Adaptation of Existing Methods of Genotyping Platelet Polymorphisms Associated with Cerebrovascular Disease for use within the Routine Laboratory Setting and Determining the Relative Frequency in a Cohort of Stroke Patients

Sadhaseevan Moodly

A dissertation submitted to the faculty of Health Sciences, University of The Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science – Medicine.

Johannesburg 2008
Declaration

I declare that the dissertation, Adaptation of Existing Methods of Genotyping Platelet Polymorphisms associated with Cerebrovascular Disease for use within the Routine Laboratory Setting and Determining the relative Frequency in a Cohort of Stroke Patients is my own unaided work. It is being submitted for a degree of Master of Science in Medicine to the University of Witwatersrand. This work has not been submitted before for any degree or examination at any other University.

Sadhaseevan Moodly

November 2008
Introduction

It is widely recognised that stroke is a multi-factorial disorder in which platelets play a crucial role in thrombus formation resulting in ischaemic stroke. Platelet adhesion and aggregation are initiated by the interaction of various platelet glycoproteins (GP’s) such as GPIbα, which binds to von Willebrand Factor and GPIIb/IIIa a fibrinogen receptor. Recent studies have shown that the GP’s are polymorphic and the polymorphisms described within GPIbα such as Kozak-5T/C, the variable number of tandem repeats (VNTR) and the Human Platelet antigen 2 (HPA2), have been implicated in the development of stroke, while the Plα polymorphism of GPIIb/IIIa was found to contribute to “aspirin resistance”. Therefore, these polymorphisms may be potentially important for early detection and early intervention and thus setting the need to provide for a high volume genotype testing at health care centres. One of the most used techniques to determine platelet function is platelet aggregometry. However, the major disadvantages of platelet aggregation is that it is influenced by a number of environmental factors and its access is limited to tertiary health centres. Platelet aggregation measures the functional expression of platelets, which is known to deteriorate over time. It is for this reason that new methods at molecular level such as polymerase chain reaction (PCR) are needed to explore the role of genotypic expressions, which are not influenced by environmental factors. Currently, conventional PCR is used to detect platelet polymorphisms in the
research settings and has limitations as a routine diagnostic test. Furthermore, it is time consuming and is prone to contamination. With the recent advances in real-time PCR it is possible to genotype large sample batches rapidly without compromising on the quality, accuracy and precision of results. This study aims to adapt conventional PCR methodology onto a real-time platform for detecting platelet polymorphisms that have been implicated in both stroke and aspirin resistance.

Materials and methods

A total of 60 caucasian patients classified as having ischaemic stroke by virtue of MRI and Doppler analysis from the Stroke Clinic at the Johannesburg Hospital were enrolled for this study. Healthy caucasian individuals (38), age and gender matched were enrolled as controls. DNA samples were extracted from all the subjects and the prevalence of the Kozak –5T/C, HPA-2, VNTR and GPIIIa PI\(^A\) polymorphisms were determined first by using conventional PCR and then the real-time LightCycler\(^\text{TM}\) PCR method.

Results

The frequency of the unfavourable alleles (the PI\(^A2\) allele for the GPIIIa PI\(^A\) polymorphism, the T allele for the Kozak –5T/C polymorphism, the B allele for the HPA-2 polymorphism and the C allele for the VNTR polymorphism) of the different GP’s were higher in the stroke patients when compared to the control subjects but did not reach statistical significance. There was complete statistical
agreement between the results obtained for the conventional PCR as compared to the results obtained for real-time PCR except for the VNTR polymorphism, due to the difficulty in designing and the unavailability of probes for the real-time PCR assay. However, it is important to note that adapting the real-time PCR as a new methodology would greatly benefit both the patients and the clinicians by providing early detection and the possibility of early therapeutic intervention.

Conclusion

Therefore in conclusion, it is possible to perform not only conventional PCR for platelet polymorphism but also real-time PCR on a large scale without compromising on the quality, accuracy and precision on platelet polymorphisms that play a significant role in stroke and aspirin resistance. However, a larger population based study needs to be performed to confirm the findings.
ACKNOWLEDGEMENTS

I wish to thank the National Health laboratory Services (N.H.L.S), for the provision of facilities and to Dr N.H.Naran, my supervisor for his patience, all is encouragement and expert advice through the study.

I must also extend to Dr M. Münster, my supervisor, my sincere gratitude for all her expert advice she freely and willingly gave me at all times.

