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ABSTRACT 
 

Dissimilatory sulphate reduction, brought about by the action of sulphate reducing 

bacteria (SRB) was used in the treatment of acid mine drainage (AMD) in a 

fluidised bed bioreactor. Biologically produced hydrogen sulphide and 

bicarbonate ions, by SRB, facilitated the precipitation of heavy metals and the 

generation of alkalinity in the synthetic acid mine water, respectively. The SRB 

that had been selected were able to utilize acetate as the sole carbon source and 

were capable of growing in the bioreactors at low pHs, facilitating an increase in 

the influent pH from 2.75-7.0 to 5.4-7.8, after a 24-hour hydraulic retention time 

(HRT). The precipitation efficiencies for Fe, Mn, Zn, Cu, Cr and Al after a HRT 

of 24 h as metal sulphides ranged between 84- 99% for influent pH values of 

between 4 and 7, and above 54% for influent pH values between 2.75 and 4. 

Microbial metabolic activity decreased with decreasing influent pH. This was 

inferred from the decreasing differences in chemical oxygen demand (COD) 

depletion rate over a 24 h HRT, as influent acidity levels approached pH 2.75. 

Molecular studies, using PCR-DGGE analysis on the microbial consortium in the 

bioreactor, revealed the presence of at least 8 different bacterial species in the 

consortium. Attempts at sequencing these bands yielded inconclusive results, with 

the bands showing sequence homology to a large number of previously uncultured 

and undescribed bacteria. Scanning electron microscopy confirmed the presence 

of bacteria of different morphology, as well as the presence of biofilms, which 

account for the heavy metal and low pH tolerances that the bacteria sustained. 
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1 INTRODUCTION 

 

1.1 Background on mining in South Africa 

 

Gold mining in South Africa has significantly contributed to the economic 

development of the country. The industry started around the 1870s, and has grown 

extensively over the past 130 years (www.bullion.org.za). Many towns and cities 

have been built as a result of the mining industry, and many of the roads and 

infrastructure in existence have been a direct result of the attempts to serve the 

emerging mining industry. South Africa is ranked top in the world for identified 

resource production, and currently has thirty five percent of the world’s gold 

reserves. The South African gold mining industry has been the basis of the 

economy for over a century, and has also been instrumental in the country’s 

foreign exchange, contributing to the largest portion of foreign exchange 

(www.bullion.org.za), and will continue to play a vital role in the export earnings 

of South Africa, thereby impacting on business in the country. Another significant 

offering from the mining industry is in the employment sector. Mining activities 

have provided numerous jobs for South Africans with varying levels of skill 

(www.bullion.org.za).  

 

With advancement of technology, mining operations were able to move deeper, in 

some cases to as much as four kilometres below the surface (www.bullion.org.za). 

However, mining at these depths was not sustainable and it soon became 
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uneconomical to continue mining, owing to exorbitant costs associated with 

ventilation, cooling, tunnelling and processing (Naicker et al., 2003). Associated 

with this increase in depth, and with the increase and expansion of mining 

operations, a greater amount of mining waste was produced.  

 

1.2 Pollutions resulting from mining processes 

 

The mining extraction process exposes many metals, sulphides, oxide minerals 

and ores, the major one being pyrite (FeS2). Other conglomerates encountered in 

the mining process have been identified as uraninite (UO2), brannerite 

(UO3Ti2O4), arsnopyrite (FeAsS), cobaltite (CoAsS), galena (PbS), pyrrhotite 

(FeS), gersdofite (NiAsS) and chromite (FeCr2O4). Many metals occur primarily 

as sulphide ores, associated with pyrite. Metal sulphides that are embedded in the 

waste or processed ore are usually removed and collected together in the mine 

dumps, close to the extraction sites (Naicker et al., 2003).      

 

The accumulation of these wastes or mining spoils has been shown to impact 

negatively on the environment and biodiversity. In addition, mine closure and the 

abandoning of mines, without the proper application measures in place to prevent 

the development of acid mine drainage has contributed to heavy metal pollution 

and acidification of surface waters. Most of these mining spoils have never been 

disturbed, which has resulted in their exposure over prolonged periods to 

oxygenated rainwater, resulting in the oxidation of the contained metals and 

waste. (Naicker et al., 2003).  
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The oxidation of pyrite, the most abundant of ores, leads to the acidification of the 

water that percolates through the dumps. This water is commonly known as acid 

mine drainage (AMD), and is a significant contributor to pollution of 

groundwater. Acid, sulphur-rich water is also a by-product of a variety of 

industrial operations apart from mining, and is widely regarded as one of the most 

serious forms of water pollution (Johnson, 1995). These waters typically contain 

elevated concentrations of ferrous (Fe2+) and ferric (Fe3+) iron, as well as 

sulphates. The low pH of these waters poses a greater threat in that it accelerates 

mineral dissolution and makes metals and metalloids more soluble  (Johnson 

1995).  Other heavy metals contained within these acidic waters are zinc, 

cadmium, cobalt, lead, nickel, aluminium, manganese and copper, all in elevated 

concentrations.   

