Associations between Coagulation Factors, Clinical Phenotypes, Cytokine Profiles and Polymorphisms in Immune Response Genes of Haemophilia A and B Patients With and Without Inhibitors.

Nontobeko Thenjiwe Lorraine Ndlovu

A dissertation submitted to the Faculty of Health Sciences, University of the Witwatersrand, in fulfillment of the requirements for the degree of Master of Science in Medicine.

Johannesburg 2009
DECLARATION

I, Nontobeko Thenjiwe Lorraine Ndlovu declare that this research report is my own unaided work. It is being submitted for the degree of Master of Science in Medicine at the University of the Witwatersrand, Johannesburg. It has not been submitted for any degree or examination at this or any other University.

……………………………………..
Candidate signature
……………………………………day of …………………………………2009.
DEDICATION

In loving memory of my father

Jabulani Chris `Over` Ndlovu

1956-2003
PRESENTATIONS ARISING FROM THIS STUDY

1. Ndlovu N, Chetty N, Mahlangu J.
Cytokine Analysis in Haemophilia
Poster presented at the 48th Annual Congress of the Federation of South African Societies of Pathology.
Cape Town, 10-21 July 2008

2. Accepted for Paper Presentations.
Ndlovu N, Chetty N, Mahlangu J.
Associations between cytokine profiles, polymorphisms in the IL-10 promoter region and inhibitor development.
PathTech Congress.
ICC Durban, 6-10 September 2009
2nd Cross Faculty Symposium
University of the Witwatersrand, 20-21st October 2009

PAPER IN PREPARATION FOR PUBLICATION

1. JN Mahlangu, N Chetty, NTL Ndlovu
Associations between coagulation factors, clinical phenotypes, cytokine profiles, inhibitor development and IL-10 gene promoter polymorphisms in haemophilia.
ABSTRACT

The underlying mechanism and determinants of inhibitor formation in approximately 30% haemophilia A and 5% haemophilia B patients are not fully understood. A large amount of the data on immune responses against FVIII and FIX is from animal models. Studies investigating cytokines in haemophilia are very limited and fragmentary, and the classification of hemophilia patients according to their factor activity levels has been observed to be inconsistent. The current study aims to find the associations between factor levels, clinical phenotype, cytokine profiles and polymorphisms in the IL-10 gene promoter of haemophilia A and B patients with and without inhibitors. This may give more insight into the pathophysiology of haemophilia, help improve the understanding of the pathogenic mechanisms that underlie inhibitor development, and facilitate new diagnostic and therapeutic strategies for haemophilia.

Haemophilia A and B patients with and without inhibitors were enrolled in the current study. Forty (40) patients from the Charlotte Maxeke Johannesburg Academic Hospital Haemophilia Comprehensive Care Centre (CMJAH-HCCC) were randomly selected. An equal number of frequent bleeders and infrequent bleeders were recruited. Frequent bleeders were defined as those patients with 2 or more bleeding episodes per month on three consecutive months. Bleeding frequency was evaluated on the patient’s bleeding charts.
FVIII and FIX activity levels of all patients were measured using the Dade Behring Sysmex CA-7000 coagulation analyzer, and information on each patient’s bleeding episodes was obtained from the haemophilia bleeding charts. The inhibitor status of all patients was evaluated using the Bethesda inhibitor assay. IL-1β, IL-6 and TNF-α were analyzed using an ELISA kit method. IL-2, IL-4, IL-10 and IFN-γ were analyzed using the CBA Human TH1/TH2 Cytokine Kit. DNA was extracted using the Nucleon BACC3 from Amersham Biosciences. Polymorphisms in the IL-10 gene promoter region were analyzed using PCR. The Statistica Release 8 statistics package was used for statistical analysis.

