CONVERSATIONAL INTELLIGENCE AFTER STROKE:
A DRUG TRIAL

Tali Frankel

A dissertation submitted to the Faculty of Humanities,
School of Human and Community Development,
University of the Witwatersrand, Johannesburg
in fulfilment of the requirements for
the degree of Doctor of Philosophy

August, 2008
DEDICATION

Most of the ten participants who agreed to take part in this study expressed a desire to feel useful again, to be heard and to stop being invisible. I dedicate this research to them for their bravery and for their optimism. The challenges they experience; their confrontations every day with the things they have lost; are not translatable into words.

‘That’s the trouble with being in a caring profession when you can’t be in it anymore you feel, “Oh well. Now what do I do?” and I keep trying to comfort myself or say, “Well you can still be an example to people how to- how to handle yourself in a positive man- manner. Even after a stroke. And you’ll be an example to your family and your grandchildren too”. Oh I would love to be useful again’ (Felicity)
DECLARATION

I, Tali Frankel, declare that this dissertation is my own unaided work, except for technical assistance as detailed in the Acknowledgements; that I am responsible for the text of this study and all conclusions reached; and that no part of this dissertation has been submitted for a degree at any other university.

__________________________________ ___________________
Tali Frankel Date
ACKNOWLEDGEMENTS

I would like to express my enduring gratitude to the following people and institutions for their invaluable assistance and who have made this experience enlightening, inspiring, reassuring and filled with companionship.

Professor Claire Penn: My supervisor, for sharing her commanding knowledge of this field and all matters related; for her creativity and insightfulness which provided a clear vision; for being supportive and enthusiastic when I most needed encouragement; and for always anticipating excellence. I have learned so much.

Dr David Saffer: The study’s consulting neurologist, for his never-ending supply of generosity of time and spirit; for being my advocate in initially driving this project. His involvement ensured that my participants were all in safe and caring hands – they could not have been better looked after by anyone.

Digby Ormond-Brown: The study’s consulting neuro-psychologist, for endless patient hours creating and refining the assessment battery; for assistance with administration and interpretation of the data in the pilot phase; and for always being welcoming, even at unsociable hours.

Peter Fridjhon: Expert statistician and research designer, for his sound advice, lively debate and for all his support during the many years he has watched my development as a clinician/researcher. Thank you so much for nurturing that process and encouraging critical thought.

Dr. Beulah Sonnenberg, Avril Cummins and Jennifer Watermeyer: The external raters, for their very valuable time and the care with which they assessed and analysed their data. Their input made a significant contribution to this study.

Mike Greyling: Statistician, for his competent and efficient handling of the statistical material.

UCB Pharma and in particular Dr. Pieta Serfontein, for his support and assistance with mobilising this project and promoting it to all the right people, in the right places at the right times. The financial aid from UCB was much appreciated.
The following institutions awarded scholarships, for which I am and will always be deeply grateful:

Deutscher Akademischer Austausch Dienst
National Research Foundation Prestigious Award
University of the Witwatersrand
 • Faculty Research Committee Grant
 • Local Merit Award
 • University Postgraduate Merit Award

The ten stroke participants, their families, friends and caregivers for allowing me into their homes and lives and for allowing me to tell their stories.

The non-neurologically impaired volunteers, for their good will, enthusiasm and time.

To our community of special friends, for their genuine warmth and support of me; for always showing interest and imparting the encouragement so desperately needed in an undertaking like this, and for commiserating with Darryl and keeping him company during many long, lonely hours.

My beloved parents, Michael and Leonie Rootshtain, and treasured siblings, my sister Ayelet and brothers Uriel, Raphi and Gavi, for everything - always. For giving me the belief in my capacity to accomplish good in this world, for engendering commitment and determination, for all the love that has sustained and will always nourish me. A special thank you to mom for loving me enough to actually read this with your sharp eye and red pen.

My husband Darryl and children Dani and Amit, words will never be enough. I cherish you every day; you are my exceptional gifts and blessings. Thank you for allowing me to do this, thank you for holding my hand at the start, for urging me on through the initial bumps, for your shared indignation at the potholes, for providing a constant stream of sustenance – both emotional and gastronomic - when resources were low, for pushing from behind when I felt ready to drop out and for cheering when I crossed the finish line.
LIST OF RELATED WORK

This research has generated interest in a number of related but not directly relevant topics. Some of this work has been prepared for publication and is accordingly listed below. Where applicable this research is mentioned or elaborated on within the body of the thesis. My thanks go to fellow clinicians and researchers who collaborated on these projects.