 

1.3 Pyrite oxidation 

 

The key factors involved in acid generation are the presence of sulphide minerals -

which depends on the local rock and mineralogy, water or humidity, and on the 

presence of an oxidating agent. The process of pyrite oxidation however, can be 

multi-step, and involves both an oxygen-dependant and an oxygen-independent 

reaction. The primary oxidant in many cases is ferric iron instead of oxygen 

(Evangelou, 1995). AMD can therefore be generated in a number of ways and is 

also dependent on the local microbiology, as will be further discussed. Using the 
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sulphide mineral pyrite as an example, its oxidation into dissolved sulphate, iron 

and hydrogen is as follows: 

 

FeS2 + O2 + H2O → Fe2+ + 2SO4
2- + 2H+     (1) 

 

The modes of sulphide oxidation have been described as either direct, or indirect 

(Johnson, 1995). Direct oxidation follows the route of equation 1.  

 

Ferrous iron (Fe2+) is generated, as well as H+ and SO4
2-, resulting in an increase 

in acidity. The ferrous iron can also, depending on the oxygen concentrations, 

microbial activity, and pH, be oxidised to ferric iron (Fe3+). Sulphur oxidising 

bacteria, such as the acidophilic Acidothiobacillus ferrooxidans and 

Leptospirillum ferrooxidans, as well as other Thiobacillus-like bacteria, are 

instrumental in the continual generation of acidic waters in that they are capable 

of oxidising ferrous iron back to ferric iron, thus allowing further oxidation of 

pyrite (equation 3).  This mechanism has been described as indirect oxidation 

(Johnson, 1995), and follows the equation: 

 

Fe2+ + O2 + H+ → Fe3+ + H2    (2) 
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The ferric iron that is generated by the sulphur oxidising bacteria can act as an 

oxidising agent for further pyrite oxidation, especially in the absence of molecular 

oxygen, according to equation 3: 

 

 FeS2 + Fe3+ + H2O → Fe2+ + SO4
2- + H+   (3) 

 

The regeneration of ferrous iron is thus vital in ensuring pyrite oxidation. 

Although Acidothiobacillus ferrooxidans has historically been the centre of 

research attention, owing to its easy isolation and purification, other iron-

oxidising bacteria have been shown to be as, or even more abundant and possibly 

more important to iron oxidation than A. ferrooxidans (Johnson, 1995). 

Nevertheless, research has indicated that A. ferrooxidans, and other sulphur 

oxidising bacteria enhance the rate of sulphur oxidation above that which is 

achieved by chemical means, i.e., through oxidation via molecular oxygen and 

water (Crundwell, 2003). However, authors differ in their explanation of the 

mechanisms employed by these microbes to bring about pyrite oxidation.  

 

Some authors are of the opinion that A. ferrooxidans plays a direct role in pyrite 

oxidation, a mechanism that is independent of the presence of ferrous ions. This 

direct mechanism follows that of equation 1, and intimate contact is maintained 

between the microbes and the oxidated substrate. In this mechanism, bacteria are 

the catalyst in the oxidation of pyrite. 
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It is evident that the difference between the two mechanisms by which bacteria 

enhance the rate of pyrite oxidation is in the role assumed by the ferric ions. The 

indirect mechanism assumes that pyrite is leached by ferric ions, which are 

regenerated from ferrous iron by bacterial action, as outlined in equation 3; while 

the direct mechanism provides that pyrite is leached by some biological agent, 

excreted by the microbes themselves (Crundwell, 2003). It has also been 

documented that irrespective of the proposed mechanisms utilised by the 

microorganisms in the oxidation of pyrite, their presence on the mineral surface 

shows a definite increase in the rate of leaching (Crundwell, 2003). According to 

equation 2, the bacterial action proposed in the generation of ferric iron consumes 

H+, thus resulting in an increase in the pH at the mineral surface. This explains the 

increase in the leaching rate in the presence of microbes, given that leaching rate 

is proportional to pH (Holmes et al., 1999).  

 

According to Akcil and Koldas (2006), the primary factors that determine the rate 

of acid generation include temperature, pH, oxygen concentration in the water and 

gas phase, chemical activity of ferric iron, the surface area of the exposed metal 

sulphide that is oxidised, and microbial activity. Other factors that promote or 

enhance acid generation are physical factors, such as oxygen permeability of the 

mine dump or the local rock. A high permeability implies greater oxygen ingress, 

leading to higher chemical reaction rates and ultimately increased mineral 

oxidation (Akcil and Koldas, 2006).  
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1.4 Effects of mining and AMD in South Africa 

 

Following oxidation of the pyrite, the effects of AMD are widespread. 

Precipitated ferric iron, which is a common component of AMD, tends to clog the 

interstitial spaces of the substrate by covering the soil layer. As a result, plant life 

is unable to be sustained in many cases, and is subsequently destroyed. Further 

effects of AMD are evident from studies of surrounding aquatic habitats. Marked 

declines in aquatic biodiversity and ecosystems, in addition to declines in 

productivity have been documented. In extreme cases, AMD has been linked to 

the total elimination of certain fish species (Gray, 1998).  Owing to the site-

specific variability in the rock composition, predicting the actual effects of AMD 

for a particular area can be a challenge (Akcil and Koldas, 2006).  

 

While many countries in the world are able to deal with AMD through dilution, 

South Africa is unable to do so since it is a water-scarce country, and therefore 

efforts and measures need to be in place to ensure effective treatment of waste 

water as well as to ensure that this contaminating water does not enter rivers and 

streams that serve as water supplies. One area in South Africa where acid mine 

water poses a great threat is the Witwatersrand area of Johannesburg. Gold fields 

in this area (Wits basin) span distances 350 km long and 200km wide, reaching 

depths of 3500 m. This area has been a considerable source of gold mining in 

South Africa. As a result of the lucrative mining industry in the area over the 

years, a plethora of shafts and adits have been left unattended underground, which 

have steadily filled with water. All the mines in these areas are believed to be 
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interconnected, with water filling each shaft in turn until it finally collects at the 

lowest point, all the time exposed to minerals and rocks that characterise these 

areas, especially pyrite (Anon, 2005). It has been reported that gold mines in the 

Wits basin have been contributing as much as 35% of the salt load that enters the 

Vaal Barrage (Anon, 2005).  

