METAMORPHIC STUDIES IN THE VREDEFORT DOME, SOUTH AFRICA

Paula Ogilvie

A dissertation submitted to the Faculty of Science, University of the Witwatersrand,
in fulfilment of the requirements for the degree of Doctor of Philosophy

Johannesburg, 2010
Statement of original contribution

I declare that this dissertation is my own, unaided work. It is being submitted for the Degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg, South Africa. It has not been submitted before for any degree or examination in any other University.

Signed this 8th day of June 2010

__
Paula Ogilvie
Abstract

Metasedimentary granulites in the core of the Vredefort Dome present textural and chemical evidence for three discrete metamorphic events. These include a peak Archaean anatectic event (M$_1$), shock metamorphism (M$_2$) with impact at 2.02 Ga and post-shock metamorphism (M$_3$) of the target rocks related to Dome formation and non-adiabatic loading of the crust.

Regional granulite facies metamorphism (M$_1$) occurred between 3.10 Ga and 3.08 Ga with tectonomagmatic thickening of the crust attributable to easterly-to-northeasterly-directed subduction of an oceanic slab beneath the Kaapvaal craton. Phase equilibria modelling in THERMOCALC of highly restitic pelitic granulites constrains peak conditions of M$_1$ metamorphism at 870 - 885 °C and 7.1 - 7.7 kbar. Slightly lower peak conditions of 858 °C and 7.1 kbar were obtained for a more melt-rich granulite, reflecting back-reaction with a melt on the suprasolidus retrograde path. The prograde up-pressure trajectory is dominated by heating from 6.5 kbar, 700 °C to 7.5 kbar, 850 °C. Phase equilibria constraints on the prograde and suprasolidus retrograde evolution are consistent with a clockwise Archaean P-T path for the M$_1$ event.

Overprinting the M$_1$ peak assemblage are shock-induced, extreme disequilibrium deformation features (irregular shock fractures, planar fractures, planar deformation features, isotropization and shock melting) that formed instantaneously during meteorite impact at 2.02 Ga (M$_2$). Reconstruction of the shock pressure and post-shock temperature distribution across the central core of the Vredefort Dome from observed shock effects in component phases from the pelitic granulites required an experimental study to constrain shock effects in an analogous, complex, polymineralic, pelitic granulite from the Etivé aureole, with a significant proportion of hydrous and ferromagnesian minerals. Shock experiments were performed at 12.5, 25, 34, 40 and 56 GPa at 25 °C, and at 18 and 25 GPa at 400 °C to investigate the roles of both increasing shock pressure and pre-shock temperature on shock deformation features in major minerals. Both the shock experiments and Vredefort granulites are characterised by heterogeneous distribution of shock effects in minerals on intragranular and intergranular scales. Shock heterogeneity compromises estimates of absolute shock pressures based exclusively on observed
shock effects in minerals. Independent constraints on shock pressures are obtained from post-shock metamorphic conditions and range from > 35 GPa to > 40 GPa at 8 and 5 km from the centre of the Dome, respectively.

The Vredefort granulites underwent unusually rapid and highly variable M3 heating, exhumation and cooling associated with the 2.02 Ga meteorite impact event. The short-lived nature of the thermal event and restitic bulk rock compositions owing to melt loss during the Archaean M1 event, led to diffusion-controlled reaction and the growth of coronas around garnet. Coronas display a strongly sectoral development indicative of highly localized compositional domains. Grain size, sectoral complexity and thickness of coronas all increase toward the centre of the Dome, indicating strong temperature control on the extent of reaction. This sectoral complexity is unique to Vredefort coronas compared to coronas reported from regional and contact metamorphic terranes and affords the opportunity to evaluate controls on extent of corona development and degree of equilibration. Minimum peak M3 temperatures were 980 °C at 2.5 – 3.0 kbar, between 8 and 5 km from the centre of the Dome.

