Genetic Aspects of Hearing Loss in the Limpopo Province of South Africa

Rosemary I Kabahuma

MBCHB (Makerere University), MMED ENT Surgery (University of Nairobi),
MSC Audiological Medicine (University of London)

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

Faculty of Humanities, Department of Speech Pathology and Audiology,
University of the Witwatersrand, Johannesburg, South Africa

January 2010
DEDICATION

To Almighty God who has by grace made all this possible.

To my daughters Constance and Theodora, who experienced the cost of a PhD at an early age and yet remained encouraging, supportive, always believing for their mother.

To Ezra whose support gave me the space to fly.

‘But he knows the way that I take; when he has tested me, I will come forth as gold.’

Job 23:10
DECLARATION

I, Rosemary Ida Kabahuma, do hereby declare that this dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Humanities, Department of Speech Pathology and Audiology, University of Witwatersrand, is my own original work. All assistance I have received has been stated in the acknowledgements. This work has not been submitted before for any degree or examination at this or any other university. I declare that the protocol was cleared by the Committee for Research on Human subjects, Ethics committee clearance certificate protocol number M991005.

Rosemary Ida Kabahuma

____ day of ________________ 2010
ACKNOWLEDGEMENTS

I would like to thank all the many individuals and organizations who, through their support, ensured the successful completion of this project. It is not possible to mention each one by name but the following are singled out:

- My main supervisor, Prof. Claire Penn, Department of Speech Pathology and Audiology, University of Witwatersrand, Johannesburg, South Africa
- My co-supervisor, Prof. Michele Ramsay, Division of Human Genetics, National Health Laboratory Service and School of Pathology, University of Witwatersrand, Johannesburg, South Africa
- Prof. Jackie L Clarke, Faculty of Audiology, Callier Center for Communication Disorders, University of Texas at Dallas, for the constructive criticism and advice
- The eaf students at the Tshilidzini and Bosele Schools for the Deaf who took part in this study
- The parents and guardians of all the subjects for their co-operation
- The school principals and staff at the Tshilidzini and Bosele Schools for the Deaf, who received us warmly and went out of their way to ensure the successful completion of this project
- All the translators at the two Schools for the Deaf who assisted in the completion of the questionnaires
- The nursing staff at the two Schools for the Deaf, for their assistance with phlebotomy and urine testing
- Prof. RF Mueller, Karl Bromelow and Tim Hutchin, formerly of the Deafness Research Team of the Molecular Medicine Unit, St James’ University Hospital,
University of Leeds, UK, for the financial support and training in mutation detection techniques during the attachment at Leeds

- Prof. Andrew Read and James O’Sullivan, Department of Medical Genetics, St Mary’s Hospital, University of Manchester, UK, for the invaluable work in the detection of the Waardenburg Syndrome mutations in this study
- Dr Xue Zhong Liu and Xiao Mei of the Research Unit of the Department of Otorhinolaryngology at the University of Miami, USA, for their invaluable training in mutation detection
- Dr Daniels and Mrs Daniels for all their support
- The staff and students of the Department of Speech Pathology and Audiology, University of the Witwatersrand, Johannesburg, South Africa for the assistance with the audiological testing of the subjects
- Ronel Kilian and Philemon Ratshilumela for the audiological testing of the subjects
- The staff and students at the molecular laboratory of the NHLS, University of the Witwatersrand, Johannesburg, South Africa, for the assistance with DNA extraction and processing of samples. A special thanks to Silke Arndt, Fahmida Essop, Robyn Kerr, Tony Lane and Angela Turner
- Jerry Sigudla, a dedicated research assistant who painstakingly worked to track and compile data
- Sam Ntuli for the assistance with the statistical analysis
- The Mellon Foundation for partially funding this PhD
- The Medical Research Council, South Africa for partially funding this project; and
- The Department of Health and Social Welfare, Limpopo Province, for facilitating my study leave and offering financial support for the attachment to the University of Miami.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>II</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>III</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>IV</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>VI</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XIV</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XVI</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XXI</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>1.1 General Introduction</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Genes and Populations</td>
<td>11</td>
</tr>
<tr>
<td>1.3 The Limpopo Province</td>
<td>14</td>
</tr>
<tr>
<td>1.3.1 The Land.</td>
<td>14</td>
</tr>
<tr>
<td>1.3.2 Population characteristics</td>
<td>20</td>
</tr>
<tr>
<td>1.3.3 Employment</td>
<td>21</td>
</tr>
<tr>
<td>1.3.4 Health profile of the people in the Limpopo Province</td>
<td>21</td>
</tr>
<tr>
<td>1.3.5 Access to health care in the Limpopo Province</td>
<td>23</td>
</tr>
<tr>
<td>1.4 The People, their Cultures and Practices</td>
<td>28</td>
</tr>
<tr>
<td>1.4.1 The Venda people and politics</td>
<td>28</td>
</tr>
<tr>
<td>1.4.1.1 Betrothal and marriage amongst the Bavhenda</td>
<td>30</td>
</tr>
<tr>
<td>1.4.1.2 Attitudes towards disability amongst the Venda</td>
<td>31</td>
</tr>
<tr>
<td>1.4.1.3 Ear disease and traditional healing amongst the Venda</td>
<td>31</td>
</tr>
<tr>
<td>1.4.2 The Shangaan (Tsonga) people and politics</td>
<td>31</td>
</tr>
</tbody>
</table>
1.4.2.1 Betrothal and marriage among the Shangaan 32
1.4.3 The Pedi people and politics 32
1.4.3.1 Betrothal and marriage among the Pedi 34
1.5 The Rationale for this Study 36