 

At the Grootvlei Gold Mines at present, an average of 75 Ml of water is pumped 

out daily in order to retain access to the mining operations. This water is treated at 

a high-density separation (HDS) plant in order to remove iron and increase the pH 

to suitable levels before the water is released into the Blesbokspruit River. The 

HDS technique employed is effective in reducing iron levels from more than 180 

mg.l-1, to less than 1 mg.l-1. However, the water that enters the Blesbokspruit 

River still retains a high level of dissolved salt concentrations, such as sulphate, 

calcium, magnesium, chloride and sodium, which invariably impacts on the water 

quality downstream (Anon, 2005). This is a major concern, since a portion 

downstream of this river has been declared an international RAMSAR wetland 

site (www.environment.gov.za). The increasingly poor water quality of the 

Blesbokspruit is also said to impact on the freshwater resources of the 

Witwatersrand area in the long term (Roychoudhury and Starke, 2006). 

 

Heavy metals present in AMD, as well as trace elements have little degradation 

potential, and they are thus inclined to accumulate in sediments, resulting in 

intrinsic toxicity levels over time (Schulin et al., 1995). From these repositories, 
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the metals have the potential of moving along the food chain through 

bioaccumulation, and result in genotoxicity among living organisms (Patra et al., 

2004). The formation of AMD is more significant when mines are abandoned or 

closed, since in many active mining operations water tables are kept relatively low 

through pumping. When these mines are closed, water tables rise, leading to the 

formation of AMD-contaminated groundwater, which are often discharged into 

the environment.  

 

 The need for acid mine water treatment should be evident, in light of the potential 

damage these waters pose to sensitive eco-systems. Another important factor that 

needs to be kept in mind is that South Africa is water–scarce, and therefore the 

existing and potential contamination of our scarce water sources should warrant 

immediate attention. 

 

1.5 Current strategies in place for treating AMD 

 

There are currently a few programs in place aimed at treating the effects of AMD, 

as well as programs aimed at preventing excess formation of AMD. These can be 

classified as “source control”, in which prevention of AMD is of primary concern; 

and “remediation”, in which either biotic or abiotic strategies are employed in the 

treatment of AMD (Johnson and Hallberg, 2005).  
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Given that water and oxygen are needed for the formation of AMD, the exclusion 

of either of these, or both, can possibly minimise AMD production. This can be 

achieved through flooding and sealing of abandoned mines. In these cases, the 

microorganisms consume the dissolved oxygen present in the water, leaving little 

oxygen for AMD formation. Sealing of the mine will then prevent oxygen 

replenishment (Johnson and Hallberg, 2005). This approach can only be 

successful if all the mine openings are known and there is no danger of water or 

oxygen entry through any adit or other opening. Since it is very difficult to ensure 

that water and oxygen will never enter the sealed off mine, this approach has its 

limitations (Johnson and Hallberg, 2005).   

   

Underwater storage of potentially acid producing mine water is also employed, in 

which contact between the minerals and dissolved oxygen is minimised. Organic 

material may also be used to cover the tailings in an effort to further reduce 

oxygen influx and prevent resuspension of tailings through waves and winds. The 

tailings can also be sealed off using clay, although seasonal temperature 

fluctuations may be problematic in some cases, depending on the properties of the 

sealing layer (Swanson et al., 1997).  

 

The production of environmentally friendly and stable products through the 

blending of acid-generating and acid-consuming material is another suggested 

approach (Mehling et al., 1997). In the case of AMD, solid-state phosphates can 

be added to pyritic mine wastes in order to reduce the oxidation potential of Fe 

(III), by precipitating it as ferric phosphates. Soluble phosphates with hydrogen 
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peroxide have also been developed, in which the peroxide oxidises the pyrite, 

producing ferric iron, which subsequently reacts with the phosphate to produce 

ferric phosphates (Evangelou, 1998).  

 

Since sulphur-oxidising bacteria play a vital role in the continual generation of 

AMD, approaches have been developed aimed at limiting or inhibiting their 

activity. Various surfactants have been tested, such as sodium dodecyl sulphate 

(SDS). These chemicals are usually highly toxic to this group of bacteria. The 

effectiveness of these biocides tends to be highly variable, and have shown to 

provide only short-term control, implying that repeated applications are necessary 

(Johnson and Hallberg, 2005). It is evident that inhibiting the formation of AMD 

is often not practical, and the effectiveness of this strategy depends on a number 

of factors. In this regard, often the only feasible manner of dealing with AMD is 

through treatment controls, which can be classed into different categories, 

depending on whether the treatment is biotic, abiotic, active or passive.     

