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Abstract 

 

Bemisia tabaci (Genn.) is the vector of cassava mosaic geminiviruses (CMGs), which are the 

main production constraint to cassava, both in Uganda and elsewhere in Africa.  A severe form 

of cassava mosaic disease (CMD) was responsible for the devastation of cassava in Uganda 

beginning in the late 1980s.  In subsequent years the severe CMD epidemic spread throughout 

Uganda, and to neighbouring countries, causing devastating effects to cassava production, and 

its geographical range continues to expand with the pandemic.  To further understand the 

virus-vector dynamics involved in the spread of CMD in the post epidemic zone in Uganda, we 

investigated the current distribution of B. tabaci genotypes in selected cassava-growing 

regions.  Additionally, the relationship between the vector genotypes and distribution of CMGs 

in the post-epidemic zone was examined also.  CMD-affected cassava leaves were collected 

from 3 to 5 month-old cassava plants, and B. tabaci adults and fourth instar nymphs were 

collected from cassava and twenty-two other plant species occurring adjacent to the sampled 

cassava fields.  The mitochondrial cytochrome oxidase I (mtCOI) sequence was used to 

establish the genotype of B. tabaci adults and nymphs associated with the sampled plant 

species.  African cassava mosaic virus (ACMV) and East African cassava mosaic virus-

Uganda 2 (EACMV-UG2) were confirmed to be present in the post-epidemic zone in Uganda, 

as reported previously.  As expected, EACMV-UG2 predominated.  However, unlike previous 

observations in which EACMV-UG2 was consistently associated with the severe disease 

phenotype, in this study EACMV-UG2 occurred almost equally in the severely and mildly 

diseased plants.  Phylogenetic analyses of Ugandan B. tabaci genotypes (mtCOI) revealed that 

their closest relatives were other Old World genotypes, as might be expected.  Two previously 

reported B. tabaci genotype clusters, Uganda 1 (Ug1) and Uganda 2 (Ug2), at ~8% nt 

divergence, were confirmed to occur on cassava in the post-epidemic zone.  However, Ug1 



 xix 

occurred more frequently (83%) than Ug2 (17%), and no definite association was established 

of a particular vector genotype with cassava plants exhibiting the severe disease phenotype, in 

contrast to the B. tabaci genotype distribution and association with the CMGs reported there at 

the height of the spread of the severe CMD epidemic.  Based on the presence of B. tabaci 

fourth instar nymphs, the Ug1 genotypes colonized five additional non-cassava plant species: 

Manihot glaziovii, Jatropha gossypifolia, Euphorbia heterophylla, Aspilia africana and 

Abelmoschus esculentus, suggesting that in Uganda the Ug1 genotypes are not restricted to 

cassava.  However, no Ug2 genotypes were detected on the non-cassava plant species sampled. 

This study revealed also the presence in Uganda of five distinct previously unrecorded B. 

tabaci genotype clusters, Uganda 3 (Ug3), Uganda 4 (Ug4), Uganda 5 (Ug5), Uganda 6 (Ug6) 

and Uganda 7 (Ug7), and a sweetpotato colonizing genotype cluster, designated Uganda 8 

(Ug8), among the collective Ugandan B. tabaci populations.  Ug3 was the only exemplar 

representing one cluster, which was unlike any previously described genotype in Uganda or 

elsewhere, and diverged at 8%, 10% and 17% from Ug1, Ug2 and Ug8, respectively.  The Ug3 

genotypes colonized a single species, Ocimum gratissimum.  Ug4, Ug5, Ug6 and Ug7 formed 

four closely related sub-clusters (93-97% nt identity), and diverged from one another by 1-7%, 

and by 15-18% from Ug1, Ug2, Ug3 and Ug8, respectively.  The Ug4 genotypes had as their 

closest relatives (at 97-99% nt identity) previously reported B. tabaci from okra in the Ivory 

Coast, whereas, the Ug5 and Ug6 genotypes shared 95-99% and 99% nt identity, respectively, 

with their closest relatives from the Mediterranean-North Africa- Middle East (MED-NAFR-

ME) region, which also includes the well studied B and Q biotypes.  The Ug7 genotypes were 

closely related (at 98-99% nt identity) to B. tabaci from Reunion Island in the Indian Ocean.  

The Ug4, Ug5, Ug6 and Ug7 genotypes were identified on 54%, 8%, 8%, and 31% of the 

sampled plants species, respectively.  Ug4 were most polyphagous, followed by Ug7 and Ug6.  

However, none of the new five genotypes (Ug3-Ug7) was found associated with, or colonizing, 



 xx 

cassava or sweetpotato plants in this study.  Squash plants colonized by the Ug6 and Ug7 

genotypes, both members of the B biotype/B-like cluster, developed the silvering phenotype, 

while those colonized by the Ug4 genotypes (most closely related to a non-B like genotype 

from okra in the Ivory Coast) did not.  In addition to colonizing sweetpotato, the Ug8 

genotypes also colonized Lycopersicon esculentum and L nepetifolia.   
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Chapter One  

 

General Introduction 

 

1.1 Cassava  

 

Cassava, Manihot esculenta (Crantz) is a member of the family Euphorbiaceae  (Purseglove, 

1988).  The crop is believed to be indigenous to tropical and sub-tropical areas of America, 

where it has been cultivated for about four thousand years (Charrier and Lefevre, 1987; 

Purseglove, 1988).  Shrubby species of Manihot originated in the New World, with a 

geographic range extending from the southern United States (Arizona) to northern Argentina 

(Sauer, 1951).  From tropical America, cassava spread to tropical and sub-tropical regions in 

many other parts of the world and it is now widely grown in Africa, India, Indonesia, 

Madagascar, Malaysia, the Philippines and Thailand (Guthrie, 1987).  Cassava was introduced 

to Uganda by Arab traders between 1862 and 1875 (Langlands, 1972).  The crop is grown in at 

least 40 African countries with an estimated annual production of 97 million tonnes in 2002 

(FAO, 2003).   

 

Cassava retains its importance as a major staple crop in Africa for over 200 million people 

(Horton, 1988; IITA, 1990; Dahniya, 1994).  The starchy, thickened, tuberous roots are a 

valuable source of cheap calories, especially in developing countries, where calorie deficiency 

and malnutrition are widespread (Purseglove, 1988; IITA, 1990).  Throughout Africa the 

cultivation of cassava has been encouraged as a famine reserve and against the ravages of the 

migratory African locust (Locusta migratoria migratorioides) to which it is almost immune 

(Purseglove, 1988).  Propagation is normally done using 10-30 cm long stem cuttings 
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(Purseglove, 1988).  Depending on variety, the tuberous roots store for long in soil and 

piecemeal harvesting can be done over a long period (Byabakama, 1996).  The crop can 

withstand prolonged periods of drought, except at planting, making it adaptable to regions with 

low and uncertain rainfall.    

 

1.2 The whitefly (Bemisia tabaci) 

 

1.2.1 General background 

 

Over 1200 whitefly species are known worldwide, although only a limited number have been 

closely studied on key herbaceous hosts (Mound and Halsey, 1978; Byrne et al., 1990a).  

Species of the genus Bemisia are among the most important on cultivated species and is 

believed to have originated in SouthEast Asia/Indian sub-continent (Gill, 1990; Mound and 

Halsey, 1978) or possibly Africa (Gill, 1990; Campbell et al., 1996).  Bemisia tabaci 

(Gennadius) (Hemiptera: Aleyrodidae) is the most widely distributed and economically 

important Bemisia species (Brown et al., 1995a).  This whitefly has gained increased 

importance during the past thirty years as a pest and vector of plant viruses, particularly 

whitefly-transmitted geminiviruses in the genus: Begomovirus (family: Geminiviridae) in 

tropical and subtropical regions (Muniyappa, 1980; Duffus, 1987; Brown and Bird, 1992; 

Bedford et al., 1994; Fishpool and Burban, 1994; Poulston and Anderson, 1997).  

 

Bemisia tabaci also causes damage to plants through direct feeding, such as chlorosis of leaves 

and irregular ripening of tomato fruits (Maynard and Cantliff, 1989; Byrne et al., 1990a; 

Perring et al., 1991), stem blanching and reduction in plant vigour (Byrne et al., 1990a; Costa 

et al., 1993a; Legg et al., 2004), heavy phloem feeding (Byrne et al., 1990b: Byrne and Miller, 
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1990) leading to stunting of plants and yield loss, and indirectly, as through the production of 

sticky sugary exudates or ‘honey dew’, which encourage development and growth of 

saprophytic fungi (e.g. Capnodium spp.) on the affected plants (Byrne et al., 1990b) and 

induction of phytotoxic disorders resulting in silvering in some plants (Costa and Brown, 

1991), which is restricted to a few genotypes (genetically distinct individuals for which formal 

taxonomic assignment has not been determined) (Brown and Bird, 1992; Brown et al., 1992, 

1995a; Cohen et al., 1992; Bedford et al., 1994; Byrne et al., 1995).  These effects are 

especially severe when large populations of B. tabaci colonize plants.  

 

1.2.2 Biology 

 

Adult whitefly normally feed on the under surfaces of young apical leaves, where they lay eggs 

and the immature stages develop.  The eggs are oval and elongate and are attached to the leaf 

surface by a narrow stalk or ‘pedicel’ (Avidov, 1956; Paulson and Beardsley, 1985), which in 

addition is a guide for spermatozoa (Quaintance and Baker, 1913), and a passage for water into 

the egg (Wiggelsworth, 1965; Hinton, 1981; Byrne et al., 1990b).  B. tabaci undergoes 

incomplete metamorphosis and therefore its development is divided into four nymphal instars 

(Lopez-Avila, 1986; Byrne and Bellows, 1991).  The nymphal instars are found on the lower 

older leaves, with the youngest stages on the uppermost leaves (Robertson, 1987).  The first 

instar, also referred to as a ‘crawler’, can move short distances from the eggshell to locate 

suitable feeding sites (Pollard, 1955).  The second and third instars are sessile, closely 

resemble each other, but differ in size (Gill, 1990; Fishpool and Burban, 1994).  The fourth 

instar (Plate I), also inappropriately referred to as the ‘pupa’ (Mound and Halsey, 1978; Lopez-

Avilla, 1986; Byrne and Bellows, 1991) is shield-shaped, broadly elliptical (Gill, 1990) and 

has two small red eye spots at the anterior end, which are visible beneath the translucent 
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integument during the late fourth instar nymphal stage (Von Arx et al., 1983, 1984).  The 

adults (Plate I) differ in size, and the females are larger (~1 mm) than the males (~0.8 mm) 

(Azab et al., 1970; Gill, 1990).  The males are also thinner and have more tapered abdomens 

with a pair of claspers at the tip (Fishpool and Burban, 1994).   

 

The duration of the developmental stages and generation times of B. tabaci have been 

reviewed (Gerling et al., 1986; Lopez-Avila, 1986).  On average, 12 generations are attained 

annually under field conditions (Husain and Trehan, 1933; Butler et al., 1983; Fishpool and 

Burban, 1994).  From the egg to the adult, developmental times were 18.6 days on sweetpotato, 

29.8 days on carrot in the laboratory (Coudriet et al., 1985), 14.5 days on aubergine in Israel 

(Avidov, 1956), 107 days on cotton in India (Husain and Trehan, 1933), and averaged 21 days 

(dry season) and 28 days (rainy season) on cassava in Ivory Coast (Fishpool et al., 1995) and 

in Uganda (Legg, 1995).  Temperature is the key-determining factor and higher temperatures 

(30 - 33°C) result in faster developmental times (Gerling et al., 1986).  Great variability has 

been reported on fecundity, which is affected by environmental conditions and host-plant 

species (Byrne and Bellows, 1991).  Fecundity estimates range from 28 to 394 eggs per female 

(Byrne and Bellows, 1991; Fishpool and Burban, 1994; Palaniswami et al., 1996).   

 

Several studies have been conducted on the mating behaviour of whiteflies (Byrne and 

Bellows, 1991; Costa et al., 1993b; Ronda et al., 1999; Maruthi et al., 2001, 2004a).  Bemisia 

tabaci reproduce arrhenotokously/parthenogenetically, with the unmated females (virgins) 

producing males, which are haploid, and the mated females producing both males and diploid 

females (Byrne and Bellows, 1991).  The males express either one or the other of the maternal 

allelic traits, while the females express both the maternal and paternal traits.  The males are 

usually fewer than females, with a highly variable ratio of male to female (1:2 or 1:3) (Sharaf 
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Plate I. Whitefly (B. tabaci) fourth instar nymph/pupa, with small red eye spots at the anterior 

end (A) and male (smaller) and female (bigger) adults (B). 
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and Batta, 1985), which depends on the time of the year, temperature and host species (Pruthi 

and Samuel, 1942; Sharaf and Batta, 1985) and also results from differences in the longevity of 

the adults, with the females on average having a longer life span (35 days) than the males (20 

days) (Azab et al., 1972; Butler et al., 1983).  There is great variability in the number of days 

before adults copulate.  Upon emergence, both males and females are sexually immature and 

courtship takes place within 1 to 8 hours during summer (Avidov, 1956), 20 to 24 hours after 

emergence (Li et al., 1989) and after 3 days during fall and spring (Avidov, 1956). 

 

Adults of different whitefly species are difficult to distinguish on the basis of morphological 

characters (Mound and Halsey, 1978; Lopez-Avilla, 1986; Rosell et al., 1996, 1997).   

Attempts were made to synonymize about 19 whitefly species into a single taxon, B. tabaci, in 

1957 (Russell, 1957), but the lack of morphologically distinguishable features of the adult 

whiteflies presented taxonomic difficulties.  Identification relied mainly on the morphology of 

the fourth instar nymph, also referred to as the ‘pupae’ (Mound and Halsey, 1978; Gerling et 

al., 1986; Martin, 1987; Gill, 1990).  However, the influence of both genetic and 

environmental factors limited the use of the fourth instar nymphs in distinguishing between the 

different whitefly species (Mohanty and Basu, 1986; Rosell et al., 1997).   

 

Whiteflies have been known to exhibit distinct biological traits as in host-plant range and 

adaptability (Costa and Russell, 1975; Gill, 1992; Burban et al., 1992; Legg, 1995), 

inducement of plant physiological disorders (Costa and Brown, 1991; Perring et al., 1991; 

Cohen et al., 1992) and plant virus transmission (Bird and Maramorosch, 1978; Brown et al., 

1992, Bedford et al., 1994; McGrath and Harrison, 1995; Markham et al., 1996; Maruthi et al., 

2002).  Bird (1957) and Mound (1963) referred to morphologically indistinguishable B. tabaci 

populations, exhibiting distinct biological traits as biotypes or host-races, and the terms have 
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been used subsequently, to describe agriculturally important insects (Saxena and Barrion, 

1987; Burban et al., 1992; Gill, 1992; Brown et al., 1995a).  For example, in the southern U.S. 

a B. tabaci population capable of inducing silverleaf symptoms in squash (Cucurbita spp.), 

hence the name ‘silverleaf whitefly’ (Costa et al., 1993a; Brown et al., 1995a), was named the 

‘B biotype’, due to the production of a distinct electromorph profile, using general esterases, 

from that of the indigenous American B. tabaci population, named the ‘A biotype’ (Costa and 

Brown, 1990; Perring et al., 1992; Costa et al., 1993a).  Several other biotypes or host races, 

including the ‘E’ (on Asystasia spp., in Benin) (Bedford et al., 1994), ‘J’ (polyphagous, 

Nigeria) (Bedford et al., 1994), ‘N’ (Jatropha gossypifolia) (Bird, 1957), ‘cassava’ and ‘okra’ 

(Burban et al., 1992), ‘Sida’ (Bird and Maramorosch, 1975, 1978) and a polyphagous non-

cassava biotype in Brazil (Bird and Maramorosch, 1975, 1978; Brown and Bird, 1992; Costa 

and Russell, 1975) have been reported. 

 

A key biological trait that has aided the understanding of the level of relatedness among 

morphologically indistinguishable B. tabaci populations is the ability of the different 

populations to interbreed.  For example, Costa et al. (1993b), Perring et al. (1993) and Bedford 

et al. (1994) reported only very low reproductive compatibility between the B and Q biotypes.  

However, these studies could not demonstrate interbreeding between the A and B biotypes.  On 

the basis of the failure to interbreed, the B biotype was referred to as a separate species: 

Bemisia argentifolii Bellows & Perring (Perring et al., 1993; Bellows et al., 1994).  In contrast, 

successful mating compatibility was demonstrated between the Sudanese non-B males and 

Israeli B female biotypes (Byrne et al., 1995), the indigenous Q biotype and the B biotype in 

Spain, using RAPD PCR markers (Ronda et al., 1999), the Australian indigenous B. tabaci and 

the B biotype (Gunning et al., 1997), and more recently, between the A and B biotypes and the 

Jatropha biotypes (Brown et al., 2001), between the cassava-associated B. tabaci from Ghana, 
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Tanzania and Uganda, and between two cassava-associated Indian B. tabaci populations 

(Maruthi et al., 2004a).  Uncertainty, however, still remains over the extent to which different 

B. tabaci populations interbreed and many other studies have revealed mating incompatibilities 

between different host-associated populations.  For example, in Ivory Coast, the cassava and 

okra B. tabaci populations did not produce hybrids when they occurred on a common host-

plant, eggplant (Burban et al., 1992).  Similar results were obtained for the cassava, cotton and 

sweetpotato populations in Uganda, from the analysis of esterase profiles (Legg, 1995), and the 

cassava-colonizing B. tabaci populations from Africa and India, cassava and sweetpotato B. 

tabaci from Uganda, and cassava and B. tabaci populations from Euphorbia geniculata in 

India (Maruthi et al., 2004a).  The variations in the biological, biochemical and molecular traits 

exhibited by the different B. tabaci populations, has led to the suggestion that B. tabaci may be 

a species complex (Brown et al., 1995a; 2001; Frohlich et al., 1999).  However, De Barro et al. 

(2000, 2005) did not consider the current state of knowledge sufficient to justify new species 

assignments.  This view is held also by Maruthi et al. (2004a), who, however, strongly support 

the species complex hypothesis, based on the recent establishment of several biologically 

discrete B. tabaci populations amongst different hosts and geographical locations.   

 

1.2.3 Host range, colonization and population dynamics 

 

Bemisia tabaci is a polyphagous species (Greathead, 1986), and some biotypes and genotypes 

are extremely polyphagous (Brown et al., 1995a).  It colonizes mainly annual, herbaceous 

plants including over 500 species from 74 families (Mound and Halsey, 1978; Greathead, 

1986; Fishpool and Burban, 1994).  However, nearly monophagous B. tabaci populations 

(Jatropha race) (Bird, 1957; Brown and Bird, 1992; Brown et al., 1994) have been recognized 
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on Jatropha gossypifolia and Croton lobatus and the cassava B. tabaci, colonizes only cassava 

in Africa (Storey and Nichols, 1938).   

 

Adult whiteflies occur on cassava throughout the crop’s growing period (Fishpool and Burban, 

1994), although their populations differ with the stage of plant growth (Fishpool et al., 1995; 

Otim-Nape et al., 1996).  The adults will slowly and steadily invade and establish within the 

crop as soon as the plants are sufficiently grown (Fishpool and Burban, 1994).  Small numbers 

of adults may occur on the plants 3 weeks after the initial colonization, which is followed by a 

rapid population build-up at 3 to 4 months after planting (Fishpool and Burban, 1994; Otim-

Nape et al., 1996).  This is the period when foliage is most able to support rapid whitefly 

multiplication.  A steady population growth follows for a short period, followed by a rapid 

decline to a low residual level maintained throughout the rest of the crop’s growth period 

(Silvestre and Arraudeau, 1983; Robertson, 1987; Fishpool and Burban, 1994; Fishpool et al., 

1995).   

 

The population dynamics and activity of B. tabaci are believed to depend on changes in the 

nutritional quality of the host-plant, natural enemy populations and climatic factors 

(temperature, rain, wind, relative humidity) (Fishpool et al., 1987; Fishpool and Burban, 1994; 

Legg, 1995).  Adult whiteflies feed by inserting their stylets between host-plant cells and 

penetrating the phloem of the host-plant (Pollard, 1955; Janssen et al., 1989; Cicero et al., 

1994; Rosell and Brown, 1994).  The food quality of cassava phloem varies with time and 

maturity of the plant.  In the early growth period (1 to 3 months) the food resource is devoted 

to aerial growth, which declines after 4 to 5 months when the process of root tuberisation 

begins.  There is usually a greater whitefly population during the first 3 months than later when 

the plants are more mature (Silvestre and Arraudeau, 1983).  According to Fargette et al. 
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(1992), Otim-Nape (1993) and Fishpool and Burban (1994), increase in whitefly population is 

favoured by high temperatures and radiation and low rainfall and relative humidity.  However, 

according to Robertson (1987) and Legg et al. (1994), population growth was greatest when 

rapid leaf growth occurred, which was associated to both the high temperature and rainfall.  

The adults disperse mainly by the aid of wind and can move short or long distances (Cohen 

and Ben-Joseph, 1986; Blackmer and Byrne, 1993), but also by humans who transport the 

immature and adult stages on plant material (Joyce, 1981; Mound, 1983; Byrne and Bellows, 

1991).  Further, cropping practices such as planting date (Robertson, 1987; Fargette et al., 

1990), crop disposition (Thresh et al., 1994a) and intercropping (Fargette and Fauquet, 1988) 

influence whitefly population dynamics and hence the spread of whitefly-transmitted 

geminiviruses. 

 

1.2.4 Whitefly systematics 

 

Outbreaks of B. tabaci, particularly in areas where it was previously unimportant, are linked to 

the appearance of new biotypes, strains or possibly species of the vector (Simone et al., 1990; 

Cohen et al., 1992; Brown et al., 1995a; Legg et al., 2002).  The evolution of agriculture 

leading to irrigated monocultures, the requirement for intensive agriculture enabling two 

cropping seasons per year and the use of fertilisers and pesticides are key factors in biotype 

emergence (Brown et al., 1995a).  B. tabaci gained increased importance as a pest and vector 

of diseases, due to its ability to cause damage to host-plants through direct feeding and as the 

main vector of whitefly-transmitted geminiviruses.  The growing economic importance of B. 

tabaci generated renewed interest in the development of techniques for systematics and 

evolutionary studies (Nei, 1987; Doolittle, 1990; Hillis and Moritz, 1990; Li and Graur, 1991).   
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Whitefly (B. tabaci) systematics has been reviewed (Campbell et al., 1996).  Among the most 

commonly studied molecular techniques are: protein polymorphism involving isozyme 

variation in esterases (Wool et al., 1989; Brown et al., 1995b) and DNA-based molecular 

techniques, like random amplified polymorphic DNA (RAPD) PCR fingerprinting (Gawel and 

Bartlett, 1993; De Barro and Driver, 1997; Guirao et al., 1997), amplified fragment length 

polymorphism (AFLP) markers (Cervera et al., 2000), the mitochondrial DNA marker genes, 

cytochrome oxidase I (mtCOI) (Simon et al., 1994; Frohlich et al., 1999), the ribosomal RNAs, 

16S rDNA (prokaryotes) (Clark et al., 1992; Frohlich et al., 1999) and 18S rDNA (eukaryotes) 

(Campbell et al., 1993, 1994), and a ribosomal nuclear marker of the internal transcribed 

spacer I (ITSI) region sequences (De Barro et al., 2000, 2005).  

 

Isozyme variation in esterases have been studied extensively in insects and sufficient 

variability to allow the typing of B. tabaci populations using esterase patterns was 

demonstrated (Costa and Brown 1990, 1991; Brown et al., 1992, 1995b; Wool et al., 1989, 

1993).  Based on distinct esterase patterns, three whitefly species (Prabhaker et al., 1987) and 

cotton, sweetpotato and poinsettia host-associated populations (Costa and Brown 1991; Costa 

et al., 1993a), and 20 distinct general esterase patterns (designated A to S) (Wool et al., 1989; 

1993) were distinguished, which revealed that B. tabaci was more polymorphic than previously 

expected (Bedford et al., 1994; Brown et al., 1995b; Rosell et al., 1997).  In Ivory Coast, 

Burban et al. (1992) were able to distinguish cassava and okra biotypes, while Legg et al. 

(1994) distinguished cassava, cotton and sweet potato B. tabaci populations in Uganda using 

esterase profiles, confirming the existence of host-specific biotypes among African B. tabaci.  

