Fig 2.1: Growth curve analysis matrices for the PR data set 16

Fig. 4.1: Mean of the AIC, BIC, and AICc values as a function of the number of covariance parameters. The OLS model has been excluded. Kruskal Wallis tests testing if the mean information criteria are significantly higher for models with either UN, CSH or ARH(1) error covariance structures are included .. 94

Fig. 5.1: Means plot of second petiole (leaf 2) length, separated by nutrient level and herbicide application ... 110

Fig. 5.2: Estimates of fixed parameters obtained after the removal of each data point for the no random effects simplistic linear model with $\omega_i = \text{UN}$.. 120

Fig. 5.3: Plots of scaled residuals for the no random effects simplistic linear model with $\omega_i = \text{UN}$.. 121

Fig. 5.4: Plots of the influence diagnostics for the no random effects simplistic linear model with $\omega_i = \text{UN}$.. 123

Fig. 5.5: Estimates of fixed parameters obtained after the removal of each data point for the random intercept and slope simplistic linear model with $\omega_i = \text{CSH}$ and $\Sigma = \text{CSH}$.. 125
Fig. 5.6: Plots of scaled residuals for the random intercept and slope simplistic linear model with $\omega_i = \text{CSH}$ and $\Sigma = \text{CSH}$.

Fig. 5.7: Plots of the influence diagnostics for the random intercept and slope simplistic linear model with $\omega_i = \text{CSH}$ and $\Sigma = \text{CSH}$.

Fig. 5.8: Estimates of fixed parameters obtained after the removal of each data point for the random intercept and slope simplistic linear model with $\omega_i = \text{VC}$ and $\Sigma = \text{UN}$.

Fig. 5.9: Plots of scaled residuals for the random intercept and slope simplistic linear model with $\omega_i = \text{VC}$ and $\Sigma = \text{UN}$.

Fig. 5.10: Plots of the influence diagnostics for the random intercept and slope simplistic linear model with $\omega_i = \text{VC}$ and $\Sigma = \text{UN}$.

Fig. 5.11: Estimates of fixed parameters obtained after the removal of each data point for the random intercept simplistic linear model with $\omega_i = \text{AR}(1)$.

Fig. 5.12: Plots of scaled residuals for the random intercept simplistic linear model with $\omega_i = \text{AR}(1)$.

Fig. 5.13: Plots of the influence diagnostics for the random intercept simplistic linear model with $\omega_i = \text{AR}(1)$.
Fig. 5.14: Estimates of fixed parameters obtained after the removal of each data point for the no random effects simplistic linear model with $\omega_i = \text{TOEP}$……………………………………………………………………… 133

Fig. 5.15: Plots of scaled residuals for the no random effects simplistic linear model with $\omega_i = \text{TOEP}$…………………………………………………………. 133

Fig. 5.16: Plots of the influence diagnostics for the no random effects model simplistic linear with $\omega_i = \text{TOEP}$…………………………………………….. 134

Fig. 5.17: Estimates of fixed parameters obtained after the removal of each data point for the simplistic linear OLS model with independent error covariance structure……………………………………… 135

Fig. 5.18: Plots of scaled residuals for the simplistic linear OLS model with independent error covariance structure……………………………………. 135

Fig. 5.19: Plots of the influence diagnostics for the simplistic linear OLS model with independent error covariance structure…………………………….. 136

Fig. 5.20: Plot of semi-variogram (left) and the covariances (right) as function of lag in weeks between observations for the no random effects simplistic linear model with $\omega_i = \text{UN}$………………………………………………….. 139
Fig. 5.21: Plot of semi-variogram (left) and the covariances (right) as
function of lag in weeks between observations for the simplistic linear
model with \(\omega_i = \text{CSH} \) and \(\Sigma = \text{CSH} \)…………………………………………. 140

Fig. 5.22: Plot of semi-variogram (left) and the covariances (right) as a
function of lag in weeks between observations for the simplistic linear
model with \(\omega_i = \text{VC} \) and \(\Sigma = \text{UN} \)…………………………………………… 142

Fig. 5.23: Plot of semi-variogram (left) and the covariances (right) as a
function of lag in weeks between observations for the random intercept
simplistic linear model with \(\omega_i = \text{AR}(1) \)……………………………………….. 143

Fig. 5.24: Plot of semi-variogram (left) and the covariances (right) as a
function of lag in weeks between observations for the no random effects
simplistic linear model with \(\omega_i = \text{TOEP} \)………………………………………... 144