Penn, C., Frankel, T., Watermeyer, J. & Russell, N. (accepted). Executive function and conversational strategies in bilingual aphasia. *Aphasiology*
ABSTRACT

Background: Conversation is the archetypal mode of communication. As a process it draws on numerous skills, and predispositions, adapting to dynamic contexts and coordinated in highly sophisticated ways for successful interaction. The combination of these abilities with contextual variables coalesces uniquely to represent what this research proposes to be conversational intelligence. It is argued here that high levels of conversational intelligence rest to a large degree on executive functions (EF) which are steadily becoming more widely acknowledged and researched within the communication domain. The impairment of EF in neurologically injured individuals has significant, though as yet undisclosed, repercussions for recovery, response to therapy and ability to integrate communication skills in every day interactions to support conversational success. This study incorporates some new approaches to the study of communication disorders following stroke, including conversation, executive functions and the possibility of pharmacological intervention.

Aims: The aims of this study were to describe in detail the language, executive function and conversational characteristics of ten individuals who had experienced strokes and to examine the relationships among these three areas of functioning. In addition, this research investigated the response of these ten participants to pharmacological therapy on a one month trial of Leviteracetam (LEV).

Methods and Procedures: Ten individuals who had suffered single incident strokes were recruited from local community and rehabilitation facility referrals. All ten participated in a four stage randomised, double blind investigation including baseline, active, placebo and withdrawal phases. At each stage participants underwent testing on an EF battery and were recorded having conversations with familiar interlocutors. In addition, significant others completed a rating scale assessing affective features and behaviours and language testing was conducted at the baseline phase using the WAB. The language and EF data were scored and the conversations subjected to Conversation Analysis. For each participant, profiles were created and assessed for inter-relationships between the executive characteristics and conversational features representative of each executive construct. Repeated measures analysis of variance was conducted on EF data for the four phases of the study to determine significant pharmacological effects.

Outcomes and Results: The majority of the sample presented with significant EF deficits across most areas assessed. Two participants presented with essentially intact profiles which were not explained in terms of types of aphasia or site of lesion. Language results proved to be inconsistently associated with EF deficits, but conversational features reflected underlying executive strengths or deficits with greater consistency. Two participants experienced amelioration (though not statistically significant) of interference control during the active phase, with observable improvements in conversational skill. One participant demonstrated improved conversation without a change in EF scores. The response to LEV is evaluated with reference to potential alternatives.

Conclusions: The existence of EF deficits in individuals with stroke is demonstrated. Furthermore, the impact of these impairments is considerable and observable during naturally occurring conversations, suggesting the centrality of the EF contribution to conversational intelligence. The lack of association between formal language test scores and EF impairments argues for the inclusion of more authentic assessment approaches for stroke patients. The data is explored in terms of specific consequences of different lesion sites on EF and communication and briefly addresses bilingualism as a potential variable in explaining some of the variations in the data. Pharmacotherapy is addressed as an important focus of future research protocols. Implications for assessment and treatment are discussed as well as proposals for future study.
CONTENTS

Dedication ii
Declaration iii
Acknowledgements iv
List of related work vi
Abstract vii
List of tables xvi
List of figures xviii
Appendix xix
A note on anonymity xx