 

 The most widely used method involves an active treatment process in which 

chemical-neutralising agents are added. Alkaline materials are added to raise the 

pH, facilitating the precipitation of the metals as metal hydroxides. An increase in 

pH also causes an increase in the rate of ferrous iron oxidation, resulting in an 

iron-rich sludge that, depending on the chemistry of the water being treated, may 

contain a host of other metals (Johnson and Hallberg, 2005). Neutralising agents 

that are being used presently include calcium oxide (lime), sodium carbonate, 

sodium hydroxide and calcium carbonate. When a calcium-containing neutralising 
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agent is used, some sulphate is removed in the form of gypsum, which is bulky 

and needs to be disposed of, creating a great disadvantage through high 

operational costs. 

 

Alkalinity can also be generated for AMD treatment through the use of anoxic 

limestone drains. This method is a passive approach, in which mine water is 

directed to flow through a bed of limestone in a drain that excludes water or air. 

These anoxic limestone drains offer a lower cost alternative to chemical addition, 

but are not suitable for all kinds of AMD, since hydroxide precipitates tend to 

build up in these systems, reducing their effectiveness (Johnson and Hallberg, 

2005). Also, aerated mine water is not suitable for this treatment process, and 

often have to be passed though anoxic ponds to reduce the dissolved oxygen 

concentration in order to prevent iron oxidation (Johnson and Hallberg, 2005). 

Studies have shown that water quality can be drastically improved when mine 

water is treated using both constructed wetlands and anoxic limestone drains 

(Kleinmann et al., 1998).   

 

Biological remediation strategies are often the preferred approach, in which 

biological systems are used in AMD treatment. Natural wetlands have been used 

extensively for the treatment of environmental contaminants and a wide array of 

water quality problems. Constructed wetlands are able to emulate natural 

wetlands, and afford the luxury of manipulation and control (Sheoran and 

Sheoran, 2006). In a constructed wetland, some basic processes are involved, such 

as uptake of nutrients by plants, degradation and oxidation of contaminants by 
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bacteria, particle sedimentation, etc. (Sheoran and Sheoran, 2006). Wetlands are 

complex ecosystems that allow interactions between the terrestrial and aquatic 

ecosystems, as well as a continuum of habitats from open water to marginal 

wetlands. Soil properties in the wetland are also variable. Wetland habitats are 

therefore exploited in the remediation of contaminated waters, owing to the wide 

array of chemical and physical properties present, as well as the fauna and 

microbial organisms that are instrumental in the removal of heavy metals. 

  

1.6  Microbial based remediation 

 

Microbial processes that are exploited in generating net alkalinity are mostly 

reductive processes such as methanogenesis, denitrification, and sulphate 

reduction. Phototrophic microorganisms can also generate alkalinity through the 

consumption of a weak base such as bicarbonate, and in turn producing a stronger 

base like hydroxyl ions (Johnson and Hallberg, 2005). Research has shown that 

bacterial metabolism can contribute significantly to the removal of heavy metals 

and to the generation of alkalinity in contaminated waters. In particular, sulphate-

reducing bacteria (SRB) are able to oxidise simple organic material, while using 

the sulphate ion as the terminal electron acceptor, in a process that produces 

hydrogen sulphide (H2S) and the bicarbonate ion (HCO3
-) (Johnson and Hallberg, 

2005; Dar et al., 2005). Added advantages of AMD remediation using SRB are 

the opportunities to recover and recycle metal sulphides present in the AMD 

(Boonstra et al., 1999). Before discussing SRB in more detail, it being the subject 
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of the present study, it is fitting to discuss the role of sulphur, and sulphur cycling 

within ecosystems. 

 

1.7 Sulphur and the sulphur cycle 

 

Sulphur, as part of the chemical structure of living organisms, is an essential 

element of the biosphere and is widespread on earth. It accounts for 0.2 to 0.7 % 

of the dry mass of most organisms (Anderson, 1978). The element can exist in a 

large number of oxidation states, the most common in the environment being the 

oxidation state + 6, in the form of sulphate (SO4
2-). This is the most oxidised form 

in which sulphur exists, and is also the most stable sulphur form. Other oxidation 

states of sulphur do exist in localised conditions, such as in anaerobic soils, where 

sulphur can be found as sulphides (S2-) and thiosulphates (S2+) (Anderson, 1978).   

 

Like all biological elements, sulphur is cycled in the biosphere through 

biogeochemical means, which is a combination of chemical and biological 

processes. Sulphur oxides and hydrogen sulphide are liberated into the 

atmosphere through the burning of fossil fuels, and through volcanic and thermal 

emissions, which are then deposited as sulphurous and sulphuric acid onto the 

earth’s surface, from where they are leached into rivers and streams, eventually 

reaching the sea (Postgate, 1984). These are some of the geochemical agencies 

that facilitate sulphur turnover in the biosphere. Supplementing the chemical 

means are the biological processes, which ultimately balance the cycling of 
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sulphur. A wide variety of sulphur interconversions are achieved through 

oxidation and reduction reactions mediated by organisms.  

 

Reduced forms of sulphur are oxidised by either heterotrophic organisms, or 

chemo- or photo- autotrophic bacteria. Chemoautotrophic bacteria aerobically 

oxidise reduced forms of sulphur in exergonic reactions that serve as energy 

sources for C assimilation. Photoautotrophic bacteria on the other hand, use 

sulphide as an electron donor in aerobic conditions instead of water, in a manner 

analogous to photosynthesis in green plants (Anderson, 1978). Heterotrophic 

organisms, like animals, are also able to oxidise sulphur as part of normal protein 

and amino acid turnover (Anderson, 1978).  The reduction of sulphur on the other 

hand, is achieved through either assimilatory or dissimilatory reactions. 