The present study population showed significant discrepancies in the theoretic classification of haemophilia patients. Severe haemophilia patients had significantly higher levels of IL-6 than the mild/moderate group and biochemical classification correlated positively with IL-6. IL-6 was also the only significant predictor of biochemical classification. IL-1β and IL-4 was found to be significantly higher in the mild/moderate group than in the severe group. There were no significant differences in the levels of IL-2, IL-10, and IFNγ between the mild/moderate and severe groups and between patients with inhibitors and without inhibitors. There were also no differences in the cytokine profiles of low and high responders.

No significant differences were found between cytokine profiles of frequent and infrequent bleeders. IL-6 and TNF-α were found to be significantly higher in patients with inhibitors than in haemophilia patients without inhibitors. IL-6 and IL-1β were
the only significant predictors of the inhibitor status of haemophilia patients. Haemophilia severity and race were found to be significant risk factors for inhibitor development. A 150 bp allele of the IL-10 promoter region with the microsatellite marker was observed in patients with and without inhibitors as well as the healthy controls. The 150 bp allele was also observed in both black and white subjects.

Large phenotypic heterogeneity exists in haemophilia patients. The pro-inflammatory cytokines IL-6 and IL-1β together with IL-4 may be involved in determining the biochemical severity of haemophilia. IL-6 was the only cytokine in this study found to be a significant predictor of bleeding frequency. The study results also suggest that IL-6 and IL-1β may be involved in the production of antibodies against infused factor in patients with inhibitors.

The presence of a 150 bp allele of the highly polymorphic IL-10 promoter region in patients with and without inhibitors as well as the healthy controls suggests that, polymorphisms in this gene do not influence inhibitor development in this population.
ACKNOWLEDGEMENTS

Praise the Lord oh my soul and all that is within me praise his Holy Name.

Forget not all his wonderful works.

Prof. Johnny Mahlangu and Prof. Nanthakumarn Chetty
For your guidance, encouragement, inspiration, mentorship, funding, for giving me
the space to work and grow independently as a scientist, and always so willingly
being available to offer quality advice on all matters, both in and out of the
labatory. A million thanks.

My mother MamRuthana Ndlovu and Mancane Sindy Chikunga
For making me laugh when all I want to do is cry. For your endless support. Many
women do noble things, but you surpass them all. You are God’s greatest blessing.

The Wits Postgraduate Merit Awards, Dep. of Molecular Medicine & Haematology,
NHLS, NRF and MRC -: For the financial support.

The Main Haematology Lab Staff -: Dr Hamakwa Mantina, for passing abundant
imperative knowledge. I can never thank you enough. Perry, Andrew, Mercy, Tshidi,
Khensani, Mpumi, Mariam etc. for always being available to assist me as I required.

Haemophilia Patients -: The patients at the Johannesburg Hospital Haemophilia
Comprehensive Care Centre who agreed to take part in the study.

Johannesburg Hospital Haemophilia Comprehensive Care Staff in particular Sister
Bongi Mbele and Sister Ann Gilham -: For helping with the collection of blood.

Tamsanqa Semela -: For believing in me, showing abounding interest in my work and
showering me with so much love. I love you very much.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Declaration</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Presentation Arising from this Study</td>
<td>iv</td>
</tr>
<tr>
<td>Paper in Preparation for Publication</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>viii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER 1: Introduction and Literature Review

1.0 Introduction

1.1 Haemostasis

1.2 Haemophilia A and B

1.3 Epidemiology of haemophilia

<table>
<thead>
<tr>
<th>1.3.1 United States</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.2 International</td>
<td>8</td>
</tr>
<tr>
<td>1.3.3 Mortality/Morbidity</td>
<td>8</td>
</tr>
<tr>
<td>1.3.4 Race</td>
<td>9</td>
</tr>
<tr>
<td>1.3.5 Sex</td>
<td>10</td>
</tr>
</tbody>
</table>
1.11.1 Cytokine effects...35
1.12 Polymorphisms in immune response genes.................................40
1.13 Aim of the present study...42