CHAPTER ONE

INTRODUCTION

1.1 PRELIMINARY PERSPECTIVES 1
1.2 OUTLINE OF THE FOLLOWING CHAPTERS 5

CHAPTER TWO

STROKE AND RELATED COMMUNICATION DISORDERS

2.1 THE SOUTH AFRICAN CONTEXT 7
2.1.1 Mortality of stroke 8
2.1.2 Prevalence of stroke 9
2.1.3 Stroke incidence and case fatality 9
2.1.4 Stroke types and subtypes in South Africa 10
2.1.5 Stroke risk factors in South Africa 12
2.2 MECHANISMS OF STROKE 13
2.3 MECHANISMS OF RECOVERY IN STROKE 14
2.3.1 Recovery of the penumbra 15
2.3.2 Transfer of lost function to the homotopic cortex in the right cerebral hemisphere 15
2.3.3 Adoption of strategies that circumvent the lost function 16
2.4 FACTORS AFFECTING RECOVERY 17
2.4.1 Language variables 17
2.4.2 Cognitive variables 18
2.4.3 Biographical variables 18
2.4.4 Medical variables 19
2.4.5 Social variables 20
2.5 COMMUNICATION DISORDERS FOLLOWING STROKE 20
2.5.1 Aphasia 20
2.5.2 Right Hemisphere disorder 24
2.6 TREATMENT OF COMMUNICATION DISORDERS FOLLOWING STROKE 26
2.6.1 Historical approaches to the treatment of aphasia and disorders related to RHD 26
2.6.1.1 Broca’s aphasia 27
2.6.1.2 Wernicke’s aphasia 28
2.6.1.3 Conduction aphasia 28
2.6.1.4 Transcortical aphasias 29
2.6.1.5 Anomic aphasia 30
2.6.1.6 Global aphasia 30
2.6.1.7 Right Hemisphere Disorders 31
2.6.2 Modern approaches to the treatment of communication difficulties 32
2.6.3 Conversation and Conversational Analysis (CA) 34
2.6.3.1 Conversation as prototype of language use 34
2.6.3.2 Research utilising CA as a methodology in relation to communication disorders 34
2.6.3.3 The study of conversation provides an assessment of language in context 36
2.6.3.4 CA provides access to nonverbal as well as verbal means of communication 38
2.6.3.5 Conversation reflects a psychosocial process of defining the self in relation to others 39
2.6.3.6 Conversation is sensitive to underlying neural and neuropsychological factors 40
2.6.3.7 Results of formal language testing do not anticipate conversational performance 41
2.6.3.8 CA allows for the differentiation between “normal” and aphasic discourse 41
2.6.3.9 SUMMARY OF CONVERSATION ISSUES 42
2.6.4 Pharmacological treatment of stroke 42
2.6.4.1 Dopamine 43
2.6.4.2 Norepinephrine 44
2.6.4.3 Amphetamines 44
2.6.4.4 Serotonin 45
2.6.4.5 Acetylcholine 46
CHAPTER THREE
EXECUTIVE FUNCTION

3.1 DEFINITIONS 49

3.2 EXECUTIVE FUNCTIONS AND CONVERSATIONAL INTELLIGENCE 50

3.2. ANATOMY OF EXECUTIVE FUNCTIONS 53

3.2.1 The significance of the Prefrontal Cortex (PFC) 53

3.2.2 Neuroanatomy of the PFC 53

3.2.3 Neurochemistry of the PFC 55

3.2.3.1 Dopamine 56

3.2.3.2 Norepinephrine 59

3.2.3.3 Serotonin 60

3.2.3.4 Acetylcholine 60

3.3 EXECUTIVE FUNCTIONS AND AGEING 61

3.4 THEORIES OF EXECUTIVE FUNCTION 63

3.4.1 Pribram: Feedback system 64

3.4.2 Teuber - Corollary discharge 64

3.4.3 Luria 65

3.4.4 Damasio – Anatomical-Functional Model 66

3.4.5 Fuster - Temporal integration of behaviour 67

3.4.6 Shallice – Information processing model 67

3.4.7 Stuss and Benson – Behavioural / anatomical approach 68

3.4.8 Barkley – A Hybrid Neuropsychological Model of Executive Functions 69

3.5 SUMMARY AND CONCLUDING COMMENTS 71
CHAPTER FOUR
EXECUTIVE DYSFUNCTION IN NEUROGENIC COMMUNICATION DISORDERS

4.1. EXECUTIVE DYSFUNCTION AND VASCULAR DISEASE
4.1.1 Executive dysfunction and aphasia
4.1.1.1 Attention deficits in aphasia
4.1.1.2 Working memory deficits in aphasia
4.1.1.3 Regulation of affect deficits in aphasia
4.1.1.4 Problem solving deficits in aphasia
4.1.1.5 Flexibility deficits in aphasia
4.1.1.6 Summary of executive function deficits in aphasia
4.1.2 Executive dysfunction in Right Hemisphere Disorder (RHD)
4.1.2.1 Attention deficits in RHD
4.1.2.2 Working memory deficits in RHD
4.1.2.3 Regulation of affect deficits in RHD
4.1.2.4 Problem solving deficits in RHD
4.1.2.5 Flexibility deficits in RHD
4.1.2.6 Summary of executive function deficits in RHD

