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CHAPTER ONE ─ INTRODUCTION 

 

1.1 The history of mining on the Witwatersrand Basin 

 

The metropolis of Johannesburg, South Africa’s largest city and financial centre, 

owes its origin to the gold-bearing rocks of the Witwatersrand Basin (Figure 1.1). 

The basin-roughly oval in shape, approximately 350 km north east to south west 

direction and stretching over 150 km across-host seven major goldfields.  

 

 

Figure 1.1 The Witwatersrand basin (Viljoen and Reimold, 1999) 
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The gold-bearing conglomerate mined in the Witwatersrand Basin has a typical 

mineralogical composition of (Feather and Koen, 1975): 

• Quartz (70-90%); 

• Phyllosilicates (10-30%), consisting mainly of sericite, 

KAl2(AlSi3O10)(OH)2; 

• Accessory and minor minerals (1-5%). 

Some 70 different ore minerals have been identified in the conglomerates, the 

most abundant of which, after pyrite, are uranite (UO2), brannerite (UTi2O6), 

arsenopyrite (FeAsS), cobaltite (CoAsS), galena (PbS), pyrrhotite (FeS), gerdofite 

(NiAsS) and chromite (FeCr2O4).  

 

Amalgamation 

 

Amalgamation was the principal gold recovery method used in South African gold 

mines at the start of mining in 1886. Crude amalgamation is still practiced by 

some artisanal gold miners in South Africa, mainly in the Mpumalanga Province. 

Unfortunately the method is in widespread use in some African countries (Sudan, 

Tanzania, D.R. Congo, Zimbabwe), with devastating consequences for human 

health and the environment as mercury is released into rivers during processing 

(Global mercury Project, 2007).  

In large-scale commercial applications of amalgamation, ore was crushed and 

ground in stamp mills, and later in tube mills which represented a significant 

technological improvement. The crushed ore, as fine as talcum powder, was 

hydrated to form a viscous pulp that was passed over copper plates (4.57 meters 

long by 1.52 meters wide, 18% slope) coated on their upper surface with mercury. 

By virtue of its high relative density, the gold sank through the pulp to contact 

with the mercury and converted into amalgam. This amalgam (a solution of gold 

in mercury that took the form of a thick paste) was scraped off the plates, and 

retorted to yield a gold sponge.  
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Despite regular scraping, hard layers of gold amalgam accumulated on the plates. 

These were periodically removed, and the mercury-gold amalgam scraped off and 

distilled to recover the gold. The tailings were transported to dumps near the 

extraction plant, producing the sand dumps (Crown Gold Recovery, 2003). 

However, the introduction of the tube mill forced a move away from 

amalgamation since the slurry was coarser and less suitable to such treatment. 

Amalgamation was still retained after the introduction of cyanidation in 1915 in 

SA because it allowed for the recovery of as much gold as possible at an early 

stage in processing. 

With mining operations becoming deeper and more pyrite being encountered, the 

mercury amalgamation method became less efficient (mercury reacts with sulphur, 

making it less selective for gold). Cyanidation became an extraction method of 

choice. 

 

Cyanidation 

 

Two methods are currently employed for preparation of tailings for the recovery of 

gold:  

Front-end loading for sand dumps and monitoring spray or water jet spray for 

slimes dams.  

The Front-end loader dumps the sand tailings onto a conveyer belt from where the 

sand is passed over a vibrating panel screen where water is added. The screen’s 

undersize pulp is pumped to the pulp receiver tank to blend with slime. Slimes are 

reclaimed by means of a monitoring or hydraulically with the slurry flowing from 

the dump into a launder. The launder discharges the slime into a sump where it is 

pumped out by a vertical spindle pump and discharged onto a panel screen. The 

panel screen’s undersize pulp is pumped to the pulp receiver tank to blend with the 

sand pulp. At the treatment plant, lime is added to the pulp to keep the pH above 

10.  
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The pulp is then treated with a diluted solution (about 0.01 - 0.03%) of KCN or 

NaCN, plus air to oxidize the mixture. Currently, CaCN (about 170 ppm) has been 

most widely used since it is cheaper (Crown Gold recovery, 2003). The 

MacArthur-Forrest process or cyanidation, is a metallurgical method used to 

separate gold and other metals from its ore. This process required finer milling and 

the tailings are piped to disposal sites called slimes dams (see process in Figure 

1.2). The gold is dissolved according to the Elsner reaction: 

2Au(s)  +  4CN
 − 
+  O2(g)  +  2H2O(l)  →   2Au(CN)2(aq)  +  4OH

−     
(Reaction 1.1)

 

Today, cyanidation is the most used technique in the world for the processing of 

gold, but due to cyanide’s highly toxic nature the process is very controversial 

(UNEP/OCHA Environment Unit, March 2000).   

The two methods of cyanidation used are Vat Leaching and Heap Leaching. Vat 

Leaching is used when twenty grams or more of gold are present within a ton of 

the ore; the ore and solvent are put in large tanks for hours to dissolve the gold. 

Heap Leaching is employed by the mining company for the low-grade ores, 

solution of sodium (potassium) cyanide are sprayed to dissolve the gold. Once the 

ore has been mined, it is finely ground in a large-revolving cylinder containing 

large steel balls. If the ore contains impurities, it can either be roasted or sent 

through a flotation process, which will concentrate the ore even further. If the gold 

particles are too large, the dissolution of the gold would take too long, and as such 

the larger gold particles are taken out through the flotation process. Once the 

mineral has been sent through either of these processes, lime (calcium hydroxide) 

or soda (sodium hydroxide) is added to ensure that the pH is over 10.5 during 

cyanidation.  

At low pH, the toxic HCN gas is formed (Clesceri et al., 1989; Encyclopedia 

cyanide):  

                       CN 
− 
 +  H

+
   →   HCN                         (Reaction 1.2) 
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Although the kinetics of the reaction is slowed by raising the pH, the production of 

toxic hydrogen cyanide gas is curtailed.  

 

Figure 1.2 Schematic diagram showing gold extraction 

The ore is then combined with either sodium cyanide or calcium cyanide. Oxygen 

must be bubbled up through the pulp for the dissolution of the gold to occur. The 

cyanide anions release the gold’s cations, oxidizing the gold and making a soluble 

aurocyanide metallic complex, NaAu(CN)2.  



 6 

The resulting gold cyanide complex is very stable (pK=. 56). The solution is 

allowed to percolate through the heaps. The leach slurry trickles to the bottom, 

collecting on an impermeable membrane, where it is channelled to reservoirs 

(International Cyanide Code, 2005; Habashi, 2005; Recent advances in gold 

metallurgy) The gold in the solution can be recovered by zinc cementation (using 

the Merrill-Crowe Process, Carbon in Pulp (CIP), Electrowinning, or the Resin in 

Pulp process). The most widely-used process is the CIP Process because of its 

cost-effectiveness. The activated carbon is introduced into the solution, where it 

traps the gold on it. The carbon adsorbs the gold relatively quickly (8-24 hours) 

(International Cyanide Code, 2005). Elution is the method by which the gold is 

then recovered from the activated carbon, usually with a hot aqueous caustic 

cyanide solution. Afterwards, zinc cementation or electrowinning is employed to 

retrieve all the gold. If the gold contains too many base metals it is taken directly 

into smelting to be purified to either 99.99% or 99.999% (International Cyanide 

Code, 2005). Gold absorbed onto charcoal is recovered by elution and submitted 

to the same hydrometallurgical process.  More recently, the carbon-in-pulp process 

has become an important method to win gold (Stanley, 1988; Lang, 1986; 

Adamson, 1972). 

Activated carbon (Carbon-in-pulp)  

 

The application of activated carbons to gold recovery has its origins in the 

patented use of wood charcoal for the recovery of gold from chlorination leach 

liquors in 1880.  

The carbon-in pulp (CIP) process, which was developed to its present form in 

South Africa during the 1970s, is considered to be the most significant advance in 

gold recovery technology in recent years. By 1995, there were 42 CIP circuits 

installed in South Africa (Mpephu, 2004). 
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 CIP makes use of the tremendous physical affinity 'activated' carbon has for gold 

(it can attract 7% of its weight in gold) which it readily attracts to its surface in 

cyanide solution. The finely ground ore (typically about 75 µm particle size), and 

the slurry of fine ore and water (the 'pulp') are treated with cyanide in large tanks 

that are stirred mechanically or by air-agitation.  

Activated carbon is used to adsorb the gold directly from the cyanide pulp which 

flows continually from the first vessel to the last in the series, and the carbon is 

transferred intermittently by pumping in the opposite (counter current) direction. 

The gold value of the pulp decreases downstream, and the gold loading on the 

carbon increases upstream, with the highest value in the first tank.  

The CIP process consists of three essential stages: (i) adsorption in which the 

dissolved gold in the pulp is loaded onto aerated carbon;(ii) elution, in which the 

gold is removed from the carbon into an alkaline cyanide solution; and (iii) 

electro-winning, in which the gold is removed by an electrical process from the 

alkaline cyanide solution and deposited on steel wool electrodes. The carbon is 

then treated with sulfurique acid to remove contaminants, after which the acid 

itself is treated. Both are then recirculated into the adsorption-elution circuit. 

When the leach and absorption circuits are combined, the process is described as 

carbon-in leach (Figure 1.3). 

 

1.2 Statement of the problem 

 

The use of sodium, potassium or calcium cyanide in the gold mining industry 

poses a potential environmental threat. Cyanide is a very poisonous substance 

which may infiltrate water sources or escape into the air. Thus it may be inhaled 

by human beings, drunk if it gets into the potable water system, or may enter the 

food chain unobtrusively.  

The important environmental problem is the discharge of solid waste at the 

disposal units that receive wastes from cyanidation operations. 
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Figure 1.3 Schematic diagram of grinding and Carbon in pulp circuit    

(http://www.e- goldprospecting.com, 2007). 

 

The existence of cyanide species in effluent is of interest to the environment. If the 

effluent ponds and dams are not managed properly this could be a recipe for 

disaster as these species are highly toxic. There is need to ascertain the possible 

dangers that could be posed by the effluent if it is no treated to reduce the levels of 

these species available in the waste. It is important to know if there is any 

degradation or accumulation of various cyanide species with time. In recent years, 

there has been a growing concern among members of the gold mining industry 

with regards to cyanide management. The stability of the cyanide present in large 

volumes in tailing storage facilities, as well as cyanide emissions across leaching 

operations, are issues of concern with respect to environment impacts,  health and 
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safety issues, respectively. Tailings containing residual amounts of cyanide are 

generated as wastes. These wastes are typically treated to neutralize or destroy 

cyanide before disposal in the tailings impoundments because tailings 

impoundments typically operate as zero discharge units under the clean water act 

(cyanide heap leach closure, 1993). 

Several states are debating between metal-cyanide weak acid dissociable (CNWAD) 

and cyanide free (CNfree) or cyanide total (CNT), thus, the cyanide species levels in 

spent ore must be rinsed until effluent reaches 0.2 mg/l CNWAD, 0.2 mg/l CNfree 

and pH 6 – 9. Many states use these levels as guidelines and may issue site-

specific variances if a facility is unable to meet these levels. Prior to disposal or 

abandonment of the spent ore, process contaminated water drained from leached 

ore must be stabilized at a pH of 6.5 to 9.0, or CNWAD levels are to be reduced to 

0.2 mg l
-1
 (E.U. 2006). In South Africa, any effluent solution (including storm 

water) exiting the Metallurgical Treatment Facility boundary should conform to 

the limit of Weak acid dissociable cyanide = 0.50 mg l
-1
 (0.0005%) except where 

the solution is returned to the metallurgical process (Lotz et al., 2000).  

Scaling and wash water should not be allowed to accumulate in the area and 

should be returned to the process as soon as possible at a point where the pH is in 

excess of 10.5 after proper complexing has occurred (South Africa guideline on 

cyanide management, 2001). The gold mining in SA doesn’t treat tailings prior to 

discharge (Thrip, personal communication, August, 2008), with the assumption 

that cyanide will decompose within a relatively short period of time. In treatment 

process, either chemical (INCO, Acidification-Volatilization-Recovery, Hydrogen 

peroxide) or biological treatment are utilised to convert cyanide into less toxic 

compounds (SCN
-
, CNO

-
, NH4

+
). In many cases, treatment has not effectively 

lowered cyanide to the required levels. It should also be noted that the effluent 

limitation guideline was developed for mills that use cyanide and predates the 

widespread use of heap leaching to recover gold, however, the zero discharge 

standards have been universally applied to heap leach operations.  
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Another significant concern is the generation of acid drainage, often caused by the 

presence of sulphides that break down to form sulphuric acid.  Pyrite is often an 

important element of the matrix of the conglomerate and hosts most of the gold in 

very fine state. It is discharged as a constituent of the tailings during mining and 

metallurgical processes of extracting gold. On the surface of the tailings dams, 

oxidation processes of the residual sulphide minerals, especially pyrite, result in 

the generation of acid mine drainage (AMD) and the subsequent release of heavy 

metals and metalloids. The oxidation of pyrite in the tailings can be described by 

the reaction (Singer and Stumm, 1970): 

 

FeS2(s) + 7/2O2 + H2O → 2SO4
2-
 + Fe

2+
 + 2H

+
  (Reaction 1.3) 

 

The buffering capacity of the tailings is usually insufficient to neutralize the acid, 

and acidification occurs. Oxidation reactions involving other minor minerals 

release dissolved uranium, arsenic, copper, nickel, lead, cobalt and zinc. The 

products of these reactions are transported downwards by percolating acidified 

water into the underlying aquifers (Blowes et al., 1998). Upon discharge to nearby 

surface water bodies, ferrous iron is oxidised to ferric iron (Reaction 1.4). The 

stability of ferric iron depends on the pH. 

At pH lower than 3.5, the ferric iron continues in solution and acts as another 

oxidising agent of pyrite (Reaction 1.5).  

However, at pH greater than 3.5, the ferric iron precipitates as a ferric hydroxide 

(Reaction.1.6) (Singer and Stumm, 1970; Stumm and Morgan, 1996): 

 

Fe
2+
 + 1/4O2 + H

+
 → Fe

3+
 + 1/2H2O    (Reaction 1.4) 

 

FeS2 + 14Fe
3+
 + 8H2O → 15Fe

2+
 + 2SO4

2-
 + 16H

+
  (Reaction 1.5) 

 

     Fe
3+
 + 3H2O → Fe(OH)3 + 3H

+
           (Reaction 1.6) 
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The precipitation of Fe(OH)3 is acid generating and buffers the pH (between 2.5 

and 3.5) of the AMD (Espana et al., 2005). This process has a two opposing 

consequences: (1) the acidity increases the mobility and toxicity of metals, and (2) 

the ferric hydroxide precipitation produces co-precipitation and adsorption of 

metals in solution. The latter is considered the more prevalent process (Webster et 

al., 1994; McGregor et al., 1998). 

Through mine drainage, this above mentioned pollutants (including free and 

complexes cyanides) can leach and therefore cause contamination of the land, 

surface and groundwater. An improperly designed tailings impoundment could 

result in dam failure or a breach in the liner. The release of cyanide solution and 

mill tailings from a tailings impoundment may occur during heavy storms unless 

the impoundments are designed to hold the additional volume. Further, these 

constituents may degrade surface and groundwater, soil, and/or air quality during 

and after the cyanide leaching process. Birds and other animals that come into 

contact with the tailings impoundment and holding ponds may be also exposed to 

the risk. The major contamination threat during and after cyanide leaching is the 

release of cyanide and/or soluble metal bearing solution into the surface and 

groundwater. 

 

Air pollution 

 

The advent of AMD means that free cyanide can reset according to Reaction 1.2. 

(CN
−
 +  H

+
   →   HCN ) to form the volatile and toxic HCN. The low pH regimes 

tend to destabilise metal-cyanide complexes thus liberating more free CN
−
and 

consequently HCN. 

Laboratory data indicate that free CN
−
 is liberated upon photodegradation of 

dissolved complex cyanide (Meussen et al., 1992). During daytime 

photodegradation might occur at the surface of waterlogged or moist, soils and in 

puddles with stagnant water. 
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1.3 Study area and distribution of mining-related pollution in the     

Witwatersrand Goldfields 

 

The geology of the Central Rand has been well documented (Mellor, 1917; 

Pretorius, 1964). Over the century of active mining, some 1.3 billion tonnes of ore 

were extracted (Handley, 2004), and the tailings deposited in dumps along the 

outcrop zone (Figure 1.4).  

The climate of the region is temperate, with a short mild winter and a warm to hot 

summer. The rainfall occurs predominantly in summer (October to March) as 

intense thunderstorms accounting for most of the rainfall. Annual precipitation 

ranges from 600 to 732 mm. The average annual temperature is about 16
o
C. 

Annual potential evaporation is about 1700 mm (Weather Bureau, 1998). 

The area is characterised by a well defined drainage system including streams and 

wetlands which form the tributaries of the upper Klip River, in turn a tributary of 

the Vaal River, from which Johannesburg obtains the bulk of its water supply. The 

streams include the Klipspruit, Natalspruit and Russel streams. Many lakes such as 

the New Canada Dam, Wemmer Pan and Rosherville Dam were constructed in the 

early years of mining to supply water to the mines (Figure 1.4). Extensive 

wetlands are developed along the course of the Klip River, especially where it 

flows on dolomite of the Transvaal Supergroup. Smaller wetlands are also 

developed along tributaries of the Klip River. The streams in the study area are of 

importance since they drain the reef outcrop, areas of tailings dumps, light 

industrial areas and old mine workings, which serve as sources of pollution.  

Previous studies (Tutu, 2005) develop a conceptual model of the generation and 

dispersal of mining-related pollution in the study region. The overall model is 

summarised in Figure 1.5, and involves several sub-components (dumps, streams, 

wetlands and lakes) that will be discussed separately.  
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Figure 1.4 Map of tailings dumps and drainage system in the Central Rand  
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Figure 1.5 Generic model for water pollution and distribution pathways 

(Courtesy of T.S.M. McCarthy, 2005)  
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a) Dumps  

 

In the areas surrounding the Witwatersrand Goldfields, tailings dumps are the 

main source of pollution since they are generally composed of elevated 

proportions of pyrite and other minor metallic sulphides. Oxygenated water 

percolating down the dump produces a visible oxidation front (Figure 1.6, inset A; 

Figure 1.7a). 

 

 

Figure 1.6 Picture of a profile through tailings dump (Tutu, 2005) 
 

 
Figure 1.7a Efflorescence along a capillary fringe at Brakpan dump (Photograph 

by Tutu, 2007) 



 16 

The elevated water table within the dump or its associated capillary fringe may 

impinge on the sides or surface of the dump, where evaporation takes place 

forming efflorescent crusts of metal sulphates (Figure 1.7b). 

 

 

Figure 1.7b  Efflorescence along a solution trench at Crown Mines (Nasrec 

dump) (Photograph by Tutu, 2005) 

 

The colour of these crusts varies and depends on the composition of the dissolved 

salt load in the groundwater.  White crusts, dominated by gypsum (derived from 

partial neutralisation of AMD by lime), are the most common, but colours ranging 

from pale pink (Co, Mn) to various shades of green (Ni, Fe), and even yellow (U) 

have been observed (Tutu, 2005; Mphephu, 2004; Winde et al., 2004). 

Paddocks and solution frenches are usually constructed around the base of dumps 

to control erosion (Figure 1.7b).  

 Dumps have or are presently being removed for retreatment, and during this 

process, the underlying soil is limed to reduce the acidity of the footprint and 

immobilise heavy metals. Paddocks are usually constructed on the cleared site to 

minimize run-off of rainwater. 
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b) Streams 

 

Many of the streams passing through the mining areas of the Witwatersrand are 

perennial and derive their base flow from groundwater seepage. The stream 

samples include streams flowing through tailings footprints and reprocessing 

areas, distributaries and natural streams near or distal to pollution sources. In the 

vicinity of dumps, polluted groundwater emerges at surface and contributes to 

stream flow (Jones et al., 1988; Naicker et al., 2003; Winde and Sandham, 2004; 

Figure 1.4, inset D). The capillary fringe above the water table impinges on the 

land surface on the stream banks and evaporation of the groundwater results in 

efflorescent crusts (Naicker et al., 2003; Figure 1.7c). 

 

 

Figure 1.7c Efflorescence along a capillary fringe at the Natalspruit stream (red 

arrow showing crusts) (Photograph by Tutu, 2005)  

     

c) Wetlands 

 

 

Wetlands are areas that have soils that are saturated or nearly saturated with water 

and have high organic content. They generally have perennial surface water but 
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may also be seasonal (Mitsch and Gossenlink, 1986). Wetlands are common along 

the streams and rivers in the mining areas, and are vegetated mainly by 

Phragmites and Typha spp. reeds. Some have thick (<4 m) deposits of peat 

consisting of partly decomposed plant material. 

 

 

Figure 1.7d  An expanse of a wetland vegetated by Phragmites ssp. Reeds at 

Fleurhof Dam (Photograph by Tutu, 2005)  

 

d) Lakes  

 

The mining areas contain several lakes, most of which were constructed during the 

early years of mining to trap summer rainfall for use on the mines during the dry 

winter months.  Several of these lakes are used for recreational purposes. The 

lakes trap sediment (including tailings) eroded from the upstream catchments, and 

several of the oldest lakes have been silted.  It has recently been discovered that 

the lake sediments often contain elevated gold concentrations, and some have been 

mined (personal communication Kleynhans, Crown Recoveries; Ndasi, 2004). 

Most lakes in the mining areas have extensive wetlands around the mouths of inlet 

streams, and inflowing water is exposed to a wetland environment prior to 

discharge into lakes. 
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The study was conducted at the Sites shown in Figure 1.4. Site A is a 

representative tailing dam undergoing rehabilitation; Site B is a stream near a 

tailings reprocessing site; Site C is a representative active slimes dam and Site D is 

a representative wetland and dam.  

The details and further description of these sites are made in Chapter 6. 

 

 

CHAPTER TWO ─ LITERATURE REVIEW  

 

   

As mentioned in chapter 1, one of the pollutants of concern emanating from 

tailings dumps in the study area is cyanide. The species of cyanide determine its 

environmental fate, transport and toxicity. Its behaviour in soils and groundwater 

is governed by many interacting chemical and microbial processes. The following 

sections provide an overview of the physical-chemical properties and behaviour of 

cyanide in the environment. The environmental legislation concerning cyanide is 

discussed and the important aspects concerning its speciation and toxicity are 

addressed. 

 

2.1 Cyanide 

 

 

The Swedish chemist Carl Wilhelm Scheele (1782) discovered a flammable, 

water-soluble acidic gas, later identified as HCN, when he heated the cyanide-

bearing Solid Prussian Blue in aqueous sulphuric acid solution (Young, 2001; 

Bunce et al., 2004). The name given to the evolved gas was Prussian Blue Acid, 

also referred to as prussic acid or blue acid (Young, 2001). This same gas caused 

Scheele’s death four years later (Scheele, 1786). 

For many, the word cyanide evokes emotions of death. In the 20
th
 century, HCN 

gas was used in the gas chambers in the World War II holocaust, in prison for 

execution of criminals with death sentences, and also as a chemical warfare agent. 
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In 1811, Gay Lussac determined the composition of the gas consisting of one 

molecule each of carbon, hydrogen and nitrogen (Bunce et al., 2004). 

In 1953, Stanley Miller demonstrated that HCN and certain organic compounds 

including aldehydes and amino acids can be formed from the constituents of the 

prebiotic earth atmosphere, that is, methane, hydrogen and water (Miller and 

Orgel, 1953). 

 

2.2 Sources of cyanide 

 

Cyanide is produced naturally in the environment by various bacteria, algae, fungi 

and numerous species of plants including beans, fruits, vegetables and roots.  

Today, cyanogenic compounds can be found in more than 3000 species of plants, 

animals, microbes and fungi (Ward and Lebeau, 1962; Stevens and Strobel, 1968).  

Cyanide is produced by plants as a defence against herbivores. All plants produce 

cyanides, however in most cases, cyanide is present in extremely small quantities. 

A level of 10 mg HCN per kg of plant is the minimum amount for a plant to be 

considered cyanogenic. Cyanogens are glycosides of a sugar and a cyanide 

containing aglycone. Cyanogenic glycosides can be hydrolyzed by enzymatic 

action with the release of hydrogen cyanide (HCN). When plant tissues are 

damaged, due to herbivores, trampling, intense heat or frost, the following reaction 

takes place (Cheeke, 1998; Salkowski and Penny, 1994):  

 

Cyanogenic glycosides --------> sugar + aglycone (enzyme: glycosidase) 

Aglycone -------> HCN + aldehyde or ketone (enzyme: hydroxylnitrile lyase)  

 

The natural distribution of cyanide occurring in the environment is (Dzombak, 

2006): 

Soy protein products: 0.07 – 0.3 µg g
-1
 

Cereal grain:   0.001 – 0.45 µg g
-1
 

Apricot:    0.0 – 4.0 µg g
-1
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Cherry pits:   0.0 – 4.0 µg g
-1
 

Sorghum leaves:   192 – 1250 µg g
-1
 

Cassava roots:   86 – 1458 µg g
-1
  

 

Incomplete combustion during forest fires is believed to be a major environmental 

source of cyanide, and incomplete combustion of substances containing nylon 

produce cyanide through depolymerization (Li et al., 2000). Cyanide is also 

produced incidentally in significant quantities in a number of industrial processes, 

including coal coking and gasification, iron, aluminium and steel manufacturing as 

well as petroleum refining. The principal human made cyanide forms are HCN, 

NaCN and KCN. However, anthropogenic inputs of cyanide into the environment 

are greater in amount than natural inputs. 

 

2.3 Uses of cyanide 

 

About three million tons of hydrogen cyanide are produced annually worldwide, 

of which about 8 % is converted into sodium cyanide and used in the metals 

industries (mining and metal plating). The remaining 94% of the hydrogen cyanide 

is used in the production of a wide range of industrial and consumer items. The 

use of hydrogen cyanide worldwide is shown in Figure 2.1.  

Currently, there are about 875 gold and silver operations in the world, of which 

about 460 utilize cyanide (Dzombak, 2006).  
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Figure 2.1 Use of hydrogen cyanide (www.cyantists.com, 2008) 

 

 

2.4 Chemistry of cyanide  

 

Cyanides refer to chemical compounds which contain the cyano group CN, 

consisting of one carbon atom and one nitrogen atom joined with a triple bond  

(C ≡ N). The most toxic form is the free cyanide anion (CN
-
) and hydrogen 

cyanide HCN(g). HCN is a colourless, volatile, extremely poisonous chemical 

compound whose vapours have a bitter almond odour. It melts at -14°C and boils 

at 26°C, it is miscible in all proportions with water and ethanol. Its water solution 

is a weak acid and its solubility in water is high and it decreases with increased 

temperature
 
and under highly saline conditions. 

 

2.4.1 Physical and chemical forms of cyanide 

 

Cyanide occurs in many different forms in water and soil system. The specific 

form of cyanide determines the environmental fate and transport of cyanide. The 

various forms of cyanide are quite different in their reactivity and their toxicity. 
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Gaseous forms 

 

Three gaseous forms of cyanide are of interest in water and soil system: hydrogen 

cyanide (HCN), cyanogen chloride (CNCl), and cyanogen bromide (CNBr) (Xie 

and Hwang, 2000). The cyanogen halides CNCl and CNBr are also colourless 

gases with high vapour pressures (1230 mmHg and 121 mmHg at 25°C for CNCl 

and CNBr, respectively). Like hydrogen cyanide gas, CNCl and CNBr are highly 

toxic to humans if inhaled or absorbed. These are soluble in water, but degrade by 

hydrolysis very rapidly at high pH. The hydrolysis degradation product is the 

cyanate ion (CNO
-
), which can subsequently hydrolyze to CO2 and NH3 at alkaline 

pH conditions (CDC, 2005; IPCS/INCHEM, 2005). 

 

Aqueous forms 

 

Common aqueous forms of cyanide can be broadly divided into four major 

classes: 

 

Free cyanide: HCN, CN
-
 

 

HCN (aq) is a weak acid and can dissociate into cyanide ion according to the 

following dissociation reaction (Sharpe, 1976; Smith and Mudder, 1991):  

HCN (aq ) ↔ H
+
 + CN

-     
pKa = 9.24 at 25°C           (Reaction 2.1) 

 

Figure 2.2 shows the distribution of HCN and CN
-
 species as a function of pH for 

a simple aqueous solution at 25°C. 

At pH 9.2; CN
-
and HCN are in equilibrium; equal amount of each present. 

At pH 11; over 99% of the cyanide remains in solution as CN
-
. 

At pH 7; over 99% of the cyanide exists as HCN. 
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Figure 2.2 Relationship between the cyanide anion (CN
-
) and molecular   

hydrogen cyanide (HCN) as function of pH (25°C) 

(www.cyantists.com, 2007) 

 

Metal-cyanide complexes: M (CN) −−−−n

x
  

 

The cyanide anion is a versatile ligand that reacts with many metal cations to form 

metal-cyanide complexes. These species, which are typically anionic, have a 

general formula M(CN) −n

x , for example Fe(CN)6
4-
. The stability of metal-cyanide 

complexes is variable and requires moderate to highly acidic pH conditions in 

order to dissociate. Metal-cyanide complexes are classified into two categories:  

- Weak metal-cyanide complexes (Cu(CN) −2

3 ,
 
Zn(CN) −2

4
,
 
Ni(CN) −2

4
, 

Hg(CN)2, Cd(CN)
−2

4
)  dissociate under mildly acidic conditions (pH 4 to 6).  

- Strong metal-cyanide complexes include Pt(CN) −2

4 , Fe(CN)
−4

6 , Fe(CN)
−3

6 , 

Au(CN) −2 , Co(CN)
−3

6  which require strong acidic conditions pH < 2 to 

dissociate. 
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Cyanate and Thiocyanate (CNO
-
, SCN

-
). 

 

Free cyanide can be oxidized to form cyanate (CNO
-
) or, depending on the pH, its 

protonated form HOCN (pKa=3.45 at 25°C) (Bard et al., 1985). 

