Characterization of the elemental deposits in fossils from the Cradle of Humankind in South Africa and modern bones from the same geological area

Godwin Nhauro

A dissertation submitted to the faculty of science, University of Witwatersrand, in fulfilment of the requirements for the degree of Master of Science.

Johannesburg 2010
Declaration

I declare that this dissertation is my own, unaided work. It is being submitted for the degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

(Signature of Candidate)

____________________________ Day of ___________________________2010
ABSTRACT

Bones are complex, composite tissues consisting of inorganic calcium phosphate crystallites precipitated in an organized organic collagen matrix. However, diagenetic processes alter the original chemical composition and structure of the mineral and the organic components of bones during the burial period through leaching, decomposition and exposure to ground water. These activities serve to enrich, deplete and/or substitute the original elements in the bone through partial or complete dissolution, erosion, precipitation, recrystallization, ion uptake by sorption and diffusion, hydrolysis, crystal growth, and repolymerization processes. Thus exogenous elements from groundwater and soil may become incorporated into bone structure in a number of ways, and may reside in pores, voids or microcracks in the bone matrix. They can also form complexes with the organic component and adsorb onto the surface of hydroxylapatite matrix via ionic exchange.

Because of all these processes, the state of bone preservation varies greatly and depends on the physical and chemical characteristics of the burial environment, such as ground water and sediment composition, soil hydrology and pH, redox potential and temperature, soil solution fluoride and carbonate concentration, mechanical pressure, microbial activity, duration of interment and particle transport.

The study of the diagenesis process and the correlation of the morphological, organic and inorganic changes in varying geochemical environments, i.e. attaining adequate reliable data for modelling (predictive) purposes remains one of the challenges in the study of the diagenesis process.

Therefore, a study to characterize the morphological, mineralogical, and chemical features of fossils from Gladysvale Cave, South Africa, was done to investigate the mechanisms by which bone chemical compositions and mineralogical alterations occur during the burial period.
To achieve this, several analytical techniques were employed for the analysis of the burial soils and for the characterization of both modern and fossil bones. The following methods were employed: scanning electron microscopy (SEM) for morphological studies; X-Ray Fluorescence (XRF) mapping for the identification of elemental distribution within the bone apatite matrix; Powder X-Ray Diffraction (PXRD) for mineral determination; Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP AES) for elemental determination; bone porosity and density measurements; Carbon, Hydrogen, Nitrogen and Sulphur (CHNS) for detection of light elements, particularly nitrogen, whose concentration is correlated to the collagen content of the bone; and the redox and pH measurements of the soil in which the fossil bones were buried. These analytical techniques were used to determine qualitatively and quantitatively the sample’s post-mortem elemental enrichment and/or leaching, even at trace level, and examine the elemental distribution across bone transverse sections.

Analysis of the soil where fossil bones were buried indicated relatively high amounts of Al, Fe, Mn, Ba, K, Si, V and Ti than in both the fossil and modern bones. Elemental enrichment was found to be more pronounced in fossil bones showing an increase in Fe, V, Ba, Cr, Zn, Al, Cu, Ti and Mn relative to modern bones due to the incorporation of authigenic minerals from the burial environment during the fossilisation process. This pattern also confirmed how porosity affects post-mortem elemental uptake and loss, thus porous tissue of fossil bones functions as a pathway of least resistance for postmortem elemental exchange with the depositional environment. Clay particle inclusions account for the high levels of Al in fossil bones relative to modern bones.

Numerous minerals were identified in all fossil specimens with carbonates, sulphides and phosphates being the most abundant. In contrast, few minerals were identified in modern specimens, with hydroxylapatite being present in all samples. Though all modern specimens were microscopically well-preserved, they were found to be poorly crystalline. The amorphous nature of these modern bones is correlated with high amounts of organic matter. In contrast, fossil bones are crystalline and this increase in crystallinity is
correlated or attributed to loss of organic matter, especially the carbon contained in the carbonate hydroxylapatite mineral.