Open-system diffusion and phase equilibria modelling of the Vredefort coronas has established a relationship between equilibration in granulites at the micrometre-scale as a function of temperature and melt fertility of the corona bulk composition. Higher melt modes and solidus depression in fertile corona bulk compositions enhance component diffusion and equalization of chemical potential gradients throughout the equilibration volume. Coronas are characterized by non-linear open-system metasomatic exchange of components with adjacent domains. Selective and variable open-system metasomatic exchange of components with the matrix or with contiguous domains is required to reproduce observed mineral modes and compositions. Reaction may be induced in chemically inert corona domains through open-system diffusive communication with a hydrous matrix, thereby fluxing the solidus and elevating melt modes. A better understanding of the textural and compositional evolution of coronas requires a shift from closed-system or linear phase equilibria modelling to non-linear, open-system modelling.
Dedication

This thesis is dedicated to my parents, Colin and Edna, and my brother and sister, Colin and Adrienne, for their endless support and encouragement.
Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Roger Gibson for his infinite reserves of patience and all his encouragement over the years. Without his support, guidance and insight, none of this would have been possible. Prof. Gary Stevens and Prof. Uwe Reimold are also thanked for their invaluable scientific contributions throughout the study. Prof. Carl Anhaeusser is also thanked for many inspiring chats and discussions. The National Research Foundation is acknowledged for financial support for the duration of my full-time studies.

I would also like to thank Dr. Jochen Schweitzer, Phil Lambert, Dr. Richard Stewart, Dave Stewart, Gokhan Güler, Vanessa Vermaak, Fatima Vogt and all the staff at Shango Solutions for their humbling support and guidance throughout the duration of my studies. Adele Grobler is also thanked for assistance with logistics and printing.

Dr Johann Diener and Prof. Richard White are thanked for their THERMOCALC technical support. Special acknowledgement must go to Johann Diener for the assistance and time invested in teaching me melt-integration in THERMOCALC.

Leonie Reyneke and the staff at Kumba Resources Mineralogy department are thanked for allowing me access to their microscopes during the study. Prof. Alex Deustch is thanked for performing the shock experiments in this study and preparation of the thin sections of the shocked specimens. At Stellenbosch University, Dr. Esme Spicer and Madelaine Frazenburg are also thanked for technical support during acquisition of SEM and XRF data. Dr. Rudolph Erasmus of the NRF Centre of Excellence in Strong Materials at Wits University is thanked for assistance during acquisition of Raman Spectra. Thanks also go to Peter Gräser from the University of Pretoria for his meticulous work and assistance with microprobe analysis. I would like to express my gratitude to Alex Mathebula for help with numerous thin sections and sample preparation. Safia Cannell, Dalena Blithental, Matt Kitching, Mitch Miles and Melody van Wyngaard are gratefully acknowledged for logistical support throughout this study.

I have been fortunate to have made some wonderful friends during my time at Wits, who have also contributed greatly to this study through their fantastic support,
encouragement and technical input. Thanks go to my good friend Louise Coney, Luke Longridge, Lindi Richer, Anika Solanki, Guy Freemantle, James Roberts, Charlie Seabrook and Christine Reinaud. For the last two years, I have been able to complete my studies in the Garden Route and I would like to thank my awesome drumming friends and teachers, Nidhi, Richelle, Anthea, Marissa, Jude, Karen, Sheila, Pat and Kaya, for teaching me to speak ‘djembe’.

Finally, my deepest and most heart-felt gratitude goes to my parents, brother and sister for all their love and support over the years.
TABLE OF CONTENTS

Declaration .. ii
Abstract .. iii
Dedication ... v
Acknowledgements ... vi
List of figures .. xiii
List of tables ... xxi

VOLUME 1

Chapter 1: Introduction .. 1
 1.1 General introduction ... 1
 1.2 Geology of the Vredefort Dome .. 7
 1.3 Geology of the Archaean Basement Complex ... 12
 1.4 Metamorphic evolution of the Vredefort Dome ... 14
 1.4.1 M1: peak anatectic event (3.1 Ga) .. 16
 1.4.2 M2: shock metamorphism (2.02 Ga) .. 17
 1.4.3 M3: post-shock metamorphism (2.02 Ga) ... 19
 1.5 Thesis outline ... 27

Chapter 2: Archaean metamorphic evolution of metapelites and metagreywackes of the Archaean Basement Complex in the core of the Vredefort Dome .. 31
 2.1 Introduction ... 31
 2.2 Mesoscopic sample description ... 35
 2.2.1 Metapelites (SK6C, SK9-CLM) ... 35
 2.2.2 Metagreywackes (SK4A) ... 36
 2.3 Petrography ... 40
 2.3.1 Metapelites (SK6C, SK9-CLM) ... 40
 2.3.2 Metagreywackes (SK4A) ... 50
 2.4 Bulk-rock compositions .. 52
 2.5 Mineral chemistry ... 63
 2.6 Thermobarometry and P-T path constraints ... 84
 2.6.1 Estimation of peak metamorphic conditions ... 89
Chapter 3: Corona textures in granulites - a review of formation mechanisms and implications for the metamorphic evolution of terranes 122

