DECLARATION

I, James Chabu declare that this thesis is my own work. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted previously for any degree or examination at this or other University.

..................

30th day of May, 2008.
I dedicate this work:
To my supportive and understanding wife Adore, my children, Kabanda, Chabu and Lweendo for bearing with my long absence from home
To my mother Mrs. Lucy Musonda Kabanda and to the memory of my late father Mr. Joseph Chabu, who originally inspired me to take up medicine as a career
To God who has been so gracious and kind to me and made it all happen
ABSTRACT

Left ventricular hypertrophy (LVH) and increases in large artery stiffness predict cardiovascular outcomes in patients with renal failure. What determines left ventricular mass index (LVMI) and large artery stiffness and the contribution toward LVH and large artery dysfunction is not entirely clear. Consequently, this cross-sectional study was aimed at assessing the various factors impacting on LVH in haemodialysis (HD), to contribute toward our understanding of the pathophysiology of LVH and large artery dysfunction in 94 adult HD patients. Pre- and post-dialysis blood pressures (BPs) were determined over 12 sessions of dialysis and averaged. Pulse wave analysis performed at the carotid, femoral and radial arteries was employed to determine pulse wave velocity (PWV) and central augmentation index (AIc). Echocardiography was performed to determine left ventricular mass (LVM) indexed to body surface area (LVMI). Natriuretic peptides, procollagen type I c-peptide (PIP), c-terminal telopeptide of type I collagen (ICTP), matrix metalloproteinases and their inhibitors were studied.

The prevalence of LVH was 72.8 % (67/92). On multivariate analysis pre- (p ≤ 0.005), post- (p < 0.05) and averaged dialysis (p < 0.015) systolic BP were associated with LVMI and PWV. 24 hour (r = 0.260, p = 0.026), day (r = 0.247, p = 0.036), and night (r = 0.241, p = 0.042) systolic BP were not more closely associated with LVMI than the averaged dialysis systolic BP (r = 0.272, p = 0.010). Similarly 24 hour (r = 0.41, p = 0.0003), day (r = 0.400, p = 0.0005), and night (r = 0.416, p = 0.0003) systolic BP were not more closely associated with PWV than the post-dialysis systolic BP (r = 0.39, p = 0.001) indicating that these BP measurements are as effective as 24-hour ambulatory BP in predicting cardiovascular
target organ changes. No relationship between either PWV (r=-0.08), or AIc (r=-0.10) and LVMI, between PWV (r=-0.11), or AIc (r=0.03) and LV MWT was noted. IVCD was independently associated with LVMI (partial r adjusted for average dialysis SBP=0.27, p=0.014; partial r adjusted for 24-hour SBP=0.29, p=0.013), and LV mean wall thickness (p<0.01), but not with LV relative wall thickness (p=0.18), or LV end diastolic diameter (p=0.88). An association between IVCD and AIc (partial r adjusted for average dialysis SBP=0.21, p<0.05), but not PWV was noted. NT-proANP and NT-proBNP were independently associated with LVMI (p<0.0001) but neither were associated with IVCD independent of LVMI suggesting a close association with LVMI in HD. Serum concentrations of matrix metalloproteinases 1, 2 and 9, and their tissue inhibitors (1 and 2) were not associated with LVMI, remodelling or PWV and neither procollagen I nor the C-terminal telopeptide of type I collagen (ICTP) were associated with LVMI. Thus, factors impacting on LVH in this study were systolic BP, NT-proANP, NT-proBNP and IVCD.
ACKNOWLEDGEMENTS

I wish to extend my sincere appreciation to:

- Professor Saraladevi Naicker my supervisor and host mentor for her guidance, initiative, encouragement and incredible all round support.
- Professor Gavin Norton the co-supervisor for his support, encouragement and valuable input and advice and for permitting use of the Cardiovascular Research Unit facilities.
- Professor P Manga, for his advice and for allowing me to use the Vivid 7 Echocardiography machine and availing training and services of the echocardiography technologist and reviewing the taped VHS copies of the echograms.
- Professor Angela Woodiwiss for assisting with statistical analysis.
- Professor Karen Sliwa-Hahnle for assistance with procurement of proBNP kits from Roche at an extremely discounted price.
- The Consultants at the Johannesburg Hospital, Division of Nephrology: Drs G Paget, S Wadee, S Naidoo and J Fabian for their support and advice.
- Dr Peter Hsu and members of staff of the Renal Unit of National Renal Care, Milpark Hospital for the cooperation and assistance received during the course of this study
- Dr Vakhtang Rekhiashvalli for his advice and assistance with transport during the course of this study and the staff of the Donald Gordon Medical Centre and Glynnwood Hospital Renal Units.
- Dr M Radev and members of staff of the Renal Unit of Helen Joseph Hospital for their cooperation and assistance during the course of this study.
- The Board and Management of National Renal Care for granting permission to recruit patients from their Units at Milpark and Linksfield Hospitals.
- Dr Jaya George and staff of the National Health Laboratory Service for assisting with the NT-proBNP assays.
- Dr Raquel Duarte, Laboratory Manager and Senior Lecturer, for her assistance in procurements and the many long hours she spent in helping me do the ELISA assays.
- Mr. A R Immelman for assisting with the metalloproteinase assays’ dry run and the NT-proANP ELISA experiment.
- The Staff of the Renal Unit at the Linksfield Hospital for their assistance and Support.
- The Staff of the Renal Unit at the Johannesburg Hospital for their assistance and support.
- Prof D Raal for permission to use his laboratory facilities for the ELISA assays.
- Drs Jonathan Levin and Steve Olorunju of the Medical Research Council Pretoria for assisting with statistical design and analysis.
- The Department of Medicine and Division of Nephrology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg for providing financial support.
- Roche for providing NT-proBNP kits at a grossly discounted price.
- The National Kidney Foundation South Africa for providing part funding for this research.
- Ms Bianca Harisunker for assisting with the Echocardiography and inferior vena cava diameter assessments.
Ms Nomonde Molebatsi for her patience in teaching me how to use the Sphygmocor machine for arterial stiffness measurements.

My colleagues the Nephrology Fellows for their support and encouragement.

The study participants, whose participation made this work possible.

The International Society of Nephrology (ISN) for the fellowship award, which enabled me to study at Johannesburg Hospital, University of the Witwatersrand.

Konkola Copper Mines plc, for granting me study leave.
TABLE OF CONTENTS

DECLARATION ii
DEDICATION iii
PUBLICATIONS AND PRESENTATIONS iv
ABSTRACT v
ACKNOWLEDGEMENTS vii
TABLE OF CONTENTS ix
LIST OF FIGURES xvii
LIST OF TABLES xix
ABREVIATIONS xx
PREFACE xxii

CHAPTER 1: Cardiovascular Disease In Chronic Renal Failure: causes and controversies 1

1.0 Introduction 2

1.1.0 Left ventricular hypertrophy in chronic kidney disease: prevalence and consequences 4

1.1.1 Prevalence of left ventricular hypertrophy in chronic kidney disease 4

1.1.2 The relationship between left ventricular hypertrophy and cardiovascular disease in end stage renal disease 5

1.2.0 Alterations in large artery function in end stage renal disease: Evidence and consequences 6

1.2.1 Large artery dysfunction in end stage renal disease 6

1.2.2 Relationship between large artery dysfunction and cardiovascular disease in end stage renal disease 8

1.3 Causes of left ventricular hypertrophy and large artery dysfunction in chronic renal disease 9
1.3.1 Causes of left ventricular hypertrophy in general and in chronic renal failure

1.3.1.1 Causes of left ventricular hypertrophy in general

1.3.1.2 Causes of left ventricular hypertrophy in chronic renal failure

1.3.1.2.1 Blood pressure effects on left ventricular mass

1.3.1.2.2 Arterial stiffness effects on left ventricular mass

1.3.1.2.3 The impact of fluid overload on left ventricular mass

1.3.1.2.3.1 Measurement of inferior vena cava diameter

1.3.1.2.3.2 Natriuretic peptides as indicators of volume status in renal failure

1.3.1.2.3.2.1 The natriuretic peptide family

1.3.1.2.3.2.2 Natriuretic peptides in renal failure

1.3.1.2.4 Parathyroid hormone and left ventricular mass

1.3.1.2.5 Anaemia and left ventricular mass

1.3.1.2.6 Arterio-venous fistulae and left ventricular mass

1.3.1.2.7 Neurohumoral, autocrine and metabolic effects on left ventricular mass

1.3.1.2.8 Ischaemic heart disease and left ventricular mass

1.3.1.2.9 Collagens and collagenases: Role in left ventricular structure

1.3.1.2.9.1 Collagen and collagenases

1.3.1.2.9.2 Plasma Collagen and collagenases as potential markers of cardiac structural abnormalities

1.3.2 Causes of large artery dysfunction in chronic renal failure

1.3.2.1 Blood pressure effects on arterial stiffness

1.3.2.2 Fluid overload and arterial stiffness
CHAPTER 2: Prediction of left ventricular mass and arterial stiffness changes with dialysis versus ambulatory blood pressures in haemodialysis patients