 

Assimilatory sulphate reduction allows for sulphate to be reduced to sulphide, 

which in turn is biologically incorporated into the organism as amino acids and 

proteins. Green plants and most aerobic bacteria are able to carry out assimilatory 

sulphate reduction, at the expense of metabolic energy (Anderson, 1978).  

  

Dissimilatory sulphate reduction reactions are those in which oxidised forms of 

sulphur are reduced in the anaerobic respiratory process, with very little amounts 

of the reduced sulphur used for amino acid synthesis. The rest of the reduced 

sulphur is stored in the cells or is released into the environment. Desulfovibrio sp. 

and Desulfotamaculum sp. are among the dissimilatory sulphate reducers. Under 
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anaerobic conditions, these organisms use the oxidised sulphur compounds as the 

terminal electron acceptor in anaerobic respiration, rather than oxygen as is the 

case in aerobic respiration. The electron transport chains are similar in both 

aerobic and anaerobic respiratory processes, found in the bacterial cytoplasmic 

membrane (Levett, 1990).  

 

1.8 Sulphate-reducing bacteria 

 

The diversity, phylogeny and metabolism of SRB have constantly been re-

evaluated in the literature. They were first discovered in 1895 by Beijerinck 

(Postgate, 1984), and since then many authors have attempted to describe and 

categorise these organisms, but to this day they remain a relatively poorly 

understood group. This difficulty in their understanding can be attributed to the 

obstacles encountered in their culture, as well as to the bioenergetics of their 

metabolism and energy sources. The existence of acetate-utilising SRB for 

example, was previously doubted by Postgate (1979). They were however, 

subsequently found to be in widespread existence. Other dogmas associated with 

SRB, their metabolic patterns and their ecology have also been recently renewed. 

The extent of the diversity between SRB has only recently been appreciated.   

 

SRB are a diverse group of chemo-organotrophic bacteria that are characterised 

by their ability to utilise oxidised sulphur compounds as the terminal electron 

acceptor in the degradation of organic compounds, under anaerobic conditions. 
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The requirements for sulphur and anaerobiosis determine the environments in 

which these organisms are found. 

 

The cellular physiology and carbon metabolism of SRB are dependent on the 

energetic limitations of the redox reactions present in their anaerobic respiration. 

Sulphate, for example, is only capable of acting as an electron acceptor once it has 

been metabolically converted to adenosine phosphosulphate (APS), an energy-

costing reaction involving ATP. Also, energy is required for cellular uptake of 

sulphate and co-transport with either Na+ or H+ (Cypionka, 1995). More 

importantly, sulphur-based electron acceptors, as a result of the negative redox 

potential values from the main reductive reactions in their metabolism, have a 

greatly reduced energy yield, compared with that achievable from oxygen in the 

aerobic respiratory process (Hamilton, 1998; Baumgartner et al., 2006).  

 

The metabolic patterns of many SRB have not yet been fully ascertained. Some of 

the difficulties have been attributed to the energy yields, as mentioned. Acetate 

metabolism poses a particular problem, since the coupling of acetate metabolism 

via the TCA cycle is apparently impossible. The redox potential of the 

succinate/fumarate couple of the TCA cycle in the case of acetate oxidation is an 

energy-requiring step, rather than an energy-generating one (Hamilton, 1998).   

Some mechanisms have been suggested to account for this apparent incongruence, 

since sulphidogenic species that use acetate as an energy and carbon source, while 

still maintaining a functional TCA cycle, are known. Desulfobacter postgatei for 

example, along with a few other sulphidogenic organisms are equipped with 
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unique mechanisms that ensure a small net energy yield from the TCA cycle 

(Hamilton, 1998), although these proposed mechanisms have not been fully 

elucidated. Other acetate-utilising sulphidogenic species are known to utilise the 

carbon monoxide dehydrogenase pathway (Acetyl-CoA pathway), instead of the 

TCA cycle  (Wood et al., 1986, Wood and Pezacka, 1988).   

 

SRB have long been regarded as strict anaerobes, and thus are restricted to anoxic 

zones of the environment. This restriction to anoxic zones has been attributed to 

the fact that oxygen is lethal to the activity of pyrophosphatase, the enzyme 

responsible for the conversion of sulphate to APS, as well as to the considerably 

reduced energy yield from its respiration compared to that of aerobic respiration, 

leading to them being out-competed in an oxic environment (Hamilton, 1998; 

Baumgartner et al., 2006). However, subsequent findings have pointed out that 

SRB may not be as strictly anaerobic as previously thought. Cypionka et al. 

(1985) exposed various strains of SRB to oxygen and demonstrated that these 

bacteria were capable of survival for long periods under oxic conditions, while 

still retaining their sulphate reducing capacity. It has also been shown that some 

SRB are even able to reduce oxygen (Cypionka et al., 1985). Some Desulfovibrio 

strains have demonstrated an ability to reduce oxygen at levels comparable to 

those seen by aerobic bacteria, although the rates usually decrease with increasing 

oxygen concentration (Dolla et al., 2006). SRB have been found to co-exist with 

aerobic bacteria in the oxic zones of microbial mats (Baumgartner, 2006). It is 

clear that the obligate anaerobe dogma associated with SRB has been challenged, 

and in some cases falsified in recent years, and with advancement in molecular 
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techniques, understanding and knowledge of the metabolism, cell physiology, 

diversity and ecology of SRB continues to grow. 