3.1 Introduction ... 122
3.2 Single-stage, steady-state, diffusion-controlled corona growth (SSDC) 125
3.3 Sequential, diffusion-controlled corona growth (SEQ) ... 130
3.4 Determining a sequential or single-stage model of corona growth? 137
3.5 Controls on corona development in pelitic and mafic granulites 139
 3.5.1 Pressure, temperature and a_{H_2O} .. 139
 3.5.2 Reaction mechanism: single-stage vs. sequential development 143
 3.5.3 Reactant compositions .. 143
 3.5.4 Diffusion kinetics .. 148
 3.5.5 Deformation and strain .. 150
3.6 Conditions of corona formation ... 163
3.7 Corona microstructure and compositional zonation .. 165
3.8 Quantitative modelling of coronas ... 171
3.9 Discussion ... 178

Chapter 4: Petrography of complex pelitic granulite coronas in the Vredefort Dome .. 180

4.1 Introduction ... 180
4.2 Petrography of coronas from the NW group ... 186
 4.2.1 Garnet-quartz corona domain .. 191
 4.2.2 Garnet-biotite corona domain .. 197
 4.2.3 Garnet-K-Feldspar corona domain .. 204
 4.2.4 Garnet-plagioclase corona domain ... 210
 4.2.5 Garnet-cordierite corona domain ... 216
 4.2.6 Cordierite-biotite-sillimanite pseudomorph .. 221
 4.2.7 Fracture symplectite ... 224
 4.2.8 Summary .. 227
4.3 Petrography of coronas from the SE group .. 232
 4.3.1 Garnet-quartz corona domain ... 236
 4.3.2 Garnet-biotite corona domain ... 242
 4.3.3 Garnet-K-Feldspar corona domain ... 248
 4.3.4 Garnet-plagioclase corona domain ... 254
 4.3.5 Garnet-cordierite corona domain ... 260
 4.3.6 Cordierite-biotite-sillimanite pseudomorph .. 264
 4.3.7 Fracture symplectite ... 267
 4.3.8 Summary .. 270
4.4 Comparison between the NW and SE groups ... 275
4.5 Discussion ... 281

Chapter 5: Open-system, metasomatic, diffusion modelling of complex coronas
in pelitic granulites from the Vredefort Dome .. 285
 5.1 Introduction .. 285
 5.2 Mineral chemistry ... 293
 5.2.1 Compositional variation in corona product phases 312
 5.2.2 Evidence for open-system behaviour in corona phase compositions –
 implications for calculation of the overall corona reaction 318
 5.3 Open-system diffusion modelling ... 320
 5.3.1 Corona overall reactions ... 337
 5.3.2 L-ratios ... 342
 5.3.3 Corona product proportions ... 344
 5.3.4 Component fluxes ... 346
 5.3.5 Chemical potential gradients .. 375
 5.3.6 Chemical potential relationships and corona structure 383
 5.3.7 Gibbs free energy gradients of corona phases 390
 5.3.8 Stability criterion .. 392
 5.3.9 Non-equilibrium thermobarometry .. 396
 5.3.10 Reaction affinity .. 415
 5.4 Discussion ... 417
Chapter 6: Phase equilibria modelling of complex coronas

6.1 Introduction .. 422
6.2 Bulk composition of corona domains .. 429
6.3 Phase equilibria modelling of the matrix contribution to the garnet-core compositional domain ... 437
6.4 Phase equilibria modelling of the garnet-reactant domains 443
 6.4.1 Garnet-quartz domain .. 444
 6.4.2 Garnet-biotite domain .. 452
 6.4.3 Garnet-feldspar domain .. 461
 6.4.4 Garnet-cordierite domain ... 470
6.5 Phase equilibria modelling of communication between contiguous corona domains474
 6.5.1 Garnet-quartz vs. garnet-biotite domains .. 480
 6.5.2 Garnet-quartz vs. garnet-K-Feldspar/plagioclase domains 483
 6.5.3 Garnet-K-Feldspar/plagioclase vs. garnet-biotite domains 488
 6.5.4 Garnet-K-Feldspar vs. garnet-plagioclase domain 492
6.6 Phase equilibria modelling of cordierite-biotite-sillimanite compositional domains495
6.7 Non-linear, metasomatic modification and evolution of corona bulk composition with prolonged reaction .. 498
 6.7.1 Modal mismatch in garnet-feldspar and garnet-biotite domains 501
 6.7.2 Modal mismatch in garnet-quartz domains ... 503
 6.7.3 Melt loss and corona textural and compositional evolution511
6.8 Extreme melt loss and the origin of the aluminous granofelses from the Inlandsee Pan .. 517
6.9 Discussion ... 526

