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ABSTRACT 

 

Problem. One of the sources of inaccuracy in utilising the CEREC Chairside CAD/CAM 

system has been the difficulty of accurately positioning the intraoral camera relative to the path 

of insertion of the preparation and restoration. The degree of inaccuracy produced by variations 

in the angulation of the camera relative to the path of insertion is not known. 

Purpose. The purpose of this study was to first review the literature and history of 

CAD/CAM in dentistry, and the CEREC Chairside System in particular, and then to 

determine the errors that may result from changes in angulation of the camera in three 

dimensions. Further, to design a device which would help stabilise the camera to eliminate 

such errors. 

Method and Materials. A prefabricated Aesthetic Base Gold (ABG) Model was used and 

mounted on an articulator in order to simulate changes in angulation of each of the three 

dimensional axes which cause variations in roll, pitch, and yaw in the positioning of the 

camera. Images were captured for angle variations of 0°, 1°; 3°, 5°, 10°, 15° and 20° using the 

CEREC software on a crown preparation for tooth 24. The same software was used to make 

measurements on the resulting images to determine the mesio-distal, bucco-lingual orientation 

and the occlusal, internal shoulder and external shoulder dimensions. In addition, a quality 

assessment was carried out to observe any shadows, surface texture changes, margin 

discrepancies and ability to automatically complete the restoration with ease and accuracy. An 

intraoral stabilising device was designed that could be placed intraorally using polyvinyl 

siloxane putty. The ABG model was positioned to simulate quadrants 2 and 4 on crown 
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preparation for tooth 24. Time to set up and place the device was recorded, and a Visual 

Analogue Scale was used to determine ease of use. 

Results. Difficulties were encountered in measurements of images where there was an angle 

deviation of greater than 5º, and so it was only possible to analyse the four angles of 0, 1, 3, 

and 5º. A three-way ANOVA revealed expected significant differences between the different 

measurements (as they are measuring different things) but there were no other significant 

differences. Thus neither the four different angles nor the three different axes had any 

influence on the readings. There was also consistency across the measurements, for every 

combination of the levels of the three factors (angle, measurement and axis). The stabilising 

device proved quick and easy to set up and place the silicone putty (less than 20 seconds) and 

the average VAS score for using the device improved by 25.3% when using the device in the 

lower, and by 36.4% when using the device in the upper arch. 

Conclusions. The angle of the camera relative to the path of insertion of the restoration 

should not exceed 3° for changes in Pitch, or 5° for changes in Roll and Yaw of the camera. 

The stability device designed during this study proved to be more convenient and accurate for 

data capture as it decreased the time of search and reduced both the internal and external 

factors which interfere with data capture.  
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CHAPTER 1. A REVIEW OF CAD/CAM IN DENTISTRY 

 

1.1 CAD/CAM IN RESTORATIVE DENTISTRY 

1.1.1 Introduction 

Throughout the years dentistry has gone through numerous developments in knowledge, 

techniques and technology. Among many of the more recent challenges is the approach to 

making high quality restorations in a short space of time. In the present technologically 

inclined approach to treatment, this has led to the development of the Computer Aided Design 

and Computer Aided Manufacture (CAD/CAM) system. Dental CAD/CAM is the process by 

which the model of a prepared tooth is digitally scanned and these data are then used to 

generate a coping/restoration design (CAD) which in turn is used to generate a cutting path 

for manufacturing the coping/restoration (CAM). 

 

Although CAD/CAM has been used in the aeronautical and design industries since the 1950s, 

in dentistry the earliest attempts were conducted in the 1970s by Bruce Altschuler (USA), 

Francois Duret (France),Werner Mörmann and Marco Brandestini (Switzerland). Young and 

Altschuster were the first to introduce the idea of using optical instrumentation to develop an 

intraoral grid surface mapping system in 1977 (Liu, 2005). The first successful commercial 

system was the CEREC (Sirona Dental Systems, Bensheim, Germany) developed by 

Mörmann and Brandestini in the early 1980s. An early system was that developed by Duret 

and known as the Sopha Bioconcept system (Sopha Bioconcept, Inc. Los Angeles, USA). It 

demonstrated the ability of CAD/CAM to generate single-unit, full-coverage restorations, in 
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1984. However, due to its complexity and cost, this system was unsuccessful in the dental 

market (Liu, 2005).  

 

Since then many systems and materials have been developed, and these are listed in Table 1. 

 

1.1.2 Dental CAD/CAM systems 

Presently there are basically 2 forms of dental CAD/CAM, the Inlab and the Chairside 

(Table 1). In general the Inlab systems required cumbersome processes and a lot of time to 

manufacture even simple restorations, and this led to the development of the Chairside 

CAD/CAM systems of which there are currently only two known systems in the market 

(CEREC 3 by Sirona Dental Systems and the E4D by D4D Technologies, Texas, USA) the 

CEREC system is currently the only one which has been scientifically researched, so this 

review will predominantly concentrate on the CEREC system. 
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Table 1.1 List of CAD/CAM systems, vendors/manufacturers and type of materials used 

 

Product Vendor/Manufacturer Restorations Produced Materials Used 

INLAB SYSTEMS 

Cercon DeguDent GmbH Crowns, 3-4 Unit Bridges Zirconium Oxide 

Cerec MC XL Sirona Dental Systems 
Inlays, Onlays, Crowns, 

Bridges, Copings 
Zirconium Oxide, 

Everest Kavo Dental Corporation 

Inlays, Onlays, Veneers, 

Single Crowns, 3-4 Unit 

Bridges 

Zirconium Oxide, Titanium, 

Ceramic 

inLab 

CAD/CAM 

System 

Sirona Dental Systems 

Inlays, Onlays, Veneers, 

Crowns, Multi-Unit Bridge 

Frameworks, Crown Copings 

Zirconium Oxide, Alumina, 

Spinell (Magnesium Aluminum 

Oxide) , Feldspathic Ceramic 

In-Visio
®
 DP 3D 

Printer 
3D Systems Corporation  Light Cured Resin 

Lava 3M ESPE Crowns, 3-4 Unit Bridges Zirconium Oxide 

Neo System Cynovad 

Crowns, Full Arches, 

Full-contour Bridges with 

Cantilever Pontics 

Resin Based Material, 3D 

Designs sent to Cynovad for 

fabrication of: Zirconia, 

Titanium, Ivoclar Procad 

Preci-Fit Popp Dental Inc Crowns, Bridges Titanium, Zirconium Oxide 

Procera
®
 Forte Nobel Biocare 

Multi Unit Bridges & Full Arch 

Bridges, Copings, Abutments, 

Laminates,  

Zirconia, Alumina, Titanium 

Procera
®
 

Piccolo  
Nobel Biocare 

Bridges, Copings, Abutments, 

Laminates 
Zirconia, Alumina, Titanium 

Turbodent 
U-Best Dental 

Technology Inc. 
Crowns, Multi-Unit Bridges 

Zirconia, Vita InCeram, Ivoclar 

ProCad, Titanium 

WaxPro Cynovad 

Crowns, Single unit Bridges, 

Simple & Clinical Copings with 

Band, Anatomical Coping with 

Automatic Cosmetic 

Thickness, Copings with Bite 

Stop, Occlusal Contacts 

Wax 

CHAIRSIDE SYSTEMS 

Cerec 3 Sirona Dental Sytems 
Inlays, Onlays, Veneers,  

Partial, Full Crowns 

Zirconia Oxide, Aluminium 

Oxide, Ceramic, 3 Colour 

Ceramic, Resin 

E4D Chairside 

CAD/CAM 
D4D Technologies, L.L.C 

Inlays, Onlays, Veneers, 

Crowns, Multi-Unit Bridge 

Frameworks, Copings 

Zirconia, Ceramic, Composite 

. 
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The procedures and sequences of Inlab and Chairside techniques are quite different; the time 

taken is also vastly different. The Chairside system takes at most 2 hours for completion from 

tooth preparation to final cementation/bonding, whereas the Inlab system can take up to 

several hours to days for the same process. Figures 1.1 and 1.2 summarise the main steps in 

the processes. 
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Fig 1.1 CEREC Chairside system A. Preparation B. Powdering/contrast medium for data 

capture by optic camera (white powder) C. Data capture D-G. Automatic 3D design 

sequence H. Milling I. Complete restoration. Time to completion 1-2 hours. (pictures 

used with permission-SIRONA) 
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Lute 
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Fig 1.2 Inlab technique. General/Summarised CAD/CAM dental restoration production steps. 

Time to completion 2-4 days. 

 

1.2 HISTORY OF CEREC CHAIRSIDE CAD/CAM 

1.2.1 Introduction 

In early 1980, Dr Werner H. Mörmann, one of the pioneers of Chairside dental CAD/CAM, 

foresaw the possibility of restoring posterior teeth with tooth-coloured material. At that time 

direct composite fillings were showing poor results because of polymerization shrinkage, 

thermal contraction, absorption of water, mechanical stress and dimensional changes in tooth 

structure which resulted in the formation of a marginal gap and consequently failure of the 

restoration (Staninec et al, 1986). On the basis of his own in-vitro and in-vivo studies with 

pressed and hot polymerized composite inlays, Mörmann developed the hypothesis that inlays 

made of porcelain could be inserted adhesively with resin-based composite as a luting agent 

(Mörmann, 2004). The concept of adhesive seal was confirmed later by in-vitro studies 

(Schmalz, Federlin and Reich, 1995) and in-vivo studies (Mörmann and Krejci, 1992; Bindl 

and Mörmann, 2003; Posselt and Kerschbaum, 2003). Mörmann developed the clinical 

concept of bonded ceramic inlays, at the same time raising the issue of the fast fabrication of 

ceramic restorations. He developed plans for an in-office CAD/CAM fabrication of ceramic 
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restorations specifically to enable the dentist to complete one or multiple ceramic restorations 

in a single appointment (Mörmann, 2006). The term CEREC was defined from ―CERamic 

REConstruction‖. 

1.2.2 Hardware 

The challenge was to scan individual cavities directly in the mouth of the patient quickly and 

to use the data via computer to control a fast form-grinding machine (Mörmann, 2006). A data 

acquisition unit and the technical processes from designing to milling of dental restorations 

were then developed (Mörmann and Brandestini, 2006). 

 

The initial concept (Figure 1.3) comprised a small mobile CAD/CAM unit integrating a 

computer, keyboard, trackball, foot pedal and optoelectronic mouth camera as input devices, a 

monitor and a machining compartment as output devices (Mörmann, 2006). 
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Fig 1.3 Evolution of CEREC hardware. A. 1985: the CEREC 1 prototype unit, the ―lemon,‖ 

with Dr. Werner Mörmann (left) and Marco Brandestini, Dr. sc. techn.ETHZ. B. 

1991: CEREC 1, as modified by Siemens (Munich, Germany) with E-drive and 

CEREC Operating System 2.0. C. 1994: CEREC 2, with an upgraded 

three-dimensional camera. D. 2000: CEREC 3, with split acquisition/design and 

machining units (With permission-SIRONA) 

 

1.2.3 Scanning and Data capture (Input) 

Initial developments focused on the possibility of making instantaneous three-dimensional 

measurements of tooth preparations with an intra-oral camera, as well as three-dimensional 

scanning of the preparation. As the scanner and camera needed to be one single instrument, 

this led to the use of a grid of parallel stripes under a parallax angle directed onto the 

preparation, using the principle of triangulation. To acquire the depth-dependent shift of the 

lines an area sensor (that is, a charge-coupled device [CCD] video chip) was used (at that time, 

high-tech parts such as these were subject to U.S. export control because they were being 



8 

 

used for military purposes, but now this type of technology is common place and used most 

frequently in digital cameras). 

 

In the spring of 1983, the measuring principle was refined and a grid of parallel black and 

―bright‖-white stripes, each 250 µm wide was used on the optical bank; as a result the first 

optical impression of a cavity was obtained. Integrating the optical and electronic system into 

the small dimensions of a mouth camera required a major effort (Mörmann, 2006). A small 

camera and scanner with high visual clarity was difficult to achieve at that time (Mörmann, 

2004, Mörmann and Brandestini, 2006).  

 

The basic concept was for the dentist to be able to use the camera as any other dental 

instrument. The camera would be aligned according to the path of insertion of the preparation 

and stabilized by resting it on the patient’s teeth; the dentist would simultaneously watch the 

monitor for adjustments and trigger the process for data capture. This was based on the 

knowledge that the view of the preparation in the direction of the path of insertion enables all 

spatial information necessary for designing inlays or crowns so that it would be possible to 

acquire the image with a single scan. This process is called the "optical impression" 

(Mörmann 2006) and this procedure remains unchanged to date. 

1.2.3.1 Milling (Output) 

The first grinding trials on blocks made of feldspathic ceramic (Vita Zahn-fabrik, Bad 

Säckingen, Germany) showed that this material could be removed with a grinding wheel in a 

few minutes without damaging the rest of the bulk (Fig 1.4A).  
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Fig 1.4 CEREC form-grinding evolution: feldspathic block ceramic. A. Basic grinding trial 

with diamond-coated wheel. B. CEREC 1: water turbine drive. C. CEREC 1: inlay 

emerging from a block. D. CEREC 1: E-drive. E. CEREC 2: cylindrical diamond bur 

and wheel. F. CEREC 3: cylindrical diamond and tapered burs. G. In 2006, a "step 

bur" replaced the cylinder diamond (With permission – SIRONA) 

 

Proceeding from the grinding tests, the concept of grinding inlay bodies externally with a 

grinding wheel along the mesio-distal axis showed accuracy and reproducibility (Figures 1.4B 

and 1.4C). In this arrangement, it was possible to turn the ceramic block on the block carrier 

with a spindle and feed it against the grinding wheel, enabling the ceramic to be ground in a 

new contour at a different distance from the inlay axis at each feed step (Mörmann, 2006). 

