
By

Aarif Ellemdeen

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of

Master of Science

Johannesburg, November 2010
Declaration

I declare that this dissertation is my own, unaided work. It is being submitted for the degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university.

(Signature of candidate)

____________________ day of ________________________ 201_____.
Abstract

Metal Organic Frameworks are hybrid materials that can be modified by altering their fundamental components. This capability enables them to be tailored to suit specific applications, which range from catalysis to sensor technologies. Sensor based materials using MOFs technology have received a great deal of interest over recent years due to the potential advantages they offer with regard to monitoring devices. Therefore, in this project we attempted to systematically design and synthesise porous solid-state MOFs sensors using charge transfer (CT) phenomena as a basis for its “sensory” abilities.

CT host molecules/MOF linkers used in this work were based on pyromellitic diimide derivatives. These host molecules contain electrophilic as well as trans arranged carboxylic acid components, which allows the formation of CT complexes through CT π···π interactions and extended hydrogen bonding or metal coordination through the carboxylic acids. Two pyromellitic linkers were synthesised through condensation reactions, namely \(N,N'-\text{bis(glycinyl)}\)-pyromellitic diimide (gly-L) and \(N,N'-\text{bis(γ-aminobutyric)}\)-pyromellitic diimide (but-L). The smaller gly-L host successfully formed CT complexes with all four aromatic hydrocarbons used in the work (naphthalene, anthracene, phenanthrene and perylene), whereas the larger but-L ligand selectively formed two novel CT complexes with phenanthrene and perylene.

All CT complexes obtained crystallised in the triclinic \(P-1\) crystal system with the exception of gly-ANT (gly-L + anthracene) and but-PERY (but-L + perylene). The aromatic hydrocarbons formed 1:1 molecular complexes with each host molecule, thereby forming a stacked 2D layer. A \(R_{44}^{4}(12)\) hydrogen bonding pattern was observed in the gly-ANT structure due to the incorporation of two solvent methanol molecules within the carboxylic acid bridges, whereas all other CT complexes formed conventional \(R_{22}^{2}(8)\) dimers. Besides gly-ANT and but-PERY, all CT complexes form 2D parallel sheets with stabilisation in the third dimension achieved by various
intermolecular CH···O hydrogen bonding interactions between the host-host and host-guest molecules.

Lattice energy calculations using Gavezzotti’s OPIX program suite were used to find common molecular arrangements as well as the relative stability of these arrangements in all the CT complexes. These included π···π stacking, and various hydrogen bond interactions. Various analysis techniques (X-Ray, thermal and spectroscopical) were employed to further assess the physical properties of these materials.

The trans arranged carboxylic acid groups of the CT host/linker molecules are somewhat unusual when compared to the usual linear linker approach utilised in MOF production. Both host linker molecules were utilised in MOF formation, however under the same synthetic conditions, gly-L showed an affinity to MOF formation, producing four new structures, whereas but-L did not. The use of divalent zinc and cadmium nitrates produced large MOF crystals at room temperature, while a cobalt (II) nitrate reaction mixture had to be cooled down to produce suitable crystals. SCXRD was successfully utilised to identifying the structural topology and bonding interactions of each MOF.

All metals used in this study, adopted typical coordination environments for d-block metals, with each structure containing solvent molecules within its unit cell. Solvent molecules play a vital role in the overall extension of the each structure through various hydrogen bonding interactions. With the exception of one zinc based MOF structure (MOF-Zn2), all structures contain bridging linkers that enable two dimensional extension leading to herringbone (MOF-Zn1) and step-like arrangements (MOF-Cd1 and MOF-Co1). The bonding characteristics and structural features of gly-L linker component were retained within all the MOF frameworks. Of the four structures obtained, only MOF-Zn2 and MOF-Cd1 formed 1D open pores of 56Å³ and 29Å³ respectively. Unfortunately due to structural instability and poor yields further inroads into MOFs with linkers using CT complexing for sensory capabilities could
not be achieved. This project illustrates many of the concepts and thoughts into applying rational design to the synthesis of functional MOF materials and the many problems associated with such studies.
Dedication