Chapter 7: Experimental investigation of shock metamorphic effects in a metapelitic granulite .. 540

7.1 Introduction .. 540
7.2 Methodology ... 546
7.3 Optical and scanning electron microscopy .. 550
 7.3.1 Quartz .. 550
 7.3.2 Plagioclase ... 559
 7.3.3 K-feldspar ... 567
7.3.4 Cordierite ... 575
7.3.5 Biotite .. 581
7.3.6 Garnet .. 588
7.3.7 Orthopyroxene ... 588
7.3.8 Spinel .. 593
7.3.9 Ilmenite and pyrite .. 593
7.4 PDF development in quartz ... 601
7.5 Raman spectroscopy ... 605
7.5.1 Quartz ... 605
7.5.2 Plagioclase ... 608
7.5.3 K-feldspar ... 611
7.5.4 Cordierite ... 614
7.5.5 Biotite ... 617
7.5.6 Garnet ... 620
7.5.6 Orthopyroxene ... 620
7.6 Mineral chemistry .. 626
7.7 Discussion ... 646
7.7.1 Summary of diagnostic shock effects in minerals 646
7.7.2 Role of pre-shock temperature on shock-induced deformation features 654
7.7.3 Shock heterogeneity ... 655
7.7.4 Shock pressure barometry in the core of the Vredefort Dome 658
7.7.5 Shock metamorphism and post-shock corona development 673

Chapter 8: Conclusions ... 676

8.1 M₁ peak anatectic metamorphism: approaching full equilibration 678
8.2 M₂ shock metamorphism: disequilibrium ... 681
8.3 M₃ Post-shock metamorphism: partial equilibration 685
 8.3.1 Controls on corona formation ... 685
 8.3.2 Thermobarometric estimates of corona formation 689
 8.3.3 Limitations to phase equilibria modelling 690
8.4 A new frontier in metamorphism .. 692

References .. 694

Appendix A: Derivation of open-system diffusion models 721
Appendix B: Individual phase compositions for diffusion modelling of coronas 738
LIST OF FIGURES