 

           CN 
-
+  H2O   →   CNO

-
 + 2H

+
 + 2e

-
   (Reaction 2.2) 

           HCN +  H2O   →   HCNO + 2H
+
 + 2e

-
     (Reaction 2.3) 

 

Cyanate hydrolyzes fairly rapidly under acidic conditions to carbon dioxide and 

ammonia (FMC, 2005): 

 

           CNO 
-
+  2H2O  →   CO2 + NH3  +  OH

-
   (Reaction 2.4) 

 

Free cyanide can react with various forms of sulphur (SxS
2-
, S2O3

2-
) to form 

thiocyanate, which is relatively less toxic than free cyanide.  

The reactions of polysulfide and thiosulfate with the cyanide ion are as follows 

(Luthy and Bruce, 1979; Smith and Mudder, 1991; Zagury et al., 2004): 

 

   SxS
2-
 +  CN

-
 → S x-1 S

2
 
-
+  SCN

-
   (Reaction 2.5) 

  S2O
−2

3  +  CN
-
  → SO −3

2    +  SCN
-
              (Reaction 2.6) 

 

Organocyanide complexes 

 

Organic cyanide compounds contain functional group that is attached to a carbon 

atom of the organic molecule via covalent bonding. Common examples include 

nitriles, such as acetronitrile (CH3CN) or cyanobenzene (C6H5CN), which are used 

as industrial solvents and as raw materials for making nylon products and 

pesticides. Other organocyanide compounds of interest include cyanocobalamine, 

also known as vitamin B12 (Evans et al., 1985; Knowles, 1976). 
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2.4.2 Reactivity of cyanide in water and soil 

 

The reactivity, fate and toxicity of cyanide in water and soil are highly dependent 

on the chemical speciation. In the environmental systems, wastewaters and wastes, 

cyanide is usually found in free and complexed forms. Because of reactive 

electronic arrangement, cyanide anions can readily form metal-cyanide complexes 

with most metal cations (Dzombak, 2006).  

 

Free cyanide (HCN, CN
-
)
  

 

 

HCN formation and dissociation 

 

In aqueous solutions of simple alkali cyanides, the cyanide is present as CN
-
 and 

molecular HCN.  

The ratio of these forms depends on pH and dissociation constant (see Figure 2.2). 

In most natural waters, HCN greatly predominate. It is formed in solutions of 

cyanide by hydrolytic reaction of CN
-
 in water (Doudoroff, 1976; Flynn and 

Haslem, 1995; Moran, 1998).  

 

CN
-
+  H2O   →  HCN + OH

-
  (Reaction 2.7) 

 

HCN has a very low boiling point (25.7°C) and is volatile in water under 

environmental conditions. The equilibrium air-water partitioning of HCN can be 

described by Henry’s law: 

 

PHCN = KH, HCN [HCN]       

 

where PHCN is the partial pressure of HCNgas. KH, HCN is the Henry’s constant. 

[HCN] is the equilibrium aqueous phase concentration of HCN. 
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Free cyanide hydrolysis 

 

Free cyanide can react with molecular water under alkaline conditions and high 

temperature to yield formate and ammonia (Robuck, 1988; Smith and Mudder, 

1991): 

CN
-
  +  2H2O  →  HCOO 

-
+ NH3    (Reaction 2.8) 

At low pH values, HCN can also be hydrolyzed, yielding formic acid and 

ammonia: 

 

HCN  +  2H2O  →  HCOOH +  NH3   (Reaction 2.9) 

 

Under acidic conditions the reaction is also very slow. 

 

Free cyanide oxidation 

 

Free cyanide can be oxidized to cyanate CNO
-
 (Reaction 2.2). The oxidative 

conversion on CN
- 
to CNO

- 
in alkaline chlorination is often exploited for rapid 

treatment of free cyanide in water. The general reactions for alkaline chlorination 

are as follows (Palmer, 1988): 

 

CN
-
 + Cl2 → CNCl + Cl

-
     (Reaction 2.10)  

    

At alkaline pH, CNCl hydrolyses in CNO
- 
cyanate 

         CNCl + 2NaOH  → CNO
- 
+ 2Na

+
 + Cl

-
 + H2O  (Reaction 2.11) 

 

CNO
-
 can be oxidized with chlorine at a nearly neutral pH to CO2 and N2 

 

2CNO
-
 + 6 NaOH + 3Cl2  → 6Cl

- 
+ 2HCO2

− 
+ N2 + 6Na

+
 + 2H2O (Reaction 2.12)  
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CNO
-
 also will be converted on acidification to NH4 

  

  2NaCNO + H2SO4 + 4H2O → (NH4)2SO4  + 2NaHCO3  (Reaction 2.13) 

 

 Cyanogen is highly toxic gas of limited solubility; the toxicity may exceed that of 

equal concentration of CN.
 -
 At pH = 9, with non excess chlorine present, CNCl 

may persist for 24 h. Its break down is pH and time dependent. 

 

Metal cyanide-complexes 

 

The metal – cyanide complexes can be classified into weak and strong metal-

cyanide complexes depending upon the strength of the metal-cyanide bonding. 

 

 

Weak metal-cyanide complexes 

 

The cyanide anion can form weak metal cyanide complexes with many transition 

metals, the most common among them being Ni, Cu, Cd, Zn, Hg and Ag (Sharpe, 

1976; Sehmel, 1989). The metal-cyanide bonds in these complexes are mostly 

arranged in tetrahedral or square planar forms with relatively weak bonding 

energy existing between the heavy metal atom and the cyanide ligand as compared 

to the strong cyanide complexes with Fe, Co and Pt. Because weakly bonded 

metal-cyanide complexes dissociate under weakly acidic pH conditions (4 < pH < 

6), they are commonly termed weak acid dissociable (WAD) complexes (APHA, 

1998). For comparable reaction stoechiometry, the higher the value of the 

formation equilibrium constant (K), the greater is the energy of formation and 

stability of the metal-cyanide complex. Table 2.1 lists the measured and calculated 

stability constants for the formation of weak metal-cyanide complexes:  
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Table 2.1 Equilibrium constants for formation of selected weak metal-cyanide        

                       complexes (Sehmel, 1989): 

Reaction log K (at 25ºC, l = 0) 

Ag
+
 + CN

-
 + H2O = AgCN(OH)

 -
 -0.56 

Ag
+
 + 2CN

-
 = Ag(CN)

 
2
–
 20.38 

Ag
+
 + 2OCN

-
 = Ag(OCN)

 -
2 5 

Cd
2+ 
+ CN

-
 = Cd(CN)

+
 5.32 

Cd
2+ 
+ 2CN

-
 = Cd(CN)2

0
 10.37 

Cd
2+ 
+ 3CN

-
 = Cd(CN)3

-
 14.83 

Cd
2+ 
+ 4CN

-
 = Cd(CN)4

2-
 18.29 

Cu
+
 + 2CN

-
 = Cu(CN)2

-
 24.03 

Cu+ + 3CN- = Cu(CN)2-3 28.65 

Cu
+
 + 4CN

-
 = Cu(CN)

3-
4 30.35 

Ni
2+ 
+ 2CN

-
 = Ni(CN)2

0
 14.59 

Ni
2+ 
+ 3CN

-
 = Ni(CN)3

-
 22.63 

Ni
2+
 + 4CN

-
 = Ni(CN)4

2-
 30.13 

Zn2+ + 2CN- = Zn(CN) 2
0 11.07 

Zn2+ + 3CN- = Zn(CN)3
- 16.05 

Hg(OH)2
0
 + 2H+ + CN

-
 = HgCN

+
 + 2H2O 24.17 

 

The work of Sehmel, (1989) was performed for the USEPA and incorporated the 

metal-cyanide complexation constants in the thermodynamic database of the 

general chemical equilibrium program MINTEQ (Kunz et al., 2001).  

An example of zinc speciation in aqueous solution is presented in Figure 2.3. 

The dissociation properties of weak metal-cyanide complexes in aqueous solutions 

depend on their stability constants, pH, temperature and the redox potential of the 

solution. Their dissociation may be described by: 

 

M(CN)x
n-
    ↔    M

+
  +   xCN

-
     (Reaction 2.14) 

 

 

Because of the labile nature of weak metal-cyanide complexes, mildly acidic 

conditions (pH 4 to 6) can result in the dissociation of many of these complexes. 

Weak metal-cyanide complexes generally are readily oxidized by oxidizing agents 

such as chlorine or ozone. 
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Figure 2.3 Calculated aqueous speciation of zinc (II) in the presence of excess           

cyanide (Theis and West, 1986) 

   

 

The more strongly bonded complexes in the WAD category, such as Ni, Ag and 

Hg cyanide complexes, oxidize more slowly; the more weakly-bonded complexes, 

including those of Cd, Cu and Zn decompose rapidly in the presence of oxidizing 

agents. In some cases, the presence of weak metal-cyanide complexes can enhance 

the rate of free cyanide decomposition through catalysis by the metal. This has 

been demonstrated for copper cyanide complexes (Gurol, 1988). 

 

 The following reaction was proposed: 

 

2Cu(CN)4
3−
 + 3CN

−
 + 5O3   →    2CuCN + 9CNO

− 
+ 3O2 (Reaction 2.15) 

 

The rate of this reaction is accelerated by the presence of Cu(I). 
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Strong metal-cyanide complexes 

 

The cyanide anion can form strong complexes with a number of transition heavy 

metals; the most common being Co, Pt, Au, Pd and Fe. The metal-cyanide bonds 

in these complexes are arranged in tetrahedral or octahedral forms with strong 

bonding energy existing between the heavy metal atom and the cyanide ligand 

(Sharpe, 1991). Because they can only dissociate under strongly acidic pH 

conditions (pH < 2), they are referred to as strong acid dissociable complexes 

(SAD), or simply as strongly-complexed cyanide (APHA, 1980).  

As some of these species are formed very slowly, it is difficult to determine the 

equilibrium formation constants. Formation data determined by direct 

thermodynamic methods are available only for complexes of Au(I) and Pd(II).  

For other metals, like iron, the formation constant can be determined from 

measurement of redox potentials. Table 2.2 lists the equilibrium constants for the 

reversible formation of iron-cyanide complexes, which are of primary interest with 

respect to cyanide in the environment: 

 

Table 2.2 Equilibrium constants for formation of selected strong metal-cyanide  

complexes (Sehmel, 1989)  

Reaction log K (at 25ºC, l = 0)  

Fe2+ + 6CN- = Fe(CN)6
4- 45.61 

Fe2+ + H+ + 6CN- = HFe(CN)6
3- 50.00 

Fe
2+
 + 2H

+
 + 6CN

-
 = H2Fe(CN)6

2-
 52.45 

Fe3+ + 6CN- = Fe(CN)6
3- 52.63 

2Fe2+ + 6CN- = Fe2(CN)6
0 56.98 

2K
+
 + Fe

2+
 + 6CN

-
 = K2Fe(CN)6

2-
  48.98 

K+ + Fe2+ + 6CN- = KFe(CN)6
3-  48.12 

Na
+
 + Fe

2+
 + 6CN

-
 = NaFe(CN)6

3-
 47.99 
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Equilibrium with hydrous ferric oxide, the common amorphous iron oxide, 

typically is important because Fe(OH)3(S) serves as the source of iron that becomes 

dissolved, which in turn regulates the cyanide speciation. Figure 2.4 presents a 

species predominance diagram for dissolved cyanide species in a system in 

equilibrium with hydrous ferric oxide. The diagram was calculated with 

MINEQL+ (Schecher, 1998). In the area denoted Fe(CN)6(tot), cyanide is 

predicted to exist at equilibrium primarily as the iron cyanide species 

Fe(CN) −3

6
(oxic conditions) or Fe(CN) −4

6
(anoxic conditions). In the remaining area 

HCN is the predominant form of dissolved cyanide, except for a small region at 

pH > 9.2, the pKa for HCN, above which CN
-
 dominates free cyanide speciation. 

Dissociation of iron-cyanide complexes in the dark is very slow (Meussen, 1999).  

 

 

Figure 2.4 Predominance diagram for dissolved cyanide species in equilibrium 

with hydrous ferric oxide at T = 25°C, as calculated with MINEQL+ 

(Schecher  et al., 1998) 

 

Like weak metal-cyanide complexes, the dissociation properties of iron-cyanide 

complexes in aqueous solutions are functions of their stability constants, pH, 
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temperature and redox potential of the solution. Meussen et al. (1999) studied the 

dissociation of ferrocyanide, Fe(CN) −4

6  in 1 mM solutions in dark at 15°C.  

Based on the results, they projected half-lives ranging from 1 year under reducing 

conditions (pE ≈ 5) at pH 4 to 1000 years at the same pH under oxidizing 

conditions (pE ≈ 10). Some proposed photo dissociation pathways for ferro- and 

ferricyanides are shown in Figure 2.5. 

 

 

Figure 2.5 Ferro-(a) and ferricyanide (b) photo dissociation reaction pathways  

(Cherryholmes, 1983) 

 

Ferricyanide can be readily reduced to ferrocyanide by a variety of reducing 

agents. Ferrocyanide can be oxidized to ferricyanide by molecular oxygen in the 

dark, but the kinetics of this reaction is slow. Asperger et al. (1969) determined the 

first order rate constant for this reaction to be 10
-4
 sec

-1
 in the dark at 40°C and pH 

4.5. In absence of UV light, only very strong oxidants like ozone, persulfate and 

permanganate can oxidize ferrocyanide ion in acidic solutions to ferricyanide. It is 

difficult to oxidize ferrocyanide under neutral to alkaline pH conditions without 

UV light (Cyanamid, 1953). 

For example, the photocatalytic dissociation of ferrocyanide and subsequent 

oxidation of free cyanide and cyanate (Shaefer, 1996) is as follows: 
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Fe(CN)6
4-
 + 3H2O + hν  → 6CN

-
 + Fe(OH)3(S) + 3H

+
 + e

-
 (Reaction 2.16) 

CN
-
 + oxidant  →     CNO

- 
      (Reaction 2.17) 

CNO
-
 + oxidant  →    NO3

-
 + CO2     (Reaction 2.18) 

 

2.5 Behaviour of cyanides in soil and ground water 

 

The most common source of cyanide contamination in soil and ground water is 

former gas work sites; however, cyanide contamination is also associated with 

electroplating factories, road salt storage facilities, tailing ponds containing gold 

mine wastes and others. The chemical behaviour of cyanides in soil and ground 

water is extremely complex, because cyanides have the potential to undergo many 

chemical processes (precipitation, dissolution, adsorption, complexation and 

degradation) as shown in Figure 2.6. Under aerobic conditions, microbial activity 

can degrade cyanide to ammonia, which then oxidizes to nitrate (Zagury et al, 

2004). This process has been shown effective with cyanide concentration of up to 

200 ppm. Although biological degradation also occurs under anaerobic conditions, 

cyanide concentration greater than 2 ppm is toxic to this micro organism. Figure 

2.6 provides an illustrative reference for the following discussion regarding the 

chemical behaviour of cyanides. The arrows indicate the potential reactions 

pathways. 

In a simplistic manner, three cyanide forms (free cyanide, WAD cyanides and 

SAD cyanides) are common in gold mining process waste solutions (Zagury et al., 

2004). There are, of course, many other compounds derived from cyanide that are 

present in process waste solutions such as cyanate, cyanogen chloride and 

thiocyanate, the reaction of cyanate with sulfides can also occurs (Souren, 2000).  

Free cyanide is not persistent in the tailings environment and will degrade through 

physical, chemical and biological processes, into other less toxic chemicals. 



 35 

 

Figure 2.6 Overview of the most important cyanide species, and the processes 

that govern their behaviour in soil and ground water (Kjelden, 1998) 

 

Natural degradation, primarily by volatilization of cyanide in tailings storage 

facilities (TSFs), is the most common method of removing cyanide in the gold 
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mining waste. Heavy metals react with free cyanide to form metal cyanide 

complexes which are characterized by their stability, insolubility or being slightly 

soluble.  Copper and zinc cyanide complexes are insoluble in water but soluble in 

ammonia which is present in tailings dams. 

The solubility of cyanide and its complexes contribute to its bioavailability to 

biota that is exposed to them (Franson, 1992; Klenk et al., 1996). 

Bioavailability and cyanide concentrations also vary considerably in the tailings 

environment due to varying concentrations of metals in ore gold extraction 

recovery targets, ore blending and changing tailings dam environmental conditions 

(www.epa.gov). 

 

2.6 Environmental fate of cyanide 

 

Once released into the environment, the reactivity of cyanide provides numerous 

pathways for its degradation and attenuation. These represent a range of 

competing reactions or processes that often occur simultaneously, depending on 

the prevailing conditions. Figure 2.7 depicts the main attenuation mechanisms 

playing a role in tailings storage facilities. All the attenuation processes are to 

some extent reversible and could result in fluctuating levels of free cyanide in 

solution or in the atmosphere depending on the specific circumstances. 

Volatilisation into open air is by far the most important mechanism by which 

cyanide is irreversibly removed from aqueous solution (Lötter, 2006). Cyanide 

removal by precipitation or complex formation is typically reversible, as the 

products do not leave the solution, and are thus available as sources of cyanide, 

should the conditions favour the reserve reactions (Huiatt et al., 1983). 

Photolysis during daylight hours may typically increase the free cyanide by 

decomposition of cyanide complexes, initiating either the loss of cyanide from 

solution through volatilisation or by the formation of other complexes (Smith and 

Mudder, 1991; Lötter, 2006).  
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Figure 2.7 Attenuation mechanisms for tailing storage facilities (Smith and 

Mudder, 1991) 

 

Free cyanide adsorption to soil and sediment 

 

Free cyanide (HCN, CN-) adsorbs weakly on soils and sediment. The cyanide 

anion can be retained by soils with anion exchange capacity but in the pH range 4 

to 9 of interest for most soils, HCN is the dominant form of cyanide and CN
-
 

concentrations are very low.  

HCN adsorbs weakly or not all to inorganic soil components such as iron oxide, 

aluminum oxide, clay and sand. However, HCN has been shown to adsorb 
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significantly to soils with appreciable organic carbon contents (Theis et al., 1986; 

Higgins, 2005). The magnitude of cyanide adsorption onto soils tested by Chatwin 

et al. (1988) showed excellent correlation with organic carbon content. 

Available data for free cyanide adsorption onto mineral surfaces, however, 

indicates that the free cyanide adsorption in Figure 2.8 is likely to be substantially 

over predicted. Free cyanide has been observed to exhibit little to no adsorption on 

mineral surfaces, including the crystalline iron oxide goethite, across arrange of 

pH (Theis et al., 1986). 

 

 

Figure 2.8 Predicted adsorption of 10
-4
M CN

-
, CNO

-
 and SCN

-
 on hydrous 

ferric oxide as a function of pH (Theis et al., 1986) 

 

 Weak metal-cyanide complexes adsorption on soil and sediment 

 

Weak metal cyanide complexes can adsorb on common soil and sediment 

components such as iron, aluminium, silicon, manganese oxides and clays which 

in most systems will inhibit their aqueous transport (Theis, 1986; Chatwin, 1988; 

Higgins, 2005).  

However, complexation of metals by cyanide can also serve to hold them in 

solution, inhibiting their adsorption and retention.  
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Theis and Richter demonstrated that Ni(CN)4
2-
 must bond at specific surface sites 

on goethite(FeOOH(s)), in surface complexation reactions that involve high free 

energies of interaction. Batch adsorption experiments were conducted in 0.01 M 

NaClO4 aqueous solutions containing 10
-4.77

 M total nickel (NiT) and amounts of 

total free cyanide (CNT) of 10
-5
, 10

-4
 and 10

-3
 M. Calculated plots of the 

equilibrium distribution of nickel species as a function of pH in aqueous solution 

with no solids present are the speciation plots of Figure 2.9:  

In the systems with CNT = 10
-4
 and 10

-3
 M, adsorption of nickel is enhanced at 

lower pH values, and inhibited at higher pH values. The goethite surface is 

positively charged up to about pH 6, or even higher, so electrostatic attraction of 

Ni(CN)4
2-
 explains in part its adsorption at lower pH values. 

The meal-cyanide complexes may interact with the surface to a great extend or 

lesser extend than the metals alone. An interrelated, complex group of factors 

governs metal-cyanide species adsorption, and it is difficult to form 

generalizations (Dzombak, 2006). 

 

Strong metal-cyanide complexes adsorption on soil and sediment 

 

Strong complexes such as ferro and ferricyanides can adsorb on common soil and 

sediment components such as iron, aluminium, manganese oxides and clays (Theis 

et al., 1986). Adsorption of metal-cyanide complexes occurs through a 

combination of electrostatic attraction and surface complexation (Theis, 1986). 

Based on the test conducted by Alesii and Fuller (Alesii, 1976), it was concluded 

that soil properties, such as low pH (pH < 5), free iron oxide content, kaolin, 

chlorite and gibbsite type clay (high anion exchange capacity) material increased 

adsorption of iron-cyanide complexes to soil material. It has been demonstrated in 

a number of studies that aluminum and iron oxides, two very common and 

surface-reactive components of soils and sediments can adsorb iron-cyanide 

species significantly, especially at lower pH values (<7) (Theis, 1986). 
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Figure 2.9 Theoretical distribution of nickel in the presence of (a) 10
-4
 M 

cyanide (NiT = 10
-4.77

 M , l = 0.01M), and (b) 10
-3
 M cyanide  

(NiT =10
-4.77

 M, l = 0.01M) (Theis and Richter, 1980) 

 

 

2.7 Microbial activity 

 

Various species of bacteria, fungi, algae, yeasts and plants possess the ability to 

convert cyanide (CN
-
) which acts as a carbon and nitrogen source, to ammonia and 

carbonate. The requirement for aerobic conditions plays a major role in the 

effectiveness of metabolisation as an attenuation process, as was concluded from a 

review done by Chatwin and Trepanowski (1987). 
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Simple cyanides, in particular, are relatively easily degraded, especially under 

aerobic conditions. Degradation of iron cyanides under aerobic conditions also 

occurs, but a slower rate than that of simple cyanide degradation (Oudjani et al., 

2002). There is evidence that cyanide biodegradation under anaerobic conditions 

may represent a secondary reaction or cometabolism, depending on the form of 

reduced carbon present in the system and the microbial consortium (Fedorak et al., 

1989; Raybuck, 1992). 

Cyanide bioavailability and solubility in soil-water systems is a determining factor 

for cyanide biodegradation (Aronstein et al., 1994). 

Aerobic degradation of CN
-
involves the following steps: 

Oxidation of cyanide to cyanate 

      CN
-
  +  ½ O2(aq)  →  OCN

-
    (Reaction 2.19) 

 

Hydrolysis of cyanate which requires a pH below 7 

 

OCN
-
 +  3 H2O  →  NH4

+
  +  HCO3

-
  +  OH

-
  (Reaction 2.20) 

 

Aerobic degradation of CNSAD is mediated by a number of organisms, generally 

Pseudomonias bacteria (Young & Jordan, 1995; Zagury et al., 2003; Akcil et al., 

2003). The relevant reaction is: 

 

 M(CN)x 
y-x
  +  3 H2O  +  x/2 O2(aq)  →  M

y+
  +  NH4

+
 +  HCO3

-
 + OH

-
   

(Reaction 2.21) 

 

Thiocyanate is also subject to bacterially-mediated aerobic degradation:  

  

SCN
-
+ 3H2O + 2O2(aq)  →  SO4

2-
+ NH

4+
 + HCO3

-
+ H

+
 (Reaction 2.22) 

  

Anaerobic biodegradation of free cyanide is restricted to the moderately to 

strongly reduced portions of the environment and can only occur if HS
-
 or H2S(aq) 
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are present. The sulphur species present will depend on pH. At a pH value greater 

than 7, HS
-
 is the dominant species. At a lower pH, H2S (aq) will be present. These 

equations illustrate the anaerobic biodegradation of cyanide: 

 

CN
-
  +  H2S(aq)  →  HCNS + H

+
    (Reaction 2.23) 

HCN + HS
-
  →  HCNS + H

+
     (Reaction 2.24) 

 

The HCNS will be hydrolyzed to form NH3, H2S and CO2. In comparison with the 

aerobic biodegradation of cyanide, anaerobic degradation is much lower and 

anaerobic bacteria have a cyanide toxicity threshold of only 2 mg l
-1
 compared to 

200 mg l
-1
 for aerobic bacteria (Smith and Mudder, 1991). Consequently anaerobic 

biodegradation would be a less effective cyanide removal mechanism. 

                                                                 

2.8 Toxicity of cyanide 

 

Cyanide is a chemical well known to the public as a highly toxic agent. A number 

of reviews have examined the toxicological effects of cyanide and its related 

compounds (Huitt et al., 1983; AMIRA, 1997; Zagury et al., 2003). Free cyanide 

CN
-
 and HCN are the most toxic form of cyanide and among CNfree , HCN is more 

toxic. 

The salts of Na, K, Ca cyanides are also quite toxic as they are highly soluble in 

water and thus readily dissolve to form free cyanide. Weak or moderately stable 

cyanide complexes (Cd, Cu, Zn) by themselves are much less toxic than free 

cyanide. Their dissociation releases free cyanide as well as the metal cation which 

can also be toxic. Even in neutral pH range of most surface water, WAD metal 

cyanide complexes can dissociate to release free cyanide (Doudoroff, 1976; 

Moran, 1998; Zagury et al., 2003). 

Cyanide forms complexes with Au, Hg, Co and Fe very stable even under mildly 

acidic conditions.  Exposure to cyanide is by inhalation of HCNgas.  
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Once cyanide is inhaled, it interferes with the organism’s oxygen metabolism and 

can be lethal within a short time. Initial symptoms of cyanide poisoning can occur 

from exposure to 20 to 24 ppm. The lethal toxicity of free cyanide for humans is 1 

– 2 mg kg
-1
 and 0.028 – 2.295 mg kg

-1
 for fresh water invertebrates (Huitt et al., 

1983). Brief exposures to lower levels may result in shortness of breath, 

convulsions and loss of consciousness. Exposure to high levels for short periods 

may result in: 

         - irritation of the eyes, nose and throat 

         - headache 

         - pounding of the heart 

         - shortness of breath 

         - harm to the central nervous system, respiratory system and the  

                cardiovascular system 

   - quickly lead to death 

Long term exposure to low levels of cyanide may cause deafness, vision problems 

and loss of muscle coordination. Cyanide does not bio-accumulate in animals 

because sublethal doses are rapidly metabolized and excreted and there is no 

evidence that it bio-accumulate in ecosystems or atmosphere (Huitt et al., 1983). 

Acute toxicity is the principal hazard posed by poisoning in wildlife. 

The best known example of human cyanide poisoning from a natural source 

involves the ingestion of cyanogenic plants and particularly cassava in several 

African countries (Dzombak, 2006). SCN
-
 is approximately 7 times less toxic than 

HCN, however, exposure to it can lead to lung irritation. It can be chemically and 

biologically oxidized into carbonate, sulphate and ammonia (Ingles and Scott, 

1987; U.S.EPA, 1986). 

Greater environmental concern is the exposure of domestic and wild animals to 

cyanogenic plants and to cyanide containing devices placed in the ground and used 

to control nuisance predators ( Mudder and Botz, 2004). 
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For migratory birds and other waterfowl, a level of 50 mg l
-1
 WAD cyanide in the 

tailing slurry entering an impoundment has been employed as a regulatory 

guideline providing protect of animals coming in contact with stored process 

solution (Minerals Council of Australia, 1996; Mudder, 1997; NTB, 1998). 

 

2.9 Environmental incidents related to cyanide and mining 

 

Much of the process material and the waste generated during the leaching process 

may be exposed to the environment, with a potential for contaminant transport. If 

water leaches or dams break, cyanide can be released into watersheds resulting in 

catastrophic consequences. Examples are the killing of fish over a stretch of 700 

km in the Szamos/Tisza/Danube river system in Europe in January 2000, due to 

release of cyanide from the Baia Mare gold mine, Romania (UNEP/OCHA, 2000), 

and more recently in Ghana and China October 2001 (MEM, 2001). 

In recent years, some environmental pollution problems of cyanide-related leaks, 

discharges, and accidents have been reported. These accidents raise questions 

about the current operating practices, monitoring, and enforcement at cyanide-

related mine sites worldwide. Same of these accidents are presented here. 

Pegasus Corporation (Montana, U.S.A.) recently closed the Zortman-Landusky 

gold mine in Montana. Opened in 1979, it was the first large-scale cyanide heap 

leach mine in the United States. The mine experienced repeated leaks and 

discharges of cyanide solution throughout its operating life, resulting in wildlife 

deaths and severe contamination of streams and groundwater (Cyanide 

Uncertainties, 1998). 

In 1994 in South Africa, the Merriespruit tailings dam failed by overtopping as a 

consequence of heavy rains causing a slide flow (static liquefaction) of part of the 

embankment. Water mismanagement was to blame that caused 600,000 m
3
 of 

tailings (1.2 Million tones) to mobilise out of the impoundment where the flows 

eventually stopped 2 km away in the town of Merriespruit. 17 people were killed 
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and scores of houses were demolished; cyanide spillage was not quantified 

(Cyanide Uncertainties, 1998). 

Guyana: In 1995, more than 860 million gallons of cyanide-laden tailings were 

released into a major river in Guyana when a dam collapsed at Cambior mining 

company’s Omai gold mine (Cyanide Uncertainties, 1998). 

On 9 October 1997 a pipeline, normally used to transport the tailings to a storage 

dam, ruptured at the Ballarat East Gold Mine. Mine tailings containing cyanide 

from the gold extraction process flowed onto land near the Yarrowee River. The 

tailings material was later washed into the Yarrowee River where it killed many 

types of fish and aquatic life, posed a serious threat to public health and had the 

potential to kill or injure birds and other wildlife (EPA, 1998) 

Spain: A dam at the Los Frailes zinc mine in southern Spain ruptured in April 

1998, releasing an estimated 1.3 billion gallons of acid, metal-laden tailings into a 

major river and over adjacent farm lands. While news reports of the associated 

massive fish kill did not mention cyanide or related compounds in the wastes, their 

presence seems likely given the nature of the metals extracted at this site (Cyanide 

Uncertainties, 1998). 

Kyrgyzstan: On May 20, 1998, a truck transporting cyanide to the Kumtor mine in 

Kyrgyzstan plunged off a bridge, spilling almost two tons of sodium cyanide 

(1,762 kilograms) into local surface waters (Cyanide Uncertainties, 1998). 

On 30 January 2000, a tailings pond burst at a facility near the city of Baia Mare, 

Romania which was reprocessing old mining tailings and re-depositing the waste 

sludge into a new tailings pond.  