I must also thank Professor BF Jacobson, for providing the patient samples for this study and free access to the patient’s data.

To Professor P. Becker, from The Medical Research Council who so willingly assisted in the statistical analysis of the results.

To Dr Maneshree Jugemohan, for her expert advise in LightCycler techniques.

To Mr Kubendran Naidoo, for advise on conventional PCR.

To Mrs J. Moodley, for helping with the initial set up for DNA extraction.

To my mother-in-law, Mrs Champamani Kondiah, for her encouragement and kind words.
To my parents Mr M.G.Moodly and Mrs Janaki Moodly who always gave me unwavering encouragement and support to proceed this far.

Finally, I like to express my deepest appreciation to my wife, Jayshree, my daughter, Dhishakthi for their seemly endless encouragement, patience and understanding during the preparation of this manuscript.
TABLE OF CONTENTS

TITLE i
DECLARATION ii
ABSTRACT iii
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS viii
LIST OF TABLES xiv
LIST OF FIGURES xvi
LIST OF SYMBOLS AND ABBREVIATIONS xvii
PUBLICATIONS AND PRESENTATIONS xviii

CHAPTER ONE 1

1. Introduction 2

1.1 Stroke 2

1.2. Platelet Function 11

1.3. Platelet Polymorphisms 13

1.3.1. Glycoprotein Ib/IX/V 14

1.3.1.1 Kozak –5 T/C polymorphism 15

1.3.1.2. Variable Number of Tandem Repeats (VNTR) polymorphism 16
1.3.1.3. Human Platelet Antigen-2 (HPA-2) Polymorphism

1.3.2. GPIIIa PI^A polymorphism

1.4. Rationale for this study

CHAPTER TWO

2. Study Design

2.1. The Evolution of Molecular Techniques

2.2. Molecular Techniques of Conventional PCR

2.2.1. DNA amplification

2.2.2. Polymerase chain reaction (PCR)

 1. Denaturation
 2. Annealing
 3. Extension
 4. Detection Procedure

2.3. Real-Time PCR

2.3.1. Principle of real time PCR using the Roche LightCycler™

2.3.2. Detection Formats

 1. Monitor PCR with SYBR Green I Dye
 2. Monitor PCR with Hydrolysis probes
 3. Genotyping and Mutation Detection with SimpleProbe Probes
 4. Monitor PCR with the LightCycler® HybProbe Format

2.4. Experimental Design
CHAPTER THREE

3. Materials and Methods

3.1.1. Patients and Controls

3.1.2. Samples

3.1.3. Genomic DNA Extraction

3.1.3.1. High Pure PCR Template Preparation Kit (Roche) - Method

3.2. DNA Quantification

3.3. Conventional PCR Methodology

3.3.1. Buffers and Solutions

3.3.1.2. Tris-Acetic acid-EDTA(TAE),(50x concentrated stock buffer)

3.3.1.3. Tank Buffer (electrophoresis)

3.3.1.4. Gel Buffer

3.3.1.5. Ethidium Bromide (10mg/ml Stock Solution)

3.3.1.6. 2% Agarose gel preparation

3.4. Reagents and Materials - conventional PCR

3.5. PCR cycling conditions for conventional PCR

3.6. Restriction Fragment Length Polymorphisms (RFLP’s)
3.7. Representation of Kozak -5T/C, HPA-2, VNTR and GPIIIa PI Polymorphisms using Conventional PCR

3.7.1. Kozak – 5T/C polymorphism determination – Conventional PCR

3.7.2 Human Platelet Antigen (HPA-2) polymorphism – Conventional PCR

3.7.3 VNTR polymorphism determination – Conventional PCR

3.7.4. GPIIIa PI^A1/A2 polymorphism determination – Conventional PCR

3.8. Real-Time PCR using LightCycler ®

3.8.1. LightCycler™ FastStart DNA MasterPLUS HybProbe

3.8.2. Kit Content

3.8.3. Primers and Probes used to detect the target polymorphisms using real-time PCR

2.8.3a. Kozak –5T/C Polymorphism determination- Real-Time PCR

2.8.3b. HPA-2 Polymorphism determination -Real-Time PCR

2.8.3c. GPIIIa PI^A polymorphism determination- Real-Time PCR

3.8.4. Preparation of the PCR Mix for Real-time PCR

3.8.5. HPA-2, Kozak and GPIIIa PI^A Cycling Program for Real-Time PCR
3.9. Representation of the Melting Curve Analysis of the Platelet Polymorphisms for HPA-2, Kozak and GP IIIa Pl^â using Real Time PCR