However, according to Brown et al. (1995a), the allozymic esterase markers are limited in their 

capacity to distinguish variability in B. tabaci from a broad range of hosts and geographical 

locations, but are able to differentiate Old and New World populations. 
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The first attempt to distinguish B. tabaci biotypes using a mitochondrial DNA gene, 16S rDNA 

found in eubacterial endosymbionts of whiteflies, aphids and mealybugs was of limited use, as 

the endosymbionts were indistinguishable in the different insect hosts because the 16S rDNA 

is highly conserved (Simon et al., 1991; Clark et al., 1992).  However, using the insect host 

18S rDNA, which has relatively fast base-substitution rates, Campbell et al. (1993, 1994) 

detected only two base differences between the A and B biotypes, and concluded that the two 

biotypes were not separate species.  Evidence enabling a clear distinction between the A and B 

biotypes of B. tabaci was obtained when DNA-based RAPD-PCR was used to study the 

genetic similarity between the two biotypes (Gawel and Bartlett, 1993; Perring et al., 1993), 

and between the B biotype and other biotypes of B. tabaci (De Barro and Driver, 1997; Moya 

et al., 2001).  In Uganda, Maruthi et al. (2001) used RAPD-PCR to establish whether a 

genetically distinct B. tabaci population was associated with the CMD epidemic.  The results 

obtained showed clear differences, but there was no pattern associated with either the epidemic 

or non-epidemic zones.   

 

The mitochondrial cytochrome oxidase I (mtCOI) marker (Frohlich et al., 1999) and ITSI 

region sequences (De Barro et al., 2000, 2005; Abdullahi et al., 2003) have been used also to 

study the genetic variability and evolutionary relationships among B. tabaci from different 

geographical locations and host-plant species.  In Uganda, using the mtCOI marker, Legg et al. 

(2002) identified two distinct cassava-associated B. tabaci genotype clusters, designated, 

Uganda 1 (Ug1) and Uganda 2 (Ug2), which at the time of the study in 1997/8 occurred in 

areas ‘ahead’ of and ‘behind’ the CMD epidemic ‘front’, respectively.  It was suggested that 

Ug1 could be ‘indigenous’ or ‘local’ genotypes, while the Ug2 genotypes were suggested to be 

an ‘invasive’ population with closest relatives in Cameroon in West Africa (Legg et al., 2002).  
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The Ug1-like and Ug2-like genotypes were shown to be sexually compatible (Maruthi et al., 

2004a), although few females were obtained from the crosses.  However, the identification of 

the hybrids still awaits the development of a nuclear marker, as the mtCOI is a maternal gene, 

enabling the identification of female B. tabaci only.  The mtCOI marker has been used also to 

detect a distinct New World group of B. tabaci and the Old World B biotype in Argentina 

(Viscarret et al., 2003), and more recently five distinct geographic populations of B. tabaci in 

sub-Saharan Africa (Berry et al., 2004).     

 

1.3 Cassava mosaic disease  

 

1.3.1 General background 

 

Cassava mosaic disease (CMD) was first reported in what is now Tanzania under the name 

‘Krauselkrankheit’ by Warburg in 1894 (Storey, 1936), but was not known to cause serious 

losses until the 1920s.  The disease was first reported in Uganda as ‘curly leaf’ (Hall, 1928) 

and as ‘mosaic’ (Martin, 1928).  Subsequently, CMD was reported throughout mainland Africa 

and the surrounding islands (Deighton, 1926; Golding, 1936; Storey and Nichols, 1938) and 

also in India (Abraham, 1956) and Sri Lanka (Austin, 1986).   
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Plate II. Cassava leaf showing symptoms of cassava mosaic disease (CMD) (A), whitefly 

infection (B) and cutting infection (C). 

A 

B C 
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A ‘mosaic’ pattern of light green, yellow or white areas intermingled with the green of 

uninfected leaf portions (Agrios, 1988; IITA, 1990) characterises CMD-affected plants (Plate 

II).  The symptoms may be mild, where the affected plants exhibit patchy leaf chlorosis and 

little or no mottling, while severely affected plants have reduced leaf size and chlorosis, which 

result in reduced photosynthetic efficiency and hence retarded growth, leading to stunting and 

reduced tuberous root production (Agrios, 1988).  The disease is spread by the whitefly vector 

(B. tabaci) and disseminated in CMD-affected cassava cuttings (Harrison, 1987).  

 

Cassava mosaic disease is the most economically important vector-borne pathogen of cassava 

(Fargette et al., 1988; Geddes, 1990; Thresh et al., 1997).  The disease was estimated to cause 

yield losses of between 19-27 million tonnes in Africa, compared to actual production in 2002 

(FAO, 2003).  About US$ 74 million was lost annually due to the disease in the pandemic-

affected areas of Uganda and Kenya, compared to US$ 19 million in the unaffected areas of 

Kenya and Tanzania (Sseruwagi et al., 2004a). 

 

1.3.2 Cassava mosaic geminiviruses 

 

1.3.2.1 Aetiology, variability and geographical distribution  

 

The presumed etiologic agent of cassava mosaic disease was first isolated in Kenya in 1975 

(Bock, 1975; Bock et al., 1978), and was shown to be transmissible to Nicotiana clevelandii 

Grey through mechanical inoculation using sap from some CMD-affected cassava plants.  

Hence the initial reference to Cassava latent virus.  The virus isolate, currently referred to as 

African cassava mosaic virus [Kenya] (ACMV-[KE]) was shown to contain DNA (Harrison et 

al., 1977).  Its bipartite genome was demonstrated, the nucleotide sequence determined 
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(Stanley and Gay, 1983) and the virus shown to cause mosaic in cassava when back 

transmitted from herbaceous hosts to cassava (Bock et al., 1981; Bock and Woods, 1983).   

 

In 1984 the first attempt was made to detect ACMV using nucleic acid hybridisation (Robinson 

et al., 1984).  Using polyclonal antibodies (Sequeira and Harrison, 1982) and murine 

monoclonal antibodies (mAbs) (Thomas et al., 1986), raised against ACMV particles, 

geminivirus infection was detected in cassava mosaic-affected plants.  Subsequently, three 

CMG isolates (A, B and C) produced distinct characteristic epitope profiles when a panel of 17  

mAbs to ACMV were used in tests on extracts from mosaic-infected cassava (Harrison and 

Robinson, 1988; Swanson, 1992; Swanson et al., 1992).  The three isolates were reported to be 

of different non-overlapping geographical distributions, with group A isolates mainly 

occurring in Africa, west of the Rift Valley and in South Africa, group B isolates occurring 

east of the Rift Valley and mainly along the east coast of Africa, while group C isolates 

occurred only in India and Sri Lanka (Hong et al., 1993; Swanson and Harrison, 1994).  The A, 

B and C isolates were ascribed: ACMV, EACMV and Indian cassava mosaic virus (ICMV) 

later ascribed under the genus Begomovirus, family Geminiviridae.   

 

Five other CMGs have been described of which four occur in Africa (Fauquet and Stanley, 

2003).  ACMV is the most widely distributed species and occurs in most areas in the cassava-

growing belt of Africa.  In contrast, EACMV is mainly found in coastal East Africa, western 

Kenya, western Tanzania, although reports of its presence were also made in some West 

African countries under the name East African cassava mosaic Cameroon virus (EACMCV) 

(Ogbe et al., 1998, 2003; Fondong et al., 2000; Pita et al., 2001a, b) and in Malawi as East 

African cassava mosaic Malawi virus (EACMMV-[MH]/[K]) and East African cassava mosaic 

virus-[Malawi] (EACMV-[MW]) (Ogbe et al., 1998; Pita et al., 2001b) and in South Africa 
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(Berry and Rey, 2001).  ICMV only occurs in India and Sri Lanka (Swanson and Harrison, 

1994).  Additionally, new virus species including the South African cassava mosaic virus 

(SACMV) mainly occurring in South Africa and Swaziland (Rey and Thompson, 1998; Berrie 

et al., 2001), East African cassava mosaic Zanzibar virus (EACMZV) in Zanzibar Island 

(Maruthi et al., 2004b) and Sri Lankan cassava mosaic virus (SLCMV) in Sri Lanka (Saunders 

et al., 2002) have also been reported.   

 

1.3.2.2 Genome organization, gene function and DNA replication 

 

Cassava mosaic geminiviruses (CMGs) have geminate particles (Bock et al., 1978; Bock and 

Woods, 1983; Robinson et al., 1984), which measure 30 x 20 nm (Fig. 1a) and consist of a 

protein coat of с. 30 Kda, with a single molecule of circular single-stranded DNA (ssDNA) of 

Mr 0.8 x 106 (Harrison et al., 1977; Sequeira and Harrison, 1982).  The bipartite genomic 

DNA of CMGs is comprised of two such ssDNA components (A and B) (Fig. 1b) of similar 

sizes with 2500 to 2900 nucleotides (Stanley and Gay, 1993).  The two components share an 

‘intergenic region’ (IR), which is a 200 bp noncoding region, identical in each DNA and which 

lies between the initiation codons of AV1, the virus coat protein (CP), and AC1 in DNA-A, 

and BV1 and BC1 in DNA-B.  The IR contains promoter and sequence elements responsible 

for DNA replication and transcription (Chatterji et al., 2000), which are similar in both DNA-

A and DNA-B (Harrison and Robinson, 1999) and as a result is referred to as the ‘common 

region’ (CR).   

 

The open reading frames (ORFs) of DNA-A and DNA-B are comprised of six protein-coding 

sequences (four in DNA-A and two in DNA-B) in the plus/virus and minus/complementary-sense 
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Figure 1. Electron micrograph showing germinate particles (A) and genomic organisation (B) of 

cassava mosaic geminiviruses 

A 

B 
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strands, which occur in a conserved arrangement when compared with those of other 

begomoviruses including Tomato golden mosaic virus (TGMV) (Hamilton et al., 1984) and Bean 

golden mosaic virus (BGMV) (Howarth et al., 1985).  DNA-A encodes viral coat proteins 

required for replication and encapsidation of both DNA-A and B (Rogers et al., 1986).  The AV1 

has properties that play a crucial role in insect vector specificity (Roberts et al., 1984; Stanley et 

al., 1986; Briddon et al., 1990; Harrison and Robinson, 1999), although it is not required for 

infectivity (Etessami et al., 1988).  DNA-A can replicate independently, while DNA-B does not 

(Townsend et al., 1986).  The AC1 ORF encodes a viral DNA replication gene and is required for 

DNA synthesis (Elmer et al., 1988).  However, the accumulation of ssDNA is encoded by the 

AC2 ORF, a transcription activator (TrAP) gene for virus sense genes in both DNA-A and B 

(Sunter and Bisaro, 1992), while the maximal replication of both the ssDNA and dsDNA is 

enhanced by the AC3/AL3 gene (Sunter et al., 1990; Hanley-Bowdoin et al., 1999).  The DNA-B 

component encodes transport proteins, BC1 and BV1, which are responsible for movement and 

symptom expression of the virus in the plant (Ingham et al., 1995; Sanderfoot and Lazarowitz, 

1996; Sanderfoot et al., 1996).   

 

The origin of replication (ori) ‘A’ in CMGs is initiated in a conserved nonanucleotide 

(TAATATTAC) sequence (Heyraud-Nitschke et al., 1995) in a stable loop of a stem-like loop 

structure found in all geminiviruses (Stanley, 1995) and a binding site (Chatterji et al., 2000, 

2001) for host enzymes required for priming complementary strand synthesis (Davies et al., 

1987).  Both DNA-A and DNA-B are required for infectivity (Stanley, 1983) and the two ORFs 

of DNA-B in CMGs are essential for infectivity (Etessami et al., 1988).  The DNA-A nucleotide 

sequences are less diverse and hence have more conserved elements than those of DNA-B.  The 

greatest variation, however, is obtained in the CR (Rybicki, 1994; Harrison and Robinson, 1999). 
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1.3.3 Vector-virus specificity and virus transmission 

 

The most important role of B. tabaci, however, arises from its ability to vector plant viruses 

(Storey, 1938; Muniyappa, 1980; Duffus, 1987; Brown, 1990).  A disease agent assumed to be 

a virus was first demonstrated to be transmissible in the 1930s in Africa (Kufferath and 

Ghesquiére, 1932; Storey, 1938) and in the 1950s in tropical America (Costa, 1955).   

 

It was believed that CPs of specific geminiviruses from the same area were more adapted for 

transmission by locally adapted B. tabaci than those from elsewhere (Harrison et al., 1991; 

McGrath and Harrison, 1995; Harrison and Robinson, 1999).  However, Bedford et al. (1994) 

and Markham et al. (1996) demonstrated the transmission of more than 15 geminiviruses from 

different countries by each of about 20 B. tabaci populations from three different continents.  

The specificity of transmission of plant viruses by different insect vectors was also 

demonstrated (Briddon et al., 1990; Höfer et al., 1997; Noris et al., 1998).  For example, A CP 

of the leaf hopper-transmitted Beet curly top virus (BCTV) was substituted for the ACMV CP 

in the ACMV genome, enabling the transmissibility of the modified ACMV by leafhoppers 

(Briddon et al., 1990).  In related studies, the substitution of a CP of a non-B. tabaci 

transmissible Abutilon mosaic virus (AbMV) by a CP of a B. tabaci-transmitted Sida golden 

mosaic virus (SGMV) enabled the transmission of AbMV by B. tabaci (Höfer et al., 1997), 

while the transmissibility of Tomato yellow leaf curl virus (TYLCV) by B. tabaci was affected 

by the substitution of a single amino acid in the CP (Noris et al., 1998).  However, there were 

no significant differences between the transmissions of African cassava mosaic virus (ACMV), 

East African cassava mosaic virus (EACMV) and East African cassava mosaic virus-Uganda2 

(EACMV-UG2) by cassava-associated B. tabaci originating from widely separated 

geographical locations in Africa (Tanzania, Uganda and Ghana) (Maruthi et al., 2002).  
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1.3.4 The epidemic of severe cassava mosaic disease in Uganda 

 

In 1988 serious crop failure was reported in northern Luwero district in Uganda (Otim-Nape, 

1993; Otim-Nape et al., 1994), which was later attributed to an unusually severe form of 

cassava mosaic disease (Gibson et al., 1996).  Early serological tests in the 1990s (Swanson 

and Harrison, 1994) on isolates from epidemic and non-epidemic areas showed ACMV to be 

the cause of the epidemic, because the mAbs could not distinguish between ACMV and the 

Uganda variant (UgV).   

 

Using oligonucleotide primers designed to bind and amplify specific virus DNA sequences 

during polymerase chain reaction (PCR), a more severe virus, the Uganda variant or EACMV-

UG2 a strain of EACMV with more than 90% homology in the DNA-A sequence with 

EACMV (Deng et al., 1997; Pita et al., 2001a; Fauquet and Stanley, 2003) and also a 

hybrid/recombinant of ACMV and EACMV in which c. 400 nucleotides of the CP of ACMV 

replace the similar region of EACMV (Deng et al., 1997; Zhou et al., 1997) was reported in 

Uganda.  EACMV-UG2 was reported to be responsible for the severe epidemic of CMD 

(Harrison et al., 1997; Otim-Nape et al., 1997a; Legg, 1999), which was estimated to spread 

southwards across the country at an annual rate of 20 to 30 Km (Otim-Nape et al., 1997a; Legg 

and Ogwal, 1998).   

 

A key feature of the epidemic was the formation of a ‘front’ characterized by unusually severe 

disease symptoms (Gibson et al., 1996; Harrison et al., 1997), rapid disease spread and high 

whitefly populations (Otim-Nape et al., 1997a; Legg and Ogwal, 1998; Colvin et al., 1999).  

Further investigation of the cause of the epidemic in Uganda revealed even more severe 

symptoms resulting from dual infections by ACMV and EACMV-UG2, believed to be due to a 
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synergistic interaction between the two viruses (Harrison et al., 1997; Pita et al., 2001a).  

Additionally, a pseudo-recombinant virus, resulting from intraspecific recombination between 

DNA-A of EACMV-UG2 and DNA-B of East African cassava mosaic virus-Uganda 3 

(EACMV-UG3) was also reported to be responsible for the severe CMD epidemic in Uganda 

(Pita et al., 2001a).   

 

Major efforts were launched in the 1990s to control the epidemic, and significant success was 

achieved through the use CMD-resistant varieties (Thresh et al., 1994a; Otim-Nape et al., 

1997b, 2000, 2001; Legg et al., 1999).  Consequently, the use of resistant varieties, reduction 

in area of cassava cultivated as a result of the epidemic and the emergence of tolerant local 

varieties (Otim-Nape et al., 2000, 2001), and less virulent viruses resulted in a general 

reduction in CMD inoculum pressure in Uganda.  Coupled with the spread of the epidemic 

from Uganda into neighbouring countries, these changes led to the use of the term ‘post-

epidemic’ to describe the current status of CMD in Uganda (Otim-Nape et al., 1998, 2000, 

2001; Sseruwagi et al., 1998; Legg, 1999).  Meanwhile, CMD continues to cause devastating 

effects to the production of cassava in many parts of sub-Saharan Africa and most especially in 

the pandemic-affected zone in East and Central Africa (Thresh et al., 1994b; Legg, 1999).  The 

epidemic of severe CMD has been reported in southern Sudan (Harrison et al., 1997), western 

Kenya, northern and north-eastern Tanzania (Legg, 1999), Rwanda (Legg et al., 2001; 

Sseruwagi et al., 2005a), south western Democratic Republic of Congo (Neuenschwander et 

al., 2002), Gabon (Legg et al., 2003) and Burundi (Bigirimana et al., 2004) and its 

geographical range continues to expand with the pandemic. 
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1.4 Problem statement and justification 

 

The recent discovery of new CMGs and genotypes of B. tabaci in Africa and elsewhere has led 

to new insights into the epidemiology of CMD.  The significance of recombination and how it 

influences whitefly adaptation in the changing virus situations needs to be investigated.  In 

trying to account for the boosted whitefly populations in the pandemic affected zone, a 

synergistic/mutually beneficial interaction between severely diseased plants infected with 

EACMV-UG2 and B. tabaci has been suggested (Colvin et al., 1999, 2004; Omongo, 2003).  

A change in the composition of the amino acids: asparagine, tryptophane, glutamine and 

tyrosine (P. Stevenson, unpublished data) in the severe phenotype plants was suggested as the 

possible cause of the observed increased fecundity and development rate of B. tabaci, which 

led to elevated vector population levels.  However, more studies are still required to verify this 

assertion. 

 

An alternative and perhaps not mutually exclusive hypothesis proposed the appearance of a 

more fecund biotype/genotype as the possible cause of the elevated B. tabaci populations in the 

pandemic zone (Gibson et al., 1996; Otim-Nape et al., 1996).  More recently, using the mtCOI 

marker, it has been confirmed that a distinct B. tabaci genotype cluster, Ug2, also referred to, 

as the ‘invader’ was later associated with the epidemic of severe CMD in Uganda (Legg et al., 

2002).  Although the epidemiology of CMD has been widely investigated and documented 

(Otim-Nape et al., 1996), the role of virus mixtures and how these might impact on whitefly 

virus acquisition remains largely unknown.  Elsewhere, evidence has accumulated that B. 

tabaci populations have different biological characteristics (Byrne and Miller, 1990), and that 

some recent devastating outbreaks of the vector, particularly in areas where it was previously 

unimportant, are linked to the appearance of new biotypes, strains or possibly species of B. 
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tabaci (Simone et al., 1990; Bedford et al., 1994; Brown, 1994, Brown et al., 1995a).  For 

example, unprecedented outbreaks of the B biotype led to high populations that ‘displaced’ the 

A biotype in the United States of America, leading to the spread of devastating crop viruses 

(Brown, 1994; Brown et al., 1995a).  However, the B biotype, which is also invasive in 

southern Spain, has failed to displace the Q biotype, the indigenous population (Moya et al., 

2001).  Most recently, outbreaks of the B biotype have occurred in Australia, China, and 

elsewhere in SouthEast Asia (De Barro et al., 2000; Chowda et al., 2003; Coombs et al., 

2003), spreading with it several devastating crop viruses.  Over the past decade, severe 

outbreaks of B. tabaci in many parts of East Africa have become more frequent, leading to 

increased spread of CMD and yield losses due to the disease.  

  

In order to ensure the sustainable control of CMGs and the future development and expansion 

of cassava production in Africa and in Uganda in particular, it is crucial that the molecular 

variability of cassava B. tabaci genotypes and its effects on the epidemiology of cassava 

mosaic geminiviruses (CMGs) in Uganda is established.  The interaction between synergism 

and the different genotypes also requires further investigation.  High populations of B. tabaci 

continue to be reported in areas affected by the CMD pandemic (J.P. Legg, unpublished data) 

and a definitive answer is needed on the possibility that there is an epidemic-associated 

genotype with higher fecundity, virus acquisition or transmission efficiencies and whether this 

is linked to severity of symptoms should be investigated.  If this is demonstrated, a practical 

objective of further studies on B. tabaci will be the development of a molecular marker, usable 

within laboratories in East and Central Africa, which would allow the specific detection of the 

epidemic-associated genotypes.  This would then facilitate genotype ‘tracking’ and would aid 

in forecasting patterns of spread of the CMD pandemic.  The findings of studies of this type 

will greatly support on-going efforts to control the CMD pandemic in East and Central Africa.  
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In contrast, if it is shown that the primary reason for population outbreaks of B. tabaci is the 

synergistic/mutually beneficial interaction with CMD-diseased cassava, a greater 

understanding of interactions between B. tabaci populations and CMGs/CMG mixtures will be 

vital for the prediction of future patterns of spread of the CMD pandemic.  

 

1.5 Objectives of the study 

 

This study sought to establish the molecular variability of cassava B. tabaci and its effect on 

the epidemiology of cassava mosaic geminiviruses in Uganda, following the 1990s epidemic of 

severe CMD.  Possible associations between different B. tabaci genotypes and cassava mosaic 

geminivirus species, and whether a particular genotype is associated with the CMD pandemic 

were also investigated.  The specific objectives of the study were: 

 

(1) To establish the molecular variability of the principal B. tabaci genotypes on cassava 

through comparison of sequences of portions of the mitochondrial DNA cytochrome 

oxidase I (mtCOI) gene 

(2) To establish the identity of the cassava mosaic geminiviruses occurring in Uganda, 

following the 1990s epidemic of severe cassava mosaic disease 

(3) To establish the association between the geographical distributions of the cassava B. 

tabaci genotypes and that of the cassava mosaic geminiviruses occurring in the 

epidemic-affected areas of Uganda 

(4) To establish the colonization and/or host range of cassava-associated B. tabaci 

genotypes in nature in cassava, and cultivated and uncultivated plant species occurring 

adjacent to cassava fields in the epidemic-affected areas of Uganda 
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Chapter Two 

 

The cassava mosaic geminiviruses occurring in Uganda following the 1990s 

epidemic of severe cassava mosaic disease 

 

Published: Annals of Applied Biology, 145, 113-121 

 

Key words: Cassava, cassava mosaic geminiviruses, virulence, distribution, Uganda 

 

Abstract 

 

The cassava mosaic geminiviruses (CMGs) isolated from cassava plants expressing mild and 

severe symptoms of cassava mosaic disease (CMD) in 2002 in Uganda were investigated using 

the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) 

molecular techniques and DNA sequencing.  Two previously described cassava mosaic 

geminiviruses: African cassava mosaic virus (ACMV) and East African cassava mosaic virus 

– Uganda variant (EACMV-UG2) were detected in Uganda.  The RFLP technique 

distinguished two polymorphic variants of ACMV (ACMV-UG1 and ACMV-UG2) and three 

of EACMV-UG2 (EACMV-UG2[1], EACMV-UG2[2] and EACMV-UG2[3]).  ACMV-UG1 

produced the fragments predicted for the published sequences of ACMV-[KE]/UGMld/UGSvr, 

while ACMV-UG2, which produced RFLP fragments predicted for the West African ACMV 

isolates ACMV-[NG], ACMV-[CM], ACMV-[CM/DO2] and ACMV-[CI] was shown to be 

ACMV-UGMld/UGSvr after DNA sequencing.  EACMV-UG2[1] produced the RFLP 

fragments predicted for the published sequences of EACMV-UG2/UG2Mld/UG2Svr.  

However, both EACMV-UG2[2] and EACMV-UG2[3], which produced East African cassava 
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mosaic virus-[Tanzania]-like polymorphic fragments with RFLP analysis, were confirmed to 

be isolates of EACMV-UG2 after DNA sequencing.  Thus, this study emphasises the 

importance of DNA sequence analysis for the identification of CMG isolates.  EACMV-UG2 

was the predominant virus and occurred in all the surveyed regions.  It was detected in 73% of 

the severely and 53% of the mildly diseased plants, while ACMV was less widespread and 

occurred most frequently in the mildly infected plants (in 27% of these plants).  Mixed 

infections of ACMV and EACMV-UG2 were detected in only 18% of the field samples.  

Unlike previously reported results the mixed infection occurred almost equally in both plants 

exhibiting the mild or severe disease symptoms (21% and 16%, respectively).  The increasing 

frequency of mild forms of EACMV-UG2 together with the continued occurrence of severe 

forms in the field warrants further studies of virus-virus and virus-host interactions.  