This solution proved itself in a prototype arrangement in 1983, and was implemented in the 

same year in the CEREC 1 unit (Figures 1.4B, 1.4C and 1.4D). A CEREC team at Siemens 

(Munich, Germany), equipped the CEREC 2 with an additional cylinder diamond enabling the 
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form-grinding of partial and full crowns (Figure 1.4E) (Mörmann and Schug, 1997; Mörmann, 

2004). A compromise between grinding efficiency, instrument life and surface roughness of 

the ceramic had to be chosen and so the method of using a wheel and bur was chosen and 

used until the introduction of the CEREC 3 in 2000. 

 

With the CEREC 3 the wheel was omitted and the two-bur-system was introduced (Figure 

1.4F). The "step bur," which was introduced in 2006, reduced the diameter of the top 

one-third of the cylindrical bur to a small-diameter tip enabling improved form-grinding with 

reasonable bur life (Figure 1.4G) (Mörmann, 2006). With the CEREC 3 system an 

acquisition/design unit and the milling unit were separated into two independent units. 

Three-dimensional software (CEREC 3D) was also introduced in 2003 to make the 

preparation and design views on the monitor illustrative and more user friendly on both the 

office and the laboratory systems. 

 

Since the introduction of the CEREC 3 in 2000, the last major upgrade was the 3D software in 

2003, since then only slight upgrades have been made. The latest was in 2007 where the 

milling unit had the most noticeable features upgrade. It is claimed by Sirona that milling 

speed has increased by 60%, milling by the new MC XL machines can machine blocks up to a 

maximum size of 85 x 40 x 22 mm which is 100% larger than the previous ones. The diamond 

burs are now longer and deploy a 20 mm step bur to eliminate the risk of the bur jamming. 

With an increase in precision, the MC XL can also be equipped with a second set of motors 

and different diamond burs to cater for other types of ceramic material. This was introduced 

so that in the case of breakage of the burs during the milling process the machine can continue 
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the milling operation (using the second motor) without any intervention by the user. A screen 

has been added so that all the operating steps are shown in plain text on the display and the 

milling chamber changes colour with each step so that the user may know the milling stage 

without having to approach the unit. Both MC XL milling machines are network-capable and 

can be accessed directly via LAN or WLAN (54MBps). It is also claimed that the new MC 

XL machines are only half as noisy as the previous CEREC 3 and inLab models. Most of 

these changes, although significant, were to a large extent cosmetic: shape, lighting, drawers, 

display screen and some push buttons to enable direct operation of certain functions were 

added. However, it is probably the software that makes the most difference, and in recent 

International Society for Computerized Dentistry (ISCD) forums it has been reported that 

milling is 3-5 minutes slower on the default milling function. As the upgrade is still recent and 

many users have not converted to the new machine there is no long-term reporting available 

yet. 

Brandestini produced the first design for the CEREC 1 unit and for the intra-oral camera; he 

also built the associated computer and video board, as well as the entire CEREC 1 prototype 

unit (Mörmann, 2006). The CEREC 2 and 3 units, as well as the CEREC inLab and extraoral 

scanner (inEOS) were all developed by CEREC teams at Siemens and Sirona (Bensheim, 

Germany) (Table 1.2).  
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Table 1.2 Developments of CEREC
®
 chairside system. 

 

CEREC CAD/CAM Developments 

YEAR HARDWARE SOFTWARE RESTORATIONS DEVELOPER 

1980 Basic concept 2D 1 

Mörmann (University of Zurich) and 

Brandestini (Brandestini 

Instruments, Zurich) 

1985 CEREC 1 2D First chairside inlay 
Mörmann and Brandestini (Brains, 

Zurich) 

1988 CEREC 1 2D 1-3 Mörmann and Brandestini 

1994 CEREC 2 2D 1-6 Siemens (Munich, Germany) 

2000 CEREC 3 &  2D 
1-6 and 3-unit bridge 

frames†  
Sirona (Bensheim, Germany) 

2001 CEREC inLab 2D 

1-6 and 3- & 4-unit 

bridge frames† 

(inLab‡) 

Sirona 

2003 
CEREC 3 & 

inLab 
3D 

1-6 and 3- & 4-unit 

bridge frames† 

(inLab‡) 

Sirona 

2005 
CEREC 3 & 

inLab 
3D 

1-5 and 3-unit bridge 

frames†  
Sirona 

2006 
CEREC 3 & 

inLab 
3D 

1-5 and 3-unit bridge 

frames  
Sirona 

2007 

CEREC 3 

CEREC & 

inLab MC XL 

Milling units 

3D v3.00 
1-5 and 3-unit bridge 

frames  
Sirona 

KEY 

(1)Inlays, (2) onlays, (3) veneers, (4) partial crowns, (5) full crowns, (6) copings  

*Sirona Dental Systems GmbH, Bensheim, Germany. 

†Bridge frameworks fabricated in Europe only, on an experimental basis. 

‡InLab only: Extended-range ceramic block spindle. 

 

 

1.2.4 Software 

Alain Ferru, a software engineer, designed the first software by using the anatomy of teeth, as 

well as the build-up of an inlay cavity in three planes: the cavity margins, the occlusion and 

the proximal contacts (Mörmann, 2006). The design algorithm was derived from the 

requirements to mark the cavity floor, enter the proximal contact lines, find the proximal and 
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occlusal cavity margins, adapt the floor data and build up the proximal and occlusal surfaces. 

Using this information the CEREC 1 operating system was created. In order to simplify the 

process, the system was programmed so that it designed the occlusal surface of the ceramic 

inlays initially by means of the straight-line connection of opposing cavity margin points 

(Mörmann, 2006): it was up to the clinician to develop the occlusal anatomy and occlusal 

contacts manually, using a handpiece. 

 

 

 

 

 

 

 

 

 

 

 

     A               B 
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Fig 1.5 The evolution of CEREC software (Sirona Dental Systems GmbH, Bensheim, 

Germany). A. CEREC 1. B. CEREC 2. C. CEREC 3. (With permission-SIRONA) 

 

 

The CEREC teams at Siemens and Sirona then continued the development of the associated 

software (Figure 1.5). The CEREC 2 software enabled the user to create full crowns, and it 
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introduced the design of the occlusion in three modes: extrapolation, correlation and function. 

However, the design was still displayed two-dimensionally. The three-dimensional virtual 

display of the preparation, the antagonist and the functional registration became available 

with the introduction of the three-dimensional version of the software in 2003. The CEREC 

3D software is more illustrative than the previous versions and makes the handling of the 

system comparatively easier. The 2005 and 2006 versions included the automatic adjustment 

of a selected digital full-crown anatomy to the individual preparation, to the proximal contacts 

and to the occlusion (a feature called the "antagonist tool"). The automatic "crown settling," 

"cusp settling" and "virtual grinding" functions provide the dentist with a method of 

controlling the vertical dimension of the restoration design before milling (Fasbinder, 2006). 

 

In 2007 the software was upgraded to version 3.01 where it remains predominantly similar to 

its predecessor with the exception of the ―Biogeneric design‖ function for inlays and onlays. 

This reconstructs the missing tooth’s tissue and adapts automatically to the adjacent teeth and 

the optical impression of the occlusal surface and tooth morphology registration, hence 

completing the restoration. The software has also been designed to reduce user input. For 

example, the margins can now be automatically detected and confirmed, but complete control 

can also be selected by opting for the Master mode which basically reverts to v2.8 

functionality with just a few alterations. 
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1.2.5 Materials 

1.2.5.1 Introduction 

There are presently 4 ceramic options commonly used with both CEREC 3 and CEREC inLab 

laboratory-based systems. These include two types of feldspathic porcelain-based ceramics: 

Vitablocs Mark II and VITA Mark II Aesthetic Line (Vita Zahnfabrik, Bad Säckingen, 

Germany) and ProCAD (Ivoclar Vivadent, Schaan, Lichtenstein) blocks. A resin-based 

composite block called Paradigm MZ100 (3M ESPE, St. Paul, Minn.) is a factory-processed 

version of their Z100 Restorative (Giordano et al, 2006). Although these are the most 

common, Table 3 shows that there are many more materials available, many of which are 

newer introductions for which scientific research evidence is still lacking. In addition, some 

machines are compatible only with specific materials. 

 

This section will review the performance of some of these systems as well as the claims made 

by the manufacturers. 
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1. Table 1.3 Restorative materials commonly used with dental CAD/CAM systems 

 

Restorative Materials Commonly used for Dental CAD/CAM Systems 

ITEM MATERIAL 
MANUFACTURER / 

VENDOR 

CAD/CAM 

SYSTEM 

CLINICAL 

/ LAB 

CEREC Blocs Feldspathic Ceramic Sirona Dental Sys. CEREC Both 

Cercon Smart ceramics
®
 Zirconia based ceramic DeguDent GmbH Cercon Lab 

Dicor MGC 
Fluormica ceramic (Glass 

ceramic) 
Dentsply Int. CEREC Both 

inCoris ZI Zirconia Sirona Dental Sys. CEREC Lab 

inCoris AL 
Zirconium oxide + Aluminium 

Oxide 
Sirona Dental Sys. CEREC Lab 

IPS Empress CAD 
Leucite-Reinforced Glass 

Ceramic 
Ivoclar Vivadent Inc. 

CEREC, 

Everest,  
Both 

IPS Empress CAD Multi 
Leucite-Reinforced Glass 

Ceramic 
Ivoclar Vivadent Inc. 

CEREC, 

Everest 
Both 

IPS e.Max ZirCAD Zirconia Ivoclar Vivadent Inc. CEREC Lab 

IPS e.Max CAD Glass Ceramic Ivoclar Vivadent Inc. 
CEREC, 

Lava 
Both 

KaVo Everest Zirconium Zirconia KaVo Everest Lab 

Lava™ Crowns and 

Bridges 
Zirconia 3M ESPE Lava Lab 

Paradigm™ MZ100 Composite 3M ESPE CEREC Both 

ProCAD 
Leucite-Reinforced Glass 

Ceramic 
Ivoclar Vivadent Inc. 

CEREC, 

Turbodent 
Lab 

Procera 
Zirconium oxide (partially 

sintered) 
Nobel Biocare Everest Lab 

TDS–Titanium Titanium 
U-Best Dental 

Technology Inc. 
Turbodent Lab 

Vita CAD-Waxx Acrylate Polymer Vident CEREC Lab 

Vita In-Ceram Zirconia Zirconia Vident 
CEREC, 

Turbodent 
Lab 

Vita InCeram 2000 AL 
Zirconium oxide + Aluminium 

Oxide 
Vident CEREC Lab 

Vita InCeram Alumina Aluminous Porcelain Vident 
CEREC, 

Turbodent 
Lab 

Vita InCeram Spinell Magnesium Oxide Vident CEREC Lab 

Vita Mark II Aesthetic Feldspathic ceramic Vident CEREC Both 

Vita YZ InVizion Yttria Stabilized Zirconia 

(Y-TZP) 

Vident CEREC, 

Turbodent 

Lab 

VITABLOC Aesthetic Line Feldspathic ceramic Vident CEREC Both 

VITABLOC TriLuxe Feldspathic ceramic Vident CEREC Both 
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Ceramics, including those used in dentistry, have interesting performance characteristics. In 

an in-vitro study, Zhang and Lawn (2004) found that ceramics lose strength when subjected to 

repeated loading such as normal occlusal contact, even when highly polished.  After more 

than 1 million cycles (approximately five years of clinical function), both alumina- and 

zirconia-based veneered structures lost 50% of their strength. 

 

Damage caused by sandblasting, chairside adjustments with a bur or even during the 

CAD/CAM fabrication process can reduce the restoration’s strength and compromise life 

expectancy. For some materials, researchers have recorded as much as a 30% reduction in 

strength after sandblasting (Zhang et al, 2004). This information is especially important for 

posterior restorations, which are subject to the highest stresses in the mouth. 

 

Alternative materials that can provide excellent bond strength without sandblasting were 

explored by Mörmann and colleagues, (Mörmann et al, 1991). For alumina and zirconia cores, 

bond strengths equal to those on particle-abraded surfaces were achieved by using metal 

primers on "as-received" etched surfaces in combination with adhesive cement formulations 

such as Panavia 21 (Kuraray America, New York City, USA) and RelyX Unicem (3M ESPE, 

St. Paul, Minn.) (Dias De Souza et al. Effect of metal primers on cement bonds to 

fully-sintered zirconia (abstract 324); 

http://iadr.confex.com/iadr/2006Orld/techprogram/abstract_75149.htm - accessed 24/03/2007). 

It was also noted that the performance of ceramics can be compromised by a mismatch 

between the coefficients of thermal expansion of core and veneer materials. While this is not 

an issue for in-office–produced monolithic materials, it can play an important role in crown 

http://iadr.confex.com/iadr/2006Orld/techprogram/abstract_75149.htm.-
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and bridge survival (Filser et al, 1997). This may also be a major factor in porcelain chipping, 

which has been reported for zirconia-based layered crowns (Rekow, 2006). 

 

1.2.5.2 Longevity 

A systematic review of the clinical performance of intra-coronal CEREC restorations luted 

with an adhesive composite technique (Martin and Jedynakiewicz, 1999) focused on survival 

rate and factors causing failure. Twenty-nine clinical reports were initially identified and 

systematic analysis reduced the review to 15 studies. The mean survival rate was 97.4% over 

a period of 4.2 years. The predominant reasons for failure were fracture of the ceramic, 

fracture of the supporting tooth, postoperative hypersensitivity, and wear of the interface lute. 