 

SRB however, still demonstrate variable levels of sensitivity to oxygen. This 

tolerance continuum has been attributed to a number of mechanisms and enzymes 

present to deal with oxygen stress, as well as behavioural adaptations to address 

environmental stresses. The presence of superoxide dismutase (SOD), catalase, 

cytochrome c oxidase, and other free radical removing enzymes, display some of 

the molecular mechanisms available to combat reactive oxygen stress (Dolla et 

al., 2006). Another important factor conferring a measure of oxygen tolerance to 

SRB, involves the ability to form aggregates in the presence of oxygen (Dolla et 

al., 2006; Baumgartner et al., 2006). In addition to an oxygen defence mechanism, 

biofilms or microbial mats present many advantages to microbial systems, and 

often are the basis for microbial activities of economic importance. 

 

1.9 Biofilms  

  

Biofilms have been defined as a group of microorganisms that have irreversibly 

attached to a surface through a complex matrix of microbial-secreted polymers or 

extracellular polymeric substances (Lindsay and von Holy, 2006; Singh et al., 

2006). That presents the microbial community with a high degree of heterogeneity 

owing to the many microenvironments that exist within the biofilm (Singh et al., 

2006). It also confers on the microbial community a different phenotype, growth 

rate, gene expression, as well as a different set of metabolic and tolerance 
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properties from those of the planktonic cells (Lindsay and von Holy, 2006; Singh 

et al., 2006). These complex microbial communities allow the microbes to 

withstand to a certain degree, changes in pH, shear forces, nutrient deprivation, 

and other environmental stresses that are usually lethal to discrete cells. Biofilms 

also support high cell biomass, allowing optimised localised conditions within 

microenvironments, thus rendering these cells economically useful in many 

industries and bioremediation facilities (Singh et al., 2006). Biofilm reactors have, 

for example, proven worthy in the treatment of industrial and municipal 

wastewaters. In microbial-based heavy metal remediation, studies have shown 

that an increase in exopolysaccharides (EPS) corresponded to an increase in heavy 

metal waste. In addition, it was suggested that EPS might play a role in the 

entrapment of metal sulphide precipitates that form from this remediation option 

(White and Gadd, 2000). In the present study biofilm formation will be 

encouraged through the addition of a charcoal substrate. This will allow the 

microbial communities present to withstand the low pH of the incoming mine 

water and create microenvironments to deal with pollutant water, which may not 

be possible in their planktonic stage. 

 

1.10 The present study 

 

The present study utilises SRB, focussing on their ability to produce hydrogen 

sulphide (H2S) and bicarbonate (HCO3
-) as metabolic products. The H2S produced 

binds to metals and renders them insoluble, or reduces their solubility, thereby 

forming metal precipitates, while the bicarbonate ion serves to generate alkalinity 
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in the water. (Luptakova and Kusnierova, 2005). The principal constituents of 

AMD are transformed by SRB as follows: 

 

4H2 + SO4
2- + H+ → HS- + 4H2O (catalysed by SRB)   (4) 

 

Organic matter + SO4
2- → HS- + HCO3

- (catalysed by SRB)  (5) 

 

Me2+ + HS-  → MeS (precipitate) + H+     (6) 

 

where Me represents metals, and MeS a metal sulphide precipitate. 

 

Many types of remediation strategies have been developed exploiting these AMD 

transformation strategies through the use of SRB. Studies have focussed on the 

removal, using the abovementioned principals (equations 4 to 6), of selected 

heavy metals in most cases, rather than the generation of net alkalinity in the acid 

mine water. Bioreactor systems have been developed using SRB for the removal 

and recovery of heavy metals from these waters. In addition, Elliot et al. (1998) 

have documented that SRB are capable of surviving at pH levels as low as 3.0, 

although at this pH the efficiency of sulphate reduction dropped drastically. 

However, at a pH of 3.25, those authors have shown that SRB were able to 

remove 38.3% of influent sulphate, as well as raise the pH of the acid mine water 

to 5.82. In that study (Elliot et al., 1998), an upflow bioreactor was used in the 

treatment of AMD. Similar studies have been conducted by Jong and Parry 
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(2003), in which acidic and sulphate-contaminated water was treated in a bench-

scale upflow anaerobic packed bed reactor, using SRB. That study was aimed at 

the removal of heavy metals using the principals of SRB-mediated transformation, 

as shown in equation 6, and documented heavy metal removal efficiencies of 

greater that 77 % for iron, and 97.5 % for copper, zinc and nickel, over 14 days.   

 

In the present study a fluidised bed bioreactor was employed in the treatment of 

AMD. Fluidised bed bioreactors are suited to processes that involve microbial 

flocs or consortiums. They comprise an up-flow stream of liquid, used to fluidise 

or suspend solids in each reactor. The superficial velocity above the settling zone 

should kept at a value below that which allows the solids to escape into 

suspension. As a result, solids sediment in the reactor, allowing them to be 

retained, while the liquids were able to flow out (Chisti and Moo-Young, 2002). 

Fluidised bed bioreactors were thus suited to the treatment being tested presently. 

The reactor system also contained additional clarifying vessels to allow precipitate 

settling. 