CHAPTER 2: MATERIALS AND METHODS..43
2.1 Study population..43
 2.1.1 Inclusion criteria...43
 2.1.2 Exclusion criteria...43
2.2 Study design..44
2.3 Methodology outline..44
2.4 Blood collection and storage..45
2.5 Quantitative measure of inhibitors..46
2.6 Clotting factor activity determination.......................................47
2.7 Cytokine quantification..48
 2.7.1 IL-1β, IL-6 and TNF-α Quantification48
 2.7.2 IL-2, IL-4, IL-10 and IFN-γ Quantification49
2.8 DNA extraction...50
 2.8.1 DNA quantification and purity check...................................51
2.9 PCR master mixture preparation..52
2.10 DNA agarose gel fractionation...54
2.10 Statistical analysis...54
 2.10.1 Categorising codes used for statistical analysis..................55
CHAPTER 3: RESULTS...56

3.1 Demographics of the study population...59
3.2 Quantitative Measure of Inhibitors..60
3.3 Factor Activity, Biochemical Classification and Bleeding Frequency........62
3.4 IL-1β, IL-6 and TNF-α Quantification...64
3.5 IL-2, IL-4, IL-10 and IFN-γ Quantification..68
3.6 Pearson Correlation Coefficients of all Variables in the Study.................73
3.7 Linear Regression Analysis...74
3.8 DNA quantification and purity check...76
3.9 DNA agarose gel electrophoresis..77

CHAPTER 4 DISCUSSION & CONCLUSION...78

4.1 Discrepancies in the theoretic classification of haemophilia patients........78
4.2 Cytokine analysis in haemophilia...79
4.2.1 Cytokines and disease severity ...81
4.2.2 Cytokines and bleeding frequency...82
4.2.3 Cytokines and inhibitor development..82
4.3 Haemophilia severity and the risk of inhibitor development...................83
4.4 Race as a risk factor for inhibitor development...84
4.5 Polymorphisms in the IL-10 gene promoter...84
4.6 CONCLUSION...86

4.7 RECOMMENDATIONS...87
LIST OF FIGURES

1. Figure 1. The normal haemostatic mechanisms with clotting factors of the intrinsic and extrinsic pathways of the coagulation cascade…………………………...4

2. Figure 2. A family tree of a haemophilic family showing x-linked pattern of inheritance of the disease…………………………………………………………7

3. Figure 3. The British Royal family haemophilia Pedigree………………….13

4. Figure 4. Schematic model of the immune response to exogenous FVIII/FIX protein…………………………………………………………………….20

5. Figure 5. Location of the FVIII gene on the long (q) arm of the X chromosome at position 28…………………………………………………………28

6. Figure 6. Location of the FIX gene on the long (q) arm of the X chromosome between positions 27.1 and 27.2………………………………………29

7. Figure 7. The Factor VIII protein molecular structure………………………29

8. Figure 8. Structure of the FIX precursor protein……………………………31
9. Figure 9. Schematic model showing the domain structure of factor VIII (FVIII) and the localization of the main binding epitopes of FVIII antibodies………………………………………………………………….....34

10. Figure 10. Schematic model showing the domain structure of factor IX (FIX) and the main binding areas of inhibitory FIX antibodies highlighted………..34

11. Figure 11. Cytokines control the immune response by influencing and changing the balance of T helper 1 (TH1) and T helper 2 (TH2) cells………37

12. Figure 12. A portion of the IL-10 gene showing the CA repeat microsatellites…………………………………………………………………………………41

13. Figure 3.1.1 Histogram showing the abnormal distribution of IL-1β quantification……………………………………………………………….56

14. Figure 3.1.2 Histogram showing a log transformed distribution of IL-1β…..57

15. Figure 3.2 Study population selection………………………………………………58

16. Figure 3.3 Stratification of participants according to severity of bleeding ….63
17. Figure 3.5.1 CBA Data Acquisition from the FACS Array instrument from BD Biosciences………………………………………………………………..68