The conclusions were that machinable ceramics, as used by the CEREC system provided a 

high success rate over a period within 5 years; these restorations were colour stable and wear 

was clinically acceptable. It was observed that wear of the luting composite on the occlusal 

surfaces led to sub-margination, since the luting gaps are filled with composite and composite 

is not as wear resistant as ceramic. Hence ceramic fracture, wear at the interface and 

post-operative hypersensitivity remain problems which require further investigation. 

 

A 2 year evaluation by Bindl and Mörmann (1999) on the survival rate and the clinical quality 

of CAD/CAM endo-crowns on posterior teeth which had complete loss of coronal hard 

tissues, showed that the service time of the 19 endo-crowns studied was 14 to 35.5 (mean 26, 

SD ±6) months. Only one molar endo-crown failed after 28 months because of recurrent 

caries.  
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Hickel and Manhart (2001) stated that longevity of dental restorations is dependent upon 

many different factors that are related to materials, the patient and the dentist; they reviewed 

the literature of the previous decade on the longevity of restorations in stress-bearing posterior 

cavities and assessed possible reasons for failure. Having reviewed longitudinal, controlled 

clinical and retrospective cross-sectional studies only the clinical performance of restorations 

in permanent teeth was included. Longevity and annual failure rates of amalgam, direct 

composite restorations, glass ionomers and derivative products, composite and ceramic inlays, 

and cast gold restorations were determined for Class I and II cavities. Results showed that 

annual failure rates after 11 years in posterior stress-bearing restorations were 0-7% for 

amalgam restorations, 0-9% for direct composites, 1.4-14.4% for glass ionomers and 

derivatives, 0-11.8% for composite inlays, 0-7.5% for ceramic restoration, 0-4.4% for 

CAD/CAM ceramic restorations and 0% to 5.9% for cast gold inlays and onlays. The 

principal reasons for failure were secondary caries, fracture, marginal deficiencies, wear, and 

postoperative sensitivity. The authors stated that a distinction should be made between factors 

causing early failure and those that are responsible for restoration loss after several years of 

service, but their analyses did not make this distinction. 

  

Posselt and Kerschbaum (2003) carried out a study of 2328 Cerec inlays which were placed in 

794 patients. The clinical performance of the restorations was evaluated and a Kaplan-Meier 

analysis to asses survival rates revealed a move of 95.5% after 9 years; 35 restorations were 

judged as failures mostly due to tooth extractions. In a clinical follow-up of the same study 

using light-microscopic examination of 44 randomly selected restorations, an average 

composite joint (space between restoration and natural tooth where composite resin was used 
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to fill the space and lute both surfaces) width of 236.3µm was found. In the same study 

marginal fit (the fit along the margins of the restoration, how closely and how well the 

restoration moulded to the prepared tooth) was investigated and 45.1% of the restorations 

exhibited clinically acceptable margins, and 47.4% of the investigated joint sections (the areas 

where joints where made between the restoration and natural tooth) showed underfilled 

margins. Otto and De Nisco (2002) examined the performance of 187 CEREC-1 CAD/CAM 

restorations made of Vita MK I feldspathic ceramic for inlays and onlays in terms of clinical 

quality over a functional period of 10 years; they found a failure rate of 8% and a drop of the 

survival rate to 90.4% after 10 years of clinical service.  

 

Longevity in CAD/CAM restorations is a complex issue as survival is dependent directly 

and/or indirectly on various factors which include the quality of material itself, its thickness, 

fit, strength, bonding/cementing material, the user (intra-oral environment, forces, habits etc), 

and other factors which could cause restoration damage. Hansen (2003) stated the importance 

of design, preparation of the cavity and the milling of the restoration in determining longevity 

of a restoration. In order to better comprehend the basis and reasons for longevity, one must 

consider and interlink the topics described in this paper and not just consider the survivability 

solely as longevity of a restoration.  

 

1.2.5.3 Strength 

It is difficult to produce exceptional strength through traditional layering means. CAD/CAM 

materials are different in that they are industrially manufactured under controlled conditions 

and are pre-sintered. This ensures that the ceramic blocks have consistent particle size, 
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porosity, and strength throughout. This inherent strength has been the subject of a number of 

investigations. 

 

Chen et al (1999) conducted an in-vitro study to determine the fracture strength of Vita Mark 

II, ProCAD and IPS Empress. Forty crowns of each material were manufactured with either a 

polished or an oven-glazed surface finish. Results showed that ProCAD crowns fractured at a 

significantly higher load level than Vita Mark II and the fracture strength of Empress crowns 

was higher than those of Vita Mark II crowns, meaning the difference between Vita Mk II-IPS 

Empress and ProCad-IPS Empress was not statistically significant, however the difference 

between Vita Mk II-ProCad was significant. They concluded that oven-glazing the ProCAD 

crowns resulted in significantly higher strength and higher resistance to cyclic loading than 

surface polishing. 

 

In a study to test the hypothesis that industrially manufactured ceramic materials, such as Vita 

Mark II and Zirconia-TZP have a smaller range of fracture strength variation, and therefore 

greater structural reliability than laboratory-processed dental ceramics, Tinschert et al (2000) 

used a four-point bend test to determine the flexure strength of 30 bar specimens per material. 

Their results showed significant statistical differences and concluded that the industrially 

prepared ceramics were more structurally reliable materials, but cautioned that CAD-CAM 

procedures may induce surface and subsurface flaws which may affect their strength. 

 

Bremer and Geurtsen (2001) determined the fracture resistance of teeth following treatment 

with various types of adhesive restorations in caries-free, extracted human molars. The 
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materials used were; CEREC inlays, IPS Empress ceramic inlays, Arabesk (Voco, Germany) 

and Charisma-F ( Heraeus Kulzer, Wehrheim, Germany) resin-based composite (RBC). The 

control group comprised 10 sound, non-restored molars. All 50 teeth were loaded occlusally 

until fracture using a tensile testing machine. The results showed that there was no significant 

difference between the mean values of the sound teeth (2,102 N) and the teeth with the 

CEREC ceramic inlays (2,139 N). 

 

The cerec.net (http://www.cerec.net/forums/index.php; http://www.cerec.net – accessed 

17/04/2009) - a non peer-reviewed free discussion board for users and information seekers on 

the CEREC system - advises that as strength is dependent on the type of material used; the 

choice will therefore be dependent on the clinician on which material to use. In addition to 

this, anecdotal claims state that during glazing at 1500°C for 5 minutes the melting surface 

ceramic enters the micro-cracks which may have been produced during milling of the 

restoration, thus fusing and closing up the cracks and therefore increasing the strength. As 

there are various conflicting articles and studies on strength values of the different brands of 

CAD/CAM materials, Table 1.4 shows the flexural strength and fracture toughness ranges of 

some of these materials 

http://www.cerec.net/forums/index.php
http://www.cerec.net/
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Table 1.4 Strength values of different materials commonly used in restorative CAD/CAM 

restorations 

 

Strength values of Materials used with Restorative CAD/CAM 

MATERIAL COMPOSITION 

FLEXURAL 

STRENGTH 

(MPa) 

FRACTURE 

TOUGHNESS 

(MPa.m‾²) 

STUDY 

Alumina 

Alumina/Glass 

Infiltrate 

 

 

236-600 

 

 

3.1-4.61 

 

 

Seghi and Sorensen 1995, 

Giordano et al 1995, Wagner and 

Chu 1996, Guazzato et al  2002, 

Chong et al  2002  

Spinell/Glass 

Infiltrate 
325-410 2.4 

Seghi et al 1995, Ironside and 

Swain 1998 

Glass  

 

Ceramics 

Zirconia: Y-TZP 900-1200 9-10 
Christel et al 1989, Filser et al 

2001, Suttor et al 2001 

Zirconia 

 

620-985 

 

4.0-9.0 

 

Besimo et al 2001, Guazzato et al 

2002, Piwowarczyk et al 2005 

Pre-made/HIP 140-220 2.0 Ironside and Swain1998 

Lab-cast 115-125 1.9 Ironside and Swain1998 

Porcelains 
Leucite 122-180 1.2 Seghi et al 1995 

Feldspathic 67-205 1.1-1.9 Drummond et al 2000 

Tooth 

Structure 

Enamel 65-75 2.33 Ironside and Swain 1998 

Dentine 16-20 2.5 Ironside and Swain 1998 

 

 

1.2.5.4 Wear 

CAD/CAM restorations claim to have among their qualities enamel-like wear characteristics. 

It is known that enamel wears at different rates against different restorative materials. There 

are very few studies on wear involving CAD/CAM manufactured materials and natural teeth, 

and few studies which can closely relate to clinical conditions, as almost all studies are carried 

out in-vitro on extracted teeth. In addition, other factors such as saliva constituents, the 

changing intra-oral environment, varied occlusal forces, etc., are presently impossible to 

imitate accurately. Nevertheless in-vitro tests do give an indication of in-vivo performance 

especially when attempts are made to replicate the natural oral environment (Söderlhom, 

1991). 
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Krejci, Lutz and Reimer (1994) compared Dicor MGC, Vita Mk I porcelain, Vita Mk II V7R 

porcelain, and Vita Mk II Vita V7K porcelains. All ceramic materials except Dicor MGC 

wore less than previously measured controls, such as natural human enamel and amalgam. 

The wear of opposing enamel cusps was high with Dicor MGC and with Vita Mk I, only Vita 

Mk II V7R showed a total wear comparable to that of enamel, because of its moderate 

abrasivity against opposing enamel. The wear of the two luting composite resins (Dicor MGC, 

Vita Mk I porcelain) was measured at the end of the test. Both luting composite resins wore 

more than the ceramic inlays and surrounding enamel, leaving a shallow ditch around the 

restorations.  

 

Al-Hiyasat et al (1998) carried out an in-vitro study comparing the wear of enamel against 

aluminous porcelain, bonded porcelain, low fusing hydrothermal ceramic, feldspathic 

machinable ceramic and cast gold. Fifty pairs of tooth-material specimens were tested in a 

dental wear machine, under a standard load (40 N), rate (80 cycles min-1) and for 25,000 

cycles in distilled water. The amount of wear was determined by measuring the height loss of 

the tooth, and the depth of wear track of the restorative materials. The hydrothermal and 

machinable ceramics were significantly less abrasive and more resistant to wear than the 

conventional aluminous and bonded porcelains. Gold was the least abrasive material and most 

resistant to wear, although the difference in wear between the machinable ceramic and gold 

was not statistically significant. 

 



25 

 

Kunzelmann et al (2001) studied materials and antagonist wear of laboratory-processed IPS 

Empress ceramic, Vita Mark II, and the composite mill block material MZ100, by testing in 

an artificial wear simulator with human enamel as the antagonistic material. The material 

samples underwent 50 000 test cycles (1 cycle per second, 50 N) in distilled water. The wear 

of the material samples and of the opposing enamel was documented after 30 000 and 50 000 

cycles, digitized, and evaluated with a 3D evaluation system. The material wear of MZ100 

differed significantly from Vita Mark II only in terms of volume loss. Regarding height loss, 

MZ100 exhibited a significantly higher wear than all ceramic materials and a significantly 

smaller amount of enamel wear when compared with Empress and Vita Mark II. Despite the 

highest material wear, MZ100 had the lowest material wear rate, the lowest enamel wear rate, 

and the lowest total wear rate. The laboratory-processed IPS Empress material had a higher 

material wear rate than the CAD/CAM materials. MZ100 showed to be the least resistant to 

general wear volume, meaning that it may have more stable wear characteristics as it had the 

lowest wear rate, in contrast Vita Mark II and Empress seemed to wear rapidly then plateau 

i.e. they wore rapidly then wore at a gradual rate.  

 

They found no statistically significant differences between the ceramic materials tested either 

in the amount of material or in the amount of antagonist wear. The study however did not give 

the exact reason for the plateau. It could be speculated that the enamel began to wear more 

rapidly as it thinned or the continuous friction hardened the material thus creating the plateau. 

Wear Rate is the amount of material lost in a given period of time; Total Wear is the total 

amount of material lost over from beginning to end. MZ100 wore at a constant gradual rate, 

however; in total it wore more rapidly than other materials. In addition; a material with a 
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higher wear rate should have higher total wear; a material with least resistance should also 

have a general higher total wear, nevertheless the wear rate may not be necessarily higher as 

the particles could be more stable.  

 

The quality of these materials and their ability to mimic the wear characteristics of natural 

teeth have improved dramatically and continue to improve. Further studies are still required to 

identify the wear characteristics of the different restorative materials, as well as enamel and 

dentine in-vivo, in order to obtain a material similar to natural tooth wear.  

 

1.2.6 Fit 

Micro-leakage is defined as the clinically undetectable passage of fluids, bacteria, molecules 

or ions between a cavity wall and the restorative material (Kidd 1976) which in turn leads to 

failure of the restoration. Investigations had already shown that composite luting joints (the 

gap between the natural tooth and restoration) up to 500µm wide were impervious to 

micro-leakage (Bindl and Mörmann, 1999; Posselt and Kerschbaum, 2003). However, 

clinically acceptable gaps for ceramic restorations are considered by some to be 50-300µm 

(Audenino et al, 1999). In composites the seal degrades over time (Lundin and Noren, 1991) 

and this is dependent on factors such as nanoleakage (the leakage within the dentine margins 

of restorations), thermal contraction, polymerisation shrinkage, mechanical stress, absorption 

of fluids, and dimensional changes of the restorative material used, the luting agent and/or the 

natural tooth. It is therefore still relatively difficult to provide exact time-microleakage for 

luting joints. Theoretically, 50-100µm fitting accuracy in-vitro appeared to be achievable and 

later confirmed (Mörmann and Schug, 1997).  
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An in-vitro study by light and scanning electron microscopic analysis on the consistency of 

marginal fit of copy-milled all-ceramic crowns used Celay In-Ceram (Groten, Girthofer and 

Probster, 1997), and showed that the manufacturing steps after copy milling had no obvious 

influence on the external marginal gap width. In-Ceram, IPS Empress, and Procera crowns 

were compared in another in-vitro study of marginal fit (Sulaiman et al, 1997). The results 

showed that all crown systems were significantly different from each other. In-Ceram 

exhibited the greatest marginal discrepancy (16µm), followed by Procera (83µm), and IPS 

Empress (63µm). The facial and lingual margins exhibited significantly larger marginal 

discrepancies than the mesial and distal margins. There were, however, no significant 

differences between the various stages of the crown fabrication (core fabrication, porcelain 

veneering, and glazing). The authors stated that the explanation for the lack of agreement on 

fit studies may be variations in the methods used by various investigators studying marginal 

accuracy. They suggested that the cause could be the use of different measuring instruments, 

sample size and the number of measurement areas per specimen may also have contributed to 

these variations. 