The morphological and physical (i.e. porosity, density and water absorption measurements) studies of these bones at both macro- and microscopic levels revealed that all the fossil specimens had suffered severe microbial attack due to their high porosity relative to modern bones. Using the nitrogen and carbon contents as proxies for bone preservation, the values are much lower in fossil bones relative to modern bones. Modern bones have retained much of the original fragments of original bio-molecules, for instance, collagen (as revealed by high %N content) as compared to fossil bones, which have lost more than 90% of their original bio-molecules. The well preserved specimens i.e. modern bones have a high collagen content, high bulk density and low porosity values. In contrast to this, degraded fossil bones displayed a low collagen content, low bulk density, large increases in porosity. This is an indication of poor preservation state of fossil bones relative to modern bones.

Redox and pH studies revealed that the fossil bones were buried on the surface under highly oxidising conditions. Such an oxygen-rich environment during dry periods is likely to have resulted in a rapid degradation of the bone’s organic matter and also favoured the activity of micro-organisms, which is visible on scanning electron microscopy results.

Therefore fossil specimens show marked and complex alterations relative to their modern counterparts. These chemical and preservation disparities between the modern and fossil bones is attributed to significant diagenetic alteration, through the introduction of exogenous material to the existing matrix, and chemical alteration of the original bone matrix during the fossilisation processes.

Black-coloured fossil bones are also a common sight in most South Africa caves. Questions normally arise as to whether changes in bone colour were a result of burning or surface coating from minerals. In the event that the bones were burnt, then a challenging
question would be regarding the cause of the fire, i.e. whether natural or human-controlled fire. In this study, a relatively simple, non-destructive chemical procedure is applied to distinguish between burned bones and mineral-coated bones by removing the oxides from soil/mineral contaminated fossil bones, followed by characterisation of elemental composition by CHNS and ICP-AES. Any coated versus burnt fossil bones disparities were ascribed to burning effects. The methods mentioned above were used for differentiating between black fossil bones that are burned and unstained; burned and stained; and stained but not burned. The results following the cleaning process have shown that the majority of the bones were indeed burned, of which a few were burned and stained. These observations were based on comparison of the cleaning results of burnt bones against coated bones. The self-ignition temperatures of organic matter found in the vicinity of burnt bones were experimentally obtained and were assumed to have caused a spontaneous ignition of the organic matter (bat guano), resulting in burning of the bones. Results of the CHNS analysis have showed insignificant amounts of free carbon in unburned bones. The quantity of char is directly correlated to the observed blackening. Blackened bones (those which were burnt between 300°C and 400°C) contained the most char. A relatively low percentage of free carbon was found in greyish-brown bones (heated at 500°C to 600°C) due to oxidation of the carbon in the organic molecule to carbon dioxide. Little char was observed in light-coloured specimens (those heated at 700°C-800°C). The bone is chalky-white and extremely light and brittle i.e. almost complete combustion has occurred. From both CHNS and ICP-AES analysis, the burnt fossil bone contained less amounts of elements compared to their coated counterparts simply due to major alterations in bone mineralogy which occurred when bones were heated above 700°C.
Dedication

To my parents, Mr and Mrs T. Nhauro and the whole family
Acknowledgements

My heart-felt appreciation and sincere gratitude goes to my principal supervisor, Prof. Ewa M. Cukrowska, for her guidance, support, sound advice, boundless patience, enthusiasm, inspiration and great effort to explain things clearly throughout this work. To Dr. L. Backwell, my co-supervisor, I owe you a debt of gratitude for your valuable assistance, support, guidance and informative discussions from the beginning of this work, through field work up to the final write up.

Special thanks to the following organizations for their financial support during my studies; The National Research Foundation (NRF) Grantholder Bursary through Prof Ewa M. Cukrowska, University of the Witwatersrand Postgraduate Merit Award and Paleontological Scientific Trust (PAST) through Dr. L. Backwell.