CHAPTER 2: LITERATURE REVIEW AND BACKGROUND INFORMATION I

2.1 Overview of Genetics of Hearing Loss 39
 2.1.1 Disease Inheritance 39
 2.1.2 Modes of Inheritance 40
 2.1.3 Research into Genes for Hearing Loss 43
2.2 Epidemiological Perspectives of Hearing Loss 45
 2.2.1 General Considerations in the Aetiology of Hearing Loss 45
 2.2.2 Epidemiological Models of Hearing Research. 47
 2.2.3 Epidemiological models for SNHL 53
 2.2.4 Epidemiology of Hearing Loss in Africa 55
 2.2.5 Epidemiological Studies on Genetic Hearing Loss 60
2.3 The Ear in Genetic Hearing Deafness 63
 2.3.1 Development of The Ear 63
 2.3.2 Overview of the Anatomy of the Mature Inner Ear 66
 2.3.3 Gap Junctional Systems of the Human Ear 68
 2.3.4 Major Ear Defects in Hereditary Hearing Loss 69
 2.3.5 Overview of the Physiology of Hearing 70

CHAPTER 3: LITERATURE REVIEW AND BACKGROUND INFORMATION II

3.1 History of Research in Genetic Deafness 73
 3.1.1 History of the Genetics of Hearing Loss 73
 3.1.2 Clinical Phenotypes of Genetic Deafness 74
3.1.3 Histopathologic Phenotypes of Genetic Deafness 76
3.1.4 Molecular Phenotypes in Syndromic Genetic Disease 79
3.1.5 The Human Genome Project 80
3.1.6 Research using the mouse as a model for human deafness 82

3.2 Gene Localization and Auditory Research 86
3.2.1 Genes implicated in Hearing Loss 86
3.2.2 General functional classification of deafness genes 87
 3.2.2.1 Genes controlling hair cell structure 88
 3.2.2.2 Extracellular matrix genes 88
 3.2.2.3 Genes controlling ion homeostasis 89
 3.2.2.4 Genes controlling transcription factors 89
 3.2.2.5 Miscellaneous genes 90
3.2.3 Overview of Connexins (Cx) and the Gap Junctional Systems of the Ear 91
3.2.4 Gap junction Gene Variants and Hearing Loss 94
3.2.5 GJB2 Mutations and Hearing Loss: Phenotype-Genotype Relationship 94
3.2.6 GJB2 Mutations and Type of Hearing Loss 95
3.2.7 Waardenburg syndrome 96
 3.2.7.1 Clinical features of Waardenburg Syndrome 97
 3.2.7.2 The Clinical Classification of Waardenburg Syndrome 100
 3.2.7.3 Variable penetrance of Waardenburg Syndrome 103
3.2.8 Mitochondrial genes 106
3.2.9 Audiological findings in non-syndromic genetic hearing loss 108
3.2.10 The Future Application of Proteomics and Genomics 109
3.3 Clinical Perspectives

