUpdater2(i,m,pi,x,K,deltaT,M) 
% Input the previously determined by the values for the vectors pi,x,K and  scaler p 
% This is the vectorised version 
 if  i>2  
           mm=1:M; 
           if(m==1) 
              y= sum(pi(i-2, mm).*(normcdf((0.5*(x(i-1,m)+x(i-1,m+1))-x(i-
2,mm))/sqrt(deltaT))-normcdf((K(i-1)-x(i-2, mm))/sqrt(deltaT)))); 
           elseif (m==M) 
              y= sum(pi(i-2, mm).*(1.0-normcdf((0.5*(x(i-1,m)+x(i-1, m-1))-x(i-2, 
mm))/sqrt(deltaT)))); 
           else 
             y= sum(pi(i-2, mm).*(normcdf((0.5*(x(i-1,m)+x(i-1,m+1))-x(i-
2,mm))/sqrt(deltaT))-normcdf((0.5*(x(i-1,m)+x(i-1, m-1))-x(i-2, mm))/sqrt(deltaT)))); 
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           end  
    else 
       y = pi(1,m); 
   end  
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C.4 Iscoe & Krenin (unpublished a) Monte Carlo method for the 

determination of default threshold 

%-------------------------------------------------------------------------- 
%This function calculates the default thresholds or boundaries for a given 
%vector of assets 
% This is used to illustrate the default boundary for a simple cumulative default 
% probability term structure of :  Time      CDF % 
%                                            1           5 
%                                            2          10 
%                                            :            : 
%                                            5          25 
%--------------------------------------------------------------------- 
format long; 
tic 
 clear all; 
timeStep =1;       
Term =5;                % in years 
DiscreteTerm= Term*timeStep; 
iterations = 1000000 
prob = [0:1:4]*0.05; 
cprob= 0.05./(1-prob); 
 NumberOfAssets=1 
   ThresholdA =zeros(1,DiscreteTerm); 
      ThresholdA(1,1) = norminv(cprob(1))*sqrt(1/timeStep); 
             for k = 2:DiscreteTerm   % k is the time-step ----------------------- 
  
                   Storage1 = zeros(1,0); 
                    B1=[ ]; 
                    B1 = randn(iterations,k); 
                    B1 = cumsum(B1,2)*sqrt(1/timeStep);       
+++ The section determines the threshold values++++++++++++++++++++++++                    
                    VecMat1 = [ ]; 
                    keep1 = [];               
                    VecMat1= repmat(ThresholdA(1,1:k-1),iterations,1); 
                    keep1 = all(B1(:,1:k-1)>=VecMat1,2); 
                    Storage1 = B1(keep1,k); 
            %+++ End of section determines the threshold values++++++++++++++++ 
                   clear B1;              
                   clear keep1; 
                   clear VecMat1; 
                   value= quantile(Storage1,cprob(k));            
                   clear Storage1; 
                   ThresholdA(1,k)= value;                         
            
            end % loop for the main loop (time-step) k ----------------------------------------  
  
ThresholdA 
Toc 
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 C.5 Morokoff’s (2003) method to determine the default thresholds 

% Purpose:  Calculates the pdf, cdf and inverse cdf of the convolution 
% of two distributions, in this case two normals. 
%------------------------------------------------------------------------- 
% Written by: Renay Singh 
% This program implements the algorithm $3.4 of  Kohl et al (2005) 
% "General Purpose Algorithm for Distributions in S4-Classes by FFT" 
% Requires : consolidator.m  Author : John D'Errico 
%------------------------------------------------------------------------ 
 
tic 
clear; 
N=2; 
m = 16;   % The default option as given by R code 
M = 2^m; 
delta=1; 
lower =  -10; 
upper =  10; 
cd=0.05./[1:-0.05:0.8]; 
db=zeros(1,5); 
db(1)= norminv(0.05,0,1); 
h = (upper - lower)/M; 
y= [lower:h:upper]; 
p1=  tN(y,db(1),delta);                      % The cdf's of the distns 
       for i =2:5 
            
        p2= normcdf(y); 
        p1=p1(2:(M+1))-p1(1:M); 
        p2=p2(2:(M+1))-p2(1:M); 
         
        pn1= [p1,zeros(1,(N-1)*M)];   % padd with zeros 
        fftpn1 = fft(pn1); 
  
        pn2= [p2,zeros(1,(N-1)*M)];   % padd with zeros 
        fftpn2 = fft(pn2); 
  
        pn = real(ifft(fftpn1.*fftpn2)); 
        maxNum= N*M-(N-2); 
  
        pn= [0,pn(1:maxNum)]; 
        dn = pn/h; 
        pn = cumsum(pn); 
  
        x = [N*lower+N/2*h:h:N*upper-N/2*h]; 
        x = [x(1)-h,x(1),x+h]; 
  
        cumDval1=pnfun1(x+0.5*h, x+0.5*h,pn,maxNum); 
        tt11=cumDval1/pn(maxNum+1); 
        yrange = x+0.5*h; 
        [x1,y1]=consolidator(tt11,yrange,'mean'); 
        db(i)=interp1(x1,y1,cd(i),'linear',0);  % y from above 
         p1 =pnfun1(y, x+0.5*h,pn,maxNum); 
     p1=tNe(y,p1,cd(i),db(i)); 
 end 
 db; 
 toc 
 