 

2.1 Introduction 

 

An unusually severe form of cassava mosaic virus disease (CMD) was first reported in Uganda in 

1988 in northern Luwero district, where it led to serious crop failure (Otim-Nape, 1993; Otim-

Nape et al., 1994, 1997a; Gibson et al., 1996).  CMD is caused by cassava mosaic geminiviruses 

(CMGs) (family Geminiviridae; genus Begomovirus) and is spread by the whitefly vector Bemisia 

tabaci Gennadius and disseminated through the use of CMD-affected cuttings used as planting 

material (Harrison, 1987).  CMGs have geminate particles (Robinson et al., 1984) comprised of 

two ssDNA components (A and B).  The DNA-A component encodes viral coat proteins required 

for replication and encapsidation of both DNA-A and B (Rogers et al., 1986), while the DNA-B 

component encodes transport proteins responsible for movement and symptom expression of the 

virus in the plant (Ingham et al., 1995).  However, both DNA-A and B are required for infectivity 

(Stanley and Gay, 1983).  
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A virus referred to as African cassava mosaic virus (ACMV) was first reported as the causative 

virus of CMD in Africa (Bock and Harrison, 1985), but further investigation using monoclonal 

antibodies (Mabs) in enzyme-linked immunosorbent assay (ELISA) distinguished what were 

later regarded as two distinct viruses, now known as African cassava mosaic virus (ACMV) 

and East African cassava mosaic virus (EACMV) (Thomas et al., 1986; Hong et al., 1993; 

Swanson and Harrison, 1994).  Six other CMGs have been described of which four occur in 

Africa (Fauquet and Stanley, 2003).  In Uganda the severe form of CMD was caused by a 

recombinant of ACMV and EACMV in which c. 400 nucleotides of the CP of ACMV replace 

the similar region of EACMV (Deng et al., 1997; Zhou et al., 1997).  The recombinant was 

designated EACMV-UG2 on the basis of its more than 90% homology in the DNA-A sequence 

with EACMV (Deng et al., 1997; Pita et al., 2001a, Fauquet and Stanley, 2003).  EACMV-

UG2 was reported to be responsible for the severe epidemic of CMD (Harrison et al., 1997; 

Otim-Nape et al., 1997a, 1997b; Legg, 1999; Legg and Okao-Okuja, 1999), which was 

estimated to spread southwards across the country at an annual rate of 20 to 30 km (Otim-Nape 

et al., 1997a; Legg and Ogwal, 1998).  A key feature of the epidemic was the formation of a 

‘front’ characterized by unusually severe disease symptoms (Gibson et al., 1996; Harrison et 

al., 1997), rapid disease spread and high whitefly populations (Otim-Nape et al., 1997a; Legg 

and Ogwal, 1998; Colvin et al., 1999).  Further investigation of the cause of the epidemic in 

Uganda revealed even more severe symptoms resulting from dual infections by ACMV and 

EACMV-UG2, believed to be due to a synergistic interaction between the two viruses 

(Harrison et al., 1997; Pita et al., 2001a).  Major efforts were launched in the 1990s to control 

the epidemic, and significant success was achieved through the multiplication and distribution 

of CMD-resistant varieties (Thresh et al., 1994a; Otim-Nape et al., 1997b, 2000, 2001; Legg et 

al., 1999).  As the epidemic spread from Uganda into neighbouring countries, it was 

considered that there was a general reduction in CMD inoculum pressure in Uganda arising 
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from the reduction in area of cassava cultivated as a result of the epidemic, the increasing 

prevalence of officially released improved resistant varieties and the emergence of somewhat 

tolerant local varieties (Otim-Nape et al., 2000, 2001) and less virulent viruses.  These changes 

led to the use of the term ‘post-epidemic’ to describe the current status of CMD in Uganda 

(Otim-Nape et al., 1998, 2000, 2001; Sseruwagi et al., 1998; Legg, 1999).  The current study 

aimed at establishing the identity of the CMGs and their distribution in the post-epidemic 

affected areas in Uganda.  The analysis was conducted using the DNA-A component.  DNA 

sequencing, polymerase chain reaction (PCR) and restriction fragment polymorphism (RFLP) 

procedures were adopted for the virus analyses.  

 

2.2 Materials and Methods 

 

2.2.1 Virus sources, PCR amplification and RFLP analysis 

 

Fresh leaf samples were collected from symptomatic young shoots of CMD-affected plants from a 

total of 100 cassava fields sampled in six important cassava-producing regions of Uganda 

comprising: central (Kayunga, Kiboga, Luwero, Masaka, Mpigi, Mubende, Mukono and 

Wakiso districts), eastern (Bugiri, Busia, Iganga, Jinja, Kamuli, Kumi, Mbale, Pallisa and 

Tororo districts), northern (Masindi–Buruli, Masindi–Kibanda, Nakasongola and Soroti 

districts), southern (Bushenyi, Mbarara and Rakai districts), western (Hoima, Kabarole, 

Kasese, Kibaale, Kyenjojo, Masindi–Budongo and Masindi–Buliisa districts) and Kalangala 

(Island) district, in September 2002 (Fig. 2).  The locations indicated in italics are recently 

created districts.  Cassava fields 3 to 5 months after planting were sampled at regular intervals 

along main roads traversing each of the sampled districts.  In order to avoid cross-

contamination, separate ‘microcentrifuge tubes’ were used to collect each leaf sample.  One 
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sample was taken from a plant with mild CMD symptoms and another from a severely 

diseased plant of the same variety at each site.  The samples were kept on ice in a cool box until 

laboratory analysis.  DNA was extracted using the method of Dellaporta et al. (1983). 

 

The universal primers Uni/F (5' KSGGGTCGACGTCATCAAGACGTTRTAC 3') and Uni/R 

(5' AARGAATTCATKGGGGCCCARARRGACTGGC 3') (Briddon and Markham, 1994), 

where K = G+T, R = A + G, S = G + C were used to amplify near full- length (c. 2760-2780 

bp) DNA-A fragments.  PCR with Taq DNA polymerase (Sigma Genosys Ltd, UK) was 

performed with a first cycle at 94°C for 2 min, followed by 30 cycles at 94°C for 1 min, 55°C 

for 1.5 min, 72°C for 2 min and a final cycle of 94°C for 1 min, 55°C for 1.5 min and 72°C for 

10 min using a thermocycler (Hybaid-Omni-E, UK). 

 

The virus-specific primers: ACMV-AL1/F (5' GCGGAATCCCTAACATTATC 3') and 

ACMV-ARO/R (5' GCTCGTATGTATCCTCTAAGGCCTG 3') and UV-AL1/F (5' 

TGTCTTCTGGGACTTGTGTG 3') and ACMV-CP/R3 (5' GCCTCCTGATGATTATATGTC 

3') (Zhou et al., 1997) were used to identify the presence of ACMV and EACMV-UG2, 

respectively.  ACMV and EACMV-UG2 positive controls were obtained from previously 

characterised CMG DNA, while the negative control comprised of the PCR reaction mixture 

less the DNA template.  The PCR products were detected by electrophoresis. 

 

In order to investigate the variability of the CMGs, RFLPs were analysed using EcoRV and 

MluI (R W Briddon, unpublished).  The PCR-amplified products were digested independently 

with EcoRV and MluI for 1.5 hrs at 37ºC and separated by electrophoresis in a 1.8% agarose 

gel in TAE buffer.  The results obtained were compared with those for the reference full-length 

CMG DNA-A sequences obtained from GenBank (National Center for Biotechnology  
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Figure 2. Map showing areas surveyed and the distribution of cassava mosaic geminiviruses in 

Uganda, September 2002 
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Information [NCBI]) using the DNA Strider 1.2 computer-based programme.  The CMGs used 

in the analysis and their respective GenBank accession numbers are presented in Table 1.  

Nomenclature is as described in Fauquet and Stanley (2003). 

 

2.2.2 Cloning, sequencing and phylogenetic analysis 

 

To further analyse the data obtained with the PCR-RFLP-based technique, PCR products were 

subjected to DNA sequencing.  Specific primers were designed to amplify a product of c. 1375 

bp based on conserved CMG sequences beginning at 5′ position 1 (using ACMV as the 

reference virus) and flanking the common region (CR) and CP genes for the DNA-A 

components.  The primers were: ACMV-A-CPV (ACCGGTTGGCCCCGCCCCCCTTT) and 

ACMV-A-CPC  (GGCACCAACAACGACCATTCCTG) for ACMV and EACMV-A-CPV  

(GGCCGCGCCCGAAAAAGCAGGTGGA) and EACMV-A-CPC 

(AACCACGACATCATCACACTCCAGA) for EACMV-TZ and EACMV-UG2.  The PCR 

products were ligated into pGEMT-Easy vector (Promega, Madison, Wisconsin, USA) and  

then used to transform Escherichia coli strain DH5α.  The presence of inserts was confirmed 

by digestion of miniprep DNA with EcoRI.  

 

Two representative clones were selected for each polymorphic variant as detected by the PCR-

RFLP analysis and were sequenced bi-directionally using the virus-specific primers in an 

automated sequencer at the Laboratory of Molecular Systematics and Evolution facility, 

University of Arizona, Tucson, AZ 85621, USA.  Consensus sequences were obtained using 

the computer programs Align and EditSeq (DNASTAR Lasergene, Madison, Wisconsin, 

USA).  The CP open reading frames (ORFs) were identified using EditSeq.  The sequences 

were compared with the published CMG sequences using the Basic Local Alignment Search  
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Table 1. Begomovirus sequences used for phylogenetic analysis 

 
  GenBank Accession No. 

Begomovirus Acronym 1 DNA-A 

Abutilon mosaic virus AbMV X15983 
African cassava mosaic virus – [Cameroon]  ACMV-[CM] AF112352 
African cassava mosaic virus – [Cameroon-DO2] ACMV-[CM/DO2]  AF366902 
African cassava mosaic virus – [Ivory Coast]  ACMV-[CI]  AF259894 
African cassava mosaic virus – [Kenya]  ACMV-[KE]  J02057 
African cassava mosaic virus – [Nigeria]  ACMV-[NG]  X17095 
African cassava mosaic virus – [Nigeria-Ogo] ACMV-[NG-Ogo] AJ427910 
African cassava mosaic virus – Uganda Mild  ACMV-UGMld  AF126800 
African cassava mosaic virus – Uganda Severe  ACMV-UGSvr  AF126802 
Beet curly top virus BCTV M24597 
East African cassava mosaic Cameroon virus  EACMCV AF112354 
East African cassava mosaic Cameroon virus – [Ivory Coast] EACMCV-[CI] AF259896 
East African cassava mosaic virus – [Kenya-K2B] EACMV-[KE-K2B] AJ006458 
East African cassava mosaic Malawi virus – [MH] EACMMV-[MH] AJ006459 
East African cassava mosaic Malawi virus – [K] EACMMV-[K] AJ006460 
East African cassava mosaic virus – [Malawi]  EACMV-[MW] AJ006461 
East African cassava mosaic virus –[Tanzania]  EACMV-[TZ]  Z83256 
East African cassava mosaic virus – Uganda2 (Uganda variant)  EACMV-UG2  Z83257 
East African cassava mosaic virus – Uganda2 Mild  EACMV-UG2Mld  AF126804 
East African cassava mosaic virus – Uganda2 Severe  EACMV-UG2Svr AF126806 
East African cassava mosaic Zanzibar virus EACMZV AF422174 
East African cassava mosaic Zanzibar virus – [Kenya-Kilifi] EACMZV-[KE-Kil] AJ516003 
South African cassava mosaic virus SACMV AF155806 
South African cassava mosaic virus – [M12] SACMV-[M12] AJ422132 
Tomato yellow leaf curl virus TYLCV X15656 

 

1 The abbreviations of the begomovirus acronyms are as listed by Fauquet and Stanley (2003) 
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Tools (BLASTX) (Altschul et al., 1997) at the National Center for Biotechnology Information 

(NCBI) and deposited in the GenBank under accession numbers AY562421-AY562430.   

 
Sequence alignment was obtained with the ClustalW option (Thompson et al., 1994) in the 

multiple alignment programme, version 1.4 (Mac Vector 7.2 Package, Pharmacia Inc., San 

Diego, California, USA).  The ClustalW alignments were used to generate a phylogenetic tree 

using parsimony and the maximum likelihood methods in the PAUP version 3.1.1 computer 

software (Swofford, 1993), with Beet curly top virus (BCTV) as the out-group.  Bootstrap 

analysis (Felsenstein, 1985) was performed using 1000 replications.  Pairwise nucleotide 

distance estimates for the partial DNA-A sequences were obtained with ClustalW.   

 

2.2.3    Mapping 

 

Geo-coordinates (latitude and longitude) were recorded using a geographical positioning 

system (GPS) for each sampled site and were used to map the geographical distribution of the 

CMGs in Uganda (Fig. 2) using ArcView software (Environmental Systems Research Institute, 

Inc., Redlands, CA).  

 

2.3 Results 

 

2.3.1 CMD symptom expression by infected cassava plants 

 

CMD symptoms varied widely among the infected plants in the field, but deliberate steps were 

taken during this study to collect only samples from plants of a single variety that showed 

extreme mild and severe symptoms in each field.  The symptoms generally consisted of severe 

mosaic; leaf distortion, abscission and necrosis, and reduced leaf size in the severely diseased 
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plants (Fig. 3a), whereas the mildly diseased plants exhibited a patchy green or yellow mosaic 

but generally lacked leaf distortion and abscission (Fig. 3b).  

 

2.3.2     Polymerase chain reaction analysis of CMGs 

 

Eighty-seven percent (152/174) of the virus samples produced a near full-length (c. 2760 - 

2780 bp) DNA-A fragment after PCR amplification of CMG genomic DNA using the 

universal primers Uni/F and Uni/R (Fig. 4a).  Two main CMGs, ACMV and EACMV-UG2, 

were detected in Uganda in 2002.  Based on the overall occurrence of the CMGs in the single 

and mixed infections, ACMV was confirmed in 36% (55/152) of the positive samples, while 

EACMV-UG2 was the predominant virus and occurred in 82% (124/152) of the positive 

samples. 

 

The mixed infections occurred between ACMV and EACMV-UG2 and were detected in only 

18% (27/152) of the samples.  EACMV-UG2 predominated in both the mildly (53%) and 

severely (73%) diseased plants, while ACMV was detected in 27% of the mildly and only 12% 

of severely diseased plants.  The mixed infections comprised 21% of the total for the mildly 

diseased plants and only 16% for those with severe symptoms.  Representative samples of 

agarose gels showing the PCR amplification of ACMV (c. 1024 bp) and EACMV-UG2(c. 

1700 bp) using the virus-specific primers are presented in Fig. 4b and c, respectively.
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Figure 3.  Symptom expression of (A) severe and (B) mild cassava mosaic on infected cassava 

plants of the CMD susceptible local cultivar Ebwanatereka 

B 

A 
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2.3.3   RFLP analysis of CMG variability in Uganda 

 

Restriction fragment polymorphisms were used to investigate CMG variability in the PCR-

amplified products, using the endonucleases EcoRV (Fig. 4d) and MluI (Fig. 4e).  The band 

pattern and fragments produced following digestion were compared with those predicted for 

CMGs in the GenBank (Table 2).  

 

As expected, two polymorphic fragments (1.48 and 1.28 kbp) were produced for the ACMV-

infected plants (lanes 1, 2 and 9) and similarly, diagnostic fragments (2.19 and 0.59 kbp) were 

produced for EACMV-UG2 infections (lanes 3-5, and 10) following EcoRV digestion (Fig. 4d).  

Dual infections of ACMV and EACMV-UG2 occurred (lane 6 and 7) and were characterised by 

four polymorphic fragments (2.19, 1.48, 1.28 and 0.59 kbp) with the EcoRV digest (Fig. 4d).  

Digestion with MluI (Fig. 4e) produced two distinct polymorphic variants for ACMV: ACMV-

UG1 (lane 1) and ACMV-UG2 (lane 2).  In addition, three distinct polymorphic variants were 

established for EACMV-UG2 by the MluI digest (Fig. 4e).  These were designated EACMV-

UG2[1] (lane 4), EACMV-UG2[2] (lane 5) and EACMV-UG2[3]  (lane 3).  ACMV-UG1 was 

characterised by two polymorphic fragments (1.55 and 1.21 kbp), while ACMV-UG2 had one 

fragment (2.76 kbp).  

 

The ACMV-UG1 fragments were similar to those predicted of ACMV-[KE]/UGMld/UGSvr, 

whereas ACMV-UG2 produced ACMV-[CI]/[CM]/[CM/DO2]/[NG]-like fragments (Fig. 4e, 

Table 2).  EACMV-UG2[1] was characterised by four distinct polymorphic fragments (1.21, 

0.67, 0.52 and 0.39 kbp) and was similar to EACMV-UG2/UG2Mld/UG2Svr (Table 2), while 

EACMV-UG2[3] produced three polymorphic fragments (1.21, 1.06 and 0.52 kbp), which 

were similar to those predicted of EACMV-[KE-K2B]/[MW]/[TZ]/EACMCV/[CI] (Table 2).   



 39 

 

 

 

 

 

 

 
 

Figure 4. Gel electrophoresis of PCR-amplified DNA fragments using (a) universal 

oligonucleotide primers - Uni/F & Uni/R for full-length DNA-A, (b) ACMV-specific primers - 

ACMV-AL1/F & ACMV-ARO/R and (c) EACMV-UG2-specific primers - UV-AL1/F & 

ACMV-CP/R3 and restriction digestion of the PCR-amplified products using (d) EcoRV and (e) 

MluI. 1 - ACMV-UG1, 2 - ACMV-UG2, 3 - EACMV-UG2[3], 4 - EACMV-UG2[1], 5 - 

EACMV-UG2[2], 6 - ACMV-UG1 + EACMV-UG2[1], 7 - ACMV-UG2 + EACMV-UG2[1], 8 

- Negative control (reaction mixture without DNA template), 9 and 10 are ACMV and EACMV-

UG2 positive controls, M - Molecular marker (2 kbp). 

 M        1       2       3      4        5       6       7       8        9      10 
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Table 2. Predicted RFLPs for published cassava mosaic geminivirus sequences following 

computer-based digestion of near full-length DNA-A with the restriction enzymes EcoRV and 

MluI 

 

 
 

1 Number of fragments  

2 approximate size (kbp) of each fragment 

Enzyme Fragment 
 

ACMV-[NG]/ 
[CI]/[CM]/ 
[CM/DO2] 

 
ACMV-UGMld/ 

UGSvr/[KE] 

EACMV-UG2/ 
UG2Svr 

EACMV-
UG2Mld 

 
EACMV- 

[KE-
K2B]/[MW]/ 

[TZ]/EACMCV
/[CI] 

EcoRV 11 1.48 2 1.48 2.19 2.19 2.19 

 2 1.28 1.28 0.59 0.59 0.59 

MluI 1 2.76 1.55 1.21 1.21 1.21 

 2 - 1.21 0.67 0.67 1.06 

 3 - - 0.52 0.46 0.52 

 4 - - 0.39 0.39 - 

 5 - - - 0.06 - 
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However, EACMV-UG2[2] produced three distinct polymorphic fragments (1.21, 1.19 and 0.39 

kbp), which did not correlate with any of the published CMGs.  Products from plants co-infected 

with ACMV-UG1 and EACMV-UG2[1] or ACMV-UG2 plus EACMV-UG2[1] produced five 

polymorphic fragments (1.48, 1.21, 0.67, 0.52 and 0.39 kbp) or (2.76, 1.21, 0.67, 0.52 and 0.39 

kbp), respectively following MluI digestion (Fig. 4e).  None of the samples was co-infected with 

either ACMV or EACMV-UG2. 

 

2.3.4 Cloning and analysis of CMG sequences 

 

In order to further elucidate the results obtained with the PCR-RFLP technique, two 

representative samples were selected for each polymorphic variant for DNA sequencing.  The 

specific primers, ACMV-A-CPV and ACMV-A-CPC for ACMV and EACMV-A-CPV and 

EACMV-A-CPC for EACMV-UG2, were used to amplify PCR products of c.1375 bp from the 

regions flanking the CR and CP.  The PCR products were cloned and the partial nucleotide 

sequences obtained for clones aug115 and aug124 identified as ACMV-UG1.  Clones aug226 

and aug2110 corresponded to ACMV-UG2, eaug112 and eaug137 to EACMV- UG2[1], 

eaug228 and eaug237 to EACMV-UG2[2], and eaug313 and eaug322 to EACMV-UG2[3].  

Phylogenetic analysis was conducted for the field isolates together with sequences of already 

published begomoviruses (Fig. 5) using parsimony and maximum likelihood methods.  Results 

are reported only for the parsimony method because the two methods did not differ. 

 

Based on the DNA sequencing results, isolates aug115, aug124, aug226 and aug2110 

clustered with ACMV, while isolates eaug112, eaug137, eaug228, eaug237, eaug313 and 

eaug322 clustered with EACMV-UG2 (Fig. 5).  Interestingly, none of the ACMV isolates 

clustered with the West African isolates ACMV-[CI]/[CM]/[CM/DO2]/[NG]/[NG-Ogo] and  
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Figure 5. Dendrogram showing the phylogenetic relationship of cassava mosaic geminiviruses 

based on a partial sequence flanking the CR and CP.  The abbreviated reference GenBank 

sequences are as described in Table 1 and the field isolates are presented in a lower case.  The 

numbers at nodes indicate bootstrap scores using 1000 replicates and 70% majority-rule 

consensus tree.  The horizontal distance equivalent was 0.05 substitutions per site 
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 none of the EACMV-UG2 isolates clustered with EACMV-[KE-

K2B]/[MW]/[TZ]/EACMCV/[CI], despite the distinct polymorphisms obtained for ACMV-

UG2, EACMV-UG2[2] and EACMV-UG2[3].  Distance analysis revealed that the ACMV 

isolates shared a 95-100% sequence homology with their closest relatives, ACMV-

[CI]/[CM]/[CM/DO2]/[NG]/[NG-Ogo]/[KE]/UGMld/UGSvr, while the EACMV-UG2 isolates 

shared a 98-100% sequence homology with their closest relatives: EACMV- 

UG2/UG2Mld/UG2Svr (Table 3).  There was a higher percentage sequence identity within (≥ 

95%) than between the virus species (69-88%).   

 

2.3.5 Geographical distribution of CMGs in Uganda 

 

EACMV-UG2 was the most widespread virus and occurred throughout the surveyed regions 

(Fig. 2).  It predominated in the central, eastern, northern and southern regions, where it was 

detected in 89%, 100%, 84% and 81% of the samples, respectively (Table 4).  In contrast, 

ACMV was less widespread and predominated in the western region (69%) and Kalangala 

Island (83%).  Mixed infections occurred in the eastern (4.6%), western (5.3%), northern 

(3.9%), central (2.6%) and Kalangala (1.3%) regions, but were not identified in the southern 

region (Table 4).  Relative proportions of plants exhibiting mild or severe symptoms were: 

44%:56%, 38%:62%, 44%:56% and 48%:52% in the eastern, central, southern and northern 

regions, respectively.  In the western and Kalangala regions each comprised 50% of the 

populations sampled (Table 4). 
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Table 3. Comparison of pairwise nucleotide identity (ClustalW) of sequences flanking the CR and CP of isolated cassava mosaic begomoviruses 

and some selected well-studied cassava mosaic begomoviruses 

CMG isolate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
1. ACMV-UGSvr - 981 97 97 100 98 97 96 80 80 80 80 80 79 80 80 80 72 73 70 74 
2. ACMV-UGMld  - 97 96 98 96 97 97 79 79 79 78 79 78 79 79 79 71 71 69 73 
3. ACMV-KE   - 96 97 96 97 96 79 79 79 79 79 78 79 79 79 71 71 69 72 
4. ACMV-NG    - 97 96 96 95 80 79 79 79 80 79 79 80 79 72 73 70 74 
5. aug115     - 98 98 96 80 80 80 80 80 79 80 80 80 72 73 70 74 
6. aug226      - 96 95 79 79 79 79 79 78 79 79 79 72 72 70 73 
7. aug124       - 97 80 80 80 79 80 79 80 80 80 72 72 70 73 
8. aug2110        - 78 78 78 78 78 77 78 78 78 70 70 69 72 
9. EACMV-UG2         - 99 100 99 99 99 99 99 99 89 89 82 80 
10. EACMV-UG2Mld          - 99 99 99 98 99 99 99 89 90 82 81 
11. EACMV-UG2Svr           - 99 99 98 99 99 100 89 90 81 81 
12. Eaug313            - 99 98 98 98 98 89 89 81 80 
13. Eaug137             - 98 99 99 99 89 89 81 80 
14. Eaug228              - 98 98 98 88 88 81 80 
15. Eaug237               - 99 99 89 89 81 80 
16. Eaug322                - 99 89 89 81 81 
17. Eaug112                 - 89 89 81 81 
18. EACMV-TZ                  - 96 88 81 
19. EACMV-KE-K2B                   - 88 82 
20. EACMV-CM                    - 75 
21. SACMV                     - 

 
1Isolates (values over 90% sequence identity) are indicated in bold 

 



 45 

 

 

Table 4. Occurrence and distribution of cassava mosaic geminiviruses in Uganda, September 

2002 

 

1Regions are the relative geographical locations of the surveyed areas and do not represent 

the administrative boundaries of the regions of Uganda. 2Symptoms phenotype, M = Mild, S 

= Severe. 3Figures in parenthesis are occurrences (single and double infections) of the CMGs 

in samples collected from each region.  