 

Estafan et al (2003) evaluated fit at the gingival margin of inlay restorations milled by the 

CEREC 2 and CEREC 3. Results showed than although CEREC 3 milled inlays were more 

accurate than the CEREC 2, both were within the ADA specifications of 50µm (initially it 

was difficult to obtain <100µm, but with developments in technology and precision it became 

possible to obtain <50µm fit, therefore ADA made their specifications at 50µm which was 

considered enough to ensure decreased microleakage). Nakamura et al (2003) examined the 
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effects of the occlusal convergence angle of abutments and the computer’s luting space setting 

on the marginal and internal fit of CEREC 3 all-ceramic crowns. The luting space is due to 

powdering and milling inaccuracies which could occur if the setting is not compensated for. If 

it is over compensated, this could be exacerbated when the restoration is subjected to angular 

forces leading to eventual distortion of the restorations margin. The results showed that when 

the luting space was set to 30µm, the marginal gaps ranged from 53-67µm and were not 

affected by the occlusal convergence angle of the abutment. The internal gaps were within a 

range of 116-162µm and tended to decrease as the occlusal convergence angle of the 

abutment decreased. The conclusions were therefore that crowns with clinically acceptable fit 

could be fabricated on the CEREC 3 system, regardless of the occlusal convergence angle of 

the abutment. 

 

The different effects of the hardware and software on the quality of CAD/CAM all-ceramic 

production was investigated by Bindl and Mörmann (2003) in a cross sectional study of 818 

partial crowns placed adhesively in 496 patients between 1993 and 1997 using CEREC 1 and 

CEREC 2 units (groups 1 and 2) as well as CEREC 2 with wall-spacing software (the 

upgraded software) (group 3). From each group, 25 randomly selected partial crowns were 

evaluated; of these, 12 were randomly selected in each group and the rest were not used (the 

article does not account for them, we therefore do not know what was done with the excluded 

restorations). Replicas, including gingivoproximal margins of the restorations, were taken 

using a putty wash impression technique and custom metal trays and examined in a scanning 

electron microscope for marginal interfacial width and for continuous margin adaptation. The 

mean interfacial width of group 1 (308 +/- 95µm) was significantly larger than that of groups 



29 

 

2 (243 +/- 48µm) and 3 (207 +/- 63µm). Continuous margin adaptation at the tooth-luting 

composite and luting composite-restoration interfaces showed only minor differences in 

groups 1 (94.5 +/- 8% and 95.5 +/- 2%), 2 (98.1 +/- 1% and 97.5 +/- 1.4%) and 3 (96.8 +/- 3% 

and 96.8 +/- 2%); the conclusion was that the luting composite when appropriately prepared 

to tooth and restoration surfaces bonded well and therefore the technique is important in 

achieving a clinically acceptable lute interface. Pooled clinical rating was 97% for all groups 

which indicated a generally acceptable restoration quality; improvements in software and 

hardware were considered to have led to the increased precision in CEREC 2.  

 

Balkaya, Cinar and Pamuk (2005) conducted a study to determine if fit was affected by 

porcelain and glaze firing cycles for 3 types of all-ceramic crowns: conventional In-Ceram, 

copy-milled In-Ceram, and copy-milled feldspathic crowns. The results indicated that the 

porcelain firing cycle from the addition of porcelain to the copings caused a significant 

change in marginal fit, except for the fit in the horizontal plane of the conventional In-Ceram 

crowns. However, no further significant changes occurred in any of the crowns after the glaze 

firing cycle. Significantly, the conventional and copy-milled In-Ceram crowns demonstrated 

medial deformations at the labial and palatal surfaces after the porcelain firing cycle that 

might result in occlusal displacement of the crown. The glaze firing cycle is a short high 

temperature firing cycle which only melts the surface, whereas the porcelain firing cycle is 

longer and also melts the core surface. 

 

Some theories and research on marginal gaps and leakage can either be accepted or discarded 

due to the various factors and contradictions in dental adhesive research (Söderlhom, 1991), 
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micro-leakage and nano-leakage appear to be presently impossible to overcome; therefore the 

theory that 500µm is resistant to micro-leakage although possible in the short term, will 

eventually fail. Moreover there are too many variables, factors, theories, suggestions and 

contradictions to establish a single conclusion on micro-leakage/nano-leakage prevention and 

its ideal marginal gap, luting distance and material. From the statements above it is clear that 

fit and micro-leakage are directly related, a preparation with poor fit results in gaps between 

the material itself and the tooth thus an obvious increase in the probability of micro-leakage 

and eventual failure of the restoration. 

 

1.2.7 Luting 

1.2.7.1 Luting agents 

There are basically 6 types of luting materials for ceramic restorations: Zinc phosphates; 

Poly-carboxylate; Glass ionomer; Resin reinforced ionomer; Composite, and Adhesive resin; 

however, adhesive resins have become a favourite due to their characteristics, and 

convenience. There are presently (at the time of writing) 71 brands of adhesive resin materials 

and this number is increasing.  

 

Rosenstiel, Land and Crispin (1998) reviewed the factors that influence success when 

considering a luting agent: (1) biocompatibility, (2) caries/plaque inhibition, (3) microleakage, 

(4) strength and other mechanical properties, (5) solubility, (6) water sorption, (7) adhesion, (8) 

setting stresses, (9) wear resistance, (10) colour stability, (11) radiopacity, (12) film thickness 

or viscosity and (13) working and setting times. In their review, they included guidelines on 

manipulation which included: (1) temporary cement removal, (2) smear layer removal, (3) 
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powder/liquid ratio, (4) mixing temperature and speed, (5) seating force and vibration, and (6) 

moisture control which influence the precision and quality of ultimate placement of the 

restoration. The authors unfortunately did not provide any guidelines for ceramic restorations 

and luting agents. 

 

The system for luting a ceramic restoration was the ―three step/conventional system‖ of 

etching, priming and bonding. It has been shown that this system is susceptible to 

contamination of the bonding surfaces, the ―two step/self etch/single bottle system‖ 

eliminated one step (etch-prime); nonetheless the contamination problem still exists. The most 

recent introduction is the ―all-in-one system‖ which incorporates all the steps (etch, prime and 

bond) in one single step; however, there are no long-term clinical data to demonstrate 

effectiveness. Although a considerable amount of work is being carried out on these luting 

materials, early studies are showing variability (Tyas and Burrow, 2004).  

 

Additives such as desensitisers, nanofillers or antibacterial monomers, may also contribute to 

enhance the performance of self-etching enamel–dentin adhesives and their long term success 

(Moszner, Salz and Zimmermann 2005). Martin and Jedynakiewicz (1999) conducted a 

systematic review of clinical trials seeking to identify the clinical performance of 

intra-coronal CEREC restorations luted with an adhesive composite technique; they observed 

that although machinable ceramics as used by the CEREC system provide a useful restoration 

with a high success rate; ceramic fracture, wear at the interface and post-operative 

hypersensitivity remain problems which require further investigation. 
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1.2.7.2 Post-operative sensitivity 

Adhesive cementation and bonding involves several clinical choices involving the etching 

process, bonding agent, and luting agent. Selection of the adhesive luting agent is often based 

on operator preference but should be on a comparison of physical properties and evidence 

based clinical studies. Several studies (O’Neal, Miracle and Leinfelder, 1993; Kawai, Isenberg 

and Leinfelder, 1993; Shinkai et al, 1995) indicate that micro-filled resin luting agents offer 

the best resistance to marginal wear. Fasbinder (2005) stated that Total Etch concept with a 

self-priming adhesive such as Excite (Ivoclar Vivadent), Single Bond (3M ESPE), or Prime 

and Bond NT (Dentsply Caulk) may be an option for clinically acceptable bonding and 

decreased sensitivity. However, one study (Zohairy et al, 2002) has demonstrated that the use 

of a bonding agent has a negative influence on bond strength longevity, possibly due to 

hydrolytic instability of the bonding agent and can result in post-operative sensitivity. 

Although only anecdotal user reports, data from 8 different CRA reports conducted over 11 

years were compiled and showed that approximately 45 restorations for each of 31 material 

brands had been placed by about 20 different dentists, CEREC inlay/onlay restorations 

machined from Vita Mark II feldspathic porcelain reported to show no post-operative 

sensitivity (CRA Newsletter. Post-operative sensitivity related to type of restoration and 

material. CRA 1999; 23: 2). In reality to the above findings, there are various factors which 

could increase or decrease post-operative sensitivity. Fasbinder (Adhesive Cementation: The 

Overlooked Key to Success. ViDent Bloc Talk 2007; 1: 7-8) reported that adhesive 

cementation determines post-operative sensitivity and may very well be the key to ensuring 

longevity and success of these restorations. 
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Attar, Tam and McComb (2003) found that post-cementation sensitivity associated with the 

use of resin cements has been attributed to microleakage rather than to cement acidity and that 

the sensitivity was more related to contraction of the cements. However; Unemori et al (2001) 

suggested that with self etching and bonding that post-operative sensitivity was little related 

to the materials. Perdigão, Geraldeli and Hodges (2003) in their study comparing self etch and 

total-etch concluded that post-operative sensitivity was different with different bonding 

materials. In all studies it was evident that technique and micro leakage were major factors in 

sensitivity, and almost all concluded that further studies are still required to determine what 

the ultimate cause of post-cementation sensitivity is and what should be done to prevent it.  

 

1.2.8 Aesthetics 

Aesthetic satisfaction is independent and subjective and therefore difficult to measure. Reich 

and Hornberger (2002) examined the effect of multishaded blocks on the aesthetic appearance 

of all-ceramic CEREC crowns and compared these with single-shaded and stained 

restorations. Ten subjects were included in this study and for each subject 6 different crowns 

were milled using the CEREC machine from CEREC Vitablocs Mark II in classic colours; 

Vitablocs Mark II in 3D-Master colours; Vitablocs Mark II in either classic or 3D-Master 

colours, with additional staining; Megadenta Bloxx multishaded; Mark II experimental 

multilayer; and an experimental multilayer leucite ceramic. Three independent examiners 

assessed the aesthetic appearance of the crowns, but concluded that, within the limitations of 

the study, the results provided no evidence that multicoloured machinable ceramics improve 

the aesthetics of all-ceramic crowns. 
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One study by Herrguth, Wichmann and Reich (2005) examined whether crowns fabricated 

from machinable blocks could compete with the aesthetics of restorations obtained by an 

individual layering technique. Two crowns were provided for each of 14 patients: one crown 

was made with the Cerogold system, the other produced in a CEREC machine and was 

stained. Three independent examiners assessed the aesthetic appearance and the mean values 

were analysed. The results showed that regardless of the fabrication method the crowns were 

aesthetically acceptable in all 14 patients; the mean values for the layering technique and for 

the machined restorations did not differ significantly.  

 

In both of the above studies it was found that layering and non-layering makes little to no 

significant difference in aesthetics. Forums from CAD/CAM users have stated that one of the 

main concerns with CAD/CAM restorations is aesthetics. Some manufacturers and ISCD 

articles have stated that CAD/CAM technology, techniques and the materials used have been 

continuously improved over the past years as the current ceramics mimic natural translucency, 

brightness and shades providing life-like aesthetics (http://www.renishaw.info/en/621.aspx) – 

accessed 15/05/2007). They claim wear of ≤3 µm/year, low water absorption (resists staining) 

of 9-12 mg/mm³, acceptable colour stability and favourable aesthetics 

(http://www.sirona.com/ecomaXL/index.php?site=SIRONA_COM_cerec_klinische_studien_

aesthetik – accessed 15/05/2007). In addition they state that excellent polishing and clear 

glazing (without residual monomers) results in resistance to plaque retention. 

 

In general CAD/CAM aesthetics have been well received. Fig 1.6 show the results of a 

CAD/CAM produced restoration by Fasbinder (2006), note the colour and blending with the 

http://www.renishaw.info/en/621.aspx
http://www.sirona.com/ecomaXL/index.php?site=SIRONA_COM_cerec_klinische_studien_aesthetik
http://www.sirona.com/ecomaXL/index.php?site=SIRONA_COM_cerec_klinische_studien_aesthetik
http://www.sirona.com/ecomaXL/index.php?site=SIRONA_COM_cerec_klinische_studien_aesthetik
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natural tooth. However, to achieve acceptable results the colour and bonding must be 

carefully matched and the restoration placed carefully. 