4.2 EXECUTIVE DYSFUNCTION IN TRAUMATIC BRAIN INJURY (TBI)
4.2.1 Attention deficits in TBI
4.2.2 Working memory deficits in TBI
4.2.3 Regulation of affect deficits in TBI
4.2.4 Problem solving deficits in TBI
4.2.5 Flexibility deficits in TBI
4.2.6 Summary of executive function deficits in TBI

4.3 EXECUTIVE DYSFUNCTION IN DEMENTIA
4.3.1 Attention deficits in dementia
4.3.2 Working memory deficits in dementia
4.3.3 Regulation of affect deficits in dementia
4.3.4 Problem solving deficits in dementia
4.3.5 Flexibility deficits in dementia
4.4 EXECUTIVE DYSFUNCTION IN MULTIPLE SCLEROSIS (MS) 94
4.4.1 Attention and working memory deficits in MS 94
4.4.2 Regulation of affect deficits in MS 95
4.4.3 Problem solving deficits in MS 95
4.4.4 Flexibility deficits in MS 95
4.5 EXECUTIVE DYSFUNCTION IN INFLAMMATORY DISEASES / HIV/AIDS 95
4.6 EXECUTIVE DYSFUNCTION IN TUMOURS 96
4.7 EXECUTIVE DYSFUNCTION IN PSYCHOSIS 97
4.8 GAPS AND CHALLENGES 97
4.9 PHARMACOLOGICAL TREATMENT OF EXECUTIVE DYSFUNCTION 101
4.9.1 Catecholamines 101
4.9.1.1 Dopamine 101
4.9.1.2 Amphetamines 104
4.9.1.3 Norepinephrine 104
4.9.2 Serotonin 106
4.9.3 Acetylcholine 106
4.9.4 GABA 108
4.10 LEVITERACETAM (LEV) (KEPPRA) 109
4.11 SUMMARY – THE NEXT STEP 111
CHAPTER FIVE
METHODOLOGY

5.1 AIMS OF THE STUDY 113
5.2 DESIGN OF THE STUDY 113
5.3 PHASES OF THE STUDY 115
5.3.1 Compiling the executive battery 115
5.3.2 Piloting the executive battery 116
5.3.3 Ethical considerations 116
5.3.4 Preparation of the drug 118
5.3.5 Initial Neurological Assessment 119
5.3.6 Testing 119
5.3.7 Data Analysis 120
5.4 PARTICIPANTS 121
5.4.1 Selection criteria for stroke participants 121
5.4.1.1 Inclusion Criteria 122
5.4.1.2 Exclusion Criteria: 123
5.4.2 Selection criteria for non-stroke participants 123
5.4.2.1 Controlling for use of the non-dominant hand 124
5.4.3 Participant characteristics 127
5.5 PROCEDURES 127
5.5.1 Data Collection 127
5.5.1.1 Language Data 127
5.5.1.2 Executive Functioning Data 128
5.5.1.3 Conversational Data 128
5.6 THE RESEARCH BATTERY 128
5.6.1 Test to Assess Language Functioning 128
5.6.2 Tests to Assess Executive Functioning 129
5.6.3 Data Analysis 129
5.6.3.1 Analysis of language and executive data 129
5.6.3.2 Conversation analysis 130
5.6.4 Data confirmability 131
6.1 SUMMARY OF THE FINDINGS 139
6.2. DESCRIPTIVE PHASE OF THE STUDY 140
6.2.1 Language Results 140
6.2.2 EF and co-occurring communication deficits 143
6.2.2.1 Behavioural inhibition 143
6.2.2.2 Interference control 146
6.2.2.3 Interference control - summary 159
6.2.2.4 Response inhibition 160
6.2.2.5 Response inhibition – summary 168
6.2.2.6 Working memory 168
6.2.2.7 Working memory – summary 181
6.2.2.8 Regulation of affect 183
6.2.2.9 Regulation of affect - summary 188
6.2.2.10 Internalization of speech 188
6.2.2.11 Internalization of speech – summary 194
6.2.2.12 Reconstitution 194
6.2.2.13 Reconstitution – summary 202
6.2.3 Results with reference to aphasia type 203
6.2.3.1 Aphasia type - summary 206
6.2.4. Results with reference to site of lesion 207
6.2.4.1 Site of lesion - summary 212
6.2.5 The impact of bilingualism on executive functions 212
6.3 EXPERIMENTAL PHASE OF THE STUDY 213
6.3.1 Statistical results 213
6.3.2 Qualitative assessment of executive functioning results 213
6.3.3 Conversational results 214
6.3.4 Summary of drug effects 220
CHAPTER SEVEN
GENERAL DISCUSSION AND CONCLUSIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>SUMMARY OF THE INVESTIGATION</td>
<td>222</td>
</tr>
<tr>
<td>7.1.1</td>
<td>The primary investigation</td>
<td>222</td>
</tr>
<tr>
<td>7.1.2</td>
<td>The secondary investigations</td>
<td>223</td>
</tr>
<tr>
<td>7.2</td>
<td>GENERAL FINDINGS</td>
<td>223</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Descriptive phase</td>
<td>223</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Experimental phase</td>
<td>225</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Control study</td>
<td>227</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Confirmability of the data</td>
<td>227</td>
</tr>
<tr>
<td>7.3</td>
<td>METHODOLOGICAL ISSUES</td>
<td>227</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Language testing</td>
<td>227</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Ecological validity and EF testing</td>
<td>228</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Task sensitivity and specificity</td>
<td>229</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Confirming authenticity of the conversational findings</td>
<td>236</td>
</tr>
<tr>
<td>7.4</td>
<td>IMPLICATIONS OF THE STUDY</td>
<td>238</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Clinical implications</td>
<td>238</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Research implications</td>
<td>241</td>
</tr>
<tr>
<td>7.5</td>
<td>CONCLUDING COMMENTS</td>
<td>242</td>
</tr>
</tbody>
</table>