Region1 

CMGs isolated 

ACMV-
UG1 

ACMV-
UG2 

EACMV-
UG2[1] 

EACMV- 
UG2[2] 

EACMV- 
UG2[3] 

EACMV- 
UG2[1] 

+ 
ACMV-UG1 

EACMV- 
UG2[1] 

+ 
ACMV-UG2 

No. of 
samples (n) 

Eastern        M2 0  0  11 1 0 4 0 16 
S 0 0 14 1 2 3 0 20 

 0 (7)3 0 (0) 25(32) 2 (2) 2 (2) 7 0 36 
         

Western      M 7 0 4 0 0 4 1  16 
S 7 0 6 0 0 3 0 16 

 14 (21) 0 (1) 10 (18) 0 (0) 0 (0) 7  1  32 
         

Central        M 1 2 10 1 0 0 0 14 
S 1 0 17 0 1 4 0 23 

 2 (6) 2 (2) 27 (31) 1 (1) 1 (1) 4  0  37 
         

Southern     M 0 3 4 0 0 0 0 7 
S 0 0 9 0 0 0 0 9 

 0 (0) 3 (3) 13 (13) 0 (0) 0 (0) 0  0  16 
         

Northern     M 3 0 5 0 0 4 0  12 
S 1 0 9 0 1 2 0 13 

 4 (10) 0 (0) 14 (20) 0 (0) 1 (1) 6  0  25 
         

Kalangala   M 0 2 0 0 0 0 1 3 
S 0 1 1 0 0 0 1 3 

 0 (0) 3 (5) 1 (3) 0 (0) 0 (0) 0  2  6 
         

M 11 7 34 2 0 12 2 68 
S 9 1 56 1 4 12 1 84 

Total 20 (44) 8 (11) 90 (117) 3 (3) 4 (4) 24 3 152 
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2.4 Discussion 

 

CMGs occurring in Uganda in 2002 were investigated using DNA-based PCR-RFLP molecular 

techniques and the results extended by DNA sequencing.  The PCR-RFLP technique was 

reproducible and enabled the preliminary identification of the CMGs affecting cassava, although 

some (13%) symptomatic plants produced no products with PCR.  This could be the result of 

either the degradation of the samples or viral DNA during handling and storage before laboratory 

analysis or low virus titre in these samples.  The PCR-RFLP technique distinguished between 

ACMV and EACMV-UG2, but further variability within the two species was not evident 

following sequence analysis, despite the potential usefulness of the technique in showing 

variations.  This emphasises the need for DNA sequencing when seeking to fully characterise 

field isolates. 

 

As in previous studies (Zhou et al., 1997; Harrison et al., 1997; Pita et al., 2001a, b) both 

ACMV and EACMV-UG2 occurred in Uganda in 2002.  EACMV-UG2 predominated and 

was comprised of three isolates: EACMV-UG2 (Deng et al., 1997; Zhou et al., 1997), 

EACMV-UG2Mld and EACMV-UG2Svr (Pita et al., 2001a, b).  In contrast ACMV was less 

prevalent and was represented by isolates ACMV-[KE] (Stanley, 1983), ACMV-UGMld and 

ACMV-UGSvr (Pita et al., 2001a, b).  The unique polymorphisms observed for ACMV-UG2 

did not correlate with the DNA sequencing results as both isolates aug226 and aug2110 

clustered with ACMV-UGMld/UGSvr (Pita et al., 2001a, b) and not with the West African 

isolates ACMV-[NG] (Morris et al., 1990), ACMV-[CM]/[CM/DO2] and ACMV-[CI] 

(Fondong et al., 2000).  Additionally, both the EACMV-UG2[2] isolates eaug228 and 

eaug237, which generated unique RFLPs unlike any of the published CMGs and the 

EACMV-UG2[3], and isolates eaug313 and eaug322, which generated a RFLP pattern 
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similar to that predicted of EACMV-[KE-K2B]/[MW] (Zhou et al., 1998), EACMV-[TZ] 

(Zhou et al., 1997) or EACMCV/[CI] (Pita et al., 2001b) clustered with EACMV-

UG2/EACMV-UG2Mld/EACMV-UG2Svr.  These data provide no evidence for the 

occurrence of EACMV-[KE-K2B]/ [MW]/[TZ] or EACMCV/[CI] in Uganda.  Rather the 

unique polymorphisms could be the result of single base substitutions in the sequences.  

 

EACMV-UG2 was found to be more widespread in post-epidemic Uganda than previously 

reported (Harrison et al., 1997; Pita et al., 2001a).  Unlike previous observations, in which the 

virus was consistently associated with severe CMD symptoms (Harrison et al., 1997; Zhou et 

al., 1997; Pita et al., 2001a), in the current study EACMV-UG2 occurred in both the mildly 

(74%) and severely (89%) diseased plants.  This is probably due to the increased occurrence of 

mild forms of EACMV-UG2 compared with 5 yr previously, when mild EACMV-UG2 was 

seemingly confined to isolated localities (Pita et al., 2001a).  Furthermore, as a result of change 

in attitude farmers are increasingly selecting the mildly diseased plants, which provide more 

planting material and ensure higher yields than the severely diseased plants (Owor, 2003).  As 

a consequence, many local varieties are now retained in farmers’ fields despite the high 

incidence of infection (Otim-Nape et al., 2001).  Moreover, the widespread occurrence of both 

the mildly and severely diseased plants in the field, irrespective of location, inherent plant 

resistance and/or virus type is further evidence that Uganda was in a ‘post-epidemic’ situation 

by the time of the current study.  As expected, ACMV was mainly associated with mild (48%) 

than severe (28%) CMD.  The virus (ACMV) has been reported in most of the cassava 

producing areas of Africa (Swanson and Harrison, 1994) and has not been associated with 

severe CMD.  The higher incidence of ACMV than EACMV-UG2 in Kalangala Island 

suggests that the latter may have only recently spread to this area.  By contrast, the 

predominance of ACMV in the western region, an area affected by EACMV-UG2 during the 
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1990s (Harrison et al., 1997), is more likely to be the result of recent whitefly-borne spread of 

ACMV in the region.   

 

Mixed infections occurred in the eastern (4.6%), western (5.3%), northern (3.9%), central 

(2.6%) and Kalangala (1.3%) regions.  Mixed infections have been reported previously in 

Uganda (Harrison et al., 1997; Pita et al., 2001a, b) and were shown to elicit extremely severe 

symptoms in the affected plants.  Surprisingly, data from this study did not provide evidence of 

the previously reported synergism in the mixed infections that leads to severe symptoms.  

However, both mild and severe forms of EACMV-UG2 and ACMV have been reported (Pita 

et al., 2001a), and confirmed in our study, and it may be that there are mixtures in which 

synergism does not occur, possibly involving mild strain combinations.  Furthermore, the fact 

that no plants were identified that showed co-infection with different isolates of either ACMV 

or EACMV-UG2 is significant and could suggest that infection of a plant by one strain 

prevents superinfection by another strain of the same virus.  It has been reported that initially 

healthy plants become more severely diseased than plants initially infected by mild virus 

strains under high CMD pressure conditions in Uganda (Owor, 2003; Owor et al., 2004a).  

 

The study established the current situation of the CMGs in the post-epidemic affected areas of 

Uganda.  The widespread occurrence of EACMV-UG2 throughout the surveyed areas is 

evidence that the disease remains a major limiting factor to cassava production in the country.  

However, the increasing occurrence of mildly diseased plants in farmers’ fields warrants 

further investigation.  This information will be integral to an understanding of the molecular 

mechanisms and biological significance of the virus-virus and virus-host interactions.  
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Chapter Three 

 

Mitochondrial DNA variation and geographical distribution of cassava 

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) genotypes and 

associated cassava begomoviruses in the post-CMD epidemic regions of 

Uganda 
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Abstract 

 

Unprecedented upsurges in populations of the cassava whitefly Bemisia tabaci (Genn.) have 

occurred in several regions of Uganda that have been affected by an epidemic of a severe form 

of cassava mosaic disease (CMD), which began there in the late 1980's.  More recently, the 

increased whitefly populations and the severe form of CMD have spread to previously 

unaffected areas in Uganda and beyond.  The objective of this study was to investigate the 

identity and geographical distribution of cassava-associated B. tabaci genotypes in the post-

CMD epidemic affected areas of Uganda, using the mitochondrial cytochrome oxidase I 

(mtCOI) sequence as a molecular marker.  The presence in the post-epidemic zone of the two 

previously described genotype clusters, Ug1 and Ug2, that diverged at ~8% (nt. identity), as 

was also reported previously, was confirmed.  A comparison of the mtCOI nucleotide 

sequences (n = 66) for B. tabaci within the Ug1 and Ug2 genotype clusters revealed intra-

group variances of 0.1 to 2.8% and 0.1 to 0.6%, respectively.  However, our data showed that 
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the Ug1 genotypes occurred more frequently (83%) than the Ug2 types (17%), in contrast to 

the genotypes distribution reported for vector populations that occurred on cassava in 1996-97, 

at the height of the spread of the severe epidemic.  In addition, unlike previously reported, in 

the current study no definitive association was established of a particular vector genotype 

cluster with cassava plants exhibiting the severe disease phenotype.  However, generally, the 

Ug1 genotypes predominated with EACMV-UG2 in the central, southern, northern and eastern 

regions, while the Ug2 types occurred most frequently in the western and Kalangala Island 

regions where ACMV infection was likewise dominant.   

 

3.1 Introduction 

 

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) transmit begomoviruses (genus, 

Begomovirus; family, Geminiviridae) (Fauquet and Stanley, 2003) that cause mosaic disease 

(CMD) of cassava in Africa (Bock and Woods, 1983; Fishpool and Burban, 1994; Legg, 1995; 

Otim-Nape et al., 1996).  During the past fifteen years, upsurgence of B. tabaci in certain parts of 

sub-Saharan Africa has become more frequent and increased yield losses have occurred in cassava 

crops heavily colonized by B. tabaci, with disease incidences ranging from 20% to 100% in the 

most affected cultivars (Thresh et al., 1994b).  Using a conservative estimate of 100 United States 

(U.S.) dollars per tonne, annual losses in cassava due to CMD are estimated at $60 million in 

Uganda (Otim-Nape and Thresh, 1998), and more than $1,200 million in Africa (Thresh et al., 

1997).  

 

Evidence has been provided that B. tabaci populations exhibit distinct biological traits as in 

host-plant range and adaptability (Bird, 1957; Costa and Russell, 1975; Gill, 1992; Burban et 

al., 1992; Legg, 1995), induction of plant physiological disorders (Costa and Brown, 1991; 
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Cohen et al., 1992) and plant virus transmission (Brown and Bird, 1992, Bedford et al., 1994; 

Markham et al., 1996; Maruthi et al., 2002).  Using different molecular tools, including the 

random amplified polymorphic DNA (RAPD) PCR fingerprinting (Gawel and Bartlett, 1993; 

De Barro and Driver, 1997; Guirao et al., 1997; Maruthi et al., 2001; Moya et al., 2001), the 

internal transcribed spacer I (ITSI) region (De Barro et al., 2000, 2005; Abdullahi et al., 2003), 

and the mitochondrial DNA cytochrome oxidase I (mtCOI) gene (Frohlich et al., 1999; Legg et 

al., 2002; Viscarret et al., 2003; Berry et al., 2004; Maruthi et al., 2004a), evidence has been 

provided also for the occurrence of genetically distinct B. tabaci populations worldwide.   

 

Increased populations of B. tabaci, particularly in areas where the whitefly was previously 

unimportant, have been linked to the appearance of new biotypes or strains of the vector 

(Brown, 1990, 1994, 2001; Brown and Bird, 1992; Cohen et al., 1992; Bedford et al., 1994).  

In the south-western U.S. for example, the B biotype of B. tabaci was introduced to the region 

by way of ornamental plants (Costa and Brown, 1991; Costa et al., 1993a; Brown et al., 

1995a,b; Frohlich et al., 1999; Brown, 2000).  The B biotype subsequently increased in 

distribution and abundance, ultimately displacing the ‘local’ A biotype (Costa et al., 1993a).  

However, the B biotype, which has also invaded southern Spain, has failed to displace the Q 

biotype, the indigenous population (Moya et al., 2001).  The propensity of certain B. tabaci to 

colonize a wide range of plant hosts (Cock, 1993) has led to outbreaks of previously 

undescribed begomovirus diseases in the Americas (Brown, 1990, 1994, 2000, 2001; Brown 

and Bird, 1992; Brown et al., 1995b).   

 

In Uganda a key feature of the epidemic of severe form of CMD that devastated cassava was 

the occurrence of a disease ‘front’ characterized by an unusually severe disease symptom, 

rapid CMD spread (Legg and Ogwal, 1998), and high whitefly populations (Otim-Nape et al., 
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1997a; Legg and Ogwal, 1998; Colvin et al., 1999).  In trying to establish the cause of the 

increased whitefly populations at the CMD epidemic ‘front’, research has focussed mainly on 

cassava-colonizing B. tabaci populations, in search of a pandemic-associated biotype (Maruthi 

et al., 2001; Legg et al., 2002), and the interaction between the cassava mosaic geminiviruses 

(CMGs), the whitefly vector and their cassava host (Colvin et al., 1999, 2004; Maruthi et al., 

2002; Omongo, 2003).   

 

Preliminary evidence has been advanced for a synergistic/mutually beneficial interaction 

between severely diseased plants infected with East African cassava mosaic virus–Uganda 2 

(EACMV-UG2) and B. tabaci (Colvin et al., 1999, 2004; Omongo, 2003).  A change in the 

composition of the amino acids: asparagine, tryptophane, glutamine and tyrosine (P. Sevenson, 

unpublished data) in the severe phenotype plants was suggested as the possible cause of the 

observed increased fecundity and development rate of B. tabaci, which led to increased vector 

population densities.  However, these results remain to be verified with further studies.  An 

alternative and not mutually exclusive hypothesis, proposed the appearance of a more fecund 

biotype/genotype of B. tabaci as the likely cause of the increased whitefly populations in the 

epidemic-affected areas (Gibson et al., 1996; Otim-Nape et al., 1996).  B. tabaci were 

collected on cassava in the pandemic and non-pandemic areas in Uganda in 1996-97 (Maruthi 

et al., 2001; Legg et al., 2002), and used to test the hypothesis.   

 

Maruthi et al. (2001) found no discernible differences in the fecundity, nymphal development, 

or survival to adult eclosion in the cassava-associated B. tabaci populations from pandemic and 

non-pandemic areas.  Further, no clear association was established between plants exhibiting 

the severe disease phenotype, and ‘pandemic’ or ‘non-pandemic’-associated whiteflies.  

Moreover, in a related study, Maruthi et al. (2002) established no significant differences in 
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virus transmission efficacy between whiteflies from the ‘pandemic’ and ‘non-pandemic’ areas.  

This led to the conclusion that the severe pandemic was probably not associated with a novel 

or reproductively-isolated B. tabaci biotype with improved fitness attributes.  However, both 

the ‘pandemic’ and ‘non-pandemic’ populations grouped in the same phylogenetic clade, based 

on RAPD-PCR (Maruthi et al., 2001).  This led to the suggestion that the two populations were 

genetically similar, and hence, they would not have been expected to exhibit biological 

differences, which was consistent with experimental results.   

 

Using the mtCOI molecular marker, Legg et al. (2002) confirmed that a distinct B. tabaci 

genotype cluster, designated Uganda 2 (Ug2), was associated with the epidemic of severe 

CMD in 1997/8 in Uganda.  More recently, the occurrence of the Ug2-like genotypes in the 

pandemic zone in Uganda was confirmed also by Maruthi et al. (2004) from the mtCOI 

analysis of a whitefly population collected at Namulonge, which was within the pandemic-

affected zone in 1996-97.  In the Legg et al. (2002) study, another genotype cluster, referred to 

as Uganda 1 (Ug1) was identified, which diverged at 8% from Ug2, and was most closely 

related to the other genotypes from surrounding countries that were unaffected by the CMD 

epidemic together with B. tabaci from southern Africa (Berry et al., 2004), and in localities of 

Uganda ‘ahead’ of the epidemic ‘front’.  Since 1997, the EACMV-UG2-associated epidemic 

has continued to spread, affecting the whole of Uganda (Sseruwagi et al., 2004b) and the high 

B. tabaci populations persist in many parts of the country including the newly affected areas.  

In this context, it is essential to understand the current status of previously identified B. tabaci 

genotypes, in order both to clarify their relationship with the CMD epidemic and to determine 

the biological significance of the genetic differences identified and their epidemiological 

implications. 
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In this study, we sought to establish the geographical distribution of the Ug1 and Ug2 B. tabaci 

genotypes in the post-epidemic zone of Uganda.  Additionally, the relationship between the 

vector genotypes and distribution of cassava-infecting begomoviruses in the post-epidemic 

zone was examined also.  We used the terms genotype and genotype cluster throughout to refer 

to genetically distinct sequences and for a group of closely related sequences, respectively.   

 

3.2 Materials and Methods 

 

3.2.1 Whitefly and virus collections 

 

Whitefly (B. tabaci) adults and mosaic-affected cassava leaves were collected from 3 to 5 

month-old cassava plants during September 2002 at twenty-two locations in six major cassava- 

producing regions of Uganda (Table 5).  At each location, at least 20 adult whiteflies were 

collected using an aspirator.  Whiteflies were transferred to vials containing 80% ethanol and 

stored at -20ºC until analysis.  Two leaf samples were collected from symptomatic cassava 

plants at each location, and stored in a cool box.  Samples were frozen at -20ºC until virus 

identification was carried out.   

 

3.2.2 Extraction of whitefly DNA 

 

Three adult female whiteflies were selected randomly from each field collection/sample. Each 

individual insect was ground in 40µl of lysis buffer (5mM Tris-HCl, pH8.0, 0.5 mM EDTA, 

0.5% Nonidet P-40, 1 mg/ml proteinase K) using the tips of 0.5 ml microfuge tubes. The lysis 

product was incubated for 15 min at 65°C and for a further 10 min at 95°C.  The lysis was 
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briefly centrifuged (~ 60 sec) and immediately placed on ice before PCR amplification.  Lysis 

was done as described by Frohlich et al. (1999). 

 

3.2.3 PCR and cloning of mtCOI DNA 
 
 

Amplification of a fragment (~ 850 bp) of the mtCOI gene was achieved by the primer pair: 

MT10/C1-J-2195 (5´-TTGATTTTTTGGTCATCCAGAAGT-3´) and MT12/L2-N-3014 (5´- 

TCCAATGCACTAATCTGCCATATTA-3´) obtained from the UBC Insect Mitochondrial 

DNA Primer Oligonucleotide Set, complied by B. J. Crespi and C. Simon (Simon et al., 1994, 

per Frohlich et al., 1999).  A DNA template of 5µl was used in a reaction mixture of 25µl, 

containing 2.5µl Taq 10x buffer with Mg2+, 3.0µl 5x Taq Master enhancer, 1.5µl 

deoxynucleotide triphosphates (dNTPs), 1.0µl of 25 mM Mg 2+, 0.75µl each of primers MT10 

and MT12 and 0.15 µl of Taq DNA polymerase. 

 

Template DNA was denatured at 95°C for 1 min, followed by primer annealing at 52°C for 1 

min and DNA amplification for 1 min at 72°C using 30 cycles.  A final extension of 20 min 

was run at 72°C and the reaction held at 4°C in a Perkin Elmer DNA thermal cycler.  

Electrophoresis of the PCR-amplified products was conducted using 1% agarose gels in 1x 

TAE buffer in a submarine gel unit (Hoefer Scientific Instruments, San Francisco, U.S.A) and 

the bands viewed with UV transillumination following ethidium bromide staining.  The gels 

were photographed using an Electrophoresis Documentation and Analysis System 120 digital 

camera (Kodak Digital Science, Japan).   



 56 

 
 
Table 5.  Geographical distribution and percentage of the total population examined for cassava-associated B. tabaci genotypes, and of two 
cassava mosaic begomoviruses, associated with cassava plants in six regions of Uganda during September 2002 
 

Geographical location  
Source 
plant 

Number 
of B. tabaci 
samples 

B. tabaci genotype 
distribution (%) 

Cassava mosaic begomovirus 
distribution (%) 

Region1 District/s Ug1 Ug2 ACMV EACMV-UG2 
Central Wakiso, Masaka, Kibaale, 

Mukono 
 

Cassava 12 83 17 20 80 

Southern Rakai, Mbarara, Bushenyi 
 

Cassava 12 100 0 19 81 

Western Kabarole, Kyenjojo, 
Masindi, Hoima 
 

Cassava 12 58 42 55 45 

Northern Nakasongola, Masindi, 
Soroti 
 

Cassava 12 92 8 32 68 

Eastern Iganga, Kumi, Busia, 
Bugiri 
 

Cassava 12 83 17 16 84 

Kalangala 
Island 

Kalangala Cassava 6 75 25 62 38 

 
1Regions are relative geographical locations of the surveyed areas and do not follow the administrative boundaries of the regions of Uganda  
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A PCR product of the expected size (~ 850 bp) was obtained.  Bands were excised from the 

agarose gel and purified for DNA sequencing using a QIAquick PCR Purification Kit (Qiagen 

Inc, USA) and the protocol supplied by the manufacturer.  The sequence for each PCR product 

was determined bi-directionally to achieve at least a 200 base overlap, using the PCR primers 

MT10 and MT12 as sequencing primers. Sequences were determined using an automated 

sequencer (ABI 3700) located at the Laboratory of Molecular Systematics and Evolution 

(LMSE) Facility, University of Arizona, Tucson, Arizona, USA.  

 

3.2.4 Phylogenetic analysis of mtCOI sequences 

 

Whitefly mtCOI sequences were edited manually to produce a consensus sequence (800 bp) 

for each individual using Faktory, which is based on the on-line program, FAKtory 1.41 

(Ewing et al., 1998), available through the Biotechnology Computing Facility of the University 

of Arizona (http:bcf.arl.Arizona.edu/biodesk) and the EditSeq programme available in the 

DNASTAR software package (Lasergene, Madison, Wisconsin, USA).  Sequences were 

aligned using the Clustal W (weighted) (Thompson et al., 1994) algorithm option in the 

Megalign computer programme (DNASTAR).  Mt COI sequences were subjected to a heuristic 

search and subtree-pruning-regrafting branch swapping using the maximum likelihood (ML) 

and parsimony methods available in Phylogenetic Analysis Using Parsimony* (PAUP*4.0b4) 

(Swofford, 1998).  The ML tree was reconstructed using the maximum likelihood optimality 

criterion with among-site rate variation, corresponding with gamma distribution and a general-

time-reversible substitution model with the rate matrix set to 1.  For parsimony analysis, 

bootstrapping (Felsenstein, 1985) was performed with PAUP using the heuristic option for 

1000 replications at a 70% confidence limit.  Sequences were subjected to phylogenetic 
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analysis using reference mtCOI sequences available in the EMBL/DDBJ/NCBI GenBank 

databases (Table 6).   

 

3.2.5 DNA extraction, PCR and analysis of cassava begomoviruses 

 

Viral DNA was extracted using the method of Dellaporta et al. (1983).  PCR amplification of 

begomoviral DNA was conducted with the universal primers: Uni/F (5' 

KSGGGTCGACGTCATCAAGACGTTRTAC 3') and Uni/R (5' 

AARGAATTCATKGGGGCCCARARRGACTGGC 3') (Briddon and Markham, 1994), where 

K = G+T, R = A + G, S = G + C to obtain near full-length (c. 2760-2780 bp) DNA-A 

fragments.  The virus-specific primers: ACMV-AL1/F (5' GCGGAATCCCTAACATTATC 3') 

and ACMV-ARO/R (5' GCTCGTATGTATCCTCTAAGGCCTG 3') and UV-AL1/F (5' 

TGTCTTCTGGGACTTGTGTG 3') and ACMV-CP/R3 (5' GCCTCCTGATGATTATATGTC 

3') (Zhou et al., 1997) were used to identify the presence of ACMV (c. 1024 bp) and EACMV-

UG (c. 1700 bp), respectively.  Viral DNA from previously characterised samples was used as 

positive controls for ACMV and EACMV-UG and the PCR reaction mixture as the negative 

control.  The PCR products were detected by electrophoresis.  The conditions and reagents 

used for the PCR analyses are as described in Sseruwagi et al. (2004b). 