3.3.1 Detection of Childhood Hearing Loss

3.3.1.1 Targeted Screening

3.3.1.2 Universal Neonatal Hearing Screening

3.3.2 Principles of Assessment

3.3.3. Audiological assessment

3.3.3.1 Immitance testing

3.3.3.2 Evoked otoacoustic emissions

3.3.3.3 Auditory brainstem response testing

3.3.3.4 Auditory steady-state response testing

3.3.3.5 Audiometry

3.3.3.6 Audioprophiles

3.3.3.7 Description of hearing loss

3.3.4 Assessment and Investigations

3.3.4.1 History

3.3.4.2 Clinical examination

3.3.4.3 Ophthalmology

3.3.4.4 Serology

3.3.4.5 Haematology and Biochemistry

3.3.4.6 Thyroid tests

3.3.4.7 Immunology

3.3.4.8 Metabolic screen

3.3.4.9 Urinalysis

3.3.4.10 Electrocardiography

3.3.4.11 Radiology
3.3.4.12 Audiology 141
3.3.4.13 Vestibular investigations 141
3.3.4.14 Clinical photographs 142
3.3.4.15 Genetic testing 142
3.3.4.16 Referral to geneticist 145
3.3.5 Aetiological Diagnosis 148
3.3.6 Intervention for the hearing impaired Child 149

CHAPTER 4: METHODOLOGY

4.1 Problem Statement, Research Question and Purpose of the Study 152
4.2 Aim and Objectives 153
4.3 Study Design 154
 4.3.1 Reference Population 157
 4.3.2 Setting (Schools for the Deaf) 158
 4.3.3 Study Population 159
 4.3.4 Inclusion Criteria 160
 4.3.5 Exclusion Criteria 160
 4.3.6 Limitations of the Study 161
 4.3.6.1 Language 161
 4.3.6.2 Sample Size 161
 4.3.6.3 The Use of Questionnaires 162
 4.3.6.4 Attrition 163
 4.3.6.5 Pedigrees and family testing 163
 4.3.6.6 Unavailability of Investigative Facilities 163
 4.3.7 Ethical Considerations 163
 4.3.8 Ethics Approval 164