REFERENCE LIST

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td></td>
<td>244</td>
</tr>
</tbody>
</table>

APPENDIX

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX</td>
<td></td>
<td>286</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1: Comparison of pathological stroke types and subtypes from hospital-based Studies
Table 2.2: Major aphasis stroke syndromes
Table 2.3: Aphasia syndromes and related sites of lesion
Table 4.1: Neurological disorders associated with executive dysfunction
Table 5.1: Randomization of Participant Placebo and Active Phases
Table 5.2: Communication Partners for Participants throughout experimental study
Table 5.3: Participant characteristics
Table 5.4: Constructs and Tests of the Executive Functioning Battery
Table 5.5: Comparison of judgments regarding turn-taking
Table 5.6: Comparison of judgments regarding topic management
Table 5.7: Comparison of judgments regarding repair
Table 5.8: Language, Praxis and Construction scores from the WAB
Table 5.9: Aphasia syndromes
Table 5.10: Tests of Behavioral Inhibition
Table 5.11: Inconsistencies in the relationship between interference control and repetition
Table 5.12: Presence of distractibility in conversation with poor interference control
Table 5.13: Perseveration in spontaneous speech and performance on Trail Making
Table 5.14: Presence of perseveration during naming and performance on Trail Making
Table 5.15: Evidence of poor inhibition and perseveration on Trail Making and the WCST
Table 5.16: Tests of working memory
Table 5.17: Performance on working memory tests
Table 5.18: Features of spontaneous speech associated with working memory and performance on working memory tests.
Table 5.19: Ranked comprehension scores and performance on working memory tests
Table 5.20: Test of regulation of affect
Table 5.21: Tests of internalization of speech
Table 5.22: Results of planning tests and associations with conversational features
Table 5.23: Tests of reconstitution
Table 5.24: Summary of EF results and conversational skills for all ten participants, grouped according to type of aphasis

xvi
Table 6.18: Profiles of disorders of EF in neurogenic communication disorders 208
Table 6.19: Neurological sites involved with aspects of EF 210
Table 6.20: Sites of lesion for the ten participants 211
Table 6.21: Number of observations of impaired EF in conversation 215
Table 7.1 Useful EF tests and their associations with conversational features 236