 

 

 

 

 

 

 

 

 

 

Fig 1.6 A. CAD/CAM produced inlay try-in (ProCAD-Ivoclair Vivadent) B. Inlay cemented 

and polished. Fasbinder 2006 (With permission) 

 

1.2.9 Convenience (Time) 

The only report found was that of Phillips (2005) who conducted a study at the University of 

Southern California School of Dentistry where students were given a brief resource session on 

the dynamics and application of the Correlation mode of the Cerec 3 and were then instructed 

to complete and bond a restoration on an extracted tooth within predetermined time 

constraints. The time-frame goals were: preparation and optical impression, 1 hour; design 

and mill a CEREC-fabricated restoration, 45 minutes; adjust and polish, 15 minutes; stain and 

glaze, 30 minutes; bond and debride, 30 minutes. Typically, the time a dental student will 

spend on a given clinical task is equal to the time allotted for that task, but all students did 

finish within the time frame. In clinical conditions the actual completion time is greatly 

reduced and no more than 3 hours are usually spent on a single restoration. Unfortunately 

there are no scientific studies on this aspect, and so it is not known what the average time to 

completion for any CAD/CAM procedure actually is. 
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1.2.10 Benefits of Dental CAD/CAM 

Manufacturers, dentists and researchers have claimed the following advantages to CAD/CAM 

in restorative dentistry: 

 Reduced production time for copings, frameworks and final restorations and thus 

increased productivity. 

 Reproducible units, measurable results and consistency. 

 Reduced learning time and curve for design and use of the machines, which are generally 

simple and user friendly. 

 Freedom for creativity and flexibility in design and final production as changes can be 

made at any stage before milling and can allow for subtle correction after milling. 

 Multiple works can be done simultaneously in one machine, a database of designed and 

manufactured restorations can also be readily available. 

 Future production methods and upgrades can be made available rapidly. 

 Waste is avoided as errors can be viewed and immediately corrected before milling. 

 Ease of transfer of knowledge and sharing of work between clinicians, patients and 

laboratories on a global scale.  

 Many restorative options are available: inlays, onlays, veneers, partial crowns, full 

crowns and multi-unit bridges. 

 Many material options such as composite, ceramic, zirconia, alumina and titanium can all 

be used depending on the system being used and preference of user. 

 Support and maintenance by the manufacturer/vendor. 

 Use of materials which are not radiopaque (except for titanium). 
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The following advantages have been stated specifically for the CEREC system: 

 Different material options such as composite, ceramic and alumina can all be used 

depending on user preference. 

 Milling time is between 8-20mins depending on size, hardness of material and method 

being used. Using the Fast-mill function can take less than 10 minutes for mill 

completion. Milling accuracy is now <30µm for fit and marginal integrity. 

 Blending of block shades with tooth shade has improved aesthetics. 

 Ceramic blocks are completely biocompatible and non-cytotoxic thus being extremely 

safe. 

 Many restorative options are available: inlays, onlays, veneers, partial crowns, full 

crowns.  

 The restorations can be repaired intraorally, if necessary with similar materials, have 

excellent bondability, and reduced wear to antagonistic natural enamel. 

 Relative long life-time of CAD/CAM machines ensures clinical reliability. 

 Obtaining the data of the prepared teeth/tooth only takes a few seconds. 
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1.3. CHALLENGES FOR CAD/CAM IN DENTISTRY 

 

The following is a reflection on the CEREC 3D Chairside system, so most of the statements 

below reflect this system unless otherwise stated. 

 

1.3.1 Cost 

Costs of purchase, upgrade, maintenance, fees and learning still remain extremely high for all 

CAD/CAM systems. The estimated figure for the number of dentists using CAD/CAM 

worldwide is still not available, but it would be safe to assume that only those who can afford 

the purchase on the basis that their patients can afford the fees would imply that the majority 

of the world’s population would not benefit from this form of dentistry. 

 

1.3.2 Data Capture/Input Device 

 Powdering which is necessary for accurate picture visibility for the CEREC Chairside 

system is a great inconvenience and can lead to distortion and incorrect data capture if too 

little or too much powder is sprayed; flaking may also occur which leads to inaccurate 

data capture. In addition to this, the layer of powder creates a ―gap‖ which should be 

compensated for. Although laser camera could do away with this problem, there have 

been unofficial reports that although smaller and more convenient to handle, the laser 

cameras remain unreliable, but there are no independent data to support either positive or 

negative claims. 

 The CEREC Chairside camera size remains large and is difficult to capture posterior teeth 

especially on individuals with limited mouth opening. Slight changes in angulation in 



39 

 

each plane (pitch, roll, yaw) do take place as human hands are not static and 

physiological tremors do occur; this may lead to distortion and failed images. No single 

reliable stabilising device exists at present which would reduce or eliminate data capture 

stability problems. 

 The input device does not have its own light source, which can lead to inaccurate data 

capture on darker, deeper and hard to reach areas. A light source might obviate the need 

for powdering as the powder is used to reflect and intensify the light entering the unit. 

 Although the Inlab systems are comparatively more accurate in comparison to the 

Chairside system in obtaining the prepared tooth’s data, the whole process (for the Inlab 

systems) to the end product remains tedious (impression taking, making casts and models 

etc) and increases cost, time, and the possibility of errors especially for multi-unit 

bridges. 

 

1.3.3 Milling/Output 

New reports by the cerec.net discussion board have revealed that the new CEREC 3D v3.0 

software takes longer for calibration and milling. This is definitely a draw back as what is 

required is time reduction with better results. However, milling time can be reduced by using 

the Fast Mill function but the milled surface is rougher, and there have been reports that the 

general milling time has in fact increased by 5-8 minutes on default settings. Micro-cracks 

also do occur during milling which can lead to devastating fracture of restorations. Although 

the Chairside unit can capture whole arches, it cannot mill multi-unit bridges, so for bridges, 

conventional methods are still a better option. 
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1.3.4 Finalising 

A controversy remains over the finishing procedures on glazing or polishing, as there is no 

conclusive evidence for using the one over the other. Giordano (Milling and Finishing Effects 

On Machinable Blocks. e-Newsletter ViDent Bloc Talk 2007; 1: 3-4) states that glazing and 

staining alone takes long for completion and if not done well can damage the milled product; 

but not glazing leaves behind micro-cracks made during milling; polishing could also 

exacerbate these cracks leading to eventual fracture. Fasbinder (Adhesive Cementation: The 

Overlooked Key to Success. e-Newsletter ViDent Bloc Talk 2007; 1: 7-8) also raised the 

question of cementing or bonding. Although there have been some suggestions little to no 

reliable research has been carried out. As the blocks are not all made of the same material 

(Zirconia, Porcelain, Composite etc) the materials are structurally different and should be 

handled differently, but there is still no consensus on this and it has been unofficially observed 

that most private users do not know the exact material of the blocks they use, nor how 

different procedures may affect the ultimate results. 

 

Monopoly of the market may also have limited creativity, development and affordability. It 

would appear that patent issues and manufacturing costs have prevented the development of 

more Chairside systems.  

 

1.4. CONCLUSIONS 

Since the first inception of CAD/CAM in dentistry and over the last 20 years the CEREC 

Chairside system (the only chairside system available at present) has gone through multitudes 

of changes in hardware, software, materials and general knowledge of clinical aspects. 
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Restorative work has since been done with less effort, quickly and in certain cases in a single 

visit in the dental office. 

 

Unfortunately much of the supporting data are anecdotal and contradictory. There is still a 

great deal of research required in this field in all its aspects. The extremely large amount of 

non-peer reviewed information available is easily accessible, but the scientific peer reviewed 

studies are difficult to obtain as they are either in libraries or in pay subscription journals. This 

means that anyone can gain easy access to questionable information while the valid 

information remains open to a few. The fact that the dental industry and especially high end 

technology such as CAD/CAM is extremely costly may also be a contributor to the lack of 

quality and quantity of reliable research as comparatively few institutions have the staff, skills, 

support, equipment, time and financial backing to conduct extensive studies to achieve 

competitive results. 

 

There are a number of areas which have been observed requiring more studies and 

evidence-based information: 

 There is lack of concise information on the history and developments of Restorative 

CAD/CAM.  

 There is no standard for determining, measuring, and defining fit for restorations. In-vivo 

measurements still remain a challenge. 

 Strength (fracture & flexural): although the most researched there are too many 

non-scientific articles and several of the scientific results are quite contradictory. 
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 Wear: An area with significant studies has also produced notable results on the amount 

and rate of wear for different materials inclusive of enamel and dentine, however the 

challenges are still in imitating the exact intra-oral environment, forces and wear pattern 

in relation to natural teeth and different restorative materials; this unfortunately is 

presently still impossible to do as the factors determining wear in general and predicting 

its outcome are wide and varied. 

 Aesthetics: As an extremely subjective factor, it is challenging to carry out and measure, 

and as a result, the majority of information on this topic is non-scientific. The few 

scientific exceptions lead to more questions than answers, research should be carried out 

at a global level to obtain an estimate figure on what is aesthetically pleasing in relation 

to teeth shape, colour and smile. Measuring aesthetics and colour remain problematic, as 

there are still varied opinions on the best measuring system and to date a standard has not 

been developed. Until then, all the present methods pose numerous questions about their 

validity. 

 Post-operative sensitivity: as with aesthetics this is difficult to measure objectively, and 

there are many compounding variables: timing, relationship with materials used and 

bonding/cementation, degree of sensitivity, age, gender, disposition, type of pain and so 

on. 

 Over the past few years there have been many new materials and brands introduced, and 

almost all the information provided (especially for the newer materials and brands) is 

from manufacturers. This information must be considered biased until independent 

scientific studies provide evidence in corroboration. It might be useful to establish an 

independent site where manufacturers could put up their new materials and information, 
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and request institutions to investigate and update the findings. The drawback again is 

funding, where the largest contributors could be the manufacturers; hence again biased 

results may be published. 

 

As most of the materials used for Inlab are similar to those used for Chairside the same 

applies however, the chairside system is unique and requires additional studies such as: 

 Powdering: hopefully do away with this method by using a laser camera or having a self 

contained light source on the scanning device. 

 Camera size: the shaft and body are presently too large and relatively heavy. 

 Picture: a stabilizing device could help to avoid the problems with Angulation (pitch, roll 

and yaw) and physiological tremors.  

 

We can still consider computerized Dentistry in its infancy and there is a lot of room for 

improvement and development. CAD/CAM has indeed facilitated the clinician’s work and 

brought merit to dentistry in that high quality restorations of varied materials are readily 

available in a single short visit using simple techniques. At the present pace of development 

we can be assured that science and technology will surpass what we may have only thought 

impossible a few years ago, as CAD/CAM has done in the past we can look forward to having 

a clearer view in the way we work today and in the future. 
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CHAPTER 2. AIMS AND OBJECTIVES 

 

The review of the literature and history of CAD/CAM in general, and the CEREC Chairside 

System in particular, has revealed that there are areas of potential errors as in powdering, the 

preparation, and in positioning the camera. The picture seems to be one of the major problems 

especially when capturing complex preparations; the angle axis (roll, pitch and yaw) and height 

have always been a problem particularly when designing multiple restorations and/or multi-unit 

bridges.  

 

As individuals, the CEREC users are subjected to physiological tremors and other external 

effects such as patient movement, which directly or indirectly influence the positioning of the 

camera thus the quality of the captured image. Only one study has measured the camera tilt error 

generated by clinicians for Class I and II preparations. It was found to be 1.98 ±1.17 degrees on 

average with some being more than 5 degrees (Parsell et al, 2000). This tilt error will affect the 

accuracy and fit of milled restorations. It takes time to appropriately positioning the camera head 

particularly when trying to capture more than one restoration or for multi-unit bridges. The 

problem of active triangulation in the CEREC system as a result of tilt increases the virtual 

occlusal-cervical height of the prepared tooth. Depth data from the subsequent shadow are 

therefore unreliable, so that the internal fit of CEREC crowns may be poor. Distal shadows also 

influence the thickness of the cement spaces after milling, particularly at the distal axial walls 

(Mou et al, 2002). Clinicians and researchers have called for improvements in optical textures, 

smaller errors in interior orientation parameters attributed to instability, and smaller errors in the 
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relative orientation and the camera. Ideally, the use of a fixed camera lens system is expected to 

reduce these errors (Grenness, Osborn and Tyas, 2005). 

 

There are presently no studies even by the manufacturers determining the errors that may occur 

with changes in axis angle of the camera and how this may affect the subsequent image and 

ultimately therefore the fit of the restoration. It should be possible to verify which axis change 

(roll, pitch or yaw) is most susceptible to angular changes and the extent to which these changes 

are significant to the final restorative result before designing and milling.  

 

The clarity and speed of picture and data capture in the CEREC chairside system is primarily 

dependent on the stability of the camera head itself. There are presently 2 systems which act as 

supports but not as stabilizing devices, therefore they both still require a steady hand and no 

external or internal movements; in addition they do not guarantee roll, pitch or yaw for each 

different picture taken. 

 

The two objectives of this study are therefore to: 

1) Verify and determine the visual and angle threshold errors to changes in pitch, roll and yaw of 

the intraoral camera and their effects before milling. 

2) Devise a system or instrument that can quickly and efficiently be used to stabilise the CEREC 

chairside camera head and in turn be used in combination with other systems so that data 

capture is effortless, convenient, unaffected by movement, accurate and suitable for a variety of 

restoration preparations.  
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CHAPTER 3. METHOD & MATERIALS 

 

3.1 ANGLE ERROR THRESHOLDS 

The CEREC chairside camera uses infrared light by transmitting and receiving it so that light 

differences create a picture (Kubard, 2000), and active triangulation is used to capture surface 

texture (Mou et al, 2002). The camera is large and difficult to manipulate and can be used in 

planar as well as three-dimensional axes, as shown in figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 The basic angulations and movements of the camera: x = roll, y = pitch and z = yaw. A 

= body/left-right B = height/up-down C = front-back. L = Camera Lens 

 

 

Data was measured for angle error using the x, y, z axes; where x = roll, y = pitch and z = yaw.  