Figure 1.1 The equilibration continuum ... 6
Figure 1.2 Schematic cross-section through the Vredefort complex crater 7
Figure 1.3 The Theophilus lunar impact structure ... 8
Figure 1.4 Simplified geological map showing the location of the Witwatersrand basin and Vredefort Dome ... 8
Figure 1.5 Geological map and cross-section of the Vredefort Dome 9
Figure 1.6 Shock pressure distribution throughout the Vredefort Dome 10
Figure 1.7 Numerical models for shock pressure and post-shock temperature distribution throughout the Vredefort Dome ... 11
Figure 1.8 Post-impact thermal evolution of target rocks .. 20
Figure 1.9 Pre- and post-impact P-T trajectories defined by thermobarometry on the cores of peak metamorphic phases and symplectite mineral pairs respectively Perchuk et al. (2002) .. 26
Figure 1.10 P-T diagram demonstrating P-T conditions determined by previous workers for each metamorphic event in the Vredefort Dome ... 28
Figure 2.1 Geological map of the Jagers Vrede and Steynskraal farms 33
Figure 2.2 Metasedimentary garnet granulites from Steynskraal and Jagers Vrede 34
Figure 2.3 Mesoscopic images of SK6C ... 37
Figure 2.4 Mesoscopic images of SK9-CLM .. 38
Figure 2.5 Mesoscopic images of SK4A ... 39
Figure 2.6 Scanned thin section from SK6C mesosome ... 41
Figure 2.7 Microscopic images of SK6C ... 42
Figure 2.8 SK9-CLM scanned thin section .. 46
Figure 2.9 Microscopic images of SK9-CLM .. 47
Figure 2.10 SK4A scanned thin section ... 50
Figure 2.11 Microscopic images of SK4A ... 51
Figure 2.12 AFM projection from quartz, plagioclase and K-feldspar of bulk rock samples from the Steynskraal traverse ... 55
Figure 2.13 FeO+MgO vs. K2O/(K2O+Na2O) plot of Steynskraal metasedimentary granulites ... 56
Figure 2.14 Isocon plots for the bulk rock compositions of Steynskraal metasedimentary granulites ... 59
Figure 2.15 Isocon plots for the melt melt-reintegrated bulk rock compositions of Steynskraal metasedimentary granulites ... 60
Figure 2.16 Geochemical plots of bulk rock compositions of Steynskraal ultramafic and mafic granulites ... 61
Figure 2.17 AFM projection of all measured mineral compositions and respective bulk rock compositions of Steynskraal metasedimentary granulites ... 66
Figure 2.18 Garnet EMPA profiles for sample SK9-CLM .. 67
Figure 2.19 Garnet EMPA profiles for sample SK6C .. 68
Figure 2.20 Garnet EMPA profiles for sample SK4A .. 69
Figure 2.21 Cordierite EMPA profiles for sample SK9-CLM 70
Figure 2.22 Cordierite EMPA profiles for sample SK6C ... 71
Figure 2.23 Orthopyroxene EMPA profiles for sample SK4A 72
Figure 2.24 P-T pseudosection constructed for SK6C peak metamorphic conditions 92
Figure 4.32 Core coronas developed between garnet and quartz in the SE group of the Steynskraal traverse .. 240
Figure 4.33 Rim coronas developed between garnet and quartz in the SE group ... 241
Figure 4.34 Schematic representation of coronas developed between garnet and biotite from the SE group 244
Figure 4.35 Core corona development between garnet and biotite in the SE group .. 246
Figure 4.36 Rim corona development between garnet and biotite in the SE group .. 247
Figure 4.37 Schematic representation of coronas developed between garnet and K-feldspar from the SE group 250
Figure 4.38 Core coronas developed between garnet and K-feldspar in the SE group ... 252
Figure 4.39 Rim coronas developed between garnet and K-feldspar in the SE group ... 253
Figure 4.40 Schematic representation of coronas developed between garnet and plagioclase from the SE group 256
Figure 4.41 Core corona development between garnet and plagioclase in the SE group .. 258
Figure 4.42 Rim coronas developed between garnet and plagioclase in the SE group .. 259
Figure 4.43 Schematic representation of coronas developed between garnet and cordierite from the SE group 261
Figure 4.44 Corona development between garnet and cordierite in the SE group .. 263
Figure 4.45 Schematic representation of reaction textures developed after cordierite, biotite and sillimanite in the SE group 264
Figure 4.46 Symblectite development after cordierite, biotite and sillimanite in the SE group .. 266
Figure 4.47 Fracture symplectite in the core of garnet from SK9-CLM .. 268
Figure 4.48 EMPA mapping of fracture symplectite in the core of garnet from SK9-CLM .. 269
Figure 4.49 Variation of corona product modes between core and rim coronas for the SE group .. 271
Figure 4.50 Variation of corona layer thickness between core and rim coronas for the SE group .. 272
Figure 4.51 Variation of orthopyroxene vermicule size between core and rim coronas the SE group 273
Figure 4.52 Variation of orthopyroxene vermicule spacing between core and rim coronas for the SE group 274
Figure 4.53 Variation in microstructure and modes for the garnet-quartz domain from NW group to SE group coronas .. 276
Figure 4.54 Variation in microstructure and modes for the garnet-biotite domain from NW group to SE group coronas .. 277
Figure 4.55 Variation in microstructure and modes for the garnet-K-feldspar domain from NW group to SE group coronas .. 278
Figure 4.56 Variation in microstructure and modes for the garnet-plagioclase domain from NW group to SE group coronas .. 279
Figure 4.57 Variation in microstructure and modes for the garnet-cordierite domain from NW group to SE group coronas .. 280
Figure 4.58 Comparison of average Vredefort corona width with maximum corona thickness observed in coronas described in the literature .. 282
Figure 4.59 Comparison of maximum corona vermicule size of Vredefort coronas width with maximum vermicule size observed in coronas described in the literature .. 283
Figure 5.1 Distribution of corona sample localities SK8C, SK12A and SK9A, B, C in the Steynskraal area .. 289
Figure 5.2 BSE images of the coronas investigated in this study .. 290
Figure 5.3 AFM projection from quartz, plagioclase and K-feldspar for corona mineral assemblages 295
Figure 6.20 T-X sections for the compositional range between end-member garnet-quartz and adjacent end-member garnet-K-feldspar EBCs

