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Abstract 

 

The aim of this research was to improve the matrix solution methods for SuperNEC MoM 

problems, which is an electromagnetic simulation software package used to model 

antennas, and develop a new preconditioner for the iterative method BICGSTAB(L).  

This was achieved by firstly implementing the ATLAS BLAS library optimised for a 

specific computer architecture. The ATLAS code primarily makes use of code generation 

to build and optimise applications. Comparisons show that the matrix solution times 

using LU decomposition optimised by ATLAS is improved by between 4.1 and 4.6 times, 

providing a good coding platform from which to compare other techniques.  

Secondly the BICGSTAB iterative solution method in SuperNEC was improved by 

making use of an alternative algorithm BICGSTAB(L). Systems of equations that 

converged slowly or not at all using BICGSTAB, converged more quickly when using 

BICGSTAB(L) with L set to 4, despite the high condition numbers in the coefficient 

matrices. 

Thirdly a domain decomposition method, Simply Sparse, was characterised. 

Investigations showed that Simply Sparse is a good compression technique for SuperNEC 

MoM matrices. The custom Simply Sparse solver also solves large matrix problems more 

quickly than LU decomposition and scales well with increased problem sizes. LU 

decomposition is still however quicker for problems smaller than 7000 unknowns as the 

overheads in compressing the coefficient matrices dominate the Simply Sparse method 

for small problems. 

Lastly a new preconditioner for BICGSTAB(L) was developed using a modified form of 

the Simply Sparse matrix. This was achieved by considering the Simply Sparse matrix to 

be equivalent to the full coefficient matrix ][A . The largest 1% to 2% of the Simply 

Sparse elements was selected to form the basis of the preconditioning matrix. These 

elements were further modified by multiplying them by a large constant i.e. 7101× . The 

system of equations was then solved using BICGSTAB(L) with L set to 4. 

The new preconditioned BICGSTAB(L) algorithm is quicker than both LU 

decomposition and the custom Simply Sparse solution method for problems larger than 

5000 unknowns. 
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1. Introduction 

 

1.1. Aim 

 

The aim of this research is to improve the matrix solutions methods used by the 

electromagnetics (EM) software simulation package, SuperNEC [1], and in the process 

develop a new preconditioner for the iterative method BICGSTAB(L) [2]. 

This is achieved by: 

1. Investigating and improving the current LU decomposition subroutines by 

optimising the software code for specific computer architectures using the 

Automatically Tuned Linear Algebra Subprogram Software (ATLAS) [3]. 

2. Investigate and improve on the current iterative method Bi Conjugate Gradient 

Stabilized (BICGSTAB) [4, p24] within SuperNEC by making use of a modified 

method BICGSTAB(L) . 

3. Characterising the domain decomposition method, Simply Sparse [5], by solving 

various EM problems. 

4. Develop a new preconditioner for BICGSTAB(L) by modifying and manipulating 

the Simply Sparse matrices, making sure the code has been optimised with 

ATLAS. 

 

1.2. Importance of the Problem 

 

The motivation behind conducting the research stems from the fact that although 

considerable work has been done on solving very large problems (more than 10 000 

unknowns) with methods such as Simply Sparse [5], work still needs to be done to solve 

smaller problems (5 000 to 10 000 unknowns) more quickly with limited resources. These 

unknowns are the currents on the wire segments used to model structures in SuperNEC 

[1]. To accurately model the structure the wire segments need to be a tenth of a 

wavelength at the frequency of interest. For example, modelling a Hawk aircraft at 

20MHz would require in the order of a few hundred wire segments, whereas modelling 

the same structure at 400MHz would require many thousands of segments.   

This becomes critical when problems have multiple frequencies and where the EM 

structures might need to be optimised over a frequency range. 
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A good example of such a problem would be a numerical model of a Yagi-Uda antenna 

mounted on a platform, such as a ship. The design of the antenna can be optimised using 

techniques such as genetic algorithm optimisers. This would typically require upward of 

40 generations (or simulations), with 20 chromosomes (or variables) simulated at a 

minimum of 10 frequencies, yielding 8000 matrices. Even with the advances in 

computational power, this example illustrates the need to solve matrices, small and large, 

as quickly as possible.  

 

1.3. Limitations 

 

There are a number of components that need to be looked at when evaluating how well a 

solution method performs. This is illustrated by the following expression [6, p1]: 

32 cNaNt +∝  
(1) 

 

 Where  

t  is the time to solve a problem 

 2aN is the time taken to create a matrix with N  unknowns 

 3cN is the time taken to solve a matrix with N  unknowns 

As the term 3cN dominates the expression with increase in the size of N , this is what is 

concentrated on to improve solution methods. This research therefore also looks at the 

time taken to solve matrix equations, and does not look at optimising the time taken to 

create the matrix. 

Although the creation time is not investigated, it is taken into account when comparing 

techniques, as different techniques have different overhead requirements to create a 

matrix. 

It should be noted that fast solvers such as Simply Sparse scale differently. The 3cN  

component becomes )log(NN but the creation of the matrix then has a large coefficient 

a , making the fast solver only practical for large problems. 

There are also a number of different solution techniques and fast solvers that are not 

investigated, primarily because these are proprietary codes and do not exist within 

SuperNEC.  
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1.4. Data Collection Techniques 

 

Data was acquired from a number of sources. This included timing data from SuperNEC, 

Matlab [7] and Simply Sparse. Different computing platforms, such as Core 2 Duo, 

Pentium IV, Pentium 3 and Celerons were used. Only data from the same platform was 

compared to avoid hardware architectural differences. 

Different EM problems were constructed to investigate the solution techniques. 

The problems primarily had to increase in size from as small as a few hundred unknowns 

to 8,000 unknowns. A secondary factor, which was investigated in the iterative solvers, 

was the condition number of the matrices. This was investigated by using real world 

problems, such as aircraft and helicopters for different degrees of ill-conditioned 

matrices, as well as idealised problems such as a plate and cube. 

 

1.5. Overview of the Thesis 

 

Chapter 2 provides background for the thesis: 

• The LU decomposition method used in SuperNEC is outlined. 

• The BICGSTAB method is explored and compared with other methods. 

• Domain decomposition methods are introduced with an emphasis on Simply 

Sparse. 

Chapter 3 looks at software code optimization for specific computer hardware using 

ATLAS: 

• The basic ATLAS method is summarised.  

• Timing results for various EM problems in SuperNEC are presented, showing the 

improvements ATLAS makes. 

Chapter 4 presents the improved performance of BICGSTAB(L) over BICGSTAB using 

EM MoM problems. 

• The BICGSTAB(L) method is summarised.  

• Timing results for various EM problems in SuperNEC are presented, showing the 

improvement in performance. 

• The L parameter within BICGSTAB(L) is investigated and a general value 

determined for all problem types. 
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Chapter 5 investigates the performance of Simply Sparse. 

• The Simply Sparse method is summarised.  

• Timing results for various EM problems are presented, showing the improvement 

in performance. 

Chapter 6 presents the new preconditioner created from Simply Sparse matrices, and the 

improved performance over existing techniques within SuperNEC.  

• Other methods that were investigated are highlighted. 

• The new preconditioning method is outlined. 

• Timing results and comparisons for various problem sizes are presented. 

Chapter 7 summarises the findings, presenting the conclusions and recommendations for 

further work. 
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2. Background  

 

Developing a new preconditioner for a system of linear equations can best be described in 

the words of Yousef Saad. [8, p 264]. 

 

“Finding a good preconditioner to solve a given sparse linear system is often 

viewed as a combination of art and science. Theoretical results are rare and some 

methods work surprisingly well, often despite expectations”  

 

This thesis primarily addresses the “art” of creating a preconditioner by testing potential 

preconditioners through experimentation. There is however a substantial amount of 

background or “science” needed to understand preconditioners. The sections in this 

chapter introduce the basic concepts of matrix manipulation used in this thesis. This can 

be broken down into: 

• Direct solution of matrices with LU decomposition in SuperNEC 

• Iterative solution methods and preconditioners used in BICGSTAB 

• Domain decomposition techniques such as Simply Sparse. 

 

2.1. LU Decomposition in SuperNEC 

 

Below is a modified excerpt from the SuperNEC technical reference manual [9], 

outlining the LU decomposition method. The solution to the system of equations finds the 

currents on the wire segments used to model structures within SuperNEC.  

For further information on how SuperNEC creates the matrices using the Method of 

Moments (MoM) [10] approach please refer to Appendix A. 

 

2.1.1. Solution of the matrix equation  

 

The matrices to be solved within SuperNEC are of the form: 

][]][[ bxA =  
(2) 

and is solved by Gaussian elimination .  
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Where ][A  is a square matrix and ][x and ][b  are single column vectors. 

The basic step is factorisation of the matrix ][A  into the product of an upper triangular 

matrix ][U  and a lower triangular matrix ][L where 

]][[][ ULA =  (3) 

The matrix equation is then 

][]][][[ bxUL =  (4) 

from which the solution, ][x , is computed in two steps as 

][]][[ bFL =  
(5) 

and 

][]][[ FxU =  
(6) 

Equation (5) is first solved for [F] by forward substitution, and equation (6) is then solved 

for ][x  by backward substitution. 

The major computational effort is factoring ][A  into ][L  and ][U . This takes 

approximately 3
3

1 N  multiplication steps for a matrix of order N compared to N
3
 for 

inversion of ][A by the Gauss-Jordan method.  

 

2.2. Iterative Methods and Preconditioners 

 

2.2.1. Iterative Methods 

 

There are a number of factors to be considered when solving a system of equations. The 

three that could be considered the most important of these are memory, speed and 

accuracy. Iterative methods use successive approximations to obtain more accurate 

solutions to a linear system at each step [4, p5]. Iterative methods hope to solve the linear 

systems in questions more quickly than standard techniques, such as LU decomposition, 

to within the required accuracy using limited memory. Whereas LU decomposition 

provides an exact solution to the system of equations, iterative methods provide an 

approximation. 
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There are a wide variety of iterative techniques, from stationary techniques such as 

Jacobi, Gauss-Seidel, SOR and SSOR to non-stationary methods such as conjugate 

gradient (CG), minimum residual (MINRES), generalised minimum residual (GMRES), 

bi-conjugate gradient (BICG), quasi minimal residual (QMR), conjugate gradient squared 

(CGS), bi-conjugate gradient stabilised (BICGSTAB) and Chebyshev iterations [4, pp5-

7]. Stationary iterative methods can be expressed as: 

cBxx kk += − )1()(
 

(7) 

Where neither B nor c  depend on the iteration count k [4, p7]. 

In non-stationary iterative methods the constants B and c are dependent on k . 

Each of these techniques are suited to a specific type of problem. A flowchart suggesting 

the best method for a specific problem is shown in Figure 1 [4, p1]. 

Matrices generated by SuperNEC are typically non-symmetric, with no transpose readily 

available where storage is at a premium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow Chart to Choose a Suitable Solution Method  
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Figure 1 shows that a good solution technique for SuperNEC problems would be CGS or 

BICGSTAB. 

Some of these methods are summarised from [4] below. 

Conjugate Gradient (CG). 

The conjugate gradient method derives its name from the fact that it generates a sequence 

of conjugate (or orthogonal) vectors. These vectors are the residuals of the iterations. 