I would like to extend my gratitude to the following individuals for having been of help during my research:
My parents, brothers and sisters for their unfailing love, support and encouragement.
Prof D. Billing, for his help with powder X-ray diffraction. Mr Mvuyisi Ngqola and Mr T. Mabaso for the outstanding courtesy and promptness in technical assistance.
My fellow colleagues and members of department in the Environmental Analytical Chemistry research Group (2008-2009), who contributed to my understanding of this vast field.

It is impossible to mention you all, and I apologise to those I have inadvertently left out.

Finally, I would like to thank The Almighty God for raising me up to more than I can be, giving me strength and wisdom to put this piece of work together. I just want to say “I love you Lord.”
TABLE OF CONTENTS

CONTENTS Page

DECLARATION ... ii
ABSTRACT .. iii
DEDICATION ... vii
ACKNOWLEDGEMENTS .. viii
TABLE OF CONTENTS ... ix
LIST OF FIGURES .. xii
LIST OF TABLES ... xv
LIST OF ABBREVIATIONS ... xvi

CHAPTER ONE – INTRODUCTION .. 1
1.1 General background ... 1
1.2 Cave formation ... 2
1.3 Diagenesis ... 7
1.4 Fossilisation .. 12
1.5 Fossil Formation ... 14
1.6 The chemical composition of the mineral phase of calcified tissues – bone 20
1.7 The crystal structure of hydroxylapatite .. 23
1.8 Possible ionic substitutions in the crystal .. 26

CHAPTER TWO – LITERATURE REVIEW ... 28
2.1 Ionic exchange between soil solution and bone ... 28
2.2 Relating soil chemistry data to post-mortem diagenesis in bone .. 29
2.3 Soil and sediment processes causing pH changes ... 32
2.4 Geochemical conditions and Mineral occurrence in fossil bones 33
2.5 Chemistry of different forms of minerals commonly found in fossil bones in varying environmental conditions .. 49
2.6 Redox chemistry of Mn and Fe: the most common bone staining/coating minerals in the geochemical environment ... 45
2.7 Effects of diagenesis on the chemical composition of bones .. 48
2.8 Burned bones versus mineral coated bones environment ... 51
2.8.1 Magnetic and archaeomagnetic dating ... 54
CHAPTER THREE – OBJECTIVES OF THE STUDY

3.1. Key questions
3.2. Significance of research
3.3. Outline of methods

CHAPTER FOUR – AN OVERVIEW OF ANALYTICAL METHODS USED IN BONE CHARACTERIZATION

4.1 Various analytical methods used in bone characterization
4.2 Ion beam techniques
4.3 Proton Induced X-ray Emission (PIXE)
4.4 Electron diffraction pattern analysis (EDPA)
4.5 UV/VIS spectroscopy
4.6 Pyrolysis gas chromatography–mass spectrometry (PY-GC-MS)
4.7 X-ray photoelectric spectroscopy (XPS)/Electron Spectroscopy for Chemical Analysis (ESCA)
4.8 Infrared Spectroscopy
4.9 Electron paramagnetic resonance (EPR)
4.10 Total reflection X-ray Fluorescence (TXRF)
4.11 Analyses of chemical extracts of fossil material
4.12 Time-of-Flight secondary ion mass spectrometry (TOF-SIMS)
4.13 Inductively coupled plasma atomic emission spectrometry (ICP AES)
4.14 Scanning Electron Microscope (SEM)
4.15 Powder X-Ray Diffraction (PXRD)
4.16 X-Ray Fluorescence (XRF) spectrometry
4.17 Carbon, Hydrogen, Nitrogen and Sulphur (CHNS) elemental analyzer