function [xcon,ycon,ind] = consolidator(x,y,aggregation_mode,tol) 
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% consolidator: consolidate "replicates" in x, also aggregate corresponding y 
% usage: [xcon,ycon,ind] = consolidator(x,y,aggregation_mode,tol) 
% 
% arguments: (input) 
%  x - rectangular array of data to be consolidated. If multiple (p) 
%      columns, then each row of x is interpreted as a single point in a 
%      p-dimensional space. (x may be character, in which case xcon will 
%      be returned as a character array.) 
% 
%      x CANNOT be complex. If you do have complex data, split it into 
%      real and imaginary components as columns of an array. 
% 
%      If x and y are both ROW vctors, they will be transposed and 
%      treated as single columns. 
% 
%  y - outputs to be aggregated. If y is not supplied (is left empty) 
%      then consolidator is similar to unique(x,'rows'), but with a 
%      tolerance on which points are distinct. (y may be complex.) 
% 
%      y MUST have the same number of rows as x unless y is empty. 
% 
%  aggregation_mode - (OPTIONAL) - an aggregation function, either 
%      in the form of a function name, such as 'mean' or 'sum', or as 
%      a function handle, i.e., @mean or @std. An inline function would 
%      also work, for those users of older matlab releases. 
% 
%      DEFAULT: 'mean' 
% 
%      Aggregation_mode may also be the string 'count', in which case 
%      a count is made of the replicates found. Ycon will only have 
%      one column in this case. 
%       
%      The function supplied MUST have the property that it operates 
%      on the the first dimension of its input by default. 
% 
%      Common functions one might use here are: 
%      'mean', 'sum', 'median', 'min', 'max', 'std', 'var', 'prod' 
%      'geomean', 'harmmean'. 
% 
%      These last two examples would utilize the statistics toolbox, 
%      however, these means can be generated using a function 
%      handle easily enough if that toolbox is not available: 
% 
%      fun = @(x) 1./mean(1./x)        % harmonic mean 
%      fun = @(x) exp(mean(log(x)))    % geometric mean 
% 
%  tol - (OPTIONAL) tolerance to identify replicate elements of x. If 
%      x has multiple columns, then the same (absolute) tolerance is 
%      applied to all columns of x. 
% 
%      DEFAULT: 0 
% 
% arguments: (output) 
%  xcon - consolidated x. Replicates wthin the tolerance are removed. 
%      if no y was specified, then consolidation is still done on x. 
% 
%  ycon - aggregated value as specified by the aggregation_mode. 
% 
%  ind  - vector - denotes the elements of the original array which 
%      were consolidated into each element of the result. 
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% 
% 
% Example 1: 
% 
% Group means: (using a function handle for the aggregation) 
%  x = round(rand(1000,1)*5); 
%  y = x+randn(size(x)); 
%  [xg,yg] = consolidator(x,y,@mean); 
%  [xg,yg] 
%  ans = 
%         0    0.1668 
%    1.0000    0.9678 
%    2.0000    2.0829 
%    3.0000    2.9688 
%    4.0000    4.0491 
%    5.0000    4.8852 
% 
% Example 2: 
% 
% Group counts on x 
%  x = round(randn(100000,1)); 
%  [xg,c] = consolidator(x,[],'count'); 
%  [xg,c] 
%  ans = 
%         -4          26 
%         -3         633 
%         -2        5926 
%         -1       24391 
%          0       38306 
%          1       24156 
%          2        5982 
%          3         559 
%          4          21 
% 
% Example 3: 
% 
% Unique(x,'rows'), but with a tolerance 
%  x = rand(100,2); 
%  xc = consolidator(x,[],[],.05); 
%  size(xc) 
%  ans = 
%      62     2 
% 
% See also: unique 
% 
% Author: John D'Errico 
% e-mail address: woodchips@rochester.rr.com 
% Release: 3 
% Release date: 5/2/06 
  
% is it a character array? 
if ischar(x) 
  charflag = 1; 
  x=double(x); 
else 
  charflag = 0; 
end 
  
% check for/supply defaults 
if (nargin<4) || isempty(tol) 
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  tol = 0; 
end 
if (tol<0) 
  error 'Tolerance must be non-negative.' 
end 
tol = tol*(1+10*eps); 
  
% ------------------------------------------------------- 
% DETERMINE AGGREGATION MODE AND CREATE A FUNCTION HANDLE 
% ------------------------------------------------------- 
if (nargin < 3) || isempty(aggregation_mode) 
    % use default function 
  fun=@mean; 
  aggregation_mode='mean'; 
   
elseif ischar(aggregation_mode) 
    aggregation_mode=lower(aggregation_mode); 
  
  k=strmatch(aggregation_mode,'count'); 
  if ~isempty(k) 
    fun=@(x) x; 
    else 
        fun=str2func(aggregation_mode); 
  end 
   
elseif isa(aggregation_mode,'inline') 
  fun=aggregation_mode; 
  am = struct(fun); 
  aggregation_mode=am.expr; 
   
else 
  fun=aggregation_mode; 
  aggregation_mode=func2str(fun); 
   
end 
% ------------------------------------------------------- 
  
% was y supplied, or empty? 
[n,p] = size(x); 
if (nargin<2) || isempty(y) 
  y = zeros(n,0); 
  fun = @(x) x; 
  aggregation_mode = 'count'; 
end 
% check for mismatch between x and y 
[junk,q] = size(y); 
if n~=junk 
  error 'y must have the same number of rows as x.' 
end 
  
% are both x and y row vectors? 
if (n == 1) 
  x=x'; 
  n = length(x); 
  p = 1; 
   
  if ~isempty(y) 
    y=y'; 
  else 
    y=zeros(n,0); 
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  end 
   
  q = size(y,2); 
end 
  
if isempty(y) 
  aggregation_mode = 'count'; 
end 
  
% consolidate elements of x. 
% first shift, scale, and then ceil.  
if tol>0 
  xhat = x - repmat(min(x,[],1),n,1)+tol*eps; 
  xhat = ceil(xhat/tol); 
else 
  xhat = x; 
end 
[xhat,tags] = sortrows(xhat); 
x=x(tags,:); 
y=y(tags,:); 
  
% count the replicates 
iu = [true;any(diff(xhat),2)]; 
eb = cumsum(iu); 
  
% which original elements went where? 
if nargout>2 
  ind = eb; 
  ind(tags) = ind; 
end 
  
% count is the vector of counts for the consolidated 
% x values 
if issparse(eb) 
  eb = full(eb); 
end 
count=accumarray(eb,1).'; 
% ec is the expanded counts, i.e., counts for the 
% unconsolidated x 
ec = count(eb); 
  
% special case for aggregation_mode of 'count', 
% but we still need to aggregate (using the mean) on x 
if strcmp(aggregation_mode,'count') 
  ycon = count.'; 
  q = 0;   % turn off aggregation on y 
else 
  ycon = zeros(length(count),q); 
end 
  
% loop over the different replicate counts, aggregate x and y 
ucount = unique(count); 
xcon = repmat(NaN,[length(count),p]); 
fullx = ~issparse(x); 
fully = ~issparse(y); 
for k=ucount 
  if k==1 
    xcon(count==1,:) = x(ec==1,:); 
  else 
    if fullx 
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      v=permute(x(ec==k,:),[3 2 1]); 
    else 
      v=permute(full(x(ec==k,:)),[3 2 1]); 
    end 
    v=reshape(v,p,k,[]); 
    v=permute(v,[2 1 3]); 
    xcon(count==k,:)=reshape(mean(v),p,[]).'; 
  end 
   
  if q>0 
    % aggregate y as specified 
    if k==1 
      switch aggregation_mode 
        case {'std' 'var'} 
          ycon(count==1,:) = 0; 
        otherwise 
          ycon(count==1,:) = y(ec==1,:); 
      end 
    else 
      if fully 
        v=permute(y(ec==k,:),[3 2 1]); 
      else 
        v=permute(full(y(ec==k,:)),[3 2 1]); 
      end 
      v=reshape(v,q,k,[]); 
      v=permute(v,[2 1 3]); 
       