To my parents Abdul Carriem and Khadija, thank you for granting me this opportunity in furthering my education. For always providing me with assistance and continued motivation in undertaken this path. To my wife and daughter for all their support and help through the difficult times, and lastly to my brother and sisters, thanks for always understanding and putting up with me.
Acknowledgements

I would like to thank:

- Almighty Allah for granting me the understanding and knowledge to complete this project.
- My supervisor, Dr. M. A. Fernandes. Thanks for all your invaluable guidance, support, encouragement and wisdom, which will undoubtedly be carried with me throughout my life.
- Roy Forbes and Robert Black for the enlightening conversions.
- Loonies and CATOMAT for all their help.
- Dr. Manoj Kuchunnooney and Saleem Sultan for continued support.
- My friends Ahmed, Raushaan and Ebrahim, thanks for all those Friday lunches and conversion.
- My parents and entire family.
- NRF for funding this project.
Table of Contents

Declaration ii
Abstract iii
Dedications vi
Acknowledgements vii
Table of Contents viii
List of Figures xiii
List of Tables xix
Glossary xxi

Chapter 1 - Introduction

1.1 Crystal Engineering 1
1.2 Porous Materials 2
1.3 Metal Organic Frameworks (MOFs) 4
1.4 MOF components 5
 1.4.1 Linkers 6
 1.4.2 Connectors 7
1.5 Bonding Interactions 8
1.6 Alterations 9
1.7 Formation of MOFs 12
1.8 Problems Affecting MOFs 13
1.9 Solid State Gas Sensors 13
1.10 Charge Transfer Complexes / Host-Guest Complexes 15
 1.10.1 Host Molecules 15
1.11 Non-Covalent Network Interactions 19
 1.11.1 Hydrogen Bonding 19
 1.11.2 π···π Interactions 21
1.12 Project Aims 21
1.13 References 22
Chapter 2 - Experimental Techniques

2.1 Introduction 26
2.2 X-Ray Diffraction 26
 2.2.1 Powder X-ray Diffraction (PXRD) 26
 2.2.2 Single Crystal X-ray Diffraction (SCXRD) 27
2.3 Lattice Energy Calculations 28
2.4 Thermal Methods 29
 2.4.1 Thermogravimetric Analysis (TGA) 29
 2.4.2 Differential Scanning Calorimetry (DSC) 29
2.5 Spectroscopic Techniques 30
 2.5.1 Ultraviolet-visible spectroscopy (UV-Vis) 30
 2.5.2 Infrared Spectroscopy 31
2.6 References 31

Chapter 3 - Synthesised Structures of N,N’-bis(glycinyl)-pyromellitic diimide and its Charge Transfer Complexes

3.1 Introduction 33
3.2 Experimental 33
 3.2.1 Synthesis of N,N’-bis(glycinyl)-pyromellitic diimide (gly-L) 33
 3.2.2 Charge Transfer Complex Formation 33
3.3 Crystal Morphology 34
 3.3.1 gly-L diimide with Various Aromatic Guests 34
3.4 Single Crystal X-Ray Diffraction 36
3.5 Structural Analysis 38
 3.5.1 N,N’-bis(glycinyl)-pyromellitic diimide (gly-L) 38
 3.5.1.1 Hydrogen Bonding 39
 3.5.2 Charge Transfer Complexes 41
 3.5.2.1 Hydrogen Bonding of CT Complexes 44
3.6 Lattice Energy Calculations 49
3.7 Powder X-ray Diffraction Data 52
Chapter 4 - Synthesised Structures N,N'-bis(γ-butyric)-pyromellitic diimide and its Charge Transfer Complexes