CHAPTER FIVE – SAMPLE PREPARATION AND ANALYSES

5.1 Sampling site
5.2 Burned bones
5.3 ICP-AES: Fossil bone, burnt bone, modern bone and soil elemental analysis
5.3.1 Reagents/Chemicals used
5.3.2 Cleaning of various apparatus used
5.3.3 Standard preparation and analysis
5.3.4 Equipment and Apparatus .. 100
5.3.5 Experimental procedure for soil sample preparation prior to Analysis .. 101
5.3.6 Bone sample preparation and analyses .. 103
5.3.7 ICP-AES Instrumentation .. 105
5.3.8 Burnt bones: Differentiating between burning and oxide staining 108
5.4 Morphological studies (high resolution analysis and imagery) using scanning electron microscopy (SEM) .. 110
5.5 Crystallographic characterization (mineralogical analysis) using Powder X-ray diffractometry (PXRD) .. 110
5.6 Bone porosity, density and water absorption .. 110
5.6.1 Apparatus .. 111
5.6.2 Procedure for determination of volume .. 111
5.6.3 Bone density .. 111
5.6.4 Procedure for determination of saturated density 112
5.6.5 Water absorption .. 112
5.7 Elemental analysis of carbon, hydrogen, and nitrogen composition in fossil, coated, burnt and modern bones by CHNS .. 113
5.8 XRF mapping .. 113
5.8.1 XRF mapping on the modern bone specimen 113
5.8.2 XRF mapping on fossil bone specimens .. 114

CHAPTER SIX – RESULTS AND DISCUSSION .. 116

6.1 ICP-AES .. 116
6.2 Morphological studies (high resolution analysis and imagery) using scanning electron microscopy (SEM) .. 122
6.3 Crystallographic characterization (mineralogical analysis) (PXRD) .. 128
6.4 Bone porosity, density and water absorption .. 151
6.4.1 Bone porosity .. 151
6.4.2 Bone density .. 153
6.4.3 Water absorption .. 154
6.5 Carbon, Hydrogen, Nitrogen (CHN) elemental analysis in fossil and modern bones .. 154
6.6 Redox, pH, X-ray microprobe, and XRF mapping results .. 160
6.6.1 Eh-pH .. 160
6.6.2 X-ray microprobe and synchrotron-based XRF mapping analysis surface elemental mapping of a fossil bone .. 163
6.6.3 XRF mapping on fossil and modern bone specimen .. 166
6.7 Burnt bones: Differentiating between burning and oxide staining 174
6.7.1 Elemental analysis of carbon, hydrogen, nitrogen and sulphur composition in burnt bones by CHNS .. 176
6.7.2 ICP-AES bone surface elemental analysis .. 177
6.7.3 Determination of self ignition temperature of organic materials
found together with the burnt bones…………………………………..177

CHAPTER SEVEN-CONCLUSION …………………………………………...182

REFERENCES ………………………………………………………………………………………………………..187
APPENDIX 1. ICP AES and XRF results for rock elemental analysis………. 187
APPENDIX 2 ICP AES results for modern bones, fossil bones and soil elemental analysis ……………………………………………………….214
APPENDIX 3. Photographs of features in the study area (Cradle of Humankind, Gauteng, S.A)…………………………………………………………...217
APPENDIX 4. Properties of individual acid (in an acid mixture) employed during sample digestion……………………………………………………219

List of Figures

Figure 1.1: Numerous stalactites (many soda straws) on the ceiling of the cave …………………………………………………………………………………… 3
Figure 1.2: Stages in dolomitic cave formation and latter infilling………… 6
Figure 1.3: The final stage of cave formation………………………………….7
Figure 1.4: Model of the taphonomic history of Paso Otero 1……………… 9
Figure 1.5: An overview of the successive stages in bone diagenesis……… 12
Figure 1.6: A lizard Fossil from Solnhofen Limestone Formation…………..15
Figure 1.7: Flow chart illustrating conditions necessary for fossil formation …………………………………………………………………………………17
Figure 1.8: Schematic model of structure and formation of hydroxylapatite in bone ………………………………………………………………… 22
Figure 1.9: Three dimensional structure of fluorapatite24
Figure 1.10: Three dimensional crystal structure of hydroxylapatite…….25
Figure 1.11: The processes controlling U (element) uptake in archaeological bone…………………………………………………………….. 27
Figure 2.1a, b, c, d, e and f: (a) Early diagenetic pyrite formation through sulphide precipitation in bone (b) radial microcracks on a longbone (c) Late diagenetic pyrite formation through pH-dependent precipitation (d) Hematite fillings formed by pH-dependent precipitation of ferrous hydroxide (e) Late diagenetic calcite formation in the porosities of trabecular bone (f) Late diagenetic silica filling of the porosities of trabecular bone….. 34
Figure 2.2a (a) BSE-image of a Lyme Regis thin section of a bone sample 38
and b: showing four authigenic minerals in voids and brecciated bone (b) BSE-image of an Isle of Wight thin section of a bone sample showing close interactions between precipitated minerals.

