A COMPARISON OF THE CORROSION BEHAVIOUR OF
444 FERRITIC AND 316 AUSTENITIC STAINLESS STEELS
IN ACIDIC CHLORIDE MEDIA

Feyisayo Victoria, Adams

A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfilment of the requirements for the degree of Masters of Science in Engineering.

Johannesburg, 2009
DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted to the University of the Witwatersrand, Johannesburg for the degree of Master of Science in Engineering. It has not been submitted before in any University for any degree or examination.

(Signature of candidate)

___________ Day of ______________ 2009
ABSTRACT

The application and demand for 316 austenitic stainless steels in many industries including chemical, petroleum, process, marine, etc, and recently as architectural materials, together with the recent global economy crisis, present a strong challenge to engineers to search for a low cost alternative stainless steel with similar corrosion resistant properties to 316 austenitic stainless steel. As a result of the corrosion behavior of a comparatively low cost 444 ferritic stainless steel is compared in this study, with that of 316 austenitic stainless steel in acidic chloride environments where 316 are typically and mostly applied. The pitting corrosion resistances of the two alloys were studied by means of immersion tests and electrochemical techniques including cyclic potentiodynamic polarization, open circuit corrosion potential measurements and chronoamperometry. All the corrosion measurements were carried out at room temperature and at varying concentrations of the electrolytes. The alloys were also characterized prior and after corrosion tests using an optical microscope, scanning electron microscope, a Raman spectrometer and a X-ray diffractometer. The alloys displayed similar corrosion behaviour with slight differences in their corrosion resistance in all the solutions. The passivity of both alloys remained stable with no passivity breakdown and pitting in the lower concentrations of all the investigated solutions. It displayed poor passivation in 1 M hydrochloric acid. Alloy 316 was generally more resistance in all the solutions than alloy 444. Alloy 444 was better corrosion resistant in chloride environments than in the sulphuric acid, while alloy 316 was more resistant in sulphuric acid than in a chloride environment. This was corroborated by SEM analysis, and 444 had more corrosion pits in sulphuric acid while alloy 316 had more pits in chloride environments. XRD and Raman spectroscopy indicated that the corrosion products on alloy 444 in all the solutions were amorphous in nature, while those observed for alloy 316 were crystalline. It can be concluded that alloy 444 can be applied and successfully used to replace alloy 316 in chloride environments especially in sulphuric acid containing 3.5 % NaCl solution.
DEDICATION

This dissertation is dedicated to the almighty God for his immense love and grace upon my life and for taking me this far.
ACKNOWLEDGEMENT

My first appreciation goes to God the all sufficient, the powerful, all glorious, all merciful. He is the giver of my life, the hope that I have. I appreciate Him for teaching me, for given me wisdom and for seeing me through. I have the greatest pleasure to express my profound gratitude and appreciations to the following persons who have contributed in one way or the other to the success of the study.

Professor J. Herman Potgieter: For being the channel through whom God used to make me undertake and complete this study at WITS University. Thanks for your fatherly love, financial assistance, moral support, effective supervision, words of encouragement - indeed you are a father. My God will reward you greatly.

Mr Josias Van Der Merwe: For efficient expertise and critical supervision, love and co-operations throughout the work.

Dr. Peter Apata Olubambi: For your consistent love, care and struggles towards my academic pursuit. You brought me to South Africa and have ever been a strong supporter.

I wish to thank Bruce Mothibeli and Aubrey Xoseka, for your readiness and assistance in getting all facilities used for the laboratory work of this study. I appreciate Mrs Caroline M. Lalkhan, and Mr Abraham R. Seema (EMU, WITS) for your kind assistance during the SEM study. I deeply appreciate Johnson Olugbenga for your kind assistance during the XRD analysis. My gratitude goes to Nthabiseng Maledi for taking your time to see that the Raman analyses were done. Thanks to Nompumelelo Thanjekwayo, Zvanaka Msindo and David Konadu for their assistance during the electrochemical study.