4.1 Introduction

4.2 Experimental

4.2.1 Synthesis of N,N'-bis(γ-butyric)-pyromellitic diimide (but-L)

4.2.2 Charge Transfer Complex Formation

4.3 Crystal Morphology

4.3.1 but-L with Various Aromatic Guests

4.4 Single Crystal X-Ray Diffraction

4.5 Structural Analysis

4.5.1 N,N'-bis(γ-butyric)-pyromellitic diimide (but-L)

4.5.1.2 Hydrogen Bonding

4.5.2 Charge Transfer Complexes

4.5.2.1 Hydrogen Bonding

4.6 Lattice Energy Calculations

4.7 Powder X-Ray Diffraction

4.8 Thermal Analysis

4.8.1 Thermogravimetric Analysis (TGA)

4.8.2 Differential Scanning Calorimetry (DSC)
Chapter 5 - Metal Organic Frameworks

5.1 Introduction
5.2 Synthesis
5.3 Crystal Morphology
5.4 Single Crystal X-Ray Diffraction
5.5 Crystal Structure Analysis
 5.5.1 MOF-Zn1
 5.5.1.1 Metal coordination
 5.5.1.2 3D structure
 5.5.2 MOF-Zn2
 5.5.2.1 Metal Coordination
 5.5.2.2 3D structure
 5.5.3 MOF-Cd1
 5.5.3.1 Metal Coordination
 5.5.3.2 3D structure
 5.5.4 MOF-Co1
 5.5.4.1 Metal coordination
 5.5.4.2 3D structure
 5.6 Powder X-ray Diffraction
5.7 Further experimental attempts to synthesise MOFs
5.8 Discussion
5.9 References
Chapter 6 – Conclusion

6.1 Conclusion 109
6.2 References 113

Appendix

A1 Lattice Energy Tables 114
A2 PXRD Patterns 123
A3 Thermal Data and Calculations 134
A4 Spectral Data and Calculations 143
A5 Submitted cif files 153
List of Figures

Figure 1.1: Schematic representation of homosynthon (Bis et al., 2005) and heterosynthon (Walsh et al., 2003). 2
Figure 1.2: Possible alterations of MOF materials via current synthethic methods (Uemura et al., 2009). 3
Figure 1.3: Exponential growth in MOF research over the past three decades (Long et al., 2009). 4
Figure 1.4: Representation of 1D, 2D and 3D network structures in MOFs. 5
Figure 1.5: Diagram of MOF-5 (Mueller et al., 2006), indicating (a) organic linker and pore volume and (b) metal-carboxylate cluster. 5
Figure 1.6: Various pyridyl and carboxylate linker components used in MOF formation. 7
Figure 1.7: Framework alteration with varying metal geometries using a linear linker (Kitagwa et al., 2004). 8
Figure 1.8: Interactions resulting in overall extension of MOF structures (Kitagwa et al., 2004). 9
Figure 1.9: Effect of ligand size on the pore volume of MOFs with the same metal cluster (Kesanli et al., 2003). 10
Figure 1.10: Vital components in MOF formation (Kitagwa et al., 2004). 12
Figure 1.11: Diagrammatic representation of 2-(2-hydroxyethyl)isoindoline-1,3-dione (Barooah et al., 2003). 16
Figure 1.12: \(N,N'\)-bis(glycinyl)-pyromellitic diimide. 16
Figure 1.13: Diagram illustrating different stacking arrangements between donor and acceptor molecules, (a) alternating stacking 1:1 ratio of donor and acceptors and (b) sandwich stacking 2:1 ratio of donor and acceptors. 17
Figure 1.14: Diagrammatic representation of \(N,N'\)-bis(glycinyl)-pyromellitic diimide indicating a) electron poor \(\pi\) plane, b) lines of symmetry and c) hydrogen bond acceptors. 18
Figure 1.15: Graph set notation of various hydrogen bonding molecules (Etter, 1991).

Figure 3.1: Optical microscope images at 30x magnification of gly-L host molecule, with the addition of aromatics donors leading to CT complex formation.

Figure 3.2: Ortep diagram for gly-L drawn at the 50% probability level.

Figure 3.3: Two dimensional layer of gly-L molecules interacting through hydrogen bonding between carboxylic acids.

Figure 3.4: Space fill diagram of a 2D layer, indicating the presence of pores in the structure of gly-L.

Figure 3.5: Ortep diagrams of CT complexes drawn at the 50% probability level.

Figure 3.6: Two dimension layer formation through CT interactions and H-bonding.

Figure 3.7: Weak (C-H···O) intermolecular hydrogen bonding amongst terminal (navy bonds, 2D) and planar carbonyl groups (turquoise, 3D) in gly-NAP.