APPENDIX TABLES

Table A.1: Executive functioning battery 287
Table J.1: t-tests for Trails A 308
Table J.2: t-tests for Trails B 308
Table J.3: t-tests for complex figures (copy) 308
Table J.4: t-tests for complex figures (recall) 308
Table J.5: t-tests for five point test 308
Table J.6: t-tests for design fluency 308
Table L:1 Quantitative and qualitative constructs of reliability 310
Table N.1: Results of digits forward 313
Table N.2: Results of the Stroop colour-word interference test 313
Table N3: Results of trail making 314
Table N.4: Results of self ordered pointing test 314
Table N.5: Results of complex figures copy task 315
Table N.6: Results of complex figures recall task 315
Table N.7: Results of Wisconsin card sorting test in terms of categories sorted 316
Table N.8: Results of Wisconsin card sorting test in terms of number of errors 316
Table N.9: Results of Wisconsin card sorting test in terms of perseverative responses 317
Table N.10: Results of digits backwards 317
Table N.11: Results of regulation of affect 318
Table N.12: Results of tower of London test 318
Table N.13: Results of Raven’s progressive matrices 319
Table N.14: Results of five point test 319
Table N.15: Results of design fluency 320
Table O.1: ANOVA for digits forward 321
Table O.2: ANOVA for Stroop word colour interference test 321
Table O.3: ANOVA for trail making 321
APPENDIX TABLES CONT…

Table O.4: ANOVA for the self ordered pointing test 322
Table O.5: ANOVA for recall of complex figures 322
Table O.6: ANOVA for WCST in terms of categories sorted 322
Table O.7: ANOVA for WCST in terms of errors 322
Table O.8: ANOVA for WCST in terms of perseveration 323
Table O.9: ANOVA for Digits backwards 323
Table O.10a: ANOVA for Tower of London 323
Table O.10b: Post Hoc analysis for source of variance Baseline vs. Phases, 1,2 and withdrawal 323
Table O.11: ANOVA for Raven’s progressive matrices 324
Table O.12: ANOVA for five point test 324
Table O.13: ANOVA for design fluency 324

LIST OF FIGURES

Figure 2.1: The appearance of necrosis and apoptosis 14
Figure 2.2: Major lobes of the brain with location of important language areas 23
Figure 3.1: Lateral and medial views of the frontal lobes and prefrontal cortex 54
Figure 3.2: Neurochemical transmission in the PFC 56
Figure 3.3: Barkley’s model of behavioural inhibition and executive functions 70
Figure 4.1: The chemical structure of LEV and its metabolite LO57 110
Figure 6.1: Schematic representation of areas involved in cognitive control 207
Figure 7.1: Disordered features of conversation relative to EF deficiency 226
APPENDIX

Appendix A: Executive functioning battery 287
Appendix B: Participant and caregiver information sheet 292
Appendix C: Participant consent form 298
Appendix D: Participant consent form for the use of video recordings 304
Appendix E: Caregiver assent form 306
Appendix F: Caregiver assent form for the use of video recordings 308
Appendix G: Participant data control sheet 310
Appendix H: Control group information sheet 311
Appendix I: Control group consent form 314
Appendix J: Control matched t-tests 316
Appendix K: Conversation Analysis Transcription Conventions 317
Appendix L: Quantitative and qualitative constructs of reliability 318
Appendix M: Instruction sheet for raters for conversational data analysis triangulation 319
Appendix N: Results of the executive testing 321
Appendix O: ANOVA Repeated measures analysis of variance for the EF battery tests 329
A NOTE ON ANONYMITY

When the participants were approached about taking part in this study, they were told that their identities would be protected and that they were entitled to anonymity. Two stated that they would be happy to choose pseudonyms for the purposes of the presentation of the results. One stated that it made no difference one way or the other. The other seven not only said that they would have no reservations about their own names being used but specifically requested that they be named. When asked why, they unanimously said that their strokes have to a greater or lesser extent effectively removed them from the public eye. They have been transformed into people who inhabit private and unarticulated lives despite the fact that they want to be heard, want to be “useful” and want “a voice”. The participants have reserved the right to claim ownership of their contributions. Eight of them are therefore deliberately named: Cecil, Felicity, Grace, Jeannette, John, Mel, Margaret and Tumi. Jane* and Paul* chose instead to be identified by pseudonyms.

In the conversational transcripts, all participants are identified by their initials. When the researcher is the interlocutor, she is represented by the letter R. Friends, family members or spouses are also identified by initials and are acknowledged in the text.