This led to approximately 100,000 m
3
 of waste water containing up to 120 tons of 

cyanide and heavy metals being released into the Lapus River, then travelling 

downstream into the Somes and Tisa rivers into Hungary before entering the 

Danube. 

On 2000, there was failure of gold tailing dam in Baia Mare, Romania. The 

resulting leak proceeded to let out over 130,000 m
3
 of water tainted with cyanide. 
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The water made its way into the Lupes, Somes, Tisza, and Danube Rivers, killing 

fish, birds, and other species of animals.  

The effects of the pollution were felt throughout three countries and affected over 

400 kilometers of waterways (Cyanide Issues, 2000). 

 

2.10 Environmental legislation concerning cyanide  

 

 

There are many legitimate questions about environmental and human health 

impacts related to the use of cyanide at mining operations that mine operators, 

regulators, and health officials are simply unable to answer at this time. 

Legislation for cyanide management has had a history of non-uniformity amongst 

countries, and this is currently still the case (Lye, 1999). 

The mineral Policy Center has produced Cyanide Uncertainties to help industry, 

government regulators, and local citizens begin the process of assessing these very 

real and very serious uncertainties related to cyanide (Minerals and Research 

Institute of Western Australia, 2000; ICMC, 2001). 

Based on various experimental studies especially animal studies, various 

organizations and states have come up with different allowable limits for cyanide 

in water (free cyanide). These limits are presented in Table 2.3. 

Although soil contamination can occur through residues from tailings seepage, soil 

quality is rarely taken into account in legislation. Figure 2.10 represents the 

current legislation in place with regards to required maximum cyanide levels in 

aquatic systems in South Africa (Lotz and Wright, 2000). 

In South Africa, atmospheric HCN emission monitoring is currently self-

regulatory, with the emphasis on safety and health. The occupational Safety and 

Health threshold limit value (TLV) for HCN in air is currently set at 10 ppm in 

South Africa and Australia. 
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Table 2.3 Free cyanide limits in drinking water according to various legislative  

authorities (U.S.Environmental Protection , 1999). 

ORGANISATION ALLOWABLE LIMIT 

1. Department of Water Affairs and Forestry 

(DWAF)/South Africa < 0.02 mg l
-1
 

2. Department of Health (DOH)/South Africa 0.07 mg l-1 

3.United States Environmental Protection Agency 

(USEPA) 0.2 mg l
-1
 

4.European Union Directives 0.05 mg l
-1
 

5.World Health Organization (WHO) 0.07 mg l
-1
 

 

Figure 2.10 Legislation for aquatic cyanide in South Africa 

(www.cyanidecode.org. 2000) 

    

The few available data of free cyanide in soil-air and in ambient air in situation of 

historical cyanide soil contamination showed that concentration of 1 – 2 mg free 

CN/m
3
 can occur (Hoppener et al., 1983; Jans, 1999).  



 48 

These concentrations are 5 – 10 times below the permissible cyanide concentration 

in air at workplaces (11 mg HCN/m
3
), but exceed the tolerable concentration in air 

of 0.025 mg HCN/m
3
. Consequently, the concentration of free HCN in the 

ambient air should be taken into consideration for the intervention value of 

cyanide. However, this does not seem possible as at present a relationship between 

cyanide in soil and/ or groundwater and free cyanide in air has not been identified 

(RIVM report, 2001).  

Stringent safeguards and standards exist to regulate the manufacture, transport, 

storage, use and disposal of cyanide. For example, the International Cyanide 

Management Institute (ICMI) is a voluntary program of companies involved in the 

production of gold using cyanide and companies producing and transporting this 

cyanide. It was developed under the auspices of the United Nations Environment 

Programme. Recently in South Africa, the Sasol Polymers’ Cyanide Production 

Plant and Anglo Gold Ashanti were certified under this code.  

The ICMC provides principles and standards of practice on cyanide use and 

specifies that 50 mg l
-1
 WAD is an appropriate discharge concentration. The code 

intends to complement existing operational regulatory requirements (The 

International Cyanide Management Institute, 2005).  

 

 

 

CHAPTER THREE ─ SAMPLING METHODS AND ANALYTICAL  

                                       TECHNIQUES 

 

This chapter gives an overview of the general sampling strategies and the theory 

of instrumental techniques used in this study. 
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3.1 Sampling 

 

The first step in any environmental analysis is to design a sampling plan that will 

provide answers to the question being asked about the site. Collection and analysis 

of samples should provide representative data about the problem under 

investigation. The sampling plan is a framework for developing clear study 

objectives and collection of data that will lead to the resolution of the objectives. 

A plan has to be flexible enough to adjust to changing conditions and new 

information while providing a logical framework (Kegley and Andrews, 1996). In 

order to obtain satisfactory outcomes in environmental analysis, sampling has to 

be carried out with care and competence (Wagner, 1995). Random errors, which 

cause poor precision, can be expected in some of the steps of sampling, sample 

preparation and measurements. For example, the definition of the sampling area, 

number of samples, sample mass, sub samples and calibration analysis can 

produce random errors. There also a tendency to produce systematic, absolute or 

qualitative errors in other steps such as transportation, packaging, storage, washing 

which cause inaccuracy of results. 

The sampling plans and protocol involve (after Barnard, 1995): 

� Development of sampling and analysis plans (including sampling 

patterns such as simple, random, grid, or nested sampling). 

� Sampling and data collection (includes sample amounts, preservation 

procedures, field measurements and observations). 

� Data analysis (this entails the interpretation of the data after collection 

such as graphs, mapping, statistics and modeling). 

Historical data is essential in sampling; this gives information on the site and an 

insight into the behavior of pollutants. Three basics approaches (Figure 3.1) are 

typically used in taking environmental samples (Kegley and Andrews, 1996): 

� Judgmental sampling - is done where the concentration of pollutants 

is thought to be high or low. It gives a “worst case” or “best case” 



 50 

scenario of a pollutant source. There is a bias of the sampler. 

� Systematic sampling - involves dividing the site into equal-sized 

areas and sampling each area. A grid or regular pattern is normally 

constructed which provides an easy way of setting up a systematic 

sampling scheme. 

� Random sampling - this entails selection of sample sites with no               

particular pattern or reason. The choice of sites is a random process. 

Combinations of random sampling with judgemental or systematic 

sampling can also be carried out. 

The details of sampling protocols for tailings, water and sediment samples are 

given in Chapter 5. 

 

 

Figure 3.1 The three basic sampling approaches. The solid dots represent 

sample sites (Keith, 1991). 
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3.2 Analytical techniques  

 

This section provides a summary of the description of analytical techniques used 

in the project. 

 

 

3.2.1 Ion Selective Electrode (ISE) 

 

The Ion Selective Electrode (ISE) is a sensor for the potentiometric determination 

of ionic species and one of the most frequently used devices during laboratory 

analysis in industry, process control, physiological measurements, and 

environmental monitoring. Other ions that can be measured include anions such 

as, F
-
, Br,

 -
 I,
 -
 CN

-
, NO3

-
, NO2

-
, the cations such as, Pb

2+
, K

+
, Ca

2+
 , Cu

2+
 and Na

+ 
, 

and gases in solution such as NH3, CO2, N2 and O2. 

 

Principle 

 

Diffusion of analyte ions out of the membrane (Figure 3.2) creates a slight charge 

imbalance (an electric potential difference) across the interface between the 

membrane and the analyte solution. Changes in analyte ion concentration in the 

solution change the potential difference across the outer boundary of the ion 

selective membrane. By using a calibration curve; we can relate the potential 

difference to analyte concentration.  To be more precise, the term ‘concentration’ 

should really be replaced by ‘activity’ or ‘effective concentration’. This is an 

important factor in ISE measurements. In order to measure the electrode potential 

developed at the ion-selective membrane the ISE/pH electrode must be immersed 

in the test solution together with a separate reference system and the two must be 

connected via a milli-volt measuring system. At equilibrium, the electrons added 

or removed from the solution by the ISE membrane (depending on whether it is 
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cation or anion sensitive) are balanced by an equal and opposite charge at the 

reference interface. This causes a positive or negative deviation from the original 

stable reference voltage which is registered on the external measuring system. 

The relationship between the ionic concentration (activity) and the electrode 

potential is given by the Nernst equation:   

 

     E = E
o 
+ (2.303RT/ nF) x log(A)    (Equation 3.1) 

  

Where E = the total potential (in mV) developed between the sensing and 

reference electrodes. 

E
o
 = is a constant which is characteristic of the particular ISE/reference pair. 

(It is the sum of all the liquid junction potentials in the electrochemical cell) 

R = the gas constant (8.314 J/K.mol).  

T = the absolute temperature. 

n = the charge on the ion (with sign).  

F = the Faraday constant (96 500 C). 

(A) = the logarithm of the activity of the measured ion. 

 

 

Figure 3.2  The electrochemical circuit for an Ion Selective Electrode 

measurement (www.chemistry.nmsu.edu). 
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Note The straight line plot of E versus log(A) is the basis of ISE calibration graphs 

and the slope of the line is 2.303RT/nF. This is an important diagnostic 

characteristic of the electrode; generally the slope gets smaller as the electrode 

gets old or contaminated, and the smaller the slope the higher the errors on the 

sample measurements. 

An ISE (with its own internal reference electrode) is immersed in an aqueous 

solution containing the ions to be measured, together with a separate, external 

reference electrode. (NB: this external reference electrode can be completely 

separate or incorporated in the body of the ISE to form a combination electrode).  

The electrochemical circuit is completed by connecting the electrodes to a 

sensitive milli-volt meter using special low-noise cables and connectors. A 

potential difference is developed across the ISE membrane when the target ions 

diffuse through from the high concentration side to the lower concentration side 

(Figure 3.2).  

Reference electrodes are used to provide a stable voltage at electrolytic contact to 

permit a voltage gradient to be measured across a measurement membrane such as 

an ISE. 

 

Some advantages of the ISE method are: 

 

i) It is considerably less expensive than other analytical techniques, such as 

Atomic Absorption Spectrophotometry (AAS) or Ion Chromatography (IC). 

ii) It is simple to use and measurement is quick. It has a large range of applications 

and can be used over a wide concentration range. 

iii) It is robust and durable and ideal for use in either field or laboratory 

environments. 

iv) Accuracy and precision levels of ± 2% for some ions compare favorably with 

analytical techniques which require more complex and expensive instrumentation. 
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Membrane electrodes are called ion selective electrodes because of their high 

selectivity. 

The membranes must have minimal solubility, electrical conductivity, and 

selective reactivity with the analyte of interest. Several types of sensing electrodes 

are commercially available (Orion Research). 

The main problems with Ion Selective Electrode measurements are the effect of 

interference from other ions in solution, the effect of the ionic strength of the 

solution reducing the measured activity relative to the true concentration at high 

concentrations and potential drift during a sequence of measurements. A total 

Ionic Strength Adjustment buffer (TISAB) is normally added to samples and 

standards in order to solve these problems. 

 

Types of ion selective membrane electrode 

 

Crystalline membrane electrode: 

- Single crystal: LaF3 for F
−
 

- Polycrystalline or mixed crystal: Ag2S for S
2- 
and Ag

+
 

Non crystalline membrane electrode 

- Glass: Silicate glasses for Na
+
 and H

+
 

- Liquid: Liquid ion exchangers for Ca
2+
 and neutral carriers for K

+
 

- Immobilized liquid in a rigid polymer: Polyvinyl chloride matrix for Ca
2+
 and 

NO3
-
. 

The cyanide ion-selective electrode has a solid-state crystal membrane, designed 

for the detection of cyanide ions (CN
-
) in aqueous solutions and is suitable for use 

in both field and laboratory applications. It was used in this study for the 

determination of free and total cyanides.  

 

3.2.2 Ultraviolet and visibly spectroscopy (UV-Vis) 

 

Many molecules absorb ultraviolet or visible light. The absorbance of a solution  



 55 

increases with attenuation of the beam. Absorbance is directly proportional to the  

path length and the concentration of the absorbing species. 

 

 Principle 

 

Ultraviolet and visible (UV-Vis) absorption spectroscopy is the measurement of 

the attenuation of a beam of light after it passes through a sample or after 

reflection from a sample surface. Absorption measurements can be at a single 

wavelength or over an extended spectral range. Ultraviolet and visible light are 

energetic enough to promote outer electrons to higher energy levels, and UV-Vis 

spectroscopy is usually applied to molecules or inorganic complexes in solution 

and UV-Vis spectra have broad features that are of limited use for sample 

identification but are very useful for quantitative measurements. The concentration 

of an analyte in solution can be determined by measuring the absorbance at some 

wavelength and applying the Beer-Lambert law (Asimov, 1972; Ingle and Crouch, 

1988).  

The Beer-Lambert law states that the absorbance of a solution is directly 

proportional to the solution's concentration. Thus UV/Vis spectroscopy can be 

used to determine the concentration of a solution. It is necessary to know how 

quickly the absorbance changes with concentration. This can be taken from 

references (tables of molar extinction coefficients), or more accurately, determined 

from a calibration curve. 

UV/Vis spectroscopy is routinely used in the quantitative determination of 

solutions of transition metal ions and highly conjugated compounds. The method 

is most often used in a quantitative way to determine concentrations of an 

absorbing species in solution, using the Beer-Lambert law: 

 

A = - log10 (I / I0) = εcL    (Equation 3.2) 
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Where A is the measured absorbance, I0 is the intensity of the incident light at a 

given wavelength, I is the transmitted intensity, L the path length through the 

sample, and c the concentration of the absorbing species. For each species and 

wavelength, ε is a constant known as the molar absorptivity or extinction 

coefficient.  

Ultraviolet-visible spectroscopy (UV = 200-400 nm, visible = 400-800 nm) 

corresponds to electronic excitations between the energy levels that correspond to 

the molecular orbitals of the systems. Solutions of transition metal ions can be 

coloured (i.e., absorb visible light) because electrons within the metal atoms can 

be excited from one electronic state to another. The color of metal ion solutions is 

strongly affected by the presence of other species, such as certain anions or 

ligands. For instance, the colour of a dilute solution of copper sulfate is a very 

light blue; adding ammonia intensifies the color and changes the wavelength of 

maximum absorption (λmax). A UV/Vis spectrophotometer may be used as a 

detector for HPLC. The presence of an analyte gives a response which can be 

assumed to be proportional to the concentration.  

For accurate results, the instrument's response to the analyte in the unknown 

should be compared with the response to a standard; this is very similar to the use 

of calibration curves. The response (e.g., peak height) for a particular 

concentration is known as the response factor. 

The UV/Vis spectrophotometer measures the intensity of light passing through a 

sample (I), and compares it to the intensity of light before it passes through the 

sample (Io). The ratio I / Io is called the transmittance, and is usually expressed as a 

percentage (%T). The absorbance, A, is based on the transmittance 

(en.wikipedia.org, 2007). 

 

  A = - log (%T)           (Equation 3.3) 
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The basic parts of a spectrophotometer are a light source (usually a deuterium 

discharge lamp for UV measurements and a tungsten-halogen lamp for visible and 

NIR measurements), a holder for the sample, a diffraction grating or 

monochromator to separate the different wavelengths of light, and a detector 

(figure 3.3). The detector is typically a photodiode or a charge-coupled device 

(CCD). Photodiodes are used with monochromators, which filter the light so that 

only light of a single wavelength reaches the detector. Diffraction gratings are 

used with CCDs, which collects light of different wavelengths on different pixels. 

The detector in single-detector instruments is a photodiode, phototube, or 

photomultiplier tube (PMT). Most commercial UV-Vis absorption spectrometers 

use one of the three overall optical designs: a fixed or scanning spectrometer with 

a single light beam and sample holder; a scanning spectrometer with dual light 

beams and dual sample holders for simultaneous measurement of P and Po; or a 

non-scanning spectrometer with an array detector for simultaneous measurement 

of multiple wavelengths. In single-beam (Figure 3.3) and dual-beam 

spectrometers, the light from a lamp is dispersed before reaching the sample cell. 

In an array-detector instrument, all wavelengths pass through the sample and the 

dispersing element is between the sample and the array detector (Rendina, 1976).  

A spectrophotometer can be either single beam or double beam. In a single beam 

instrument (such as the Spectronic 20), all of the light passes through the sample 

cell. Io must be measured by removing the sample. This was the earliest design, 

but is still in common use in both teaching and industrial labs (Figure 3.3). 

In a double-beam instrument, the light is split into two beams before it reaches the 

sample. One beam is used as the reference; the other beam passes through the 

sample. Some double-beam instruments have two detectors (photodiodes), and the 

sample and reference beam are measured at the same time. In other instruments, 

the two beams pass through a beam chopper, which blocks one beam at a time. 

The detector alternates between measuring the sample beam and the reference 

beam (Skoog et al., 1992). 
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Figure 3.3 Schematic of a wavelength-selectable, single-beam UV-Vis 

  spectrophotometer (www.chem.vt.edu) 
 
 
 

3.2.3 Ion chromatography 

 

Ion chromatography (Figure 3.4) is used for the separation and determination of 

ionic solutes in water in general, especially in environmental industrial processes, 

metal industry and industrial waste water in biological systems in pharmaceutical 

samples in food .Ion chromatography provides a single instrumental technique that 

may be used for rapid and sequential measurement. It is often used for the analysis 

of common anions such as bromide, chloride, fluoride, nitrate, nitrite, phosphate 

and sulphate to characterize water quality (Hamish, 1989; Joachim, 2005). 

Suppression in ion chromatography is needed when conductivity detectors are 

used and the mobile phase is intensively conducting, saturating the detector's 

response. A device, called the suppressor, is inserted between the ion-exchange 

separator column and the detector. The packing consists of small polymer beads 

carrying acidic protons (H
+
) on their surface. 
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Figure 3.4 Basic components of ion chromatography (Piers, 2003) 

 

 

The anions of interest are separated on the basis of their relative affinities for a 

low capacity, strong basic anion exchanger (guard and separator columns). The 

separated anions are directed through a membrane suppressor where they are 

converted to their highly conductive acid forms and the carbonate-bicarbonate 

eluent is converted to weakly conductive carbonic acid. The separated anions in 

their acid forms are measured by conductivity. They are identified by their 

retention time as compared to standards (Metrohm Ltd, 1999; Piers, 2004). 

In ion chromatography, the support material is a polystyrene/divinylbenzene 

(PS/DVB) based resin (Joachim, 1986). The column material (resin) is synthesized 

to serve as cation exchange or anion exchange columns. The most common site on 

anion exchanger is the tertiary amine group –N(CH3)3
+
, OH

-
 , a strong base and 

the sulphonic acid group –SO3
-
 H

+
 for a cation. 

 

Anion-exchange resin 

 

The anion-exchange resins used by Dionex are composed of a surface sulphonated 

PS/DVB core (10-25 µm) and a totally porous latex particle which is completely 
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aminated. The latex particles have a considerably smaller diameter of about 0.1 

µm and carry the actual ion exchange function –NR3
+
. The structure of the anion 

exchange resins used by Dionex and developed by Small is illustrated in Figure 

3.5. 

 

 
 

Figure 3.5 The structure of the anion exchange resins (Weiss, 1986) 

 
 

The exchange process of a solution, which contains an anion, A
X-
 on an anion 

exchange column, is described by the following reaction: 

 

xN(CH3)3
+
OH

-
 (solid) + A

X-
 (solution) ↔ (N(CH3)3

+
)xA

X-
 (solid) + xOH

-
(solution) (Equation 3.4)  

                                                                                                            

The affinity of the resin for the anion relative to OH 
-
ion is SO4

2-
 > C2O4 

2-
> I

-
> 

NO3
-
> Br

-
>Cl 

-
>HCO2

-
>OH

-
>F

-
. These conditions depend on various factors, such 

as the type of resin, size or the hydrated ion, and so on. 

 

 Cation exchange resin 

 

The stationary phase of a cation exchange column is based on inert, surface 

sulphonated, cross-linked polystyrene (Figure 3.6).     

The exchange process for a cation, M 
x+
, can be described by the equilibrium: 
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xRSO3
-
H
+
 (solid) + M

x+
 (solution) ↔(RSO3

-
 )xM

x+
 (solid)+xH

+
  (solution) (Equation 3.5) 

 

Since the core of a cation exchange resin is strongly hydrophobic, the diffusion 

into the resin of highly dissociated and hydrated species such as Na
+
, K+, and 

Mg
2+
, can be neglected. Consequently, the diffusion paths are short and high 

efficiencies are achieved (Fritz et al., 2000).     

 

Figure 3.6  The structure of a cation exchange resin (Weiss, 1986). 
 
 

Detection and suppressor column 

 

The detection mode that is used is a major factor that determines the types of 

mobile phases suitable for the desired separation.  The detector signal obtained by 

the background, i.e., the mobile phase itself must not be too high otherwise it 

would be difficult to obtain linearity, wide dynamic range and stability of the 

baseline.  

As the solution from the analytical column flows into the suppressor column, the 

carbonate and bicarbonate ions combine chemically with the proton on the 

polymer surface forming carbonic acid which, being unstable in aqueous solution 

decompose to carbon dioxide gas and water. In this way the carbonate and 

bicarbonate ions are removed from the solution (Piers, 2003): 

 

HCO3
-1
  +  H

+
   →   [H2CO3]   →   H2O  +  CO2   (Equation 3.6) 
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CO3
2-  
+  2 H

+ 
  →   [H2CO3]   →   H2O  +  CO2   (Equation 3.7) 

 

For the analysis of cations, the analytical column is made of anions (usually RSO3
-
 

groups) chemically bound to a polymer resin (Metrohm Ltd, 1999). 

 

3.2.4 High-performance liquid chromatography (HPLC) 

 

High-performance liquid chromatography (HPLC) is liquid chromatography 

which has been optimized to provide rapid high resolution separations. It evolved 

over nearly a century from the early work of Tswett in the late 1900s to the highly 

sophisticated reliable and fast liquid chromatography (LC) techniques in common 

use today. HPLC is probably the most universal type of analytical procedure; its 

application areas include quality control, process control, forensic analysis, 

environmental monitoring and clinical testing. In addition, HPLC also ranks as 

one of the most sensitive analytical procedures and is unique in that it easily copes 

with multi-component mixtures. It has achieved this position as a result of the 

constant evolution of the equipment used in LC to provide higher and higher 

efficiencies at faster and faster analysis times with a constant incorporation of new 

highly selective column packing (Simpson et al., 1987). 

 

Principle 

 

The sample to be analyzed is introduced in small volume to the stream of mobile 

phase and is retarded by specific chemical or physical interactions with the 

stationary phase as it traverses the length of the column. The amount of retardation 

depends on the nature of the analyte, stationary phase and mobile phase 

composition. The time at which a specific analyte elutes (the retention time) is 

considered a reasonably unique identifying characteristic of a given analyte. The 

use of pressure increases the linear velocity (speed) giving the components less 
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time to diffuse within the column, leading to improved resolution in the resulting 

chromatogram. Common solvents used include any miscible combinations of 

water or various organic liquids (the most common are methanol and acetonitrile). 

Water may contain buffers or salts to assist in the separation of the analyte 

components, or compounds such as trifluoroacetic acid which acts as an ion 

pairing agent (Simpson et al., 1987) 

 

Types of HPLC 

 

Adsorption chromatography 

 

Separation is based on repeated adsorption-desorption steps:   

Normal phase chromatography 

 

Also known as normal phase HPLC (NP-HPLC) was the first kind of HPLC 

chemistry used, and separates analytes based on polarity. This method uses a polar 

stationary phase and a non-polar mobile phase, and is used when the analyte of 

interest is fairly polar in nature. The polar analyte associates with and is retained 

by the polar stationary phase. Adsorption strengths increase with increase in 

analyte polarity, and the interaction between the polar analyte and the polar 

stationary phase (relative to the mobile phase) increases the elution time. The 

interaction strength not only depends on the functional groups in the analyte 

molecule, but also on steric factors and structural isomers are often resolved from 

one another. Use of more polar solvents in the mobile phase will decrease the 

retention time of the analytes while more hydrophobic solvents tend to increase 

retention times. Particularly polar solvents in a mixture tend to deactivate the 

column by occupying the stationary phase surface. This is somewhat particular to 

normal phase because it is most based mainly on an adsorptive mechanism (the 

interactions are with a hard surface rather than a soft layer on a surface). 
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Reversed phase chromatography 

 

Reversed phase HPLC (RP-HPLC or RPC) consists of a non-polar stationary 

phase and an aqueous, moderately polar mobile phase. One common stationary 

phase is silica which has been treated with RMe2SiCl, where R is a straight chain 

alkyl group such as C18H37 or C8H17. The retention time is therefore longer for 

molecules which are more non-polar in nature, allowing polar molecules to elute 

more readily. Retention time is increased by the addition of polar solvent to the 

mobile phase and decreased by the addition of more hydrophobic solvent. 

Reversed phase chromatography is so commonly used that it is not uncommon for 

it to be incorrectly referred to as "HPLC" without further specification (IUPAC, 

2008; Horvath, 1967).  

RPC operates on the principle of hydrophobic interactions, which result from 

repulsive forces between a polar eluent, the relatively non-polar analyte, and the 

non-polar stationary phase. The binding of the analyte to the stationary phase is 

proportional to the contact surface area around the non-polar segment of the 

analyte molecule upon association with the ligand in the aqueous eluent. This 

solvophobic effect is dominated by the force of water for "cavity-reduction" 

around the analyte and the C18-chain versus the complex of both. The energy 

released in this process is proportional to the surface tension of the eluent (water: 

7.3 x 10
-6
 J/cm², methanol: 2.2 x 10

-6
 J/cm²) and to the hydrophobic surface of the 

analyte and the ligand respectively.  

The retention can be decreased by adding less-polar solvent (MeOH, ACN) into 

the mobile phase to reduce the surface tension of water. Gradient elution uses this 

effect by automatically changing the polarity of the mobile phase during the 

course of the analysis (IUPAC, 2008). 

Structural properties of the analyte molecule play an important role in its retention 

characteristics. In general, an analyte with a larger hydrophobic surface area (C-H, 

C-C, and generally non-polar atomic bonds, such as S-S and others) results in a 
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longer retention time because it increases the molecule's non-polar surface area, 

which is non-interacting with the water structure. On the other hand, polar groups, 

such as –OH, –NH2, COO
–
 or –NH3

+
 reduce retention as they are well integrated 

into water. Very large molecules, however, can result in an incomplete interaction 

between the large analyte surface and the ligands alkyl chains and can have 

problems entering the pores of the stationary phase (IUPAC, 2008).  

Another important component is the influence of the pH since this can change the 

hydrophobicity of the analyte. For this reason most methods use a buffering agent, 

such as sodium phosphate, to control the pH (IUPAC, 2008).  

A volatile organic acid such as formic acid or most commonly trifluoroacetic acid 

is often added to the mobile phase, if mass spectrometry is applied to the eluent 

fractions. The buffers serve multiple purposes: they control pH, neutralize the 

charge on any residual exposed silica on the stationary phase and act as ion pairing 

agents to neutralize charge on the analyte. The effect varies depending on use but 

generally improve the chromatography (IUPAC, 2008; Horvarth, 1976).  

Ion exchange chromatography 

 

In Ion-exchange chromatography, retention is based on the attraction between 

solute ions and charged sites bound to the stationary phase. Ions of the same 

charge are excluded. Some types of Ion Exchangers include (a) polystyrene resins- 

allow cross linkage which increases the stability of the chain, higher cross linkage 

reduces swerving, which increases the equilibration time and ultimately improves 

selectivity; (b) cellulose and dextrin ion exchangers (gels), these possess larger 

pore sizes and low charge densities making them suitable for protein separation; 

(c) controlled-pore glass or porous silica. 

In general, ion exchangers favour the binding of ions of higher charge and smaller 

radius. 
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An increase in counter ion (with respect to the functional groups in resins) 

concentration reduces the retention time. An increase in pH reduces the retention 

time in cation exchange while a decrease in pH reduces the retention time in anion 

exchange. 

This form of chromatography is widely used in the following applications: in 

purifying water, preconcentration of trace components, ligand-exchange 

chromatography, ion-exchange chromatography of proteins, high-pH anion-

exchange chromatography of carbohydrates and oligosaccharides. 

There are many types of detectors that can be used with HPLC, some of the more 

common detectors include: Refractive Index (RI), Ultra-Violet (UV), Fluorescent, 

Radiochemical, Electrochemical, Near-Infra Red (Near-IR), Mass Spectroscopy 

(MS), Nuclear Magnetic Resonance (NMR), and Light Scattering (LS) (DiCesare 

et al. 1981; Brown, 1995).  

  

3.2.5 Inductively coupled plasma - Optical emission spectroscopy (ICP-OES) 

 

ICP-OES technique was used in this work for the quantification of metals in water 

and soils samples. 

 

Principle 

 

ICP-OES (Figure 3.7) makes use of the fact that the atoms of elements can take up 

energy from inductively coupled plasma, their electrons become are thereby 

excited and then fall back into their ground states, emitting characteristic 

radiation. The identification of this radiation permits the qualitative analysis of a 

sample. A quantitative determination takes place on the basis of the 

proportionality of radiation intensity and element concentration in calibration and 

analysis samples. The energy transfer for electrons when they fall back to the 
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ground state is unique to each element as it depends upon the electronic 

configuration of the orbital (Bauer and O’Reilly, 1978; Alcock, 1995). 

The apparatus for the ICP-OES is composed of three main sections: the nebulizer, 

the torch and the detection system (Tyler and Horiba, 2000.ICP-OES) as shown in 

Figure 3.7. 

The energy transfer, E, is inversely proportional to the wavelength of 

electromagnetic radiation:   

   E = hc/λ      (Equation 3.8) 

 

where h is Planck’s constant, c the velocity of light and λ is the wavelength, and 

hence the wavelength of light emitted is also unique (Skoog et al., 1992).  

An energy source is needed in order to atomize and ionize the samples to allow 

radiation emission. In the ICP-OES, plasma is used as an energy source, 

producing heat of 5500 K- 8000 K and up to 10 000 K in some regions, enough to 

ionize and excite most analyte atoms. Molecular interferences are greatly reduced 

with this excitation source but are not eliminated completely. 

 

Figure 3.7 ICP-OES schematic diagram (Arcinus, 2000) 
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ICP sources are used to excite atoms for atomic-emission spectroscopy and to 

ionize atoms for mass spectrometry.  