X
4.4 Methods and Procedures

4.4.1 Equipment

4.4.2 Audiological Evaluation

4.4.3 Procedures

4.4.3.1 Phase 1

4.4.3.2 Phase 2a

4.4.3.3 Phase 2b

4.5 Methods used for Mutation Detection

4.5.1 Specimen Collection

4.5.2 DNA Extraction

4.5.3 Mutation Detection

4.6 Data analysis

4.6.1 Mapping techniques used for epidemiological analysis

4.6.2 Statistical Analysis

4.6.3 The Null Hypothesis (H0)

CHAPTER 5: RESULTS

5.1 Demographic Information of Subjects

5.1.1 Phase I

5.1.2 Phase 2

5.2 Geographical Distribution of Hearing Loss

5.2.1 Phase I

5.2.2 Phase 2

5.3 Type and Degree of Hearing Impairment

5.3.1 Tympanometry and Transient otoacoustic emissions

5.3.2 Audiometry
5.4 Aetiological Investigation of Hearing Disorders

5.4.1 Family History of Hearing Loss Among the Subjects

5.4.2 Consanguinity Among Parents

5.4.3 Urinalysis Results

5.4.4 Reported Pregnancy and Perinatal history

5.4.5 Reported Medical Conditions Among the Subjects

5.5 Mutation Detection

5.5.1 GJB2

5.5.2 Waardenburg Syndrome

5.5.3 Mitochondrial Mutations

5.6 Clinical signs in Hearing Loss

5.6.1 Eye Findings Among the Subjects

5.6.2 Skeletal Findings Among the Subjects

5.6.3 Ear, Nose and Throat Findings Among the Subjects

5.6.4 Other Systemic Findings Among the Subjects

5.7 Tests of association and Binary logistic regression analysis

5.7.1 Calculation of crude odds ratio

5.7.2 Interpretation of the crude odds ratio

5.7.3 Assessment of the fitted logistic regression model

5.7.4 Interpretation of the odds ratio for family history

5.7.5 The Hosmer-Lemeshow goodness-of-fit test

5.7.6 Magnitude of area under ROC curve

5.7.7 Plot of sensitivity/specificity vs probability cut-off point
CHAPTER 6: DISCUSSION, CONCLUSION AND RECOMMENDATIONS

6.1 Discussion 238

6.1.1 Geographical Distribution of Hearing Loss in Limpopo 238

6.1.2 Accounting for Bias in this Study 243

6.1.2.1 Bias due to migratory labour practice 243

6.1.2.2 Bias due to non-random admission into schools 244

6.1.2.3 Bias due to proximity to the schools 244

6.1.2.4 Bias due to varying population density within the province 244

6.1.3 Type and Degree of Hearing Loss in Limpopo 245

6.1.4 Aetiology of Learing Loss in Limpopo 248

6.1.5 Influence of Consanguinity on Genetic Hearing Loss in Limpopo 255

6.1.6 Mode of Inheritance of Hearing Loss in the Study Population 258

6.1.7 Significance of the Candidate Genes for Deafness in the Limpopo 259

6.1.7.1 GJB2 (Connexin26) 260

6.1.7.2 Common Mitochondrial Mutations 263

6.1.7.3 Waardenburg syndrome 264

6.1.8 Nosological Entities of Hearing Loss in Limpopo 264

6.2 Conclusions 268

6.2.1 High risk areas for hearing loss in the Limpopo province 268

6.2.2 Clinical Perspectives 269

6.2.3 Genetic Perspectives 269

6.2.4 Policy Issues 271

6.3 Recommendations 277

7.1 References 281

7.2 Appendices 304
LIST OF ABBREVIATIONS

HL Hearing Level
StatsSA Statistics South Africa
DNA Deoxyribose nucleic acid
EcoG Electrochocleography
GP general practioner
OME Otitis media with effusion
PTA Pure tone average
ECG Electrocardiogram
MRI Magnetic resonance imaging
TORCH Toxoplasmosis, Rubella, Cytomegalovirus, Herpes
CSF Cerebral spinal fluid
CT Computerised tomography
CME Continued medical education
SEN Special education needs
ENT Ear Nose and Throat
SNHL Sensorineural hearing loss
TEOAEs Transient evoked otoacoustic emissions
ART Acoustic reflex threshold
PMHC Pietersburg Mankweng Hospital Complex
ENG Electronystagmography
NHLS National Health Laboratory Services
PCR Polymerized chain reaction
WS Waardenburg syndrome
ARNSHL Autosomal recessive nonsyndromic hearing loss
NSSNHL Nonsyndromic sensorineural hearing loss
NSAHL Nonsyndromic autosomal hearing loss
Cx26 Connexin 26
DOH Department of Health
WHO World Health Organisation
BP Base Pair(s)
EDHI early detection of hearing impairment
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table number</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>Table 1.1: Population of Limpopo Province by home language and district</td>
<td>20</td>
</tr>
<tr>
<td>Table 1.2: Limpopo Province population in five – year age groups according to race</td>
<td>20</td>
</tr>
<tr>
<td>Table 1.3: Disabled population by district in the Limpopo Province</td>
<td>21</td>
</tr>
<tr>
<td>Table 1.4: Public sector human resource data, Limpopo Province</td>
<td>27</td>
</tr>
<tr>
<td>Table 1.5: Home area of students at Tshilidzini School, August 1997</td>
<td>36</td>
</tr>
<tr>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td>Table 2.1: Features of some epidemiological methods in use</td>
<td>49</td>
</tr>
<tr>
<td>Table 2.2: The domains and measures of auditory dysfunction (adapted from Davis et al 1983)</td>
<td>52</td>
</tr>
<tr>
<td>Table 2.3: Prevalence of hearing loss in childhood (after Davidson et al 1989)</td>
<td>56</td>
</tr>
<tr>
<td>Table 2.4: Depicting time of appearance of ear features</td>
<td>64</td>
</tr>
<tr>
<td>Chapter 3</td>
<td></td>
</tr>
<tr>
<td>Table 3.1: Gene expression in the human ear</td>
<td>93-94</td>
</tr>
<tr>
<td>Table 3.2: Classes and genes identified for Waardenburg syndrome</td>
<td>101</td>
</tr>
<tr>
<td>Table 3.3: Phenotypic penetrance of selected Waardenburg syndrome traits</td>
<td>104</td>
</tr>
<tr>
<td>Table 3.4: Penetrance of pigmentary abnormalities WS patients with and without hearing loss in relation to syndrome type</td>
<td>104</td>
</tr>
<tr>
<td>Table 3.5: The degree of hearing loss and the frequency of pigmentary abnormalities in relation to syndrome type</td>
<td>105</td>
</tr>
<tr>
<td>Table 3.6a: Audiological manifestation of the autosomal dominant nonsyndromic hearing impairment genes</td>
<td>109</td>
</tr>
<tr>
<td>Table 3.6b: Audiological manifestation of the autosomal recessive nonsyndromic hearing impairment genes</td>
<td>110</td>
</tr>
</tbody>
</table>
Table 3.6c: Audiological manifestation of the X-linked nonsyndromic hearing impairment genes 111
Table 3.6d: Audiological manifestation of the mitochondrial nonsyndromic hearing impairment genes 111
Table 3.7: Evaluation strategy of hearing loss 135