Figure 6.21 T-X sections for the compositional range between end-member garnet-quartz and adjacent garnet-plagioclase EBCs

Figure 6.22 T-X sections for the compositional range between end-member garnet-K-feldspar and adjacent end-member garnet-biotite EBCs

Figure 6.23 T-X pseudosection for the compositional range between end-member garnet-plagioclase and adjacent garnet-biotite EBCs

Figure 6.24 T-X sections for the compositional range between end-member garnet-K-feldspar and adjacent garnet-plagioclase EBCs

Figure 6.25 T-X sections for the compositional range between sillimanite-dominated, biotite+cordierite and a sillimanite-absent, biotite+cordierite EBCs

Figure 6.26 Comparison of observed and predicted Opx/Crd ratios for corona products from aluminous corona compositional domains

Figure 6.27 Comparison of observed and predicted Opx/Crd ratios for corona products for the garnet-quartz corona compositional domain

Figure 6.28 T-X pseudosection simulating the effect of open-system metasomatic loss of FeO and MgO from a garnet-dominated EBC

Figure 6.29 Sectoral development of the garnet-quartz corona

Figure 6.30 Electron microprobe element mapping for garnet-quartz and garnet-plagioclase domains in SK9B'

Figure 6.31 T-X sections for the compositional range between garnet-dominated, garnet-quartz EBCs and quartz-dominated, garnet-quartz EBCs

Figure 6.32 T-X pseudosection for the compositional range between garnet-dominated, garnet-quartz EBCs and quartz-plagioclase EBCs

Figure 6.33 T-X pseudosection accommodating open-system metasomatic exchange of FeO, MgO, and CaO with adjacent domains

Figure 6.34 Metasomatic exchange between compositional domains

Figure 6.35 T-X pseudosection for SK9-CLM garnet-quartz domain with a matrix component (28 mol%)

Figure 6.36 T-X pseudosection for SK9-CLM garnet-plagioclase domain (20 mol% matrix) showing the effect of 100% melt loss at 1050 °C on corona mineral modes and solidus elevation

Figure 6.37 Photomicrographs showing textures in VT484

Figure 6.38 P-T pseudosection for VT484

Figure 6.39 P-T pseudosection for VT484, a pelitic cordierite-K-feldspar-bearing granofels from the Inlandsee terrane, contoured for cordierite, K-feldspar and spinel mode

Figure 6.40 T-X pseudosection simulating residual cumulate and associated liquid compositions with progressive melt loss

Figure 6.41 Model compositional evolution with progressive melt extraction from a melt-cumulate mixture in a (Fe*+Ti+Mg)-(Na+Ca)-K cation percentage plot

Figure 6.42 Comparison of model liquid and residuum bulk compositions with progressive melt extraction from a melt-cumulate mixture and actual granofels and granite compositions