The element type is determined based on the position of the photon rays, and the 

content of each element is determined based on the ray’s intensity (Alcock, 1995). 

Argon gas is supplied to the torch coil, and high frequency electric current is 

applied to the work coil at the tip of the torch tube in order to generate plasma. 

Using the electromagnetic field created in the torch tube by the high frequency 

current, argon gas is ionized and plasma is generated. Solution samples are 

introduced into the plasma in an atomized state (Boumans, 1996). 

 

ICP process  

 

The sample being analyzed is introduced into the plasma as a fine droplet aerosol.  

The processes, which occur while the aerosol moves up through the plasma, are 

described in Figure 3.8 (Moore, 1989). 

The hot plasma removes any remaining solvent and causes sample atomization 

followed by ionization. The aerosol droplets introduced to plasma after 

nebulization is desolvated to solid salt particles and vaporized to produce gas-

phase molecular species. These species subsequently undergo dissociation to free 

atoms, namely atomization. With sufficient energy, these free atoms are excited to 

higher energy stages and further to higher states of thee ions called excitation and 

ionization. At this condition, most elements emit light of characteristic 

wavelengths, which can be measured and used to determine the concentration. The 

following reactions are shown the main reaction of the processes occurred in the 

plasma (Figure 3.8).  
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Figure 3.8 ICP process (Moore, 1989) 

 

There are three types of detectors, namely sequential, simultaneous multi-channel 

and Fourier transform. Sequential instruments are usually programmed to move 

from the line for one element to that of a second, pausing long enough at each to 

obtain a satisfactory signal-to- noise ratio. In contrast, multi-channel instruments   

are designed to measure the intensities of emission lines for a large number of 

elements (up to 50 or 60) simultaneously, or nearly so (Goodfellow, 2003).  

Multichannel instruments normally use a Rowland circle in a Paschen-Runge 

arrangement (Figure 3.9). Spectral dispersion of polychromatic radiation and 

focusing is achieved simultaneously through a grating scratched in a concave 
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surface. The focusing takes place on the Rowland circle (with a radius which is 

half the curvature of the grating). There are two types of multi-channel 

instruments: polychromators and array-based systems.  

 

 

Figure 3.9 Multichannel instrument with a Rowland circle (Schwedt, 1997) 

 

 

 

CHAPTER FOUR ─ MOTIVATION AND OBJECTIVES OF THE STUDY 

4.1 MOTIVATION 

The use of cyanide in gold extraction is of concern. This pollutant is discharged 

with effluent and tailings from gold extraction based on the assumption it will 

decompose within a relatively short period of time. 
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The cyanide is from leaching residues of the adsorption of gold and is transferred 

to the liquid phase as an anionic cyanide complex ion during the leaching 

operation. Depending on the pH of the tailings slurry, the free cyanide may exist 

as aqueous HCN that can escape to the atmosphere as HCN(g) or occur as soluble 

cyanide ions (CN
-
) that can be leached by infiltrating water to the sub-surface 

environment. Additionally, the presence of pyrite minerals in the Witwatersrand 

Basin makes them susceptible to acid drainage. 

The free cyanide (CN
-
) ions or simple cyanide compounds giving free CN

-
 ions 

readily and weak metal-cyanide complex ions, that can be present in leaching 

wastes, are highly toxic. For instance, the cyanide in very stable complex 

structures such as Fe(CN)6
4-
 can be degraded or decomplexated only under very 

specific conditions (e.g. by photodecomposition, low pH, etc..) to yield HCN(g).  

Water quality information from the Rand Water Board, Water Research 

Commission and Crown Gold Recovery shows that the drainage systems have 

been affected by acid mine drainage and high salt loads from tailings spillages, 

runoff as well as seepage from mine tailings. Water emanating from the tailings 

dams contains cyanide. This can seep into the groundwater which is accessed by 

many people through wells and boreholes. The utilization of this underground 

water can be harmful to these people.  

Also, the shallow groundwater contaminated as a result of mining activities is 

contributing to the quality of water emanating from the Witwatersrand watershed. 

Our concern is justified by the presence of cyanide in tailings dams and streams 

which can affect the drinking water source. 

 

4.2 OBJECTIVES 

This research was a quantitative assessment of cyanide pollution on the East and 

Central Rand Goldfields of the Witwatersrand Basin. The following environmental 
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compartments were studied: tailings, sediments, ground and surface water. These 

environments were studied so as to address the following specific objectives: 

• to assess the transport and fate of cyanide 

• to study the speciation of cyanide, namely: CNfree, CNWAD, CNSAD  

• to study the distribution of various transformation species of cyanide e.g. 

cyanate, thiocyanate and ammonium 

• to predict the speciation of cyanide by use of geochemical modelling 

techniques 

 

CHAPTER FIVE - SAMPLING, SAMPLE PREPARATION AND   

STORAGE, ANALYTICAL METHOD, 

OPTIMISATION AND QUALITY CONTROL 

 

5.1 Introduction 

 

This chapter provides a summary of the preparative steps before the analysis of 

samples. These include: the collection of tailings sediments and water samples; in 

situ measurements of physical-chemical parameters and the pre-treatment of the 

samples. The sampling techniques applied are also discussed. The analytical 

techniques used in this study as well as the optimisation and the quality control are 

described. 

  

5.2 Sampling 

 

5.2.1 Tailings sampling 

 

The sampling of the tailings dams had the objective to collect representative and 
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sufficient material for the assessment of the hazard potential, especially the 

cyanide species. Samples were collected from representative tailings in the study 

area.  

The samples were collected both vertically and laterally. Near surface samples 

were collected by means of shovels (after scrapping off the oxidised layers) while 

the subsurface samples were collected by means of hand augers. Sample 

disturbance and contamination were minimised, for instance, subsurface 

environments are often chemically reducing and so a significant source of sample 

disturbance and contamination is exposure to air. Samples were thus collected into 

black polythene bags and the air inside removed. The samples were oven-dried 

and pulverised. Field parameters were immediately measured which include pH, 

temperature, redox potential (Eh) and electrical conductivity (Ec).  

Water and sediment samples from the pond were directly placed in a 

polypropylene container and tailings samples collected at each location and at 

each depth were placed immediately in plastic bags and stored in the dark at 4
o
C. 

The coordinates of the sampling points were measured with a Global Positioning 

System (GPS).  

Geochemical parameters of the tailings were also determined, mainly by inserting 

the appropriate probe into the slurry in situ. Where the slurry was not immediately 

available, it was made by mixing a portion of the tailings (50 g) with about 50 ml 

of deionised water and the measurements taken of the resulting slurry (Smith, 

1995; USGS, 2004).  

The cycle periods have to be known along with many other factors of influence in 

an environmental system. A typical example would be the sampling of tailings 

surface liquid (or solids), decant liquids or return dam bulk liquid. All of these 

systems undergo massive cyclic fluctuations through the influence of chemical and 

physical changes from process management tailings, surface events and seasonal 

climatic conditions. 
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5.2.2 Sediment sampling 

 

Sediments included stream sediments and wetland sediments. The stream sediment 

survey was done by collecting a composite sample of fine-grained sediment on a 

transverse perpendicular to the stream course. Some background samples were 

also collected in order to determine the best contrast between background element 

concentrations and contamination.  

About 500 g of sample were collected into black polythene bags and oven-dried in 

the laboratory (at about 50 
o
C). The samples were pulverised to fractions of < 60 

µm and stored in small polystyrene sample bottles prior to analysis (Ndasi, 2004). 

In the case of wetland sediments, augers were used for sampling at about 30 cm 

depth intervals. Where the sediment profiles had been exposed (for example at 

Fleurhof dam, Figure 1.6), sampling was done by scrapping off the oxidised outer 

layers and sampling the unoxidised layers following the profile layout. 

Geochemical parameters of the sediments were also determined, mainly by 

inserting the appropriate probe into the slurry in situ. The coordinates of the 

sampling points were measured with a Global Positioning System (GPS).   

 

5.2.3 Water sampling 

 

The water samples were collected according to commonly accepted sampling 

procedures (Mugo et al., 1993; Hermond and Fechner-Levy, 2000; USGS, 2004. 

Water resources). The samples were collected into acid-washed and conditioned 

polypropylene (PP) 1litre bottles. Surface water samples were taken from the main 

streams along the thawed and ground water samples were collected mainly from 

stream banks. In streams, samples were collected in the main stream flow away 

from the banks and where wading into the stream was involved, samples were 

taken upstream of the wading path. 
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Drill holes were made by use of augers and sufficient time was allowed for 

flushing out and equilibration. A point sampler consisting of a Perspex rod and a 

PP cup was used to draw out the sample. Water samples were also collected from 

a reprocessing tailings dam. Drain water was taken from the pipe. 

The PP bottles were rinsed with the water to be sampled just before the water 

samples were collected and the rinse water was discarded away from the sampling 

point. This was done to equilibrate the sampling equipment to the sample 

environment and to help ensure that all cleaning-solution residues had been 

removed before commencing with sampling. (USGS, 2004. Water resources). 

The PP bottles were filled with water leaving no air space and the geochemical 

parameters were measured in the field before tightly closing the containers to 

prevent any leakage. Each bottle was then marked with the date of sampling and a 

sample description, placed into cooler boxes and transported to the laboratory. 

The geochemical or physical-chemical parameters were measured directly at the 

sampling sites and include: temperature (
o
C), pH, Ec and Eh. These measurements 

were carried out with the portable kit Multi Line F/Set 3 of the Wissenschaftlich-

Technische Werkstatten, Weiheim (WTW, Germany) equipped with a pH 

electrode, an integrated temperature probe (SenTix 41), a standard conductivity 

cell (Tetra Con 375) and an oxidation-reduction potential probe (SenTix ORP). 

The pH electrode was calibrated according to IUPAC recommendations against 

two buffer solutions pH 4 and pH 7. Redox potentials were obtained from Pt 

electrodes versus Ag/AgCl. The electrodes were checked using a standard buffer 

solution and all reported potentials were corrected relative to the standard 

hydrogen electrode (SHE).  
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5.3 Sample preparation 

 

5.3.1 Water samples 

 

In the laboratory, each sample was divided into three parts: the one was unfiltered 

and unacidified and tested for the anions (Cl
-
, Br

-
, F

-
, NO3

-
, NO2

-
, PO4

3-
 and SO4

2-
) 

using ion chromatography; the other was filtered (using a 0.45 µm filter), acidified 

and analysed for major and trace metal elements using ICP-OES techniques. 

Acidification was done with 1 vol. % HNO3 (55%) Merck to pH < 2; the third 

portion was filtered using a 0.45 µm cellulose nitrate filter paper and then the pH 

raised to 12 by adding a solution of 1 M NaOH after removing oxidising matter as 

well as sulphide. The pH was raised in order to avoid the loss of molecular HCN 

by volatilisation. It was analyzed for cyanides species using ISE, UV-Vis 

spectrophotometer and HPLC techniques.  

Samples were refrigerated at 4ºC and covered with black plastic prior to analysis 

to avoid U.V.light (ferrocyanide and ferricyanide complexes of cyanide undergo 

photodecomposition with ultraviolet light). 

The adsorption of CN- and its complexes on the colloids was also studied by 

analysing a filtered and non filtered sample.  

  

5.3.2 Leaching test 

 

All cyanide forms were leached by a caustic solution since very alkaline 

conditions make even strongly complexed cyanides, soluble (Theis et al., 1994). 

Therefore, cyanide content in the sodium hydroxide solution represents the 

maximum extractable quantity of cyanides from the tailings and sediments. 10 g of 

solid tailings in 250 ml of 1 M NaOH extractant solution were shaken at 170 rpm 

for 16 hrs on a shaker (Labcon, CJ Labs) and then centrifuged using a Mistral 

1000 centrifuge (20 x 100 rpm).  
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Free cyanide was then analyzed in the leachate. For CNT and CNWAD, leaching 

was performed using 500 mg: 500 ml of 10 % w/v NaOH solution. The resultant 

leachate was distilled (reflux) with 50 ml of H2SO4 (1:1 v/v H2SO4 for CNT and 1: 

9 v/v CH3COOH for CN WAD) and the distillate collected into 10 ml of 1 M NaOH. 

Leaching with water was also performed with the purpose to compare the results 

with the alkaline leachate. Thiocyanate (SCN
-
) and cyanate (CNO

-
) were 

determined in the water leachate (10 g of solid material: 200 ml deionised water 

according to standard methods (Clesceri et al. 1989). Ammonium (NH3/NH4
+
) was 

performed in water leachate using Nesslerization method. Thiosulphate (S2O3
2-
)
 

was determined in water leachate using UV -Vis spectroscopy. Total metals in the 

water leachates (2 g of solid material: 200 ml deionised water) were determined by 

ICP-OES. Metal-cyanide complexes were analysed in alkaline leachate (2 g of 

solid material: 100 ml of 0.01 M NaOH) using reversed ion-pair HPLC method. 

 

5.3.3 Total digestion 

 

Total digestion for the determination of total metal concentration was done using a 

mixture of hydrofluoric acid (HF) and aqua regia (3: 1 by volume of HCl: HNO3). 

HF dissolves the silicate minerals. The dissolving power of aqua regia is derived 

mainly from the ability of chlorine and nitrosyl chloride to oxidize the metals 

which are then transformed to stable complex anions by reaction with the chloride 

ion (Rauret et al., 2000).  

An Anton Paar GmbH  Multiwave microwave  with Rotor  6MF 100 was used to 

digest samples. The maximum microwave power was 1400 W. The temperature 

measurement range is from 0
o
C to 300

o
C. The closed vessel technique helps to 

speed up reactions by allowing higher temperatures while preventing the loss of 

volatile analytes and minimize exposure to corrosive gases and hazardous solvent 

vapour.   
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5.3.4 Cation exchange capacity (CEC)  

 

The cation exchange capacity (CEC) of a soil is simply a measure of the quantity 

of sites on the soil surface that can retain positively charged ions (cations) by 

electrostatic forces. Cations retained electrostatically are easily exchangeable with 

other cations in the soil solution and are thus readily available for plant uptake. It 

is also an index of the clay activity and mineralogy, which is important for 

calculating mineralization rates, leaching rates and interaction with pollutants. 

CEC is important for maintaining adequate quantities of plant availability calcium 

(Ca
2+
), magnesium (Mg

2+
) and potassium (K

+
) in soils. Under acidic conditions pH 

< 5.5, aluminum (Al
3+
) may also be present as an exchange cation. Soil CEC can 

be expressed two ways: 

- the number of cation adsorption sites per unit weight of soil 

- the sum total of exchangeable cations that a soil can absorb. 

Two different, but numerically equivalent sets of units are used: meq/100g 

(milliequivalents of charge per 100 g of dry soil) or cmolc/kg (centimoles of 

charge per kilogram of dry soil). 

CEC is influenced by the strength of adsorption and the relative concentration of 

the cation in the soil solution. 

In the procedure of determining CEC (Allen et al., 1974), the cations particularly 

Na, K, Ca and Mg are displaced from the exchange sites on the material colloids 

and replaced by a cation from the extractant. After the washing stage the adsorbed 

cation is then displaced by a leaching solution in which it is subsequently 

determined. Almost all procedures in use for CEC have this sequence. 

 

5.3.5 Particle size distribution 

The measurement of particle size is important since the stability, chemical 

reactivity, opacity, flowability and material strength of many materials are affected 

by the size and characteristics of the particles within them.  
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The measurements of particle size were performed on dried samples using the 

Malvern Mastersizer Hydro 2000. The results for particle size distribution in the 

slimes tailings are given in Chapter 6. 

 

5.4 Method development and optimisation 

 

5.4.1 Instrumental analysis 

 

(a) Ion selective electrode 

 

A cyanide- electrode was used to determine free cyanide and total cyanide. 

Cyanate was determined using an ammonia- electrode. 

  

Free and total cyanides 

 

 

The CN-concentration was measured using a CN-Electrode (crystal membrane, 

Metrohm 6.0502.130) in combination with an Ag/AgCl single junction Reference 

electrode connected to the read out device, a pH meter (Beckman ф 50 pH meter). 

The technical specifications are followed:  

Preconditioning / Standard solution: 1000 mg l
-1
 CN 

-
 as KCN 

Preconditioning time : 5 minutes 

Optimum pH range : pH 11 -  pH 13 

Temperature range : 5°C -  80°C 

Recommended ISAB : 10 M NaOH (Add 2% v/v) 

Recommended reference electrode : double junction (ELIT 002)  

Reference electrode outer filling solution : 0.1 M KNO3  

Electrode slope at 25°C : 56±5 mV/decade 

Concentration range : 0.01 to 260 mg l
-1
  

Response time : < 10 seconds (Defined as time to complete 90% of the change in 
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potential after immersion in the new solution).  

Time for stable reading after immersion: < 1 to > 5 minutes, depending on 

concentration, use of ISAB, nature of sample and stabilisation time of liquid 

junction potential of reference electrode. 

Potential drift (in 1000 mg l
-1
): < 3 mV/day (8 hours), measured at constant 

temperature and with ISE and reference electrode continually immersed. 

A 1000 ppm CN
-
 stock solution was prepared by dissolving 2.57 g of KCN (pro 

analysis, Merck) in a 1000 ml volumetric flask with deionised water containing 10 

ml of 10 M NaOH as ionic strength buffer adjuster (ISAB). The stock solution was 

stored in a polypropylene bottle at 4ºC. Standards at the required concentration 

were prepared daily by appropriate dilution of the stock solution. 

Accurate calibration is an important factor in the determination of analyte 

concentration in any analytical technique. In the case of ISE methods, calibration 

is carried out by immersing the electrodes in a series of solutions of known 

concentration and then plotting the graph of the voltage versus the log of the 

activity.  For a full calibration, 100 ml of solutions containing 0.01, 0.05, 0.1, 0.5 

and 1 mgl
-1
 CN

- 
(as KCN) were prepared. An example of a calibration curve for 

CN
-
 is shown in Figure 5.1.  

NB: 2 ml 10 M NaOH buffer solution must be added to each standard and mixed 

thoroughly to ensure a correct pH level for electrode operation and eliminate any 

possibility of toxic HCN fumes. Polypropylene beakers were used for 

measurements, glass beakers were avoided for contamination of cyanide on the 

wall of the glass. 

 

Sample preparation 

 

2 ml of buffer solution must be added to 100 ml of each sample and stirred well 

before measurement. 
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Direct measurement 

 

It is important to note that, the electrodes must be washed and dried between each 

sample, to avoid cross contamination, and sufficient time must be allowed (2 or 3 

minutes), before taking a reading after immersion, to permit the electrode signal to 

reach a stable value. For the highest precision, frequent recalibration is 

recommended. Buffer solution has been added equally to standards and samples 

then the results will not need adjusting because they will all be affected by the 

same dilution factor. Detection limit was 0.01 mg l
-1
. 
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Figure 5.1 Calibration curve for CN
-
 (r

2
=0.9971; RSD = 4.568) 

 

 

 

Cyanate 

 

The ammonia content before and after hydrolysis of cyanate was measured by 

ammonia selective electrode. A solution of NH4Cl was used as standard. 

Ammonia content was estimated from the calibration curve. 
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Calculations:  

              mg NH3-H derived from CNO
−
 /l= A – B 

where, A = mg NH3-H /l found in the acidified and heated sample portion  

            B = mg NH3-H /l found in untreated portion 

           mg CNO
−
 /l = 3.0 x (A – B) 

Detection limit was 1 to 2 mg l
-1
. 

 

(b) Ion chromatography 

 

Anions in water and in water leachate samples were analysed by ion 

chromatography. The eluent was a solution of 2.0 mM NaHCO3 and 1.3 mM 

Na2CO3. The eluent was degassed by filtration through a 0.45 µm filter paper. 

The metrohm 761 Compact Ion Chromatograph (Metrohm, Switzerland) with a 

Metrosep A Dual 2 (6.1006.100) 4.6 x 75 mm analytical column was used. 

All solutions were prepared with purified water obtained by passing deionised 

water through a Milli-Q water purification system. 

 

(c) UV vis spectroscopy 

 

CNWAD, thiocyanate, thiosulfate as well as ammonium were analysed using UV-

Vis spectroscopy. The Jenway 6300 Spectrophotometer (U.K), single beam, was 

used and each compound was determined at various wavelengths. Standard 

solutions were prepared for each species to be analysed and then calibration curve 

were constructed after analysis of the standards. 

 

 Weak acid dissociable cyanide (CNWAD) 

 

CNWAD was determined in the distillate obtained after acid reflux distillation using 

a zinc acetate/ acetate buffer. Measurement of CN
-
 was done at 578 nm, 8 minutes 
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after adding the pyridine-barbituric acid reagent. CN
-
 in the alkaline distillate is 

converted to CNCl by reaction with chloramines-T at pH ˂ 8 without hydrolyzing 

to CNO
-
. After the reaction is complete, CNCl forms a red-blue dye on addition of 

a pyridine-barbituric acid reagent.  

 Method detection limit (MDL) for CNWAD was 0.5 mg l
-1
.  

 

Thiocyanate (SCN
−
) 

 

At an acidic pH (pH 2), ferric ion (Fe
3+
) and SCN

-
 form an Fe(SCN)

2+
 complex, an 

intense red colour suitable for  colorimetric determination.  

A series of standards containing between 0.02 g and 0.40 mg l
-1 
of SCN

-
 were 

prepared by pipetting measured volumes of standard KSCN solution. The acidified 

sample (pH 2) and another portion of standard were passed through the resin 

column at a flow rate not to exceed 20 ml/ min. Ferric nitrate solution (2.5 ml) 

were added to the collected eluates. Absorbances were measured at 460 nm 

against a reagent blank within 5 minutes. 

 

Thiosulfate (S2O3
2-
) 

 

0.1 M of thiosulfate standard solution was prepared by dissolving a known amount 

of sodium thiosulfate pentahydrate in oxygen-free water containing a small 

amount of sodium carbonate (0.01% w/v) as stabilizer. This solution was 

standardized by iodometry. 

Working standard solutions of thiosulfate were prepared by suitable dilution of 

standard solution with oxygen-free oxygen. 

The standard iodate-iodide was added to the sample as well as to the thiosulfate 

standard solution prior to measurement the absorbance of the solutions at 350 nm. 

An iodate-free reagent blank was substracted from all absorbances measured.  
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A standard iodate-iodide solution was prepared by adding 50 ml of 1.0 x 10
-2
 N 

standard iodate to a solution containing 0.2 g of sodium carbonate and 72.6 g of 

potassium iodide, and diluting it to 500 ml to give 1.0 x 10
-3
 N iodate in a 0.87 M 

iodide solution (0.04% w/v sodium carbonate). An iodate-free iodide (0.87 M) 

solution was prepared and used for correcting the air-oxidation of iodide. 

 

Ammonium 

 

 

The principle of the determination of Ammonia by Nesslerisation is based on the 

formation of an orange-brown complex when an ammonia sample is reacted with 

an alkaline Nessler reagent according to the following reaction: 

 

2K2[HgI4] + 2NH3    →         NH2Hg2I3  + 4KI  + NH4I  (Reaction 5.1) 

 

The formation of NH2Hg2I3 is fairly fast but not instantaneous. It has been 

observed that the colour change is slowest after about 20 minutes.  

Standards and samples reacted with alkaline Nessler’s reagent at 20
o
C and the 

absorbance was measured with a spectrophotometer at 420 nm. The colour 

production in this reaction follows Beer’s law as long as the concentration of 

ammonia in between 0.2 to 10 ppm range. Below 0.2 ppm the method becomes 

insensitive and above 10 ppm there is rapid development of turbidity due to 

formation of mercuric iodide.  

This will make absorbance readings deviates from the Beer’s law where the 

concentration will be no longer proportional to ammonia present in the sample. 

To obtain a calibration curve, standards of varying ammonia concentration were 

prepared ranging from 0.2 ppm to 10 ppm using ammonium sulphate. 

To get the concentration of ammonia in the sample, each sample reacted with the 

nessler’s reagent incubated at 20
o
C and the absorbance read after 20 minutes.  
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The corresponding concentration of ammonia in the sample was read from the 

calibration graph. 

 

(d) Reversed – Phase  High performance Liquid Chromatography  

 

Metal-cyanide complexes were determined by reversed - phase ion- interaction 

chromatography. A pairing-ion, hydrophobic, was also added to the mobile phase. 

Samples from this mode of separation are ionisable and can form an ion-pair with 

the pairing-ion. In the case of separation of metal-cyanide anions (M(CN)n
z-ny
, 

where ny > z), the pairing-ion present in the mobile phase is a cation, and its 

typically a quaternary ammonium ion. 

The HPLC system consisted of a Metrosep isocratic pump (pressure 1.5 x 1000 

psi) and a UV spectrophotometer (Lambda-max model 481) operated at 214 nm. 

The peak simple chromatographic was used. A silica-based C18 column 

(Supelcosil, 250 x 4.0 mm, 5 µm particle size) was used in this study.  Mobile 

phases were prepared using water purified with Millipore Milli-Q water treatment 

system, a LC-grade acetonitrile (77: 23 v/v), an appropriate ion-interaction reagent 

and an inorganic modifier. The ion-interaction reagent used was tetra-n-butyl 

ammonium hydrogen sulphate (4 mM or 1.358 g l
-1
).  

The adjustment to the ionic strength of the mobile phase was made by adding 

NaH2PO4 (1.25 mM or 0.1499 g l
-1
). The pH value of the mobile phase was 

adjusted to 8 by using a phosphate buffer (H2PO4
-
 and HPO4

2-
). The mobile phase 

was filtered immediately prior to use trough 0.45 µm Millipore-type membrane 

filters and degassed before use. 

The retention time and selectivity of metal complexes are   depended on the 

composition of mobile phase and in particular, on its organic solvent. Retention 

time also change with the type of pairing-ion. 

Standards solutions of the cyanide complexes of Ni (II), Co (III), Fe (II) and Fe 

(III) were prepared by dissolving weighed amounts of the respective potassium 
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salts (Table 5.1) in 0.01 M NaOH. Solution containing Cu (I) complex was 

prepared by dissolution of CuCN with a stoichiometric amount of KCN in 0.01M 

NaOH. The standards were supplied by industrial analytical (SA).  

Standard solutions containing mixtures of the metal-cyanide complexes were 

prepared from the individual standard solutions. Standard solutions were kept at an 

alkaline pH and stored in darkness to minimize degradation. 

 

Table 5.1 Preparation of metal cyanide standard stock solution 1000 mgl
-1
 

 

Anion Compound Mass (g) Stability (days) 

[Cu(CN)3]
2-
 Cu(CN)and Na(CN) 0.0632 1 

[Ni(CN)4]
2-
 K2Ni(CN)4. H2O 0.1591 1 

Co[(CN)6]
3-
 K3Co(CN)6 0.1546 30 

[Fe(CN)6]
3-
 K3Fe(CN)6.3H2O 0.1993 30 

[Fe(CN)6]
4-
 K4Fe(CN)6.3H2O 0.1993 30 

 

All the standards were run at a column temperature of 30
o
C with a flow rate of 1 

ml min
-1
 and an injection volume of 20 µl. Detection limit is in the mgl

-1
 range. 

Results indicated that most complexes could be resolved except those of Cd(II) 

and ZN(II) which are very weakly absorbing at 215 nm and at the same time 

decompose in the mobile phase. The calibration curve peak area versus 

concentration for copper and nickel cyanide complexes is shown as an example in 

Figure 5.2.  
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Figure 5.2 Calibration curve for Cu(CN)3
2-
 and Ni(CN)4

2-
 

 

An example of chromatogram obtained after a run of a mixture of standard is 

given in Figure 5.3. 

 

 

 

Figure 5.3 Chromatograms for cobalt-cyanide, copper-cyanide, Iron (II) and 

Iron (III)-cyanides and nickel-cyanide complexes. 
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(e)   ICP-OES 

 

Total metal concentrations in water and acid digested samples were obtained by 

ICP-OES (Kleve, Germany) with a coupled charge detection (CCD) system. The 

parameters in Table 5.2 were used and each element was determined at various 

wavelengths. The standards, supplied at a concentration of 10 mg l
-1
 were used to 

make working standards of concentration 0.05, 0.1, 0.2, 0.5 and 1 mg l
-1
. 

Calibration curves were then constructed after the analysis of these standards. 

 

Table 5.2 Table of parameters of ICP-OES 

 

Parameter Value 

Plasma power 1400 W 

Coolant flow 14 ml min
-1
 

Auxiliary flow 1 ml min
-1
 

Nebulizer flow 1 ml min
-1
 

Type of nebulizer Cross-flow 

Injector tube diameter 0.889 mm 

 

 

Modelling software 

 

MEDUSA (Making Equilibrium Diagrams Using Sophisticated Algorithms, Royal 

Institute of Technology, Sweden) software was used to construct models and 

predict cyanide speciation.   

 

5.4.3 Analytical figures of merit 

 

Limits of detection (LOD) 
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The limit of detection, expressed as the concentration or the quantity, is derived 

from the smallest measure that can be detected with reasonable certainty for a 

given analytical procedure. 

 Formally, the limit of detection is defined as the concentration of analyte required 

to give a signal equal to the background (blank) plus three times the standard 

deviation of the blank. So, before any calibration or sample measurement is 

performed, you must evaluate the blank. Detection limits are calculated as three 

times the standard deviations of a reagent blank.  

 

Accuracy 

 

The accuracy of the instrument was assessed by comparison of measured and 

recommended values for reference materials. 

 

Precision 

 

Three measurements were used to assess the precision or the reproducibility of 

analysis. 

An average was determined and from this value the potential of a blank was 

subtracted. This gave the true value and by using the equation derived from the 

calibration curve, the concentration was determined. (In the case of UV-vis, 

absorbance of the blank was subtracted). 

 

Percentage recoveries 

 

This was calculated mainly by ion selective electrode using a certified reference 

material. 

 



 90 

5.3.6 Quality control 

 

The use of glassware or Polyvinylchloride (PVC) containers was avoided during 

determination of free cyanide to prevent reaction of CN
-
 and metals on the glass 

surface or the chloride and metals from the PVC. Sample containers and other 

glassware were cleaned with metal free non ionic detergent solution, rinsed with 

tap water, soaked in 50% HNO3 acid for 12 hours and then rinsed with deionised 

water from Milli-Q-water purification system as recommended by Arienzo and 

Scrudo, (2001). All sample containers were rinsed again with deionised water 

prior to use. All blanks were subject to similar sample preparation and analytical 

procedures. All chemicals were of analytical grade obtained from Sigma-Aldrich, 

Industrial Analytical and Merck. 