Special thanks to all my friends, the Olubambis, the Ilemobades, Mrs Bola Ikotun, Mrs Seyi Akpor, Mr and Mrs Adewale Adeleke, Mrs Abe, Mr James Adewumi, Enoch Ogunmuyiwa, Chris Idibie, Mr Ayo Afolabi, Mr Abdulfatai Jimoh for the sweet fellowship, love, courage, prayers, words of exhortations and encouragements. You really
made me feel at home during my study. Thanks to my Pastors, Pastor and Pastor (Mrs) Gbenga Ojo for their prayers and encouragement.

I will not forget to appreciate these two people whom God used to shape my life. Mrs Bola Adewumi and Prof. Oladele Akogun I can boldly say that staying with you all those years were really a blessing and all the lessons I learnt have shaped my life. Thanks to my brother and sister Olalekan Babalola and Olayide Babalola for being real and ideal family to be proud of. I thank my parents Mr and Mrs Olabode Babalola for the love care and good training I received from you. I am really blessed by the both of you. I thank my grandfather Pa Babalola Okejipapo for being my friend and mentor, for his prophesy which actually came to pass by my journey to South Africa. I will never forget you. I wish to specially express my sincere appreciations to my husband Mr Clement Kayode Adams for your love, understanding, kindness and the motivations I receive from you every moment. Thanks for standing by me and for all the prayers.

Finally, I gratefully acknowledge the financial support received from the Financial Aid Office of the University of the Witwatersrand for partly funding this study.
TABLE OF CONTENTS

DECLARATION II
ABSTRACT III
DEDICATION IV
ACKNOWLEDGMENTS V
TABLE OF CONTENTS VII
LIST OF FIGURES XIV
LIST OF TABLES XIX

CHAPTER ONE 1
1.0 INTRODUCTION 1
1.1 BACKGROUND AND MOTIVATIONS 1
1.2 PROBLEM STATEMENT 2
1.3 AIM AND OBJECTIVES 4
1.4 RESEARCH QUESTIONS 5
1.5 HYPOTHESIS 5
1.6 SCOPE OF STUDY 5
1.7 EXPECTED CONTRIBUTION TO KNOWLEDGE 5
1.8 STRUCTURE OF THE THESIS 6

CHAPTER TWO 7
2.0 LITERATURE REVIEW 7
2.1 INTRODUCTION TO STAINLESS STEEL 7
 2.1.1 Austenitic stainless steels 10
 2.1.2 Ferritic stainless steels 13
2.2 CORROSION BEHAVIOR OF STAINLESS STEELS 15
 2.2.1 General corrosion behavior 15
 2.2.2 Pitting corrosion 17
 2.2.3 Crevice corrosion 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>CORROSION RESISTANCE OF STAINLESS STEELS</td>
<td>19</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Passivity</td>
<td>19</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Passivity breakdown</td>
<td>20</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Forms of film formed on stainless steels</td>
<td>21</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Stability of passive films form on stainless steels</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>EFFECT OF ALLOYING ELEMENTS ON THE</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Effects of chromium on the corrosion resistance of stainless Steels</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Effects of nickel on the corrosion resistance of stainless steels</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Effects of molybdenum on the corrosion resistance of stainless steels</td>
<td>24</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Effects of titanium and niobium on the corrosion resistance of stainless steels</td>
<td>26</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Effects of nitrogen on the corrosion resistance of stainless Steels</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>CORROSION MEASUREMENTS</td>
<td>27</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Weight loss technique</td>
<td>28</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Electrochemical techniques</td>
<td>29</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>Potentiodynamic polarization method</td>
<td>30</td>
</tr>
<tr>
<td>2.5.2.2</td>
<td>Electrochemical cell</td>
<td>31</td>
</tr>
<tr>
<td>3.0</td>
<td>MATERIALS AND EXPERIMENTAL PROCEDURES</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>MATERIALS</td>
<td>33</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Reagents</td>
<td>33</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Equipment</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>MATERIALS PREPARATION</td>
<td>33</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Samples for microstructural and morphological examinations</td>
<td>33</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Samples for X-ray diffraction studies</td>
<td>34</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Samples for weight loss measurements</td>
<td>35</td>
</tr>
</tbody>
</table>
3.2.4 Samples for electrochemical study 35