 

The Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis 

(PCR_DGGE) technique was used to elucidate the microbial communities present 

in the reactors. PCR products generated through DNA extraction from each 

reactor were analysed using denaturing gradient gel electrophoresis (DGGE), 

which was then used to determine the genetic diversity of the total microbial 

population in each bioreactor. DGGE is a molecular fingerprinting technique that 

allows for the separation of the PCR-generated DNA products. Given that PCR 
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products from a particular reaction are of similar size, conventional agarose gel 

separation was not suitable for community analysis, since this yields a single band 

that does not facilitate description. DGGE overcomes this limitation by allowing 

separation of PCR-generated products based on sequence differences that result 

from different denaturing properties of DNA. In this technique, PCR products 

encounter increasing concentrations of chemical denaturants during their 

migration through a polyacrylamide gel. Migration of these PCR products slows 

down dramatically when the weaker melting domains begin to break down after 

reaching a threshold denaturation concentration. A pattern of bands- each band 

representing a different bacterial population- is generated as a function of different 

sequences of DNA from different bacteria. This technique allows for analyses into 

the identity of the microbial community members (Dar et al., 2005). 
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2 AIMS 

 

 

The aims of the present study involve the development of a fluidised bed 

bioreactor system for the treatment of acid mine drainage using sulphate reducing 

bacteria, isolated and cultured from a mine dump run-off. This would be a one-

step process that addresses the low pH, and the heavy metal content in acid mine 

waters. We hypothesised that as hydrogen ions and sulphate are consumed by the 

SRB, bicarbonate ions and hydrogen sulphide would be generated, allowing for an 

increase in pH and the precipitation of the heavy metals, respectively. 
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3 MATERIALS AND METHODS 

 

3.1 Sample collection and handling: 

 

Soil samples from which sulphate reducing bacteria (SRB) were isolated and 

cultured for the present study were collected from a stream exiting a mine dump 

on the eastern end of the Johannesburg city centre at co-ordinates of 26º 13' 

05.92" S and 28º 07' 54.74" E. Soil samples were taken using a shovel at a depth 

of between 15 to 20 centimetres. This distance corresponded with the presence of 

dark or blackened soil substrate - indicative of iron reduction and hydrogen 

sulphide production (Elliot et al., 1998). In addition, the hydrogen sulphide was 

easily detectable by smell at this depth. Samples were extracted from both the soil 

on the stream banks, as well as from below the stream. The stream at the 

collection site showed signs of high iron levels, indicated by the yellowing of the 

water, typical of acid mine waters. 

 

The dark soil substrate was collected and immediately transferred to airtight 

Schott® bottles  (previously sterilised by autoclaving), which were then promptly 

sealed. This procedure had to be followed since the SRB isolated in the manner 

described above were anaerobic and therefore had to be maintained as such.  
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3.2 Culturing of SRB 

 

SRB were cultured in a slightly modified form of Postgate’s (1984) media. 

Medium B of Postgate’s (1984) media range was chosen since this has been 

described as a general-purpose long-term media for SRB cultivation and growth. 

The media constituents are given in Appendix A. Thioglycollic acid was omitted 

from the described media since the inoculum was a fresh culture and in this case 

the thioglycollic acid may be left out (Postgate, 1984). In addition, the sodium 

lactate given as the carbon source in Postgate’s (1984) medium B was replaced 

with sodium acetate.  

 

Postgate’s (1984) medium B was prepared and the pH adjusted to between 7.0 and 

7.5 using 2M NaOH and 2M HCl.  This was then sterilised by autoclaving at 15 

psi and 121ºC for 20 minutes, prior to inoculation. In addition to a media at pH 

7.0 to 7.5, three other pHs were also tested in an attempt to investigate the pH 

tolerance of planktonic SRB. Media was therefore also prepared at pH 5, as well 

as at pH 4.5, 4 and 3. In order to maintain anaerobic conditions, the culture 

Schott® bottles were filled right to the top with media so as to exclude air. Media 

was prepared in 2 litre shake flasks and transferred to 500ml Schott® bottles for 

the bacterial culture period. The use of shake-flasks for the culture step is not 

recommended since airtight bottles are necessary for these anaerobic strains 

(Postgate, 1984). 
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The media in Schott® bottles were inoculated aseptically with approximately 10g 

of wet soil per 500 ml media in the laminar flow cabinet, ensuring minimal 

exposure of the media and inoculum to air. Sterilisation techniques included 

flaming the mouth of the Schott® bottles before and after inoculation, as well as 

flaming the inoculating spatula prior to inoculation.  

 

The culture bottles were maintained at 30ºC on a constant shaker. Positive 

cultures were identified by the blackening of the media, indicating the presence of 

iron sulphide precipitate as a result of hydrogen sulphide production (Elliot et al., 

1998). Also, the very pungent hydrogen sulphide gas could easily be detected 

when the culture bottles were opened slightly. 

 

3.3 Fluidised bed Bioreactor 

 

3.3.1 Reactor description 

 

The bioreactors and clarifiers used were built from clear Perspex, and connected 

in series. The system consisted of three bioreactors with two settling vessels or 

clarifiers, one after the first bioreactor and the second after the second bioreactor. 

This arrangement of clarifiers was expected to facilitate the removal of metal 

sulphide precipitate from the bioreactor effluent streams. It was expected that a 

large amount insoluble metal sulphides would be formed. The reactors were 

surrounded by water-jackets so as to regulate the temperature at which the system 
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operated. Each of the reactors had a volume of approximately 2.65 litres, while 

the clarifiers were built to hold approximately 1.85 litres each. The total volume 

of the entire system was approximately 11 litres. The reactors and clarifiers were 

connected to each other in series as shown schematically in Figure 1, with 

Masterflex® and Tygon® tubing. Liquid was transferred through the system using 

Masterflex® peristaltic pumps, with flow rates being manually adjusted. 