They are also the gradients of a quadratic functional, the minimization of which 

is equivalent to solving the linear system. CG is an extremely effective method when 

the coefficient matrix is symmetric positive definite, since storage for only a limited 

number of vectors is required. 

An NN ×  complex symmetric matrix A  is positive definite if 0* >Azz  for all non-zero 

complex vectors z , where *z  is the conjugate transpose of z . 

 

Bi-Conjugate Gradient (BICG). 

The Bi-conjugate Gradient method generates two CG-like sequences of vectors, one 

based on a system with the original coefficient matrix ][A , and one on TA][ . Instead of 

orthogonalizing each sequence, they are made mutually orthogonal, or “bi-orthogonal”. 

This method, like CG, uses limited storage. It is useful when the matrix is non-symmetric 

and nonsingular; however, convergence may be irregular, and there is a possibility 

that the method will break down. BICG requires a multiplication with the coefficient 

matrix and with its transpose at each iteration. 

 

Conjugate Gradient Squared (CGS). 

The Conjugate Gradient Squared method is a variant of BICG that applies the updating 

operations for the ][A  sequence and the TA][  sequences both to the same vectors. Ideally, 

this would double the convergence rate, but in practice convergence may be much more 

irregular than for BICG. A practical advantage is that the method does not need the 

multiplications with the transpose of the coefficient matrix. 

 

Bi-Conjugate Gradient Stabilized (BICGSTAB). 

The BICGSTAB method is a variant of BICG, like CGS, but using 

different updates for the TA][  sequence in order to obtain smoother convergence than 

CGS. 
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2.2.2. Preconditioners 

 

A preconditioner is any form of implicit or explicit modification of an original linear 

system which makes it “easier” to solve by a given method [8, p264]  

For example, if a matrix ][M approximates the coefficient matrix ][A  in some way, the 

transformed system: 

][][]][[][ 11 bMxAM −− =  
(8) 

 

has the same solution to the original system ][]][[ bxA = , but the properties of the 

coefficient matrix ][][ 1 AM −   may be more favourable to solve quickly [4, p35].  

Using a preconditioner in an iterative method does however add additional overhead to 

the computational method used. The cost trade-off of constructing, and applying, the 

preconditioner needs to be outweighed by the improved rate of convergence for that 

iterative method. 

There are a number of different types of traditional preconditioners. 

Some are: 

SSOR (excerpt from [4, p37]): 

The SSOR preconditioner like the Jacobi preconditioner, can be derived from the 

coefficient matrix without any work. If the original, symmetric, matrix is decomposed as 

 

TLLDA ][][][][ ++=  
(9) 

 

in its diagonal ][D , lower ][L , and upper ][U  triangular part, the SSOR matrix is defined 

as 

TLDDLDM ])[]([]])[[]([][ 1 ++= −
 

(10) 

 

or, parameterized by ω  

 

T

LDDLDM 






 +














 +
−

=
−

][][
1

][
1

][][
1

2

1
)]([

1

ωωωω
ω  

(11) 

 



10  

 

The optimal value of the ω  parameter will reduce the number of iterations to a lower 

order.  

In practice, however, the information needed to calculate the optimal ω  is prohibitively 

expensive. SSOR has been implemented in SuperNEC by Derek Nitch [11]. 

 

Jacobi: 

One of the simplest preconditioner is the Point Jacobi, consisting of the diagonal of the 

matrix only. In terms of SuperNEC, the use of such a preconditioner would be 

investigated as the self impedance, or diagonal elements, of the wire segments could be 

considered to be the dominant components. 

A variation on the Point Jacobi is the Block Jacobi, where variables can be separated into 

blocks or groups and manipulated separately [4, p37]. Jacobi Preconditioners require little 

storage, but more advanced preconditioners may perform better. 

 

ILU (Incomplete LU factorisation):  

ILU is based on the incomplete factorisation of the coefficient matrix A . The incomplete 

factorisation ignores non-zero fill elements during factorisation when those elements in 

the original matrix are zero. 

The creation of these matrices are however non trivial. ILU may also break down even if 

the factorisation of the full matrix exists. [4, p38] The computational overhead of 

factorising the matrix may also be prohibitive.  

Certain strategies exist that may improve the performance of ILU. These strategies look 

at different levels of fill in, i.e. what is included and what is excluded also known as drop 

tolerances. Elements may be excluded for a defined tolerance. 

 

2.3. Domain Decomposition Methods 

 

Domain decompositions methods revolve around the principle of divide and conquer. The 

partitioning of the problem, many times, stems from the actual nature of the physical 

problem, where a natural split occurs, and not just due to a numerical manipulation. 

These sub-regions might even be solved with different equations. The sub-problems may 

also be easier to work with as they are rectangular [8, p383].  
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Simply Sparse can be considered to be a domain decomposition technique, combined 

with matrix compression. The physical problem is divided into radiating regions and the 

currents flowing on the structure from each of those regions can be computed more 

easily. Figure 2 is an example of what the Simply Sparse matrix looks like. Note that the 

matrix is sparse, where white space indicates the elements have a magnitude of 0. 

 

 

 

Figure 2: Pattern of a Simply Sparse Matrix. i.e. the location of non-zero elements are plotted.  

(Matrix order = 8007) 
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3. Code Optimisation for Specific Computer Hardware 

using ATLAS 

 

In speeding up any software code, before algorithmic enhancements are applied, the 

existing code should be the optimisation on the hardware available for testing. This 

provides a good baseline for measurement, eliminating computer architecture as a 

variable when later looking at developing new or improved algorithms. 

 This chapter summarises the aim and methodology behind such an approach called the 

ATLAS project as discussed in [3] and presents timing results for a number of SuperNEC 

problems using un-optimised software libraries as compared to the optimised ATLAS 

libraries.  

 

3.1. Introduction 

 

Computational hardware is continuously evolving, making it necessary to constantly re-

evaluate the programming paradigms used to create high performance computing 

libraries. These libraries are used extensively by the scientific and computational 

communities to simulate real world environments, where improved performance allows 

for greater accuracy and detailed results. A number of research methods and paradigms 

used to bridge the gap between hardware and software performance are being developed 

by various research groups. These include coding techniques to enhance object-orientated 

code such as Expression Templates [12], Temporary Base Class Idioms [13], and 

methods to make use of multiple cores such as the message passing interface (MPI) 

within parallel programming paradigms. A different approach is to automatically tune the 

software for a specific hardware architecture. Using code generators, or scripts, reduces 

the time required to tune software from months, in the case of hand-optimised methods, 

to hours. Extensive research has been conducted using this approach in the Automatically 

Tuned Linear Algebra Software (ATLAS) project using the Automated Empirical 

Optimisation of Software (AEOS) paradigm.  

 

3.2. ATLAS summarised  

 

Linear Algebra routines are widely used in the computational sciences. The performance 

of these linear algebra applications is often what limits scientists modelling more 
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complex problems, which in turn is what determines how closely reality can be modelled. 

This emphasises the need for efficient routines that take advantage of the hardware 

available. 

When new hardware comes on the market, programmers usually optimise their code by 

hand. This is a slow process, threatening to make the code obsolete as new hardware is 

released every few months. 

 ATLAS implements a new paradigm to optimising linear algebra software, bringing the 

development cycles of hardware and software more inline with one another. The 

paradigm used in the ATLAS project (AEOS, Automated Empirical Optimisation of 

Software) focuses on using empirical techniques to provide portable high performance 

libraries.  

The present emphasis of ATLAS is on the Basic Linear Algebra Subprograms (BLAS) 

[14,15,16]. Some degree of support is provided for all levels of the BLAS implementation 

and release of ATLAS (version 3.4.1) supports a small number of LAPACK [Linear 

Algebra PACKage] routines [17]. 

 

3.3.  Method of Optimisation 

 

The ATLAS project primarily makes use of code generation to build applications. This 

process involves search scripts and timing mechanisms to find the best method of 

performing a given operation for specific computer architecture.  

The optimisation process can be broken down into the following basic operations          

[3, p5]: 

• The performance critical routines need to be isolated 

• A method of adapting the routines to different environments 

• Robust context sensitive timers 

• A search mechanism, to search for the optimum method, needs to be put in place 

 

There are, in general, two methods for adapting routines to different environments. These 

are parameterised adaptation and code generation. Parameterised adaptation involves 

varying parameters, specific to a machine, within the source code. This can be done at 

compile time and have no effect on the runtime performance of the software. The 

parameterised approach is limited in that it cannot optimise for certain underlying 

architectural characteristics such as cache size. This can only be done by modifying the 

source code. Code generation is more flexible as it is a program that generates source 
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code, taking into account a number of parameters while able to modify the source code 

specific to a given architecture. 

AEOS packages adapts to both hardware and software architectures [3, p7], matrix-vector 

operations, and level 3 BLAS, which performs matrix-matrix operations.  

The performance enhancements are particularly relevant to SuperNEC as SuperNEC 

makes use of the BLAS to solve the equation  

][]][[ bxA =  
(12) 

 

The different BLAS levels are optimised as follows [3, p9]: 

 

Level 1: No memory reuse is possible in level 1 while small speedups are achieved from 

floating point usage 

Level 2: Memory blocking allows reuse of vector operands but not, in general, matrix 

operands. This reduces vector operands from order 2N to order N . Irreducible matrix 

costs, however, causes the memory load to remain at order 2N . Only a modest speedup 

can be achieved. 

Level 3: Orders of magnitude speedup can be achieved in level 3 as operations can be 

blocked so that the fetch cost of order 3N  become order 2N . Triple nested loops used 

here are almost always too complex for compilers to optimise without hints from the 

programmer.  

 

There are however a few limits to the ATLAS approach. These include the need for an 

adequate ANSI C compiler, hierarchical memory and a increase in compile time. These 

drawbacks are small compared to the performance improvements that can be achieved. 

 

3.4.  Timing Results for various SuperNEC Problems 

 

Three complex structures, namely a Hawk aircraft shown in figure 3, a dipole above a 

cube shown in figure 4 and a dipole above a gridded plate in figure 5 were modelled 

using SuperNEC. The box and plate configuration were modelled at different frequencies, 

keeping their physical dimensions constant, to obtain varying size problems. A different 

approach was used for the Hawk aircraft. The Hawk aircraft was cut into sections. The 

first section was that of the nose, the second included more of the body of the aircraft 
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until the last section included most of the aircraft shown in figure 6. Using this approach 

to construct test case problems ensures the problems have different eigen values with 

different matrix condition numbers.  

 

 

Figure 3: SuperNEC numerical model of the Hawk aircraft. 3269 segments 
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Figure 4: Numerical model of a cube and dipole antenna illustrating small and large problem sizes. 

807 segments to 8007 segments 

 

Figure 5: Numerical model of a cube and dipole antenna illustrating small and large problem sizes. 

1207 segment to 5106 segments. 
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Figure 6: Various sections of the Hawk aircraft ranging from 579 segments to 4977 segments. 

The configurations presented above were simulated with the un-optimised SuperNEC 

engine and an optimised engine for a Pentium 4 machine. The total run time of a problem 

can be generally broken up into fill time (the time taken to create the matrices) and 

factorisation time (the time taken to solve the system) 

A graph comparing the factorisation times and total times of the Hawk aircraft for various 

problem sizes is presented in figure 7. Similarly figure 8 and figure 9 present the 

factorisation times and total times for the optimised and un-optimised SuperNEC engines 

for the plate and box configurations. 