2.0 Introduction

2.1 Methods

2.1.1 Study population

2.1.2 Demographic and clinical data

2.1.3 Blood Pressures and the diagnosis of hypertension

2.1.4 Biochemistry

2.1.5 Echocardiography

2.1.6 Pulse wave analysis

2.1.7 Electrocardiography

2.1.8 Statistics

2.2 Results
2.2.1 Causes of renal failure

2.2.2 Dialysis programs

2.2.3 General demographic and clinical data

2.2.4 Treatment of hypertension and blood pressures in the group

2.2.5 Cardiovascular target organ changes

2.2.6 Non haemodynamic factors associated with target organ changes

2.2.7 Association between dialysis blood pressures and left ventricular mass index

2.2.8 Comparison of the association between dialysis, office and 24-hour ambulatory blood pressures and left ventricular mass index

2.2.9 Association between dialysis blood pressures and pulse wave velocity

2.2.10 Comparison of the association between dialysis, office and 24-hour ambulatory blood pressures and pulse wave velocity

2.2.11 Association between dialysis blood pressures and central and peripheral augmentation index

2.2.12 Comparison of the association between dialysis, office and 24-hour ambulatory blood pressures and augmentation index

2.3 Discussion

CHAPTER 3: Is there an association between indexes of arterial stiffness/wave reflection and left ventricular mass index in patients receiving haemodialysis?

3.0 Introduction

3.1 Methods
3.2 Results

3.2.1 Characteristics of study population

3.2.2 Factors associated with indices of arterial stiffness/wave reflection

3.2.3 Association between indices of arterial stiffness/wave reflection and left ventricular mass index or LV geometry

3.3 Discussion

CHAPTER 4: Inferior vena cava diameter as a blood pressure-independent determinant of left ventricular mass index and arterial stiffness in haemodialysis

4.0 Introduction

4.1 Methods

4.1.1 Clinical assessment of hydration status

4.1.2 Inferior vena cava diameter

4.2 Results

4.2.1 Characteristics of study population

4.2.2 Hydration status

4.2.3 Association between inferior vena cava diameter and left ventricular mass and geometry

4.2.4 Association between inferior vena cava diameter and arterial stiffness/wave reflection

4.3 Discussion
CHAPTER 5: Natriuretic peptides in haemodialysis patients: Predictors of volume-overload or left ventricular mass?

5.0 Introduction 104
5.1 Methods 106
5.1.1 Plasma natriuretic peptides 107
5.2 Results 108
5.2.1 Association of natriuretic peptides with left ventricular mass 108
5.2.2 Association of natriuretic peptides with inferior vena cava diameter 109
5.3 Discussion 113

CHAPTER 6: Collagens and collagenases and LVMI and PWV in patients receiving haemodialysis: The role of matrix metalloproteinase 1, 2 and 9; tissue inhibitor of matrix metalloproteinase 1 and 2; C-terminal telopeptide of type I collagen and carboxy-terminal peptide of procollagen type-I

6.0 Introduction 118
6.1 Methods 120
6.1.1 Blood markers of interstitial changes 122
6.2 Results 123
6.2.1 Characteristics of patients in whom interstitial markers were measured versus those in whom they were not 123
6.2.2 Relationships between serum concentrations of tissue interstitial changes 124
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.3 Relationships between serum concentrations of tissue interstitial</td>
<td>127</td>
</tr>
<tr>
<td>changes and LVMI</td>
<td></td>
</tr>
<tr>
<td>6.2.4 Relationships between serum concentrations of tissue interstitial</td>
<td>127</td>
</tr>
<tr>
<td>changes and LV end diastolic diameter</td>
<td></td>
</tr>
<tr>
<td>6.2.5 Relationships between serum concentrations of tissue interstitial</td>
<td>130</td>
</tr>
<tr>
<td>changes and LV mean wall thickness</td>
<td></td>
</tr>
<tr>
<td>6.2.6 Relationships between serum concentrations of tissue interstitial</td>
<td>130</td>
</tr>
<tr>
<td>changes and PWV</td>
<td></td>
</tr>
<tr>
<td>6.3 Discussion</td>
<td>133</td>
</tr>
</tbody>
</table>

CHAPTER 7: Conclusion

APPENDIX 1 Alpha-Atrial Natriuretic Polypeptide (1-28) EIA protocol 140

APPENDIX 2 Enzyme Immunoassay for the Quantitative Determination of Human Proanp (1-98) protocol 143