      % aggregate using the appropriate function 
      ycon(count==k,:)=reshape(fun(v),q,[]).'; 
       
    end 
  end 
end 
  
% was it originally a character array? 
if charflag 
  xcon=char(xcon); 
end 
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C.6 Program to determine the CDO tranche spreads using the 

multistep approach 

tic 
clear all; 
fprintf('_______________________________________________\n') 
fprintf('_______________________________________________\n') 
format short g  
format compact 
load Table59.mat 
load ThresholdA.mat 
RiskFree = 0.05; 
corr = 0.5; 
fprintf('Correlation: %g.\r',corr) 
Rec = 0.3; 
fprintf('Recovery: %g.\r',Rec) 
Delta = 0.25; 
Term =5;                % in years 
timeStep =4;         % fractions of a year 52=weekly, 365 = daily 
Tm= Term/Delta;   % Number of premium payments 
Portfolio =[Table59(:,2)*1*(1-Rec),Table59(:,4)/10000]; 
hazardRate= Portfolio(:,2)'/(1-Rec); % convert to harzard rate. 
NumberOfAssets=size(hazardRate,2);       % size of the basket 
DiscreteTerm= Term*timeStep;  % timeStep =1; % fractions of a year 52=weekly, 365 = 
daily 
  
% Generate the correlation matrix; 
 R = repmat(corr,NumberOfAssets,NumberOfAssets)+(1-corr)*eye(NumberOfAssets); 
 v = chol(R);   
  
UpperTranche = 400 
LowerTranche = 150 
TrancheSize = UpperTranche-LowerTranche; 
TotalPremiumsE = 0; 
TotalBenefitsE=  0; 
  
iterations = 100000 
 Threshold =ThresholdA; 
 
for i =1:iterations  % Main Simulation 
loop==============================================    
    % Generate a 50x20 matrix of correlated multivariate random numbers... 
        z = randn(NumberOfAssets,DiscreteTerm);  
        A = z'*v; 
        A= cumsum(A',2)*sqrt(1/timeStep);         
       Defaults= zeros(NumberOfAssets,2);      
               for Entity = 1:NumberOfAssets 
%******************************************************        
                    for k =1: DiscreteTerm   
                          if Defaults(Entity,1) == 0 % i.e. no default then test for default 
                                      if   A(Entity,k) <= Threshold(Entity,k) % if the asset(entity) defaults 
                                         Defaults(Entity,1) =1; % set the asset to default state 
                                         Defaults(Entity,2) = k ;  % store the default time 
                                     end    
                          end     % of default state test [If statement]---------------------------------- 
                 end   %******************* End of k updates************************              
         end % for entity loop 
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% ------------------------------------------------------------------------------------------------------
-------------------       
% Obtain the defaulted assets and sort the times of default keeping track of the asset values      
        Defaults = [Defaults,Portfolio(:,1)]; 
        DefaultIndex=find(Defaults(:,1)==1); 
        DefaultedAssets = Defaults(DefaultIndex,3); 
        DefaultTime1 = Defaults(DefaultIndex,2); 
        [DefaultTime1,AssetDefOrder] = sort(Defaults(DefaultIndex,2)); 
        DefaultedAssets = DefaultedAssets(AssetDefOrder);  % change to order of default; order 
must be the same as Defaulted Assets 
        numDefTimes1 = size(DefaultedAssets',2) ;        % Apply convention; all these vectors 
are row vectors 
        DefaultTime1 = DefaultTime1*(1/timeStep);   % Back to reality, qrtl'y periods      
    % -------------------------------------------------------------------------- 
  BenefitPV_E1 =0;    
  PremiumPV_E1=0; 
     
 if isempty(DefaultTime1) ==1 
           BenefitPV_E1=0;        % No change here     
           PortfolioLoss_t = zeros(1,NumberOfAssets); 
           TotalLoss = zeros(1,NumberOfAssets); 
           PremiumPV_E1 = Delta*sum(exp(-RiskFree*(Delta:Delta:Term)))*TrancheSize; 
  
else      
           PortfolioLoss_t= DefaultedAssets';       
           TotalLoss = cumsum(PortfolioLoss_t); 
            
              if     (LowerTranche <=  TotalLoss(end))  && (TotalLoss(end)< UpperTranche)       
  
                   minTime=0; 
                   minTime = min(find(TotalLoss>=LowerTranche)); 
                   BenefitPV_E1 = (TotalLoss(minTime)-LowerTranche)*exp(-
RiskFree*DefaultTime1(minTime)); 
                          for t = minTime+1:numDefTimes1 
                              BenefitPV_E1 = PortfolioLoss_t(t)*exp(-RiskFree*DefaultTime1(t)) + 
BenefitPV_E1;                               
                          end                        
                 elseif   TotalLoss(end) >= UpperTranche   %-------------------------------------------
-------- 
                     minTime=0; 
                     maxTime=0; 
                     maxTime = min(find(TotalLoss>=UpperTranche)); 
                     minTime = min(find(TotalLoss>=LowerTranche)); 
                     BenefitPV_E1 = min(TotalLoss(minTime)-LowerTranche,TrancheSize)*exp(-
RiskFree*DefaultTime1(minTime)); 
                           if  minTime+1 <=  maxTime-1                     
                             for t = minTime+1:maxTime-1 
                               BenefitPV_E1 = PortfolioLoss_t(t)*exp(-RiskFree*DefaultTime1(t)) + 
BenefitPV_E1; 
                             end                        
                           end   
                    if minTime ~=maxTime 
                       BenefitPV_E1 = max(UpperTranche-(TotalLoss(maxTime)-
PortfolioLoss_t(maxTime)),0)*exp(-RiskFree*DefaultTime1(maxTime))+BenefitPV_E1;                                  
                    end %......... if   
               end % ............if  
 %-------------This loop determines the PV of Premium payments   -------------------------------     
         PortfolioLoss_t1=zeros(1,Tm);    
             for k = 1:Tm 
               PortfolioLoss_t1(k) = 0;                
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                     for i = 1:numDefTimes1      
                           if  DefaultTime1(i) <= k*Delta 
                              PortfolioLoss_t1(k) = DefaultedAssets(i)+ PortfolioLoss_t1(k); 
                           end 
                      end       
             end 
            PremiumPV_E1 = 0;                             
            for k = 1:Tm                 
              PremiumPV_E1 = Delta*exp(-RiskFree*(k*Delta))*(min(max(UpperTranche-
PortfolioLoss_t1(k),0), TrancheSize))+PremiumPV_E1; 
            end                      
   