 

Figure 7: Factorisation and total times for the Hawk aircraft. 
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Figure 8: Factorisation and total times for the Box configuration. 

 

 

Figure 9: Factorisation and total times for the Plate configuration. 

 

The timing plots above show that the factorisation times are sped up approximately by 

between 4.1 times to 4.6 times that of the un-optimised engine. Figure 7, 8 and 9 

reinforce one another as they show the same improvement despite problem size.  
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It is interesting to note that problem type has no noticeable effect of the factorisation 

time, which is expected. This is illustrated by plotting the factorisation times for the 

various problems studied in figure 10. This is not necessarily the case for iterative 

methods. 

 

 

 

 

 

 

 

Figure 10: Factorisation times compared for the Hawk, Box and Plate configuration showing 

problem type has no effect. 

3.5. Summary 

 

Due to the rapid improvement of computational hardware, new methods have been 

developed to create and maintain high performance software by the ATLAS project. 

ATLAS achieves this by automatically tuning software code through varying parameters 

and by using programs to write source code. The ATLAS project primarily makes use of 

code generation to build applications.  

The optimisation process can be broken down into the following operations [3, p5]: 

• The performance critical routines need to be isolated 

• A method of adapting the routines to different environments 

• Robust context sensitive timers 

• A search mechanism, to search for the optimum method, needs to be put in place 
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Three complex structures, namely a Hawk aircraft, a dipole above a cube and a dipole 

above a gridded plate were modelled using SuperNEC for comparison purposes. The 

comparisons show that the factorisation times are sped up by between 4.1 times to 4.6 

times that of the un-optimised engine. This speed up in factorisation time outweighs the 

overheads and complexity associated with the compilation of the optimised libraries. 

By optimising the linear algebra source code used in SuperNEC, a baseline for 

measurement purposes has been created. Using the optimised linear algebra libraries as a 

standard library, various methods such as BICGSTAB(L) and Simply Sparse can now be 

compared more accurately. 
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4. BICGSTAB(L) method for SuperNEC Problems 

 

4.1. Introduction 

 

Due to the advancement of computational power, computational electromagnetics has 

over the past few years been exposed to new solution techniques, which otherwise would 

not have been considered, for large complex problems. The problems are typically of the 

form 

][]][[ bxA =  
(13) 

 

in most MoM based packages, where ][A  is a non-singular non-symmetric NN ×   

matrix and ][b  is some given N  vector. Such systems can be solved by direct methods, 

such as LU decomposition or by various iterative methods or approximations. One such 

non-stationary iterative method, employed by SuperNEC, is the Bi-Conjugate Gradient 

Stabilised (BICGSTAB) algorithm [18, p1463]. BICGSTAB developed from the 

Conjugate Gradient Method (CG), which was extended to the Bi-Conjugate Gradient 

Method (BICG) and was later modified to the BICGSTAB method. A modified algorithm 

to BICGSTAB, BICGSTAB(L) developed by G. Sleijpen et al [2], is used here to solve 

various electromagnetic problems in SuperNEC and the results are compared with 

BICGSTAB. All code used makes use of optimised ATLAS libraries as discussed in 

chapter 3. 

Sections 4.2 to 4.7 summarises the work presented in [2] 

 

4.2. BICGSTAB(L) introduced  

 

The BICGSTAB(L) algorithm was developed by Sleijpen, G et al in response to the poor 

performance of BICGSTAB when the stabilising polynomial’s coefficient ( )kω  is close 

to zero which may cause stagnation. It was found to most likely occur when ][A  is real 

and has non-real eigen values with an imaginary part that is large relative to the real part 

[2, p12]. The development of BICGSTAB(L) from the conjugate Gradient method to 

BICGSTAB is summarised. 
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4.3.  Conjugate Gradient Method 

 

The Conjugate Gradient method is one of the oldest and best known non-stationary 

iterative methods. This method generates successive approximations to the solution 

(iterations), residuals corresponding to the iterates and search directions to update the 

iterates [4, p12].  

Residuals can be thought of as follows. Suppose you have an equation 

bxf =)(  
(14) 

 

The a residual would be the result of  

bxf −)( 0  
(15) 

 

Where 0x is the approximation. An iterative technique used is close to convergence when 

the residual is close to zero. 

The pseudo code of the CG method is shown below. 
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Where 
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The conjugate gradient method is applicable to symmetric positive definite systems and 

the speed of convergence depends on the condition number. 

 

4.4.  Bi-Conjugate Gradient Method 

 

The following section summarises the Bi-Conjugate Gradient Method as discussed in [4, 

p19]. 

Conjugate gradient method is not suitable for non symmetric systems. This is due to the 

residual vectors which cannot be made orthogonal with short recurrences. The Bi-

Conjugate Gradient method replaces the orthogonal sequence of residuals with two 

mutually orthogonal sequences. This comes with a price of no longer providing 

minimisation.  

 

The pseudo code in section 4.3 would be altered as follows to implement the BICG 

method. 

Two sequences of residuals would be updated instead of one. 
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i

iii

i
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(16) 

The two search directions would be  
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ensuring bi-orthogonal relations. 
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The Bi-CG method is applicable to non-symmetric matrices. It is not applicable where the 

matrix is given as an operator and the transpose of the matrix is not available.  

 

4.5. Conjugate Gradient Squared Method (CGS) 

 

This section summarises the work discussed in [4, p21]. 

In BICG, the residual vector, ( )ir  can be regarded as the product of ( )0r  and the i
th

 degree 

polynomial in A , that is 

( ) )0()( rAPr i

i =  
(18) 

 

This same polynomial satisfies ( ) )0(~)(~ rAPr i

i =  so that  

))(,~())(,~)((),~( )0(2)()0()0()()( rAPrrAPrAPrrpi i

i

i

T

i

ii ===  
(19) 

 

This suggests that if )(APi  reduces ( )0r  to a smaller vector ( )ir , then it might be 

advantageous to apply this “contraction” operation twice, and compute )0(2
)( rAPi . It also 

shows that the iteration coefficients can still be recovered from these vectors, and 

relatively easy to find the corresponding approximations for x.  

 

4.6.  Bi-Conjugate Gradient Stabilized Method   

 

This section summarises the work discussed in [4, p24]. 

BICGSTAB method was developed to solve non-symmetric linear systems while 

avoiding the irregular convergence patterns of CGS.  

The BICGSTAB method can be interpreted as the product id BICG and repeatedly 

applied GMRES. GMRES (Generalized Minimal Residual) method, which generates a 

sequence of orthogonal vectors where all previously computed vectors in the orthogonal 

sequence are retained, is applied to non-symmetric systems. Instead of computing the 

CGS sequence )0(2
)( rAPi ia , BICGSTAB computes )0()()( rAPAQi iia  where iQ  is 

an i
th

  degree polynomial describing the steepest decent update. The full BICGSTAB 

algorithm is outlined in [4]. 



25  

The BICGSTAB method will however not converge if the GMRES step stagnates. To 

avoid this and problems associated with the BICG algorithm, alternative algorithms can 

be employed. One such algorithm is BICGSTAB(2) developed by Gutknecht [19] and a 

more general approach is suggested by Sliejpen which leads us on to BICGSTAB(L).  

 

4.7.  Bi-Conjugate Gradient Stabilized L Method 

 

This section summarises the work discussed in [2]. 

The minimum residual polynomial introduced to achieve smoother convergence of 

BICGSTAB, kω−1 , to a large extent allows many problems to converge smoothly and 

often more quickly than BICG and CGS. If kω  is close to zero, stagnation or breakdown 

may occur. This is likely to occur if ][A  is real and has non real eigen values with the 

imaginary part much larger than the real part. A second degree minimum residual 

polynomial is expected to perform better under these circumstances. Gutknecht [19] 

introduced such a second degree polynomial, BICGSTAB(2). In many cases this 

improves the algorithm but may still suffer from breakdown in cases where BICGSTAB 

stagnates or breaks down. Sleijpen introduces a generalisation of BICGSTAB by 

introducing a polynomial of degree L, hence the name BICGSTAB(L), which minimises 

near breakdown. Sleijpin suggests that even degree polynomials are well suited for 

problems with complex eigen pairs. Table 1 is a comparison of the computational and 

memory costs of the various methods. 

 

Table 1: The average cost per Krylov dimension 

METHOD Computational Cost Memory Requirement 

 MV AXPY DOT  

CG 1 3.25 1 7 

BICG 2 6.5 2 7 

BICGSTAB 1 3 2 7 

BICGSTAB2 1 5.5 2.75 10 

BICGSTAB(L) 1 0.75(L+3) 0.25(L+7) 2L+5 

 

The computational cost indicates the large vector operations needed to increase the 

Krylov subspace by one. The memory requirement indicates the maximum number 

of n-vectors that have to be stored during computation.   
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MV stands for Matrix Vector Multiply 

AXPY stands for yaxy +=  

DOT stands for Dot Product 

 

4.8. BICGSTAB in SuperNEC 

 

SuperNEC has been used over a number of years to solve large complex EM problems. In 

an effort to obtain solutions more quickly, various methods have been employed. These 

methods included iterative methods such as BICGSTAB. Solutions do however not 

always converge. It was seen that convergence was proportional to the condition number 

of the impedance matrix being solved. Table 2 illustrates the convergence of various 

sized problems with BICGSTAB with different condition numbers. 

 

Table 2: Convergence of BICGSTAB for different problems with various condition numbers 

Problem Matrix Size Condition Number Number of Iterations 

Hawk Aircraft 4977 41039.5 ×  No Convergence 

Cube with antenna on top 4806 271 No Convergence 

Cube with antenna on top 2032 25.3 57 

Cube with antenna on top 590 15 22 

 

Furthermore it was noticed that the matrices that did not converge had eigen values where 

the imaginary part was large relative to the real part. It is suggested by Sleijpen that this 

may be the reason why some matrices stagnate, although this typically occurs with 

matrices where ][A  is real. Figure 11 shows that the imaginary component is large 

compared to the real component of the eigen values for a SuperNEC problem that does 

not converge where ][A  is complex. 
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Figure 11: Comparison of SuperNEC problems where the ratio of the imaginary and real eigen 

values are shown. 

In figure 11, the average value of the ratio that does not converge is 4109,6 × compared to 

an average of 4101× for a problem that does converge. 

 

4.9.  Results for various Problems in SuperNEC 

 

A number of problems with large condition numbers were analyzed using 

BICGSTAB(L). L was varied from 1 to 5 to investigate which value would generally be 

best to use with SuperNEC problems, and whether convergence can be achieved. 

For comparative purposes, the SuperNEC matrices were solved using the cgstab.m [20] 

routine in MATLAB on a Pentium 4 machine with 1 Gigabyte of memory. 

Table 3 below shows the results of various problem sizes with poor condition numbers. 
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In general, setting L to 4 (as suggested by Sleijpen) allows these problems to converge, 

and in some cases more quickly when L is set to any other value, especially with large 

condition numbers. 