Threshold error margins were 0°, 1°; 3°, 5°, 10°, 15° and 20° for a full crown preparation on tooth 

24 on a prefabricated Aesthetic Base Gold (ABG) Model which eliminated the need for 

powdering, as powdering would inevitably distort results (difference in thickness, clarity, 

layering, clumping etc as it is impossible to exactly powder equally each time an angle is 

modified). All studies were carried out under the same condition of temperature and humidity. 
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The model was fixed to the upper member of an articulator to which a protractor had been 

attached (figure 3.2). To measure angulation, the position of the articulator arm was varied and 

the angle verified using the protractor (figure 3.3). All instruments were fixed to a counter top; 

the articulator was clamped using a G-clamp. The intraoral camera was attached to a laboratory 

clamp (figures 3.4 to 3.6), and the camera height was adjusted so that the lens was no more than 

1mm from the closest tooth surface at all times and angles. The default set up was the path of 

insertion angle. 

 

 

 

 

 

 

 

Fig 3.2 Direction of movement of articulator 

 

 

 

 

 

 

Fig 3.3 Accuracy of placement of model with protractor (note 90° line-articulator and model) 
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Fig 3.4 Set-up for Pitch 

 

 

 

 

 

 

 

Fig 3.5 Set-up for Yaw 

 

 

 

 

 

 

 

Fig 3.6 Set-up for Roll 
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Initial successful pilot studies for pitch, roll and yaw were made. Multiple images were taken 

and only the clearest were selected and used to avoid interlacing (merging) the pictures. The use 

of a single image would reveal the exact angle errors obtained: multiple pictures create interlacing 

which the CEREC system automatically corrects by diminishing some errors and angle deviations. 

This would make it impossible to identify the errors which the system cannot correct; therefore a 

single image is essential. For each image, angle errors, shadows, margin discrepancies, and 

surface texture were visually verified, as was the ability to complete a full restoration with 

minimal adjustments. Before commencement of measurements once data was captured, errors 

were verified to exclude differences due to angle change.  

Pitch 

Pitch was measured by moving the articulator downwards (figure 3.3), reproducing in effect, an 

upward tilt of the camera tail-end (distal). Clinically, a change in camera position whereby the 

anterior part is lifted upwards does not occur because of the stop on the anterior end of the 

camera. 

Yaw 

An angle grid was made and fixed to a flat surface (figures 3.5 and 3.7). The model was moved 

in a clockwise direction according to the grid angles by aligning pencilled marks on the 

mid-line of the model anteriorly and posteriorly; the model was moved over a single starting 

reference point over each angle. 

 

 

Fig 3.7 The grid and defined angle lines for 

yaw. 
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Roll 

 

To measure roll, the model was fixed to the articulator sideways (figures 3.6, 3.8 and 3.9). The 

upper arm of articulator was adjusted on a downward tilt which would in turn signify a buccal 

roll movement for the camera. 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.8 Positioning for angle for Roll 

 

 

 

 

 

 

 

 

 

Fig 3.9 Roll position (measurement tool placed behind model) 
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3.2 IMAGE MEASUREMENTS 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.10 Measurements for angle difference: A = bucco-lingual occlusal B = mesio-distal 

occlusal C = bucco-lingual internal shoulder D = mesio-distal internal shoulder E = 

bucco-lingual external shoulder F = mesio-distal external shoulder. E-C difference = 

combined shoulder width of buccal and lingual shoulders; F-D difference = combined 

shoulder width of mesial and distal shoulders. 

 

 

For all angles and variations, results were observed and measured for 0°, 1°; 3°, 5°, 10°, 15° and 

20° and measurements were made as shown in figure 3.10 for the occlusal, shoulder and margin 

dimensions. The Measurement tool in the CEREC software was used to measure the distances 

(figure 3.11). To increase consistency, a transparent reference grid was constructed and attached 

to the computer screen to allow for accurate and consistent positioning of the measuring points. 
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Maximum zoom was used for enhanced viewing, the height difference for the measuring points 

at 0° was averaged and a leeway of ±0.01mm was allowed for each position, as it is impossible 

to achieve exactly coincident points when measuring to a thousandth of a millimetre. The study 

set-up was repeated three times and measurements taken repeatedly for each set-up. 

 

 

 

 

 

 

 

 

 

A             B 

Fig 3.11 An example of the use of the measurement tool A: Without Grid B. With Grid 

 

3.3 IMAGE QUALITY ASSESSMENT 

As none of these measurements have ever been made before, and it was not possible to predict 

what significant differences, if any, may emerge, it was felt important to have some form of 

qualitative measurement in order to assess the relative ease or difficulty encountered when 

making the images at different angulations. This would be important for the kind of stabilisation 

that might be required. 
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A five-point scale was therefore devised to assess the presence of shadows, the quality of the 

surface texture, margin discrepancies that may require adjustment, and the ability to 

automatically complete the restoration with ease and accuracy. The scale and key is shown in 

table 3.1. 

Table 3.1 Key for qualitative assessment of images 

 SCORE 

 0 1 2 3 4 

SHADOWS None Minimal Distinctive Area behind line  

of angle is 

obscure 

Area behind line of 

angle disappears 

SURFACE 

TEXTURE 

Smooth Fairly rugged Rugged Evidently rugged 

with distortions 

Extremely rugged 

MARGIN 

DISCREPANCIES 

Smooth 

and 

distinct 

Smooth Requiring  

minimal 

adjustments 

Requiring major 

adjustments 

Obscure, unable to 

design automatically 

AUTOMATIC 

COMPLETION 

Accurate Accurate, 

requiring 

minimal 

adjustments 

Requiring fairly 

extensive 

adjustments, but 

possible to 

complete 

Impractical and 

inaccurate to 

complete 

Impossible to 

complete accurately 

 

3.4 ANALYSIS 

Data were entered into the SAS
©
 statistical package (v 9.1, SAS Institute Inc., USA). The study 

is balanced between three factors: the seven variations in angle, the three variations in axis, and 

the six measurements, with three replicates with each factor combination. It was therefore 

appropriate that a three-factor Analysis of Variance (ANOVA) be performed to test for possible 

interactions between the different factors. Two analyses were performed: 

1. 3-way ANOVA, with three replicates per cell, performed on the measurements themselves 
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2. 3-way ANOVA performed on the standard deviations of the three replicates in each cell (a 

log transformation was performed on the standard deviations) to test whether the 

consistency of the readings is affected by any of the factors. 
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3.5 STABILITY DEVICE 

3.5.1 Development of the device 

Various devices which included hinged and clamp designs were produced using wax and tested 

in trials. The devices were either too intricate, costly to produce, large, would take long for 

placement and/or could not be used on all quadrants.  

 

Further trials with typodonts proved that it was either impractical or impossible to guarantee a 

restriction of movements as they would inevitably need to change in order to adapt to the 

preparation path of insertion. Hence it was felt that if the camera could be stabilised prior to 

preparation, perpendicular to the occlusal surface, and in such a way that minor movements 

could still be made in order to take into account any preparation direction, this would solve 

many of the problems reported by clinicians, especially inexperienced ones. Studies using a 

wax prototype found that different angles and distances from every tooth would be necessary; 

consequently different designs were made and improved which would allow for stabilising and 

positioning the camera in different regions of the mouth. Placement would require a material 

which could contour to the site where the device was placed and later harden enough to be 

steady and remain in place, and polyvinyl siloxane impression putty proved to be ideal for this 

purpose.  

 

As the device allows for a variety of placement combinations, pilot studies were first performed 

with the device made from modelling wax. It was subsequently produced using acrylic for 

strength and durability. The end product was to be made of stainless steel which automatically 

reduced its thickness while increasing durability, strength and the ability to be disinfected by 
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various methods for re-use (figure 3.12). Acrylic could alternatively be used for cost 

effectiveness as it can be produced in auto-polymerising or light-cured material to the same 

overall dimensions: it would, though, have to be thicker for strength. 

 

 

     

   

 

           

A          B       C 

 

 

 

 

  D 

Fig 3.12  A: final device design and dimensions; B and C: acrylic prototype version; D: 

stainless steel version. 

 

3.5.2 Use of the device 

In order to test the device the clinical situation was reproduced to enable a variety of users to 

experience the device and report on its convenience. 

 

A prefabricated Aesthetic Base Gold (ABG) Model was again used to exclude powdering 

during repetitious data capture as the device would be continuously removed and placed for 
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each trial. Two models were made using ABG. These were placed and fixed to an articulator 

(which in turn was fixed to a table using a G-clamp) for user comfort and convenience in 

holding the camera as well as to prevent the users from interfering with the positioning of the 

articulator and models. The full set-up was arranged and the device fixed in place using 

Coltène
®
 lab putty. A crown was milled from the 24 tooth preparation; this was in order to 

verify if initial estimates of the unprepared tooth would lead to a close to accurate insertion 

angle after preparation. The insertion angle is expected to change from the initial position as it 

is impossible to prepare exactly as planned on an unprepared tooth: after preparation slight 

adjustments will be required to achieve an accurate insertion angle. The model was repositioned 

on the articulator to simulate quadrants 2 and 4 (figures 3.13 to 3.15).  

 

 

 

 

Fig 3.13 Set-up of stabilising (acrylic) device with lab putty to simulate quadrants 2 and 4 

 

 

 

 

 

 

 

Fig 3.14 Camera positioned on device 

 

 

 

 

 

 

 

 

Fig 3.15 Stainless steel device on model and articulator 
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Data capture was taken without and then with the device. Ease of Use was established by 

recording scores from 10 different users on a 100mm Visual Analogue Scale where 0 = easy 

and 100 = difficult.  

3.5.3 Time for set-up 

Time for Set-up was measured using a stop-watch and repeated ten times. Setting up the device 

involved positioning the putty appropriately, with the device on the desired area of the oral 

cavity and using the CEREC camera to ensure proper path of insertion. The results of ten 

repetitions were then averaged. Additionally, time for placing of putty on the device was also 

measured. Finally, both times were added to identify the overall time for putty placement and 

set-up which included data capture. 
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CHAPTER 4. RESULTS 

 

4.1 ANGLE THRESHOLD ERROR: IMAGE MEASUREMENTS 

 

Figure 4.1 shows three images from the ideal path of insertion, and figure 4.2 gives examples of 

the variations of pitch, roll and yaw for the different angles of measurement. 

Fig 4.1 Images from a 0° Path of insertion 

 

It is clear even from a visual inspection of these images that after only a small increase in the 

angulation, errors are likely. 
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Fig 4.2 Visual effects of angle changes. Left column: Pitch, middle: Roll, right: Yaw. 

1º 

3º 

5º 

 
1 

 

10º 

15º 

20º 
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Table 4.1 gives all the measurements obtained. Figures in red and with an asterisk represent 

measurements where difficulties or errors were encountered, but where it was still possible to 

make a measurement. However, that measurement would have been doubtful. The absence of a 

measurement means that it was impossible to make a measurement at all.  

 

It can be seen that the results for the first four angles (0
º
, 1

º
, 3

º
 and 5

º
) are complete, with only a 

few uncertain readings (all three replicates of the same reading) at 5
º
. At 10

º
 and 15

º
 all 

replicates of the same measurement are missing and there are many more uncertain readings, 

and at 20
º
 there are a number of missing readings as well as uncertain ones. Therefore only the 

first four angles were included in the analysis, to give a balanced analysis which would be 

easier to interpret. 
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Table 4.1 Distance measurements with angle change at three different occasions (AET1, 2, 3). 

Red (asterix) figures represent uncertain measurements. 

 