 

 

 

CHAPTER SIX ─ RESULTS AND DISCUSSION 

 

  

Gold mining resulted in many tailings dumps around the Witwatersrand Basin 

pose an environmental threat through dust and polluted water plumes emanating 

from them. 

Cyanide is one pollutant of concern emanating from the tailings dumps. While the 

general perception is that this pollutant degrades after treatment with chemicals as 

well as naturally, the results from most studies point to the contrary (Bernd, 2003; 

Lötter, 2006). During rainfall, oxygenated water accumulates in ponds at the top 

of the tailings dumps leading to percolation and surface run-off. This results in 

pollutants from the tailings entering the ground and the surface water systems. 

Gold mine tailings have contributed significantly to water pollution as a result of 

AMD. The stream is contaminated by seepage of acidic waters containing a high 

content of metals and other substances. Water quality is affected by mine tailings 
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and spillages, especially from active slimes dams, reprocessed tailings, as well as 

from footprints left behind after reprocessing.  

As the contaminated water flows from the stream into wetlands, the pollutants are 

sorbed onto suspended sediment particles which ultimately settle at the bottom 

resulting in removal of pollutants from the water column. The wetlands serve as a 

sink for pollution where polluting metals and cyanide are trapped in sediments and 

peatlands. The presence of organic matter provides complexing ligands which tend 

to bind strongly with heavy metals as well as cyanide (Tutu, 2005).  

Case studies of tailings dumps, natural stream within  and wetland in the East and 

Central Rand were considered, namely: (a) two types of representative tailings 

were studied: tailings rehabilitation facility and actives slimes, (b) a natural stream 

within an area of concentrated tailings dumps (the Natalspruit)  and (c) a wetland 

(the Fleurhof Dam).  

This chapter focuses on the determination of cyanide species, its transport and fate 

in tailings, wetlands and water systems.  

The metal-cyanide complexes were also studied as well as the likelihood of their 

persistence in the environment. The results obtained were used for the 

geochemical modelling of its speciation. 

 

6.1 Tailings 

 

The tailings pumped from plant operations are stored in the TSF where cyanide 

levels are reduced by numerous mechanisms. These include biodegradation, 

volatilisation, adsorption onto solids, and seepage through the sediments at the 

base of the impoundment, photolysis and dilution through rainfall.  

Tailings were studied for cyanide species (free cyanide, total cyanide, weak acid 

dissociable cyanide, strong acid dissociable cyanide, metal - cyanide complexes); 

related secondary compounds (thiocyanate, cyanate, and ammonium), anions 

(sulphate, chloride) and metals.  
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6.1.1 Tailings undergoing rehabilitation 
  

 

The tailings dam is essentially a large sink in which slimes deposition is done by 

means of spigots which is located around the dam. The slimes are pumped from 

the reprocessing plant via pipes which feed interspersed spigots from which the 

tailings are released in the form of a slurry spray. The slurry flowed down the 

catena to the central sump or pond. A catena is a sequence of soil or sediment 

profiles that occur down a slope (Kirby et al., 1996). A penstock placed in the 

middle of the pond collects overflow water. This water is normally pumped to a 

water return reservoir, but at the Brakpan tailings facility some of this water is 

evaporated at the foot of the dam by spraying into the atmosphere. At the foot of 

the tailings dam is a toe paddock or a solution trench into which surface run-off 

from the slopes collects. The slopes (top, middle and bottom) are divided by berms 

as shown in the Figure 6.1.  

A berm is a ledge or shelf along the top, middle or bottom of a slope. The berms 

are wide enough and provide access (by means of dirt roads) around and to the top 

of the dam for maintenance and monitoring. They also allow for control of rainfall 

run-off (Tutu, 2006). 

Deposition of waste slurry has been discontinued and the dump is being prepared 

for phytoremediation. As such, the dump presents a suitable case for studying the 

chemical evolution of cyanide and its complexes over a period of time.  
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Figure 6.1 General section of the ERGO tailings dams (Weiersbye and  Tutu, 

2005) 
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Sampling strategy 

 

Sampling was carried out in December 2006 and July 2007 at a tailing storage 

facility located at 26
o
 20’S and 28

o
 25’E. This tailings dam is generally an expanse 

of tailings with a central pond at the top (Figure 6.2.a).  

 

 

 

 

 

 

 

 

 

 

 

 

(a)  

 

(b)  

Figure 6.2 (a) Tailing dam with a central pond at the top (the transect is shown 

in red), (b) Sampling points along the transect  
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Samples were collected along a transect extending from the edge of the dam to the 

central pond in the dump at depths of 0-20 cm and 40-60 cm at each drill core 

using an auger as shown in Figure 6.2.b. 

A total of 28 samples (5 sampling points x 2 sampling depths, 6 samples of crust 

salts, 2 samples of pond water) were collected. 

Temperature, pH, redox potential and conductivity were measured on the field. 

Metal concentrations in samples were determined using ICP-OES (Spectro, Kleve, 

Germany), with concentration in solid samples recalculated for dry mass. The 

most important anions in aqueous solution were determined using ion 

chromatography (IC 761, Metrohm, Switzerland) with conductivity detection and 

concentration in solid samples was recalculated for dry mass.  

The sampling techniques, sample treatment, sample storage and analytical 

procedures have been discussed in Chapter 5. 

 

 

Results and discussion 

 

Physical characterization 

 

The physical-chemical parameters (pH, T
o
, Eh, EC, moisture, CEC) results 

obtained are presented in Table 6.1. 

The samples were collected along a transect (from 1, close to the edge of the dump 

to 5, close to the pond). The results for the physical-chemical properties presented 

in table 6.1 showed an increase in pH with the distance from the edge of the dump 

towards the central pond. This could be due to the flow of limed slimes towards 

the central pond. During deposition, the dominant transport of tailings solids is 

lateral towards the central pond due to gravitational flow.  
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Table 6. 1 Physical-chemical properties of the tailings collected in 2007  

 

Sample Depth T
o
 pH Eh EC Moisture CEC 

 cm 
o
C  mV mScm

-1
 % cmol.kg

-1
 

1a 0 -  20 15.6 2.69 594 3.99 19.8 21.85 

1b 40 - 60 13.8 3.66 567 2.808 22.1 22.89 

2a 0 -  20 11.3 5.69 302 1.446 17.5 24.12 

2b 40 - 60 11.1 6.76 77 0.46 20.6 23.03 

3a 0 -   20 9.8 6.35 165 0.763 29.3 23 

3b 40 - 60 10.3 7 134 1.216 21.8 30 

4a  0 -   20 11.5 7.04 287 0.850 24.2 25.22 

4b 40 - 60 11.9 7.01 267 0.634 22.2 23.88 

5a 0 -   20 10.7 8.27 127 1.36 10.4 24.55 

5b 40 - 60 12.5 8.67 257 0.79 22.6 28.64 

C1 solid white crust 4.2 n.a n.a 4.6 45.22 

C2 yellowish crust n.a n.a n.a 5.1 38.68 

C3 yellow crust n.a n.a n.a 5.3 55.45 

TSFsd   13.6 5.25 377 1.788 37.58 25.42 

n.a: not analysed 

 

An average pH of 8.10 was obtained for the slurry emanating from the spigots 

during deposition. The elevated pH is attributed to the addition of lime during gold 

extraction. This is done to keep the cyanide in solution as it escapes at low pH and 

can pose a toxicity problem. The mildly alkaline pH of the tailings is attributed to 

the weathering effects resulting from acidic water (due to oxidation of pyrite). 

This causes the deterioration of the buffering capacity of the tailings. The pH 

values for the two sampling periods (2006 and 2007) are presented in Figure 6.3. 

The trend shows a decrease in pH within the year. This could be attributed to the 

generation of AMD which is accelerated by the discontinuation of disposal of 

fresh tailings (of higher pH).  
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Figure 6. 3 pH values of the tailings for 2006 and 2007 

 

Also, over time, the tailings’ pH gradually decreases due to neutralisation of the 

alkaline environment during rainwater infiltration and also because of carbon 

dioxide uptake (Simovic et al., 1985; Smith and Struhsacker, 1987). Zagury et al. 

(2003) found a more alkaline pH 10.6 for recently discharged (3 months) tailings 

compared to pH 7.6 for aged ones (6 – 9 years). Low pH was observed in the pond 

water (3.79) and sediment (5.25) due to the weathering effects. 

High potential redox was found for the samples collected at the edge of the 

tailings. This could be due to the easy oxidation of coarse material settled at the 

edge of the dump during deposition. The potential redox increases with decreases 

of pH. The same trend was observed for the conductivity. Relative high 

conductivity was found at the edge of the tailings dams compare to the pond. This 

could be the evidence of dissolution of metals when the pH drops and the presence 

of soluble salts on the top of the tailings dams (NaCl, MgSO4 and CaSO4), leading 

to high values of conductivity.  

Prior to characterization, average moisture content approximately 21.05% was 

measured in the tailings except for the crusts salts with average moisture of 5% 
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and the pound sediment with a moisture content of 37.58%. The moisture in the 

tailings could be due to water table in them but that water was evaporated in the 

salts crusts. This become evident when the tailings are disturbed as is the case 

during rehabilitation activities. Hsu et al. (1995) states that it is important to 

maintain the moisture content at between 16% and 20%. If the dump is too moist, 

the air access is not possible. On the other hand, if the dump is dry, then bacterial 

action cannot take place effectively because migration of bacteria throughout the 

material is difficult.   

Cation exchange capacity values for tailings collected in 2007 were high and 

ranged from 21.5 to 30 cmol kg
-1
. Crusts solid salts have an average CEC value of 

46.45 cmol kg
-1
. These values indicate a high capacity of tailings materials to 

adsorb metals. Normal CEC ranges from 3 cmolkg-1, for sandy soils low in 

organic matter to > 25 cmol kg
-1
 for soils high in certain types of clay or organic 

matter (Evangelou, 1998). 

The size distribution of tailings is presented in Table 6.2. The tailings comprised 

of sand-sized particles ranging from 1000 to 75µm, silt-sized particles ranging in  

from < 75 µm to 2 µm and clay sized particles  < 2 µm. During deposition, the 

dominant transport of tailings solids is lateral towards the central pond due to 

gravitational flow. Size and density segregation in the flowing material are 

expected with coarser material settling near the edge and finer material settling 

towards the central pond. At the edge, the tailings are mostly sandy and towards 

the pond, tailings are silly. 

The results obtained showed coarser material settling near the edge (low pH) and 

the finer material settling towards the central pond (high pH). 

The coarse material is easily oxidised compared to the finer one that is why the 

potential redox is higher for the tailings from the edge of the dump. 
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 Table 6.2 Size distribution of tailings dams material 

samples Depth Sand Silt Clay 

 cm % % % 

1a 0    -     20 81 14 5 

1b 40   -    60 80 14 6 

2a 0    -     20 86 12 2 

2b 40   -    60 87 10 3 

3a 0    -     20 0.4 91 8 

3b 40   -    60 6 85 9 

4a 0    -     20 1.6 97.5 0.9 

4b 40   -    60 5 85 10 

5a 0    -     20 0 88 12 

5b 40   -    60 3 90 7 

C1 

crust solid 

white 95 4 1 

C2 

yellowish 

crust 83 15 2 

C3 yellow crust 1 88 11 

 

 

Chemical characterization 

 

Metals Metal concentrations were determined in the tailings using ICP-OES 

after acid digestion and leaching with deionised water.  Results obtained by acid 

digestion for trace metals are shown in Figure 6.6 for (a) Fe, (b) Ni, (c) Cu, (d) Zn 

and (e) Co. The full table for metals analysis is given in Appendix A. 

In general, the concentration of Fe, Ni, Cu, Zn and Co obtained by acid digestion 

in tailings increases between 2006 and 2007, except for the samples 5a & 5b. This 

could be due to the generation of AMD with the subsequent release of heavy 

metals and metalloids.  

In fact, with the decrease of the pH with time, AMD is generated and this could 

result in the dissociation of metal complexes which release metal.  
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Samples 5a and 5b with alkaline pH, showed a decrease of metal concentration 

after a year. Metal could be leached out and the release of metal from metal 

complexes could have been limited by the alkaline pH. Weak metal-complexes 

can not dissociate at this pH range.  

An increase of concentration between 2006 and 2007 was respectively 17.31% for 

iron, 21.66% for nickel, 19.29% for zinc and 20.32% for cobalt. A decrease of 

3.01% was observed for copper. 

Concentration of iron is high in both cases (2006 and 2007) as it is one of the 

major elements in the ores. Iron concentration in most tailings analyzed range 

from 2.0 – 4.0% as Fe2O3 (Mphephu, 2004). 

At the edge of the dump, concentrations of Fe, Ni, Zn and Co for both periods are 

low at the surface, profile (a) 0 – 20 cm compare to those obtained for the profile 

(b) 40 - 60 cm. The trend shows a decrease in metals concentrations for tailings 

collected in 2006 from the edge to the pond. A similar trend was observed for the 

tailings collected in 2007. 

The concentration of nickel was under detection limit in samples 1a & 4b in 2006 

but as evidence of dissociation of metal-complexes, the concentration increases in 

2007, 52 mg kg
-1
 for 1a and 31 mg kg

-1
 for 4b. The concentration of cobalt in 

tailings was lower compared to the other metals analysed.  

The concentrations of Fe, Co, Ni, Cu and Zn were very high in salt crusts, since 

efflorescence is composed of water soluble salts in addition to dominant iron 

hydroxides and sulphates. Salt crusts are also enriched in concentrations of several 

metal including Co, Ni, Cu and Zn. Efflorescence is secondary source of pollution.  

High concentration of Ca, Na and K was obtained at the surface for the samples 

collected in 2006. During reprocessing Ca, Na and K are added as CaCN (170 

ppm), NaCN and KCN. 
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Figure 6.4 Total concentration of (a) Fe, (b) Ni, (c) Cu, (d) Zn and (e) Co in 

tailings for profile: a) 0 – 20 cm; b) 40 -60 cm. 

Lime was also used to raise the pH above 11 during the operation to avoid the 

volatilisation of cyanide, so the tailings materials contain high concentration of 

Ca, Na and K. These metals can be leached out with time, since they are very 

soluble in water and tend to be conservative ions.  The concentrations of Fe, Ni, 

Zn and Co in crusts (H9a and H10) collected in 2006 were higher than the crusts 

(C1, C2 and C3) collected in 2007 except for copper. The decrease in metal 

concentration in crusts could be due to evaporation or dissolution. The sediment 

(TSFsd) collected at the bottom of the pond, contains almost the same 

concentrations of metals for both periods because there was no change in the pH 
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(5.25). High concentration of Ca was obtained in the sediment. During tailings 

deposition, the slurry (containing quite high amount of lime) flows towards the 

pond and then the finer particles reaching the pond precipitate to form sediments. 

The precipitation leads to deposition and adsorption of metals onto sediment, this 

could also explain the high concentration of metals found in the sediment.  

Metal concentrations were also determined in the tailings using ICP-OES after 

leaching with deionised water.  Results obtained are given in Appendix B. The 

general trends show low concentration of heavy metals( mainly Co, Zn, Cu, Ni) in 

water leachate compared to the concentration obtained after acid digestion, except 

on top surface from the edge (sample 1a). The concentration of Ca was high in 

water leachate. In the tailings, CaSO4 is the most abundant form of Ca and it is 

readily soluble in water. Iron was very low. Co, Zn, Cu and Ni were also low 

except on the top surface from the edge.  

These metals are likely to be from efflorescence and they are relatively insoluble 

at that pH of water. The study done by Rosner and Schalkwyk (2000) revealed that 

the top soil of slimes dumps after reclamation to the east of Johannesburg was  

highly acidified and contaminated with heavy metals, notably Co, Ni and Zn. 

The concentrations of metals were high in crusts and sediment. This could mean 

that the low pH allows an increase in dissolution of metal complexes.   

Between 2006 and 2007, a decrease of Na, K and Fe was observed. The 

concentration of Co, Zn, Ni, and Cu increases for the samples collected at the edge 

of the tailings (1a, 1b and 2a). 

An increase in Na, K and Ca was found in crust with time whilst the concentration 

of heavy metals decreases. In the sediment, the concentration of heavy metals 

increases with time Na, K and Fe whilst the one for Na, K, Ca and Fe decreases. 

 

Anions (SO4
2-
 , S2O3

2-
 , Cl

-
) The concentrations of major anions 

(thiosulphates, sulphates and chlorides) in the tailings are shown in Figure 6.5.  
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Figure 6.5 Results for (a) thiosulphate (b) sulphate and (c) chloride in tailings 
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The trend shows a general increase in thiosulphate and sulphate concentrations 

between 2006 and 2007. The weathering of pyrite generates sulphuric acid and 

hence high concentration of sulphates.  

Chlorides were found in very low concentration in tailings. The values vary 

between 5.2 mgkg
-1
 and 45.4 mgkg

-1
 in the samples collected in 2006. For those 

collected in 2007, chlorides were not detected as well as in the TSFsd. This could 

serve as evidence that gold tailings are not treated with chloride based reagents 

before discharge (pers. comm. Weirsbye, 2008).  

The concentration of chloride is relatively high (100 - 200 mg kg
-1
) in salts crusts 

collected in 2006. 

Anions concentrations in salt crusts and TSFsd are given in Table 6.3. 

Concentrations of thiosulphate in the salt crusts are in the same magnitude as in 

the tailings but those for sulphates are by far greater. The study done by Naicker et 

al. (2002) revealed that salt crusts affected by AMD contain gypsum 

(CaSO4.2H2O). This could enhance the concentrations of sulphate in salt crusts. 

TSFsd collected in 2007, has high concentrations of thiosulphates as well as 

sulphates. During deposition, for instance, the dominant transport of tailings solids 

is lateral towards the central pond. The same trend was observed for AMD flowing 

towards the pond and likely seeping in the bottom sediment. This could explain 

the low pH of the sediment, hence, more sulphate. 

 

Table 6.3 Concentration of thiosulphate, sulphate and chloride in tailings 

 Sample S2O3
2-
 SO4

2-
 Cl

-
 

  mgkg
-1
 mgkg

-1
 mgkg

-1
 

H9a 897.4 91561 117.8 

H10 1966 14785 201.3 

TSF 1113 13185 n.d 

C1 1309 65152 n.d 

C2 1013 60235 14.4 

C3 743.4 4575 n.d 

SED 1304 15024 n.d 
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Cyanide species and related compounds  Free cyanide, weak acid 

dissociable cyanide, total cyanide, thiocyanate, cyanate and ammonium were 

analysed in the tailings. The analytical procedures are described in Chapter 5.     

Results, presented in Figure 6.6, are a comparative assessment between samples 

collected in 2006 and the ones collected in 2007. The average content of CNfree 

(Figure 6.6a) for samples collected in 2006 was lower 2.382 mgkg
-1
 than   the 

average (9.659 mg kg
-1
) for samples collected in 2007.   

It is well known and proved by previous studies (Lötter, 2006) that CNfree can be 

lost by volatilisation, biodegradation and complexation. CNfree can be converted 

into cyanates and thiocyanates depending on the environmental conditions. 

The high value of CNfree obtained in 2007 could be due to the dissociation of 

CNWAD and CNSAD when the pH of the tailings drops due to the weathering effects. 

In fact, CNWAD can dissociate at pH range from 4-5 to release CNfree when CNSAD 

required strong acidic condition pH < 2 to dissociate. 

This can be observed by the decrease of CNWAD and CNSAD with time. Tailings 

collected in 2006 contains an average of 19.06 mg kg
-1
 and 98.53 mg kg

-1
 for 

CNWAD and CNSAD respectively (figure 6.6b and c), whereas, the average of 5.767 

mg kg
-1
 and 32.22 mg kg

-1
 was obtained for tailings collected in 2007.  

Total cyanides (Figure 6.6d) were higher in 2006 with an average of 120 mg kg
-1
 

and 50.85 mg kg
-1
 in 2007. A corresponding trend was observed for CNWAD as 

well as CNSAD. This could be attributed to the fact that during deposition of 

tailings pH values are high and cyanide complexes are stable. As pH decreases, 

the complexes begin to dissociate releasing CNfree as stated in the previous case.  

CNSAD content was high in all tailings compare to CNWAD; this indicates the 

predominance of strong complexes in the tailings.  

The high concentration of iron in tailings suggests a higher proportion of strong 

cyanide complexes.  

Discrepancies were observed with high CNfree in profiles 1b and 5b compared to 

profiles (40 - 60 cm) 1a and 5a (0 – 20 cm) in 2007. This could be due to the lost 
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of CNfree in profile 1a with the lowest pH (2.69). The same reason could be 

attributed to sample 5, since HCN (volatile) is the predominant form of CNfree at 

pH < 9. 

CNWAD was higher in profile 5a in 2007. This could be explained by the high 

concentrations of heavy metals (Co, Zn, Ni and Cu) in profile (a), these metals 

form weak metal- complexes with cyanide (Chapter 2). 

The samples with high heavy metals concentrations (Zn, Ni, and Cu) did not 

necessary have high CNWAD.  

 The concentrations depend strongly on the stability of each complex. The same 

observation was done for CNSAD.   

The average thiocyanate (SCN
-
) concentrations (Figure 6.6e) are observed to be 

higher in 2007 (95.13 mg kg
-1
) than 2006 (27.27 mg kg

-1
). This observation is 

consistent with that done by Plumlee et al. (1995) that relatively high 

concentrations of thiocyanate may persist in the presence of acidic solutions. 

CNfree released from the complex metal cyanide, reacts with active sulphur species 

(Reaction 2.5 and 2.6) to produce thiocyanate, SCN
-
. Thiocyanate also reacts with 

metals to form metal-thiocyanate complexes. 

High concentrations of SCN
-
 were found in 3(a) and (b) but this doesn’t mean high 

values of thiosulphate in these samples. This could be due to reaction of CNfree 

with polysulfides (Reaction 2).  

Cyanate (OCN
-
) (Figure 6.6f) concentrations do not seem to differ significantly in 

the two periods. Average concentrations of 18.33 mg kg
-1
 and 22.4 mg kg

-1
 were 

found respectively for 2006 and 2007. This could be due to exposure of CN
-
 to 

similar oxidation conditions (largely atmospheric oxygen).   

Cyanate hydrolyses under acidic conditions to form NH3 which then reacts with 

SO4
2-
 present in tailings to form NH4

+
, also, thiocyanate SCN

-
 can be transformed 

to CO2, NH4
+
 and SO4

2-
. 

Ammonium NH4
+
 concentrations (Figure 6.6g) were higher in samples collected in 

2007 than in the ones from 2006. Ammonium concentration was higher for the 
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tailings collected at the pond (5a & 5b). The average of ammonium content is 

respectively 49.87 mg kg
-1
 and 26.58 mg kg

-1
. This difference could be explained 

by high concentration of sulphate in tailings collected in 2007 which is susceptible 

to react with ammonia.  

This could explain also the low concentration of cyanate. Cyanate could give the 

indication of the amount of CNfree that is oxidized. This is important as cyanate is 

far less toxic than CNfree and this would have a positive impact on the environment 

if the conversion is occurring at a rapid rate. The relative high concentration of 

NH4
+
 in tailings contributes to the cation exchangeable content. 

In salt crusts, the same trend as in tailings was observed for the concentrations of  

CNfree, CNWAD, CNSAD and CNT. An increase of CNfreewas observed whilst CNWAD  

and CNSAD decreased. 

The crusts have higher concentration of SCN
- 
in 2007 due to the presence of high 

concentration of sulphate. Also due to the fact that microbial degradation is 

responsible for SCN
-
 production, these microorganisms can also aerobically 

degrade CN
-
 to OCN

-
. This can also explained the higher concentration of 

ammonium in the salt crusts collected in 2007. 

Very low concentration of cyanate was found in the pond sediment (TSFsd) 

collected in 2006 and it was not detected in sediment collected in 2007.  Pond 

sediment is in reducing conditions and cyanate is produced by the oxidation of 

CNfree. This could explain the low concentrations of CNO
-
 and also the very low 

pH of the sediment probably means that high losses of cyanide occur through 

volatilization. 

The concentration of NH4
+ 
was very low in sediment; this could be due to the low 

concentration of cyanate obtained, since ammonium is a byproduct of cyanate. 

The correlation between metals and cyanide species depends of several 

parameters. Metal forms also complexes with other anions, depending on the 

environmental conditions, e.g. Cu forms complexes with CN
-
, SCN

-
, OH

-
, SO4

2-
. 

There is a competition of these anions towards Cu.  
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Figure 6. 6 Results for (a) CNfree; (b) CNWAD; (c) CNSAD; (d) CNT; (e) SCN
-
 ;  

   (f) CNO
-
 and (g) NH4

+
 in profiles. 

 

Metal cyanide complexes 

 

CNfree bonds with metals to form metal- cyanide complexes. The results obtained 

for such complexes in tailings are shown in Figure 6.7, except for Zn(CN)4
2-
 which 

is only weakly absorbing at the wavelength used and is not stable (labile) under 

the chromatographic conditions. 

The general trend showed a decrease in the concentrations of Cu, Ni, Co and Fe - 

cyanide complexes with time. In figures (a) and (b), samples 1a to 3b show very 

low concentration of Cu and Ni complexes in 2007.  

The average concentration of Cu and Ni was respectively 17.94 mg kg
-1
 and 7.948 

mg kg
-1
 in 2006; 4.85 mg kg

-1
 and 2.006 mg kg

-1
 in 2007. The pH values for these 

samples range from 2.69 to 7. The decrease of pH within time could explain the 

drastic decrease of the Cu & Ni complexes which are weak complexes, unstable in 

slightly acidic conditions and then can be dissociated at pH 4 – 6. The stability 

constants are log k = 28.65 for Cu(CN)4
3-
 and 30.13 for Ni(CN)4

2-
.  
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Figure 6.7 Results for (a) Cu(CN)3
2-
 , (b) Ni(CN)4

2-
 , (c) Co(CN)6

4-
 ,  

(d) Fe(CN)6
4-
 and (e) Fe(CN)6

3- 

 

At high pH, these complexes may be stable as observed in the models created 

using MEDUSA (Figure 6.8). Cu and Ni more or less resemble one another (both 

CNWAD) and so do Co and Fe (both CNSAD). They have fairly significant 

concentrations in 2007 to compare with Ni & Cu. However, the concentrations are 

significantly low to compare with those for 2006. 



 114 

CNSAD are stable and can be only dissociate at pH < 2, and the tailings analyzed 

have a pH above 2, hence the disparity between the two periods is not significant. 

The stability constants for Fe species are log K = 47 for Fe(CN)6
4-
 and 52 for 

Fe(CN)6
3-
. 

Indeed, the average concentration of Co(CN)6
4-
 was 8.375 mg kg

-1
 in 2006 and 

3.156 mg kg
-1
 in 2007. 

The Fe-cyanide complexes were present in two forms: Fe(CN)6
4-
 and  Fe(CN)6

3- 

with the latter being more stable (table 2.2). 

Fe (II) and Fe (III) cyanide complexes are the most important complexes found in 

tailings in term of concentration. Even the Mössbauer spectroscopic analysis 

pitched iron-cyanides complexes and also suggested a different Fe(II)/Fe(III) ratio 

for samples analyzed. 

In figure 6.7d, Fe (II) complex is high in samples 2b, 3b, 4b and 5b for 2006. The 

profile b (40 – 60 cm) has low redox potential compare to profile a (0 -20 cm). 

Besides, Fe (III) complex in figure 6.7(e), is high in samples 1a, 2a, 3a and 5a. The 

redox potential was high in profile (a) than in profile (b). Thus, Fe (II) is likely to 

be high in reducing condition and Fe (III) in the oxidizing one.  

 

Geochemical modeling 

 

The models for copper and iron in tailings are shown in Figure 6.8 and Figure 6.9. 

The models below predict the formation of cyanide complexes. For instance, the 

predominance rea of Cu(CN)3
2-
 is between pH 4 – 8 and Fe(CN)6

3-
 can be found in 

ranges of pH and at high pE. The introduction of major anion (e.g SO4
2-
) does not 

affect the equilibruim of the complex. 

At lower pH values, H
+
 out competes Cu

+
 for complexation with CN

-
 as H

+
 

becomes more abondant and forms HCN. 

At higher pH, soluble copper hydroxide complexes form but in this system, CN
-
 

outcompetes OH
-
 in the pH range shown. Concentration of dissolved copper 
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hydroxide species are very small and their influence on Cu speciation is not 

significant. 

Dfferents copper cyanide species predominate in different pH regions, with 

Cu(CN)c at pH < 4; Cu(CN)3
2- at pH 4 – 8  and Cu(CN)4

2- at pH > 8. 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

2 4 6 8 10 12

-9

-7

-5

-3

-1

1

L
o
g
 
C
o
n
c
.

pH

H+

CN−

(CN)2

Cu2+

Cu(CN)2
−

Cu(CN)32−

Cu(CN)43−

HCN

O2

OH−

Cu(CN)42−

Cu(OH)2

Cu(OH)3
−

Cu(OH)42−

CuOH+

CuCN(c) CuO(cr)

pe =   8. 50

[Cu+]
TOT

 =    1.03 M

[CN−]
TOT

 =    4.67 M

2 4 6 8 10 12

-10

0

10

p
e

pH

Cu2+

Cu(CN)3
2−

Cu(CN)43−

Cu( c )

CuCN( c )

CuO( c r )

[Cu+]
TOT

=    1.03 M [CN−]
TOT

=    4.67 M

t= 25°C



 116 

 

 

(c) 

(d) 

 

2 4 6 8 10 12

-9

-7

-5

-3

-1

1

L
o
g
 
C
o
n
c
.

pH

H+

CN−

CNO−

SCN−

(CN)2

Cu2+

Cu(CN)2
−

Cu(CN)32−

Cu(CN)43−

Cu(SCN)32−

Cu(SCN)43−

HCN

HCNO

HSCN
O2

OH−

Cu(CN)42−

Cu(OH)2

Cu(OH)3
−

Cu(OH)42−

Cu(SCN)2

CuOH+

CuSCN+

CuCN(c)

CuSCN(s)

CuO(cr)

pe =   8. 50

[Cu+]
TOT

 =    1.03 M

[CN−]
TOT

 =    4.67 M

[CNO−]
TOT

 =  421.00 mM

[SCN−]
TOT

 =  391.00 mM

2 4 6 8 10 12

-10

0

10

p
e

pH

Cu2+

Cu(CN)3
2−

Cu(CN)43−

Cu( c )

CuCN( c )

CuSCN( s )

CuO( c r )

CuCN( c )

CuSCN( s )

[Cu+]
TOT

=    1.03 M

[SCN− ]
TOT

=  391.00 mM

[CN−]
TOT

=    4.67 M

t= 25°C



 117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e)  

 

 

 

 

 

 

 

 

 

 

 

 

 

(f) 

Figure 6.8 Predominance diagrams of Cu(I) in presence of (a)&(b) CNT (b)&(c) 
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The introduction of major anions for instance SCN
-
 and SO4

2-
 does not affect the 

dissociation of the copper-cyanide complex as seen in Figure 6.8f. 