 

Table 3: Varying L for different size problems with a range of condition numbers 

Size L Time Iterations Condition number 

590 1 5.035 22 15.3403 

 2 5.17 36  

 3 5.09 30  

 4 5 24  

1203 1 0 Stagnates 90.157 

 2 22.1 52  

 3 20.6 60  

 4 20.2 44  

 5 20.9 70  

2032 1 56.9 57 25.2629 

 2 56 44  

 3 54 27  

 4 54.5 20  

 5 57.4 65  

3473 1 155.2 23 43.83 

 2 169.9 74  

 3 160 51  

 4 164.4 72  

 5 158.4 40  

4806 1 0 Stagnates 271 

 2 351.7 184  

 3 364.7 222  

 4 338.3 148  

 5 345.3 150  

 

 

Table 4 shows a problem with a large condition number ( )41039.5 × . With L set to 1 the 

iterative solution stagnates. Setting L to values of 2, 3 and 4 allowed the iterative 

technique to converge. 
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Table 4: Varying L for a problem with a large condition number (Hawk Aircraft) 

Problem Size L Time (s) Iterations Condition number 

4977 1 0 Stagnates 5.39E+04 

 2 310 64  

 3 365 210  

 4 374 236  

 

It should be noted that the stop criterion for the iterative solutions presented above made 

use of the default stop criterion used by Sleijpen. That is  

81)*( −<− ebxANorm  
(20) 

 

Figure 12  shows the various rates of convergence for a problem using BICGSTAB(L) for 

various values of L. L set to 1 converged the slowest. L set to 3 and 4 converged at a 

similar rate. It should be noted that L set to 1 is equivalent to BICGSTAB. 

 

 

Figure 12: Convergence rates for a typical SuperNEC problem, varying L from 1 to 4 in 

BICGSTAB(L). The condition number for this problem is 43. 
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4.10. Chapter Summary 

 

BICGSTAB(L) and its development from CG, BICG, CGS and BICGSTAB has been 

outlined. BICGSTAB(L) aims to improve the convergence rate of problems solved by the 

BICGSTAB method despite the properties of the eigen values and coefficient matrix. 

Experimental results performed using SuperNEC problems showed that setting L to 2 is 

sometime more beneficial than setting L to 4, which is confirmed in [2, p13]. 

In general, however, setting L to 4 as a default value is best. The convergence rate with L 

set to 4 is in most cases the fastest and usually ensures a solution, even with a high 

condition number.  

BICGSTAB(L) is, however, only a method to solve a system of equations. It does not 

attempt to look at the actual physical properties of the structure to improve solution times 

such as domain decomposition methods. The next section looks at such a method, called 

Simply Sparse. 
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5. Simply Sparse 

 

5.1. Introduction 

 

Simply Sparse was developed by Dr Francis Canning as a general compression and 

solution method for MoM Programs [5]. This chapter partly summarizes the paper written 

and presented at the 2002 IEEE APS symposium. Experimental results of Simply Sparse 

are also presented. 

 

5.2. Simply Sparse Summarised 

 

Simply Sparse is a new method that transforms the coefficient matrix into a sparse 

matrix. The sparse matrix that is generated can be inverted with sparse direct methods, 

such as sparse LU factorization or solved using iterative techniques such as 

BICGSTAB(L). 

Wavelet methods generally require matching the wavelet functions to the wire grid that 

defines the SuperNEC structure. The Simply Sparse technique, on the other hand, 

implicitly uses information about the wire grid. The actual details of the grid are not used, 

but the information used is about how a source, or wire segment, radiates to the far field. 

This implicitly carries information about the grid and it also carries information about the 

integral equation and other global properties of the wire grid structure.  

An optimization procedure is used to develop a new basis function, providing the 

optimum amount of sparseness. This optimization is done on separate regions of the wire 

grid.  

If we consider a frequency domain method of moments problem with a wave number k 

with ten wavelets per wavelength along a one dimensional surface. Approximately two 

functions per wavelength along the surface will have a centre frequency smaller (in 

magnitude) than k. The other eight functions will approximately have a frequency greater 

(in magnitude) than k. These eight functions per wavelength will radiate weakly  

[5, p234]. 

For a two dimensional surface the results are even better. Only π  functions per square 

wavelength radiate strongly while the other 97 functions radiate weakly. Functions that 

radiate weakly generate small matrix elements when tested at a distant location. The 

maximum sparseness achievable is approximately a factor 1000.  
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The Simply Sparse method does better due to its optimization procedure which directly 

considers the radiated field. In an N  by N  method of moment matrix numerical results 

have shown that the typical 2N  storage required for the coefficient matrix, also known as 

the impedance matrix, is reduced to approximately N1000 . This results is valid for 

N greater than one thousand and less than one million. 

 

An example of how Simply Sparse is used in MoM based programs is now shown. If you 

consider a group of basis functions in a MoM problem, they should come from one 

physical region, so they are somewhat close together. For M  basis functions in this 

region choose M  directions throughout 3 dimensional space (e.g. M  points on a sphere) 

These M  directions can be described as M  vectors, each going from the centre of the 

sphere to one of the M  points on the sphere. After choosing a point y in the region (say 

the centre), the functions ),( nmF  and ),( nmG are defined. The functions G  and F are 

the two perpendicular components of the electric field where n is the basis functions and 

m  the direction from the centre of the region at a distance of one million wavelengths. 

Each function gives a complex number.  

 

For ),( nmF  and ),( nmG  where 1, =nm  to M each gives a M  by M  matrix of 

complex numbers. Concatenating these matrices gives a M2  by M  matrix ][Z . The 

singular value decomposition gives: 

hVDWZ ]][][[][ =  
(21) 

 

The singular values are the real valued diagonal elements of D . Matrices W  and V  are 

unitary. The matrix V  gives a linear transformation of this region with M  basis 

functions to M  new basis functions. The new basis functions radiates to the far field with 

a strength given by the associated value in D . 

The values in D  are at first roughly the same size before they rapidly decrease in size. 

The point at which they decrease corresponds roughly to the Nyquist sampling criterion.  

This applies to a certain region within the problem. All of the unknowns may now be 

partitioned into regions in a similar way. For each region a matrix V , as in equation 21, is 

computed. A block diagonal matrix RD  may be assembled with these matrices V  giving 

its diagonal blocks. Similarly a block diagonal matrix LD may be assembled for the 

testing functions. The MoM impedance matrix ][A  may be transformed into a new matrix 

T  by: 
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RL DADT ]][[][][ =  
(22) 

 

T is sparse with structure shown in figure 13. Five physical regions give T a five by five 

block structure. A permutation of this transforms the structure to that shown in figure 14. 

It is possible to apply sparse LU  factorization, and other techniques, to the sparse matrix 

as shown in either figure 13 or figure 14. 

 

 

Figure 13: Simple Sparse Matrix T [5, p237] 

 

Figure 14: Simply Sparse Matrix T permutation of the row and columns [5, p237] 
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5.3. Simply Sparse Experimental Results 

 

A number of different size problems were simulated using Simply Sparse, SuperNEC and 

NEC2 [21]. It was noted that Simply Sparse performed poorly when using the SuperNEC 

matrix fill routines. This was due to the object orientated nature of SuperNEC fill routine. 

Every time Simply Sparse requested a portion of the matrix, the request and data had to 

pass through many code objects, degrading the performance. SuperNEC was however 

based on the NEC2 code. Where SuperNEC is object orientated, NEC2 is procedural. 

This provides a better method for comparison, making use of the same theory, but 

without the object orientated overhead. 

The solutions in figure 15 makes use of LU decomposition to solve the matrix, while 

Simply Sparse makes use of NEC2 to fill the matrix and then compresses it. Simply 

Sparse uses a custom solver for the solution. Note that these times are total times, which 

included the overheads to create the matrix structures. 

 

 

Figure 15: Comparing LU Decomposition and Simply Sparse (807 to 8007 unknowns) 
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Figure 15 shows that while Simply Sparse scales better as problem sizes increase, 

standard LU decomposition is still better for problems smaller than 7000 unknowns. 

Larger problems can also be solved with Simply Sparse as less memory is required. 

 

5.4. Chapter Summary 

 

From the theory and experimental data presented we see that Simply Sparse is a good 

compression technique for MoM matrices. Simply Sparse also solves large matrix 

problems more quickly and scales well with increased problem sizes. LU decomposition 

is still however quicker for problems smaller than 7000 unknowns as the overheads for 

Simply Sparse dominate.  

This leads to the investigation of combining the matrix compression of Simply Sparse 

and the improved performance of BICGSTAB(L), shown in the previous chapter, to 

reduce solution times. This is discussed in chapter 6. 
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6. Modified Simply Sparse Matrix as a Preconditioner  

 

This chapter looks at the development of a new preconditioner to BICGSTAB(L) by 

modifying the compressed Simply Sparse matrix. A comparison is made between current 

techniques, such as LU decomposition, Simply Sparse and the new preconditioning 

technique for the BICGSTAB(L) method. A brief summary of other methods investigated 

is also presented. 

 

6.1. Various Solution Methods Investigated 

 

A number of techniques were investigated to construct a preconditioner. A brief 

description of some of the techniques and their investigation is outlined here. 

 

6.1.1. ILU (Incomplete LU factorization) 

 

Chapter 2 gives a description of ILU. Stated again briefly, ILU is based on the incomplete 

factorisation of the coefficient matrix ][A . The incomplete factorisation ignores non-zero 

fill elements during factorisation when those elements in the original matrix are zero. 

Tolerance factors can be manipulated to vary which elements are included or excluded. 

A preliminary investigation using ILU, using standard suggested tolerances [8, p275], 

yielded no convergence of any of the MoM problems investigated. Increasing the number 

of elements in the preconditioning matrix might have yielded some convergence, but as 

these matrices are relatively dense (more than 2%) their convergence rate would be 

slower than the existing solution methods in SuperNEC.  

ILU, as a solution method, was therefore discounted. 

 

6.1.2. Block Diagonal 

 

Another approach investigated to construct a preconditioning matrix was to include 

blocks around the diagonal of the matrix. The investigation introduced more and more 

blocks in the search for a preconditioner. For example figure 16 shows a matrix on the 

left with 5 blocks around the diagonal included, while the matrix on the right included 20 

blocks. 
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The reason for this approach stems from the construction of the problem to be solved. In 

these MoM problems, the main diagonal represents the self impedance of the elements 

and assumes these to be the most important. Matrix elements close to the diagonal should 

represent wire segments that are physically close to one another and have a strong mutual 

impedance value. This is however not always the case as, for example, a structure could 

fold in on itself, producing strong mutual impedance values further away from the 

diagonal. 

Experimental results also showed no convergence using this kind of preconditioning 

matrix and was hence discounted as a solution technique. Please refer to Appendix D for 

further experimental data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Graphic representation of a Block Diagonal Inclusion Method. 5 Blocks included on the 

left and 20 blocks on the right 

 

6.1.3. SIM/SOR 

 

SuperNEC includes a solution method called Sparse Iterative Method (SIM) combined 

with successive over relaxation (SOR). This method makes use of wire segments that are 

within a certain interaction range, with the hope of including only the most important 

data.  

Investigating this technique showed that the SOR iterations were slow and did not 

converge. This is in all likelihood due to the high cost of finding an optimal ω . The 

method allows for a change over to BICGSTAB instead, but yielded either no or slow 
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convergence with the MoM problems investigated. For further experimental data on 

interaction distance as a preconditioner please refer to Appendix E. 

The work done in [18] does show an improvement over the traditional BICGSTAB 

method. The poor performance of the BICGSTAB has however been addressed in chapter 

4. The best results shown in [18] require 10 iterations. With preconditioner densities 

varying from 5% to 0.5% the total solution times would not perform better than LU 

decomposition for small problems and fast solvers like Simply Sparse for large problems.  