Figure 3.8: Three dimensional extension of gly-ANT indicating zigzag arrangement between adjacent sheets.

Figure 3.9: Structural arrangement of molecules for gly-L CT complexes contributing most to the stability of the structure.

Figure 3.10: Experimental X-ray powder diffraction pattern of gly-L and CT complexes.

Figure 3.11: Thermogravimetric trace for gly-L and CT complexes.

Figure 3.12: DSC curves of heat flow (mW) vs. temperature (°C) for gly-L and CT complexes.

Figure 3.13: Solid state UV-Vis spectra for gly-L CT complexes reported here.

Figure 3.14: UV-Vis spectra for CT complexes formed with gly-L measured in solution.
Figure 4.1: Optical microscope images at 50x magnification of but-L host molecule, with the addition of aromatics donors leading to CT complex formation.

Figure 4.2: Ortep diagram of but-L drawn at 50% probability.

Figure 4.3: Two dimensional layers of but-L through hydrogen bonding of carboxylic acids, indicating zigzag arrangement within the 2D sheet.

Figure 4.4: Ortep diagrams of grown CT complexes drawn at the 50% probability level.

Figure 4.5: Two dimension layer formation through CT interactions and H-bonding.

Figure 4.6: Structural arrangement of molecules for but-L CT complexes contributing most to the stability of the but-PERY structure.

Figure 4.7: Experimental X-ray powder diffraction pattern of but-L and CT complexes.

Figure 4.8: Thermogravimetric trace for but-L and CT complexes.

Figure 4.9: DSC traces of heat flow (mW) vs. temperature (°C) for but-L and CT complexes.

Figure 4.10: Solid state UV-Vis absorption spectra for but-L CT complexes.

Figure 4.11: UV-Vis absorption spectra for but-L CT complexes carried out in solution.

Figure 5.1: Vapour diffusion setup.

Figure 5.2: Optical microscope images at 50x magnification of the various MOFs grown using various divalent metals with gly-L.

Figure 5.3: Ortep diagram of MOF-Zn1 drawn at the 50% probability level.

Figure 5.4: Coordination environment adopted by MOF-Zn1.

Figure 5.5: Two dimensional structural extension of MOF-Zn1 indicating a herringbone type arrangement.

Figure 5.6: Pores visible upon removal of DMF solvent molecules, viewed along the b-axis.
Figure 5.7: Ortep diagram of MOF-Zn2 drawn at the 50% probability level.
Figure 5.8: Tetrahedral coordination environment adopted by MOF-Zn2.
Figure 5.9: Coordination geometry leading to one dimensional chains, with stacking of aromatic ligands, and pink sphere indicating centre of inversion.
Figure 5.10: 1D pores in the structure of MOF-Zn2 viewed down the a-axis.
Figure 5.11: Ortep diagram of MOF-Cd1 at 50% probability level, showing the resolved disordered apical DMF molecules.
Figure 5.12: Octahedral coordination environment adopted by MOF-Cd1.
Figure 5.13: Two dimensional extension of MOF-Cd1, resulting in step-like arrangement.
Figure 5.14: Illustration of 1D open network pores along the a-axis in the structure of MOF-Cd1.
Figure 5.15: Ortep diagram of MOF-Co1 drawn at 50% probability level, indicating unresolved disorder in solvent DMF molecule.
Figure 5.16: Coordination environment adopted by MOF-Co1.
Figure 5.17: Offset two dimensional extension of MOF-Co1.
Figure 5.18: Pores in MOF-Co1 visible upon removal of solvent molecules as viewed down the c-axis.
Figure 5.19: Experimental X-ray powder diffraction of MOF materials.
Figure 5.20: Formation of 3D MOF using the pillaring approach (Chun et al., 2005).

Figure A1.1: 3D offset arrangement of gly-L molecules corresponding to (a) -61.4kJ/mol and (b) -44.4kJ/mol.
Figure A1.2: (a) 3D offset arrangement of but-L molecules corresponding to -63.8kJ/mol (b) 2D offset arrangement corresponding to -32.5kJ/mol.