Figure 2.3: Adsorption of Mn(II) on γ-FeOOH as a function of pH. 10-3 M Fe(III) as γ-FeOOH, 0.7 M NaCl at 25°C 41

Figure 2.4: The solubility of Fe(III) minerals in seawater as a function of pH... 43

Figure 2.5a, b and c: Figure 2.5: (a). Stability diagram showing pe-pH range in soils with oxic and anoxic systems, (b). Stability field (pe-pH) diagram showing the soluble and insoluble Fe forms (c) pe – pH diagram with manganese .. 47

Figure 2.6: Typical processes occurring in the environment as well as fossil bone .. 48

Figure 4.1: Figure 4.1: Brief summary of the principle of PIXE Analysis... 67

Figure 4.2: Fourier transform infra-red spectrum of fossil rhinoceros enamel... 74

Figure 4.3: TXRF geometry with the angle of incidence less than the critical angle and the primary radiation penetrating into the sample below the critical angle of the sample 76

Figure 4.4: High-resolution positive-ion TOF-SIMS spectra obtained from demineralized dinosaur vessels............................... 79

Figure 4.5: Schematic diagram of ICP-AES showing all stages involved from sample introduction to detection 83

Figure 4.6: Diagramatic representation of the main components of SEM... 85

Figure 4.7: XRF process ... 90

Figure 5.1: Sampling map showing the location of various fossil deposit sites.. 93

Figure 5.2: Macrographs of cross section of a sample of both the fossil and modern bones ... 94

Figure 5.3: Category 1 black bones ... 96

Figure 5.4: Category 2 greyish-brown bones 97

Figure 5.5: Category 3 chalky-white bones 98

Figure 5.6: Category 4 Fe/Mn-oxide coated bone 99

Figure 5.7: ICP AES calibration for Pb, Sn, P, Zn, Cr, V, Fe and Al 107

Figure 5.8: ICP AES calibration for K, Cu, Mn, Ti and Na 107

Figure 5.9: ICP AES calibration for Mg, Ba, Li, Ca and Sr 108

Figure 6.1: Comparison of the elemental concentration in the modern bone, fossil bone and the surrounding soil 117