3.3 EXPERIMENTAL PROCEDURES 35
3.3.1 Materials characterization 35
 3.3.1.1 Optical microscopy 35
 3.3.1.2 Raman spectroscopy 36
 3.3.1.3 Scanning Electron Microscopy 36
 3.3.1.4 X-ray diffraction 36

3.4 CORROSION STUDIES 36
 3.4.1 Immersion tests 36
 3.4.2 Electrochemical studies 37
 3.4.3 Electrochemical measurement 36
 3.4.3.1 Open circuit potential measurement 38
 3.4.3.2 Cyclic potentiodynamic polarization measurement 38
 3.4.3.3 Chronoamperometry technique 38

3.5 POST CORROSION MEASUREMENTS AND CHARACTERIZATION 38

CHAPTER FOUR 39

4.0 RESULTS AND DISCUSSION 39
4.1 WEIGHT LOSS TESTS 39
 4.1.1 Corrosion kinetics of both alloys in 1 M sulphuric acid solution 39
 4.1.2 Corrosion behaviour of both alloys in 0.1 M sulphuric acid solution 42

4.2 OPEN CIRCUIT CORROSION POTENTIAL VARIATIONS WITH TIME OF BOTH ALLOYS IN SULPHURIC ACID SOLUTION 45

4.3 POTENTIODYNAMIC TESTS 47

4.4 THE CORRELATION BETWEEN THE WEIGHT LOSS AND ELECTROCHEMICAL RESULTS 50

4.5 CHRONOAMPEROMETRIC STUDIES 53

4.6 MATERIAL CHARACTERISATION 56
 4.6.1 Microstructural studies of as-received alloy 316 and alloy 444 56
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2</td>
<td>Microstructural studies of both alloys in 0.1 M sulphuric acid</td>
<td>57</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Morphological studies of as-received alloy 316 and alloy 444</td>
<td>58</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Morphological studies after immersion test</td>
<td>60</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Morphological studies after polarisation test</td>
<td>62</td>
</tr>
<tr>
<td>4.6.5.1</td>
<td>Morphological studies of alloy 316 after corrosion in 0.1 M sulphuric acid</td>
<td>63</td>
</tr>
<tr>
<td>4.6.5.2</td>
<td>Morphological studies of alloy 444 after corrosion in 0.1 M sulphuric acid</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>PHASE IDENTIFICATION COMPOSITION STUDIES</td>
<td>64</td>
</tr>
<tr>
<td>4.7.1</td>
<td>X-ray diffraction of the as-received alloys</td>
<td>64</td>
</tr>
<tr>
<td>4.7.2</td>
<td>X-ray diffraction of the corrosion products on both alloys after polarization test</td>
<td>65</td>
</tr>
<tr>
<td>4.7.2.1</td>
<td>Corrosion products on alloy 316 after polarization studies</td>
<td>66</td>
</tr>
<tr>
<td>4.7.2.2</td>
<td>Corrosion products on alloy 444 after polarization studies</td>
<td>67</td>
</tr>
<tr>
<td>4.8</td>
<td>RAMAN SPECTRA</td>
<td>68</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Raman spectra of as-received alloy 316 and alloy 444</td>
<td>68</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Raman spectroscopy of corrosion products formed on alloys in sulphuric acid solution</td>
<td>73</td>
</tr>
<tr>
<td>4.9</td>
<td>THE CORRELATION BETWEEN ALL THE SURFACE ANALYSES TECHNIQUES</td>
<td>76</td>
</tr>
</tbody>
</table>