 

6.2. Development of a New Preconditioning Matrix for 

BICGSTAB(L) 

 

A new preconditioning method was developed for BICGSTAB(L) by modifying the 

compressed Simply Sparse matrix. The thinking behind the approach is described below. 

 

6.2.1. Concept 

 

The compressed Simply Sparse matrix contains all the important information to describe 

the matrix ][A  (or impedance matrix) sufficiently in the EM MoM system. 

][]][[ bxA =  
(23) 

 

The Simply Sparse matrix then substitutes the full uncompressed impedance matrix ][A . 

A preconditioner is created by including only the largest elements of the Simply Sparse 

matrix (defined by the magnitude of the complex number of the element in the matrix). 

The typical density is between 1% and 2%. As the Simply Sparse matrix is already 

available no significant effort is needed in creating the preconditioning matrix. The only 

requirement is that the preconditioning matrix is not singular to within the working 

accuracy of the software, i.e. it can be inverted. 

Making the preconditioning matrix so sparse ensures that small elements are excluded. 

To emphasise the importance of the remaining elements, they are multiplied by a large 

constant, 7101×  (Not multiplying the preconditioning matrix by this constant results in 

slow convergence and a more dense preconditioning matrix is needed, i.e. %10 ) 

Appendix C shows in more detail how the value of the large constant was determined. 
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Table 5 shows the rate of convergence of  a problem, changing the size of the constant 

multiplier used. 

 

Table 5: Varying the Preconditioning Multiplier for a problem with 807 unknowns (Simulation 

stopped if iterations were greater than 10) 

Multiplying factor Iterations Condition number of impedance matrix  

100 >10 1380 

1000 7 1380 

10000 3 1380 

100000 2 1380 

1000000 2 1380 

10000000 2 1380 

 

Once the preconditioner has been constructed, it is used to solve the system of equations 

using BICGSTAB(L), which has been optimised with the ATLAS libraries. 

A graphical representation of various density preconditioning matrices is shown in figure 

17. These matrices represent a cube with an antenna above it. 

 

 

Figure 17: Various density matrices. From top left to bottom right they are 30%, 20%, 10%, 5%, 2% 

and 1% 
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6.3. Results 

 

In comparing various solution methods and benchmarking data, the following has to be 

considered: 

• Coding paradigms (i.e. procedural compared to object orientated) 

• Matrix creation time 

• System solve time 

In order to compare algorithms accurately, Matlab was used as a standard platform for 

LU decomposition and BICGSTAB(L) methods. This ensures that the ATLAS libraries 

are used and that the same coding paradigm is used. Simply Sparse has a custom solver 

that is not implemented in Matlab, but also makes use of the ATLAS libraries. 

 

6.3.1. Matrix Creation Times 

 

There are two different methods used to create the various matrices. To create the full 

uncompressed matrix, the NEC2 code is used. The SuperNEC code is object orientated 

and suffers from poor performance when creating the matrix. This was seen when using a 

code profiler how multiple requests for different parts of the matrix were passed through 

many header structures before performing the task required. This is not seen in the 

procedural code that NEC2 was written in. 

The Simply Sparse code is used to create the compressed matrix. 
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Figure 18: Comparison of Matrix Creation Times 

 

Figure 18 shows that the overheads in creating the Simply Sparse matrix far outweigh 

that of the comparative NEC2 time. This is done in the hope of reducing the solve time 

significantly as the solve time dominates the overall solution time with increased problem 

sizes. 

 

6.3.2. Matrix Solution Times 

 

The solution time of the various techniques are shown in figure 19. The NEC2 code has 

not been optimised with ATLAS for LU decomposition, but is included here to show the 

performance improvement achieved by using the ATLAS libraries within Matlab for LU 

decomposition. It is interesting to note that the custom Simply Sparse solver only 

outperforms the optimised LU decomposition for problems larger that 5000 unknowns. 
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Figure 19: Comparison of Matrix Factorization/Solution times 

 

Table 6: Comparing Preconditioned BICGSTAB(L) with optimised LU decomposition 

Problem Size 807 1207 2007 4043 5000 5303 6355 

LU Decomposition 

Solve Time (s) 1.07 2.53 11.08 66.06 166.6 258.9 

Memory 

limit 

reached 

Preconditioning Solve 

Time (s) 1.21 1.09 2.8 37.5 46.19 52.2 148.51 

Iterations 2 2 2 3 2 2 2 

Residual 3.67E-14 1.84E-09 1.75E-09 1.87E-08 9.66E-16 6.19E-09 6.36E-09 

% 2.63 1.32 1.03 0.76 1.06 0.99 0.97 

 

Table 6 shows more clearly the time taken to solve smaller problems. The 

preconditioning technique is at best just as quick as LU decomposition for smaller 

problems. This is expected as the overheads for solving smaller problems with 

BICGSTAB(L) dominates the solve time. It should be noted that the odd problem sizes 

are due to the use of artificial (cube and plate structures) and real world problems (Hawk 

aircraft). 
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6.3.3. Total Times 

 

In order to compare solution techniques, the matrix creation time and solution time needs 

to be considered. This is shown in figure 20. 

 

Figure 20: Comparing Total Run Times (i.e. Matrix Creation Time + Solution Time) 

 

The stop criterion for the preconditioned BICGSTAB(L) method is for the residual to be 

less than 810− . The residual is defined as: 

810])[]][([ −<− bxANorm  
(24) 

Figure 20 shows again the advantage of working with sparse matrices, as larger problems 

can be solved compared to full matrix inversion of LU decomposition. 

The overheads in creating the matrix for both the BICGSTAB(L) preconditioning 

technique and the Simply Sparse technique make them impractical to solve small 

problems. The Simply Sparse technique only outperforms LU decomposition for 

problems larger than 7000 unknowns. The new preconditioning technique, however, 

outperforms both LU decomposition and the Simply Sparse technique for problems larger 

than 5000 unknowns. 
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Figure 21 shows the typical absolute error achieved with the preconditioning technique.  

Absolute error is defined as:   

|| xxapprox −  
(25) 

 

For this example, it means that the current on each wire has an average error less than 

3105.0 −× . A more comprehensive set of plots can be found in Appendix B. 

 

 

Figure 21: Absolute Error for a Problem with 5000 Unknowns 
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6.4. Chapter Summary 

 

A new preconditioning technique has been developed that significantly reduces the 

number of iterations for BIGSTAB(L) to 2 or 3 iterations for SuperNEC problems. This 

is achieved regardless of the condition number of the coefficient matrix and hence 

problem type. The preconditioner is created by modifying the compressed Simply Sparse 

matrix to create a very sparse (between 1% and 2%) matrix and multiplying it by 710 . 

The new technique has been shown to be quicker than LU decomposition and the custom 

Simply Sparse method for problems larger than 5000 unknowns. 
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7. Conclusion 

 

The aim of this research was to improve the matrix solutions methods for EM MoM 

problems in SuperNEC, and develop a new preconditioner for the iterative method 

BICGSTAB(L) using the domain decomposition method, Simply Sparse, to construct the 

matrices. 

This was achieved by: 

• Investigating and improving the LU decomposition subroutines used by 

implementing the Automatically Tuned Linear Algebra Subprogram Software 

(ATLAS). The libraries optimised using ATLAS were used as a baseline in all 

other methods investigated. 

• Investigating and improving on the current iterative method BICGSTAB by 

making use of a modified method BICGSTAB(L). 

• Characterising the domain decomposition method Simply Sparse. 

• Developing a new preconditioner for BICGSTAB(L) by modifying and 

manipulating the Simply Sparse matrices, where the code had been optimised with 

ATLAS. 

 

7.1. ATLAS 

 

The ATLAS code primarily makes use of code generation to build and optimise 

applications.  

Three complex structures, namely a Hawk aircraft, a dipole above a cube and a dipole 

above a meshed plate were modelled using SuperNEC for comparison purposes. A range 

of problems with different matrix condition numbers was intentionally chosen to address 

poor solution times due to problem type. The comparisons show that the matrix solve 

times using LU decomposition optimised by ATLAS are improved by between 4.1 times 

to 4.6 times compared to that of the un-optimised code. This speed up in factorisation 

time outweighs the overheads and complexity associated with the compilation of the 

optimized libraries, which need to be done only once, taking hours instead of weeks of 

optimising code by hand 
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7.2. BICGSTAB(L) 

 

The BICGSTAB(L) method was characterised using a number of problems while using 

the ATLAS libraries to optimise the code for the computer hardware it was run on. It was 

determined that in general setting the L parameter to 4 helps problems converge more 

quickly than setting it to 2 or 3, even with high condition numbers. Setting L to 1 reduces 

the code back to the original BICGSTAB. This is an improvement over the standard 

BICGSTAB method where problems do  not always converge when the matrix condition 

number is high. BICGSTAB(L) is, however, only a solution method and does not take 

any advantage of the physical properties of the problems as a domain decomposition 

method might. 

 

 

7.3. Simply Sparse 

 

The domain decomposition method, Simply Sparse, was outlined, showing how the 

impedance matrix can be constructed, making use of the physical properties of the 

problem. The resulting matrices are also sparse matrices, containing only the essential 

information within the matrix to describe the problem. 

From the experimental data presented it was shown that Simply Sparse is a good 

compression technique for SuperNEC MoM matrices. The custom Simply Sparse solver 

also solves large matrix problem more quickly than LU decomposition and scales well 

with increased problem sizes. LU decomposition is still however quicker for small 

problems as the overheads in compressing the matrices for Simply Sparse dominate. 

 

7.4. Original Contribution (Preconditioning Technique) 

 

A new preconditioning technique has been developed by making use of the compression 

techniques of Simply Sparse, the solution method of BICGSTAB(L) and the optimised 

BLAS libraries created by ATLAS.  

The preconditioning technique looks to use the best properties of each of the methods 

presented and combine them in a unique way after applying a modification.  

BICGSTAB(L) was chosen as the solution method, as problems converge well despite 

the condition number of the matrices. L was set to 4 for optimal convergence as shown in 



48  

the characterisation of BICGSTAB(L). Simply Sparse was used to create a compressed 

impedance matrix using the physical properties of the problem.  

The preconditioning matrix was constructed by setting to zero up to 99% of the largest 

elements within the Simply Sparse impedance matrix. Using just this matrix as the 

preconditioner did aid some problems in converging but not quicker than any other 

method. The preconditioning matrix was then modified to considerably improve the rate 

of convergence. This is done by multiplying the remaining elements by 710 .  

Other preconditioning methods, such as including more blocks around the diagonal, 

incomplete LU decomposition and SIM/SOR were investigated but with poor results, 

resulting in those methods being discarded.  

Experimental results using the new preconditioner with BICGSTAB(L) and the Simply 

Sparse impedance matrix show that although the solve time for the new method is fast for 

even small problems, the overheads of creating the sparse matrices with Simply Sparse 

dominates. The new method is however quicker than both LU decomposition and the 

custom Simply Sparse solution method for Problems larger than 5000 unknowns. 

Problems typically converge within 2 or 3 iterations. 

 

7.5. Recommendation for Further Investigation 

 

Although this work looks at the most commonly used solution methods such as LU 

decomposition, BICGSTAB(L) and a domain decomposition technique, there are a large 

number of techniques that need to be characterised and compared to the new 

preconditioning method that was developed.  

A preliminary investigation into ILU did not yield promising results. Further 

investigation into varying the many parameters of this method may yield better results. 