Figure 6.43 Variation in EBC range in which equilibration is approached in all corona domains from the NW and SE group rocks determined from T-X sections
Figure 6.44 Variation in melt modes predicted for a post-shock temperature of 1000 °C for the EBC range in which equilibration is approached in all corona domains from the NW and SE group rocks ... 529
Figure 6.45 Range of solidus temperatures for the EBC ranges in which equilibration is approached in all corona domains from the NW and SE group rocks ... 530
Figure 6.46 $T-X_{Mg}$ pseudosection for SK9-CLM, demonstrating stable phase equilibria in the garnet-quartz domain with variable X_{Mg} .. 532
Figure 6.47 Variation in EBC ranges and solidus temperatures for adjacent corona domains in the NW group .. 535
Figure 6.48 Variation in EBC ranges and solidus temperatures for adjacent corona domains in the SE group .. 536
Figure 6.49 Variation in melt modes for adjacent corona domains in the NW and SE groups .. 537
Figure 7.1 Schematic shock pressure (P) - volume (V) Hugoniot and release adiabatic curves for a target mineral .. 542
Figure 7.2 Pressure-temperature fields of endogenic metamorphism and shock metamorphism .. 543
Figure 7.3 Unshocked pelitic granulite from the Etive aureole, Scotland .. 548
Figure 7.4 Experimental apparatus used to generate shock waves in the specimen under investigation .. 549
Figure 7.5 Shock effects in quartz .. 552
Figure 7.6 Shock effects in plagioclase .. 561
Figure 7.7 Shock effects in K-feldspar .. 569
Figure 7.8 Shock effects in cordierite .. 576
Figure 7.9 Shock effects in biotite .. 582
Figure 7.10 Shock effects in garnet .. 589
Figure 7.11 Shock effects in orthopyroxene .. 592
Figure 7.12 Shock effects in spinel .. 594
Figure 7.13 Shock effects in ilmenite and pyrite .. 596
Figure 7.14 PDF development in quartz at 25 GPa (25 °C) .. 602
Figure 7.15 PDF development in quartz at 18 GPa (400 °C) .. 603
Figure 7.16 PDF development in quartz at 25 GPa (400 °C) .. 604
Figure 7.17 Unprocessed Raman spectra of quartz .. 606
Figure 7.18 Processed Raman spectra of quartz .. 607
Figure 7.19 Unprocessed Raman spectra of plagioclase .. 609
Figure 7.20 Processed Raman spectra of plagioclase .. 610
Figure 7.21 Unprocessed Raman spectra of K-feldspar .. 612
Figure 7.22 Processed Raman spectra of K-feldspar .. 613
Figure 7.23 Unprocessed Raman spectra of cordierite .. 615
Figure 7.24 Processed Raman spectra of cordierite .. 616
Figure 7.25 Unprocessed Raman spectra of biotite .. 618
Figure 7.26 Processed Raman spectra of biotite .. 619
Figure 7.27 Unprocessed Raman spectra of garnet .. 621
Figure 7.28 Processed Raman spectra of garnet .. 622
Figure 7.29 Processed Raman spectra of garnet of isotropic and birefringent garnet cores at 56 GPa .. 623
Figure 7.30 Unprocessed Raman spectra of orthopyroxene .. 624
Figure 7.31 Processed Raman spectra of orthopyroxene .. 625
Figure 7.32 Variation in garnet X_{Mg} between core and rim with increasing shock pressure and preheating .. 639
Figure 7.33 Variation in biotite composition between core and rim with increasing shock pressure and preheating. ... 640
Figure 7.34 Variation in cordierite composition between core and rim with increasing shock pressure and preheating. ... 641
Figure 7.35 Variation in X_{Or} and X_{Ab} of K-feldspar between core and rim with increasing shock pressure and preheating. ... 642
Figure 7.36 Variation in K/Si, and Al/Si of K-feldspar between core and rim with increasing shock pressure and preheating. ... 643
Figure 7.37 Variation in X_{Ab}, and X_{An} of plagioclase between core and rim with increasing shock pressure and preheating. ... 644
Figure 7.38 Variation in Na/Si, and Al/Si of plagioclase between core and rim with increasing shock pressure and preheating. ... 645
Figure 7.39 Summary of shock effects in quartz in this study and results from previous studies ... 647
Figure 7.40 Summary of shock effects in plagioclase and K-feldspar in this study and results from previous studies ... 649
Figure 7.41 Summary of shock effects in biotite and cordierite in this study compared with results from previous studies ... 651
Figure 7.42 Summary of shock effects in orthopyroxene and garnet in this study compared with results from previous studies ... 653
Figure 7.43 Strain localization owing to shock impedance contrast between garnet and cordierite .. 658
Figure 7.44 Results of numerical models by Ivanov (2005) for shock pressure and post-shock temperature distribution throughout the Vredefort Dome .. 660
Figure 7.45 Photomicrograph montage (crossed polarisers) showing shock-induced microdeformation features in component minerals from SK11 (SE group) .. 662
Figure 7.46 Shock-induced microdeformation features in SK11 .. 663
Figure 7.47 Photomicrograph montage (crossed polarisers) showing shock induced microdeformation features in component minerals from VT466B (NW group) .. 666
Figure 7.48 Shock-induced microdeformation features in VT466B .. 667
Figure 7.49 Shock-induced deformation in Etivé pelitic granulite at 25 GPa and 400 °C .. 670
Figure 7.50 Schematic representation of shock metamorphism of the Steynskraal pelitic granulites .. 671
Figure 8.1 Schematic cartoon demonstrating the capacity for preservation of the peak assemblage as a function of melt loss in granulites .. 680