The model for iron species is shown in Figure 6.9. 
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Figure 6.9 Predominance diagram of Fe(III) species in presence of (a) CNT and 

(b) SO4
2-
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As indicated in the equilibruim species predominance diagram, Fe(OH)3 serves as  

the source of iron that becomes dissolved, which regulates the cyanide speciation. 

In the area dominated by Fe3(CN)6, cyanide is predicted as Fe(CN)6
3-
 (oxic 

conditions) or Fe(CN)6
4-
 (anoxic condition). 

 

Conclusion 

 

The application of cyanide in gold processing in South Africa is an issue for the 

Environment Scientist. This pollutant is discharged into the environment with the 

assumption that it will decompose with in a relatively short period of time. The 

distribution and fate of cyanide in the environment upon release from the tailings 

dumps depends on its physical-chemical speciation. 

This study describes the characterisation of cyanide in the superficial deposits of a 

re-processed gold tailings dump and its fate in the environment. Sampling was 

done in 2006 and 2007 to assess the impact of tailings acidification on cyanide 

release over that period.  

The results indicated a decrease in metal-cyanide complex concentrations over a 

short period after deposition. The acid generated due to sulphide oxidation 

promotes the dissociation of these complexes releasing free metal ions and 

cyanide. During deposition of tailings pH values are high and cyanide complexes 

are stable. As pH decreases, the complexes begin to dissociate releasing CNfree.  

On contact with AMD, cyanide is released to form other cyano-species including 

thiocyanate and cyanate. These species, although less toxic than the free cyanide, 

they have the tendency to form soluble complexes with metals and, as such, are 

important for their mobility. The metal-cyanide complexes (CNWAD and CNSAD) 

are generally persistent in the tailings, their stability depends strongly on the 

extent of acid generation, and therefore on the tailings management regime during 

reclamation and post-deposition. 
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Fe-cyanide complexes are common in waste from mine waste and this is because 

these two complexes are very stable, but can be dissociated at very low pH and by 

photolysis. 

The drop of pH leads to dissolution of metals as well as dissociation of metal 

cyanide complexes with release of CNfree. CNfree released is subject at several 

chemical mechanisms, namely: volatilization, oxidation, biodegradation. CNfree 

can be converted to thiocyanate or\ and oxidized to cyanate. These related 

compounds were found to be less toxic than CNfree. 

The size distribution shows that these tailings are sandy at the edge and silly at the 

pond. High cation exchange content was obtained, these permit tailings to hold 

metals. 

 

Pond water 

 

The physical - chemical parameters as well as metals in the pond water are shown 

in Table 6.4.  

The trend shows a decrease in pH with time due to weathering effects. An increase 

in conductivity was observed. This could be explained by an increase in dissolved 

metals with the generation of AMD. 

An increase in heavy metal (Fe, Co, Ni, Zn and Cu) concentrations was observed 

with time due to the decrease of pH as explained previously. 

Results obtained for cyanides species and related compounds are shown in Figure 

6.10. 
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Figure 6.10 Cyanides species and related compounds in pond water 

 

The concentration of CNfree was constant in pond water for both samples; this 

could be due to the continual release of CN
-
 since the pH of pond water decreases. 

Weak and strong-metal cyanide complexes release CNfree in acidic pH condition 

which may be lost as HCN. Concentration of CNWAD decreases while that for 

CNSAD remain the same since CNSAD can be dissociated only at a pH < 2 and the 

pH in 2007 was 3.79. This value was not far from pH 4.5 found in 2006.  

Thiocyanate has not been detected in pond water since it is highly soluble in water 

or the concentration may be below the detection limit. Further investigations by 

Flynn and al. (1995) revealed that the region of thiocyanate stability decreases in 

Eh as the pH increases. Elevated concentrations of cyanate were found in samples 

collected in 2007. Oxidation of CNfree forms cyanate. As pH drops in the tailings, 

CNfree is released from CNWAD complexes and collects in the pond. The oxidizing 

conditions in the pond result in the formation of cyanates. Concentrations of 

chlorides were respectively 365.8 mg l
-1
 in 2006 and 361.8 mg l

-1
 in 2007. These 

concentrations were by far high compare to those found in the tailings. The 

dissolution of salt crusts release ions and metals that can leach over time and 

accumulate in pond, this could explain the high conductivity of the pond water. 
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Table 6.4 Physical-chemical properties and metal concentrations in the pond water 

 pH T
O
 ORP EC Al Ca Co Cr Fe K Mg Zn Mn Na Ni Pb U Cu 

    
o
C mV mScm

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 

2006 4.5 24.4 543.2 4.9 27 0.163 0.044 0.004 0.352 50 1.077 26 13.7 n.d 3.9 0.05 0.186 0.219 

2007 3.79 13.3 512.6 5.48 30.12 0.175 0.052 0.015 0.461 45.36 1.122 28.55 12.27 0.844 4.121 0.03 0.154 0.284 

n = 3, rsd ˂ 10 
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The results showed an increase of the concentrations of Fe and Cu in samples collected in 

2007. This is the effect of weathering, since a decrease of pH was observed.  The pond 

acts as an accumulation point or reservoir. Salt crusts also dissolve and contribute to the 

pollution load. They are very soluble in water and contain very high concentrations of 

metals. Low concentration of CNfree was found in the pond. CN
-
 is released from cyanide 

complexes and partly flows into the pond (it is also leached to the ground water). The low 

pH in the pond results in volatilization of CN
-
 as HCN. The Eh region (above 500 mV) is 

likely to result in oxidation of CN
-
 to CNO

-
. The volatilization of CN

-
 was not assessed in 

this study, but results from a study by Lötter (2006) point to the confirmation that 9% of 

cyanide lost from the TSF could be attributed to HCN volatilization.  

The low concentrations of CNWAD in the pond water also point to the likelihood of 

dissociation of these complexes. 

The high metal load could point to two possibilities relating to their release, namely: 

metal leaching from the tailings due to AMD and metals released from cyanide 

complexes. The former could be released from host minerals (Fe2O3, UO2, U2TiO6, 

FeAsS etc) while the latter would be from cyanide complexes specifically (Fe(CN)6
3-
, 

Ni(CN)4
2-
 etc). 

 

Metal-cyanide complexes 

The results for metal-cyanide complexes are presented in Figure 6.11. The trend showed 

a decrease in the complexes with time. Copper-cyanide complex was found lower 

compared to nickel-cyanide complex, both being weak cyanide complexes. The 

dissociation of these complexes in aqueous solution depends on their stability constant, 

pH, temperature and the redox potential. The stability constant of nickel complex is 

higher than that for copper complex. The higher the stability constant, the more limited 

the dissociation in CNfree. The pond water was found to contain both iron-cyanide 

complexes, that is, Fe(CN)6
4-
 and Fe(CN)6

3-
. The predominance of Fe(CN)6

3-
 could be 

due to the relative high redox potential.  
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Figure 6.11 Metals-cyanide complexes in pond water. 

 

Conclusion 

 

During tailings deposition, the slurry flows towards the central pond.  The coarser 

particles settled at the edge and water flows at the pond. This study revealed that the 

pound water contains CNfree, which remains constant with time. Weak and strong-metal 

cyanide complexes release CNfree in acidic pH condition, this lead to a continual release 

of CN
-
 since the pH of pond water decreases. CNfree may be lost as the volatile HCN or 

can seep into the groundwater with detrimental consequence. 

 

6.1.2 Active slimes dam 

 

An active slime dam is a dam where deposition from retreatment operation takes place. 

Sampling was carried out in January 2008 at an active slimes dam to assess the potential 

release of cyanide and related by product from such facility. The study site was one of 

three active slimes dams located in Nasrec, South west of Johannesburg (see Figure 

6.12). The aerial view is given in appendix C. 

Water was collected from pipes draining from the top of the dump as well as from a 

solution trench in which the water from the pipes and seepage points collects and flows to 
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water return dam. The samples were collected according to the standard procedure 

described in Chapter 3. 

Algae were also collected in a plastic bag. The algae were wet at the time of sampling 

signifying saturation. Solid samples collected included salt crusts and tailings. Figure 

6.13 shows the sites where samples were collected. 

 

 
Figure 6.12 Location of tailings dams in the Witwatersrand basin 
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(a)  

 

 

(b)  
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(C)  

Figure 6.13 (a) Side view of Nasrec active slimes (b) Bluish-green efflorescence along a 

solution trench (c) Sampling water from a pipe draining from the tailings 

(Photograph by author). 

 

Results and discussion 

Physical – chemical properties, anions and metals 

The results obtained for metals, anions as well as the physical- chemical properties are 

given in Table 6.5. 

The pH values were low for water collected from pipe. The trench samples had elevated 

pH (particularly sample C3). The slightly elevated pH values could be attributed to 

dilution effects. It should be recalled that the trench consists of water collected from 

source with different types of chemistry, namely: water draining from the pond; water 

spilling from spigots (i.e. from the slurry coming from the reprocessing plant); rainwater 

flowing down the slope of the tailings dam (samples were collected during the rainy 

season); and seepage water. The heterogeneity of trench water is observed from the ORP 
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values that are lower than those for the water collected from pipes. The concentrations of 

pollutants (as well as conductivity values) are also generally lower for the samples 

collected from the trench. 

Elevated concentrations of metals (Fe, Co, Zn, Ni and Cu) were found in the samples C1 

& C2, collected from the pipe. The low pH recorded in these samples could be the 

evidence that the water is from the pond. It is known that at low pH, metals are dissolved; 

this could explain the high metals content in these samples. Conductivity increases with 

an increase in metal concentration and this is because the most metal salts that are 

dissolved in the water, the higher the conductivity.  

The same trend was observed for sulphate concentrations, being high in samples C1&C2, 

due to generation of AMD at low pH. Elevated sulphate concentrations corresponded 

with the low pH recorded. 

Elevated iron concentration was recorded for water collected from pipes. Sample C2 had 

a particular high iron concentration (1745 mg l
-1
). This could be attributed partly to the 

nature of the pipe, (a metal pipe). The sample was also visibly different from the others, 

being brownish in colour (as typically signifying the corrosion and leaching of iron, 

Figure 6.14). 

 

 

Figure 6.14 Water samples from Nasrec dam. 
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 Iron concentrations were drastically reduced in water collected from the trench. This 

could be attributed to a combination of dilution and precipitation effects.  

The elevated pH of trench water is likely to contribute to precipitation of iron. 

Atmospheric oxidation is also increased in the trench water. Fe
2+
 quickly oxidises to the 

insoluble Fe
3+
. 

 The pH value recorded for the algae was as low as the one from sample C2. The ORP 

and the conductivity were also high, this could lead to more metals dissolved and an 

algea provides a large surface area for adsorption of the metals ions and other pollutants. 

High concentration were obtained for Fe (56970 mg kg
-1
) and Cu (450 mg kg

-1
) but Co, 

Zn and Ni were not detected. This could be attributed to the oxidation of Fe according to 

the following reaction: 

 

4Fe
3+
 + 12H2O → 4Fe (OH)3↓ + 12H

+
   (Reaction 6.1) 

 

In this reaction, Fe
3+
 precipitates as hydroxides, Fe(OH)3, resulting in a decrease of the 

pH. During the precipitation of Fe
3+
, colloids are formed and these trap heavy metals 

which co-precipitate with iron. 

The similar trend was observed with the bluish-green crusts. Low pH, high ORP as well 

as conductivity were recorded. High concentration of metal was obtained in the crust, for 

instance 61950 mg kg
-1
, 150 mg kg

-1
 and 120 mg kg

-1
 were obtained for Fe, Zn and Cu 

respectively. This could be due to the composition of salt crusts or efflorescence which 

contains: water soluble salts (Na, K, and Ca), iron hydroxides and sulphates. It is also 

enriched with several metals including Co, Ni, Cu, and Zn. Co and Ni were not detected 

in the salt crusts for the same reason as observed in algae.  

The concentration of thiosulphates and sulphates were high in algae and in the crusts. In 

the algae, the elevated concentration of sulphate could be due to the contamination by 

AMD and for the crusts, sulphate may have various sources probably, generation of 

AMD at low pH and CaSO4 from the efflorescence.  
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Table 6.5 Field parameters and chemical composition of water emanating from the active slimes dam at Nasrec  

 

sample Description T
o
 pH Eh Ec S2O3

2-
 SO4

2-
 Cl

-
 Na K Ca Fe Co Zn Ni Cu 

    
o 
C   mV mScm

-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 

C1 Plastic pipe 20 4.28 436.3 6.1 280 5083.7  80.3  91.65 33 520.5 1412 6.45 10.95 15.45 0.6 

C2 Metal pipe 20.2 2.41 648.3 9.31 405 8736.8   56.7 55.35 4.5 578.4 1745 4.5 13.8 24.45 4.2 

C3 Trench 19.7 7.17 326.9 2.89 360 1575.8   33.9 62.7 10.65 626.8 5.4 2.1 nd 8.85 7.95 

C4 Trench 18.2 5.6 287.9 3.6 320 1818.4   86.3 64.95 24.15 466.6 74.1 0.9 nd 0.3 0.9 

C5 Plastic pipe 18.8 4.28 441.5 4.56 320  3002.5  73.5 73.5 30.45 534.5 730.4 2.7 3.9 6 0.15 

Algae   20.3 2.39 653.5 6.63 1254 8985 85.85  9300 10950 18450 56970 nd nd nd 450 

M1 
Bluish-
green crusts 20.2 3.44 604.4 1.611 1158 15564   100.2 54900 58350 13950 61950 nd 150 nd 120 
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Cyanide species and secondary compounds in water and solid samples 

 

The results obtained for cyanide species in the active slime dams are given in table 6.6. 

 

Table 6.6 Cyanide species and related compounds in water and solid material samples 

CNFree CNWAD CNSAD CNT SCN
-
 CNO

-
 NH4

+
   

Sample mg l
-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 

C1 3.492 5.635 0.807 9.934 97.57 105.9 31.25 

C2 7.544 8.244 0.922 16.71 99.98 142.5 32.55 

C3 15.95 35.47 6.540 57.96 94.43 100.5 33.88 

C4 7.492 7.965 3.613 19.07 99.86 98.56 25.17 

C5 1.428 8.525 9.057 19.01 94.88 114.3 34.05 

Alg 10.45 14.24 0.470 25.16 213.4 301.6 85.02 

M1 15.73 85.92 96.75 198.4 247.9 333.2 78.09 

 

CNfree concentrations are low (except in C3), thus suggesting a possible loss. Due to the 

low pH values it is expected that the concentration declines rapidly due to the 

volatilization of cyanide in the form of HCN gas. CNfree present in the colloids (as seen in 

table 6.7) can be deposited onto the sediments and this would affect the CNfree as well as 

the CNtot.  

CNfree is higher in C3 with relatively high pH value compared to the other samples; this 

could limit the volatilisation of CNfree. 

This trend is likely to be followed in terms of the cyanide complexes (both CNWAD and 

CNSAD). This is due to the fact that CNWAD complexes dissociate at the pH range from 4.5 

to 6 and CNSAD complexes dissociate below pH 2. 

Elevated concentration of CNWAD and CNSAD was obtained for sample C3. The pH of C3 

is between 7 and 8. At this pH it is expected that volatilization of cyanide should be 

minimal and the complexes, even CNWAD complexes should not dissociate within this pH 

range.  

Elevated concentration of CNO
-
 was obtained. C2 had the higher concentration of CNO

-
 

due to the high Eh value. 
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CNO
-
 also point to another possible attenuation process, namely the hydrolysis (Reaction 

2.2) and oxidation of CNfree. The presence of NH4
+
 further suggests that CNO

-
 could be 

converted to NH3 (reaction 2.4) which in turn is converted to NH4
+
 according to Reaction 

2.13.  

The results show a relatively high concentration of CNfree in algae compared to those 

obtained in water. 

Very low concentration of CNSAD was found in algae, despite the high concentration of 

Fe. This is likely due to the low pH 2.39, CNSAD complexes dissociate below a pH of 2.5.  

The concentration of SCN
-
 was high due to the presence of high concentration of sulphur 

species (thiosulphate).  

Elevated concentration of OCN
-
 was obtained in the algae. The high potential redox 

recorded (653.5 mV) may lead to a chemical conversion of cyanides to cyanates.   

Solid materials (M1) displayed a very high concentration of CNT with a predominance of 

CNSAD. This could be due to precipitation or adsorption of metal-cyanide complexes in 

crusts. The elevated concentrations of CNSAD and Fe could suggest the presence of 

Prussian blue. The bluish-green colour of the crusts further substantiates this. In fact, 

Prussian blue is the complex ferri-ferro cyanide Fe4(Fe(CN)6)3(s) and can only exist 

under acidic pH and oxic conditions. Its solubility is very low and controlled by the pH 

and redox potential. The intense colour of Prussian blue arises due to charge transfer 

between the metal ions present in different oxidation states (Robin, 1962). The x-ray 

diffraction analysis would be necessary to confirm the suggestion. 

It can be seen that CNfree concentration is high and this is due the low pH and subsequent 

dissociation of complexes, as mentioned previously. 

 The table above shows that the concentration of CNSAD is comparatively high and this is 

because the low pH leads to dissociation of CNWAD complexes and the free cyanide forms 

other complexes which are stable even at low pH values.  

Adsorption of cyanide onto colloids was assessed on the filter membrane by analysing 

filtered (through a 0.45 µm cellulose nitrate membrane) and unfiltered water samples. 

The results showed in Table 6.7 revealed significant concentrations (up to 34 %) of CNfree 
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being adsorbed onto the colloids. Colloids in this case can be viewed as proxy to the salt 

crusts and partly reveal why accumulation occurs in the solid phases. The tendency of 

accumulation and adsorption is also prevalent for metals.  

  

Table 6.7 Adsorption of cyanide onto colloids 

CNfree 

Sample 

Non 

filtered Filtered 

Adsorbed by 

colloids 

 mg l
-1
 mg l

-1
 mg l

-1
 

C1 4.492 3.914 0.578 

C2 8.544 7.482 1.062 

C3 15.95 15.22 0.73 

C4 7.492 4.944 2.548 

C5 1.428 0.274 1.154 

 

 

 Metal-cyanide complexes in water and solid samples 

 

The results obtained for metal-cyanide complexes are presented in Table 6.8. 

The field measurements given in Table 6.5, show that the pH of the water samples is 

between 2 and 7. At this pH range, it is expected that dissociation of cyanide complexes 

CNWAD even CNSAD will occur. Copper and iron cyanide complexes were the most 

complexes found in the water samples. 

The results show high concentrations of Cu-cyanide complex in C4. Ni-cyanide complex 

was not detected in C1& C5 whilst relative higher concentration was obtained for C2& 

C3, indeed, elevated concentration of Ni was found in C2. The iron-cyanide complex 

(Fe(CN)6
4-
) is high in sample C2. This could be attributed in part to Fe released from the 

metal pipe. The Fe discharged from the pipe is likely to be Fe (II) and hence the 

prevalence of Fe (II) cyanides. The presence of Fe (CN)6
3-
 in the solid material (M1) is an 

evidence of the presence of Prussian-blue. The solid material contains quite high 
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concentration of metal-cyanide complexes. This could be due by accumulation of 

complexes in the crusts, recalled that this material is a mixture of tailings and salt crusts. 

Cobalt and iron (III) cyanide complexes were not detected in water samples. However, 

elevated concentrations of these were obtained in crusts (M1). 

Fe-cyanide (II) was the higher complex obtained in the algae. Fe-cyanide (III) was not 

detected, despite the high potential redox.  

 

Table 6.8 Metals-cyanide complexes in water emanating from an active slime dam 

Sample Cu(CN)3
2-
 Fe(CN)6

4-
 Ni(CN)4

2-
 Fe(CN)6

3-
 Co(CN)6

4-
 

 mg l
-1
 mg l

-1
 mg l

-1
 mg l

-1
 mg l

-1
 

C1 6.49 15.58 n.d n.d n.d 

C2 13.44 53.79 32.77 n.d n.d 

C3 15.44 47.04 46.75 n.d n.d 

C4 22.28 13.98 7.914 n.d n.d 

C5 14.29 17.37 n.d n.d n.d 

Alg 15.39 20.75 7.156 n.d n.d 

M1 54.21 50.41 13.36 20.45 5.423 

 

 

Conclusion 

 

Drainage water from the active slimes dams is acidic, hence, contains high concentration 

of cyanide species as well as metals. The low pH allows complexes to dissociate and to 

release CNfree which may form other complexes. Besides, metals are also release which 

can leach and contaminate the groundwater or being adsorb in sediment. 

The study revealed a contamination of the environment of the reprocessing plant by 

heavy metals and more stable cyanide complexes. 

 

6.2 Wetland sediments 

 

Wetlands refer to lowlands covered with shallow and sometimes temporary or 

intermittent waters. Wetlands are lands transitional between terrestrial and aquatic 
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systems where the water table is usually at or near the surface or the land is covered by 

shallow water. Wetlands must have one or more of following three attributes:  

(1) periodically, the land supports predominantly hydrophytes; (2) the substrates is 

predominantly  undrained hydric soil; and (3) the substrate is non soil and is saturated 

with water or covered by shallow water at some time during the raining season of each 

year. 

The Fleurhof Dam in the Central Rand presents a case of wetland sediments where 

surface runoff led to an accumulation of sediments along the river bed and in the dam. It 

is a good illustration to study the fate of cyanide from the surrounding tailings dam to the 

wetlands sediments through the stream sediment. 

 

6.2.1 Sediments of the Fleurhof Dam wetland  

 

Site description 

 

The Fleurhof Dam is over a hundred years old and is one of the many dams on the 

Central Rand Goldfield that were constructed to supply water to the gold mining industry. 

Surface erosion of exposed and poorly managed tailings dumps in the vicinity of these 

dams over the years has led to siltation. This has also affected most streams, for example 

the Russel Stream and the Upper Klipspruit which are major tributaries draining through 

the area. This phenomenon, describing closely the situation relating to the Fleurhof Dam, 

is captured in Figure 6.15 which shows a sketch of spillage or surface erosion of tailings 

into a stream and eventually into a dam.  

The sediments in the Fleurhof Dam present a peculiar case in that gold concentrations 

were found in very high (> 30 mgkg
-1
) to compare with ordinary extractable 

concentrations in most ores of around 2 mgkg
-1
. This resulted in the company carrying 

out mining operations in the area, i.e. Crown Gold Recovery draining water out of the 

dam and dredging the gold-rich sediments for reprocessing, a development seen to be far 

more profitable to compare with reprocessing of normal tailings. The excavation 
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activities left an exposed face of the sediments (see Figure 6.16) measuring close to 134 

m in length and up to 1200 m in depth. 

 

 

 

Figure 6.15  Sketch of tailings dumps and dam 

 

The deposition of the sediments in the dam has been cited by Ndasi (2004) as resembling 

the Mississippi-type of delta formation in which sediments were deposited horizontally 

with well-defined strata. The formation is such that coarser sediments are deposited first 

due to gravity and then the finer sediments and organic matters suspended in the water 

and are deposited later in the inner parts of the dam (Tutu, 2006). Figure 6.17 shows a 

sketch of this process and also points out the sequence of segregation of material based 

on their size. 
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Figure 6.16  Section of sediment in Fleurhof Dam left exposed after dredging  

(Ndasi, 2004)    

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 Schematic diagram of delta formation and section showing  

sedimentation in a dam (Ndasi, 2004) 
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Sampling strategy 

 

 

Sampling was carried out along the exposed face (shown in Figure 6.16) and through the 

face at selected profiles. The profiles, namely: FA, FE and FH are described in Figure 

6.18 which shows them as columns. 

Sampling of stream sediment (SS) was carried out along the bed of the Upper Klispruit 

stream up to just below Floride Lake to obtain background concentrations. SS1 – SS6 are 

samples from different points along the inlet streams to the dam. 

Tailings dams (TD) samples were collected from surrounding mine tailings dumps, from 

a depth of about 20 cm in the tailings dumps. TDA, TDB1-3, TDC, TDD and TDE are 

tailings dumps and SDB1 and SDB2 are sand tailings dumps. 

 

Figure 6.18 Stratigraphic profile of exposed face of unmined sediment in the Fleurhof 

dam (Ndasi, 2004) 
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Results and discussion 

 

Stream sediment and surrounding tailings 

 

Metals 

 

The ICP - OES results done by Ndasi in 2004 are given in Table 6.9. 

The general trends show increases of the average concentration of metals such as Fe, Co, 

Zn, Ni and Cu from the surrounding tailings dam to the stream sediments. The increase 

was respectively 15.42% for Fe, 62.29% for Co, 83.03% for Ni, 76.67% for Zn and 

31.59% for Cu.  Na, K, Ca showed low values in stream sediments than in tailings. This 

could be attributed to the solubility of those metals, which are also part of the fine clay 

component. They are very soluble and constantly been washed away by flowing waters 

and hence cannot be held in the stream sediments.  

The metal concentration was low in sample SS1, close to the Fleurhof dam.  

High metal concentration was obtained in sample SS2. This point could hold the material 

from the tailing dam located at the Bird Reef Open Cast as well as from a small tributary, 

where SS3 was sampled. Along this tributary lied two tailing dams. The materials eroded 

from these tailings could be held either at SS3 or SS2. SS6, close to the Florida Lake, 

contains high concentration of iron.  

The sand tailings dams (SDA) contain low concentration of metal (Fe, Co, Zn, Ni and 

Cu). Iron and copper are higher in tailings dams compared to cobalt, zinc and nickel. 

Clays have a high cationic exchange capacity and absorb metals like Fe, Al and Mn, 

causing them to precipitate. Metal concentrations are generally higher in the clays than in 

the sands and increases with the clay content. 

The others metals like Ni, Cu and Zn can co-precipitate with  Fe, Al, Mn, and will have 

high concentrations in the clays. 
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Table 6.9 Results of ICP-OES analysis for samples collected the in the stream sediment and surrounding tailings. 

Concentrations are given in mgkg
-1
 dry weight 

 

Sample Na K Ca Mg Al Mn Fe Co Zn Ni Cu 

  mgkg
-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 

SS1 370.8 1684 544.8 2250 9434 168.8 13240 19 43.22 35.2 50.96 

SS2 370.04 4902 1144 1030 14280 1566 37680 192.4 426.2 217 120.4 

SS3 263.8 1458 2374 11138 19200 249 19960 17.2 496.4 57.14 78.68 

SS4 305.4 1614 888.6 2362 14380 246 27940 25 195.8 77.74 58.06 

SS5 417.3 2060 511.4 1544 17660 128.8 17160 14.38 42.52 102.7 38.02 

SS6 372.66 3640 495.6 880.6 22540 152 32800 0.98 65.1 61.18 63.88 

                       

TDA 384.8 2454 586.4 1988 12740 162.8 15380 2.9 2.8 2.88 20.94 

TDB1 455.66 2022 7038 2154 44100 157 28780 3.1 36.5 10.5 33.84 

TDB2 600 13660 580.4 2052 42310 155.6 22480 8.24 45.46 18 44.88 

TDB3 354.78 3534 672.34 2155 45322 162.7 20996 12.53 53.68 22.78 40.96 

TDC 1278.4 23260 1418 2162 48240 452.4 25540 38.1 68.06 3.06 176.4 

TDD 908.44 1132 762.4 1838 10420 135.4 11320 2.58 24.16 9.88 10.1 

TDE 785.63 4124 1850 1384 12080 395.4 38680 7.63 48.21 53.94 27.16 

SDA 167.2 1062 314.8 1350 8928 138 9714 5.22 17.65 5.88 7.6 

SDB1 3590 8888 3858 2629 29140 207 18080 43.28 40.38 16.6 57.92 

SDB2 3466 58380 11020 2716 35380 225.4 18740 45.44 156.6 12.4 47.56 

 

Note: SS –Stream sediments 

            TD –Tailings dumps 
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Cyanide species and secondary compounds 

 

The results for cyanide species and secondary compounds are given in Table 6.10. 

 

Table 6. 10 Concentration of cyanide species and secondary compounds in stream 

sediment and surrounding tailings dams  

 

Sample CNfree CNWAD CNSAD CNT SCN
-
 CNO

-
 NH4

+
 

 mgkg
-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 

SS1 4.615 5.595 62.67 72.88 21.35 24.22 28.11 

SS2 15.81 2.69 71.35 89.85 23.33 17.91 33.54 

SS3 9.704 5.546 68.87 84.12 33.13 34.99 33.54 

SS4 5.584 5.066 61.38 72.03 26.4 23.17 23.31 

SS5 8.049 7.431 47.89 63.37 7.07 17.12 26.98 

SS6 8.176 10.074 53.29 71.54 24.55 21.59 23.66 

               

TDA 2.364 3.203 6.063 11.63 29.69 16.89 5.244 

TDB1 7.353 3.197 28.59 39.14 10.22 22.38 3.006 

TDB2 5.602 6.848 25.79 38.24 55.65 28.95 9.081 

TDB3 8.328 2.322 23.02 33.67 12.27 42.35 45.21 

TDC 4.748 10.492 33.93 49.17 18.26 20.01 31.78 

TDD 2.983 1.253 5.834 10.07 0.198 11.86 8.121 

TDE 2.467 3.221 12.342 18.03 12.23 23.96 2.046 

SDA 3.989 6.671 70.08 80.74 38.99 16.07 28.05 

SDB1 5.981 3.674 69.875 79.53 27.99 19.49 28.11 

SDB2 4.969 5.261 73.07 83.3 22.53 22.64 26.02 

 

The general trend shows elevated concentration of cyanide species in stream sediment 

compared to tailings dams. CNfree is higher in stream sediment than in tailings. This is 

likely due to the dissociation of CNSAD and CNWAD under acidic condition to release 

CNfree. In this case, the low concentration of CNWAD in tailings and stream sediments 

could be due to dissociation and we assume that the pH in the tailings is slightly acidic.  