3.9.1. Results for HPA-2, Kozak and GP IIIa Pl^â polymorphisms

3.9.2. The Application of Real-Time PCR to the VNTR Polymorphism

CHAPTER FOUR

4. Results and Statistical Analysis of All PCR Results

4.1. Calculating gene frequencies as per formula

4.2. Hardy Weinberg Equilibrium and Fisher's Exact Test

4.3. Kappa statistics

CHAPTER FIVE

5. DISCUSSION

CHAPTER SIX

6. CONCLUSION

REFERENCES
APPENDIX

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>104</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>109</td>
</tr>
</tbody>
</table>

ETHICS APPROVAL

<table>
<thead>
<tr>
<th>Ethics clearance certificate</th>
<th>112</th>
</tr>
</thead>
</table>
LIST OF TABLES

1. Primer sequences for each platelet polymorphism used in conventional PCR analysis 39

ii. Reagents and volumes that were used to prepare a master mix 40

solution for both the Kozak and VNTR polymorphism.

iii. Reagents and volumes that were used to prepare a master mix 41

solution for the HPA-2 polymorphism.

iv. Reagents and volumes that were used to prepare a master mix 42

solution for the PI^A polymorphism.

5. The PCR cycling conditions demonstrated in the table are 43

for GPIIIa PI^A, Kozak, VNTR and HPA-2.

6. Restriction enzymes and the volumes that were used for 44

each individual reaction in both the PI^A and Kozak polymorphism.

7. Primer and Hybridization probe sequence for 52

genotyping Kozak polymorphism

8. Primer and Hybridization probe sequence used 53

for genotyping the HPA-2 platelet polymorphism.

9. Primer and Hybridization probe sequence used 54

for genotyping the GPIIIa PI^A
10. A generic protocol for the preparation of a 20µl standard master mix reaction.

11. The PCR cycling conditions for the GPIIIa Pl\(^A\), Kozak and HPA-2 polymorphism on the Real-time Lightcycler™.

12. The percentage distribution of GPIIIa (Pl\(^A\)) polymorphism and Pl\(^A2\) Allele frequency in stroke vs controls

13. The percentage distribution of Kozak (-5T/C) polymorphism and T Allele frequency in stroke vs controls

14a. The percentage distribution of VNTR polymorphism and C Allele frequency in stroke vs controls

14b. Breakdown of the calculation for the C allele frequency for the VNTR polymorphism.

15. The percentage distribution of HPA-2 polymorphism and BB genotype frequency in stroke vs non stroke individuals.

16. Correlation between the lightCycler PCR and the conventional PCR method for GPIIIa Pl\(^A\) polymorphism.

17. Correlation between the Real-Time PCR and the conventional Kozak polymorphism.

19. Real-Time PCR - Initial Cost
LIST OF FIGURES

1. Representation of the Kozak genotype that were generated by using gel electrophoresis.

2a. Representation of the HPA-2, Thr 234 bp (A) allele using gel electrophoresis.

2b. Representation of the HPA-2, Met 234 bp (B) allele using gel electrophoresis.

3a. Representation of the VNTR alleles that were generated by using gel electrophoresis.

3b. Representation of the VNTR alleles that were generated by using gel electrophoresis (CC genotype).

3c. Representation of the VNTR alleles that were generated by using gel electrophoresis (BB genotype).

4. Image of the GPIIIa PI\(^A\) genotype that were generated using gel electrophoresis.

5. Melting curve analysis for HPA-2 polymorphism.
6. Melting curve analysis for GPIIIa PI^A polymorphism.

7. Melting curve analysis for Kozak polymorphism.

LIST OF SYMBOLS AND ABBREVIATIONS

α alpha
β beta
bp base pair
CAD coronary artery disease
Cox cyclooxygenase
DNA deoxyribose nucleic acid
EDTA ethylenediamine tetra acetic acid
Fig figure
FRET fluorescence resonance energy transfer
GP glycoprotein/s
LED light emitting diode
MET methionine
μ micro
OD optical density
ρ pica
RFLP restriction fragment length polymorphism
THR threonine
UV ultra violet
vWF von Willebrand Factor
Publication and Presentations