CHAPTER FIVE

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>CORROSION BEHAVIOUR OF ALLOY 316 AND ALLOY 444 IN SULPHURIC ACID CONTAINING 3.5 % NaCl</td>
<td>77</td>
</tr>
<tr>
<td>5.1</td>
<td>WEIGHT LOSS TESTS</td>
<td>77</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Corrosion kinetics of both alloys in 1 M sulphuric acid containing 3.5 % NaCl</td>
<td>77</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Corrosion behaviour of both alloys in 0.1 M sulphuric acid solution containing 3.5 % NaCl</td>
<td>801</td>
</tr>
</tbody>
</table>
5.2 OPEN CIRCUIT CORROSION POTENTIAL VARIATIONS
WITH TIME OF BOTH ALLOYS IN SULPHURIC ACID
SOLUTION 83

5.3 POTENTIODYNAMIC TESTS 84

5.4 THE CORRELATION BETWEEN THE WEIGHT LOSS AND
ELECTROCHEMICAL RESULTS 87

5.5 CHRONOAMPEROMETRIC STUDIES 87

5.6 MICROSTRUCTURAL STUDIES OF BOTH ALLOYS
IN 0.1 M SULPHURIC ACID CONTAINING 3.5 % NaCl 89

5.6.1 Morphological studies of both alloys after immersion
test in sulphuric acid containing 3.5 % NaCl solution 90

5.6.2 Morphological studies after polarisation test 92

5.6.3 Morphological studies of alloy 316 after corrosion
in sulphuric acid containing 3.5 % NaCl solution 92

Morphological studies of alloy 444 after corrosion
in sulphuric acid containing 3.5 % NaCl solution 93

5.7 PHASE IDENTIFICATION STUDIES 94

5.7.1 X-ray diffraction of the corrosion products on
alloy 316 after polarization studies 94

5.7.2 X-ray diffraction of the corrosion products on
alloy 444 after polarization studies 95

5.8 RAMAN SPECTRA 96

5.8.1 Raman spectra of corrosion products formed on alloys
in sulphuric acid solution containing 3.5 % NaCl 96

5.9 THE CORRELATION BETWEEN ALL THE SURFACE
ANALYSES TECHNIQUES 98

CHAPTER SIX 100

6.0 CORROSION BEHAVIOUR OF ALLOY 316 AND
ALLOY 444 IN HYDROCHLORIC ACID 100

6.1 WEIGHT LOSS TESTS 100
6.1.1 Corrosion kinetics of both alloys in 1 M hydrochloric acid

6.1.2 Corrosion behaviour of both alloys in 0.1 M hydrochloric acid

6.2 OPEN CIRCUIT CORROSION POTENTIAL VARIATIONS WITH TIME OF BOTH ALLOYS IN HYDROCHLORIC ACID SOLUTION

6.3 POTENTIODYNAMIC TESTS

6.4 THE CORRELATION BETWEEN THE WEIGHT LOSS AND ELECTROCHEMICAL RESULTS

6.5 CHRONOAMPEROMETRIC STUDIES

6.6 MICROSTRUCTURAL STUDIES OF BOTH ALLOYS IN 0.1 M HYDROCHLORIC ACID

6.6.1 Morphological studies of both alloys after immersion test in hydrochloric acid

6.6.2 Morphological studies after polarisation test

6.6.3 Morphological studies of alloy 316 after corrosion in hydrochloric acid

6.6.4 Morphological studies of alloy 444 after corrosion in hydrochloric acid

6.7 PHASE IDENTIFICATION STUDIES

6.7.1 X-ray diffraction of the corrosion products on alloy 316 after polarization studies

6.7.2 X-ray diffraction of the corrosion products on alloy 444 after polarization studies

6.8 RAMAN SPECTRA

6.8.1 Raman spectra of corrosion products formed on alloys in hydrochloric acid

6.9 THE CORRELATION BETWEEN ALL THE SURFACE ANALYSES TECHNIQUES
LIST OF FIGURES

Figure 2.1: Schaeffler diagram *(Schaeffler, 1949).*

Figure 2.2: Hypothetical polarization curve of stainless steel. showing active-passive behavior (Curve 1) and a pseudo-passive behavior (Curve 2). *(Viramontes-Gamboa et al., 2007).*

Figure 2.3: Schematic diagram of a potentiodynamic polarization set up (after Jones, 1996).