Sand tailings dams (SDA, SDB1& SDB2) contain low concentration of CNfree. In fact, 

CNfree is weakly adsorbs in sand.  

Along the inlet stream, SS2 contains high concentrations of CNfree and CNSAD.  
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CNWAD concentration was higher in SS6.  High concentration of CNSAD was obtained in 

stream sediments. This could be due to the presence of high concentration of metal such 

as iron and cobalt which form the strong complex with CNfree.  

Beside, high concentration of CNSAD was obtained in the sand tailings dumps (SDA, 

SDB1 and SDB2) compared to tailings dumps. 

The CNtot increases in stream sediment and this is due to deposition and adsorption of the 

cyanide and cyanide complexes to the soil particles (i.e. enrichment of cyanide). From 

Table 6.10 above, it can be seen that elevated concentrations of all forms of the cyanide 

in the stream sediment. This could be due to the deposition onto the sediments. In the 

tailings, TDC contains higher concentrations of CNWAD and CNSAD. 

Concentration of CNfree is relatively high in samples TDB1 and TDB3. CNWAD are high 

in TDB2 and TDC. CNSAD are high in TDB1, TDB2, TDB3, TDC and TDE.  

SCN
- 
concentration is relatively high in stream sediment than in tailings dumps, except 

for TDB2. Sulphur species is mostly found in sediment because of the reducing 

conditions with low potential redox. CNfree is converted to SCN
-
 and the latter is 

deposited and adsorbed onto sediment. 

Sand dumps contain higher concentration of SCN
-
 compared to tailings dumps. SCN- is 

retained on soils with significant anion exchange capacity (Dzombak, 2006). 

High concentration of thiocyanate was found in TDA and TDB2. TDD contains very low 

concentration of thiocyanate. CNO
-
 concentration is similar in stream sediment than in 

tailings dumps and sand dams. Only TDB3 contains higher concentration of cyanate, 

hence, high concentration of ammonium. 

Concentrations of cyanates are high in all samples. This could be due to the oxidising 

conditions of these tailings. 

The general trend for ammonium concentration shows high concentration in stream 

sediment than in the tailings, except for TDB3 &TDC.  
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Metal cyanide complexes 

   

Metal-cyanides complexes were analysed in the tailings dumps and stream sediments. 

The results obtained are shown in Table 6.11. 

 

Table 6.11 Metal cyanide-complexes in samples collected in the stream sediment and 

surrounding tailings dams 

 

Sample Cu(CN)3
2-
 Ni(CN)4

2-
 Co(CN)6

4-
 Fe(CN)6

4-
 Fe(CN)6

3-
 

 mgkg
-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 

SS1 3.042 2.98 15.09 30.12 38.22 

SS2 1.88 1.21 30.05 37.51 33.07 

SS3 2.988 3.125 18.05 36.88 32.97 

SS4 2.504 2.014 14.52 31.02 37.62 

SS5 4.05 4.685 10.15 24.83 28.55 

SS6 5.668 6.332 1.203 32.79 35.31 

            

TDA 2.03 0.855 1.204 4.124 1.255 

TDB1 2.362 0.942 5.428 15.02 20.32 

TDB2 3.512 1.022 4.25 18.31 16.54 

TDB3 1.095 0.758 4.361 14.45 10.06 

TDC 9.247 4.322 8.595 19.13 14.82 

TDD 0.99 0.788 0.542 3.258 1.522 

TDE 2.314 0.925 1.023 7.524 5.841 

SDA 2.103 1.691 2.504 46.88 40.32 

SDB1 1.98 2.134 21.13 34.42 30.01 

SDB2 2.041 2.58 19.05 35 42.28 

 

 

From Table 6.11 above, it can be seen that high concentrations of metal-cyanide 

complexes are obtained in the stream sediment as expected. 

The concentration of weak complexes Cu(CN)3
2-
 & Ni(CN)4

2-
 is very low in tailings as 

well as in stream sediment. This is consistent with the low concentration of CNWAD 

obtained. Weak complexes dissociate under slightly acidic condition to release CNWAD. 

Their stability constant is also low. 
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 Also most of the complexes present in the sediments are strong complexes and by 

looking at the ICP-OES results for the sediments it can be seen that Fe is present and it is 

most likely that the Fe-cyanide complexes are present in very high concentration. 

Fe(CN)6
2-
 and Fe(CN)6

3-
 are the most important complexes in the samples analysed. They 

are very stable even under acidic conditions. Strong complexes adsorb strongly in 

sediment. Iron complexes are high in sand tailings. This correlate with the high CNSAD 

obtained. The trend revealed high concentration of copper and nickel cyanides complexes 

in TDC. Fe (II) and Fe (III) cyanides complexes as well as cobalt cyanide complex 

showed high values in TDB1, TDB2, TDB3 and TDC. 

Iron- cyanide complexes are the most important complexes found in the stream sediment. 

SDA contains higher iron cyanide complexes (Fe II and Fe III). SS1 – SS5 contain 

relative high concentration of cobalt cyanide complex. Nickel and copper cyanides 

complexes are low in all samples. 

It is likely an enrichment of metal - cyanide complexes in the sediment, mainly the strong 

complexes. 

 

Profiles (FA, FE & FH) 

 

The results for Eh and pH measurements for the sediment profiles are presented in Table 

6.12. 

 

Table 6.12 Eh and pH measurements for sampling points FA, FE and FH of Fleurhof 

Dam. 

 

  Profile FA   Profile  FE       Profile  FH  

Sample pH Eh(mV) Sample pH 

Eh 

(mV) Sample pH 

Eh 

(mV) 

FA1 4.23 437 FES 2.6 740 FHS 2.8 680 

FA2 3.78 538 FE4 4.3 340 FH4 3.3 430 

FA3 6.3 220 FE5-7 7.6 20 FHS' 2.4 721 

FA4 5.6 376 FE8 6.7 122 FH5-7 7.4 -175 

FA5-7 6.26 66 FE9 6.9 -100 FH8 6.7 162 

FA8 5.56 151    FH9 6.9 -100 
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pH values were higher in the  strata that are rich in organic matter. Organic material tends 

to reduce iron hydroxides thus removing acidity as illustrated in reaction 6.2. 

 

Fe(OH)3
0
 + 3H

+
 + e

-
 → Fe

2+
 + 3H2O   (Reaction  6.2) 

 

 

Metals 

 

Analytical results for selected metals on the profiles FA, FE and FH are given in Table 

6.13. 

High metal concentrations were found in the stratum FA2, FE2 and FH2. This could be 

attributed to the precipitation of metals during formation of efflorescence. pH values in 

this stratum were significantly low(< 4). This is evidence of acid generation during 

weathering of pyrite containing material.  The iron concentration varied down the 

profiles. This could be attributed to changes in redox equilibrium. High values of metal 

concentrations were found in the stratum FA3, FH3 & FH3. This stratum revealed high 

pH (> 6). This could be due to relative high value of organic matter. Both organic and 

clay particles can hold on to metals electrochemically because of their negatively charged 

structures and high surface areas.  

An increase in metal concentrations was observed in the stratum FA5 -7, FE5-7, and FH 

5-7. This could be attributed to the presence of organic matter. High concentrations of 

copper concentration were recorded in some sediments (FA3) (>1000 mgkg
-1
), evidence 

of enrichment of metals in sediments. A decrease in metal concentrations was observed in 

the stratum FA8, FE8 and FH8. This could be due to the composition of the layer (the 

layer consists of coarse-grained primary fluvial sand and grit). 

This is evidence that the wetland sediments are a sink for heavy metals washed from the 

tailings dams.  



 146 

Table 6.13 Metal concentrations in the Fleurhof Dam sediments (Ndasi, 2004) 

 

Sample Na K Mg Ca Al Mn Fe Co Zn Ni Cu 

 mgkg
-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 

FA1 499.8 3026 3206 1084 18000 434.8 27080 117.8 566.2 441.8 183.4 

FA2 544.6 11420 7022 3166 8982 2138 71120 751.6 1770 3362 922 

FA3 2200 13100 12280 5078 9800 3338 78320 1750 3326 7126 1490 

FA4 696.5 11680 4572 3122 36680 820 55340 411.4 1144 1692 687.4 

FA5 890.6 7584 2268 1680 52140 257.8 35440 137.7 396 761.8 300.6 

FA6 1570 11140 1696 1136 26020 266.8 37720 146.8 441.2 791 283 

FA7 466.2 9695 882.7 760.5 13154 112.4 29076 133.2 1058 658.5 599.6 

FA8 309.2 13120 1000 980.5 29980 142 13200 5.960 48.34 18.80 11.48 

FA9 1230 17760 1174 237 20344 179.6 22300 16.80 493.8 60 63.66 

FA10 660.4 13140 530 322.4 14360 251 28000 127.2 5966 339.4 182.6 

FES 365.4 17440 2396 1252 52880 273.2 22800 66.98 84.58 35.44 115.8 

FE1 529.6 4470 660.2 459.4 18300 310.4 73980 203.6 1166 718.2 741.4 

FE2 1032 7070 1730 2352 33460 540 33820 105.6 250 246.2 245.8 

FE3 899.2 48760 8665 3786 45876 3058 73600 2298 4860 8240 1538 

FE4 1580 44960 12840 3396 89900 665.2 42960 529.6 1274 1894 719.8 

FE5 595.6 15280 2058 744.6 33300 365.6 29500 166 103.8 142 73.8 

FE6 969.4 5288 3150 1474 30740 357.4 43800 230.8 590.4 1166 269.8 

FE7 349.6 1096 19840 887.8 77960 660.6 32540 165.6 964 533 438.2 

FE8 446.2 1634 996.6 613.2 13233 137.2 9098 24 54.72 28 25.16 

FE9 444.7 2766 696.4 927.4 15120 214.2 27900 29.08 1802 136.4 105.2 

FE10 556.7 3166 2572 683 34080 325 19260 25.88 1516 82.9 36.42 

FHS 883.6 977.2 1812 1146 10420 179.6 11560 67.68 229.4 232.5 97.44 

FH1 776.2 9290 993.4 705.4 26520 183.6 63420 133.5 673.6 509.8 728.2 

FH2 647.2 18680 12380 3700 42780 263.8 30540 143.8 390.6 732 290.2 

FH3 708.9 37920 18760 3708 47540 2612 77000 3174 4972 1026 1478 

FH4 988.3 2172 2288 1900 17280 393.2 29400 206.4 536.2 891.8 252.2 

FHS' 216.2 1186 1672 627.8 10320 186.6 15440 31.3 161.2 137.4 140.6 

FH5 247.4 8880 4266 884.4 30420 450.4 33560 190 524.6 1028 240.8 

FH6 456.7 4216 1450 1350 18840 314.6 37460 140.32 596.6 648.6 388.4 

FH7 1122 6190 876.4 921.6 83680 337.8 33260 133 735.2 416.4 502 

FH8 756.5 621.2 1018 509 16360 83.66 9696 8.04 138.2 30.8 29.18 

FH9 356.3 23960 800.6 758.8 43040 244.4 22880 27.62 1222 114.8 93.2 

FH10 416.8 5534 447.4 654.4 10080 372.6 11340 42.3 240.2 111.3 79.96 

FP-BR 427.8 1232 1992 793.6 7522 188 16420 4.9 29.58 18.8 21.04 
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Results for carbon analysis are given in Table 6.14. The values are for total organic 

carbon obtained after removing inorganic carbon (carbonates) by reaction with sulphuric 

acid.  

 

Table 6.14 Carbon analysis results for selected sections of profiles (Tutu, 2006) 

 

Sample FE2 FE3 FE10 FA1 FA3 FA6 FA9 FA10 FH2 FH3 FH10 FHS TDD 

% carbon 0.445 4.358 20.24 0.460 3.358 0.550 1.866 19.21 0.885 3.471 14.03 0.193 0.036 

standard 

deviation 0.042 0.010 0.288 0.021 0.079 0.027 0.013 0.091 0.043 0.011 0.266 0.018 0.004 

RSD 10.33 2.792 1.446 4.601 2.383 5.181 0.712 0.470 5.005 2.347 1.859 8.789 10.75 

 

High carbon values were obtained in the stratum for FA10, FE10 and FH10. The organic 

matter in this stratum is accumulated in form of peat. The stratum for FA3, FE3 and FH3 

also revealed relatively high values of carbon. This stratum consisted of dark-grey 

carbonaceous clay and also revealed elevated metal concentrations with a pH value > 6. 

Most heavy metals tend to be trapped in the iron and manganese colloids and form 

complexes with organic ligands. 

Organic matter contribute to the cation exchange capacity (CEC) of the soil, hence, soil 

with high organic matter, has high CEC. And the latter depends on the pH.  

 

Cyanide species and secondary products 

 

Cyanide species (CNfree, CNWAD, CNSAD, and CNT) and secondary compounds (SCN
-
, 

CNO
-
, NH4

+
) were analysed in profiles FA, FE, & FH. The results obtained are given in 

Figure 6.19 below. 

The general trend shows high concentration of CNfree for the profiles FE and FH. 

Concentration of CNfree is high for the strata FE1 and FH1 and is almost the major form 

of cyanide. These are likely to be CNfree in efflorescent crusts which accumulated in these 

layers. High concentration of CNfree was recorded for layers FA3, FA9, FA10; FH3, FH9, 
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FH10; FE3, FE9, FE10. These strata revealed relatively high values of organic carbon 

and also elevated metal concentrations. On the other hand, the pH was observed to 

increase in these strata (> 6). They all consisted of dark-grey carbonaceous clay with the 

higher carbon content. Previous studies showed that CNfree adsorbs significantly on 

organic carbon and under near-neutral pH conditions, its adsorption on soils is correlated 

with organic matter (Dzombak et al., 2006). 

At the neutral pH range of interest, HCN is the dominant form of cyanide and CN
-
 

concentrations are very low. HCN adsorbs weakly or not at all to inorganic soil 

components such as iron oxide, aluminium oxide, clay and sand. However, HCN has 

been shown to adsorb significantly to soils with appreciable organic carbon content  

( Dzombak et al., 2006). 

Literature showed an adsorption capacity of about 1 to 2 mg of CNfree per gram of carbon 

while similar tests performed with soil organic carbon revealed an adsorption capacity of 

0.5 mg of CNfree per gram of carbon (Chatwin et al., 1988). On the contrary, our 

calculations of grams of carbon versus CNfree differ from the literature. More than 0-5 mg 

of CNfree might be adsorbed.   

Organic matter usually possesses a variable charge surface (both negative and positive 

charges). Thus it can adsorb both cations and anions. On the other hand, sand consists 

largely of SiO2 which on hydration becomes Si-OH or Si-O
-
. Thus cations are adsorbed 

instead of anions (James and Barrow, 1981). 

Concentrations of CNWAD were high for the layers FH4 – FH8. These strata consist of 

carbonaceous clay except for FH8 that consist of sand and grit. 

High values of CNSAD were obtained in the stratum FA4 –FA8, FH8 –FH10 and FP –Br. 
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Profile FA 

 

 

Profile FE 
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Profile FH  

Figure 6.19 Results of cyanide species and secondary compounds in profiles FA, FE 

and FH 

 

Secondary products 

 

The results for SCN
-
, CNO

-
 and NH4

+
 given in Figure 6.19, shows a similar trend in 

profiles FA, FE and FH. The concentrations of thiocyanate were by far greater than those 

for cyanate. Very high concentrations were recorded for the strata FA2 (91.97 mg kg
-1
), 

FA3 (120.1 mg kg
-1
), FE4 (209.6 mg kg

-1
) and FH5 (99.81 mg kg

-1
). Thiocyanate is high 

in the strata FA3, FE4 and FH5, since these strata consist of carboneous clay. SCN is 

known to be stable at low potential redox.  Ammonium is formed by hydrolysis of 

cyanate (Reaction 2.4). High concentrations of ammonium (> 100 mg kg
-1
) were obtained 

for the layers FA10, FE9, FE10 and FH10. These layers recorded high content of organic 

matter.  The concentration values of CNO
- 
range from 20 mg kg

-1
 to 30 mg kg

-1
, except 

for the layers FE5 and FH5 with concentrations of 3 mg kg
-1 
and 6 mg kg

-1
 respectively. 
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A high concentration of 45.76 mg kg
-1
 was recorded for the layer FE10. This could be 

due to high organic carbon content (20.24%) in that layer which could be adsorbing 

CNO
-
. 

 

Metal cyanide complexes 

 

 

The results obtained for metal-cyanide complexes are given in Table 6.15. CNfree reacts 

with transition metals to form metal-cyanide complexes. The formations of these 

complexes depend on the formation constants. 

The general trend shows higher concentration of metal-cyanide complexes in profile FH. 

Also during the sediment deposition, coarser sediments are deposited first due to gravity 

and then the finer sediments and organic matter remain suspended in the water and are 

deposited later in the inner parts of the dam. The profile FH might content fine particles 

and organic matter which can hold on metal complexes.   

Elevated concentration of Cu(CN)4
3-
 was obtained in the strata FH4– FH10, the 

concentration range from 10.55 mg kg
-1
 to 20.85 mg kg

-1
. The Cu(CN)4

3-
 concentration 

was low in the profiles FA and FE except for the strata FA5 –FA7. The stratum consisted 

of dark-grey carbonaceous clay. Both organic and clay particles can hold on to metal- 

cyanide complexes. Similar trend was observed for Ni(CN)4
2-
. This could explain the low 

concentration of CNWAD observed in these profiles. At the pH of most of the sediment 

(3.78 – 6.3 for FA; 2.6 – 7.6 for FE and 2.4 – 7.4 for FH), the weak complexes dissociate 

to release CNfree and the metals.  

Weak metal-cyanide can adsorb on sediment component such as iron, aluminium, silicon 

and manganese oxides, and, clays, which in most systems will inhibit their aqueous 

transport. However, complexation of metals by cyanide can also serve to hold them in 

solution, inhibiting their adsorption and retention. The enhancement or inhibition of 

adsorption depends on the metal-cyanide species, the adsorbent, and the solutions 

conditions. Ni (CN)4
2-
 ,which dominates nickel speciation in sediment and soil systems, 

has no affinity for the SiO2(s) surface. 
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Table 6.15 Results of metal-cyanide complexes in profiles FA, FE & FH 

 

Sample Cu(CN)3
2-
 Ni(CN)4

2-
 Co(CN)6

4-
 Fe(CN)6

4-
 Fe(CN)6

3-
 

 mgkg
-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 

FA1 1.502 1.428 1.104 2.008 3.352 

FA2 1.004 0.945 0.702 0.802 1.002 

FA3 1.021 0.907 1.254 2.121 4.503 

FA4 3.142 2.98 2.102 8.552 9.014 

FA5 5.203 2.104 6.255 22.31 10.22 

FA6 5.122 3.251 2.224 12.181 5.042 

FA7 5.412 4.524 3.122 11.58 4.114 

FA8 3.251 2.124 3.224 10.05 8.227 

FA9 0.957 1.203 0.998 4.201 1.852 

FA10 1.204 0.805 1.101 5.503 2.502 

      

FE1 1.448 1.209 1.245 2.101 3.5 

FE2 1.335 1.121 0.995 1.858 2.571 

FE3 1.022 0.899 0.752 1.001 0.852 

FE4 0.82 0.732 0.705 1.011 0.703 

FE5 0.805 0.721 1.104 2.1 4.205 

FE6 1.145 1.028 2.104 11.54 6.142 

FE7 0.75 0.681 0.889 3.223 0.959 

FE8 1.121 1.009 1.102 4.502 1.018 

FE9 1.022 0.875 1.213 10.014 4.221 

FE10 1.182 1.312 1.001 4.315 1.201 

      

FH1 1.195 1.091 0.101 2.185 4.512 

FH2 1.12 0.989 2.721 6.202 10.952 

FH3 0.812 0.755 1.001 3.415 2.202 

FH4 10.55 8.432 2.201 3.122 7.021 

FH5 11.88 8.95 2.19 6.887 3.112 

FH6 11 10.02 1.985 6.554 3.028 

FH7 14.75 12.28 2.011 6.699 3.152 

FH8 20.85 15.99 16.55 23.83 20.71 

FH9 13.44 12.12 14.04 25.55 15.42 

FH10 12.82 13.04 15.72 30.72 16.85 

 

SiO2(s) surface is negatively charged at pH > 2, so electrostatic repulsion of negative Ni 

(CN)4
2-
 species is in part responsible for the absence of surface binding.  Adsorption of 

nickel is enhanced at lower pH values, and inhibited at higher pH values. The goethite 

surface is positively charged up to about pH, or even higher, so electrostatic attraction of 
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Ni(CN)4
2-
 explains in part its adsorption at lower pH values. Electrostatic attraction alone 

is not sufficient to explain the extent of removal observed, however.  

Copper and Zinc-cyanide species have no affinity for the goethite surface at the neutral to 

alkaline pH values. At lower pH values, adsorption of Zn, Cu was unaffected by the free 

cyanide, above pH 6.5 to 7, adsorption of metals was inhibited by the presence of the 

cyanide. At the higher pH values, metal-cyanide complexes dominate the speciation of 

the metals. 

High concentrations of Co(CN)6
4-
 were obtained in the stratum FH8 – FH10. These strata 

consisted of coarse fluvial sand for FH8, dark carboneous clay for FH9 and dark peat 

with decaying organic matter for FH10. Co(CN)6
4-
 is a strong complex, then the 

dissociation in dark is very low and besides, this complex adsorbs strongly on sediment 

with organic matter.  

High concentrations of Fe are present and it is most likely that they are the most 

abundant, with Fe (II) cyanide being dominant in most of the layers. This could be due to 

the reducing conditions in the wetland sediments. Fe-cyanide complexes are very stable, 

but can be dissociated at very low pH and by photolysis. 

The concentration of iron-cyanide complexes is higher in the stratum FH8 – FH10 due to 

the composition of the layers. In general, soils with iron, manganese and aluminium 

oxides, clay minerals and organic matter provide anion exchange sites (Dzombak et al., 

2006). Fe-cyanide complexes are anionic, and then can be absorbed on soils with high 

anion capacity exchange. 

The pH also affects the extent of adsorption of metal-cyanide complexes. For instance, 

soil type clay with low pH (< 5) increases adsorption of Fe-cyanide complexes.  

In the profile FA, is high in the strata FA4 – FA8. These strata consist of carboneous clay 

and fluvial sand for FA8. 

In the profile FE, elevated concentration of Fe(CN)6
2-
 is obtained for the layers FE6 & 

FE9. As seen, the concentrations of Fe(CN)6
3-
 were lower than  those for Fe(CN)6

4-
. 

These concentrations are significant in FA4, FA5, FA8 and FH2. These layers have either 

carboneous clay content or clay with efflorescence.  
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The change in the redox potential could be the reason of high concentration of Fe(CN)6
3-
. 

Ferrocyanide adsorb to a somewhat greater extent than ferricyanide on goethite. Sulphate 

and adsorbing anion competes for adsorption sites on oxides, and the adsorption of the 

iron-cyanide complexes. At the pH range 3.5 to 8, iron-cyanide complex adsorption was 

strongly dependent on sulfate concentration and vice versa. Iron-cyanide complex 

adsorption decreased by the presence of the sulphate, especially at lower pH values.  

Sulphates were not analyzed in these samples but from the sulfur results, we can deduct 

the concentration of sulphates. An average of 1.69 % of sulphur was obtained.  High 

concentration of sulphur was observed in FA10 & FE 10. This could be another reason of 

low adsorption of iron-cyanide complexes in these layers. Besides, the sulphur was low 

in FH 8 -10 and high adsorption of these complexes was observed in these strata.   

Soil organic matter can have an important role in enhancing the adsorption of both iron-

cyanide complexes, possibly by reaction between the iron-cyanide nitrogen and reactive 

functional groups of surface organic matter. 

From the results obtained, it can be observed that the extent of adsorption of metal-

cyanide complexes depends strongly on the particular metal cyanide species, mineral 

adsorbent and solution conditions. pH is an especially important governing parameter. 

The metal cyanide complexes may interact with the surface to a greater or lesser extent 

than the metals alone. An interrelated, complex group of factors governs metal cyanide 

species adsorption and it is difficult to form generalizations. 

FES, FHS and FHS’ represent channel sands and the results obtained cyanide species, 

secondary compounds and metal-cyanide complexes are given in Table 6.16. 

Low values for CNfree, CNWAD and CNSAD were recorded for FAS, FES, FHS and FHS’ 

compared to those obtained for other layers. These layers represent channel sands with 

very low pH owing to their high leachibility and low CEC. The low value could be due to 

the weak adsorption of cyanide species on sand.  

The strata FAS, FES and FHS present low concentration of cyanide species (12mg kg-1 

CNT). These layers have low concentration, FES have very low pH (2.6) and high Eh 

(740mV). FES, FHS and FHS’ represent channel sands and therefore are expected to 
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show very low pH owing to their high leachability and low CEC (3.652 cmol.kg
-1
 for 

FAS, 5.615 cmol.kg
-1
 for FES, 3.101 cmol.kg

-1
 for FHS and 3.102 cmol.kg

-1
 for FHS’). 

FP-Br is the main channel stream between the different profiles FA, FE, FH. This 

channel has the highest concentration of CNT 102 mg kg
-1
 and from which 90 mg kg

-1
 are 

CNSAD.  

 

Conclusion 

 

The main source of pollution would be from the surrounding tailings dams, from where 

the tailings have been eroded, transported by streams, especially the Klipspruit and 

deposited into the Fleurhof dam. 

The fleurhof dam is a case where the materials are washed from the tailings dams to the 

wetlands sediments through the stream sediment. 

The results obtained showed an increase of metal concentrations in the sediments. The 

enrichment of metals in the sediments could be the effect of organic matter which might 

complex and precipitate the metals.  

The fate of cyanide species was also studied and the findings revealed higher 

concentration of cyanide species, include, CNFree, CNWAD, CNSAD, metal-cyanide 

complexes in the stream sediment. The presence of organic matter tends to sorb the 

metal-cyanide complexes onto the sediment, mainly the iron-cyanide complexes. 

Sorption is attributed to interactions of iron-cyanide and reactive functional groups of soil 

organic matter. Low concentration of cyanide species was obtained in wetland sediment 

contrary to what we were expecting. We expected higher concentration of cyanide 

species and complexes due to the enrichment in the wetland sediment but the finding 

revealed higher concentration in the stream sediment. Natural attenuation, includes, 

biodegradation, photo dissociation, precipitation and chemical conversion of cyanide 

species and complexes could have happened in the wetland sediment.
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Table 6. 16 Results of cyanide species, secondary compounds and metal-cyanide complexes obtained for FAS, FES, FHS 

and FP-Br 

 

Sample CNfree CNWAD CNSAD CNT SCN
-
 CNO

-
 NH4

+
 Cu(CN)3

2-
 Ni(CN)4

2-
 Co(CN)6

4-
 Fe(CN)6

4-
 Fe(CN)6

3-
 

 mgkg
-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 

FAS 7.725 2.715 1.61 12.05 28.32 22.55 19.63 1.03 1.1 0.71 0.881 1.012 

FES 4.855 0.796 6.508 12.16 29.2 22.64 4.125 1.112 0.92 0.988 1.203 5.502 

FHS 3.098 6.952 6.8 16.85 26.36 23.43 37.54 3.5 4.135 0.201 2.991 5.308 

FHS' 9.157 1.203 4.74 15.1 37.49 22.9 27.95 0.898 1.005 0.882 1.602 3.505 

FP-Br 3.361 8.879 90.56 102.8 12.13 19.22 26.02 4.95 5.222 25.55 50.82 40.24 
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6.3 Natural stream 

 

Site description 

 

Streams form an important component of the drainage system in the study area. They 

drain through industrial areas, residential areas, old mine workings as well as areas of 

active mining, largely tailings reprocessing sites. They also receive recharge from 

groundwater as well as surface run-off. Most streams in the study area are perennial. 

The Natalspruit headwaters lie in an area in which tailings dumps around, but one small 

tributary aisle to the north of the mining belt. The stream is perennial over all of the 

reaches sampled, and also susceptible to severe flash flooding during summer 

thunderstorms. During the dry season, discharge in the stream is sustainable by ground 

water emerging through the bed of the stream, and by seepage through the banks. 

 In this section, cyanide speciation and fate was studied in relation to the Natalspruit, a 

tributary of the Klip River. The part of the stream studied was adjacent to a tailings 

reprocessing facility (Figure 6.20).  

 

 

Figure 6.20  The Natalspruit with tailings reprocessing activities on the background. On 

the foreground are salt crusts along the capillary fringe. 
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Sampling 

 

Sampling was carried out along the Natalspruit, downstream of the mining area. Both 

surface water and groundwater samples were collected according to standard protocols 

mentioned in Chapter 3. Groundwater samples were collected from drill cores on the 

stream bank. Seepage water was collected at the site where it had formed shallow puddles 

on the bank, which were sufficiently deep to collect samples. 

At the time of sampling, efflorescent crusts were observed along the capillary fringe on 

the stream bank (Figure 1.7c). A study by Naicker et al. (2003) in the same area 

identified such crusts as containing gypsum (CuSO4.2H2O). Water samples were 

collected from streams in August 2007. Figure 6.21 is a map showing the study site and 

sampling points. The surface water samples (labelled as S) were taken from the middle of 

the stream; seepage water was sampled at the site where it had formed shallow puddles 

on the bank, which were sufficiently deep to collect samples. Ground water samples 

(labelled as GW) were collected using an auger holes. Crusts salts were collected from 

the bank of the stream. 

 

Figure 6.21 Map showing the sampling points along the Natalspruit 
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Results and discussion 

 

The physical - chemical characteristics, anions and cations concentration of surface and 

groundwater from the Natalspruit are shown in Table 6.17. 

The results pointed to a variation of chemistry of surface and groundwater. Samples 

collected upstream and the seepage areas have neutral pH, relatively low conductivities 

and low redox potential.  

Samples collected downstream have low pH, relatively high conductivities and high 

redox potential. These samples generally have elevated sulphate, iron and trace metal 

concentrations. The ground water has much higher dissolved solid concentration, 

conductivities and lower pH relative to surface water. 