%-----------------------------------END OF PREMIUM LEG                    
 end      
 %-----------------BENEFIT LEG ----
************************************************************  
  
    TotalPremiumsE = TotalPremiumsE + PremiumPV_E1; 
    TotalBenefitsE = TotalBenefitsE + BenefitPV_E1;     
end   %  End of iterations loop------------------------------------------------------------------------
------ 
TrancheE=(TotalBenefitsE/TotalPremiumsE)*10000; 
fprintf('Spread in bps: %g.\r',TrancheE) 
fprintf('\r')    
      
toc 



 

 125 

125

C.7 Program to determine the CDO tranche spreads using the default 

time approach 

function [TrancheE, eTime] = 
fairTrancheCh6_Li(corr,iterations,LowerTranche,UpperTranche,Table59) 
%----------------------------------------------------- 
tic 
TrancheSize = UpperTranche-LowerTranche; 
Term =5; 
Delta =  0.25;          % Frequency of Premium payment p.a. 
Tm = Term/Delta;     % This is the total number of time steps for the premium leg. 
 RiskFree= 0.05; 
  
 
 Assets = Table59(:,2);       % Note that these are recovery adjusted 
 hazard =Table59(:,4);             % expressed as basis percentage 
  
 NumberOfAssets=size(Assets,1); 
  reciprocal_hazardRate =ones(NumberOfAssets,1)./hazard; 
  
TotalPremiumsE = 0; 
TotalBenefitsE=  0; 
  
v=[1,repmat(corr,1,NumberOfAssets-1)];    
R=toeplitz(v); 
A = chol(R);   
  
for Sims =1:iterations   % START OF SIMULATION********************** 
        
    DefaultTime1 =[ ];    
    PortfolioLoss_t = [ ]; 
    TotalLoss =[]; 
    DefaultVector=[]; 
    AssetDefOrder=[]; 
     
    z = randn(NumberOfAssets,1); 
    u = z'*A; 
    u = normcdf(u,0,1); 
  
      DefaultTime1 =((-reciprocal_hazardRate').*log(1-u))  ;        
      DefaultVector = find(DefaultTime1<=Term) ; 
       
      DefaultedAssets=Assets(DefaultVector); 
     
     [DefaultTime1,AssetDefOrder]=sort(DefaultTime1(DefaultVector)) ; 
      
      DefaultedAssets = DefaultedAssets(AssetDefOrder);  % change to order of default 
  
    numDefTimes1 = size(DefaultedAssets',2);          % Apply convention; all these vectors are 
row vectors 
    % -------------------------------------------------------------------------- 
            if isempty(DefaultTime1) ==1 
                   PortfolioLoss_t = zeros(1,NumberOfAssets); 
                   TotalLoss = zeros(1,NumberOfAssets); 
             else      
                   PortfolioLoss_t= DefaultedAssets';      
                   TotalLoss = cumsum(PortfolioLoss_t); 
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            end      
  %-----------------BENEFIT LEG --------------------------------------------  
 BenefitPV_E1=0;    
  
 if  LowerTranche>=0 
          if TotalLoss(end)==0 
               BenefitPV_E1 = 0; 
  
           elseif     (LowerTranche <  TotalLoss(end))  && (TotalLoss(end)< UpperTranche) 
                
                minTime=0; 
                minTime = min(find(TotalLoss>=LowerTranche)); 
                BenefitPV_E1 = 0; 
  
                         BenefitPV_E1 = (TotalLoss(minTime)-LowerTranche)*exp(-
RiskFree*DefaultTime1(minTime)); 
  
                          for t = minTime+1:numDefTimes1 
                              BenefitPV_E1 = PortfolioLoss_t(t)*exp(-RiskFree*DefaultTime1(t)) + 
BenefitPV_E1;                               
                          end    
                         
          elseif   TotalLoss(end) >= UpperTranche   %------------------------------------------------
--- 
                     minTime=0; 
                     maxTime=0; 
                     BenefitPV_E1=0; 
  
                     maxTime = min(find(TotalLoss>=UpperTranche)); 
                     minTime = min(find(TotalLoss>=LowerTranche)); 
                     BenefitPV_E1 = min(TotalLoss(minTime)-LowerTranche,TrancheSize)*exp(-
RiskFree*DefaultTime1(minTime)); 
  
                    if  minTime+1 <=  maxTime-1                     
                             for t = minTime+1:maxTime-1 
                               BenefitPV_E1 = PortfolioLoss_t(t)*exp(-RiskFree*DefaultTime1(t)) + 
BenefitPV_E1; 
                             end                        
                   end   
                    if minTime ~=maxTime 
                       BenefitPV_E1 = max(UpperTranche-(TotalLoss(maxTime)-
PortfolioLoss_t(maxTime)),0)*exp(-RiskFree*DefaultTime1(maxTime))+BenefitPV_E1 ;          
  
                        
                   end   
       end    
 end 
  
 %---------------------- determines the PV of Premium payments   ---------------------  
PortfolioLoss_t1=[]; 
PortfolioLoss_t1=zeros(1,Tm); 
                for k = 1:Tm 
               PortfolioLoss_t1(k) = 0; 
                
                     for i = 1:numDefTimes1      
                           if  DefaultTime1(i) <= k*Delta   
                              PortfolioLoss_t1(k) = DefaultedAssets(i)+ PortfolioLoss_t1(k); 
                          end 
               end       
             end 
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            PremiumPV_E1 = 0; 
                             
          for k = 1:Tm                 
            PremiumPV_E1 = Delta*exp(-RiskFree*(k*Delta))*(min(max(UpperTranche-
PortfolioLoss_t1(k),0), TrancheSize))+PremiumPV_E1; 
          end 
                        