Figure 2.4: Typical Tafel plot from a polarization experiment *(ASTM G3-89).*

Figure 4.1: Cumulative weight loss of both alloys in 1 M sulphuric acid solution as a function of immersion time.

Figure 4.2: Corrosion rates of (a) alloy 444 (b) alloy 316 in 1 M sulphuric acid solution as a function of immersion time.

Figure 4.3: Corrosion rates of (a) alloy 444 (b) alloy 316 in 0.1 M sulphuric acid solution as a function of immersion time.

Figure 4.4: Cumulative weight loss of (a) alloy 444 (b) alloy 316 in 0.1 M sulphuric acid solution as a function of immersion time.

Figure 4.5: Open circuit potential of both alloys in 0.1 M sulphuric acid.

Figure 4.6: Open circuit potential of both alloys in 1 M sulphuric acid.

Figure 4.7: Cyclic potentiodynamic polarization curve of both alloys in 0.1 M sulphuric acid.

Figure 4.8: Cyclic potentiodynamic polarization curve of both alloys in 1 M sulphuric acid.

Figure 4.9: Comparison of the corrosion rates of alloy 444 for mass loss and polarization tests in 0.1 M solutions.

Figure 4.10: Comparison of the corrosion rates of alloy 316 for mass loss and polarization tests in 0.1 M solutions.

Figure 4.11: Comparison of the corrosion rates of alloy 316 for mass loss and polarization tests in 1 M solutions.

Figure 4.12: Comparison of the corrosion rates of alloy 444 for mass loss and polarization tests in 1 M solutions.
Figure 4.13: Chronoamperometry curves of the alloys 316 and 444 in 0.1 M sulphuric acid at (a) 0.2 V (b) 0.6 V.

Figure 4.14: Optical microscopy of the as-received alloy 444.

Figure 4.15: Optical microscopy of the as-received alloy 316.

Figure 4.16: Typical optical microstructure of both alloys after immersion in 0.1 M sulphuric acid for 92 days (a) 444 (b) 316.

Figure 4.17: Secondary electron micrograph showing the microstructure of alloy 316 at varying locations.

Figure 4.18: Secondary electron micrograph showing the microstructure of alloy 444 and varying locations.

Figure 4.19: SEM/EDS of alloy 316 after immersion in 0.1 M sulphuric acid for 92 days.

Figure 4.20: SEM/EDS of alloy 444 after immersion in 0.1 M sulphuric acid for 92 days.

Figure 4.21: SEM scan obtained from the surface of alloy 316 after corrosion in 0.1 M sulphuric acid.

Figure 4.22: SEM scan obtained from the surface of alloy 444 after the corrosion study in 0.1 M sulphuric acid.

Figure 4.23: X-ray diffraction patterns of alloy 444 before corrosion.

Figure 4.24: X-ray diffraction patterns of alloy 316 before corrosion.

Figure 4.25: X-ray diffraction patterns of alloy 316 after the corrosion studies in sulphuric acid.

Figure 4.26: X-ray diffraction patterns of alloy 444 after the corrosion studies in sulphuric acid.

Figure 4.27: Raman spectrum and the image of the overall surface of as-received alloy 316.

Figure 4.28: Raman spectrum and the image of the overall surface of as-received alloy 444.

Figure 4.29: Raman spectrum and the image of the overall surface of alloy 316 tested in 0.1 M sulphuric acid.

Figure 4.30: Raman spectrum and the image of the overall surface of
alloy 444 tested in 0.1 M sulphuric acid.

Figure 5.1: Cumulative weight loss of (a) alloy 444 (b) alloy 316 in 1 M sulphuric acid containing 3.5 % NaCl as a function of immersion time.