APPENDIX 3 Brain Natriuretic Peptide-32 (Human) (BNP-32, Human) EIA Kit 145

APPENDIX 4 NT-proBNP Elecsys proBNP reagent kit protocol 149

APPENDIX 5 C-terminal telopeptide of type I collagen (ICTP) EIA protocol 151

APPENDIX 6 Procollagen Type I C-Peptide (PIP) EIA Kit protocol 155

APPENDIX 7 Human Matrix Metalloproteinase-1(MMP-1) Enzyme-Linked Immunosorbent Assay (ELISA) protocol 161

APPENDIX 8 Human MMP-2 ELISA Kit Protocol 165

APPENDIX 9 Human MMP-9 ELISA Kit Protocol 167

APPENDIX 10 Human TIMP-1 ELISA Kit Protocol 171

APPENDIX 11 Human TIMP-2 ELISA Kit Protocol 175
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Hardware used to perform 24-hour ambulatory blood pressure monitoring</td>
<td>44</td>
</tr>
<tr>
<td>2.2</td>
<td>Echocardiograph used to determine left ventricular dimensions in the present study</td>
<td>47</td>
</tr>
<tr>
<td>2.3</td>
<td>Hardware used to perform pulse wave analysis</td>
<td>48</td>
</tr>
<tr>
<td>2.4</td>
<td>An example of the applanation tonometry recordings obtained to determine augmentation index (upper panel) and pulse wave velocity (lower panel)</td>
<td>49</td>
</tr>
<tr>
<td>2.5</td>
<td>Correlations between dialysis blood pressures and left ventricular mass index</td>
<td>59</td>
</tr>
<tr>
<td>2.6</td>
<td>Multivariate adjusted partial correlation coefficients and the 95% confidence intervals between blood pressures and LVMI.</td>
<td>60</td>
</tr>
<tr>
<td>2.7</td>
<td>Correlations between dialysis blood pressures and pulse wave velocity in haemodialysis patients</td>
<td>62</td>
</tr>
<tr>
<td>2.8</td>
<td>Multivariate regression analysis (adjusting for age, sex, BMI, smoking and number of antihypertensives), post-dialysis systolic and diastolic BP association with pulse wave velocity (lower panel) shows the relationships, after adjustments for age, sex, BMI, number of antihypertensive agents, and smoking, between conventional office, 24-hour, day and night systolic and diastolic BP and pulse wave velocity</td>
<td>63</td>
</tr>
<tr>
<td>2.9</td>
<td>Correlations between dialysis blood pressures and aortic augmentation index in haemodialysis patients</td>
<td>65</td>
</tr>
<tr>
<td>2.10</td>
<td>Multivariate adjusted partial correlation coefficients and the 95% confidence intervals for relations between blood pressures and aortic augmentation index and brachial augmentation index</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>Association between pulse pressure (PP) or systolic blood pressure (SBP) and left ventricular mass index (LVMI) in patients receiving haemodialysis</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Association between pulse wave velocity and left ventricular mass index in patients receiving haemodialysis</td>
<td>79</td>
</tr>
<tr>
<td>3.3</td>
<td>Association between pulse pressure and left ventricular mean wall thickness in patients receiving haemodialysis</td>
<td>80</td>
</tr>
<tr>
<td>3.4</td>
<td>Association between pulse wave velocity and left ventricular mean wall thickness in patients receiving haemodialysis</td>
<td>81</td>
</tr>
<tr>
<td>4.1</td>
<td>Representative image of the inferior vena cava obtained using ultrasonography and the measurements thereof</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>Relationship between inferior vena cava diameter and left ventricular mass index and LV mean wall thickness in patients receiving haemodialysis</td>
<td>96</td>
</tr>
<tr>
<td>4.3</td>
<td>Relationship between inferior vena cava diameter and left ventricular mass index and LV relative wall thickness and LV end diastolic diameter in patients receiving haemodialysis</td>
<td>97</td>
</tr>
</tbody>
</table>
4.4 Partial correlation coefficients and the 95% confidence intervals for the adjusted relations between inferior vena cava diameter and left ventricular mass index, LV mean wall thickness, LV relative wall thickness and LV end diastolic diameter in patients receiving haemodialysis.

4.5 Partial correlation coefficients and the 95% confidence intervals for the adjusted relations between inferior vena cava diameter and left ventricular mass index (LVMI), LV mean wall thickness (LV MWT), LV relative wall thickness (LV RWT) and LV end diastolic diameter (LVEDD) in patients receiving haemodialysis.

5.1 Correlations between N-terminal pro atrial natriuretic peptide or NT-proB-type natriuretic peptide and left ventricular mass index in patients receiving haemodialysis.