Work also needs to be conducted to make the preconditioning matrix even more sparse by 

using greater precision methods. Increasing the precision might however also have a 

negative effect of increasing the solution time. 

Further work should also be conducted to try and find another matrix compression 

method that does not have the overheads associated with Simply Sparse. The impedance 

matrix of SIM would be such a candidate. Reducing the overheads of constructing the 

impedance matrix would improve the overall speed of the preconditioning technique. 
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Appendix A: SuperNEC Theory 

This appendix is an excerpt from the SuperNEC user reference manual [9]. 

It serves to provide the reader with information on how the impedance matrix is 

constructed, although not necessary for the understanding of the work presented in this 

thesis. 

A1. Introduction 

SuperNEC (SNEC) is an object-oriented version of the FORTRAN program NEC-2. This 

technical manual is therefore very similar to the NEC-2 manual. In fact, many sections 

have been copied verbatim from the NEC-2 manual. The reason this document has been 

produced (as opposed to referring the reader to any readily available NEC-2 manual) is 

because new theory will be added to SNEC and some features that exist in NEC-2 will 

not be implemented in SNEC. The easiest way of keeping an up to date reference of the 

theory implemented in SNEC is to start with an electronic version of the NEC-2 manual 

and modify the document as the SNEC code evolves. Many extensions have been made 

to SNEC in prototype form. These features include hybridisation with UTD, fast iterative 

solvers, MBPE amongst other features. When these extensions are formally incorporated 

into the SNEC program, then the theory behind the extension will be added to this 

manual. 

A2. The Integral Equation for Free Space 

The SNEC program uses an electric-field integral equation (EFIE) to model the 

electromagnetic response of general structures. The EFIE can be used to model both wire 

structure and surfaces. Surfaces are represented by wire grids and have had reasonable 

success for far-field quantities but with variable accuracy for surface fields. The EFIE and 

its derivation are outlined in the following sections. 

A3. The electric field integral equation (EFIE) 

The form of the EFIE used in NEC follows from an integral representation for the electric 

field of a volume current distribution J . 

∫ •
v

')',()'(
k4

j-
 = )( dVG rrrJrE
π
η

 (A1) 

where 

)r' (r, ) +I( = )' ,(G 2 gk ∇∇rr  
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and the time convention is tje ω . 

I  is the identity dyad )ˆˆˆˆˆˆ( zzyyxx ++ . When the current distribution is limited to the 

surface of a perfectly conducting body, equation (A1) becomes: 

∫ •
s
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  (A2) 

where 

sJ  is the surface current density.  

The observation point r  is restricted to be off the surface S  so that 'rr ≠ . 

If r  approaches S  as a limit, equation (A2) becomes: 

∫ •
S

s dAG ')',()'(
k4

j-
 = )( rrrJrE
π
η

 (A3) 

where the ∫
S

now represents a principal value integral. It is a principle value integral 

since )',( rrg  is now unbounded. 

An integral equation for the current induced on S  by an incident field E  can be obtained 

from equation (A3) and the boundary condition for Sr∈ : 

[ ] 0)()()(ˆ =+× rErEr Isn  (A4) 

where  

)(ˆ rn  is the unit normal vector of the surface at r  

sE  is the field due to the induced current SJ . 

Substituting equation (A3) for sE  yields the integral equation: 
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  (A5) 

The vector integral in equation (A5) can be reduced to a scalar integral equation when the 

conducting surface S is that of a cylindrical thin wire, thereby making the solution much 

easier. The assumptions applied for a thin wire, known as the thin-wire approximation, 

are as follows: 

1. Transverse currents can be neglected relative to axial currents on the wire. 

2. The circumferential variation in the axial current can be neglected. 

3. The current can be represented by a filament on the wire axis. 
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4. The boundary condition on the electric field need be enforced in the axial 

direction only. 

These widely used approximations are valid as long as the wire radius is much less than 

the wavelength and much less than the wire length. An alternate kernel for the EFIE, 

based on an extended thin-wire approximation in which condition 3 is relaxed, is also 

included in NEC for wires having too large a radius for the thin-wire approximation[22]. 

From assumptions 1, 2 and 3, the surface current SJ  on a wire of radius can be replaced 

by a filamentary current I where 

)(2ˆ)( rJ sssI π=   

where 

s  = distance parameter along the wire axis at r  

ŝ = unit vector tangent to the wire axis at r  

Equation (A5) then becomes 
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 (A6) 

where the integration is over the length of the wire. Enforcing the boundary condition in 

the axial direction reduces equation (A6) to the scalar equation, 
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 (A7) 

Since 'r  is now the point at 's  on the wire axis while r  is a point at s on the wire surface 

a≥− 'rr and the integrand is bounded. 

 

A4. Numerical Solution 

The integral equations (A7) is solved numerically in NEC by a form of the method of 

moments. An excellent general introduction to the method of moments can be found in 

R.F. Harrington’s book, “Field Computation by Moment Methods”[23]. A brief outline of 

the method follows. 

The method of moments applies to a general linear-operator equation, 

eLf =   (A8) 

where f is an unknown response, e is a known excitation, and L is a linear operator (an 

integral operator in the present case). The unknown function f may be expanded in a sum 

of basis functions, jf , as: 

∑ =
=

N

j jj ff
1
α  

(A9) 
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A set of equations for the coefficients jα are then obtained by taking the inner product of 

equation (A9) with a set of weighting functions { }iw  

>>=<< ewLfw ii ,,  (A10) 

Due to the linearity of L, substituting equation (A9) for f yields, 

∑
=

>>=<<
N

j

ijij ewLfw
1

,,α  
(A11) 

This equation can be written in matrix notation as: 

][]][[ EAG =  (A12) 
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(A13) 

The solution is then 

][][][ 1 EGA −=  (A14) 

For the solution of equation (A7), the inner product is defined as 

∫>=<
S

dAgfgf ')()(, rr  (A15) 

where the integration is over the structure surface. Various choices are possible for the 

weighting functions { }iw  and basis functions { }if . When ii fw = , the procedure is 

known as Galerkin’s method. In NEC the basis and weight functions are different, { }iw  

being chosen as a set of delta functions 

)()( iiw rrr −= δ  (A16) 

with { }ir  a set of points on the conducting surface. The result is a point sampling of the 

integral equations known as the collocation method of solution. Wires are divided into 

short straight segments with a sample point at the centre of each segment. 

The choice of basis functions is very important for an efficient and accurate solution. In 

NEC, the support of { }if  is restricted to a localised subsection of the surface near ir . 

This choice simplifies the evaluation of the inner-product integral and ensures that the 

matrix ][G  will be well conditioned. For finite N, the sum of { }jf  cannot exactly equal a 

general current distribution so the functions { }if  should be chosen as close as possible to 

the actual current distribution. The basis functions used in NEC are explained in the 

following sections. 

 



56  

A5. Current expansion on wires 

Wires in SNEC are modelled by short straight segments with the current on each segment 

represented by three terms - a constant, a sine, and a cosine. This expansion was first used 

by Yeh and Mei [24] and has been shown to provide rapid solution convergence[25],[26]. 

It has the added advantage that the fields of the sinusoidal currents are easily evaluated in 

closed form. The amplitude of the constant, sine, and cosine terms are related such that 

their sum satisfies physical conditions on the local behaviour of current and charge at the 

segment ends. This differs from AMP where the current was extrapolated to the centres 

of the adjacent segments, resulting in discontinuities in current and charge at the segment 

ends. Matching at the segment ends improves the solution accuracy, especially at the 

multiple-wire junctions of unequal length segments where AMP extrapolated to an 

average length segment, often with inaccurate results. 

The total current on segment number j in NEC has the form: 

2
),(cos)(sin)(

j

jjjjjjj sssskCsskBAsI
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(A17) 

where js  is the value of s  at the centre of segment j and j∆  is the length of segment j. 

Of the three unknown constants jA , jB  and jC  two are eliminated by local conditions on 

the current leaving one constant, related to the current amplitude, to be determined by the 

matrix equation. The local conditions are applied to the current and to the linear charge 

density, q, which is related to the current by the equation of continuity: 

qj
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I
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∂
∂

−=  
(A18) 

At a junction of two segments with uniform radius, the obvious boundary conditions are 

that the current and charge are continuous at the junction. At a junction of two or more 

segments with unequal radii, the continuity of current is generalised to Kirchoff’s current 

law that the sum of currents into the junction is zero. The total charge in the vicinity of 

the junction is assumed to distribute itself on individual wires according to the wire radii. 

T.T. Wu and R.W.P. King [27] have derived a condition for the linear charge density on a 

wire at a junction that neglects local coupling effects. Using their derivation, 
s

I

∂
∂

, can be 

determined by: 
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where  

5772.0

2

radius  wire

=

=

=

γ
λ
π
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a

 

Q is related to the total charge in the vicinity of the junction and is constant for all wires 

at the junction. 
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At a free wire end, the current may be assumed to go to zero. On a wire of finite radius, 

however, the current can flow into the end cap and hence be nonzero at the wire end. In 

one study of this effect, a condition relating the current at the wire end to the current 

derivative was derived [28]. For a wire radius a , this condition is: 
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(A20) 

where Jo and J1 are Bessel functions of order 0 and 1 respectively. The unit vector cn̂  is 

normal to the end cap. Hence, cns ˆˆ •  is +1 if the reference direction, ŝ , is toward the end, 

and -1 if ŝ  is away from the end. 

Thus, for each segment two equations are obtained from the two ends. At free ends the 

following holds: 
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When the end of a segment connects to other segments, a second equation is obtained: 
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Two additional unknowns 
−
jQ  and 

+
jQ  are associated with the junctions but can be 

eliminated by Kirchoff’s current equation at each junction. The boundary condition 

equations provide the additional equation-per-segment to completely determine the 

current function of equation (A17) for every segment. 

To apply these condition, the current is expanded as a sum of basis functions chosen so 

that they satisfy the local conditions on current and charge in any linear combination. A 

typical set of basis functions and their sum on a four segment wire are shown in Figure 

A1. For a general segment I in Figure A2 the i
th

 basis function has a peak on segment i 

and extends onto every segment connected to i, going to zero with zero derivative at the 

outer ends of the connected segments. 
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Figure A1: Current basis function and sim on a four segment wire. 

 

Figure A2: Segments covered by the i
th
 basis function. 

The general definition of the i
th

 basis function is given below. For the junction and end 

conditions described above, the following definitions apply for the factors in the segment 

end conditions: 
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)(

)(

0

1

i

i

i
kaJ

kaJ
X =  

(A24) 

The condition of zero current at a free end may be obtained by setting iX  to zero. 

The portion of the i
th

 basis function on segment i is then: 
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If 0≠−N and 0≠+N , end conditions are: 
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If 0=−N and 0≠+N , end conditions are: 
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If 0≠−N and 0=+N , end conditions are: 
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Over segments connected to end 1 of segment i, the i
th

 basis function is: 
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End conditions are: 
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Over segments connected to end 2 of segment i, the i
th

 basis function is: 
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End conditions are: 
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Equations (A25), (A32) and(A36), defining the complete basis function, involve 

)1(3 ++ +− NN  unknown constants. Of these, 2)(3 ++ +− NN  unknowns are eliminated 

by the end conditions in terms of −
iQ  and +

iQ  which can then be determined from the two 

Kirchoff’s current equations: 
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The complete basis function is then defined in terms of one unknown constant. In this 

case 0

iA  was set to -1 since the function amplitude is arbitrary, being determined by the 

boundary condition equations. The final result is given below: 
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For 0≠−N  and 0≠+N : 
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For 0=−N  and 0≠+N : 
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For 0≠−N  and 0=+N : 
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For all cases: 
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where the sum of −
iP  is over segments connected to end 1 of segment i, and the sum for 

+
iP  is over segments connected to end 2. If 0== +− NN  the complete basis function is: 
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When a segment end is connected to a ground plane, the end condition on both the total 

current and the last basis function is: 
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This replaces the zero current condition at a free end. This condition does not require a 

separate treatment, however, but is obtained by computing the last basis function as if the 

last segment is connected to its image segment on the other side of the surface. 