Figure A2.1: PXRD for gly-L.
Figure A2.2: Calculated PXRD for gly-L.
Figure A2.3: PXRD for gly-NAP.
Figure A2.4: Calculated PXRD for gly-NAP.
Figure A2.5: PXRD for gly-ANT.
Figure A2.6: Calculated PXRD for gly-ANT.
Figure A2.7: PXRD for gly-PHEN.
Figure A2.8: Calculated PXRD for gly-PHEN.
Figure A2.9: PXRD for gly-PERY.
Figure A2.10: Calculated PXRD for gly-PERY.
Figure A2.11: PXRD for but-L.
Figure A2.12: Calculated PXRD for but-L.
Figure A2.13: PXRD for but-PHEN.
Figure A2.14: Calculated PXRD for but-PHEN.
Figure A2.15: PXRD for but-PERY.
Figure A2.16: Calculated PXRD for but-PERY.
Figure A2.17: PXRD for MOF-Zn.
Figure A2.18: Calculated PXRD for MOF-Zn1.
Figure A2.19: Calculated PXRD for MOF-Zn2.
Figure A2.20: PXRD for MOF-Cd1.
Figure A2.21: Calculated PXRD for MOF-Cd1.
Figure A2.22: PXRD for MOF-Co1.
Figure A2.23: Calculated PXRD for MOF-Co1.
Figure A3.1: Thermogravimetric trace for gly-L.
Figure A3.2: Thermogravimetric trace for gly-NAP.
Figure A3.3: Thermogravimetric trace for gly-ANT.
Figure A3.4: Thermogravimetric trace for gly-PHEN.
Figure A3.5: Thermogravimetric trace for gly-PERY.
Figure A3.6: Thermogravimetric trace for but-L.
Figure A3.7: Thermogravimetric trace for but-PHEN.
Figure A3.8: Thermogravimetric trace for but-PERY.
Figure A3.9: DSC curves of heat flow (mW) vs. temperature (°C) for gly-L.
Figure A3.10: DSC curves of heat flow (mW) vs. temperature (°C) for gly-NAP.
Figure A3.11: DSC curves of heat flow (mW) vs. temperature (°C) for gly-ANT. 139
Figure A3.12: DSC curves of heat flow (mW) vs. temperature (°C) for gly-PHEN.139
Figure A3.13: DSC curves of heat flow (mW) vs. temperature (°C) for gly-PERY. 140
Figure A3.14: DSC curves of heat flow (mW) vs. temperature (°C) for but-L. 140
Figure A3.15: DSC curves of heat flow (mW) vs. temperature (°C) for but-PHEN.141
Figure A3.16: DSC curves of heat flow (mW) vs. temperature (°C) for but-PERY.141

Figure A4.1: Solid state UV-Vis spectra for gly-NAP. 143
Figure A4.2: Solid state UV-Vis spectra for gly-ANT. 143
Figure A4.3: Solid state UV-Vis spectra for gly-PHEN. 144
Figure A4.4: Solid state UV-Vis spectra for gly-PERY. 144
Figure A4.5: Solid state UV-Vis spectra for but-PHEN. 145
Figure A4.6: Solid state UV-Vis spectra for but-PERY. 145
Figure A4.7: Liquid state UV-Vis spectra for gly-NAP. 146
Figure A4.8: Liquid state UV-Vis spectra for gly-ANT. 147
Figure A4.9: Liquid state UV-Vis spectra for gly-PHEN. 147
Figure A4.10: Liquid state UV-Vis spectra for gly-PERY. 148
Figure A4.11: Liquid state UV-Vis spectra for but-PHEN. 148
Figure A4.12: Liquid state UV-Vis spectra for but-PERY. 149