5.2 Partial correlation coefficients and 95% confidence intervals for the relationships between N-terminal pro atrial natriuretic peptide or NT-proB-type natriuretic peptide and left ventricular mass index in patients receiving haemodialysis.

5.3 Correlations between N-terminal pro atrial natriuretic peptide (NT-proANP) or N-terminal brain natriuretic peptide (NT-proBNP) and inferior vena cava diameter (IVCD) in patients receiving haemodialysis.

6.1 Relations between serum concentrations of markers of tissue interstitial changes. PIP, procollagen type I C-peptide; MMP, matrix metalloproteinase; TIMP, tissue inhibitor of MMP.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Demographic and clinical characteristics of the study population</td>
</tr>
<tr>
<td>2.2</td>
<td>Blood pressures of study patients</td>
</tr>
<tr>
<td>2.3</td>
<td>Left ventricular structure and function and large vessel function in study group</td>
</tr>
<tr>
<td>3.1</td>
<td>Factors associated with large artery dysfunction in patients receiving haemodialysis</td>
</tr>
<tr>
<td>4.1</td>
<td>Clinical score of volume state</td>
</tr>
<tr>
<td>4.2</td>
<td>Clinical scores for hydration status of the study patients</td>
</tr>
<tr>
<td>6.1</td>
<td>General demographic and clinical characteristics of patients who had (with) versus those that did not have (without) measures of interstitial markers</td>
</tr>
<tr>
<td>6.2</td>
<td>Pearson’s correlation coefficients between serum concentrations of markers of interstitial collagen changes and left ventricular mass index in patients with chronic renal failure receiving haemodialysis</td>
</tr>
<tr>
<td>6.3</td>
<td>Pearson’s correlation coefficients between serum concentrations of markers of interstitial collagen changes and left ventricular end diastolic diameter in patients with chronic renal failure receiving haemodialysis</td>
</tr>
<tr>
<td>6.4</td>
<td>Pearson’s correlation coefficients between serum concentrations of markers of interstitial collagen changes and left ventricular mean wall thickness in patients with chronic renal failure receiving haemodialysis</td>
</tr>
<tr>
<td>6.5</td>
<td>Pearson’s correlation coefficients between serum concentrations of markers of interstitial collagen changes and carotid-femoral pulse wave velocity in patients with chronic renal failure receiving haemodialysis</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

BP Ambulatory BP
ABP Ambulatory BP
ACE Angiotensin-converting enzyme inhibitors
ACORD Anaemia correction in Diabetes study
AIc Central augmentation index
AIp Radial augmentation index
ANP Atrial natriuretic peptide
AVA Arterio-venous access
BMI Body mass index
BNP Brain natriuretic peptide
BP Blood pressures
BSA Body surface area
CAD Coronary artery disease
CHF Congestive heart failure
CHF CHOICE Choices for Healthy Outcomes in Caring for ESRD
Ci Collapsibility index
CKD Chronic kidney disease
CRP C-reactive protein concentrations
cSBP Central systolic BP
cSBP Central systolic BP
CV Coefficient of variation
CVD Cardiovascular disease
DBP Diastolic blood pressure
Deceleration time deceleration time of (e)
ECG Electrocardiography
ECM Extracellular collagen matrix
EF Ejection fraction
EIA Enzyme immunoassay
Epoeitin erythropoietin
ESRD End-stage renal disease
Evaluation and Treatment of High Blood Pressure
FS fractional shortening
GFR Glomerular filtration rate
HCU Hand-carried ultrasounds
HD Haemodialysis
Hypertension=1
ICTP C-terminal telopeptide of type I collagen
IHD Ischaemic heart disease
IL Interleukin
ISH Isolated systolic hypertension
IVCD Inferior vena cava diameter
IVCmin Minimum IVC diameter
IVSTd Interventricular wall thickness
PREFACE

The incidence of cardiovascular disease in chronic kidney disease population has been described as reaching epidemic proportions. Cardiovascular mortality in patients on renal replacement therapy is 10–30 times more common than in the general population. Left ventricular hypertrophy (LVH) and large artery dysfunction are prevalent intermediate cardiovascular changes in patients receiving HD. Volume and pressure related risk factors impact LVH and large artery dysfunction. Measurements of circulating natriuretic peptides and their N-terminal pro-hormones and inferior vena cava diameter (IVCD) have been used recently to aid in assessment of appropriate circulating volume. Studies have suggested that changes in collagen I markers, matrix metalloproteinase 1, 2, 9 and their tissue inhibitors (1 and 2) may predict changes in the cardiovascular system. However, what is not entirely clear is exactly what determines these, and the extent to which each factor contributes toward LVH and large artery dysfunction in HD.