It should be noted that in AMP, the basis function if  has unit value at the centre of 

segment i and zero value at the centres of connected segments although it does extend 

onto the connected segments. As a result, the amplitude of if  is the total current at the 

centre of segment i must be computed by summing the contributions of all basis functions 

extending onto segment i. 

 

A6. Evaluation of the fields 

The current on each wire segment has the form: 
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where 

00εµω=k  

lengthsegment   theis i∆  

The solution requires the evaluation of the electric field at each segment due to this 

current. Three approximations of the integral equation are used: a thin-wire form for most 

cases, an extended thin-wire form for thick wires, and a current element approximation 

for large interaction distances. In each case, the evaluation of the field is greatly 

simplified by the use of formulas for the fields of the constant and sinusoidal current 

components. 

The accuracy of the thin-wire approximation for a wire of radius a and length ∆  depends 

on ka  and 
a

∆
. Studies have shown that the thin-wire approximation leads to errors of less 

than 1% for 
a

∆
 greater than 8 [22]. Furthermore, in the numerical solution of the EFIE, 

the wire is divided into segments less than about λ1.0  in length to obtain an adequate 

representation of current distribution thus restricting ka  to less than about 0.08. The 

extended thin-wire approximation is applicable to shorter and thicker segments, resulting 

in errors less than 1% for 
a

∆
 greater than 2. 

For the thin-wire kernel, the source current is approximated by a filament on the segment 

axis while the observation point is on the surface of the observation segment. The fields 

are evaluated with the source segment on the axis of a local cylindrical coordinate system 

as illustrated in Figure A3. 
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Figure A3: Current-filament geometry for the thin-wire kernel. 

Using 
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the ρ  and z  components of the electric field at P due to a sinusoidal current filament of 

arbitrary phase 
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For a current that is constant over the length of the segment with strength I, the fields are: 
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These field expressions are exact for the specified currents. The integral over 'z  of 0G  is 

evaluated numerically in NEC. 

Substituting sine and cosine currents and evaluating the derivatives yields the following 

equations for the fields. For 
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For a constant current of strength 0I : 
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Despite the seemingly crude approximation, the thin-wire kernel does accurately 

represent the effect of wire radius for wires that are sufficiently thin. The accuracy range 

was studied by Poggio and Adams [22] where an extended thin-wire kernel was 

developed for wires that are too thick for the thin-wire approximation, 

The derivation of the extended thin-wire kernel starts with the current on the surface of 

the source segment with surface density. 
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where a  is the radius of the source segment. The geometry for evaluation of the fields is 

shown in Figure A4. A current filament of strength 
π
φ

2

Id
 is integrated over φ  with 
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Thus, the z component of the field of the current tube is 
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Figure A4: Current geometry for the extended thin-wire kernel. 

For the ρ  component of field, the change in the direction of 'ρ̂  must be considered. The 

field in the direction ρ̂  is: 
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The integral over φ  in equations (A81) and (A82) cannot be evaluated in closed form. 

Poggio and Adams, however, have evaluated them as a series in powers of a
2
 [83]. The 

first term in the series gives the thin-wire kernel. For the extended thin-wire kernel, the 

second term involving a
2
 is retained with terms of order 4a neglected. As with the thin-

wire kernel, the field observation point is on the segment surface. Hence, when evaluating 

the field on the source segment, a=ρ . 

The field equations with the extended thin-wire approximation are given below. For a 

sinusoidal current of equation (A68): 
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For a constant current of strength 0I : 
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The term 1G  is the series approximation of: 
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where 
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Neglecting terms of order 4a : 
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The term G2 is the series approximation of: 
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To order 2a : 
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Equation (A86) makes use of the relation: 
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while equation (A87) follows from: 
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When the observation point is within the wire )( a<ρ , a series expansion in ρ  rather 

than a  is used for 0G and 2G . For 1G this simply involves inter-changing ρ  and a  in 

equations (A90) and (A91). Then for a<ρ , with: 
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the expressions for G1, G2 and their derivatives are: 
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Special treatment of bends in wires is required when the extended thin-wire kernel is 

used. The problem stems from the cancellation of terms evaluated at 1z  and 2z  in the 

field when segments are part of a continuous wire. The current expansion in NEC results 

in a current having a continuous value and derivative along a wire without junctions. This 

ensures that for two adjacent segments on a straight wire, the contributions to the z  

component of electric field at 2z  of the first segment exactly cancel the contributions 

from 1z , representing the same point, for the second segment. For a straight wire of 

several segments, the only contributions to zE with either the thin-wire or extended thin-

wire kernel come from the two wire ends and the integral of 0G  along the wire. For the 

ρ  component of field or either component at a bend, while there is not complete 

cancellation, there may be partial cancellation of large end contributions. 

The cancellation of end terms makes necessary a consistent treatment of the current on 

both sides of a bend for accurate evaluation of the field. This is easily accomplished with 

the thin-wire kernel since the current filament on the wire axis is physically continuous 

around a bend. However, the current tube assumed for the extended thin-wire kernel 

cannot be continuous around its complete circumference at a bend. This was found to 

reduce the solution accuracy when the extended thin-wire kernel was used for bent wires. 

To avoid this problem in NEC, the thin-wire form of the end terms in equation (A69) 

through (A72) is always used at a bend or change in radius. The extended thin-wire 

kernel is used only at segment ends where two parallel segments join, or at free ends. The 

switch from extended thin-wire form to the thin-wire form is made from one end of a 

segment to the other rather than between segments where the cancellation of terms is 

critical. 

When segments are separated by a large distance, the interaction may be computed with 

sufficient accuracy by treating the segment current as an infinitesimal current element at 

the segment centre. In spherical co-ordinates, with the segment at the origin along the 

0=θ  axis, the electric field is: 
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The dipole moment M for a constant current I on a segment of length i∆  is: 
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iIM ∆=  (A107) 

For a current [ ])(cos isskI −  with 
2

i

iss
∆

<−  








 ∆
=

s

k

k

I
M isin

2
 

(A108) 

while for a current [ ])(sin isskI −  

0=M  (A109) 

Use of this approximation saves a significant amount of time in evaluating the interaction 

matrix elements for large structures. The minimum interaction distance at which it is used 

is selected by the user in NEC. A default distance of one wavelength is set, however. 

For each of the three methods of computing the field at a segment due to the current on 

another segment, the field is evaluated on the surface of the observation segment. Rather 

than choosing a fixed point on the segment surface, the field is evaluated at the 

cylindrical coordinates ),'( zρ  with the source segment at the origin. If the centre point 

on the axis of the observation segment is at ),( zρ , then: 

[ ]2
1

2

0

2' a+= ρρ  
(A110) 

where 0a  is the radius of the observation segment. Also, the component of ρE  tangent to 

the observation segment is computed as: 

ρρ ρ
ρ

ρ Ess
'

)ˆˆ(ˆ •=•E  
(A111) 

Inclusion of the factor 
'ρ
ρ

, which is the cosine of the angle between ρ̂  and 'ρ̂ , is 

necessary for accurate results at bends in thick wires. 

 

A7. The matrix equation for current 

For a structure having sN  wire segments, the order of the matrix in equation (A12) is sN  

The matrix equation has the form: 

[ ][ ] [ ]EIG =  (A112) 

I is then the column vector of segment basis function amplitudes. The elements of E are 

the left-hand side of equation (A7) evaluated at the segment centres. 

A matrix element ijG in matrix G  represents the electric field at the centre of segment i 

due to the jth segment basis function, centred on segment j. 
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A8. Solution of the matrix equation 

The matrix equation 

[ ][ ] [ ]EIG =  (A113) 

is solved in NEC by Gauss elimination [29]. The basic step is factorisation of the matrix 

G  into the product of an upper triangular matrix U  and a lower triangle matrix L  where 

[ ][ ]ULG =  (A114) 

The matrix equation is then 

[ ][ ][ ] [ ]EIUL =  (A115) 

from which the solution, I, is computed in two steps as 

[ ][ ] [ ]EFL =  (A116) 

and 

[ ][ ] [ ]FIU =  (A117) 

Equation (A116) is first solved for F by forward substitution, and equation (A117) is then 

solved for I by backward substitution. 

The major computational effort is factoring G into L and U. This takes approximately 
3

3
1 N multiplication steps for a matrix of order N compared to N

3
 for inversion of G by 

the Gauss-Jordan method. Solution of equations (A116) and (A117), making use of the 

triangular properties of L and U, takes approximately as many multiplications as would 

be required for multiplication of 1−G  by the column vector E. The factored matrices L 

and U are saved in NEC since the solution for induced current may be repeated for a 

number of different excitations. This, then, requires only the repeated solution of 

equations (A116) and (A117). 

Computation of the elements of the matrix G and solution of the matrix equation are the 

two most time-consuming steps in computing the response of a structure, often 

accounting for over 90% of the computation time. This may be reduced substantially by 

making use of symmetries of the structure, either symmetry about a plane, or symmetry 

under rotation. 

In rotational symmetry, a structure having M sectors is unchanged when rotated by any 

multiple of 360/M degrees. If the equations for all segments in the first sector are 

numbered first and followed by successive sectors in the same order, the matrix equation 

can be expanded in sub matrices in the form: 
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If there are cN  equations in each sector, iE  and iI  are cN  element column vectors of the 

excitations and currents in sector i. iA  is a sub matrix of order cN  containing the 

interaction fields in sector 1 due to currents in sector i. Due to symmetry, this is the same 

as the fields in sector k due to currents in sector ki + , resulting in the repetition pattern 

shown. Thus, only matrix elements in the first row of sub matrices need be computed, 

reducing the time to fill the matrix by a factor of 1/M. 

The time to solve the matrix equation can also be reduced by expanding the excitation 

sub-vectors in a discrete Fourier series as: 
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where 
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where 

1−=j  

* indicates the conjugate of the complex number. 

Examining a component in the expansion, 
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it is seen that the excitation differs from sector to sector only by a uniform phase shift. 

This excitation of a rotationally symmetric structure results in a solution having the same 

form as the excitation, i.e., 
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It can be shown that this relation between solution and excitation holds for any matrix 

having the form of that in equation (A118). Substituting these components of E and I into 

equation (A118) yields the following matrix equation of order cN  relating kI  to kE : 

[ ][ ] [ ]kkkMMkkk ESIASASAS 12211 ... =+++  (A124) 

The solution for the total excitation is then obtained by an inverse transformation, 
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The solution procedure, then, is first to compute the M sub matrices iA  and Fourier-

transform these to obtain 

MiASA
M

k

kiki ...1   ,
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==∑
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(A126) 

The matrices iA  of order cN  are then each factored into upper and lower triangular 

matrices by the Gauss elimination method. For each excitation vector, the transformed 

sub-vectors are then computed by equation (A120) and the transformed current sub-

vectors are obtained by solving the M equations, 

[ ][ ] [ ]iii EIA =  (A127) 

The total solution is then given by equation (A125). 