Groundwater is known to preserve its composition (Naicker, 2003). The groundwater 

recharching the Natalspruit at this point is likely to be originating from the adjacent 

tailings dumps that are undergoing reprocessing. In this instance, the stream acts as a 

mixing zone with all the above-mentioned water types accounting for the observed 

chemical variability. 

From the trends, it is evident that the water samples cluster into three groups; Group 1 

(S1 – S4) surface water collected upstream of the mining area and the seepage area, 

Group 2 (S5 –S8) surface water collected downstream with low pH (4.26 -4.48) and 

Group 3 (GW9 & GW10) groundwater with pH 3.55 - 3.56. 

The white surface crust, which develops along the banks of the stream during winter, was 

identified in previous studies (Naicker, 2003; Tutu, 2005) as mainly consisting of gypsum 

(CaSO4.2H2O). The analysis of the crusts indicated relatively high concentrations (2000-

5000 ppm) of several metals including Co, Ni and Zn (Naicker et al., 2003). 

Crusts were not analysed in this study, otherwise the results would be identical to those 

for crusts from Brakpan tailing facility. The crusts are formed from the capillary 

evaporation of groundwater. The groundwater has low pH and is laden with pollutants. 

These pollutants would typically be deposited in the crusts. 
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Table 6.17 Physical-chemical characteristics, anion and cation concentrations of water sample from the Natalspruit 

 

sample Description Temp. pH ORP Cond S2O3
2-
 SO4

2-
 Cl

-
 Na K Ca Fe Co Zn Ni Cu 

  
o
C  mV mScm

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 

S1 surface water 12.1 6.8 324 0.425 360.4 3308 nd 3.769 2.033 30.61 0.568 0.131 0.128 0.125 0.011 

S2 surface water 15.5 6.38 285 0.492 330.1 1803 nd 4.179 2.231 31.67 5.498 0.554 0.423 0.448 0.018 

S3 
seepage  
water 11.8 6.72 268 0.515 85.02 2475 nd 4.240 5.933 30.38 6.952 0.305 0.486 0.333 n.d 

S4 surface water 17.9 6.25 270 0.385 320.1 2066 nd 2.300 1.500 22.50 4.500 0.288 0.169 0.192 n.d 

S5 surface water 15.6 4.48 506 0.891 370.2 5601 nd 4.946 4.625 42.20 14.53 3.173 1.959 2.459 0.166 

S6 surface water 16.2 4.44 514 0.929 320.0 4695 nd 5.040 3.560 43.48 13.72 3.284 2.167 2.636 0.214 

S7 surface water 14.9 4.46 508 0.800 320.5 4530 67 4.768 4.162 39.69 7.146 2.501 1.667 1.987 0.151 

S8 surface water 16.4 4.26 538 0.814 315.3 3945 nd 4.662 2.957 39.21 6.910 2.558 1.704 2.048 0.154 

GW9 Ground water 11.1 3.55 484 4.860 330.1 7751 20 13.85 5.144 172.9 125.6 25.68 18.644 21.98 4.151 

GW10 Ground water 11.6 3.56 470 4.610 340.0 7751 22 11.26 4.474 171.4 156.7 22.86 16.784 19.34 3.047 

n.d – not detected 
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Seepage water (S3) in the study area is characterised by near - neutral pH, high sulphates 

as well as metals concentrations and low thiosulphate. This could possibly be indicative 

of ingress of a mixed type groundwater. It’s likely that at that point, the polluted 

groundwater plume could be diluted by unpolluted groundwater and exuding as the lesser 

polluted water to compare with the groundwater samples GW9 and GW10. 

Upstream of the mining area, the surface water (S1& S2) was near – neutral pH with low 

metals concentration and relatively low conductivity. This was expected as there are no 

tailings facilities and reprocessing activities upstream that are likely to contribute to 

pollution. 

Adjacent to the mining area, the pH of water falls to 4. Heavy metals and sulphate 

concentrations rise due to the ingress of acidic ground water.  

The metal concentration increases towards downstream (except for S4) because of the 

tributary from the mine dump which drains to the same mixing point at S2. This 

observation is consistent with the increase of the conductivity. Conductivity increases 

with an increase in metal concentration and this is because the less metal salts that are 

dissolved in the water, the lower the conductivity. Sample S4, with low conductivity, has 

low metal concentration. It can be seen that the conductivity increases towards 

downstream. 

The ICP-OES showed results of high Fe concentration compared to Co, Zn, Ni and Cu.  

Samples from groundwater contain high concentration of metals; this could be due to 

deposition and precipitation. The average concentrations were calculated for metals in 

surface water (exclude S1 & S2 because they are upstream) and in groundwater. 

Decreases in concentration of 94% for Fe; 92% for Co, Zn as well as Ni and 97% for Cu 

were observed from groundwater to surface water. The concentration of thiosulphate was 

very low at the seepage point (85 mg l
-1
) where as the average concentration for surface 

and groundwater ranges between 315 mg l
-1
 – 370 mg l

-1
. On the other hand, there is a 

discrepancy in sulphate concentration between surface and groundwater, the latter has 

higher sulphate concentration. The ground water samples displayed low pH, high 

conductivity, elevated sulphate, iron and trace metal concentrations, this is the evidence 
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of pollution by acid mine drainage. Along the stream, sample S5 yields high 

concentration of thiosulphate as well as sulphates. This could be due to low pH and high 

potential redox. A similar trend is observed for samples S6 – S8.  

 

Cyanide species and secondary compounds  

 

The results for cyanide species and secondary compounds are given in table 6.18. 

 

Table 6.18 Cyanides species and related compounds in the Natalspruit samples 

 

Sample CNfree CNWAD CNSAD CNT SCN
-
 CNO

-
 NH4

+
 

 mgl
-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 

S1 0.065 0.088 0.073 0.161 n.d 17.65 1.173 

S2 0.122 0.105 0.123 0.228 n.d 18.17 3.851 

S3 0.304 0.325 0.329 0.654 n.d 17.38 9.627 

S4 0.082 0.102 0.09 0.192 n.d 15.81 2.277 

S5 0.023 0.12 0.065 0.185 n.d 16.86 1.629 

S6 0.135 0.205 0.147 0.352 n.d 17.38 5.554 

S7 0.011 0.099 0.022 0.121 n.d 18.43 8.707 

S8 0.015 0.102 0.053 0.155 n.d 18.44 5.689 

GW9 0.078 0.252 0.3 0.552 1.837 23.69 22.98 

GW10 0.264 0.385 0.296 0.681 2.294 19.75 31.89 

 

The trend shows low concentration of free cyanide (ranging from 0.065 mg l
-1
 to 0.122 

mg l
-1
) in surface and groundwater. This could be attributed to degradation and 

volatilisation of CNfree. At the pH of surface and groundwater (< 7), most of CN
-
 exists as 

HCN(g) hence volatile (Figure 2.2). Adsorption on colloids could be one of the reasons of 

low CNfree, as this can be seen further. 

The concentration of CNfree is lower in samples S5 –S8, they were collected downstream 

and displayed low pH (4.26 – 4.48) due to the in flow from the tributary. The low 

concentration could be due to the volatilization with the acidic pH. 

GW10 showed a higher concentration of free cyanide compared to GW9. This could be 

explained by the presence of soluble cyanide which could be coming from the 

dissociation of metal-cyanide complexes due to low pH. 
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In ground water, cyanides exist mainly as complexes which can dissociate under weakly 

or strongly acidic conditions to yield CNfree as explained previously. High concentration 

of CNfree, CNWAD and CNSAD were found at the seepage point. This could be likely in put 

from the tributary which drains water from the mine dumps to some mixing point after 

S2. On the other hand, S3 is a mixture of surface, groundwater as well as the 

contaminated water from the mine dumps. At this point, the concentration of CNWAD is 

similar to CNSAD. 

As shown in Table 6.18, CNT concentration at the seepage point, is similar to that 

obtained in ground water. CNWAD & CNSAD were higher in groundwater samples, 

implying higher CNT content. The CNT results are consistent with results obtained for 

CNfree, except for GW9 with low CN free but high CNT due to dissociation of complexes 

(WAD and SAD) at low pH. 

No thiocyanate was found in surface water as expected because of the presence of 

thiosulphate (S2O3
2-
). In the presence of thiosulphate, CNfree can be converted in SCN

-
 as 

explained in chapter 2.  SCN
-
 in these samples could likely be diluted since thiocyanate is 

highly soluble in water and can leach deep into the groundwater. 

A small amount of thiocyanate was found in ground water. This is likely due to SCN
- 

leaching from dumps as complexes with metals. Also, chemical decomposition in 

groundwater has very slow kinetics (Dzombak, 2006).  

The concentration of cyanate was similar in the surface and groundwater samples. GW9 

has higher concentration of cyanate compare to GW10. This could be seen with the low 

concentration of CNfree. Assumption could be that CNfree was oxidised since potential 

redox in GW9 is higher than GW10. 

 The concentration of ammonium was high at the seepage point compare to the other 

surface water samples. This could likely be the in put from the groundwater. 

Groundwater samples have higher content of ammonium (an average of 27.43 mg l
-1
) 

compares surface water (with an average of 5.58 mg l
-1
). 
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Metal-cyanide complexes 

 

The results for metal-cyanide complexes are given in Table 6.19 below. 

The general trend for the metal-cyanide complexes shows higher concentration of 

copper-cyanide and iron-cyanide complexes in surface and ground water. As expected 

from the ICP-OES results with high concentrations of Fe, it is most likely that the iron 

cyanide complexes are present in relative high concentration mostly in ground water. 

Both iron- cyanides Fe (II) & Fe (III) are present in surface water collected downstream 

and in groundwater. Ferro-cyanide was analysed in all the samples but ferri-cyanide was 

only detected in the samples collected downstream (from S5). Fe (III)-cyanide complex 

was not detected in surface water collected upstream. 

The ground water contains both iron-cyanide complexes with Fe(II) being predominant. 

Cobalt cyanide was only detected in groundwater and in S3, this could be an input from 

the ground water and/or from the tributary. 

The study carried out by Ghosh (1999) revealed that metal-cyanide complexes typically 

dominate aqueous speciation of cyanide in groundwater systems, with iron-cyanide 

complexes often most abundant. 

 

Table 6.19 Metal-cyanide complexes in the Natalspruit samples 

 

Sample Cu(CN)3
2-
 Ni(CN)4

2-
 Fe(CN)6

4-
 Fe(CN)6

3-
 Co(CN)6

4-
 

 mgl
-1
 mgl

-1
 mgl

-1
 mgl

-1
 mgl

-1
 

S1 9.461 1.609 3.419 n.d n.d 

S2 3.871 1.942 10.152 n.d n.d 

S3 15.84 1.661 14.89 n.d 0.504 

S4 14.66 1.755 9.848 n.d n.d 

S5 10.69 2.405 10.12 10.67 n.d 

S6 9.779 2.033 12.01 9.544 n.d 

S7 9.931 1.566 7.342 5.877 n.d 

S8 9.089 2.405 7.541 6.655 n.d 

GW9 10.92 9.305 22.14 10.25 1.132 

GW10 10.55 8.519 23.85 11.05 1.205 
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The ferrocyanide complex usually dominates groundwater, due to reducing conditions. 

The redox potential also controls the dissolved iron cyanide complex speciation in 

groundwater. CNfree in the groundwater will first form a dissolved iron-cyanide complex. 

The iron-cyanide complexes either formed from CNfree or already existing in the water 

then react further with iron to form iron-cyanide solid. Some of the solids formed from 

reaction between the elemental iron and the dissolved iron-cyanide complexes include 

Prussian Blue precipitate, which forms at lower pH values (pH <6), the Berlin Green 

precipitate, which forms at neutral pH values, and the Berlin White precipitate, which 

also forms at neutral pH values. The formation of these various iron-cyanide precipitates 

is represented in the following reactions: 

 

      4 Fe
3+
 +3 Fe(CN)6

4-
 =Fe4 (Fe(CN)6)3 (s) (Prussian Blue)  (Reaction 6.3) 

 

     3 Fe
2+
 +Fe

3+
 3 Fe(CN)6

3-
 =Fe4 (Fe(CN)6)3 (s) (Prussian Blue) (Reaction 6.4) 

 

     Fe
3+
 +Fe(CN)6

3-
 =Fe(Fe(CN)6 (s) (Berlin Green)   (Reaction 6.5) 

 

     2 Fe
2+
 +Fe(CN)6

4-
 =Fe2 (Fe(CN)6) (s) (3Berlin White)  (Reaction 6.6) 

 

Of the iron-cyanide solids, Prussian Blue is the most widely known because of its vivid 

blue color and its application in inks and dyes preparations. Prussian Blue is a mixed 

oxidation state solid that requires moderately reducing conditions to form. Berlin Green 

forms under oxidizing conditions, and Berlin White forms under reducing conditions. 

 CNfree are the thermodynamically favorable species in solution, and degradation of iron 

cyanide compounds to the free cyanides can be accelerated by sunlight and 

microorganisms.  Other types of iron-cyanide solids, including solids containing other 

metals, for example, copper(II)-iron-cyanide, can also be formed. 

 The decomposition rates of these complexes also are affected by water, temperature, pH, 

total dissolved solids, and complex concentration. Some metal-cyanide complexes 
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degrade more rapidly when exposed to sunlight, atmospheric carbon dioxide, and air. 

Finally, site-specific geochemical information, like pH and pE, were used as the key 

variables to develop semi quantitative predictions of cyanide concentrations in 

groundwater within or near source materials.   

Cu – cyanide complex was relatively high at the seepage point and in water samples 

collected downstream. This could be due to the contamination by the water from the 

dumps. The concentration at the seepage was even higher than the one in the 

groundwater. The concentration of S2 was the lowest. At the pH < 5, Cu and Ni-cyanide 

complexes are dissociated to yield CNfree, we couldn’t expect high concentration in S5 –

S8 with low pH but the opposite was observed.  

The model constructed using MEDUSA software shows the same observation (Figure 

6.22). The model predicted the existence of copper cyanide complex at low pH (< 6). 

Ni-cyanide complex was lower than Cu – cyanide. The concentration was higher in the 

samples S5 and S6.  

 

Cyanide adsorption 

 

Free cyanide was analysed in an unfiltered and filtered portion. Results in table 6.20 

show that as far as 60 % of cyanide can be retained by the filter membrane. The removal 

of colloids leads to a decrease in CNfree concentration because filtering the sample 

removes the colloids and subsequently the free cyanide associated with these colloids. 

The difference between the unfiltered and filtered samples should give an indication of 

the free cyanide present in the colloids. 
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Table 6.20 Concentrations of CNfree in filtered and unfiltered water samples from 

Natalspruit 

  

Sample 

Non 

filtered Filtered 

particulate 

adsorbed 

% 

adsorbed 

 mg l
-1
 mg l

-1
 mg l

-1
  

S1 0.122 0.065 0.057 46.72 

S2 0.155 0.122 0.033 21.29 

S3 0.344 0.304 0.04 11.63 

S4 0.102 0.082 0.02 19.61 

S5 0.052 0.023 0.029 55.77 

S6 0.251 0.115 0.136 54.18 

S7 0.088 0.011 0.077 87.75 

S8 0.045 0.015 0.03 66.67 

GW9 0.212 0.078 0.134 63.21 

GW10 0.322 0.264 0.058 18.01 

 

 

Geochemical speciation modelling 

 

Computer modelling was done using the results of CNtot; metal concentrations; SO4
2-
; 

SCN
-
 and fields measurements. The accuracy of the modelling results is dependent on the 

quality of the experimental results. As mentioned previously, the model predicts the 

formation of Cu(CN)4
2-
 at low pH (< 6) and in oxic condition, high pE.  The introduction 

of major anion like SO4
2-
 does not affect the formation of the copper cyanide complex as 

seen in Figure 6.21. At alkaline pH, there is formation of CuSO4(OH)4. In reducing 

condition, CuS forms. CuCN(c) exists at the all range of the pH. In the presence of 

thiocyanate, Cu(CN)4
2-
 is replaced by Cu(SCN)2 complex. 
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Figure 6.22 Predominance diagram of Cu(I)  in presence of (a) CNT (B) SCN
-
 (C) SO4

2-
 

  

In Figure 6.23, the model predicts the formation of Fe3(CN)6(s) at low pH (< 3), in anoxic 

and oxic conditions. As the pH increases, Fe2O3 forms and at very high pH (12) Fe3O4(s) 

forms at oxic and anoxic conditions. Fe(c) exists at very low pE. 

The introduction of major anions like SCN
-
 and SO4

2-
 does not modify the equilibruim. 

When the sulphate is present, FeS2 exists at reducing condition. 
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Figure 6.23 Predominance diagram of Fe(III) in presence of (a) CNT (B) SCN
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Conclusion 

 

The Natalspruit is contaminated by pollutants released from the mining activities. The 

groundwater is acidic with quite high concentration of cyanide total. It contains high 

concentration of sulphate as well as trace metals. In fact, the ground water within the 

mining area is heavily contaminated and acidified as a result of oxidation of pyrite (FeS2) 

contained within mine tailings dumps, and has elevated concentrations of heavy metals 

(Fe, Co, Zn and Ni), cyanide total as well as metal-cyanide complexes. The latter 

dissociate under variable conditions to yield CNfree. 

 The polluted ground water discharges into the stream causing the decrease of the pH of 

the stream water (downstream). The contamination of water is enhanced downstream as 

seen with very low pH, high concentration of metals as well as metal cyanide complexes.  

Acidified water seeping from the mine tailing was found to contribute to stream flow by 

reducing the pH, increasing metal load and metal complexes. It should be noted here that 
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the dissolution of salt crusts on the surface can also contribute to pollution in water 

bodies. This leads to lowering of the pH, increase in solute loads and the subsequent 

release of pollutants in soluble phases.  

Fe is present in high concentration in ground water, this would most probably mean that 

Fe(CN)4
2-
 and Fe(CN)6

3-
 are  the most abundant. Fe-cyanide complexes are common in 

mine waste because these two complexes are very stable, but can be dissociated at very 

low pH and by photolysis. 

The decomposition rates of metal cyanide complexes, mainly Fe(CN)6
4-
 and Fe(CN)6

3-
 

are low in ground water. These complexes degrade rapidly when exposed to sunlight, 

atmospheric carbon dioxide and air. The decomposition is also affected by water 

temperature, pH and total dissolved solids. The breakdown of metal complexes releases 

CNfree resulting in sustained pollution form the groundwater to the surface water. 

The concentration of cyanide in the stream can be affected by factors like: cyanide 

microbial degradation, adsorption, precipitation, photolysis and volatilization. Chemical 

conversion of CNfree to cyanates (OCN
-
) and thiocyanates (SCN

-
) also occurs. 

The Natalspruit is tributary of Klipriver which flows into the Vaal Dam, where the 

drinking water is obtained and this water source can be affected by these small streams. 

Fairly high concentration of cyanide was obtained in the Natalspruit. The law states that 

the allowed cyanide concentration (i.e. CNfree) in drinking water should be about 50 ppb, 

but the results obtained were far greater than the allowable value.  
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CONCLUSION 

 

The fate and transport of cyanide species was studied in a representative tailings dam 

underdoing rehabilitation, an active slime dam, a wetland sediment and a natural stream 

within a mining area.  

In this study, cyanide was characterised as free (CNfree), weak acid dissociable (CNWAD) 

and strong acid dissociable (CNSAD).  

In the case of the tailings dump underdoing rehabilitation, deposition of waste slurry has 

been discontinued and the dump is being prepared for phytoremediation. As such, the 

dump presents a suitable case in studying the chemical evolution of cyanide and its 

complexes over a period of time. 

Cyanide and its metal complexes were found to be instable following generation of AMD 

in the dump over a period of one year, resulting in the formation of secondary products 

(thiocyanates and cyanates). The tailings were predominantly contaminated by moderate 

to strong cyanide complexes, which are weakly dissociable. The stability of cyanide 

complexes such as CNWAD and CNSAD depends strongly on the extent of acid generation.  

On contact with acid mine drainage, the weak and strong cyanide complexes dissociate 

and release CNfree. CNfree evolves and form other cyano-species including thiocyanate 

(SCN
-
)
 
and cyanate (CNO

-
).  

High iron concentrations were measured in both tailings suggesting a higher proportion 

of strong cyanide complexes. The region of stability of iron metals cyanides is pH 4 to 

8.5 which is the pH range of the tailings and the iron cyanide complexes have the highest 

stability constant (log K = 52).  

Dissociation of iron-cyanide complexes in the dark is very slow and depends on the 

stability constants, pH, temperature, and redox potential. 

Water from the active slime dam (Nasrec) as well as the solid materials collected in the 

surrounding of the dam contains high concentration of cyanide. This is a source of 

pollution for the surrounding environment and the groundwater. 
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High concentrations of cyanide were found in the sediments of the Fleurhof Dam 

wetland. The materials eroded from the surrounding tailings dumps were transported by 

the stream, the Klipspruit and deposited into the Fleurhof Dam. The study shows that the 

Fleurhof Dam sediments contain high concentration of cyanide with some cases 

recording more than 50 mgkg
-1
 of free cyanide.  This could suggest that cyanides are 

transported to sediments causing enrichment. The presence of organic matter provides 

complexing ligands which tend to bind strongly with cyanide. 

Cyanide was found to be less in the Fleurhof Dam wetland than in the stream sediment. 

This is the consequences of physical-chemical conversion and microbial degradation of 

cyanide in the wetland. 

Cyanide does not persist in natural stream but may persist for extended periods in ground 

water. At low pH, cyanide is lost by volatilization as HCN(g). In the natural stream, high 

concentrations of cyanide and metals were found downstream, after the seepage point, 

where the groundwater discharges in the stream. This is the evidence of the 

contamination of the ground water by the gold tailings dams nearby. 

Natural degradation of cyanides in soil and tailings can be influenced by variables such as 

the cyanide species in solution and the relative concentration, pH, aeration, sunlight, 

presence of bacteria, pond size, depth, turbulence and chemical mechanisms which 

include volatilization, adsorption, precipitation, oxidation, and hydrolysis. 

Although cyanide is ubiquitous in the environment, cyanide seldom remains biologically 

available in soils because it is either complexed by trace metals, metabolized by various 

microorganisms, or lost through volatilization. The fate of cyanide in water and soil 

would be pH dependent. 

As a consequence, cyanide speciation will not only determine its toxicity, but also its 

complexes are observed in the sediment reactivity and fate as cyanide can undergo 

transformation and degradation in suitable environmental conditions. 

Metal-cyanide complexes are generally thought to be less toxic than free cyanide but 

these complexes break up to yield hydrogen cyanide, which is the usual cause of toxicity. 
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Some metal cyanide complexes, including silver, copper and nickel cyanides, may 

themselves be toxic.  

Medusa predicted the presence and the predominance of cyanide as HCN and metal-

complexes. Iron-cyanide complex was found to be the most abundant in tailings and 

water even at very low pH. 

Despite that many processes are available in order to treat cyanide in tailings dams (the 

probable source of cyanide in soil and groundwater), tailings waste in South Africa is not 

treated to convert cyanide to less toxic form like cyanate.  

 

Recommendations for additional work 

 

Further studies should be done to assess: 

• The impact of the phytoremediation program on cyanide cyclisation: translocation 

of cyanide to plants and subsequent uptake of metals due to cyanide translocation. 

• The impact on groundwater quality: requires a study of borehole water, 

particularly in areas where the borehole water is a source of drinking water and is 

also used for irrigation purposes. 

• The natural attenuation of cyanide due to various mechanisms (e.g. microbial 

activities, oxidation, reaction with thiosulphates).   

• The role of organic matter in cyanide sequestration (including identifying the most 

influential between fulvic and humic acids in this regard). 
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APPENDIX 

 

Appendix A Analysis results for metals in tailings dams 

 

Table A1 Metals concentrations results obtained using ICP-OES after acid digestion in samples collected in 2006  
 

 

Sample Na K Mg Ca Al Mn Fe Co Zn Ni Cu Cr Hg U Pb 

 mgkg
-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 

1a 34260 15890 3108 17875 38033  52.60  19160 11.95 97.32 nd 64.55 11.92 17.87 nd 31.87 

1b 938.3 35460 2400 35857 30300 400 25100 60.7 210.2 298.8 191.2 60.75 249 179.3 34.91 

2a 950 7856 2500 13855 18465 150.4 20565 45.78 156.8 98.54 55.78 255.7 632.7 55.41 28.75 

2b 920.5 7662 2900 13433 19500 100 19310 49.75 175.1 92.5 51.74 273.6 707.5 45.32 33.82 

3a 5230 14980 3600 8973 48700 100 22850 60.13 174.8 148.9 81.41 444.9 602.2 87.91 28.72 

3b 4040 5750 2000 14632 14400 100 16880 45.78 91.56 61.94 42.19 188.5 741.5 17.92 26.11 

4a 812.2 4290 1600 9990 13000 90.51 8290 30.97 59.94 49.95 29.97 124.9 131.9 92.92 12.98 

4b 23700 7600 9000 24700 23800 100 14700 17 99 nd 34 150 10 nd 27 

5a 18000 1324 1205 9855 27000 99.8 16785 45.09 214 70 67 180.2 85.53 50.45 22.01 

5b 17600 1340 1000 9600 27200 100 17600 36 253 68 74 224 107.4 nd 23 

Crust H9a 27660 6370 7000 26567 11180 700 12940 186.1 275.6 269.5 11.94 505.5 595.1 nd 16.92 

H10 67690 14810 8000 47117 33200 800 18490 237.6 141.2 418.5 37.77 70.64 515.9 77.52 418.5 

TSF 380.2 1832 10770 13700 27000 1370 9624 63.52 65.22 147.2 62.31 198.6 18.22 100.7 145.4 
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Table A2 Metals concentrations results obtained using ICP-OES after acid digestion in samples collected in 2007 

 

Sample Na K Mg Ca Al Mn Fe Co Zn Ni Cu Cr Hg U Pb 

 mgkg
-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 mgkg

-1
 

1a 28356 12054 1800 4725 44300 75 22372 22.18 97.39 52.07 71.36 489.2 190.2 46.51 19.55 

1b 96657 25369 22800 51032 51900 155 18092 112.1 216.3 141.6 87.51 250.1 28.04 36.02 38.62 

2a 19821 28187 800 796.8 67900 98 36354 47.81 313.7 180.3 117.5 455.2 15.32 30.02 15.42 

2b 1734 5148 1200 953.3 12600 302 16873 77.22 303.1 232.6 76.26 571.3 10.05 36.32 19.53 

3a 18924 13546 1400 11952 64200 64 27988 52.79 184.3 202.2 89.64 550.2 23.21 55.35 37.06 

3b 26295 16618 1800 3910 42900 85 16813 17.59 391.9 162.3 48.87 229.5 38.55 33.71 52.92 

4a 32455 5109 1650 4235 29400 83.24 28564 40.45 85.65 70.12 55.88 125.4 132.3 80.72 15 

4b 31234 4812 1600 4549 28355 82.31 30796 45.49 90.99 78.74 50.74 140.1 15.45 10.21 22.08 

5a 29594 7500 1900 7300 24100 96 17900 24 63 31 47 253.2 21.12 33.85 20.15 

5b 5309 8849 1700 4916 27600 85 14847 17.69 60.96 16.72 42.28 216.2 25.65 28.22 15.72 

C1 101055 21305 26100 50576 36100 368 9117 125.7 93.09 221.7 55.66 163.3 25.56 181.2 227.7 

C2 1193 1349 67000 6294 3100 101 5894 68.93 65.93 164.8 29.97 94.42 13.32 115 149.5 

C3 44389 35055 4300 37835 118880 89 77756 65.54 173.8 85.41 96.33 455.5 77.12 153.1 174.1 

Pond sed 330.9 1545 1000 2000 8500 77 8364 60 53.64 129 50 183.2 12.52 178 126.6 

 

 

 

 

 

 

 

 

 

 

 

 

 



193 

 

Appendix B Results of metal in tailings dams from water leachate 

 

Table B1 Metals concentrations in tailings dams from water leachate collected in 

2006. 

 
 

Sample  Na K Ca Fe Co Zn Ni Cu 

 mgKg
-1
 mgKg

-1
 mgKg

-1
 mgKg

-1
 mgKg

-1
 mgKg

-1
 mgKg

-1
 mgKg

-1
 

1a 9993 1179 45438 2791 440 302 1020 196 

1b 1552 541 58891 9 74 177 195 27 

2a 5410 1285 7128 5 29 23 18 n.d 

2b 4422 1389 69061 1 31 18 21 nd 

3a 14550 2662 64067 2 52 129 123 nd 

3b 3540 174934 6798 2095 80 366 20 78 

4a 7752 823 107838 3 28 51 57 nd 

4b 3475 690 30968 134 20 48 55 4 

5a 2957 1603 76821 11 97 141 249 nd 

5b 2633 31 114419 nd 15 31 39 nd 

H9a 456045 63384 97553 60566 7208 1883 11618 59 

H10 469619 26672 70255 162835 7718 3921 15605 954 

Sed 5174 1944 132444 33 31 97 97 3 

 

 

 

Table B2 Metals concentrations in tailings dams from water leachate collected in 

2007. 
 

Sample  Na K Ca Fe Co Zn Ni Cu 

  mgKg
-1
 mgKg

-1
 mgKg

-1
 mgKg

-1
 mgKg

-1
 mgKg

-1
 mgKg

-1
 mgKg

-1
 

1a 826 303 72813 546.5 492 96 1577 526 

1b 277 246 64565 980 767 3385 2673 77 

2a 8699 667 80783 3 426 1660 1784 17 

2b 8689 3815 77718 10 67 166 158 3 

3a 8718 2334 61206 10 146 432 487 n.d 

3b 3191 1336 88984 3 40 97 97 n.d 

4a 1954  559  78641  4  23   18 35  n.d  

4b 1756 654 63883 2 15 14 26 n.d 

5a 2762 1355 59910 33 29 35 53 2 

5b 2338 1034 74175 nd 17 16 12 n.d 

C1 476883 75286 119032 839 2056 1468 4911 109 

C2 77725 1335 336800 49594 1947 1667 3831 423 

C3 54871 7441 264745 108 389 924 673 4 

Sed 18317 988 32464 889 234 145 465 14 

 



194 

 

Appendix C Aerial photograph of the active slime dams (Nasrec) 
 

 

 

 
 