 

3.2.6    Genotype distribution mapping 

 

Latitude and longitude were recorded for each sample site using a Geographical Positioning 

System (GPS) for each sampled location and were used to map the geographical distribution of 

the B. tabaci genotypes in Uganda, using ArcView software (Environmental Systems Research 

Institute Inc., Redlands, California, USA). 
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Table 6. Whitefly genotypes and location of reference whiteflies used in phylogenetic analysis of 

mitochondrial cytochrome oxidase I sequences and their respective GenBank accession numbers  

Whitefly/Genotype Location GenBank Accession No. 

AB A Benin Benin AF110693 
ARG2 Santiago Argentina AF340213 
AZ A Arizona Arizona, USA AY057122 
AZ B Arizona Arizona, USA AY057123 
Bemisia afer1 - AY057218 
CAL A Brawlee CA California, USA AY057124 
CUL Mexico Mexico AY057125 
HC China China AF342777 
IS B Israel Israel AF110705 
Ivory Coast, cassava Ivory Coast AY057135 
Ivory Coast, okra Ivory Coast AY057136 
IW India India AF110702 
JAT Puerto Rico Puert Rico AF110705 
Morocco 1 Morocco AF342773 
Moz-Kal 1 Mozambique AF344278 
PC91 Pakistan 1 Pakistan AF342778 
SA Lucia 2 South Africa AF344260 
SC Sudan 1 Sudan AF110706 
SP92 Spain Q Spain AF342775 
SwazMap1 Swaziland AF344269 
Trialeurodes vaporariorum2 - AF342774 
TC Turkey Turkey AF342776 
Thailand cotton Thailand AF164670 
Uganda sweetpotato Uganda AY057174 
Zam 2 Zambia AF344281 
30MNten (Ug1) Uganda AY057171 
70Namu (Ug1) Uganda AY057209 
59Bmatu (Ug1) Uganda AY057199 
131Igan (Ug2) Uganda AY057154 
17Ikul (Ug2) Uganda AY057158 
 

1,2The species and genus outgroups used in the analysis were Bemisia afer (Priesner & Hosny) 

and Trialeurodes vaporariorum (Westwood)   
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3.3    Results 

 

3.3.1 PCR amplification of mtCOI DNA 

 

At least six B. tabaci adults were obtained from each of six major cassava-producing regions of 

Uganda (Table 5), to provide a total of 66 samples to study the genetic variability and 

distribution of cassava-associated B. tabaci genotypes.  A PCR fragment of the mtCOI gene 

(~850 bp) was obtained for each adult whitefly examined using the primer pair: MT10/C1-J-

2195 and MT12/L2-N-3014 (Fig. 6).  

 

3.3.2 Phylogenetic analysis of whitefly mtCOI sequences 

 

A consensus sequence was obtained for each mtCOI nucleotide sequence.  The sequences have 

been deposited in the GenBank database as accession numbers AY563637 to AY563704.  

Phylogenetic trees that were predicted using parsimony and the maximum likelihood methods 

did not differ with respect to clade affiliations for whitefly genotypes, thus, only the parsimony 

tree is shown here (Fig. 7). 

 

Based on the phylogenetic analyses of the mtCOI sequences, members of the B. tabaci 

complex grouped into four main clusters in either the New or Old World (Fig. 7).  All four 

major clusters were supported by high bootstrap (bs) values (>90), with several other sub-

groups having bs scores of ≥80.  The first main cluster contained genotypes from the New 

World (Argentina, Puerto Rico, Mexico and USA).  The second, third and fourth main clusters 

contained only Old World B. tabaci.  Members of B. tabaci from the Mediterranean-North 

Africa-Middle East (MED-NAFR-ME) region, which also includes the well-studied B and Q 
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Figure 6. (A) Map of mitochondrial DNA showing position of cytochrome oxidase I (COI) 

gene, adapted from Crozier and Crozier (1993) in Marjorie (1994). (B) Agarose gel of PCR- 

amplified fragments (850 bp) of Bemisia tabaci mtCOI DNA (lanes 2-4). Lane 1: DNA ladder 

of 2 kbp 
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biotypes grouped in the second main cluster, while those from SouthEast Asia and the Far 

East, including India, China, Pakistan, Thailand and Australia grouped in the third main 

cluster.  The cassava-associated B. tabaci genotypes from sub-Saharan Africa grouped into 

three sub-clusters within the fourth main cluster, together with a non-cassava genotype on 

Asystasia spp. in Benin.  However, the Ugandan sweetpotato and Ivory Coast cassava 

genotypes clustered separately from the other African genotypes. 

 

Whiteflies (B. tabaci) collected on cassava in the post-CMD epidemic affected areas of 

Uganda (this study), grouped definitively in two sub-clusters (bs >90) within the fourth main 

cluster, together with other cassava-associated B. tabaci populations from sub-Saharan Africa.  

B. tabaci (n = 55) in the first sub-cluster shared close sequence homology (97-99%) with the 

previously reported Ug1 genotypes in Uganda, together with B. tabaci on cassava from 

Mozambique, South Africa, Swaziland and Zambia in southern Africa, and collectively, from 

locales outside the CMD epidemic zone (Fig. 7).  The intra-group variance was 0.1 to 2.8% 

(Table 7).  B. tabaci (n = 11) in the second sub-cluster closely resembled (>99% nt identity) 

the Ug2 genotypes, also reported previously in Uganda (Fig. 7), with an intra-group variance 

of 0.1 to 0.6%.  A pairwise comparison of the nucleotide identity of the Ug1- and Ug2-like 

genotypes revealed an inter-group variance of ~ 8% (Table 7).  

 

3.3.3 Geographical distribution and association of B. tabaci genotypes and CMGs in Uganda 

 

Interestingly, the Ug1 genotypes comprised the majority (83%) of the B. tabaci sampled on 

cassava and occurred more frequently than the Ug2 types (17%) in the post-CMD epidemic-

affected areas in Uganda in 2002 (Table 5, Fig. 8).  The Ug1 types predominated throughout 

the sampled areas, comprising the entire population in southern region, 92% of the total 
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Figure 7.  Predicted genotype phylogeny based on the mitochondrial cytochrome oxidase I sequence for 
B. tabaci collected in six cassava-growing regions of Uganda during September 2002, and well-studied 
B. tabaci reference populations, using the maximum parsimony algorithm available in PAUP* 
(Swofford, 1998).  T. vaporariorum and B. afer are included as the outgroup sequences. Samples are 
indicated by country, source-plant species and location from where they were collected. Country: Ug = 
Uganda, source-plant species: Cs = cassava and location (district): Bg = Bugiri, Bs = Busia, Bu = 
Bushenyi, Ho = Hoima, Ig = Iganga, Kb = Kabarole, Ki = Kibaale, Kl = Kalangala, Ku = Kumi, Ky = 
Kyenjojo, Mb = Mbarara, Mk = Masaka, Mu = Mukono, Ms = Masindi, Nk = Nakasongola, Rk = 
Rakai, So = Soroti, Wk = Wakiso 
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population in the northern region, 83% in both central and eastern regions, 75% in Kalangala 

Island and 58% in the western region (Table 5).  In contrast, the Ug2 types occurred most 

frequently in western region (42%) and Kalangala Island (25%), and least frequently in 

northern region (8%).  In several eastern, western and central region locations, the Ug1- and 

Ug2-like genotypes occurred together (Fig. 8).   

 

No definitive relationship was observed with respect to presence or geographical distribution 

of the two vector genotype clusters, Ug1 and Ug2, and the two cassava-infecting 

begomoviruses, ACMV and EACMV-UG2, detected in samples examined here.  However, 

generally, the Ug1-like genotypes predominated the central, southern, northern and eastern 

regions, where EACMV-UG2 infection was also most frequent (Table 5, Fig. 8).  In contrast 

the Ug2 types occurred most frequently in the western and Kalangala Island regions where 

ACMV infection was likewise dominant (Table 5, Fig. 8).    

 

3.4 Discussion 

 

This study sought to establish the current status of the two cassava-associated B. tabaci 

genotype clusters (Ug1 and Ug2), previously identified in Uganda (Legg et al., 2002), in order 

both to clarify their relationship with the CMD epidemic and to determine the biological 

significance of the genetic differences identified and their epidemiological implications.  

 

As expected, the mtCOI analysis confirmed the presence of the Ug1 and Ug2 genotypes in the 

post-epidemic zone in Uganda in 2002.  The mtCOI sequences of the Ug1- and Ug2-like 

genotypes were 8% divergent, as shown also by Legg et al. (2002) and Maruthi et al. (2004a), 
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Table 7.  A pairwise comparison of the mitochondrial cytochrome oxidase I (mtCOI) nucleotide sequence1, expressed as percent nucleotide 

identity between whitefly populations, as calculated by the Clustal W algorithm (Thompson et al., 1994) 

 
 
Genotype 

Percentage Identity 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

  1. UgCsWk3 - 99.9 99.7 92.6 92.6 92.1 97.2 93.2 86.7 85.3 85.2 82.7 82.1 80.9 78.9 48.5 34.9 
  2. UgCsBg58  - 99.7 92.6 92.6 92.1 97.2 93.2 86.7 85.3 85.2 82.7 82.1 80.9 78.9 48.5 34.9 
  3. 30MNten (Ug1)   - 92.6 92.6 92.1 97.2 93.2 87.0 85.5 85.3 82.9 82.3 81.0 79.0 48.5 35.0 
  4. UgCsKb25    - 99.9 99.5 91.0 90.7 87.3 85.2 85.0 82.9 82.3 81.6 79.5 49.4 34.7 
  5. UgCsHo34     - 99.5 91.0 90.7 87.3 85.2 85.0 82.9 82.3 81.6 79.5 49.4 34.7 
  6. 17Ikul (Ug2)      - 90.6 90.3 86.9 84.7 84.6 82.4 81.8 81.2 79.3 49.4 34.4 
  7. SAfriLucia2       - 91.4 85.6 84.2 84.0 81.6 82.1 79.9 77.9 48.0 36.1 
  8. ABA Benin        - 87.3 84.7 84.6 81.5 81.2 80.9 78.9 48.6 35.0 
  9. Ivory Coast cassava         - 85.8 85.6 81.0 80.1 79.5 79.3 48.0 34.1 
10. IS B Israel          - 99.8 83.0 84.9 81.5 79.8 48.3 34.1 
11. AZ B Arizona           - 82.9 84.7 81.6 79.6 48.5 34.1 
12. Uganda sweetpotato            - 81.9 82.9 77.3 46.5 33.8 
13. IW India             - 80.7 78.5 46.9 35.8 
14. JAT Puerto Rico              - 89.7 48.1 34.6 
15. AZ A Arizona               - 47.1 33.8 
16. T. vaporariorum                - 34.6 
17. B. afer                 - 

 
 

1Selected, representative sequences are shown for cassava-associated B. tabaci genotypes identified in Uganda in 2002 
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Figure 8.  Map of Uganda illustrating the geographical distribution of cassava-associated B. 

tabaci genotypes in six cassava-producing regions sampled: northern (hatched area), eastern 

(solid white), western (dark spotted area), central (solid black), southern (light spotted area) 

and Kalangala (in L. Victoria), based on field collections during September 2002  
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thus confirming that the genotypes detected here using mtCOI as a molecular marker are the 

same as those previously documented.  Both the Ug1 and Ug2 genotypes clustered together 

with other cassava-associated B. tabaci genotypes from sub-Saharan Africa, confirming the 

suggestion that African cassava B. tabaci populations form a distinct group (Maruthi et al., 

2001, 2004a; Abdullahi et al., 2003; Berry et al., 2004).   

 

In 1997, the Ug2 genotypes predominated (with 100% occurrence) in the epidemic-affected 

areas, and occurred together with the Ug1 genotypes ‘at’ the epidemic ‘front’, while the Ug1 

types predominated ‘ahead’ of the ‘front’ (Legg et al., 2002).  The occurrence of the Ug2 

genotypes in the CMD epidemic-affected areas in Uganda in 1996/7 was confirmed also by 

Maruthi et al. (2004a), whose Ugandan B. tabaci population, UgCas-Nam (AF418669), which 

was collected in Namulonge, an area within the CMD epidemic-affected zone in 1996-97, 

shared 100% nt identity with the Ug2 genotype cluster of Legg et al. (2002).  More recently, it 

was further established that a Ug2-like genotype occurred also at Ssanji in Rakai district of 

south-west Uganda, an area well ahead of the epidemic front in 1996-97, from the analysis of 

B. tabaci samples (stored in 80% ethanol) collected on cassava at the time (J. Colvin, 

unpublished data).  Collectively, these data suggest the wide occurrence of the Ug2 genotypes 

in Uganda in 1996-97.  In contrast, however, the data presented here indicate a larger 

proportion and wider occurrence of the Ug1 (83%) than Ug2 (17%) types among the collective 

B. tabaci population on cassava in the post-CMD epidemic zone in Uganda in 2002.  The 

apparently diminishing frequency of the Ug2 genotypes in the epidemic-affected areas was 

reported also in 1999 (Legg et al., 2002), but as in the current study it was unclear why or how 

it was disappearing.  
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Although both the originally occurring ACMV and the recent epidemic-associated EACMV-

UG2 continue to occur in the post-epidemic affected regions of Uganda, currently the newly 

occurring EACMV-UG2 predominates in most of the country (this study & Sseruwagi et al., 

2004b).  However, the fact that the Ug1 whitefly genotypes predominated with EACMV-UG2, 

unlike previously where the Ug2 genotypes were more closely associated with the severe 

disease phenotype (due to EACMV-UG2) in Uganda (Legg et al., 2002), suggests that the Ug1 

genotypes, which are closely related to B. tabaci populations in the CMD epidemic-threatened 

areas and locales ‘ahead’ of the epidemic ‘front’, may be the key vector of the spreading severe 

epidemic in these areas.  Moreover, whiteflies that are presently associated with the epidemic 

‘front' in western Kenya exhibit high fecundity and the dispersal behaviour (J.P. Legg, pers. 

observ.), characteristic of the whitefly population that occurred in Uganda at the peak of the 

CMD epidemic in the late 1990s (Otim-Nape et al., 1997a; Legg and Ogwal, 1998; Colvin et 

al., 1999), and the recombinant virus is associated with the epidemic front where it continues 

to spread in East and Central Africa (Legg, 1999; Legg et al., 2001; Bigirimana et al., 2004).  

In the light of these observations, the circumstances leading to the dramatically increased 

frequency of occurrence of the Ug1 genotypes amongst the collective cassava-associated B. 

tabaci population, and its now wide distribution in the post-epidemic zone in Uganda, 

compared to that in 1996-97, merit further investigation. 

 

Severe CMD has reached pandemic proportions and has been reported in numerous countries 

neighbouring Uganda, including western Kenya and the Lake Victoria region of Tanzania and 

to the east and south (Legg, 1999), Rwanda (Legg et al., 2001: Sseruwagi et al., 2005a), DR 

Congo (Neuenschwander et al., 2002) to the southwest, and most recently, to Burundi 

(Bigirimana et al., 2004).  The need to discern the genetic identity, biology, field population 

dynamics and relationship of the whitefly vector and begomoviruses associated with the 
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spreading pandemic is now more compelling than ever.  Elucidating the biological significance 

and epidemiological implications of the genetic differences identified of the B. tabaci 

populations in the pandemic-threatened areas in relation to the virus population structure will 

enable present and future forecasting of the pandemic front, and ensure that sustainable control 

practices are adopted to combat this plant disease that threatens the livelihood of more than 

200 million people in the affected regions.  
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Chapter Four 

 

Colonization of non-cassava plant species by cassava whiteflies   

(Bemisia tabaci) in Uganda 

 

Key words: Whitefly, genetic diversity, mitochondrial cytochrome oxidase I DNA, host races 
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Running title: Cassava B. tabaci ecology 

 

Abstract 

 

The restriction of cassava Bemisia tabaci (Genn.) genotypes to cassava and the colonization of 

alternative host species in selected cassava-growing areas of Uganda were studied in 2003/4.  

B. tabaci adults and fourth instar nymphs were collected from cassava and 22 other cultivated 

and uncultivated species occurring adjacent to the sampled cassava fields.  The mtCOI 

sequence was used to establish the genotype of the B. tabaci collected.  Phylogenetic analysis 

of mtCOI sequences revealed that only a single genotype cluster, Ug1, occurred on both 

cassava and non-cassava plant species sampled.  The Ug1 genotypes (n = 23) shared 97-99% nt 

identity with the previously reported cassava-associated B. tabaci populations in southern 

Africa, and were ~8% divergent from the Ug2 genotypes.  The Ug1 types were identified on 

52% of the plant species sampled.  Based on the presence of B. tabaci fourth instar nymphs, 

the Ug1 genotypes colonized five non-cassava plant species: Manihot glaziovii, Jatropha 

gossypifolia, Euphorbia heterophylla, Aspilia africana and Abelmoschus esculentus, 
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suggesting that cassava B. tabaci (Ug1 genotypes) are not restricted to cassava in Uganda.  No 

Ug2-like genotypes were detected on any of the non-cassava plant species sampled in this 

study.  The identification of additional hosts for at least one genotype cluster, Ug1, known also 

to colonize cassava, and which was hitherto thought to be ‘cassava-restricted’ may have 

important epidemiological significance for the spread of CMGs in Uganda.   

 

4.1 Introduction 

 

The whitefly Bemisia tabaci (Genn.) (Brown et al., 1995a) is typically a polyphagous insect, 

and some biotypes and genotypes are extremely polyphagous (Greathead, 1986; Brown et al., 

1995a).  Populations of B. tabaci colonize mainly annual, herbaceous plants, including over 

500 species (Mound and Halsey, 1978; Greathead, 1986).  However, near monophagous B. 

tabaci populations, such as the Jatropha race, which colonizes Jatropha gossypifolia L. and 

Croton lobatus L. (Euphorbiaceae) in Puerto Rico, the Asystasia spp.-restricted B. tabaci from 

Benin (Brown and Bird, 1992; Brown et al., 1995a) and cassava- (Manihot esculenta Crantz) 

(Euphorbiaceae) colonizing B. tabaci in Africa (Storey and Nichols, 1938; Burban et al., 1992) 

are also recognized.   

 

B. tabaci is the vector of cassava mosaic geminiviruses (CMGs), the causal agents of cassava 

mosaic disease (CMD) in Africa (Bock and Woods, 1983; Otim-Nape et al., 1996) During the 

past decade, outbreaks of B. tabaci in many parts of sub-Saharan Africa have become more 

frequent and crops colonized by B. tabaci have suffered major yield reductions due to CMD, 

with losses ranging from 20% to 100% in the most affected cultivars (Thresh et al., 1994b, 

1997).  In Africa cassava is colonized by cassava whiteflies (B. tabaci) (Burban et al., 1992; 

Legg, 1996; Abdullahi et al., 2003), although the occurrence of non-cassava genotypes on 
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cassava has also been reported in the Ivory Coast and Zimbabwe (Berry et al., 2004).  Using 

esterase profiles, Legg et al. (1994) detected polymorphisms amongst the cassava whitefly 

populations from different locations in Uganda.  The high degree of genetic variability in 

whiteflies, however, precluded the identification of distinct biotypes.  Brown et al. (1995b) 

highlighted the limitations of esterase markers for distinguishing variability in B. tabaci from a 

broad range of hosts and geographical locations, although the approach has been helpful for 

differentiating certain Old and New World populations (Costa and Brown, 1991; Costa et al., 

1993b; Brown et al., 1995b; Brown, 2000).  The characterisation of the Ugandan cassava-

associated B. tabaci populations using the mitochondrial cytochrome oxidase I (mtCOI) gene 

has revealed two genotype clusters, Uganda 1 (Ug1) and Uganda 2 (Ug2), which diverge at 

approximately 8% (Legg et al., 2002).  When Ugandan populations were sampled in 1997, the 

Ug2 genotypes were associated with the severe CMD epidemic, while the Ug1 genotypes 

occurred primarily ‘at’ and ‘ahead’ of the epidemic ‘front’ (Legg et al., 2002).  Subsequent 

observations (P. Sseruwagi et al., unpublished data) in 2002, which were made after the 

expansion of the CMD epidemic to all of the country’s cassava-growing areas, have shown that 

both genotype clusters occur throughout the country.  The Ug1-like genotypes were more 

frequently detected in 2002, occurring in 83% of the fields, compared to 17% for the Ug2 

types.  

 

Storey and Nichols (1938) were the first to suggest that cassava-colonizing B. tabaci were 

host-specialized.  This assertion has generally been supported by subsequent studies, including 

those of Burban et al. (1992) in the Ivory Coast, Legg (1996) in Uganda, and Abdullahi et al., 

2003 and Berry et al. (2004) on cassava-associated whitefly populations in sub-Saharan Africa, 

although in all the studies, except that of Abdullahi et al., 2003, cassava-associated B. tabaci 

were found associated with and/or colonizing certain other plant hosts.   
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Certain specific virus and vector-related factors are driving the epidemic of severe CMD in 

Uganda and the East and Central African region (Pita et al., 2001a; Legg et al., 2002; Colvin et 

al., 2004).  For example, it is known that the epidemic is primarily associated with the spread 

of a recombinant CMG, EACMV-UG2, whose DNA A contains sequences from both ACMV 

and EACMV (Harrison et al., 1997; Zhou et al., 1997).  EACMV-UG2 now occurs throughout 

Uganda (Sseruwagi et al., 2004b) and has also been reported from other parts of East and 

Central Africa affected by the so-called ‘pandemic’ (Legg and Fauquet, 2004).  In addition, it 

is clear that a previously unknown and possibly ‘invasive’ variant of B. tabaci, together with a 

putative indigenous B. tabaci variant, are important constituents of the collective vector 

population that colonizes cassava and transmits CMGs in eastern Africa (Legg et al., 2002; 

Maruthi et al., 2002, 2004a).  

 

However, important details surrounding the ecology of B. tabaci variants associated with 

cassava in general in Africa, and their role(s) as CMG vectors remain poorly understood.  One 

important, as yet poorly understood ecological aspect involves the host range of cassava-

colonizing B. tabaci, including their potential to colonize uncultivated or cultivated plant 

species other than cassava, some of which may also serve as hosts.  This aspect is further 

important to understand because a wider host range would allow cassava-colonizing B. tabaci 

to reproduce on additional plant species thereby facilitating their survival in areas where the 

cassava crop is devastated.   

 

In this study, the distribution of cassava-associated B. tabaci genotypes was investigated in 

cassava and non-cassava crop and weed species adjacent to the sampled cassava plantings in 

the post-epidemic affected areas of Uganda.  The terms genotype and genotype cluster are used 
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throughout to refer to genetically distinct sequences, and for a group of closely related 

sequences, respectively.   

 

4.2 Materials and Methods 

 

4.2.1 Whitefly collection  

 

At least ten Bemisia tabaci adults and fourth instar nymphs were collected in 2003/4 from 

cassava and eleven other cultivated and uncultivated plant species occurring adjacent to 

cassava fields in the selected cassava-producing areas of Uganda (Table 8), and were used to 

establish the colonization and/or host range of cassava B. tabaci genotypes in nature.   Three 

female adult whiteflies and two fourth instar nymphs were randomly selected from each 

sample for analysis.   

 

4.2.2 DNA extraction, PCR, cloning and sequencing of mtCOI DNA 

 

Single adult whitefly and fourth instar nymphs were lysed to release total DNA (De Barro and 

Driver, 1997).  Polymerase chain reaction (PCR) (Mullis and Fallona, 1987) was carried out to 

amplify a fragment (~ 850 bp) of the mtCOI gene using primers MT10/C1-J-2195 (5´-

TTGATTTTTTGGTCATCCAGAAGT-3´) and MT12/L2-N-3014 (5´- 

TCCAATGCACTAATCTGCCATATTA-3´) as described in Frohlich et al. (1999).  PCR 

amplification, cloning and sequencing of mtCOI gene was conducted as described in Maruthi 

et al. (2004a).  Sequencing was carried out by the John Innes Biotechnology Centre, Norwich, 

UK.  
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Table 8. Source-plant species and geographical location of Bemisia tabaci (adults and fourth instar nymphs) collected on cultivated and 

uncultivated species occurring adjacent to cassava fields in Uganda, 2003/4 

 
Source-plant species 

Family Geographical 
location Accession number 

Common name Botanical name 

Cassava Manihot esculenta Crantz Euphorbiaceae Namulonge AY903461-68 

Jatropha Jatropha gossypifolia L. Euphorbiaceae Namulonge AY903469-77 

Mexican Fireplant Euphorbia heterophylla L. Euphorbiaceae Busukuma AY903483-89 

Tree cassava Manihot glaziovii Muell. Arg. Euphorbiaceae Namulonge AY903517-18 

Lablab Lablab purpureus L. Leguminosae Mukono AY903478-82 

‘Makayi’ Aspilia africana Pers. Adams Asteraceae Namulonge AY903490-92 

Sunflower Helianthus annus L. Asteraceae Namulonge AY903498-01 

Okra Abelmoschus esculentus L. Malvaceae Namulonge AY903493-97 

Sweetpotato Ipomoea batatas L.  Convolvulaceae Namulonge AY903502-05 

Tobacco Nicotiana tabacum L. Solanaceae Namulonge AY903506-07 

Tomato Lycopersicon esculentum Mill. Solanaceae Namulonge AY903508-16 

Wild sunflower Tithonia diversifolia L. Compositae Namulonge AY903519-20 
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4.2.3 Phylogenetic analysis  

 

Whitefly mtCOI sequences were edited manually using the EditSeq programme available in 

the DNASTAR software package (Lasergene, Madison, Wisconsin, USA) to produce a 

consensus sequence (~780-800 bp) for each individual insect.  Sequences were aligned using 

the Clustal W (weighted) (Thompson et al., 1994) algorithm option in MegAlign available in 

DNASTAR and compared with B. tabaci reference mtCOI sequences available in the 

EMBL/DDBJ/GenBank databases.  