The same procedure can be used for structures that have planes of symmetry. The Fourier 

transform is then replaced by even and odd excitations about each symmetry plane. All 

equations remain the same with the exception that the matrix S  with elements ijS , given 

by equation (A121), is replaced by the following matrices: 

For one plane of symmetry: 
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For two orthogonal planes of symmetry: 
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and for three orthogonal symmetry planes: 
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For either rotational or plane symmetry, the procedure requires factoring of M matrices of 

order cN  rather than one matrix of order cMN . Each excitation then requires the solution 

of the M matrix equations. Since the time for factoring is approximately proportional to 

the cube of the matrix order and the time for solution is proportional to the square of the 

order, the symmetry results in a reduction of factor time by 2−M  and in solution time by 
1−M . The time to compute the transforms is generally small compared to the time for 

matrix operations since it is proportional to a lower power of cN . Symmetry also reduces 

the number of locations required for matrix storage by 1−M  since only the first row of 

sub matrices need be stored. The transformed matrices, iA  can replace the matrices iA  as 

they are computed. 

NEC includes a provision to generate and factor an interaction matrix and save the result 

of a file. A later run, using the file, may add to the structure and solve the complete model 

without unnecessary repetition of calculations. This procedure is called the Numerical 

Green’s Function (NGF) option since the effect is as if the free space Green’s function in 

NEC were replaced by the Green’s function for the structure on the file. The NGF is 

particularly useful for a large structure, such as a ship, on which various antennas will be 

added or modified. It also permits taking advantage of partial symmetry since a NGF file 

may be written for the symmetric part of a structure, taking advantage of the symmetry to 

reduce computation time. Unsymmetric parts can be added in a later run. 

For the NGF solution the matrix is partitioned as 
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where A  is the interaction matrix for the initial structure, D  is the matrix for the added 

structure, and B  and C  represent mutual interactions. The current is computed as 

[ ] [ ]1

1

2

11

2 ECAEBCADI −−− −−=  
(A132) 

 

2

1

1

1

1 BIAEAI −− −=  (A133) 

after the factored matrix A  has been read from the NGF file along with other necessary 

data. 
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Electrical connections between the new structure and the old (NGF) structure require 

special treatment. If a new wire connects to an old wire the current basis function for the 

old wire segment is changed by the modified condition at the junction. The old basis 

function is given zero amplitude by adding a new equation having all zeros except for a 

one in the column of the old basis function. A new column is added for the corrected 

basis function.  
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Appendix B: Absolute Error Plots for Preconditioned 

BICGSTAB(L) problems 

 

B1. Introduction 
 

The approximate solutions found using the new preconditioner with BICGSTAB(L) 

presented in this thesis needs to be checked against the full solutions of the system of 

equations. This is done by looking at the absolute error plots of each problem solved. 

The absolute error is defined as: 

|| xxapprox −  (B1) 

 

 

B2. Results 
 

The absolute error for each problem solved is plotted here. The plot looks at the absolute 

error for every unknown in the matrix. The average is also plotted. 

 

 

 

Figure B1: Absolute Error for the Problem with 807 Unknowns 
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Figure B2: Absolute Error for the Problem with 1207 Unknowns 

 

Figure B3: Absolute Error for the Problem with 4043 Unknowns 
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Figure B4: Absolute Error for the Problem with 5000 Unknowns 

 

Figure B5: Absolute Error for the Problem with 5303 Unknowns 
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B3. Conclusion 
 

From the absolute error plots of all the problems we can see that the approximation to the 

system of equations solved with the preconditioned BICGSTAB(L) method is within an 

acceptable range, i.e. of the order of 3101 −× , as errors of this size have no significant 

impact on the results such as the radiation pattern and antenna impedance. If greater 

accuracy is required a further iteration can be done without significantly increasing the 

time taken to solve the system of equations. These plots therefore show that the 

preconditioning method developed finds the solutions to problems with an acceptably 

small error. 
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Appendix C: Preconditioning Multiplier Study 
 

C1. Introduction 
 

The Simply Sparse matrix and BICGSTAB(L) have been investigated in an attempt to 

speed up solution times to problems in chapters 4 and 5. This appendix looks at how the 

preconditioner presented in chapter 6 was obtained, thereby successfully combining the 

Simply Sparse matrix and BICGSTAB(L) to find solutions to the system of 

electromagnetic equations more quickly.  

 

C2. Reasoning 
 

In constructing a preconditioner many times small elements within the matrix are set to 

zero as it is thought their influence is negligible. Making use of a multiplication factor on 

the remaining elements hopes to emphasise the importance of larger elements within the 

matrix, thereby obtaining a solution with fewer iterations in BICGSTAB(L). 

 

C3. Experimental results 
 

Various size multiplication factors were used on different problems to determine the most 

suitable candidate to improve convergence. The preconditioning matrix is constructed 

from the Simply Sparse matrix by eliminating all but the largest, in terms of magnitude of 

the complex number, %1  of the elements. This sparse matrix is then multiplied by a 

factor, called the multiplication factor here. Convergence to the system of equations is 

said to have been achieved when the:  

81)*( −<− ebxANorm  (C1) 

 

Results carried out on three different problems is shown in tables C1, C2 and C3.  
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Table C1: Varying the Preconditioning Multiplier for a problem with 807 unknowns (Simulation 

stopped if iterations were greater than 10) 

Multiplying factor Iterations Condition number of impedance matrix  

100 >10 1380 

1000 7 1380 

10000 3 1380 

100000 2 1380 

1000000 2 1380 

10000000 2 1380 

 

Table C2: Varying the Preconditioning Multiplier for a problem with 2007 unknowns (Simulation 

stopped if iterations were greater than 50) 

Multiplying factor  Iterations Condition number of impedance matrix  

10000 >50 2185 

100000 21 2185 

1000000 8 2185 

10000000 2 2185 

 

Table C3: Varying the Preconditioning Multiplier for a problem with 3607 unknowns (Simulations 

stopped if iterations were greater than 20) 

Multiplying factor  Iterations Condition number of impedance matrix  

1000000 >20 4749 

10000000 2 4749 

 

C4. Conclusion 
 

A number of different multiplication factors were tested to investigate which number 

would be suitable as a default value. In all cases rapid convergence, within 2 iterations, is 

achieved when the multiplication factor is set to ,101 7×  making it a suitable candidate as 

a default multiplication factor. Table C1 shows that rapid convergence may be achieved 

with a smaller multiplication factor but this is specific to one problem only. 
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Appendix D: Matrix Block Diagonal Inclusion Study 
 

D1. Introduction 
 

When constructing a preconditioner to an iterative method only enough information 

should be retained to allow rapid convergence. One such method is to include blocks 

from the Simply Sparse matrix that are close to the diagonal, referred to as diagonal block 

inclusion. 

 

D2. Reasoning 
  

In SuperNEC impedance matrices, the most important information is the self-impedance 

of wire elements (i.e. the impedance of the wire segment due to its interaction with itself). 

These elements are found on the diagonal of the matrix. Wire segments close to each 

other will have a stronger influence on each. These elements with a strong mutual 

impedance are typically located close to the diagonal of the impedance matrix. This study 

looks at the performance of a preconditioner with varying numbers of blocks included 

close to the diagonal from the Simply Sparse matrix. 

This is illustrated in figure D1.  

 

Figure D1: Graphic representation of a Block Diagonal Inclusion Method. 5 Blocks included on the 

left and 20 blocks on the right 

 

D3. Experimental Results 
 

In constructing a preconditioner, the matrix density can not be too large, as this would 

increase the time taken per iteration to invert it. Typically a matrix of the order of a few 

percent would be ideal. Table D1 shows a number of different problems with increasing 

number of blocks close to the diagonal. Iterations are halted if they exceed 200. 

The stop criterion for this study was for the average tangential e-field error to be less than 

0,001 mV / . The BICGSTAB method was used. 
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Table D1: Comparing the convergence rate of various problems by including more blocks on the 

preconditioning matrix. 

Problem 

Diagonal Blocks  

included 

Tangential E-Field  

Error Preconditioner Density (%) Iterations 

Large 

Truck 6 0,081 4,5 201 

  8 0,0428 7,6 201 

  10 0,0161 9,1 201 

Helicopter 5 0,0009 7,91 62 

  7 0,0009 10,5 164 

  9 0,0021 11,58 201 

Train 5 0,4757 1,84 201 

  7 0,4449 2,77 201 

  9 0,6785 3,49 201 

 

D4. Conclusion 
 

A preconditioner constructed with increasing number of elements close to the diagonal of 

the impedance matrix was constructed. The experimental results showed that 

convergence took place very slowly, if at all, despite increasing the number of elements 

within the preconditioner. This was applied to different problem types with the same 

results. The block inclusion method was therefore not considered a suitable 

preconditioner. 
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Appendix E: Interaction Distance Preconditioning with 

BICGSTAB(L) 
 

E1. Introduction 
 

When searching for an appropriate preconditioner for BICGSTAB(L), interaction 

distance was one of the methods considered. The interaction distance method looks to 

include only the influence of those wire segments that are within a certain distance of 

each other. It is reasoned that all other wire segments will interact weakly and can be 

ignored. For example, if the interaction distance is set to 0.5 wavelengths, then the 

preconditioning matrix will be filled with the values of the interactions between all 

segments in the structure that are 0.5 wavelengths apart or less. Interactions between 

segments that are further apart than 0.5 wavelengths are not included in the 

preconditioner. 

 

E2. Experimental Results 
 

When choosing an interaction distance it is important to choose a value that will include 

enough information, but create a preconditioning matrix that is still only a few percent 

sparse in order to invert it easily. The interaction distance shown in Table E2 was chosen 

to be 0,05 wavelengths. The matrices were more dense than required (in the order of 

20%) which should have yielded fewer iterations. From chapter 4 we can see that setting 

L  to 4 should give the best results. The stop criterion for this study was for the average 

tangential e-field error to be less than 0,001 mV /  
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Table E1: Experimental Results for interaction distance as a preconditioner to BICGSTAB(L) 

Problem 

size L Iterations 

Stop Criterion Tangential E-field 

Error  

1203 1 33 0,001 

2032 1 39 0,001 

3473 1 33 0,001 

6354 1 30 0,001 

1203 2 54 0,001 

2032 2 34 0,001 

3473 2 20 0,001 

4806 2 114 0,001 

6354 2 46 0,001 

1203 3 78 0,001 

2032 3 90 0,001 

3473 3 51 0,001 

4806 3 183 0,001 

6354 3 39 0,001 

1203 4 84 0,001 

2032 4 24 0,001 

3473 4 56 0,001 

4806 4 196 0,001 

6354 4 32 0,001 

 

E3. Conclusion 
 

Table E1 shows that despite using relatively dense preconditioning matrices (of the order 

of 20%) the solutions to the problems converge slowly, i.e. 30 iterations or more. Each 

iteration is also slower than the preconditioner developed in this thesis as it has about ten 

times as many elements. Varying L does not seem to improve the convergence rate of any 

of the problems. Although the problems do converge, they do so more slowly than 

conventional methods. The interaction method was thus not considered a viable solution 

method. 
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