CHAPTER 5
Table 5.1: Demographic information of subjects, Phase 1 183
Table 5.2: Age of detection, by parents, of hearing loss among subjects, Phase 1 188
Table 5.3: Demographic information of subjects, Phase 2 189
Table 5.4: Age of detection, by parents, of hearing loss among subjects, Phase 1 189
Table 5.5: Geographical distribution of hearing loss according to district, Limpopo Province, both schools Phase 1 191
Table 5.6: Geographical distribution of hearing loss according to district, Limpopo Province, both schools Phase 2 192
Table 5.7: Comparison of municipal wards considering high risk areas for hearing loss 193
Table 5.8: Municipalities with highest geographical distribution of hearing loss, both schools Phase I 193
Table 5.9: Municipalities showing the highest geographical distribution of hearing loss according to school, Phase I 194
Table 5.10: The geographical distribution of hearing loss according to Municipalities municipalities normalized to African population, both schools: Phase 2 194
Table 5.11: Tympanometric results 199
Table 5.12: Cross tabulation of Tympanometric results between ears 199
Table 5.13: Abnormalities for ear with abnormal tympanogram 200
Table 5.14: Severity of hearing impairment, best ear average 0.5-4kHz, Tshilidzini, Phase 2 201
Table 5.15: Audiogram configuration among subjects, Tshilidzini, Phase 2
Table 5.16: Asymmetry of hearing impairment among subjects, Tshilidzini, Phase 2
Table 5.17: Severity of hearing impairment, best ear average 0.5-4kHz, Bosele, Phase 2
Table 5.18: Audiogram configuration among subjects, Bosele, Phase 2
Table 5.19: Asymmetry of hearing impairment among subjects, Bosele, Phase 2
Table 5.20: Severity of hearing impairment, best ear average 0.5-4kHz, both schools, Phase 2
Table 5.21: Audiogram configuration among subjects, both schools, Phase 2
Table 5.22: Asymmetry of Hearing Impairment among subjects, both schools, Phase 2
Table 5.23: Family History of hearing loss among subjects, Phase 2
Table 5.24: Distribution of family history of hearing loss according to municipality, Limpopo Province, both schools, normalized to African Population, Phase 2
Table 5.25: Cross tabulation of consanguinity of parents by municipality, Bosele School, Phase 2
Table 5.26: Cross tabulation of consanguinity of parents by municipality, Tshilidzini School, Phase 2
Table 5.27: Cross tabulation of consanguinity of parents by municipality, Bosele School, Phase 2
Table 5.28: Cross tabulation of consanguinity of parents by municipality, Tshilidzini School, Phase 2
Table 5.29: History of consanguinity of parents by school, Phase 2
Table 5.30: Cross tabulation of consanguinity of parents by family history of hearing loss, Phase 2
Table 5.31: Cross tabulation of language group by consanguinity of parent
Table 5.32: Results of urinalysis among participants
Table 5.33: Cross tabulation of consanguinity of parents by relative with hearing loss
Table 5.34: Cross tabulation of consanguinity of parents by relative with hearing loss

Table 5.35: History of maternal problems during pregnancy and labour

Table 5.36: History of other medical conditions among participants

Table 5.37: GJB2 variations observed in a deaf population from the Limpopo Province of South Africa.

Table 5.38: Cross tabulation of GJB2 variations and language group in a South African control population (n=74).

Table 5.39: GJB2 (Cx26) variations: genotype versus allele frequency as observed in a South African population.