AET1 AET2 AET3 

  
ROLL PITCH YAW 

  
ROLL PITCH YAW 

  
ROLL PITCH YAW 

0° A 5.526 5.558 5.572 0° A 5.557 5.565 5.504 0° A 5.567 5.579 5.564 

 
B 3.759 3.76 3.757 

 
B 3.768 3.772 3.736 

 
B 3.748 3.855 3.799 

 
C 7.645 7.648 7.62 

 
C 4.712 7.591 7.584 

 
C 7.572 7.421 7.573 

 
D 4.744 4.773 4.757 

 
D 4.712 4.694 4.755 

 
D 4.707 4.621 4.69 

 
E 8.882 8.864 8.845 

 
E 8.848 8.867 8.847 

 
E 8.908 8.951 8.973 

 
F 5.824 5.889 5.814 

 
F 5.875 5.812 5.847 

 
F 5.912 5.887 5.851 

1° A 5.526 5.55 5.539 1° A 5.548 5.575 5.584 1° A 5.623 5.562 5.537 

 
B 3.764 3.716 3.712 

 
B 3.737 3.707 3.734 

 
B 3.773 3.777 3.774 

 
C 7.761 7.614 7.685 

 
C 7.599 7.655 7.565 

 
C 7.629 7.536 7.57 

 
D 4.857 4.759 4.703 

 
D 4.724 4.701 4.7 

 
D 4.622 4.639 4.666 

 
E 8.891 8.878 8.85 

 
E 8.896 8.819 8.89 

 
E 8.879 8.879 8.958 

 
F 5.853 5.849 5.863 

 
F 5.825 5.861 5.83 

 
F 5.868 5.86 5.879 

3° A 5.562 5.533 5.585 3° A 5.525 5.555 5.587 3° A 5.564 5.551 5.558 

 
B 3.768 3.721 3.766 

 
B 3.767 3.707 3.747 

 
B 3.747 3.742 3.767 

 
C 7.675 7.624 7.68 

 
C 7.647 7.628 7.614 

 
C 7.586 7.562 7.532 

 
D 4.755 4.765 4.775 

 
D 4.741 4.768 4.7 

 
D 4.709 4.759 4.696 

 
E 8.904 8.898 8.879 

 
E 8.896 8.899 8.864 

 
E 8.876 8.859 8.912 

 
F 5.89 5.836 5.87 

 
F 5.852 5.876 5.819 

 
F 5.939 5.947 5.829 

5° A 5.57 5.533 5.539 5° A 5.655 5.571 5.591 5° A 5.569 5.549 5.559 

 
B 3.757 3.674 3.703 

 
B 3.79 3.739 3.771 

 
B 3.761 3.641 3.768 

 
C 7.643* 7.624 7.592 

 
C 7.639* 7.51 7.484 

 
C 7.58* 7.589 7.535 

 
D 4.779 4.765* 4710 

 
D 4.633 4.798* 4.79 

 
D 4.699 4.702* 4.745 

 
E 8.879 8.841 8.874 

 
E 8.865 8.893 8.878 

 
E 8.919 8.837 8.948 

 
F 5.835 5.89* 5.85 

 
F 5.872 5.775* 5.805 

 
F 5.912 5.918* 5.889 

10° A 5.562* 5.542 5.609 10° A 5.562* 5.527 5.587 10° A 5.59* 5.539 5.602 

 
B 3.83* 3.62 3.735 

 
B 3.82* 3.64 3.73 

 
B 3.789* 3.733 3.718 

 
C 7.815* 7.718 7.592* 

 
C 7.97* 7.665 7.586* 

 
C 7.831* 7.612 7.708* 

 
D 4.792 4.956* 4.735 

 
D 4.779 4.94* 4.777 

 
D 4.643 4.858* 4.749 

 
E 8.949* 8.843 8.98* 

 
E 8.918 8.817 8.867* 

 
E 8.948* 8.893* 8.963* 

 
F 5.951 

 
5.851 

 
F 5.89 

 
5.8 

 
F 5.922 

 
5.839 

15° A 5.506* 5.538 5.571 15° A 5.507* 5.539 5.576 15° A 5.606* 5.528 5.554 

 
B 3.786* 3.513* 3.747 

 
B 3.812* 3.67* 3.709 

 
B 3.825* 3.666* 3.723 

 
C 8.127* 7.665 7.885* 

 
C 8.122* 7.749 7.642* 

 
C 8.179* 7.697 7.648* 

 
D 4.753 5.008* 4.755 

 
D 4.637 4.984* 4.712 

 
D 4.677 5.023* 4.73 

 
E 8.949* 8.89 8.98* 

 
E 8.992 8.831* 8.872* 

 
E 9.041* 8.886* 8.984* 

 
F 5.986 

 
5.836 

 
F 5.835 

 
5.808 

 
F 5.877* 

 
5.824 

20° A 5.5* 5.577 5.582 20° A 5.497* 5.569 5.574 20° A 5.528* 5.516 5.576 

 
B 3.755* 3.6 3.752 

 
B 3.828* 3.615 3.703 

 
B 3.766* 3.667 3.739 

 
C 

 
7.656* 7.897* 

 
C 

 
7.797* 7.659* 

 
C 

 
7.618* 7.655* 

 
D 4.79 

 
4.757 

 
D 4.679 

 
4.737 

 
D 4.831 

 
4.689 

 
E 

 
8.913* 8.933* 

 
E 

 
8.961* 8.896* 

 
E 

 
8.947* 8.942* 

 
F 5.909* 

 
5.836 

 
F 5.978* 

 
5.869 

 
F 5.954* 

 
5.864 
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Table 4.2 shows the results of the three-way analysis of variance performed on the 

measurements, and shows that, while there are highly significant differences between the 

different measurements – which are to be expected, since they are measuring different things – 

there are no other significant differences. Thus neither the four different angles nor the three 

different axes had any influence on the readings, as confirmed by the average values across the 

four different angles and across the three different axes. 

 

Table 4.2 Analysis of variance on the measurements 

 

Source DF Type III SS Mean Square F Value Pr > F 

Degree 3 0.1289463 0.0429821 1.08 0.3585 

Time 2 0.1206587 0.0603293 1.52 0.2222 

Measurement 5 630.6421097 126.1284219 3176.05 <.0001 

Axis 2 0.0313124 0.0156562 0.39 0.6749 

Time*Axis 4 0.1680665 0.0420166 1.06 0.3794 

Time*Measurement 10 0.5056418 0.0505642 1.27 0.2502 

Degree*Time 6 0.259225 0.0432042 1.09 0.3722 

Degree*Measurement 15 0.6935673 0.0462378 1.16 0.3055 

Measurement*Axis 10 0.2826668 0.0282667 0.71 0.7124 

Degree*Axis 6 0.280356 0.046726 1.18 0.3217 

 

 

To test for consistency across the measurements, for every combination of the levels of the 

three factors (angle, measurement and axis) the standard deviation across the three replicates, 

AET1, AET2 and AET3 (i.e. the SD of these three values) was calculated and a three-way 

ANOVA was performed on the log transformation of these standard deviations. This is shown in 

Table 4.3. 
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Table 4.3 Three-way ANOVA results on the Log SDs of the three replicates 

 

Source DF Type III SS Mean Square F Value Pr > F 

Degree 3 4.06638661 1.3554622 2.58 0.0718 

Axis 2 0.07216705 0.03608353 0.07 0.9337 

Measurement 5 11.07833673 2.21566735 4.22 0.005 

Measurement*Axis 10 7.39138212 0.73913821 1.41 0.224 

Degree*Axis 6 1.01535814 0.16922636 0.32 0.92 

Degree*Measurement 15 7.24031575 0.48268772 0.92 0.5532 

 

 

The results are similar to those on the measurements themselves, with once again only the 

different measurements showing significant differences. 

 

4.2 ANGLE THRESHOLD ERROR: IMAGE QUALITY ASSESSMENTS 

 

Figure 4.4 shows the quality assessments for each of the measurements made using the key 

given in table 3.1. If the scores of 3 and 4 are considered to be such that an inaccurate 

restoration will result then scores of less than 9 would be acceptable. 

 

Difficulties were first encountered at the 5º angle, and only for axis variable of pitch. At 10º 

both roll and pitch caused difficulties, with pitch again creating the greatest difficulty. Most 

problems were encountered with the higher angulations. 

 

Some selected images are shown after the table, to illustrate the difficulties encountered. 
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Table 4.4 Quality assessments of measurements 

 
ROLL PITCH YAW 

    0 1 2 3 4     0 1 2 3 4     0 1 2 3 4 
0° Shadows         0° Shadows         0° Shadows         
  Surface           Surface           Surface         
  Margin           Margin           Margin         
  CR          CR          CR         

    0     0     0 
1° Shadows        1° Shadows        1° Shadows        
  Surface          Surface           Surface         
  Margin           Margin           Margin         
  CR           CR           CR         

    2     1     0 
3° Shadows        3° Shadows         3° Shadows        
  Surface          Surface          Surface        
  Margin           Margin           Margin        
  CR       

 
  CR       

 
  CR        

    2     6     1 
5° Shadows       5° Shadows        5° Shadows        
  Surface          Surface         Surface       
  Margin          Margin           Margin       
  CR          CR           CR        

    5     12     2 
10° Shadows         10° Shadows         10° Shadows        

  Surface          Surface          Surface        
  Margin           Margin            Margin        
  CR       

 
  CR            CR        

    10     15     3 
15° Shadows         15° Shadows         15° Shadows       

  Surface           Surface           Surface        
  Margin           Margin            Margin        
  CR            CR            CR        

    12     16     6 
20° Shadows         20° Shadows         20° Shadows        

  Surface           Surface           Surface       
  Margin            Margin            Margin        
  CR            CR            CR        

    12     16     12 

 

 

 

 

 

 

 

Fig 4.3  View of image at 0°. Note the lack of shadows, the smooth surface and clear and 

distinct margin. 
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Fig 4.4 Images when Pitch is angled at 20° 

 

 

 

 

 

Fig 4.5 Images when Roll is angled at 20° 

 

 

 

 

 

Fig 4.6 Images when Yaw is angled at 20° 

 

Regarding variations in Pitch, it was found that mesio-distal inaccuracies were most common. 

The effect of shadows affected the preparation as from 5°, and at 10° it was impossible to 

obtain margin measurements. At 20° bucco-lingual measurements were extremely difficult to 

obtain due to both surface and shadow effects. A tilting effect of the abutment towards the 

shadowed area was also noted. 
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For variations in Roll, bucco-lingual inaccuracies were most evident from 10°. Although 

possible to measure, the effects of shadows were evident also from 10° and at 15° it was 

extremely difficult to obtain internal shoulder measurements. At 20° both bucco-lingual and 

mesio-distal areas were dramatically affected, the former being impossible to obtain as shadows 

caused obscurity of the shoulder and margin. 

 

As regards Yaw, bucco-lingual and distal inaccuracies were observed, however the overall 

shape of the restoration was not greatly affected, but a rather confusing twisting effect was 

observed although this did not interfere greatly with the production of a restoration. From 15° 

although possible to complete designing, the restoration required minor adjustments. 

 

4.3 STABILITY DEVICE 

4.3.1 Time taken to set-up and place putty 

A stop-watch was used to measure the time taken to appropriately place the putty on the device 

and the time taken to appropriately place the device in a simulated clinical situation. The total 

time required averaged 21 seconds 433 milliseconds, but a rapid learning curve was observed 

during repetition. The time considerably reduced from an initial time of just over 28 seconds to 

just over 18 seconds. Setting time was not recorded as this will vary according to the material 

used clinically.  

 

4.3.2 Ease of Use 

The results for Ease of Use were tallied from 10 users, some familiar with the CEREC and 

others unfamiliar. The VAS scores in cms are shown in Table 4.5. Generally capturing data from 
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the upper teeth was evidently more challenging whether the device was used or not, however 

not using it was substantially more difficult. Results showed that using the device proved easier 

to place and capture data. There was a 25.3% improvement in using the device in the lower, and 

a 36.4% improvement in using the device in the upper arch. 

 

 

Table 4.5 Stability device ease of use - VAS assessment score (the lower the score the easier) 

 

 

 

 

 Without Device With Device 

ID # Lower Upper Lower Upper 

1 9 73 2 31 

2 74 83 17.5 29.5 

3 60 50 80 80 

4 24.5 61 12 45 

5 50.5 79 40 14.5 

6 60 62 30 25.5 

7 44 83 17 21.5 

8 50 60 20 30 

9 73.5 80 22.5 18.5 

10 50 53.5 1.5 25 

Average  49.6 68.5 24.3 32.1 
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CHAPTER 5. DISCUSSION 

 

The literature review revealed that the Cerec CAD/CAM system is a reliable one that has 

shown good clinical results, but that there are still some areas which give cause for concern in 

that they can affect the accuracy of the subsequent restoration. Much of the problem revolves 

around the capturing of the image because of the inherent difficulties, not least of which is the 

camera itself. It is bulky and difficult to manoeuvre, and subject to errors of angulation in three 

dimensions as well as to errors resulting from the natural tremors of the hand and arm. 

 

This study set out to address the effect of deliberately introducing errors of angulation in order 

to ascertain the threshold beyond which an image would be inadequate and affect the 

restoration accuracy. It was found that for angles up to 5º neither the average measurements, nor 

their variability, were affected by angles of 0, 1, 3 or 5º, nor by changes in the three different 

axes. It would therefore seem that the measurements are robust against changes in the axes and 

angle of the camera, at least over the angles included in the analyses. However, beyond a 

change in angle of 5º the difficulties encountered would almost certainly result in an inaccurate 

restoration. And even at 5º, changes in the pitch of the camera will produce results that might 

also include some inaccuracies in the final restoration. 

 

It was found that even though these angles created difficulty in manipulating the images to 

produce a restoration, it was still possible to do so, again up to a 5º change, but certainly not at 

10º. These are, however, small angles to control without assistance, and hence the quest for a 

stabilising device was well justified. 
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It was somewhat surprising that it was the pitch that was affected the most as the author’s initial 

conjecture was that it would be changes in the axis producing the effect of yaw that would 

result in the greatest inaccuracies. It was curious to observe the distortions produced by changes 

in yaw, but again at 5º and less, these did not affect accuracy. 

 

So to improve accuracy, measurements should preferably not deviate from the path of insertion 

of the restoration by more than 3º. It is therefore imperative that data capture is carried out with 

as little movement and deviation from the path of insertion as possible. The stabilising device 

developed during this study should therefore prove to be of great value as it considerably 

improved the ability of the operator to maintain the camera steady. The clinical procedure 

would be to first position the camera using the stabilising device and polyvinyl siloxane putty, 

so that the camera is perpendicular to the proposed path of insertion of the restoration. Once the 

tooth is prepared, then only very minor changes in camera position would be required, almost 

certainly less than 5º, to capture the final post-preparation path of insertion. Furthermore, the 

stabilising devise would also help eliminate natural hand tremors. 

 

This study deliberately took only one image, but accuracy would be further improved by taking 

multiple images in a small range, which would allow the software to interlace the images into a 

final most accurate one. This aspect of both the camera and the software could be improved 

further, but however if this improves, there would still be a great advantage to the proper 

stabilisation of the camera prior to capture of the image. 
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Due to the rapid development of technologies, upon completion of this paper the CEREC AC 

chairside digital impression system powered by Bluecam was introduced; the system is 

however expensive and could be beyond the reach of potential new users and those wanting to 

upgrade. This may lead to potential new users being deterred and present users continuing with 

their systems. Thus, the stability device would be necessary until further studies have been 

carried out. The CEREC AC and other new technological advancements in the system should be 

reviewed on a separate study. 
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CHAPTER 6: CONCLUSIONS 

 

When data capturing using the CEREC chairside camera, the angle of the camera relative to the 

path of insertion of the restoration should not exceed 3° for changes in Pitch, or 5° for changes 

in Roll and Yaw of the camera. 

 

The stability device designed during this study proved to be more convenient and accurate for 

data capture as it decreased the time of search and reduced both the internal and external factors 

which interfere with data capture.  