Fig. 5.25: Plot of semi-variogram (left) and the covariances (right) as a
function of lag in weeks between observations for the no random effects
simplistic linear model with \(\omega_i = \text{VC} \)………………………………………... 145

Fig. 5.26: Plot of the predicted mean log response over week superimposed
over the plot for the observed mean log response. The error bars represent
the 95% confidence interval of the predicted mean values………………….. 160
Fig. 5.27: Plots of scaled residuals for the quadratic model with no random effects and $\omega_i = \text{UN}$……………………………………………………………………. 161

Fig. 5.28: Plots of the influence diagnostics for the quadratic model with no random effects and $\omega_i = \text{UN}$…………………………………………………………. 162

Fig. 5.29: Plots of scaled residuals for the quadratic model with random intercept and slope, and $\omega_i = \text{ARH}(1)$ and $\Sigma = \text{UN}$……………………………………. 163

Fig. 5.30: Plots of influence diagnostics for the quadratic model with random intercept and slope, and $\omega_i = \text{ARH}(1)$ and $\Sigma = \text{UN}$………………………………… 164

Fig. 5.31: Plots of scaled residuals for the quadratic model with random intercept and slope, and $\omega_i = \text{AR}(1)$ and $\Sigma = \text{UN}$…………………………………… 164

Fig. 5.32: Plots of influence diagnostics for the quadratic model with random intercept and slope, and $\omega_i = \text{AR}(1)$ and $\Sigma = \text{UN}$…………………………………… 165

Fig. 5.33: Plots of scaled residuals for the quadratic model with no random effects, and $\omega_i = \text{TOEP}$………………………………………………………………… 166

Fig. 5.34: Plots of influence diagnostics for the quadratic model with no random effects, and $\omega_i = \text{TOEP}$………………………………………………………… 167
Fig. 5.35: Plots of scaled residuals for the quadratic model with random intercept and slope, and $\omega_i = VC$ and $\Sigma = UN$................................. 167

Fig. 5.36: Plots of influence diagnostics for the quadratic model with random intercept and slope, and $\omega_i = VC$ and $\Sigma = UN$................................. 168

Fig. 5.37: Plots of scaled residuals for the quadratic model with random intercept, and $\omega_i = AR(1)$... 169

Fig. 5.38: Plots of influence diagnostics for the quadratic model with random intercept, and $\omega_i = AR(1)$... 170

Fig. 5.39: Plots of scaled residuals for the quadratic model with no random effects, and $\omega_i = VC$ (OLS Model)... 171

Fig. 5.40: Plots of influence diagnostics for the quadratic model with no random effects, and $\omega_i = VC$ (OLS Model)... 171

Fig. 5.41: Plot of semi-variogram (left) and the covariances (right) as a function of lag in weeks between observations for the no random effects quadratic model with $\omega_i = UN$... 173

Fig. 5.42: Plot of semi-variogram (left) and the covariances (right) as a function of lag in weeks between observations for the random intercept and slope quadratic model with $\omega_i = ARH(1)$ and $\Sigma = UN$................................. 174
Fig. 5.43: Plot of semi-variogram (left) and the covariances (right) as a function of lag in weeks between observations for the random intercept and slope quadratic model with $\omega_i = AR(1)$ and $\Sigma = UN$.

Fig. 5.44: Plot of semi-variogram (left) and the covariances (right) as a function of lag in weeks between observations for the no random effects quadratic model with $\omega_i = TOEP$.

Fig. 5.45: Plot of semi-variogram (left) and the covariances (right) as a function of lag in weeks between observations for the random intercept and slope quadratic model with $\omega_i = VC$ and $\Sigma = UN$.

Fig. 5.46: Plot of semi-variogram (left) and the covariances (right) as a function of lag in weeks between observations for the random intercept quadratic model with $\omega_i = AR(1)$.

Fig. 5.46: Plot of semi-variogram (left) and the covariances (right) as a function of lag in weeks between observations for the quadratic model with VC errors (OLS model).

Fig. 6.1: Plot of observed responses for control plants according to each tub. The observations for plant 1 are offset to the left and those for plant 2 are offset to the right.
Fig. 6.2: Plot of observed responses for sprayed plants according to each tub. The observations for plant 1 are offset to the left and those for plant 2 are offset to the right.