Figure 5.2: Corrosion rates of (a) alloy 444 (b) alloy 316 in 1 M sulphuric acid containing 3.5 % NaCl as a function of immersion time.

Figure 5.3: Corrosion rates of (a) alloy 444 (b) alloy 316 in 0.1 M sulphuric acid containing 3.5 % NaCl as a function of immersion time.

Figure 5.4: Cumulative weight loss of (a) alloy 444 (b) alloy 316 in 0.1 M sulphuric acid containing 3.5 % NaCl as a function of immersion time.

Figure 5.5: Open circuit potential of both alloys in 0.1 M H₂SO₄ + 3.5 %NaCl.

Figure 5.6: Open circuit potential of both alloys in 1 M H₂SO₄ + 3.5 %NaCl.

Figure 5.7: Cyclic potentiodynamic polarization curve of both alloys in 0.1 M H₂SO₄ + 3.5%NaCl.

Figure 5.8: Cyclic potentiodynamic polarization curve of both alloys in 1 M H₂SO₄ + 3.5% NaCl.

Figure 5.9: Chronoamperometry curves of the alloys 316 and 444 in 0.1 M H₂SO₄ + Cl⁻ at (a) 0.2 V (b) 0.6 V.

Figure 5.10: Typical optical microstructure of both alloys after immersion in 0.1 M sulphuric acid containing 3.5 %NaCl for 92 days (a) 444 (b) 316.

Figure 5.11: SEM/EDS of alloy 316 after immersion in 0.1 M sulphuric acid containing 3.5 % NaCl for 92 days.

Figure 5.12: SEM/EDS of alloy 444 after immersion in 0.1 M sulphuric acid containing 3.5 % NaCl for 92 days.

Figure 5.13: SEM scan obtained from the surface of alloy 316 after corrosion in sulphuric acid containing 3.5 % NaCl.

Figure 5.14: SEM scan obtained from the surface of alloy 316 after corrosion in sulphuric acid containing 3.5 % NaCl.

Figure 5.15: X-ray diffraction patterns of alloy 316 after corrosion in sulphuric acid containing 3.5 % NaCl.

Figure 5.16: X-ray diffraction patterns of alloy 444 after the corrosion in
sulphuric acid containing 3.5 % NaCl.

Figure 5.17: Raman spectrum and the image of the overall surface of alloy 444 tested in sulphuric acid containing 3.5 % NaCl.

Figure 5.18: Raman spectrum and the image of the overall surface of alloy 316 tested in sulphuric acid containing 3.5 % NaCl.

Figure 6.1: Cumulative weight loss of (a) alloy 444 (b) alloy 316 in 1 M hydrochloric acid as a function of immersion time.

Figure 6.2: Corrosion rates of (a) alloy 444 (b) alloy 316 in 1 M hydrochloric acid as a function of immersion time.

Figure 6.3: Corrosion rates of (a) alloy 444 (b) alloy 316 in 0.1 M hydrochloric acid as a function of immersion time.

Figure 6.4: Cumulative weight loss of (a) alloy 444 (b) alloy 316 in 0.1 M hydrochloric acid as a function of immersion time.

Figure 6.5: Open circuit potential of both alloys in 0.1 M HCl.

Figure 6.6: Open circuit potential of both alloys in 1 M HCl.

Figure 6.7: Cyclic potentiodynamic polarization curve of both alloys in 0.1 M HCl.

Figure 6.8: Cyclic potentiodynamic polarization curve of both alloys in 1 M HCl.

Figure 6.9: Chronoamperometry curves of the alloys 316 and 444 in 0.1 M HCl at (a) 0.2 V (b) 0.6 V.

Figure 6.10: Typical optical microstructure of both alloys after immersion in 0.1M hydrochloric acid for 92 days (a) 444 (b) 316.

Figure 6.11: SEM/EDS of alloy 316 after immersion in 0.1 M hydrochloric acid for 92 days.