Table 5.40: GJB2 (Cx26) variations tested for Hardy-Weinberg equilibrium:

Position g.3318-34

Table 5.41: GJB2 (Cx26) variations tested for Hardy-Weinberg equilibrium:

Position g.3318-15

Table 5.42: Cross tabulation of consanguinity of parents by base variation:

Position g.3318-34

Table 5.43: Cross tabulation of family history of hearing loss by base variation:

Position g.3318-34

Table 5.44: Cross tabulation of ethnic group by base variation: Position g.3318-34

Table 5.45: Levels of significance of results following cross tabulation of participants’ age at detection with other variables

Table 5.46: Levels of significance of results following cross tabulation of risk factors for hearing loss with other variables.

Table 5.47: Levels of significance of results following cross tabulation of consanguinity of parents with other variables.

Table 5.48: Levels of significance of results following cross tabulation of family history of hearing loss with other variables.

Table 5.49: Levels of significance of results following cross tabulation of degree of first affected relative with other variables.
Table 5.50: Levels of significance of results following cross tabulation of degree of second affected relative with other variables.

Table 5.51: Levels of significance of results following cross tabulation of language group with other variables.

Table 5.52: Levels of significance of results following cross tabulation of GJB2 variation C>T at position -34 with other variables.

Table 5.53: Levels of significance of results following cross tabulation of GJB2 variation C>T at position -15 with other variables.

Table 5.54: Levels of significance of results following cross tabulation of participants’ home address with other variables.

Table 5.55 Results of binary logistic regression analysis

Table 5.56 Logistic model for consanguinity of parents

Table 5.57 Hosmer-Lemeshow goodness-of-fit test
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure number</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>Fig. 1.1: Aetiological classification of genetic hearing loss</td>
<td>7</td>
</tr>
<tr>
<td>Fig. 1.2: Location map of the study areas within the map of South Africa</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 1.3: Map of the Limpopo Province showing the districts and municipal boundaries</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 1.4: The Baobab tree, the Icon of Limpopo Province</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 1.5: The Land of the legends – Lake Fundudzi, Venda</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 1.6: The arid landscape of No-Body and Moria regions, the headquarters of the ZCC church whose star logo seen in the background is etched in the mountainside.</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 1.7: A group following a climbing trail in the mountains in Agatha</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 1.8: The Tzaneen Dam with the Drakensberg mountain range in the background</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 1.9: Polishing the homestead floor with fresh cow dung in a Giyani village</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 1.10: Sharing a meal, the typical homestead arrangement seen in the background</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 1.11: A Shangaan (Tsonga) girl greeting visitors to the homestead in a Giyani village</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 1.12: One of the reception areas inside the Pietersburg Provincial Hospital</td>
<td>25</td>
</tr>
<tr>
<td>Fig. 1.13: Ear, nose and throat outpatient clinic at the Pietersburg Provincial Hospital</td>
<td>26</td>
</tr>
<tr>
<td>Fig. 1.14: A Venda woman in full traditional attire</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 1.15: Shangaan women dance group</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 1.16: Pedi women’s dance group from Mashashane in traditional wear</td>
<td>35</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td></td>
</tr>
<tr>
<td>Fig. 2.1: Pedigree showing autosomal dominant inheritance</td>
<td>41</td>
</tr>
<tr>
<td>Fig. 2.2: Pedigree showing autosomal recessive inheritance</td>
<td>41</td>
</tr>
<tr>
<td>Fig. 2.3: Pedigree showing dominant X-linked inheritance</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 2.4: Pedigree showing recessive X-linked inheritance</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 2.5: Pedigree showing mitochondrial inheritance</td>
<td>43</td>
</tr>
</tbody>
</table>
Fig. 2.6: The relationship between genetic and environmental factors in causation of hearing loss as a function of age (adapted from Davis et al 1983a)
Fig. 2.7: Epidemiological model of hearing function
Fig. 2.8: Schematic drawing of inner ear development in mammals
(after Varela-Nieto et al (2004)).
Fig. 2.9: Diagram showing the structure and gene expression of the human ear