%-----------------------------------END OF PREMIUM LEG 
         
    TotalPremiumsE = TotalPremiumsE + PremiumPV_E1; 
    TotalBenefitsE = TotalBenefitsE + BenefitPV_E1; 
end 
TrancheE=(TotalBenefitsE/TotalPremiumsE)*10000; 
eTime=toc; 
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C.8 Exact recursion method to determine the credit loss distribution 

and the value of CDO tranche spreads 

 

clear all 
tic 
format long 
load Table59.mat 
Assets =[Table59(:,2)*10,Table59(:,4)/10000]; 
rho =sqrt(0.5); 
Rec =0.3; 
RiskFree = 0.05; 
h = Assets(:,2)/(1-Rec); 
GaussPoints =20 
 
[abscissas,weights]=qrule(GaussPoints,9,1,1); 
abscissas=sqrt(2)*(abscissas);     % adjust to Normal Distribution... 
weights=(weights)/sqrt(pi);           %  ditto  
  
MaxLoss =80; 
Term =5; 
delta =0.25; 
ValSteps =Term/delta; 
RecAssets=Assets(:,1)*(1-Rec); 
GreatCommonDivisor= gcd2(RecAssets) 
% Error = 5; 
% LossUnit = ASB_LossUnit(RecAssets,Error); 
  
RecAssets=RecAssets/GreatCommonDivisor; 
  
% conditionalLoss=zeros(MaxLoss+1,GaussPoints); 
unconditionalLoss=zeros(MaxLoss+1,ValSteps); 
  
for t =delta:delta:Term 
    conditionalLoss=zeros(MaxLoss+1,GaussPoints); 
    prob = zeros(50,20); 
    prob= p_VectorM(t,rho,abscissas,h); 
         
  for k= 1:GaussPoints   
%     V =  abscissas(k);     
        A= zeros(MaxLoss+1,50);  
        %-------------------------------------------------------------------------- 
        % NOTE: A is defined as a (1 xMaxLoss+1) matrix.  
        % to store values each loss must be incremented by one as Matlab does not 
        % allow zero based indexing 
        %-------------------------------------------------------------------------- 
  
  
        % Start by setting up the first colomn of the conditional loss matrix 
  
        A(1,1) = (1-prob(1,k)); 
        A(2: RecAssets(1),1) = 0; 
        A( RecAssets(1)+1,1)= prob(1,k); 
        A( RecAssets(1)+2:MaxLoss+1,1)=0; 
  
        for K= 2:50 
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         loss = 0:RecAssets(K)-1; 
                A(loss+1, K) = A(loss+1,K-1)*(1-prob(K,k));  
         loss = RecAssets(K):MaxLoss; 
                A(loss+1, K) = A(loss+1,K-1)*(1-prob(K,k)) + A(loss-RecAssets(K)+1,K-
1)*prob(K,k); 
  
        end  % for loop ==> K         
  
         conditionalLoss(:,k) = A(:,end);  % For each time Gauss-Hermite point, collect one 
vector 
        
       end % loop for Gaussian Quadrature   
  
   adjustedWeights =  repmat(weights',MaxLoss+1,1); 
   unconditionalLoss(:, t/delta) = sum(conditionalLoss.*adjustedWeights,2); 
    
end %  end of time loop  
%--------------------------------------------------------------------------- 
  
Lower =0; 
Upper =250; 
lossVector =0:1:MaxLoss; 
time = delta:delta:Term; 
ExpectedLossTime = sum(unconditionalLoss.*repmat(TrancheLoss(Lower,Upper, 
GreatCommonDivisor*lossVector'),1,ValSteps),1); 
ExpectedLossTime_lessOne = ExpectedLossTime;  
ExpectedLossTime_lessOne(end) =0; % make last  element zero 
ExpectedLossTime_lessOne=ExpectedLossTime_lessOne([ end 1:end-1 ]); % shift right/down 
1 element 
  
DiffExpectedLossTime =diff([0,ExpectedLossTime]); 
  
timeDefaultLeg = (delta/2):delta:Term;   % 0.5*(T(i+1)+T(i)) ASB page 69 
  
DefaultLeg = sum(exp(-RiskFree*timeDefaultLeg).*DiffExpectedLossTime); 
PremiumLeg =delta*sum(exp(-RiskFree*time).*(Upper-Lower - 
0.5*(ExpectedLossTime+ExpectedLossTime_lessOne))); 
%-------------------------------------------------------------------------- 
100*DefaultLeg/PremiumLeg 
  
% fprintf('Spread in %% terms: %g.\r',100*DefaultLeg/PremiumLeg) 
% fprintf('.........................................................................\n') 
% disp(datestr(now)) 
toc         
     
 
function [bp,wf]=qrule(n,wfun,alpha,beta) 
%QRULE computes abscissas and weight  factors for some selected  
%   Gaussian quadratures.    
% 
%CALL:  [bp,wf]=qrule(n,wfun,alpha,beta) 
%   
%  bp = base points 
%  wf = weight factors 
%  n  = number of base points (abscissas) (integrates a (2n-1)th order 
%       polynomial exactly) 
%wfun = weight function%      
%     1  p(x)=1                       a =-1,   b = 1 Legendre (default) 
%     2  p(x)=1/sqrt((x-a)*(b-x)),    a =-1,   b = 1 Chebyshev of the 
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%                                                             first kind 
%     3  p(x)=sqrt((x-a)*(b-x)),      a =-1,   b = 1 Chebyshev of the  
%                                                            second kind 
%     4  p(x)=sqrt((x-a)/(b-x)),      a = 0,   b = 1 
%     5  p(x)=1/sqrt(b-x),            a = 0,   b = 1 
%     6  p(x)=sqrt(b-x),              a = 0,   b = 1 
%     7  p(x)=(x-a)^alpha*(b-x)^beta  a =-1,   b = 1 Jacobi  
%                                     alpha, beta >-1 (default alpha=beta=0) 
%     8  p(x)=x^alpha*exp(-x)         a = 0,   b = inf generalized Laguerre 
%     9  p(x)=exp(-x^2)               a =-inf, b = inf Hermite 
%    10  p(x)=1                       a =-1,   b = 1 Legendre (slower than 1) 
% 
%  The Gaussian Quadrature integrates a (2n-1)th order 
%  polynomial exactly and the integral is of the form 
%           b                         n 
%          Int ( p(x)* F(x) ) dx  =  Sum ( wf_j* F( bp_j ) ) 
%           a                        j=1                           
%  See also: gaussq 
  