Figure 6.2: Scanning Electron Micrographs of fossil bones versus modern bones .. 126
Figure 6.3: Sample (Mb1) modern bone diffractogram before and after mineral loading. 130
Figure 6.4: Sample (Mb2) modern bone diffractogram before and after mineral loading. 131
Figure 6.5: Sample (Mb3) modern bone diffractogram before and after mineral loading 132
Figure 6.6: Sample (Mb4) modern bone diffractogram before and after mineral loading 133
Figure 6.7: Powder X-ray diffraction patterns of fossil bone sample (Fb1) before and after mineral loading 134
Figure 6.8: Powder X-ray diffraction pattern of fossil bone sample (Fb 2) before and after mineral loading 135
Figure 6.9: Powder X-ray diffraction patterns of fossil bone (FB 3) before and after mineral loading 136
Figure 6.10: Powder X-ray diffraction patterns of fossil bone (FB 4) before and after mineral loading 137
Figure 6.11: Powder X-ray diffraction patterns of rock (sample A) after mineral loading .. 138
Figure 6.12: Powder X-ray diffraction patterns of rock (sample B) after mineral loading .. 139
Figure 6.13: Powder X-ray diffraction patterns of rock (sample C) after mineral loading .. 140
Figure 6.14: Variation in porosity measurements done on modern bone versus fossil bone samples 152
Figure 6.15: Bone density results of modern bone versus fossil bone samples .. 153
Figure 6.16: Bone water absorption results of modern bone versus fossil bone samples 154
Figure 6.17: Variation in percentage nitrogen content measured in both the fossil and modern bones 155
Figure 6.18: Variation in percentage collagenous carbon content measured in both the fossil and modern bones 155
Figure 6.19: Variation in percentage hydrogen content measured in both the fossil and modern bones 156
Figure 6.20: Maps of the elemental distribution in the fossil bone from EPMA .. 163
Figure 6.21: Elemental mappings of the fragment of fossil bone made with synchrotron-based XRF 165
Figure 6.22: Optical image of the cross sectional area of a modern bone (MB3) .. 166
Figure 6.23: Elemental distribution XRF images for modern bone sample MB3 167
Figure 6.24: Optical image of the cross section of a fossil bone specimen................................. 168
Figure 6.25: XRF image for fossil bone sample (CD 21245)................................. 168
Figure 6.26: Optical image of the cross section of a manganese oxide coated fossil bone specimen ... 169
Figure 6.27: X-ray fluorescence image for the cross section of a fossil bone sample (CD 21231) ... 170
Figure 6.28: Bone cleaning results ... 175
Figure 6.29: Determination of self ignition temperature of organic materials found in the vicinity of burnt bones ... 179

List of tables

Table 1.1: Bulk composition of bone, dentine, and enamel 21
Table 1.2: Composition of major elements and the Ca/P ratio of the Bioapatites in three tissues ... 21
Table 2.1: The potential modes of occurrence and leach behaviour on the basis of SCE test results ... 44
Table 2.2: Range of Eh measurements of soil-water systems 46
Table 5.1: Microwave closed system conditions for soil digestion 103
Table 5.2: Acid mixture and program (soil) ... 103
Table 5.3: Analytical task (soil) ... 103
Table 5.4: Microwave closed system conditions for fossil and modern bones digestion ... 105
Table 5.5: Acid mixture and program for fossil and modern bones 105
Table 5.6: Analytical task for fossil and modern bones ... 106
Table 5.7: ICP-AES Operating conditions ... 106
Table 5.8: Measurement conditions used for qualitative element distribution pattern of modern bone surfaces (MB3) ... 114
Table 5.9: Measurement parameters used for different fossil bone samples 115
Table 6.1: Different minerals contained in different bone samples 147
Table 6.2: CHN modern and fossil bone elemental analysis results ... 158
Table 6.3: Eh-pH results obtained in soil samples where the fossil bone was buried ... 160
Table 6.4: CHNS burnt and coated bone elemental analysis results ... 176
Table 6.5: ICP-AES burnt bones elemental analysis results………………… 178
Table 6.6: ICP-AES mineral coated bone elemental analysis results……….. 178

ABBREVIATIONS

CHNS: carbon, hydrogen, nitrogen and sulphur
EDPA: Electron diffraction pattern analysis
EPMA: Electron probe micro analyzer
EPR: Electron paramagnetic resonance
ESCA: Electron Spectroscopy for chemical Analysis
FBS: Fossil bone sample
ICP AES: Inductively coupled plasma atomic emission spectrometry
MBS: modern bone sample
PIXE: Proton induced X-ray emission
PXRD: Powder X-ray diffraction
PY-GC-MS: Pyrolysis gas chromatography–mass spectrometry
RSD: Relative standard deviation
SEM: Scanning electron microscope
TOF-SIMS: Time-of-flight secondary ion mass spectrometry
TXRF: Total reflection X-ray fluorescence
XPS: X-ray photoelectric spectroscopy
XRF: X-ray fluorescence
Syn: Synthetic