CHAPTER 3
Fig. 3.1a: The progress of deafness gene discovery from 1994-2001
Fig. 3.1b: Total number of deafness gene identified annually 1986-2007
Fig. 3.2: Aetiological surveys among 3,064 children in Southern Africa
Fig. 3.3: Realistic relationship of need, demand and supply in the health services
Fig. 3.4: The ideal relationship of need, demand and supply in the ideal health service
Fig. 3.5: Medical assessment of the hearing impaired child
Fig. 3.6: The areas addressed in a hearing impaired child’s management protocol
Fig. 3.7: Components of a paediatric audiological medicine service

CHAPTER 4
Fig. 4.1: Parents and Teachers at Prayer in the hall – Bosele School
Fig. 4.2: Translator (Nurse) explaining the questionnaire to the parents – Bosele School
Fig. 4.3: Parents waiting for assistance in completing the questionnaire – Bosele School
Fig. 4.4: Subjects waiting their turn at Bosele School
Fig. 4.5: Doctor completing a subject’s medical examination form - Bosele School
Fig. 4.6: Doctor examines subject’s ear at Bosele School
Fig. 4.7: TEOAE (transient otoacoustic emission) station - Bosele School
Fig. 4.8: Sound-proofed testing room, Tshilidzini School

CHAPTER 5
Fig. 5.1a: Box and Whisker plot showing the ages (in years) of the participants, Phase 1, both schools

XXII
Fig. 5.1b: Box and Whisker plot showing the ages (in years) of the participants, Phase 1, Tshilidzini School

Fig. 5.1c: Box and Whisker plot showing the ages (in years) of the participants, Phase 1, Bosele School

Fig. 5.2a: Box and Whisker plot showing the distance of the participants homes from school in kms, Phase 1, both schools

Fig. 5.2b: Box and Whisker plot showing the distance of the participants homes from school in kms, Phase 1, Bosele School

Fig. 5.2c: Box and Whisker plot showing the distance of the participants homes from school in kms, Phase 1, Tshilidzini School

Fig. 5.3: Box and Whisker plot showing the ages (in years) of the participants, Phase 2, both schools

Fig. 5.4: Geographical distribution of hearing loss according to municipality, Limpopo Province, both schools Phase 1

Fig. 5.5: Geographical distribution of hearing loss according to municipality, Limpopo Province, both schools Phase 2

Fig. 5.6: Spatial distribution of Hearing Loss according to municipality, Limpopo Province, Phase 1

Fig. 5.7: Spatial distribution of Hearing Loss according to municipality, Limpopo Province, normalized to African Population, Phase 2

Fig. 5.8: Spatial distribution of hearing loss in the Limpopo Province according to language group, Phase 1

Fig. 5.9: Spatial distribution of hearing loss in the Limpopo Province according to language group, Phase 1

Fig. 5.10: A Spatial distribution of subjects according to family history of Hearing loss per local municipality, Limpopo province, Phase 1

Fig. 5.11: Spatial distribution of subjects without a family history of hearing loss per local municipality, Limpopo Province, Phase 2

XXIII
Fig. 5.12: Spatial distribution of subjects with a family history of hearing loss per local municipality, Limpopo Province, Phase 2

Fig. 5.13: Spatial distribution of subjects with a family history of hearing loss per local municipality, Limpopo Province, Normalized to African population, Phase 2

Fig. 5.14: Spatial distribution of subjects with a history of consanguinity among parents, per local municipality, Limpopo Province, Phase 2

Fig. 5.15: Spatial distribution of subjects without a history of consanguinity among parents, per local municipality, Limpopo Province, Phase 2

Fig. 5.16: Spatial distribution of subjects with unknown history of consanguinity per local municipality, Limpopo Province, Phase 2

Fig. 5.17: Gel electrophoresis showing size of PCR fragment (GJB2)

Fig. 5.18: Gel electrophoresis (GJB2) following Fermentas SsiI enzyme digest (cutting at position g.3318-15)

Fig. 5.19: Gel electrophoresis (GJB2) following BsmI enzyme digest (cutting at position g.3318-34)

Fig. 5.20: Electropherograms showing GJB2 variation T A at position -6 C T variation at position -15

Fig. 5.21: Electropherogram showing GJB2 variant at GJB2 position -34

Figure 5.22a: Clinical features Waardenburg syndrome Type I.

Figure 5.22b: Patchy depigmentation of the skin in participant with WS type I

Figure 5.23: The ROC (receiver operating characteristic) curve

Figure 5.24: Plot of sensitivity/Specificity versus probability cut-off point