Figure A4.13: IR spectrum for gly-L. 149
Figure A4.14: IR spectrum for gly-NAP. 150
Figure A4.15: IR spectrum for gly-ANT. 150
Figure A4.16: IR spectrum for gly-PHEN. 151
Figure A4.17: IR spectrum for gly-PERY. 151
Figure A4.18: IR spectrum for but-L. 152
Figure A4.19: IR spectrum for but-PHEN. 152
Figure A4.20: IR spectrum for but-PERY. 153
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Effect of linkers and joiners on the unit cell dimensions of MOF materials. (Rosi et al., 2005).</td>
<td>11</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Characteristics of strong, moderate and weak hydrogen bonds (Jeffrey, 1997).</td>
<td>20</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Crystallographic data for gly-L and CT complexes.</td>
<td>37</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Intermolecular hydrogen bonding between gly-L molecules in the CT complexes studied.</td>
<td>46</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>CH···O interactions stabilising layers in the various CT structures.</td>
<td>48</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>List of weak gly-L–gly-L (g-g) and aromatic–gly-L (a-g) C-H···O interactions stabilising the CT complexes studied.</td>
<td>48</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Energy values (kJ.mol$^{-1}$) associated with common molecular conformations adopted by all structures using gly-L.</td>
<td>51</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Infrared spectral data for gly-L and CT complexes.</td>
<td>57</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Expected values for assigned spectral bands (www.cem.msu.edu).</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Crystallographic data for but-L and CT complexes.</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Intermolecular hydrogen bonding between but-L molecules in the CT complexes studied.</td>
<td>71</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Weak C-H···O interactions between but-L – but-L (b-b) and aromatic – but-L (a-b) groups in the two complexes reported here.</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Energy values (kJ.mol$^{-1}$) associated with the most common molecular conformations adopted by all structures with but-L.</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Infrared spectral data of but-L and CT complexes.</td>
<td>80</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Crystallographic data for the MOFs reported in this chapter.</td>
<td>88</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>CH···O hydrogen bond extension for MOF-Zn1.</td>
<td>92</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>CH···O hydrogen bond interactions in MOF-Zn2.</td>
<td>95</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>CH···O hydrogen bond extension of MOF-Cd1.</td>
<td>99</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>CH···O hydrogen bonding interactions of MOF-Co1.</td>
<td>103</td>
</tr>
<tr>
<td>Table A1.1</td>
<td>Tabulated molecule-molecule interaction energies for gly-L.</td>
<td>115</td>
</tr>
</tbody>
</table>
Table A1.2: Tabulated molecule-molecule interaction energies for gly-NAP. 115
Table A1.3: Tabulated molecule-molecule interaction energies for gly-ANT. 116
Table A1.4: Tabulated molecule-molecule interaction energies for gly-PHEN. 118
Table A1.5: Tabulated molecule-molecule interaction energies for gly-PERY. 118
Table A1.6: Tabulated molecule-molecule interaction energies for but-L. 119
Table A1.7: Tabulated molecule-molecule interaction energies for but-PHEN. 120
Table A1.8: Tabulated molecule-molecule interaction energies for but-PERY. 121
Table A3.1: Calculated energies observed for DSC. 142
Table A4.1: Calculated energies associated with transition bands. 146
Glossary

ArH : Aromatic hydrogen.
Charge transfer : CT.
Dimethyl formamide : DMF.
but-L : N,N'-bis(γ-butyric)-pyromellitic diimide.
but-PHEN : Charge transfer complex containing phenanthrene.
but-PERY : Charge transfer complex containing perylene.
CB : Coordination bonding.
DSC : Differential Scanning Calorimetry.
GC : Glycinyl carbonyl.
gly-L : N,N'-bis(glycinyl)-pyromellitic diimide.
gly-NAP : Charge transfer complex containing naphthalene.
gly-ANT : Charge transfer complex containing anthracene.
gly-PHEN : Charge transfer complex containing phenanthrene.
gly-PERY : Charge transfer complex containing perylene.
H : Hydrogen.
HB : Hydrogen bonding.
H-bond : hydrogen bonds.
IC : Imide carbonyl.
IR : Infrared.
MOFs : Metal Organic Frameworks.
MOF-Zn1 : First Metal Organic Framework containing zinc (II) metal.
MOF-Cd1 : Metal Organic Framework containing cadmium (II) metal.
MOF-Co1 : Metal Organic Frameworks containing cobalt (II) metal.
PXRD : Powder X-ray diffraction.
SBU : Secondary building unit.
SCXRD : Single crystal X-ray diffraction.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solv</td>
<td>Solvent.</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethylamine.</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis.</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet-visible.</td>
</tr>
</tbody>
</table>