 

The DNA sequences were subjected to a heuristic search and subtree-pruning-regrafting 

branch swapping using the maximum likelihood (ML) and parsimony methods available in 

Phylogenetic Analysis Using Parsimony* (PAUP*4.0b10) (Swofford, 2002).  The ML tree was 

reconstructed using the maximum likelihood optimality criterion with among-site rate 

variation, corresponding with gamma distribution and a general-time-reversible substitution 

model with the rate matrix set to 1.  For parsimony analysis, bootstrapping (Felsenstein, 1985) 

was performed with PAUP using the heuristic option for 1000 replications at a 70% confidence 

limit.  The GenBank accession numbers for B. tabaci reference mtCOI sequences were as 

follows presented in Table 9. 

 

4.3    Results 

 

4.3.1 Phylogenetic analyses of adult B. tabaci mtCOI sequences 

 

The mtCOI sequence (~ 800 bp) was obtained for the field-collected female adult B. tabaci 

from: cassava (Manihot esculenta Crantz), ‘Makayi’ (Aspilia Africana Pers. Adams), okra 
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Table 9. Whitefly genotypes and location of reference whiteflies used in phylogenetic analysis of 

mitochondrial cytochrome oxidase I sequences and their respective GenBank accession numbers  

Whitefly/Genotype Location GenBank Accession No. 

AB A Benin Benin AF110693 
ARG2 Santiago Argentina AF340213 
AZ A Arizona Arizona, USA AY057122 
AZ B Arizona Arizona, USA AY057123 
Bemisia afer1 - AY057218 
CAL A Brawlee CA California, USA AY057124 
CUL Mexico Mexico AY057125 
HC China China AF342777 
IS B Israel Israel AF110705 
Ivory Coast cassava Ivory Coast AY057135 
Ivory Coast okra Ivory Coast AY057136 
IW India India AF110702 
JAT Puerto Rico Puert Rico AF110705 
Morocco 1 Morocco AF342773 
Moz-Kal 1 Mozambique AF344278 
PC91 Pakistan 1 Pakistan AF342778 
Reunion 1 Reunion Island AJ550172 
Reunion 2 Reunion Island AJ550178 
SA Lucia 2 South Africa AF344260 
SC Sudan 1 Sudan AF110706 
SP92 Spain Q Spain AF342775 
SwazMap1 Swaziland AF344269 
TC Turkey Turkey AF342776 
Thailand cotton Thailand AF164670 
Uganda sweetpotato Uganda AY057174 
Zam 2 Zambia AF344281 
30MNten (Ug1) Uganda AY057171 
17Ikul (Ug2) Uganda AY057158 

 

1Bemisia afer (Priesner & Hosny) was used as the outgroup species 
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(Abelmoschus esculentus L.), Mexican Fireplant (Euphorbia heterophylla L.), Sunflower 

(Helianthus annus L.), sweetpotato (Ipomoea batatas L.), jatropha (Jatropha gossypifolia L.), 

tomato (Lycopersicon esculentum Mill.), wild sunflower (Tithonia diversifolia L.), lablab 

(Lablab purpureus L.), tree cassava (Manihot glaziovii Muell. Arg.), and tobacco (Nicotiana 

tabacum L.), plants occurring adjacent to cassava fields in selected cassava-producing areas of 

Uganda in 2003/04.  The sequences are deposited in the EMBL/DDBJ/GenBank under the 

accession numbers indicated in Table 8.  

 

Alignment of the partial mtCOI sequences established 67 constant, 213 variable and 419 

parsimony informative characters, respectively.  A search for the most-parsimonious tree was 

performed with parsimony and maximum likelihood options.  The two options predicted the 

same phylogenetic relationships for the B. tabaci populations examined in the current study, 

hence only the parsimony tree is presented here (Fig. 9).  

 

Based on the phylogenetic analyses, members of B. tabaci grouped within four major clusters, 

supported by high bootstrap (bs) values (>80), with either the New or Old World (Fig. 9).  A 

cluster was formed comprising B. tabaci from SouthEast Asia, India and the Far East.  B. 

tabaci from the New World formed the second major cluster, whereas, genotypes from the 

Mediterranean-North Africa-Middle East (MED-NAFR-ME) region, which also includes the B 

and Q biotypes comprised the third major cluster.  The fourth major cluster comprised B. 

tabaci genotypes from cassava in sub-Saharan Africa, which also includes a non-cassava 

genotype sub cluster on Asystasia spp. in Benin in West Africa. 

 

The B. tabaci genotypes (n = 49) examined in this study grouped within a single cluster, at 97-

99% nt identity together with the previously described Ug1 genotype cluster in Uganda and B. 
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Figure 9. Dendrogram of the mitochondrial cytochrome oxidase I sequence for adult Bemisia 
tabaci collected on cassava, and cultivated and uncultivated species occurring adjacent to 
cassava fields in Uganda during 2003/4, and well-studied B. tabaci reference populations, 
using the maximum parsimony algorithm available in PAUP* (Swofford, 2002).  B. afer is 
included as the outgroup sequence. Samples are indicated by country, source-plant species and 
location from where they were collected. Country: Ug = Uganda. Source-plant species: Tm = 
tomato, Tb = tobacco, Sn = sunflower, Ws = ‘wild sunflower’, Mf = Mexican Fireplant, Mk = 
‘makayi’, Ok = okra, Cs = cassava, Tc = tree cassava, Jt = jatropha, Sp = sweetpotato and Lb = 
lablab. Sample location: Nm = Namulonge, Bk = Busukuma, Mk = Masaka, Mu = Mukono 
 



 80 

tabaci populations on cassava in Mozambique, Zambia, Swaziland and South Africa (Fig. 9).  

However, the Ug1-like genotypes shared only 87% nt identity with the previously described 

‘Ivory Coast cassava’ genotype cluster in Ivory Coast.  No Ug2-like genotypes were detected 

on any of the twelve source-plant species sampled, including cassava, in this study.  

 

The field occurrence and source-plant distribution of adult female Ug1 B. tabaci genotypes in 

Uganda in 2003/4 was determined as follows: A. Africana (3/3), A. esculentus (2/4), E. 

heterophylla (3/3), H. annus (2/2), I. batatas (3/5), J. gossypifolia (4/4), L. esculentum (2/3), T. 

diversifolia (3/3), L. purpureus (4/4), M. esculenta (3/3), M. glaziovii (3/3) and N. tabacum 

(2/3).  The rest of the B. tabaci identified on A. esculentus (2/4), I. batatas (2/5), L. esculentum 

(1/3) and N. tabacum (1/3) were non-cassava genotypes (data not presented). 

 

4.3.2 Phylogenetic analyses of B. tabaci fourth instar nymphs mtCOI sequences 

 

The mtCOI DNA sequence (~ 800 bp) was obtained for the field-collected B. tabaci fourth 

instar nymphs on: A. Africana, A. esculentus, E. heterophylla, H. annus, I. batatas, J. 

gossypifolia, L. esculentum, T. diversifolia, L. purpureus, M. esculenta, M. glaziovii and N. 

tabacum, and the sequences were deposited in the GenBank under the assigned accession 

numbers shown in Table 8.  Phylogenetic analysis of the mtCOI sequences for fourth instar 

nymphs produced one most parsimonious tree, with a topology similar to that obtained for the 

analogous adult whitefly sequences (Fig. 10).  Similar to the results of the adult whiteflies, the 

thirteen B. tabaci fourth instar nymphs genotypes examined here grouped within a single 

cluster, at 97-99% nt identity, together with the Ug1-like genotypes in Uganda, and B. tabaci 

on cassava from southern Africa (Fig. 10).  None of the nymph mtCOI sequences examined 

here 
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Figure 10.  Dendrogram of the mitochondrial cytochrome oxidase I sequence for Bemisia 

tabaci fourth instar nymphs collected on cassava, and cultivated and uncultivated species 

occurring adjacent to cassava fields in Uganda during 2003/4, and well-studied B. tabaci 

reference populations, using the maximum parsimony algorithm available in PAUP* 

(Swofford, 2002).  B. afer is included as the outgroup sequence. Samples are indicated by 

country, source-plant species and location from where they were collected. Country: Ug = 

Uganda. Source-plant species: Mf = Mexican Fireplant, Mk = ‘makayi’, Ok = okra, Cs = 

cassava, Tc = tree cassava and Jt = jatropha. Sample location: Nm = Namulonge, Bk = 

Busukuma, Mk = Masaka, Mu = Mukono 
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Table 10. Uncorrected pairwise nucleotide distances, as calculated by the Clustal W algorithm (Thompson et al., 1994), for reference mtCOI 

sequences of adult B. tabaci and fourth instar nymphs collected on different host-plant species in Uganda 

 

B. tabaci nymphs’ 
sequences1 

Ugandan 2 
cassava 
cluster 
(n = 2)3 

Southern 
Africa cassava 

cluster 
(n = 4) 

North Africa 
and 

Mediterranean 
cluster 
(n = 4) 

Reunion 
non-B 
cluster 
(n = 1) 

B biotype 
cluster 
(n =2) 

India and 
Far East 
cluster 
(n = 6) 

A biotype 
and New 

World cluster 
(n = 6) 

Ugandan 
sweetpotato 

cluster 
(n = 1) 

UgcsNm73 0.1 - 7.6 1.7 - 3.1 15.3 - 16.3 17.2 15.3 - 15.5 16.9 - 61.9 19.0 - 20.3 17.2 

UgmkNm70 0.2 - 7.7 1.8 - 3.2 15.3 - 16.4 17.3 15.3 - 15.7 16.9 - 61.9 19.0 - 20.3 17.2 

UgokNm20 0.2 - 7.6 1.7 - 3.3 15.3 - 16.3 17.1 15.3 - 15.5 16.9 - 61.9 19.0 - 20.3 17.2 

UgmfNm92 0.1 - 7.6 1.7 - 3.1 15.3 - 16.3 17.2 15.3 - 15.5 16.9 - 61.9 19.0 - 20.3 17.2 

UgtcNm81 0.1 - 7.6 1.7 - 3.1 15.3 - 16.3 17.2 15.3 - 15.5 16.9 - 61.9 19.0 - 20.3 17.2 

UgjtNm18 0.2 - 7.7 1.7 - 3.2 15.3 - 16.4 17.3 15.3 - 15.7 16.9 - 61.9 19.0 - 20.3 17.2 

 

1Representative sequences are shown for B. tabaci genotypes identified on cassava and non-cassava host-plant species in Uganda, 2003/4.  2The 

within-group estimates of the minimum and maximum nucleotide divergence are presented for the major B. tabaci phylogenetic clusters in Fig. 

9. 3Number of clusters of closely related genotypes 
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clustered with the reference Ug2 genotype (17 Ikul Ug2) from Uganda.  A pairwise 

comparison (Clustal W) to estimate nucleotide distances for the fourth instar nymphs 

sequences and reference B. tabaci, produced the similar results as had been obtained when 

adult sequences were analysed.  The Ug1 genotypes had a within-group variance of 0.1 to 

1.7%, and diverged with the Ug2 genotypes at ~8%, as expected (Table 10).  

  

Based on the presence of the B. tabaci fourth instar nymphs on plant species sampled, the Ug1 

genotypes were shown to colonize cassava and five other non-cassava plant species including: 

M. glaziovii, J. gossypifolia, E. heterophylla, A. africana and A. esculentus (Figure 10).  

However, the Ug1 genotypes did not colonize: H. annus, T. diversifolia, L. purpureus, L. 

esculentum, N. tabacum or I. batatas. 

 

4.4 Discussion 

 

The study investigated the field occurrence and host-plant distribution of cassava-colonizing B. 

tabaci genotypes on cultivated and uncultivated species occurring adjacent to cassava fields in 

2003/4 in Uganda.  The genetic variability of morphologically indistinguishable B. tabaci 

populations on cassava and other plant species in Uganda (Legg, 1996; Chapter three) and 

elsewhere in Africa (Burban et al., 1992; Abdullahi et al., 2003, 2004; Berrie et al., 2004) was 

investigated previously using field-collected adult whitefly.  However, field-collected adult 

whitefly are of limited use in establishing host-associated B. tabaci genotypes, since the 

occurrence of the adults on plants in the field does not necessarily indicate colonization.  

Therefore, in addition to using adult whitefly in this study, we analysed also the field-collected 

fourth instar nymphs to establish both the host range (colonized hosts) and associated B. tabaci 

genotypes in nature.   
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Analysis of adult whitefly and fourth instar nymphs mtCOI sequences generated similar 

results, indicating that the fourth instar nymphs could be used for identification of host-

associated genotypes, especially where colonization studies have not been conducted.  

Furthermore, under field conditions, other approaches, other than sequencing followed by 

phylogenetic analysis, such as polymerase chain reaction, followed by restriction fragment 

length polymorphisms (PCR-RFLP) are available (Abdullahi et al., 2004) or can be developed 

for the identification of host-associated genotypes.  

 

The results of the study reported herein indicate that in Uganda, cassava is only colonized by 

cassava types of B. tabaci, which is consistent with previous findings in Africa (Burban et al., 

1992; Legg, 1996; Abdullahi et al., 2003, 2004; Omondi et al., 2005; Sseruwagi et al., 2005b).  

The occurrence of non-cassava B. tabaci genotypes on cassava in the Ivory Coast and 

Zimbabwe (Berry et al., 2004) has been reported, based on the analysis of adult whitefly 

collected on the crop in the field.  However, it is possible that these whiteflies could have been 

visiting cassava at the time of collection, in which case it would be erroneous to call them 

‘cassava whitefly’.  Whiteflies visit several plant species to feed and to look for suitable sites 

for mating and oviposition (van Lenteren and Noldus, 1990).  However, subsequent 

colonization and adaptation to a particular plant host depends on the feeding preferences of the 

whiteflies and the plant quality (Byrne and Bellows, 1991), which probably explains why 

fewer plant hosts were colonized than were found to have the Ug1 adult cassava whiteflies in 

our study.   

 

In addition to cassava, the Ug1 genotypes colonized five other non-cassava plant species 

including: A. africana, A. esculentus, M. glaziovii, J. gossypifolia and E. heterophylla in this 

study, establishing that in Uganda cassava B. tabaci (Ug1) is not restricted to cassava.  A. 
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esculentus is cultivated as a vegetable crop in central and northern Uganda, and A. africana is a 

wild species that is ubiquitous in Uganda.  E. heterophylla occurs in thicket edges and 

cultivated areas under fallow in east and central Uganda (Anonymous, 1957; Mabberley, 

1987).  M. glaziovii and J. gossypifolia are wild species, and the latter is used to support vanilla 

(Vanilla planifolia Andrews., Orchidaceae) plants during growth in central and western 

Uganda.   

 

Previous studies in Uganda (Legg, 1996) have shown that certain B. tabaci that colonize 

cassava are able to survive on alternative hosts including cotton and sweetpotato, but that B. 

tabaci found naturally colonizing cotton and sweetpotato do not survive when transferred to 

cassava under laboratory conditions.  Cassava-associated B. tabaci, which were reported to be 

monophagous in Africa (Storey and Nichols, 1938; Abdullahi et al., 2003, 2004), were 

detected also on: Centrosema molle Mart. ex Benth., Fabaceae (Burban et al., 1992; Legg, 

1996); Solanum nigram L., Solanum aethiopicum L. and Solanum melongena L., Solanaceae 

(Burban et al., 1992), Lantana camara L., Verbenaceae (Legg, 1996), and E. heterophylla 

(Thompson, 2003).  However, the Ug1 genotypes were neither associated nor found colonizing 

S. melongena or L. camara in this study.  Further, it was not possible to determine whether the 

species recorded in this study as new hosts of cassava whiteflies simply went undetected by 

earlier workers (Burban et al., 1992; Legg, 1996), or if this observation is linked to a ‘shift’ in 

the host range for the Ug1 genotypes, which are now widely distributed in the CMD-epidemic 

zone in Uganda (P Sseruwagi, JP Legg, MEC Rey, J Colvin, D Rogan and JK Brown, 

unpublished data).  Moreover, the Burban et al. (1992) and Legg (1996) studies were not host 

range studies like one described in this study; hence it is difficult to make firm conclusions on 

any possible change in host range.  The ability of the Ug1 genotypes to colonize other plant 

species besides cassava could effectively facilitate its survival in areas where the crop has been 
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devastated by the CMD epidemic.  This also raises the possibility that cassava B. tabaci (Ug1) 

could acquire other whitefly-transmitted viruses (WTVs) from non-cassava hosts, which are 

not known to infect cassava, but which could feasibly become of epidemiological importance if 

they become adapted to cassava.  In view of this possible threat, it would clearly be prudent to 

make an assessment of the field populations of the Ug1 B. tabaci genotypes, and the 

occurrence of WTVs, particularly begomoviruses, in non-cassava hosts occurring adjacent to 

cassava fields both in Uganda and the wider East African region.   
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Chapter Five 

 

Genetic diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) 

populations and presence of the B biotype and a non-B biotype that can 

induce silverleaf symptoms in squash, in Uganda 

 

In press: Annals of Applied Biology 

 

Running title: Genetic diversity of B. tabaci populations in Uganda 

 

Abstract 

 

The extent of genetic variability and host-plant distribution of Bemisia tabaci (Gennadius) 

genotypes colonizing 13 cultivated and uncultivated species occurring adjacent to cassava 

fields in selected cassava-producing areas of Uganda were investigated.  Phylogenetic analysis 

of the mitochondrial cytochrome oxidase I (mtCOI) gene revealed eight distinct genotype 

clusters, Ug1-Ug8, which are supported by high bootstrap (bs) values (≥80), at 3 -18% nt 

divergence, among the collective Ugandan B. tabaci populations.  Ug1 and Ug2 (both cassava-

associated) and Ug8 (sweetpotato-associated) have been reported previously in Uganda.  Ug3 

(n = 3) was the only exemplar representing one cluster, which was unlike any previously 

described genotypes in Uganda or elsewhere, and diverged at 8%, 10% and 17% from Ug1, 

Ug2 and Ug8, respectively.  The Ug3 genotypes colonized a single species, Ocimum 

gratissimum.  Ug4, Ug5, Ug6 and Ug7 formed four closely related sub-clusters (93-97% nt 

identity), and diverged from one another by 1-7%, and by 15-18% from Ug1, Ug2, Ug3 and 
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Ug8, respectively.  The Ug4 genotypes (n =11) had as their closest relatives (at 97-99% nt 

identity) previously reported B. tabaci from okra in the Ivory Coast, whereas, the Ug5 (n = 1) 

and Ug6 (n = 3) genotypes shared 95-99% and 99% nt identity, respectively, with their closest 

relatives from the Mediterranean-North Africa- Middle East (MED-NAFR-ME) region, which 

also includes the well-studied B and Q biotypes.  The Ug7 genotypes (n = 8) were closely 

related (at 98-99% nt identity) to B. tabaci from the Reunion Island in the Indian Ocean.  The 

Ug4, Ug5, Ug6 and Ug7 genotypes were identified on 54%, 8%, 8%, and 31% of the sampled 

plants species, respectively.  Ug4 were most polyphagous and, colonized: Cucurbita pepo, 

Cucumis sativus, Leonotis nepetifolia and Pavonia urens, followed by Ug7, which colonized: 

Commelina benghalensis, Gossypium hirsutum and Phaseolus vulgaris, and Ug6, which 

colonized: Abelmoschus esculentus and C. benghalensis only.  None of the Ug4-Ug7 

genotypes was found associated with, or colonizing, cassava or sweetpotato plants.  Squash 

plants colonized by the Ug6 and Ug7 genotypes, both members of the B biotype/B-like cluster, 

caused silvering of squash, while those colonized by the Ug4 genotypes (most closely related 

to a non-B like genotype from Okra in the Ivory Coast) did not.  In addition to colonizing 

sweetpotato, the Ug8 genotypes colonized Lycopersicon esculentum and L nepetifolia also. 

 

5.1 Introduction 

 

Over 1200 whitefly species are known worldwide, although only a limited number have been 

closely studied on key herbaceous hosts (Mound and Halsey, 1978; Byrne et al., 1990).  

Species of the genus Bemisia are among the most important on cultivated species and are 

believed to have originated in the SouthEast Asia/Indian subcontinent (Gill, 1990; Mound and 

Halsey, 1978) or possibly Africa (Gill, 1990; Campbell et al., 1996).  
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Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is the most widely distributed and 

economically important Bemisia species (Brown et al., 1995a).  It has increased in importance 

during the past thirty years as a direct pest and also as a vector of plant viruses, particularly 

whitefly-transmitted geminiviruses (family Geminiviridae; genus Begomovirus) (Muniyappa, 

1980; Duffus, 1987; Brown, 1990; Brown and Bird, 1992; Brown, 1994; Bedford et al., 1994; 

Fishpool and Burban, 1994; Otim-Nape et al., 1996; Poulston and Anderson, 1997).  B. tabaci 

can damage plants through direct feeding and by the induction of phytotoxic symptoms (Costa 

and Brown, 1991; Cohen et al., 1992), the latter of which is a feature of only some biotypes 

(Brown and Bird, 1992; Bedford et al., 1994).  

 

Beginning in 1986-87 until the mid-1990s, unprecedented outbreaks of B. tabaci, which are 

now known to be caused by infestations of the B biotype (Costa and Brown, 1991), occurred 

throughout the Americas, and also in Europe (Brown and Bird, 1992; Bedford et al., 1994; 

Costa et al., 1993; Viscarret et al., 2003).  Based on differences in general esterase patterns, 

fecundity on the cotton, squash, and poinsettia and differences in ability to induce (phytotoxic) 

silvering symptoms in squash plants, two distinct populations of B. tabaci were distinguished, 

and subsequently referred to as the AZ-A and AZ-B biotype (Costa and Brown, 1991).  The B 

biotype increased in distribution in the southwestern US and ultimately was shown to have 

displaced the local A biotype (Costa et al., 1993).  Most recently, outbreaks of the ‘B’ biotype 

have occurred in Australia, China, and elsewhere in SouthEast Asia (De Barro et al., 2000; 

Coombs et al., 2003; Chowda et al., 2003).  

 

The extent of genetic polymorphism has been examined for many representative B. tabaci 

populations from throughout the world using general esterases as genetic markers (Wool et al., 

1989, 1993).  The analysis yielded 20 distinct general esterase patterns (designated A to S), and 
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revealed that B. tabaci was more polymorphic than previously assumed (Bedford et al., 1994; 

Brown et al., 1995b; Rosell et al., 1997).  The subsequent analysis of B. tabaci populations 

collected from different parts of the world using esterase analysis and random amplified 

polymorphic DNA (RAPD) PCR fingerprinting revealed that the B biotype was an exotic B. 

tabaci (Costa et al., 1993; Gawel and Bartlett, 1993).  Further, the DNA sequencing of the 

mitochondria 16S rRNA and cytochrome oxidase I (COI) genes for the same or similarly 

representative B. tabaci populations, indicated that the B biotype originated from Africa or the 

Middle East (Brown et al., 1995a,b; Frohlich et al., 1999).  Using molecular genetics 

approaches, several distinct genotypes and/or biotypes of B. tabaci have been distinguished 

(Costa and Brown, 1991; Costa et al., 1993; Brown et al., 1995a,b; DeBarro and Driver, 1997; 

Frohlich et al., 1999; Brown, 2000; De Barro et al., 2000, 2005; Delatte et al., 2005), even 

though populations are morphologically indistinguishable (Rosell et al., 1997; Gill, 1990).  

This has led one group of researchers to suggest that B. tabaci may best be described as a 

species complex (Brown et al., 1995a; Frohlich et al., 1999) and studies indicating that the A 

and B biotypes were reproductively isolated, led to the proposal that the A and B biotypes were 

distinct species.  On the basis of the failure to interbreed, the B biotype was referred to as: 

Bemisia argentifolia Bellows and Perring (Perring et al., 1993; Bellows et al., 1994).  