 

It is recommend that both in vitro and in vivo studies be undertaken to determine the clinical 

outcomes of using the stabilising device. 

 

 

 



73 

 

REFERENCES 

 

Al-Hiyasat AS, Saunders WP, Sharkey SW, Smith GM, Gilmour WH. Investigation of human 

enamel wear against four dental ceramics and gold. J Dent 1998; 26(5-6): 487-495. 

 

Attar N, Tam LE, McComb D. Mechanical and physical properties of contemporary dental 

luting agents. J Prosthet Dent 2003; 89: 127-134 

 

Audenino G, Bresciano ME, Bassi F, Carossa F. In-vitro evaluation of fit of adhesively luted 

ceramic inlays. Int J Prosthet 1999; 12: 342-347. 

 

Balkaya MC, Cinar A, Pamuk S. Influence of firing cycles on the margin distortion of 3 

all-ceramic crown systems. J Prosthet Dent 2005; 93: 346-55. 

 

Besimo CE, Spielmann HP, Rohner HP. Computer-assisted generation of all-ceramic crowns 

and fixed partial dentures. Int J Comput Dent 2001; 4: 243-262. 

 

Bindl A, Mörmann WH. Clinical and SEM evaluation of all-ceramic Chairside CAD/CAM 

generated partial crowns. Eur J Oral Sci 2003; 111: 163-169. 

 

Bindl A, Mörmann WH. Clinical evaluation of adhesively placed CEREC endo-crowns after 2 

years - preliminary results. J Adhes Dent 1999; 1: 255-265. 

 



74 

 

Bremer BD, Geurtsen W. Molar fracture resistance after adhesive restoration with 

ceramic inlays or resin-based composites. Am J Dent 2001; 14: 216-220. 

 

Chen HY, Hickel R, Setcos JC, Kunzelmann KH. Effects of surface finish and fatigue testing 

on the fracture strength of CAD/CAM and pressed-ceramic crowns. J Prosthet Dent 1999; 82: 

468-475. 

 

Chong KH, Chai J, Takahashi Y, Wozniak W. Flexural strength of In-Ceram alumina and 

In-Ceram-zirconia core materials. Int J Prosthodont 2002; 15: 183-188.  

 

Christel P, Meunier A, Heller M, Torre JP, Peille CN. Mechanical properties and short-term 

in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater 1989; 23: 

45-61. 

 

Drummond JL, King TJ, Bapna MS, Koperski RD. Mechanical property evaluation of 

pressable restoratic ceramics. Dent Mater 2000; 16: 226-233 

 

Estafan D, Dussetschleger F, Agosta C, Reich S. Scanning electron microscope evaluation of 

CEREC 2 and CEREC 3 inlays. Gen Dent 2003; 51. 

 

 

Fasbinder DJ. Clinical performance of chairside CAD/CAM restorations. J Am Dent Assoc 

2006; 137: 22S–31S. 



75 

 

 

Fasbinder DJ. Predictable CEREC occlusal relationships. In: Mörmann WH, Ed. State of the 

art of CAD/CAM restorations: 20 years of CEREC. Quintessence Books, Illinois USA 2006; 

93-100. 

 

Fasbinder DJ, Dennison J, Heys DR, Lampe K. The clinical performance of CAD/CAM 

generated composite inlays. J Am Dent Assoc 2005; 136: 1714-1723. 

 

Filser F, Kocher P, Lüthy H, Schärer P, Gauckler L. All-ceramic dental bridges by the direct 

ceramic machining process (DCM). In: Sedel L, Roy C, Eds. Bioceramics. Vol 10: 

Proceedings of the 10th International Symposium on Ceramics in Medicine. 1997; 10: 

433-436. 

 

Filser F, Kocher P, Weibel F, Luthy H, Scharer P, Gauckler LJ. Reliability and strength of 

all-ceramic dental restorations fabricated by direct ceramic machining (DCM). Int J Comput 

Dent 2001; 4: 89-106.  

 

Giordano R. Materials for chairside CAD/CAM - produced restorations. J Am Dent Assoc 

2006; 137: 14S-21S. 

 

Giordano RA II, Pelletier L, Campbell S, Pober R. Flexural strength of an infused ceramic, 

glass ceramic, and feldspathic porcelain. J Prosthet Dent 1995; 73: 411-418. 

 



76 

 

Grenness MJ, Osborn JE, Tyas MJ. Stereo-photogrammetric mapping of tooth replicas 

incorporating texture. The Photogrammetric Record 2005; 20: 147-161. 

 

Groten M, , Girthofer S, Probster L. Marginal fit consistency of copy-milled all-ceramic 

crowns during fabrication by light and scanning electron microscopic analysis in-vitro. J Oral 

Rehabil 1997; 24: 871-81. 

 

Guazzato M,. Albakry M, Swain MV, Ironside J. Mechanical properties of In-Ceram Alumina 

and In-Ceram Zirconia. Int J Prosthodont 2002; 15: 339-346. 

 

Herrguth M, Wichmann M, Reich S. The aesthetics of all-ceramic veneered and monolithic 

CAD/CAM crowns. J Oral Rehab 2005; 32: 747-752. 

 

Hickel R, Manhart J. Longevity of restorations in posterior teeth and reasons 

for failure. J Adhes Dent 2001; 3: 45-64. 

 

Ironside JG, Swain MV. Ceramics in Dental Restorations - A Review and Critical Issues. J 

Australasian Ceram Soc 1998; 34: 78-91. 

 

Kawai K, Isenberg B, Leinfelder K: Effect of gap dimension on composite resin cement wear. 

Quint Int 1993; 24: 53-58. 

 

Kidd EAM. Micro-leakage: A review. J Dent 1976; 4: 199-205. 



77 

 

 

Krejci I, Lutz F, Reimer M. Wear of CAD/CAM ceramic inlays: Restorations, opposing cusps, 

and luting cements. Quint Int 1994; 25: 199-207. 

 

Kunzelmann KH, Jelen B, Mehl A, Hickel R. Wear evaluation of MZ100 compared to 

ceramic CAD/CAM materials. Int J Comput Dent 2001; 4: 171-184. 

 

Kurbad A. The Optical Conditioning of Cerec Preparations with Scan Spray. Int Journal of 

Computerized Dentistry 2000; 3: 269-13 

 

Liu PR. A Panorama of Dental CAD/CAM Restorative Systems. Compedium 2005; 26: 

507-513. 

 

Lundin SA, Noren JG. Marginal leakage in occlusally loaded, etched, Class II composite resin 

restorations. Acta Odontol Scand (The Journal of Contemporay Dental Practice) 1991; 49: 

247-254. 

 

Martin N, Jedynakiewicz NM. Clinical performance of CEREC ceramic inlays: a systematic 

review. Dent Mat 1999; 15: 54-61. 

 

Mörmann WH. The evolution of the CEREC system. J Am Dent Assoc 2006; 137: 7S-13S. 

 



78 

 

Mörmann WH, Brandestini M. The fundamental inventive principles of CEREC CAD/CAM. 

In: Mörmann WH, ed. State of the art of CAD/CAM restorations: 20 years of CEREC. 

London: Quintessence Books 2006; 1-8. 

 

Mörmann WH. The origin of the CEREC method: a personal review of the first 5 years. Int J 

Comput Dent 2004; 7: 11-24. 

 

Mörmann WH, Bindl A. 2641 Milling quality of Cerec 2 and Cerec 3 CAD/CAM crowns. A 

SEM investigation. The Editorial Council of The Acta Stomatologica Naissi 2004. 

 

Mörmann, WH, Schug J. Grinding precision and accuracy of fit of CEREC 2 CAD/CAM 

inlays. J Am Dent Assoc 1997; 128: 47-53. 

 

Mörmann WH, Krejci I. Computer-designed inlays after 5 years in situ: clinical performance 

and scanning electron microscopic evaluation. Quint Int 1992; 23: 109-115. 

 

Mörmann WH, Gotsch T, Krejci I, Lutz F, Barbakow F. Clinical status of 94 CEREC ceramic 

inlays after 3 years in situ. In: Mörmann WH, ed. International Symposium on Computer 

Restorations: State of the art of the CEREC method. Chicago: Quintessence 1991:355. 

 

 

Moszner N, Salz U, Zimmermann J. Chemical aspects of self-etching enamel-dentin 

adhesives: a systematic review. Dent Mater 2005; 21: 895-910 



79 

 

 

Mou SH, Chai T, Wang JS, Shiau YY. Influence of different convergence angles and tooth 

preparation heights on the internal adaptation of Cerec crowns. J Prosthet Dent 2002; 87: 

248-55. 

 

Nakamura T, Dei N, Kojima T, Wakabayashi K. Marginal and internal fit of CEREC 3 

CAD/CAM all-ceramic crowns. Int J Prostodont 2003; 16: 244-248. 

 

O’Neal S, Miracle R, Leinfelder K: Evaluating interfacial gaps for aesthetic inlays. J Am Dent 

Assoc 1993; 124: 48-54. 

 

Otto T, De Nisco S. Computer-aided direct ceramic restorations: a 10-year prospective clinical 

study of CEREC CAD/CAM inlays and onlays. Int J Prosthodont 2002; 15: 122-128. 

 

Parsell DE, Anderson BC, Livingston HM, Rudd JI, Tankersley JD. Effect of camera 

angulation on adaptation of CAD/CAM restorations. J Esthet Dent 2000; 12:78-84. 

 

Perdigão J, Geraldeli S, Hodges J. Total-etch versus self-etch adhesive: Effect on 

postoperative sensitivity. J Am Dent Assoc 2003; 134: 1621-1629 

 

Phillips RJ. Simplifying CAD/CAM Dentistry: The fast track to CEREC excellence. Dental 

Products Report (Supp 1) Nov 2005; 1-7. 

 



80 

 

Piwowarczyk A, Ottl P, Lauer H , Kuretzky T. A Clinical Report and Overview of Scientific 

Studies and Clinical Procedures Conducted on the 3M ESPE Lava™ All-Ceramic System. J 

Prosthodont 2005; 14: 39-45. 

 

Posselt A, Kerschbaum T. Longevity of 2328 chairside CEREC-inlays and onlays. Int J 

Comput Dent 2003; 6: 231-248. 

 

Reich S and Hornberger H. The effects of multicoloured machinable ceramics on the 

aesthetics of all-ceramic crowns. J Prosthetic Dent 2002; 88: 44-49. 

 

Rekow DE. A 20-year success story. J Am Dent Assoc 2006; 137: 5S-6S. 

 

Rosenstiel SF, Land MF, Crispin BJ. Dental luting agents: A review of the current literature. J 

Prosthet Dent 1998; 80: 280-302 

 

Schmalz G, Federlin M, Reich E. Effect of dimension of luting space and luting composite on 

marginal adaptation of a Class II ceramic inlay. J Pros Dent 1995; 73: 392-399. 

 

Seghi RR, Denry IL, Rosenstiel SF. Relative fracture toughness and hardness of new dental 

ceramics. J Prosthet Dent 1995; 74: 145-150.  

 

Seghi RR, Sorensen JA. Relative flexural strength of six new ceramic materials. Int J 

Prosthodont 1995; 8: 239-246. 



81 

 

 

Shinkai K, Suzuki S, Leinfelder K, Katoh Y: Effect of gap dimension on wear resistance of 

luting agents. Am J Dent 1995; 8:149-151. 

 

Söderlhom KLM. Correlation of in-vivo and in-vitro performance of adhesive restorative 

materials. Dent Mater 1991; 7: 74-83. 

 

Staninec M, Mochizuki A, Tanizaki K, Jukuda K, Tsuchitani Y. Interfacial space, marginal 

leakage and enamel cracks around composite resins. Op Dent 1986; 11: 14-24. 

 

Sulaiman F, Chai J, Jameson LM, Wozniak WT. A comparison of the marginal fit of In-Ceram, 

IPS Empress, and Procera crowns. Int J Prosthodont 1997; 10: 478-484. 

 

Suttor D, Bunke K, Hoescheler S, Hauptmann H, Hertlein G., LAVA—the system for 

all-ceramic ZrO2 crown and bridge frameworks. Int J Comput Dent 2001; 4: 195-206. 

 

Tinschert J, Zwez D, Marx R, Anusavice KJ. Structural reliability of alumina-, feldspar-, 

leucite-, mica-, and zirconia-based ceramics. J Dent 2000; 28: 529-535. 

 

Tyas MJ, Burrow MF. Adhesive restorative materials: A review. Australian Dental Journal 

2004; 49: 112-121 

 



82 

 

Touchstone A. Simplifying CAD/CAM Dentistry: The fast track to CEREC excellence. 

Dental Products Report (Supp 1) Nov 2005; 1-7. 

 

Unemori M, Matsuya Y, Akashi A, Goto Y, Akamine A. Composite resin restoration and 

postoperative sensitivity: clinical follow-up in an undergraduate program. Journal of Dentistry 

2001; 29: 7-13 

 

Wagner WC, Chu TM. Biaxial flexural strength and indentation fracture toughness of three 

new dental core ceramics. J Prosthet Dent 1996; 76: 140-144. 

 

Zhang Y, Lawn BR. Long-term strength of ceramics for biomedical applications. J Biomed 

Mat Res B Appl Biomater 2004; 69:166-172. 

 

Zhang Y, Lawn BR, Rekow ED, Thompson VP. Effect of sandblasting on the long-term 

performance of dental ceramics. J Biomed Mater Res B Appl Biomater 2004; 71: 281-286. 

 

Zohairy A, DeGee A, Feilzer A, Davidson C: Long term microtensile bond strength of resin 

cements to CAD/CAM blocks. J Dent Res 2002; spec issue 81 