LIST OF TABLES

Table 2.1 XRF Bulk rock compositions: Metagreywackes .. 53
Table 2.2 XRF Bulk rock compositions: Metapelites .. 54
Table 2.3 XRF Bulk rock compositions: Mafic granulites .. 62
Table 2.4 Representative mineral analyses SK9-CLM .. 73
Table 2.5 Representative mineral analyses SK6C .. 77
Table 2.6 Representative mineral analyses SK4A .. 81
Table 3.1 Summary of prograde corona occurrences in the literature .. 152
Table 3.2 Summary of retrograde corona occurrences in the literature .. 157
Table 4.1 Mineral modal compositions of the NW group granulites .. 186
Table 4.2 Summary of garnet-quartz corona petrography from the NW group ... 194
Table 4.3 Summary of garnet-biotite corona petrography from the NW group ... 200
Table 4.4 Summary of garnet-K-feldspar corona petrography from the NW group ... 207
Table 4.5 Summary of garnet-plagioclase corona petrography from the NW group 213
Table 4.6 Summary of garnet-cordierite corona petrography from the NW group .. 218
Table 4.7 Summary of sillimanite-cordierite-biotite pseudomorph petrography from the NW group 222
Table 4.8 Mineral modal compositions of the SE group granulites .. 232
Table 4.9 Summary of garnet-quartz corona petrography from the SE group .. 239
Table 4.10 Summary of garnet-biotite corona petrography from the SE group ... 245
Table 4.11 Summary of garnet-K-feldspar corona petrography from the SE group .. 251
Table 4.12 Summary of garnet-plagioclase corona petrography from the SE group 257
Table 4.13 Summary of garnet-cordierite corona petrography from the SE group ... 262
Table 4.14 Summary of sillimanite-cordierite-biotite pseudomorph petrography from the SE group 265
Table 4.15 Summary of sillimanite-cordierite-biotite pseudomorph petrography from the NW group 269
Table 4.16 Summary of sillimanite-cordierite-biotite pseudomorph petrography from the SE group 273
Table 4.17 Model independent end-member reaction affinities .. 319
Table 5.1 Inferred THERMOCALC bulk compositions for SK8C, SK12A, SK9A, SK9B and SK9C coronas ... 288
Table 5.2 Average mineral chemistry for coronas SK8C, SK12A and SK9A ... 296
Table 5.3 Summary statistics of mineral chemistry for coronas SK8C, SK12A, SK9A, SK9B and SK9C 313
Table 5.4 Number of analytical points for each phase in all coronas .. 314
Table 5.5 Modelling results for corona SK8C .. 322
Table 5.6 Modelling results for corona SK12A .. 325
Table 5.7 Modelling results for corona SK9A .. 328
Table 5.8 Modelling results for corona SK9B .. 331
Table 5.9 Modelling results for corona SK9C .. 334
Table 5.10 Molar bulk compositions for SK8C, SK12A, SK9A, SK9B and SK9C coronas 339
Table 5.11 Component fluxes through layers and molar amounts of components liberated and consumed at layer boundaries .. 352
Table 5.12 Chemical potential relationships for components and end-members across corona layers – SK8C ... 400
Table 5.13 Chemical potential relationships for components and end-members across corona layers – SK12A .. 401
Table 5.14 Chemical potential relationships for components and end-members across corona layers – SK9A ... 402
Table 5.15 Chemical potential relationships for components and end-members across corona layers – SK9B ... 403
Table 5.16 Chemical potential relationships for components and end-members across corona layers – SK9C ... 404
Table 5.17 Model independent end-member reaction affinities .. 407
Table 6.1 Summary of coronal assemblage and textural trends ... 424
Table 6.2 End-member bulk compositions for phase equilibria modelling of corona domains (NCKFMASHTO) .. 430
Table 6.3 Observed and predicted corona product modes with attendant solidus temperatures for the fracture symplectite ... 440
Table 6.4 Observed and predicted corona product modes with attendant solidus temperatures for the garnet-quartz domain ... 447