  
% Reference  
%   wfun 1: copied from grule.m in NIT toolbox, see ref [2]  
%   wfun 2-6: see ref [4] 
%   wfun 7-10:  Adapted from Netlib routine gaussq.f see ref [1,3] 
% 
% [1]  Golub, G. H. and Welsch, J. H. (1969) 
% 'Calculation of Gaussian Quadrature Rules' 
%  Mathematics of Computation, vol 23,page 221-230, 
% 
% [2] Davis and Rabinowitz (1975) 'Methods of Numerical Integration', page 365, 
%     Academic Press. 
% 
% [3]. Stroud and Secrest (1966), 'gaussian quadrature formulas',  
%      prentice-hall, Englewood cliffs, n.j. 
%  
% [4] Abromowitz and Stegun (1954) '' 
  
  
%  By Bryce Gardner, Purdue University, Spring 1993. 
% Modified by Per A. Brodtkorb 19.02.99 pab@marin.ntnu.no 
% to compute other quadratures  than the default 
if nargin<4|isempty(beta), 
 beta=0;  
end 
  
  
if nargin<3|isempty(alpha), 
  alpha=0;  
end 
if alpha<=-1 | beta <=-1, 
  error('alpha and beta must be greater than -1') 
end 
  
  
if nargin<2|isempty(wfun), 
  wfun=1;  
end      
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switch wfun, % 
  case 1, 
    %  This routine computes Gauss base points and weight factors 
    %  using the algorithm given by Davis and Rabinowitz in 'Methods 
    %  of Numerical Integration', page 365, Academic Press, 1975. 
    bp=zeros(n,1); wf=bp; iter=2; m=fix((n+1)/2); e1=n*(n+1); 
    mm=4*m-1; t=(pi/(4*n+2))*(3:4:mm); nn=(1-(1-1/n)/(8*n*n)); 
    xo=nn*cos(t); 
    for j=1:iter 
      pkm1=1; pk=xo; 
      for k=2:n 
        t1=xo.*pk; pkp1=t1-pkm1-(t1-pkm1)/k+t1; 
        pkm1=pk; pk=pkp1; 
      end 
      den=1.-xo.*xo; d1=n*(pkm1-xo.*pk); dpn=d1./den; 
      d2pn=(2.*xo.*dpn-e1.*pk)./den; 
      d3pn=(4*xo.*d2pn+(2-e1).*dpn)./den; 
      d4pn=(6*xo.*d3pn+(6-e1).*d2pn)./den; 
      u=pk./dpn; v=d2pn./dpn; 
      h=-u.*(1+(.5*u).*(v+u.*(v.*v-u.*d3pn./(3*dpn)))); 
      p=pk+h.*(dpn+(.5*h).*(d2pn+(h/3).*(d3pn+.25*h.*d4pn))); 
      dp=dpn+h.*(d2pn+(.5*h).*(d3pn+h.*d4pn/3)); 
      h=h-p./dp; xo=xo+h; 
    end 
    bp=-xo-h; 
    fx=d1-h.*e1.*(pk+(h/2).*(dpn+(h/3).*(... 
        d2pn+(h/4).*(d3pn+(.2*h).*d4pn)))); 
    wf=2*(1-bp.^2)./(fx.*fx); 
    if (m+m) > n, bp(m)=0; end 
    if ~((m+m) == n), m=m-1; end 
    jj=1:m; n1j=(n+1-jj); bp(n1j)=-bp(jj); wf(n1j)=wf(jj); 
    % end 
     
 case 2, % p(x)=1/sqrt((x-a)*(b-x)), a=-1 and b=1 (default)  
  j=[1:n]; 
  wf = ones(1,n) * pi / n; 
  bp=cos( (2*j-1)*pi / (2*n) ); 
  
  
 case 3, %p(x)=sqrt((x-a)*(b-x)),   a=-1   and b=1 
  j=[1:n]; 
  wf = pi/ (n+1) *sin( j*pi / (n+1) ).^2; 
  bp=cos( j*pi / (n+1) ); 
  
  
 case 4, %p(x)=sqrt((x-a)/(b-x)),   a=0   and b=1 
    j=[1:n]; 
    bp=cos( (2*j-1)*pi /2/ (2*n+1) ).^2; 
    wf=2*pi.*bp/(2*n+1) ; 
  
  
 case 5, % %p(x)=1/sqrt(b-x),   a=0   and b=1 
   [bp wf]=grule(2*n); 
  wf(bp<0)=[]; 
  wf=wf*2; 
   bp(bp<0)=[]; 
  bp=1-bp.^2; 
  
  
 case 6, % %p(x)=sqrt(b-x),   a=0   and b=1 
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   [bp wf]=grule(2*n+1); 
  wf(bp<=0)=[]; 
   bp(bp<=0)=[]; 
  wf=2*bp.^2.*wf; 
  bp=1-bp.^2; 
   
 case {7,8,9,10} ,% 
  %7 p(x)=(x-a)^alpha*(b-x)^beta a=-1 b=1 Jacobi 
  %8 p(x)=x^alpha*exp(-x) a=0,   b=inf generalized Laguerre 
  %9 p(x)=exp(-x^2)       a=-inf, b=inf Hermite  
  %10 p(x)=1               a=-1 b=1        Legendre slower than 1 
  % this procedure uses the coefficients a(j), b(j) of the 
  %      recurrence relation 
  % 
  %           b p (x) = (x - a ) p   (x) - b   p   (x) 
  %            j j            j   j-1       j-1 j-2 
  % 
  %      for the various classical (normalized) orthogonal polynomials, 
  %      and the zero-th moment 
  % 
  %           muzero = integral w(x) dx 
  % 
  %      of the given polynomial's weight function w(x).  since the 
  %      polynomials are orthonormalized, the tridiagonal matrix is 
  %      guaranteed to be symmetric. 
  % 
  %  
  %         the input parameter alpha is used only for laguerre and 
  %      jacobi polynomials, and the parameter beta is used only for 
  %      jacobi polynomials.  the laguerre and jacobi polynomials 
  %      require the gamma function. 
  