 

Although B. tabaci generally is considered polyphagous (Greathead, 1986; Brown et al., 

1995a), evidence for host adaptation among certain B. tabaci populations, such as Jatropha 

gossypifolia L., and Croton lobatus L. (Euphorbiaceae) in Puerto Rico (Bird, 1957; Bird and 

Maramorosch, 1978; Brown and Bird, 1992); the Asystasia spp.-restricted B. tabaci from 

Benin (Brown and Bird, 1992; Brown et al., 1995a); biotype T on Euphorbia characias L., 

from Italy (Simon et al., 2003) and cassava- (Manihot esculenta Crantz) (Euphorbiaceae) 

colonizing B. tabaci in Africa (Storey and Nichols, 1938; Burban et al., 1992; Legg et al., 
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1994; Legg, 1996; Abdullahi et al., 2003, 2004; Omondi et al., 2005; Sseruwagi et al., 2005c) 

have been reported.  In Brazil, Costa and Russell (1975) showed that B. tabaci does not 

colonize cassava.   

 

In Uganda, a key-driving factor in the spread of the 1990s severe CMD epidemic (Gibson et 

al., 1996; Harrison et al., 1997) caused by East African cassava mosaic virus-Uganda variant 

(EACMV-UG2) (Deng et al., 1997; Zhou et al., 1997; Pita et al., 2001; Fauquet and Stanley, 

2003) was the high population density of whiteflies (Otim-Nape et al., 1997; Legg and Ogwal, 

1998; Colvin et al., 1999) at the epidemic ‘front’.  In trying to establish the cause of the 

increased whitefly populations at the CMD epidemic ‘front’, much of the research on B. tabaci 

in Uganda has focused on: (i) cassava-colonizing populations mainly in search of a pandemic-

associated biotype (Maruthi et al., 2001; Legg et al., 2002), (ii) the interaction between the 

CMGs and the whitefly vector (Colvin et al., 1999, 2004; Maruthi et al., 2002; Omongo, 

2003), and (iii) the host range of cassava-colonizing B. tabaci (Sseruwagi et al., 2005c).   

 

The development of the mtCOI marker (Frohlich et al., 1999; Brown, 2000) has enhanced the 

ability to differentiate biotypes and distinct genotypes of B. tabaci, hence the marker has been 

used increasingly to assess the genetic variability of B. tabaci populations in Africa (Legg et 

al., 2002; Berry et al., 2004; Maruthi et al., 2004; Sseruwagi et al., 2005c), and elsewhere 

(Frohlich et al., 1999; Brown, 2000; Viscarret et al., 2003).  Using this approach Legg et al. 

(2002) distinguished two divergent (8%) genotype clusters associated with CMD-affected 

cassava, and referred to them as Uganda 1 (Ug1) and Uganda 2 (Ug2).  The CMD pandemic 

has now spread throughout Uganda (Sseruwagi et al., 2004b), and has been reported also in 

some areas of East and Central Africa (Legg, 1999; Legg and Fauquet, 2004; Sseruwagi et al., 

2005a), where it continues to have devastating effects on cassava. 
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This study sought to determine the genetic diversity and host-plant distribution of B. tabaci 

genotypes on cultivated and uncultivated plant species occurring adjacent to cassava planted in 

the post-epidemic affected areas of Uganda.  The term ‘genotype’ is used throughout to refer to 

genetically distinct sequences, while ‘genotype-cluster’ refers to a group of closely related 

sequences.   

 

5.2 Materials and Methods 

 

5.2.1 Insect material, DNA extraction and PCR analysis 

 

At least ten whitefly (B. tabaci) adults and fourth instar nymphs were collected from thirteen 

cultivated and uncultivated species occurring adjacent to cassava fields in selected cassava-

producing areas (n = 10) of Uganda (Table 11), and were used to establish the genetic diversity 

and host-plant distribution of B. tabaci genotypes in 2003/4.  Three female adult whiteflies and 

two fourth instar nymphs, respectively, were selected randomly from each sample for DNA 

analysis. 

 

Total nucleic acids were extracted from individual nymphs and adult whiteflies according to 

De Barro and Driver (1997).  Polymerase chain reaction (PCR) (Mullis and Fallona, 1987) was 

conducted to amplify a fragment (~ 850 bp) of the mtCOI gene using primers MT10/C1-J-2195 

(5´-TTGATTTTTTGGTCATCCAGAAGT-3´) and MT12/L2-N-3014 (5´-

TCCAATGCACTAATCTGCCATATTA-3´) according to Frohlich et al. (1999).  For each 

sample a 25µl reaction mixture was made up containing 2.0µl DNA template, 2.5µl 10x 

reaction buffer IV (ABgene), 2.0µl 25 mM MgCl2, 1.5µl dinucleotide triphosphates (dNTPs), 

0.5µl each of primers MT10 and MT12 and 0.1 µl ‘Red-hot’ Taq polymerase (ABGene, 
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Table 11. Source plant species, geographical location, genotype and induction of squash silverleaf (SSL) symptoms by Bemisia tabaci 

populations in Uganda, 2003/4 

 
Source plant species Geographical 

location Accession number Genotype SSL 
Common name Botanical name Family 
Beans  Phaseolus vulgaris L. Leguminosae Masindi AY903521-22 Ug7 + 
   Namulonge AY903523-26 Ug7 + 
Cucumber Cucumis sativus L. Cucurbitaceae Namulonge AY903531-32 Ug4 - 
   Wakiso AY903533-35 Ug4 - 
Pumpkin  Cucurbita pepo L. Cucurbitaceae Luwero AY903571-72 Ug4 - 
   Namulonge AY903573-74 Ug4 - 
Dew flower Commelina benghalensis L. Commelinaceae Busukuma AY903536-39 Ug7 + 
   Namulonge AY903540-44 Ug6/7 + 
Eggplant  Solanum melongena L. Solanaceae Busukuma AY903545-46 Ug4 - 
   Masaka AY903547-48 Ug7 + 
   Namulonge AY903549-50 Ug4 - 
Tobacco Nicotiana tabacum L. Solanaceae Masindi AY903578 Ug1/5 NA 
Tomato Lycopersicon esculentum Mill. Solanaceae Namulonge AY903579-81 Ug1/8 - 
Lion’s ear  Leonotis nepetifolia L. Labiatae Kabarole AY903551-52 Ug4 - 
   Namulonge AY903553-55 Ug4/8 - 
Mint/wild basil  Ocimum gratissimum L. Labiatae Mukono AY903556-58 Ug3 - 
   Namulonge AY903559-63 Ug3 - 
Cotton Gossypium hirsutum L. Malvaceae Namulonge AY903527-29 Ug7 + 
   Pallisa AY903530 Ug7 + 
‘Muwogola omusajja’  Pavonia urens Cav. Malvaceae Namulonge AY903564-66 Ug4/6 + 
Okra (Ladies finger) Abelmoschus esculentus L. Malvaceae Namulonge AY903567-70 Ug1/6 + 
Sweetpotato Ipomoea batatas L.  Convolvulaceae Namulonge AY903575-77 Ug1/8 - 
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Epsom, Surrey, UK).  The PCR conditions were: 94°C for 1 min, followed by primer annealing 

at 52°C for 1 min and extension for 1.20 min at 72°C using 35 cycles.  A final extension of 10 

min at 72°C was included and the reaction was held at 4°C in a Gene Amp PCR System 9700 

thermal cycler (Applied Bio-Systems).  The PCR products were electrophoresed through a 1% 

agarose gel in 0.5x TBE buffer and amplified DNA was viewed under UV trans-illumination 

after staining in ethidium bromide. 

 

5.2.2 Cloning, sequencing and phylogenetic analysis 

 

The amplified DNA of the expected size was eluted from the agarose gel using a QIAquick 

PCR Purification Kit (Qiagen Inc, USA), cloned in the pGEMT-Easy vector (Promega, 

Madison, Wisconsin, USA) and transformed into Escherichia coli strain 109, following the 

manufacturers' instructions.  The presence of an insert of the expected size was confirmed by 

PCR using the universal primers T7 (TAATACGACTCACTATAGGG) and SP6 

(TATTTAGGTGACACTATAG) (Promega, Madison, Wisconsin, USA) in the polylinker of 

the pGEMT-Easy vector.  DNA was bi-directionally sequenced at the John Innes 

Biotechnology Centre, Norwich, UK.  

 

Whitefly mtCOI sequences were edited manually using the EditSeq programme available in 

the DNASTAR software package (Lasergene, Madison, Wisconsin, USA) to produce a 

consensus sequence (~780-800 bp) for each individual adult.  Sequences were aligned using 

the Clustal W (weighted) (Thompson et al., 1994) algorithm option in MegAlign available in 

DNASTAR and compared with B. tabaci reference mtCOI sequences available in the 

EMBL/DDBJ/GenBank databases.  

 



 95 

The DNA sequences were subjected to a heuristic search and subtree-pruning-regrafting 

branch swapping using the maximum likelihood (ML) and parsimony methods available in 

Phylogenetic Analysis Using Parsimony* (PAUP*4.0b10) (Swofford, 2002).  The ML tree was 

reconstructed using the maximum likelihood optimality criterion with among-site rate 

variation, corresponding with gamma distribution and a general-time-reversible substitution 

model with the rate matrix set to 1.  For parsimony analysis, bootstrapping (Felsenstein, 1985) 

was performed with PAUP using the heuristic option for 1000 replications at a 70% confidence 

limit.  The GenBank accession numbers for reference mtCOI sequences are presented in Table 

12.  

 

5.2.3 Analysis of molecular variance 

 

Analysis of molecular variance (AMOVA; Excoffier et al., 1992) was performed in 

ARLEQUIN, version 2.000 (Schneider et al., 2000): software for population genetics data 

analysis to establish the population structure of the B. tabaci populations examined in the 

current study using the pairwise difference and Tajima and Nei distance methods (Excoffier et 

al., 1992).  Variance components and percentage variation were calculated for among groups, 

among populations within groups and within populations.  The significance tests (i.e., F-

statistics and P-value) for the variance components were tested at the 5% significance level 

using 1023 permutations.  

 

5.2.4 Squash silverleaf bioassay  

 

In order to determine whether the B-like whiteflies identified in Uganda could induce squash 

silverleaf (SSL) symptoms in squash (Cucurbita pepo L.) (Tozer Seeds Ltd., UK), several B  
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Table 12. Whitefly genotypes and location of reference whiteflies used in phylogenetic analysis of 

mitochondrial cytochrome oxidase I sequences and their respective GenBank accession numbers  

Whitefly/genotype Location GenBank Accession No. 

AB A Benin Benin AF110693 
ARG2 Santiago Argentina AF340213 
AZ A Arizona Arizona, USA AY057122 
AZ B Arizona Arizona, USA AY057123 
Bemisia afer1 - AY057218 
CAL A Brawlee CA California, USA AY057124 
CUL Mexico Mexico AY057125 
HC China China AF342777 
IS B Israel Israel AF110705 
Ivory Coast cassava Ivory Coast AY057135 
Ivory Coast okra Ivory Coast AY057136 
IW India India AF110702 
JAT Puerto Rico Puert Rico AF110705 
Morocco 1 Morocco AF342773 
Moz-Kal 1 Mozambique AF344278 
PC91 Pakistan 1 Pakistan AF342778 
Reunion 1 Reunion Island AJ550172 
Reunion 2 Reunion Island AJ550178 
SA Lucia 2 South Africa AF344260 
SC Sudan 1 Sudan AF110706 
SP92 Spain Q Spain AF342775 
SwazMap1 Swaziland AF344269 
TC Turkey Turkey AF342776 
Thailand cotton Thailand AF164670 
Uganda sweetpotato Uganda AY057174 
Zam 2 Zambia AF344281 
30MNten (Ug1) Uganda AY057171 
17Ikul (Ug2) Uganda AY057158 

 

1The outgroup species was Bemisia afer (Priesner & Hosny) 
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biotype variants (Costa et al., 1993a), colonies of Ug4, Ug6 and Ug7 were subsequently 

established at Namulonge, Uganda.  About 40 female whitefly adults were collected of each of 

the three genotype clusters and introduced separately in clip cages on whitefly-free squash 

plants as described by Costa et al. (1993a).  The plants were maintained in a screenhouse at 

12L:12D and 22-26ºC at the International Institute of Tropical Agriculture (IITA), Namulonge, 

Uganda.  The whiteflies were allowed to feed and oviposit for 10 days and the plants observed 

daily for the SSL symptoms development.  Silvering was determined as positive when the SSL 

symptoms were observed and negative where no symptoms developed.   

 

5.3 Results 

 

5.3.1 Phylogenetic analyses of adult B. tabaci mtCOI sequences 

 

The mitochondrial DNA sequences (~ 800 bp) obtained for the field-collected female adult B. 

tabaci from: beans (Phaseolus vulgaris L.), cucumber (Cucumis sativus L.), pumpkin 

(Cucurbita pepo L.), Dew flower (Commelina benghalensis L.), eggplant (Solanum melongena 

L.), tobacco (Nicotiana tabacum L.), tomato (Lycopersicon ensculentum Mill.), Lion’s ear 

(Leonotis nepetifolia L.), mint/wild basil (Ocimum gratissimum L.), cotton (Gossypium 

hirsutum L.), ‘Muwogola omusajja’ (Pavonia urens Cav.), okra (Abelmoschus esculentus L.) 

and sweetpotato (Ipomoea batatas L.) are deposited in the GenBank and the assigned accession 

number for each shown in Table 11.  Comparative sequence analysis was used to assess the 

genetic variability of B. tabaci populations.  

 

Based on phylogenetic analysis with PAUP, alignment of the mtCOI sequences established 74 

constant, 209 variable and 417 parsimony-informative characters.  Both parsimony and 
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maximum likelihood options predicted the same phylogenetic relationships for the B. tabaci 

populations examined in this study: hence only the parsimony results are presented (Fig. 11).  

 

The mtCOI sequence grouped the members of B. tabaci into either the Old or New World 

clusters.  The Ugandan B. tabaci populations grouped into eight distinct sub-clusters within the 

three major clusters comprising the Old World B. tabaci collections from sub-Saharan Africa, 

the Mediterranean-North Africa-Middle East (MED-NAFR-ME) region and Ugandan 

sweetpotato, as might be expected (Fig. 11).  All eight sub-clusters had high bootstrap (bs) 

values (≥80).  The cassava-associated genotypes, included here as reference sequences sorted 

into two distinct sub-clusters, Uganda (Ug1) and Uganda (Ug2), as reported previously.  

 

A third sub-cluster was formed comprising a distinct genotype cluster, herein designated 

Uganda 3 (Ug3), whose members (n = 3) were unlike any B. tabaci genotypes reported 

previously in Uganda or elsewhere. 

 

In addition, four closely related (at 93-97% nt identity) sub-clusters, designated as: Uganda 4 

(Ug4), Uganda 5 (Ug5), Uganda 6 (Ug6) and Uganda 7 (Ug7) were evident (Fig. 11).  The 

Ug4 genotypes (n = 11) had as their closest relatives (97-99% nt identity) the B. tabaci 

genotype described by Burban et al. (1992) from okra in the Ivory Coast, West Africa, 

whereas, the group containing the Ug5 (n = 1) and Ug6 (n = 3) types shared 95-99% and 99% 

nt identity, respectively, with their closest relatives from Morocco, Sudan, Spain and Turkey 

(Mediterranean-North Africa) and Israel (Middle East) (MED-NAFR-ME), which also include 

the well studied B and Q biotypes (Fig. 11).  Despite a relatively high-shared sequence 

identity(>93%) between the Ug4, MED-NAFR-ME (Ug5 and Ug6), and Ug7 types (n = 8), the  
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Figure 11. Dendrogram of the mitochondrial cytochrome oxidase I sequence for adult B. tabaci 
collected on the cultivated and uncultivated species occurring adjacent to cassava fields in Uganda (in 
bold) during 2003/4, and well-studied B. tabaci reference populations, using the maximum parsimony 
algorithm available in PAUP* (Swofford, 2002). B. afer is included as the outgroup sequence.  Samples 
are indicated by country, source-plant species and location from where they were collected.  Country: 
Ug = Uganda, source-plant species: Tm = tomato, Tb = tobacco, Eg = eggplant, Ct = cotton, Bn = 
beans, Df = dew/day flower, Ok = okra, Cu = cucumber, Pk = pumpkin, Sp = sweetpotato, Le = Lion’s 
ears, Mt =mint/wild basil and Mw = ‘muwogola omusajja, and sample location (district): Nm = 
Namulonge, Ms = Masindi, Pl = Paliisa, Km = Kamuli, Mu= Mukono, Bk = Busukuma, Wk = Wakiso, 
Lu = Luwero, Mk = Masaka, Kb = Kabarole 
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closest Ug7-like genotype cluster relatives (at 98-99% nt identity) were B. tabaci genotypes 

from the Reunion Islands in the Indian Ocean.  

 

The eighth distinct sub-cluster, referred to herein as Uganda 8 (Ug8), contained three members 

that grouped (at 98-99% nt identity) with the previously described sweetpotato genotype in 

Uganda.  

 

A pairwise comparison of the nucleotide identity of the Ug3, Ug4, Ug6, Ug7 and Ug8 

genotypes revealed a within-group variance of 0.1 to 0.4%, 0.1 to 1.2%, 0.5 to 2%, 0.1 to 1% 

and 0.1 to 0.6%, respectively (data not presented).  Comparison of the nucleotide identity of 

the Ug3 genotypes with sequences of well-studied B. tabaci available from the GenBank 

database revealed that Ug3 genotypes shared 90-92% nt identity with the Ug1 and Ug2 

genotypes, and B. tabaci from southern Africa (Table 13).  The Ug3 genotypes diverged from 

Ug1 by ~ 8%, which is similar to the divergence between Ug1 and Ug2, but were ~ 10% 

divergent from Ug2 (Table 13), suggesting that Ug3 could be another distinct genotype cluster.  

In addition Ug3 diverged by 18% from Ug8. In contrast, Ug4 and the two MED-NAFR-ME 

(Ug5 and Ug6) genotype clusters diverged from one another by 3-7% and further, were 16-

17% and 15-18% divergent from Ug3 and Ug1, Ug2 and Ug8, respectively (Table 13).  

 

The field occurrence and source-plant distribution of adult female B. tabaci genotypes in 

Uganda in 2003/4 was determined as follows. Ug1 occurred on N. tabacum, L. esculentum, A. 

esculentus and I. batatas, representing 30.8% of the source-plants (data not presented).  The 

Ug3 genotypes occurred on O. gratissimum (7.7%) only, while the Ug4 types were identified 

on 54% of the source-plant species including: C. benghalensis, C. pepo, C. sativus, G. 
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Table 13. A pairwise comparison of the mitochondrial cytochrome oxidase I (mtCOI) nucleotide sequence1, expressed as percent nucleotide 

divergence between adult B. tabaci populations on different plant species in Uganda, as calculated by the Clustal W algorithm (Thompson et al. 

1994) 

 
 
Genotype 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1.    UgDfNm11 - 0.1 3.0 5.1 4.6 6.7 6.7 6.7 17.0 17.0 17.0 16.6 16.1 16.6 3.4 5.1 7.0 0.7 17.3 17.0 28.1 
2.    UgPkLu4a  - 3.1 5.0 4.4 7.0 7.0 7.0 17.0 17.0 17.0 16.3 16.3 16.7 3.6 5.0 7.1 0.9 17.4 17.0 28.3 
3.    UgTbNma1   - 5.3 4.3 6.7 6.7 6.7 17.4 17.4 16.6 15.9 15.3 16.3 0.7 5.3 6.9 2.6 17.1 17.4 27.9 
4.    UgOkNm35    - 2.1 6.9 6.9 6.9 17.1 17.1 16.3 15.6 15.4 15.6 5.7 0.1 7.0 5.6 16.6 17.1 26.9 
5.    UgOkNm36     - 6.7 6.7 6.7 16.9 16.9 16.2 15.4 15.3 15.3 5.6 0.2 6.9 5.5 16.6 16.9 27.1 
6.    UgBnNm18      - 0.1 0.1 18.3 18.3 16.4 16.0 17.0 16.3 7.1 6.9 0.1 7.0 18.0 18.3 29.1 
7.    UgCtPaa1       - 0.1 18.3 18.3 16.6 16.1 17.0 16.3 7.1 6.9 0.1 7.0 18.0 18.3 29.1 
8.    UgDfNmb1        - 18.3 18.3 16.6 16.1 17.0 16.3 7.1 6.9 0.1 7.0 18.0 18.3 29.1 
9.    UgTmNm25         - 0.1 17.6 16.9 17.0 17.3 17.9 17.1 18.1 18.9 17.1 0.1 28.1 
10.  UgSpNm14          - 17.4 16.7 17.0 17.3 17.9 17.1 18.1 18.9 17.3 0.1 28.1 
11.  UgMtNm40           - 0.4 8.0 9.6 17.0 16.5 16.6 16.9 9.0 17.6 27.2 
12.  UgMtMu106            - 7.6 9.5 16.3 15.6 16.4 16.1 8.9 16.9 26.4 
13.  30Mnten (Ug1)             - 7.6 16.3 15.3 17.1 16.4 2.1 17.1 26.1 
14.  17Ikul (Ug2)              - 16.7 15.6 16.4 16.9 8.0 17.3 26.3 
15.  Sudan               - 5.7 7.3 3.0 17.6 17.9 27.6 
16.  Israel B                - 7.0 5.6 16.6 17.1 26.9 
17.  Reunion                 - 7.1 18.1 18.1 29.3 
18.  Ivory Coast okra                  - 17.6 17.3 28.0 
19.  SAfricaLucia                   - 21.3 26.7 
20.  Ugsweetpotato                    - 28.1 
21.  B. afer                     - 
 
 
1Representative sequences are shown for B. tabaci genotypes identified on the different host-plant species in Uganda, 2003/4
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hirsutum, L. nepetifolia, P. urens and S. melongena (Table 11).  The Ug5 and Ug6 genotypes 

occurred on N. tabacum (7.7%) and A. esculentus (7.7%), respectively, while the Ug7 types 

were identified on C. benghalensis, G. hirsutum, P. vulgaris and S. melongena, which 

comprised 31% of the source-plant species sampled.  The Ug8 genotypes were identified on 

23% of the source-plant species including: I. batatas, L. esculentum and L. nepetifolia (Table 

11).  Ug2 was not identified on any of the source-plants sampled in the current study. 

 

5.3.2 Phylogenetic analyses of B. tabaci fourth instar nymphs mtCOI sequences 

 

The mtCOI DNA sequences (~ 800 bp) were obtained for the field-collected B. tabaci fourth 

instar nymphs and the sequences deposited in the GenBank under the assigned accession 

numbers shown in Table 11.  Phylogenetic analysis produced one most parsimonious tree, with 

a topology similar to that obtained for the analogous adult whitefly sequences (Fig. 12).  Other 

than Ug1 and Ug2, which are not reported here, and Ug5, which was not identified in the 

nymphs sampled, the B. tabaci examined in this study grouped into five distinct sub-clusters 

within the Old World cluster, as expected. Similar to the results of the adult whiteflies, the Ug3 

genotypes (n = 2) formed a distinct sub-cluster unlike any previously reported genotypes.  The 

Ug4 (n = 4), Ug6 (n = 2), Ug7 (n = 3) and Ug8 (n =2) genotypes clustered with the Ivory Coast 

okra, Israeli, Reunion and the Ugandan sweetpotato genotypes, respectively.  

 

A pairwise comparison of the nucleotide distances of the fourth instar nymphs’ sequences and 

reference mtCOI sequences of adult B. tabaci in the GenBank produced similar results to those 

obtained with the adult whitefly sequences (Table 14).  Ug3 diverged at 8-10% from Ug1 and 

Ug2, respectively, while Ug4, Ug6 and Ug7 diverged at 3-7% from one another and at 15-18% 

from Ug1, Ug2, Ug3 and Ug8, respectively. 
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Figure 12. Dendrogram of the mitochondrial cytochrome oxidase I sequence for B. tabaci fourth instar 

nymphs collected on cultivated and uncultivated species occurring adjacent to cassava fields in Uganda 

(in bold) during 2003/4, and well-studied B. tabaci reference populations, using the maximum 

parsimony algorithm available in PAUP* (Swofford, 2002). B. afer is included as the outgroup 

sequence.  Samples are indicated by country, source-plant species and location from where they were 

collected.  Country: Ug = Uganda.  Source-plant species: Tm = tomato, Ct = cotton, Bn = beans, Df = 

dew/day flower, Ok = okra, Cu = cucumber, Pk = pumpkin, Sp = sweetpotato, Le = Lion’s ears, Mt 

=mint/wild basil and Mw = ‘muwogola omusajja’.  Sample location: Nm = Namulonge, Mu= Mukono, 

Bk = Busukuma, Wk = Wakiso  
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Based on the presence of B. tabaci fourth instar nymphs on the host-plant species sampled, the 

Ug3 types colonized O. gratissimum only, whereas the Ug4 genotypes colonized: C. pepo, C. 

sativus, L. nepetifolia and P. urens.  The Ug6 types colonized A. esculentus and C. 

benghalensis in the field, and Bidens pilosa - (L.) (Asteraceae), G. hirsutum, L. esculentum, P. 

vulgaris and two unidentified weeds in cages at Namulonge, Uganda (data not presented).  The 

Ug7 genotypes colonized C. benghalensis, G. hirsutum and P. vulgaris, while in addition to 

colonizing sweetpotato (I. batatas); the Ug8 types colonized L. esculentum also.  None of the 

Ug3-Ug8 genotypes described in this study colonized cassava plants in the field or in the 

screen houses at IITA, Namulonge, Uganda. 