18. Figure 3.5.2 Cytometric Bead Array standards………………………………………70

19. Figure 3.5.3. Subject MFB-8 sample showing very low cytokine levels. ……70

20. Figure 3.7 Agarose gel electrophoresis of PCR (IL-10 promoter region)……77
LIST OF TABLES

1. Table 1. Relationship between clotting factor level and clinical phenotype in haemophilia ... 14

2. Table 2 Sites of bleeding in haemophilia .. 17

3. Table 2.1 Master mixture components ... 52

4. Table 2.2 IL-1O G primer properties ... 53

5. Table 2.3 DNA Amplification .. 53

6. Table 2.4 Variable codes ... 55

7. Table 2.5 Grouping of participants .. 55

8. Table 3.1 Demographics of the study population 59

9. Table 3.2 Participants with inhibitors .. 60
10. Table 3.3 Factor Activity, Biochemical Classification and Bleeding Frequency…………………………………………………………………….62

11. Table 3.4 IL-1β, IL-6 and TNF-α Quantification (ELISA).........................64

12. Table 3.4.1. Cytokine levels of Mild/Moderate (M) compared to Severe (S) haemophiliacs……………………………………………………………...65

13. Table 3.4.2. Cytokine levels of Frequent (FB) compared to Infrequent Bleeders (IFB)………………………………………………………………..65

14. Table 3.4.3 Inhibitor (I) vs. Non-Inhibitor (NI) patients…………………….66

15. Table 3.4.4 Low Responder vs. High Responder patients…………………67

16. Table 3.5 IL-2, IL-4, IL-10 and IFN-γ Quantification (CBA)…………………69

17. Table 3.5.1. Cytokine levels of Mild/Moderate (M) compared to Severe (S) haemophilia patients………………………………………………………71

18. Table 3.5.2. Cytokine levels of Frequent (FB) compared to Infrequent Bleeders (IFB)………………………………………………………………..71
19. Table 3.5.3. Inhibitor (I) vs. Non-Inhibitor (NI) haemophiliacs……………..72

20. Table 3.6 Pearson Correlation Coefficients Of All Variables In The Study Population…………………………………………………………………………………………..73

21. Table 3.7.1 Dependent Variable: Bleeding Frequency………………………74

22. Table 3.7.2 Dependent Variable: Biochemical Classification……………..74

23. Table 3.7.3 Dependent Variable: Inhibitors…………………………………75

24. Table 3.6 DNA quantification and purity check……………………………..76
LIST OF ABBREVIATIONS

ATIII - anti-thrombin 3
bp – base pairs
CBA – cytometric bead array
CMJAH – Charlotte Maxeke Johannesburg Academic Hospital
DNA – deoxyribonucleic acid
EDTA – ethylenediaminetetra-acetic acid
EGF – epidermal growth factor
ELISA – Enzyme linked immuno-sorbent assay
FIX – factor nine
FV – factor five
FVII – factor seven
FVIII – factor eight
FX - factor ten
FXa – active factor ten
FXIII – factor thirteen
Gla – glutamic acid
HCCC – Haemophilia Comprehensive Care Centre
HIV – human immunodeficiency virus
HRP - horseradish peroxidase
IFN-γ – interferon gamma
IgG – immunoglobulin G
IL-10 – interleukin ten
IL-1β - interleukin one beta
IL-2 – interleukin two
IL-4 – interleukin four
IL-6 – interleukin six
IU – international unit
MAbs - monoclonal antibodies
MgCl₂ – magnesium chloride
MHC – major histocompatibility complex
MIBS - Malmo International Brother Study
ml – milli litre
nm – nano metre
PBMCs - peripheral blood mononuclear cells
PCR – polymerase chain reaction
PE - phycoerythrin
SA – South Africa
SLE - systemic lupus erythematous
SPSS - Statistical Package for Social Sciences
TF – tissue factor
TFPI - tissue factor pathway inhibitor
TH1 and TH2 – T cell helper 1 and T cell helper 2
TNF-α- tumour necrosis factor alpha

µl – micro litre

VWD - von Willebrand disease