Figure 6.12: SEM/EDS of alloy 444 after immersion in 0.1 M hydrochloric acid for 92 days.

Figure 6.13: SEM scan obtained from the surface of alloy 316 after corrosion in hydrochloric acid.

Figure 6.14: SEM scan obtained from the surface of alloy 316 after corrosion in hydrochloric acid.

Figure 6.15: X-ray diffraction patterns of alloy 316 after corrosion in hydrochloric acid.
Figure 6.16: X-ray diffraction patterns of alloy 444 after corrosion in hydrochloric acid. 119

Figure 6.17: Raman spectrum and the image of the overall surface of alloy 444 tested in hydrochloric acid. 120

Figure 6.18: Raman spectrum and the image of the overall surface of alloy 316 tested in hydrochloric acid. 121
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nominal compositions of austenitic stainless steels (Kotecki and Armao, 2003).</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Nominal compositions of ferritic stainless steels (Kotecki and Armao, 2003).</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Nominal chemical composition of 444 ferritic and 316 austenitic stainless steels.</td>
<td>34</td>
</tr>
<tr>
<td>4.1</td>
<td>Cumulative weight loss of alloy 444 and alloy 316 in 1 M sulphuric acid solution.</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Corrosion rates of alloy 444 and alloy 316 in 1 M sulphuric acid solution.</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Corrosion data obtained from cyclic potentiodynamic curves of alloy 444 and alloy 316 in 0.1 M and 1 M sulphuric acid solutions.</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of EDS obtained for alloy 316 in sulphuric acid for 92 days.</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary of EDS obtained for alloy 316 in sulphuric acid for 92 days.</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary of the Raman spectrum of as-received alloy 316.</td>
<td>70</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary of the Raman spectrum of as-received alloy 444.</td>
<td>72</td>
</tr>
<tr>
<td>4.8</td>
<td>Summary of the Raman spectrum of the corrosion products formed on alloy 316 and alloy 444 tested in sulphuric acid.</td>
<td>75</td>
</tr>
<tr>
<td>5.1</td>
<td>Cumulative weight loss of alloy 444 alloy 316 in 1 M sulphuric acid containing 3.5 % NaCl.</td>
<td>78</td>
</tr>
<tr>
<td>5.2</td>
<td>Corrosion rates of alloy 444 and alloy 316 in 1 M sulphuric acid containing 3.5 % NaCl.</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>Corrosion data obtained from cyclic potentiodynamic curves of alloy 444 and alloy 316 in 0.1 M and 1 M sulphuric acid containing 3.5 % NaCl.</td>
<td>86</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary of EDS obtained for alloy 316 in sulphuric acid for 92 days.</td>
<td>91</td>
</tr>
</tbody>
</table>
Table 5.5: Summary of EDS obtained for alloy 316 in sulphuric acid for 92 days.

Table 5.6: Summary of the Raman spectrum of the corrosion products formed on alloy 316 and alloy 444 tested in sulphuric acid containing 3.5% NaCl.

Table 6.1: Cumulative weight loss of alloy 444 alloy 316 in 1 M hydrochloric acid.

Table 6.2: Corrosion rates of alloy 444 and alloy 316 in 1 M hydrochloric acid.

Table 6.3: Corrosion rates of alloy 444 in 0.1 M of all the solutions.

Table 6.4: Corrosion rates of alloy 316 in 0.1 M of all the solutions.

Table 6.5: Corrosion data obtained from cyclic potentiodynamic curves of alloy 444 and alloy 316 in 0.1 M and 1 M hydrochloric acid.

Table 6.6: Summary of EDS obtained for alloy 316 in hydrochloric acid for 92 days.

Table 6.7: Summary of EDS obtained for alloy 316 in hydrochloric acid for 92 days.

Table 6.8: Summary of the Raman spectrum of the corrosion products formed on alloy 316 and alloy 444 tested in hydrochloric acid.