 

5.3.3 Analysis of molecular variance 

 

A hierarchical analysis of molecular variance (AMOVA) conducted to assess the genetic 

differentiation of the Ugandan B. tabaci populations (Table 15) grouped according to the 

genotype clusters, Ug3, Ug8 and Ug4-MED-NAFR-ME-Ug7 (B biotype-like), revealed 

significant differences among groups (P<0.0001, FST = 0.4347), among populations within 

groups (P<0.0001, FST = 0.4019) and within populations (P<0.0001, FST = 0.6619).  The 

highest contribution to the total variance was due to differences among groups (43.47%).  A 

similar result was obtained with the Tajima and Nei distance method (data not shown). 
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Table 14. Uncorrected pairwise nucleotide distances, as calculated by the Clustal W algorithm (Thompson et al., 1994), for reference mtCOI 

sequences of adult B. tabaci and fourth instar nymphs collected on different host-plant species in Uganda 

 

B. tabaci nymphs’ 
sequences1 

Ivory Coast2 
okra cluster 

(Ug4) (n = 1) 

North African 
and 

Mediterranean 
cluster 

(Ug5) (n = 4) 

B biotype 
cluster 
(Ug6)  
(n =3) 

Reunion non-
B cluster 

(Ug7)  
(n = 1) 

India and Far 
East cluster 

(n = 6) 

Ugandan 
cassava cluster 
(Ug1 & Ug2) 

(n = 2) 

Southern 
Africa cassava 

cluster 
(n = 4) 

A biotype 
and New 

World cluster 
(n = 6) 

Ugandan 
sweetpotato 

cluster 
(Ug8) (n = 1) 

UgpkNm74 0.9 2.6 - 5.0 5.0 - 5.2 7.2 14.2 - 63.5 16.3 - 16.7 16.5 - 17.7 18.1 - 18.8 17.0 

UgbnNm8 7.2 6.8 - 7.3 7.0 - 7.3 0.3 13.9 - 63.9 16.6 - 17.2 17.0 - 18.5 19.3 - 19.7 18.3 

UgspNm29 17.5 17.3 - 18.0 17.3 - 17.5 18.6 18.9 - 63.1 17.3 - 17.5 17.2 - 18.7 20.5 - 22.9 0.1 

UgtmNm30 17.3 17.2 - 17.9 17.2 - 17.3 18.5 18.7 - 63.1 17.3 - 17.5 17.0 - 18.6 20.3 - 22.7 0.1 

UgdfNm38 5.0 4.1 - 5.0 2.4 - 2.7 6.7 14.4 - 63.1 15.4 - 15.5 15.4 - 17.0 17.4 - 18.4 16.9 

UgokNm37 4.7 3.9 - 4.7 2.1 - 2.4 6.4 14.4 - 63.0 15.3 - 15.4 15.4 - 17.0 17.1 - 18.1 16.9 

UgmtMu35 16.6 16.0 - 16.7 16.0 - 16.2 16.3 16.2 - 61.5 7.5 - 9.8 8.2 - 9.6 18.9 - 20.4 17.3 

 

1Representative sequences are shown for B. tabaci genotypes identified on different host-plant species in Uganda, 2003/4.  2The within-group 

estimates of the minimum and maximum nucleotide divergence are presented for the major B. tabaci phylogenetic clusters in Fig. 11 
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Table 15.  Hierarchical analysis of molecular variance and F-statistics of genetic differentiation 

for Ugandan Bemisia tabaci populations grouped according to genotype clusters (groups), 

among populations within groups and within populations, respectively.  The population 

structure was obtained using a pairwise difference distance method (Excoffier et al., 1992) in 

ARLEQUIN Version 2.000 (Schneider et al., 2000) 

 

Source of variation d.f. 
Sum of 

squares 

Variance 

components 

% of 

variation 
F-Statistic P-Value1 

Among groups 2 1226.260 33.4675 Va 43.47 0.4347 < 0.0001 

Among populations within 

groups 
3 567.121 17.4937 Vb 22.72 0.4019 < 0.0001 

Within populations 54 1405.686 26.0312 Vc 33.81 0.6619 < 0.0001 

Total 59 3199.067 79.9923    

 

1P < 0.05 

Va = variation due to differences among groups (Ug3-like, Ug8-like and B biotype-like) 

Vb = variation due to population differences within groups 

Vc = variation due to population differences 
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5.3.4     Squash silver leaf bioassay 

  

Colonies of the Ug4, Ug6 and Ug7 genotypes were evaluated for their ability to induce SSL 

symptoms in C. pepo.  The Ug6 and Ug7 genotypes induced SSL in squash, respectively, 

whereas the Ug4 did not (Plate III, Table 11).  The SSL symptoms developed 18 and 25 days 

after squash plants were colonized by the Ug6 and Ug7 genotypes, respectively. 

 

5.4    Discussion 

 

The genetic variability of B. tabaci populations on thirteen cultivated and uncultivated species 

occurring adjacent to cassava fields in selected cassava-producing areas of Uganda was 

investigated using the mtCOI gene (Frohlich et al., 1999) as the molecular marker.  Because 

adult whitefly that occur on a plant in the field may not necessarily indicate host 

preference/colonization, the fourth instar nymphs were collected also and used to establish 

both the genetic identity and host range of the populations studied. 

 

In addition to the two previously described cassava-associated B. tabaci genotype clusters, Ug1 

and Ug2 (Legg et al., 2002), and the sweetpotato-colonizing genotype (Maruthi et al., 2004a), 

designated here as Ug8, the mtCOI sequence enabled the detection of five distinct additional 

and previously undocumented B. tabaci genotype clusters, Ug3, Ug4, Ug5, Ug6 and Ug7, 

among the collective Ugandan whitefly populations.  These data show a wider diversity (3-

18% nt divergence) among the Ugandan B. tabaci populations than previously expected.  This 

was confirmed also by the highly significant results obtained with AMOVA analysis, which 

showed the highest contribution to the total variance to be due to differences among groups, as 

expected.   
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Plate III.  Cucurbita pepo L. plants showing squashsilver leaf (SSL) symptoms by Ug6 (B 

biotype-like) and Ug7 (Reunion type-like) B. tabaci genotypes (white bucket) and negative 

control – with no whiteflies introduced (blue bucket) 
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Previously, Legg et al. (1994) distinguished cassava, sweetpotato and cotton whitefly 

populations from different locations in Uganda using esterase profiles, although the high 

degree of genetic variability in whiteflies precluded the identification of distinct biotypes, 

owing to the limitations of esterase markers distinguishing between B. tabaci from a broad 

range of hosts and geographical locations (Brown et al., 1995b).  

 

Here, we report for the first time the occurrence of a previously unreported B. tabaci genotype 

cluster, Ug3, which differs from both Ug1 (92% nt identity) and Ug2 (90% nt identity).  The 

Ug3 genotypes occurred exclusively on wild mint (O. gratissimum), and were not found to 

colonize any other plant species including cassava sampled in the same localities during this 

study.  O. gratissimum occurs mainly as a roadside shrub in grasslands and waste lands in east, 

west and central Uganda (Anonymous, 1957; Mabberley, 1987) and is also grown as a 

medicinal herb around homesteads, together with other food crops.  

 

In addition, four closely related genotype clusters, Ug4-Ug7, were identified in Uganda that 

shared close (>93%) sequence homology.  The Ug4 genotypes have as their closest relatives 

the polyphagous okra-associated B. tabaci genotype that colonized: Chromolaena odorata - 

(L.) RM King and H. Robinson (Asteraceae); Euphorbia heterophylla - (L.) (Euphorbiaceae); 

Centrosema molle Mart. ex Benth, Crotalaria sp, and Pueraria phaseloides - (L.) (Fabaceae); 

A. esculentus and Sida sp. - (L.) (Malvaceae) and L. esculentum in the Ivory Coast (Burban et 

al., 1992), and was similarly as polyphagous in this study.  The Ug4 genotypes were identified 

on a wide range of plant species in the field and were shown to colonize members of the 

Cucurbitaceae, including C. pepo and C. sativus and the uncultivated species L. nepetifolia and 

P. urens.  The presence of the Ug5 and Ug6 genotypes in Uganda, which were closely related 

to the B and Q biotypes: members of the MED-NAFR-ME clade (Guirao et al., 1997; Frohlich 
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et al., 1999; Moya et al., 2001), respectively is a significant finding.  Currently, the 

‘hypothesized’ center of origin for the B and Q biotypes is the Mediterranean-North Africa-

Middle East (MED-NAFR-ME) region (Brown et al., 1995a,b; Frohlich et al., 1999).  New 

evidence, presented here, for the occurrence of both the B and B-like biotypes in Uganda, 

situated in East Africa, suggests that this hypothesis may have to be reassessed.  

 

The B and Q biotypes were reported to be extremely polyphagous (Brown et al., 1995a; Moya 

et al., 2001).  However, in this study, Ug5 (the Q-like genotype) and Ug6 (the B-like genotype) 

were not found to be as polyphagous.  The Ug5 genotypes occurred only on N. tabacum, 

whereas the Ug6 types colonized only A. esculentus and C. benghalensis in the field.  

However, that the Ug6 genotypes colonized several other plant species including: B. pilosa, G. 

hirsutum, L. esculentum, P. vulgaris and two unidentified (as yet) weeds in cages at 

Namulonge, Uganda is significant, and evidence that the B biotype could indeed be just as 

highly polyphagous in the field.  More extensive sampling and sequencing work may be 

required, however, to confirm the apparent restricted polyphagy of the B and Q biotypes in the 

field.  

 

Despite having very close sequence homology with the Ug4-Ug6 genotypes, the Ug7 

genotypes were related most closely to B. tabaci genotypes from the Reunion Island in the 

Indian Ocean (Delatte et al., 2003, 2005).  The Ug7 genotypes occurred on C. benghalensis, G. 

hirsutum, P. vulgaris and S. melongena, which is evidence that they are highly polyphagous.  

In addition to colonizing sweetpotato, the Ug8 genotypes colonized L. esculentum also.  Legg 

(1996) reported that the sweetpotato genotypes occur on several other plant species in the field, 

but with less success for colonization, as observed also in the current study.  However, the 
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absence of the Ug3-Ug8 genotypes on cassava in the field is further evidence that in Uganda, 

cassava is colonized only by cassava B. tabaci.  

 

A hallmark phenotype of the B biotype and several closely related variants is the ability to 

induce SSL symptoms in C. pepo (Costa and Brown, 1991; Brown et al., 1995a; Bedford et al., 

1994).  Of the four closely related B. tabaci genotype clusters (Ug4-Ug7), the Ug6 and Ug7 

types induced SSL in C. pepo.  As in this study, silver-inducing non-B populations were 

reported elsewhere in the world (Bedford et al., 1994; Brown et al., 1995a; Delatte et al., 2003, 

2005).  The Ug7 genotypes clustered with Ug6 (the B biotype-like) at >98% nt identity, 

suggesting that this is another variant of the B biotype.  However, it was not possible to 

establish whether the genotypes (Ug4-Ug7) described in this study are recent introductions or 

indigenous populations in Uganda.  It should be highlighted, however, that there is little trade 

in ornamental plants in Uganda, reducing the likelihood of foreign introductions.  This fact, 

coupled with the low abundance of all of the Ugandan B. tabaci genotypes discussed here (data 

not shown), suggests strongly that these populations are indigenous.  

 

This study presents the most comprehensive assessment of the genetic variability of B. tabaci 

populations carried out to date in Uganda or elsewhere in the East and Central African region.  

The discovery of five previously identified B. tabaci genotype clusters, Ug3-Ug7, in Uganda, 

among which are some of the world’s most economically important biotypes, namely B and Q 

is particularly significant.  B. tabaci is a prolific and widespread vector of many plant viruses, 

which include some of the most devastating biotic constraints to crop production in Africa.  

Additional studies are required to establish the distribution, field populations and host range for 

the Ug3-Ug7-like genotypes, and whether they mate freely and produce viable offspring.  The 

discovery of economically ‘insignificant’ populations of the B and B-like genotypes in Uganda 
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in this study raises important questions, such as how these genotypes do not become more 

abundant and cause more damage.  An answer to this question may be of substantial value in 

enhancing the management of B biotype populations in countries and regions where they are a 

major pest.  
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Chapter Six 
 

General discussion, conclusions and recommendations 

 

Data reported in Chapter two (this study) confirmed the presence, in the post-epidemic zone, of 

two different CMGs, ACMV and EACMV-UG2, which were also previously associated with 

the CMD epidemic in Uganda.  As expected, EACMV-UG2 predominated; confirming that 

much of Uganda is in a post-epidemic situation.  However, unlike previous observations in 

which EACMV-UG2 was consistently associated with the severe disease phenotype symptom 

(Harrison et al., 1997; Zhou et al., 1997; Pita et al., 2001a), the virus occurred with almost 

equal frequency in the severely and mildly diseased plants in the current study.  Both mild and 

severe strains of EACMV-UG2 were found to occur in Uganda in collections made there in 

1998 (Pita et al., 2001a), but the mild strains then occurred with much less frequency, and were 

seemingly confined to isolated localities.  The detection of increased proportions of mildly 

diseased plants in farmers’ fields in the current study is significant.  The mild strains have less 

devastating effects on plant growth (Harrison et al., 1997) and are known to cause less yield 

loss than the severe strains (Fauquet et al., 1998; Owor et al., 2004a, b).  In the 1990s, farmers 

virtually abandoned growing cassava in much of the epidemic-affected areas in Uganda, e.g., 

eastern districts, where the severe disease led to widespread food shortages and famine (Thresh 

and Otim-Nape, 1994).  During this period, key phytosanitary approaches for managing CMD, 

like roguing (the removal of CMD-diseased plants from a crop stand) and selection (the use of 

symptom-free cassava planting material) were unpopular with the farmers and seldom 

practised.  Although we could not establish, in the current study, why and how the mildly 

diseased plants were increasing in frequency in the farmers’ fields, one possibility could be 

that farmers have changed their attitudes and have taken seriously the use of selection in the 
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management of the CMD epidemic.  By selecting the mildly diseased plants, which provide 

more planting material, and ensure higher yields than the severely diseased plants (Thresh and 

Otim-Nape, 1994; Thresh et al., 1998; Owor et al., 2004a, b), the farmers have been able to 

retain many CMD-susceptible local varieties (with desirable attributes), despite the high 

incidence of infection.    

 

The occurrence of mixed infections in Uganda was reported previously (Harrison et al., 1997; 

Pita et al., 2001a, b), and they were shown to cause extremely severe symptoms in the affected 

plants.  However, the data described here (Chapter two) did not provide evidence of the 

previously reported synergism associated with mixed infections that leads to severe symptoms.  

It seems that there are mixed infections in which synergism does not occur, possibly involving 

mild strain combinations.  Mild strain protection, in which plants initially infected with mild 

virus strains become less severely diseased than the initially healthy plants, was suggested 

(Owor et al., 2004a).  However, further studies are required to establish the molecular 

mechanisms and biological significance of the virus-virus and virus-host interactions.  

Information from such studies would be integral to developing an IPM package involving mild 

strain protection. 

 

This study sought also to establish and/or clarify the relationship between the B. tabaci 

genotypes and the different CMGs occurring singly or together on cassava in post-epidemic 

areas.  The data presented in Chapter three confirmed the presence of two previously reported 

cassava-associated mtCOI B. tabaci genotype clusters, Ug1 and Ug2, in the post-epidemic 

zone in Uganda.  The two genotype clusters diverged at ~8% as previously reported also (Legg 

et al., 2002).  Two key findings were evident from this study.  The first was the higher 

frequency of occurrence of the Ug1 (83%) than the Ug2 (17%) genotypes in the post-epidemic 
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zone (P Sseruwagi, JP Legg, MEC Rey, J Colvin, D Rogan and JK Brown, unpublished data), 

in contrast to the genotypes distribution reported for the vector populations that occurred on 

cassava in 1997-98, at the height of the spread of the severe CMD epidemic. Ug2 were then the 

predominant genotypes at all sites sampled in the post-epidemic zone, while the Ug1 types 

occurred mainly ‘at’ and ‘ahead’ of the epidemic ‘front’ (Legg et al., 2002).  Coupled with the 

evidence that the Ug2 genotypes were less prevalent in the epidemic-affected zone in 1999 

(Legg et al., 2002; chapter 3 and 4, this study), collectively these data seem to suggest that Ug1 

may be increasing, while Ug2 are diminishing from the collective B. tabaci population on 

cassava in Uganda.  Although it was not possible in this study, as in the previous study, to 

establish why and how the Ug1 types were recovering and the Ug2 types disappearing from the 

overall B. tabaci populations on cassava in the post-epidemic zone, a number of suggestions 

are advanced as follows: (i) the possibility that the Ug1 genotypes, the hypothesized 

‘local/indigenous’ genotypes (Legg et al., 2002) could be re-occupying their original habitat 

and hence displacing the Ug2 genotypes, the ‘invader’, in these areas, (ii) that due to the 

mating compatibility between the Ug1- and Ug2-like genotypes (Maruthi et al., 2004a), 

members in the two genotype clusters may have hybridized leading to the increased occurrence 

of hybrid offspring with the Ug1 genotype in the epidemic-affected areas, and (iii) that the Ug2 

genotypes could have failed to establish permanently in the ‘invaded’ areas, owing to habitat-

related or other incompatibilities.  Further studies are required to verify these suggestions.   

 

Secondly, there was no clear association of a particular vector genotype cluster with plants 

exhibiting the severe disease phenotype symptom in the current study.  The Ug2 genotypes 

were at least in 1997/8 closely associated with the severe epidemic in Uganda (Legg et al., 

2002).  Generally, however, the Ug1 genotypes predominated with EACMV-UG2, while Ug2 

occurred with ACMV in the current study.  The epidemiological significance of this apparent 
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‘shift’ in association between the vector and the virus in the continued spread of the CMD 

epidemic in Uganda and elsewhere is yet to be determined.  Significantly, however, the 

EACMV-UG2-associated severe CMD epidemic has reached pandemic proportions and has 

been reported also in western Kenya and the eastern and southern parts of the Lake Victoria 

region in Tanzania (Legg, 1999), north eastern Rwanda (Legg et al., 2001; Sseruwagi et al., 

2005a), south western DR Congo (Neuenschwander et al., 2002) and Burundi (Bigirimana et 

al., 2004), which calls for more studies to be conducted on the genetic identity, biology, field 

populations, dynamics and relationship of the whitefly vector and CMGs associated with the 

spreading pandemic.  

 

Previous studies investigating the genetic variability of morphologically indistinguishable B. 

tabaci populations in Uganda (Legg et al., 1994; Chapter three) and elsewhere, in Africa 

(Burban et al., 1992; Abdullahi et al., 2003; Berry et al., 2004) have used field-collected adult 

whiteflies.  However, these are of limited use in establishing host-associated populations, since 

the whiteflies could be just visiting, feeding or resting on the plants from which they were 

collected at the time of sampling.  Hence, the use of adults alone could easily result in the 

erroneous assignment of B. tabaci genotypes to host-plant species they would otherwise not 

normally colonize.  To overcome this problem, the studies described in Chapters four and five 

used both field-collected adult B. tabaci and fourth instar nymphs to establish both the genetic 

identity and associated host-plant species for the populations studied.  The results obtained 

with the fourth instar nymphs corroborated those obtained from the analysis of the adult B. 

tabaci, thereby providing a unique tool to examine the molecular systematics of host-

associated whitefly populations.   
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The role of alternative host-plant species in the ecology of cassava B. tabaci genotypes and 

their involvement in the epidemiology of CMD remain largely poorly understood.  Although it 

was previously suggested that cassava-colonizing B. tabaci were host-specialized (Storey and 

Nichols, 1938; Abdullahi et al., 2003), evidence obtained from this study (Chapter four) 

suggests that the Ug1 genotypes, the only genotype cluster detected on both cassava and the 

non-cassava plant species sampled during the alternative host colonization studies, is 

oligophagous.  The Ug1 genotypes colonized five additional non-cassava plant species: 

Manihot glaziovii, Jatropha gossypifolia, Euphorbia heterophylla, Aspilia africana and 

Abelmoschus esculentus.  Burban et al. (1992) and Legg (1996) both reported the occurrence 

of cassava B. tabaci adults on non-cassava species.  However, their approach differed from that 

described in Chapters four and five, which used field-collected adults and fourth instar nymphs 

to establish the distribution and colonization of host-plant species by B. tabaci genotypes.  

Therefore, there was no basis for determining, in my study, whether the alternative hosts 

identified are actually new host species defining a widening host range for the cassava-

colonizing B. tabaci in Uganda or merely additional hosts that were simply undetected in the 

previous studies.  Significantly, however, the additional host-plant species identified in the 

post-epidemic areas in this study, could facilitate the survival of the Ug1 genotypes in areas 

where cassava is devastated, hence enabling the acquisition of other whitefly-transmitted 

geminiviruses (WTVs), which could potentially become of epidemiological importance if 

adapted to cassava.  However, further studies to assess the field populations of the Ug1 

genotypes and the occurrence of WTVs in the additional host-plant species should be 

conducted countrywide.   

 

A major finding of the study described in Chapter five was the discovery of five distinct 

previously unrecorded B. tabaci genotype clusters, Ug3-Ug7, among the collective Ugandan B. 
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tabaci populations.  Legg et al. (1994) provided the first evidence of the occurrence of discrete 

cassava, sweetpotato and cotton-associated B. tabaci populations in Uganda, based on the 

analysis of general esterases.  The data described here (Chapter five), using the mtCOI as the 

molecular marker provide further evidence of the occurrence of additional discrete populations 

of B. tabaci in Uganda.  Further, these data show a wider diversity (3-18% nt divergence) 

among the Ugandan B. tabaci populations than was previously expected.  The Ug3 genotypes 

have not been reported before in Uganda or elsewhere, and occurred exclusively on wild mint 

(O. gratissimum) in this study.  Four closely-related (at 1-7% nt divergence) genotype clusters, 

Ug4, Ug5, Ug6 and Ug7, which also include the well-studied B and Q biotypes, and B. tabaci 

from the Ivory Coast, the MED-NAFR-ME region and the Reunion, respectively, are reported 

also for the first time in Uganda.  The Ug4 and Ug7 genotypes were most polyphagous, while 

the Ug6 genotypes colonized only a few hosts.  These data did not show the high polyphagy 

associated with the Ug5 (Q biotype-like) and Ug6 (B biotype-like) genotypes in other parts of 

the world, where members of the two genotype clusters are of significant economic importance 

(Brown et al., 1995a; Moya et al., 2001).   

 

Collectively, however, none of the newly reported genotype clusters (Ug3-Ug7) was found 

colonizing cassava or sweetpotato plants in this study, providing further evidence that in 

Uganda, cassava is only colonized by cassava B. tabaci, which is consistent with previous 

findings on cassava-colonizing whitefly biotypes in Africa (Burban et al., 1992; Legg, 1996; 

Abdullahi et al., 2003).  Further studies should, however, be conducted to establish the 

countrywide occurrence, field population dynamics and host range of the Ug3-Ug7 genotypes, 

and whether there is gene exchange between them.  The geminiviruses transmitted by members 

of the Ug3-Ug7 genotype clusters should be established also, and their economic status in the 

affected crops.  
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Finally the findings of this study provide more understanding of the B. tabaci and CMGs 

situation in Uganda.  CMD remains the main constraint to cassava production in Uganda.  

However, the biological property of virulence is seemingly more important than the 

biochemical property of identity for CMGs.  Severe and mild disease phenotypes could be 

associated with either ACMV or EACMV-UG2, and interestingly also with mixed infections.  

Moreover, the apparent ‘shift’ in distribution and association of cassava-associated B. tabaci 

genotypes, and CMGs in the post-epidemic-affected areas, are new developments for which the 

significance to the epidemiology of the CMD pandemic has yet to be determined.   

 

B. tabaci is taking on increasingly significant importance in Africa.  Recent studies (Legg et 

al., 2004) and field observations (C. Omongo, pers. observ) indicate upsurges in the 

populations of cassava B. tabaci in newly released CMD-resistant varieties, which have caused 

physical damage and significant yield loss.  Coupled with the discovery of previously 

identified B. tabaci genotypes, among which are some of the world’s economically important 

biotypes (B and Q), it is clear that more work still needs to be done to elucidate the biological 

significance and epidemiological (virus transmission) implications of the genetic differences 

identified of the B. tabaci populations in Uganda. 
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