  
  a=zeros(n,1); 
  b=zeros(n-1,1); 
  switch wfun 
    case 7,  %jacobi 
      ab = alpha + beta; 
      abi = 2 + ab; 
      muzero = 2^(ab + 1) * gamma(alpha + 1) * gamma(beta + 1) / gamma(abi); 
      a(1) = (beta - alpha)/abi; 
      b(1) = sqrt(4*(1 + alpha)*(1 + beta)/((abi + 1)*abi^2)); 
      a2b2 = beta^2 - alpha^2; 
       
      i = (2:n-1)'; 
      abi = 2*i + ab; 
      a(i) = a2b2./((abi - 2).*abi); 
      a(n) =a2b2./((2*n - 2+ab).*(2*n+ab)); 
      b(i) = sqrt (4*i.*(i + alpha).*(i + beta)*(i + ab)./((abi.^2 - 1).*abi.^2)); 
    
    case 8, % Laguerre 
      muzero=gamma(alpha+1); 
      i = (1:n-1)'; 
      a(i) = 2 .* i - 1 + alpha; 
      a(n)=2*n-1+alpha; 
      b = sqrt( i .* (i + alpha) ); 
    case 9, %Hermite  
      i = (1:(n-1))'; 
      muzero = sqrt(pi); 
      %a=zeros(m,1); 
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      b=sqrt(i/2);     
    case 10,  % legendre NB! much slower than wfun=1         
      muzero = 2; 
      i = (1:n-1)'; 
      abi = i; 
      b(i) = abi./sqrt(4*abi.^2 - 1); 
       
  end 
    
  %[v d] = eig( full(spdiags([b a b],-1:1,n,n ))); 
  [v d] = eig( diag(a) + diag(b,1) + diag(b,-1) ); 
  wf = v(1,:); 
  if 1, 
    [bp i] = sort( diag(d) ); 
    wf = wf(i); 
  else % save some valuable time by not sorting 
    bp = diag(d) ; 
  end 
  bp=bp; 
   
  wf = muzero.* wf.^2; 
  wf =wf'; 
  
otherwise, error('unknown weight function') 
end 
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C.9 Numerical inversion of the characteristic function method to 

determine the credit loss distribution 

%-------------------------------------------------------------------- 
% This program evaluates the discrete credit loss distribution   
% via the inversion of the CF. 
% 
%This program calls the following sub-programs 
% 
% qrule.m :   This determines the abscissas and weights for the Guassian 
%                quadrature. 
% 
% CharacteristicFunction8.m : Determines the characteristic function of the 
%                                       portfolio. This function needs 
%                                       p_VectorGH 
% 
% p_VectorGH.m : Determines the conditional default probability (given a 
%                       particular state of the economy. 
% 
%-------------------------------------------------------------------- 
  
clear all  
tic 
load Table59.mat 
  
Assets =[Table59(:,1)*10,Table59(:,2)/10000]; 
rho=sqrt(0.5);   
Rec =0.3;  
RiskFree = 0.05; 
delta =0.25;   
Term =5;   
ValSteps =Term/delta; 
  
Total= sum(Assets(:,1)*(1-Rec)) 
h = Assets(:,2)'/(1-Rec);   
M=Assets(:,1)'*(1-Rec)/Total; 
pmin=7; 
ResF= 2^pmin 
  
%  ------------------------------/-------- 
[bp,wf]=qrule(20,9,1,1); 
abscissa=sqrt(2)*(bp);     
weights=(wf)/sqrt(pi);     
% -------------------------------------- 
dx =0.0125  % GreatCommonDivisor 
t= 2*pi*[0:1:ResF-1]/(dx*ResF); 
paymentDates=[0.25:0.25:5]; 
for paymentNumber=1:20 
    FourierT=[]; 
    for j=1:ResF/2+1      
      FourierT(j) = 
CharacteristicFunction8(t(j),paymentDates(paymentNumber),weights,abscissa,h,rho,M); 
    end 
  FourierT(ResF/2+2:ResF) =fliplr(conj(FourierT(2:ResF/2))); 
 unconditionalLoss(paymentNumber,:)=ifft(FourierT); 
end  
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MaxLoss =80; 
unconditionalLoss=real(unconditionalLoss'); 
unconditionalLoss =unconditionalLoss(1:(MaxLoss+1),1:ValSteps); 
  
dx=Total*dx; 
  
Lower =1500; 
Upper =4000; 
lossVector =0:1:MaxLoss; 
time = delta:delta:Term; 
ExpectedLossTime = sum(unconditionalLoss.*repmat(TrancheLoss(Lower,Upper, 
dx*lossVector'),1,ValSteps),1); 
ExpectedLossTime_lessOne = ExpectedLossTime;  
ExpectedLossTime_lessOne(end) =0; %make last  element zero 
ExpectedLossTime_lessOne=ExpectedLossTime_lessOne([ end 1:end-1 ]); % shift right/down 
1 element 
  
DiffExpectedLossTime =diff([0,ExpectedLossTime]); 
  
timeDefaultLeg = (delta/2):delta:Term;   % 0.5*(T(i+1)+T(i)) ASB page 69 
  
DefaultLeg = sum(exp(-RiskFree*timeDefaultLeg).*DiffExpectedLossTime); 
PremiumLeg =delta*sum(exp(-RiskFree*time).*(Upper-Lower - 
0.5*(ExpectedLossTime+ExpectedLossTime_lessOne))); 
100*DefaultLeg/PremiumLeg 
toc 
 
function outx =CharacteristicFunction8(t,time,weights,abscissa,h,rho,M) 
 sizeGH= size(weights,1); 
  
 outx= sum(prod((1+ (p_VectorGH(time,rho,abscissa,h)).*repmat(exp(-M*t*i)-
1,sizeGH,1)),2).*weights); 
 

function yy=p_VectorGH(t,rho,V,h) 
  
yy=normcdf((repmat(norminv(1-exp(-h*t)),size(V,1),1)-rho*repmat(V,1,size(h,2)))/(sqrt(1-
rho^2)),0,1); 
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C.10 Compound Poisson approximation using Panjer recursion to 

determine the credit loss distribution 

clear all 
tic 
format long 
 load Table59.mat 
Assets =[Table59(:,2)*10,Table59(:,4)/10000]; 
  
rho =sqrt(0.5); 
  
Rec =0.3; 
RiskFree = 0.05; 
h = Assets(:,2)/(1-Rec); 
GaussPoints =20 
  
[abscissas,weights]=qrule(GaussPoints,9,1,1); 
abscissas=sqrt(2)*(abscissas);     % adjust to Normal Distribution... 
weights=(weights)/sqrt(pi);           %  ditto  
  
MaxLoss =80; 
Term =5; 
delta =0.25; 
ValSteps =Term/delta; 
RecAssets=Assets(:,1)*(1-Rec); 
GreatCommonDivisor= gcd2(RecAssets) 
RecAssets=RecAssets/GreatCommonDivisor; 
  
AssetTemp =repmat(RecAssets,1,max(RecAssets)); 
AssetRange = repmat(min(RecAssets):max(RecAssets),size(RecAssets),1); 
result = (AssetTemp==AssetRange)'; 
  
% conditionalLoss=zeros(MaxLoss+1,GaussPoints); 
unconditionalLoss=zeros(MaxLoss+1,ValSteps); 
  
for t =delta:delta:Term 
    conditionalLoss=zeros(MaxLoss+1,GaussPoints); 
    
  for k= 1:GaussPoints   
     V =  abscissas(k);     
      g = zeros(MaxLoss+1,1); 
  
    % Calculate the probabilities and store the vector. 
    prob = zeros(1,50); 
    prob=  p_Vector(t,rho,V,h)'; 
  
    g(1)=exp(-sum(prob));    % This is the value of g(0) as per Panjer.  
    % Best to calculate g(0) now before var prob is rearranged.  
    probloss= repmat(prob',1,3).*result'; 
    probloss=[probloss,zeros(50,78)]; 
                                                             
    for loss=1:MaxLoss 
        for xx=1:loss 
            g(loss+1) = xx*sum(probloss(:,xx))*g(loss-xx+1)/loss+g(loss+1); 
        end    
    end     
    conditionalLoss(:,k) = g;  % For each time Gauss-Hermite point, collect the vector 



137 

 

     end % loop for Gaussian Quadrature   
    adjustedWeights =  repmat(weights',MaxLoss+1,1); 
    unconditionalLoss(:, t/delta) = sum(conditionalLoss.*adjustedWeights,2); 
                                                         
end %  end of time loop  
%--------------------------------------------------------------------------- 
Lower =750; 
Upper =1500; 
lossVector =0:1:MaxLoss; 
time = delta:delta:Term; 
ExpectedLossTime = sum(unconditionalLoss.*repmat(TrancheLoss(Lower,Upper, 
GreatCommonDivisor*lossVector'),1,ValSteps),1); 
ExpectedLossTime_lessOne = ExpectedLossTime;  
ExpectedLossTime_lessOne(end) =0; %make last  element zero 
ExpectedLossTime_lessOne=ExpectedLossTime_lessOne([ end 1:end-1 ]); % shift right/down 
1 element 
  
DiffExpectedLossTime =diff([0,ExpectedLossTime]); 
  
timeDefaultLeg = (delta/2):delta:Term;   % 0.5*(T(i+1)+T(i)) ASB page 69 
  
DefaultLeg = sum(exp(-RiskFree*timeDefaultLeg).*DiffExpectedLossTime); 
PremiumLeg =delta*sum(exp(-RiskFree*time).*(Upper-Lower - 
0.5*(ExpectedLossTime+ExpectedLossTime_lessOne))); 
 
100*DefaultLeg/PremiumLeg 
toc         
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C.11 Compound Poisson approximation implementation using the 

FFT to determine the value of CDO tranche spreads 

clear all 
tic 
load Table59.mat 
Assets =[Table59(:,2)*10,Table59(:,4)/10000]; 
rho =sqrt(0.5); 
Rec =0.3; 
RiskFree = 0.05; 
h = Assets(:,2)/(1-Rec); 
GaussPoints =20 
 
[abscissas,weights]=qrule(GaussPoints,9,1,1); 
abscissas=sqrt(2)*(abscissas);     % adjust to Normal Distribution... 
weights=(weights)/sqrt(pi);           %  ditto  
  
MaxLoss =80; 
Term =5; 
delta =0.25; 
ValSteps =Term/delta; 
RecAssets=Assets(:,1)*(1-Rec); 
GreatCommonDivisor= gcd2(RecAssets) 
RecAssets=RecAssets/GreatCommonDivisor; 
  
AssetTemp =repmat(RecAssets,1,max(RecAssets)); 
AssetRange = repmat(min(RecAssets):max(RecAssets),size(RecAssets),1); 
result = (AssetTemp==AssetRange)'; 
  
M=256;  % Fourier resolution 
unconditionalLoss=zeros(MaxLoss+1,ValSteps); 
  
for t =delta:delta:Term 
    conditionalLoss=zeros(MaxLoss+1,GaussPoints); 
    
  for k= 1:GaussPoints   
     V =  abscissas(k);     
      g = zeros(MaxLoss+1,1); 
    % Calculate the probabilities and store the vector. 
    prob = zeros(1,50); 
    prob=  p_Vector(t,rho,V,h)'; 
  
     lambda= sum(prob); 
  
    tt1=[0:80]'; 
    tt3=zeros(1,81)'; 
    tt2=RecAssets+1;  % because of zero based indexing   sum(tt4(find(tt2==k)),2) 
    tt3(2)=sum(prob(find(tt2==2)),2)/lambda; 
    tt3(3)=sum(prob(find(tt2==3)),2)/lambda; 
    tt3(4)= sum(prob(find(tt2==4)),2)/lambda; 
    y=[tt1,tt3]; 
    x=y(:,2)';  % take probs, and make row vector 
  
   zeropads= length(x); 
   f1=[x,zeros(1,M-zeropads)]; 
   fhat1=fft(f1); 
   P1=exp(lambda*(fhat1-1)); 
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   g1=ifft(P1); 
   conditionalLoss(:,k) =abs(g1(1:81)'); 
    
    % For each time, Gauss-Hermite point, collect the vector 
  
    end % loop for Gaussian Quadrature   
  
    adjustedWeights =  repmat(weights',MaxLoss+1,1); 
    unconditionalLoss(:, t/delta) = sum(conditionalLoss.*adjustedWeights,2); 
                                                         
end %  end of time loop  
%--------------------------------------------------------------------------- 
Lower =750; 
Upper =1500; 
lossVector =0:1:MaxLoss; 
time = delta:delta:Term; 
ExpectedLossTime = sum(unconditionalLoss.*repmat(TrancheLoss(Lower,Upper, 
GreatCommonDivisor*lossVector'),1,ValSteps),1); 
ExpectedLossTime_lessOne = ExpectedLossTime;  
ExpectedLossTime_lessOne(end) =0; %make last  element zero 
ExpectedLossTime_lessOne=ExpectedLossTime_lessOne([ end 1:end-1 ]); % shift right/down 
1 element 
  
DiffExpectedLossTime =diff([0,ExpectedLossTime]); 
  
timeDefaultLeg = (delta/2):delta:Term;   % 0.5*(T(i+1)+T(i)) ASB page 69 
  
DefaultLeg = sum(exp(-RiskFree*timeDefaultLeg).*DiffExpectedLossTime); 
PremiumLeg =delta*sum(exp(-RiskFree*time).*(Upper-Lower - 
0.5*(ExpectedLossTime+ExpectedLossTime_lessOne))); 
100*DefaultLeg/PremiumLeg 
toc         
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