 

Figure 1

 

Charcoal

Reactor
Clarifier

Media and heavy 
metals Direction of flow 

Effluent 

 
: Schematic representation of the bioreactor arrangement used.  

he reactors were filled to approximately 1/7 of their volume with charcoal as a 

water bath and circulated through the water-jackets of each reactor.  

 

 

T

substrate to allow bacterial attachment and subsequent biofilm formation. The 

temperature within the reactors were maintained at 35ºC with water heated in a 
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3.3.2 Reactor operation 

 

Synthetic acid mine water (containing a range of heavy metals, at pH values 

ranging from 2.75 to 7) was used for the purposes of this study. Heavy metal 

containing water was fed into the system, together with Postgate (1984) media B, 

in the direction shown in Figure 1. These were introduced into the first reactor, 

where the initial hydrogen sulphide was formed through the action of the bacterial 

populations attached to the charcoal substrate, and some heavy metal precipitation 

occurred. The effluent overflow from the first reactor was then passed under 

gravity into the attached clarifier, where the aim was to allow settling of the black 

metal sulphide precipitate. The supernatant overflow of the first clarifier was 

actively pumped into the second reactor. The effluent overflow from the second 

bioreactor was again passively passed under gravity into the second clarifier for 

further precipitate settling. Finally, the supernatant from the second clarifier was 

pumped into the third reactor for final remediation, after which the effluent was 

collected into a 10 L Schott® bottle for analysis following sedimentation of the 

metal sulphide precipitate. 

tors with the SRB consortium, the system was first 

made anaerobic by inoculating with Escherichia coli cultures grown in LB media. 

This E. coli culture was circulated through the system for one week. All ports 

were sealed with clamps so as to exclude any air from entering the system.  

 

 

Before inoculating the reac
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3.3.3 Control 

 control experiment to test for occurrence of non-biological sulphide formation 

and corresponding metal precipitation was conducted prior to the inoculation of 

the bioreactors with bacteria. In the control experiment the synthetic mine water 

was passed through the system and analysed. After this exercise the bioreactors 

were inoculated with the cultured SRB consortium. This control had all the 

components of the media, as well as all the heavy metals used in the present 

study. The hydraulic retention times used for the control experiment were the 

same as those used for the rest of the study, i.e. 5, 10 and 24 hours. 

 

.3.4 Reactor operation and mine water treatment 

Postgate (1984) medium B was prepared in 10 litre Schott® bottles. Positive 

bacterial cultures (see above) were poured directly into these media bottles and 

the reactors were subsequently inoculated with the bacterial consortium by 

pumping the medium and culture into the system. The reactors were first run as a 

batch/ recycle system for two weeks in order to allow the bacterial consortium to 

grow up to sufficient numbers and form biofilms. During this time fresh media 

was introduced into the system every second day to maintain a steady supply of 

nutrients and carbon.  

 

A

3
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Following the two-week recycle period, the system was switched to continuous 

wherein the synthetic mine water was passed directly through the system at 

different hydraulic retention times, and collected out of the final reactor for 

analysis.   

 

The media entering the system was supplemented with a number of heavy metals, 

mainly in the form of metal sulphates, to simulate mine water. These included 

iron sulphate, copper sulphate, aluminium sulphate, zinc sulphate, manganese 

sulphate and chromium trioxide. The concentration of the metals used was based 

on those reported by Naicker et al. (2003). Those authors recorded high and low 

range metal concentrations in mine water, as a function of seasons, rainfall and 

water source, such as ground water, surface water and seepage water. In the 

present study, the high range levels reported by Naicker et al. (2003) were chosen 

as a reference point for the metal concentration that was added to the reactor 

system, given in Table 1. Since metal compounds were added, and not just 

elemental metals, the mass of the compound eventually added to the system had to 

exclude that of the sulphates (in the case of metal sulphates), trioxides and 

hydrates, where applicable.  Table 1 shows the mass of the metal compounds 

added in total in order to get the effective heavy metal concentration. These values 

were determined photometrically. 
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Table 1: Concentrations of heavy metals used in the water treatment analysis 

Metal Approximate mass of metal 

compound added (mg) 

Effective concentration (mg.l-1) 

Iron 2000 500 

Manganese 700 200 

Zinc 250 50 

Copper 27 10 

Chromium 270 100 

Aluminium 100 10 

 

The effect of three hydraulic retention times on the bioremediation of heavy 

metals and low pH was investigated. The water was retained in the system (i.e. 

hydraulic retention time (HRT)) for 5, 10 and 24 hours by adjusting the flow rate 

on the peristaltic pumps, and subsequently analysed. 

 

3.4 Water analysis 

 

Following each run at the different HRTs and influent pH values, the water was 

collected from the last reactor and analysed for changes in heavy metal 

concentrations and pH. In addition, the change in chemical oxygen demand 

(COD) was determined at the start and at the end of the 24-hour HRT. The pH 
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was measured using the Precisa® (Switzerland) pH 900 pH meter, calibrated using 

Saarchem® calibration solutions. 

 

The heavy metal concentrations were determined using the Hanna® C99 

Multiparameter Bench Photometer. The principle method for each metal tested are 

as follows (Hanna handbook, supplied): 

• Aluminium: The reaction between aluminium and the reagent aluminon 

causes a reddish tint in the sample. Photometry was conducted at 525 nm. 

• Chromium: The reaction between chromium (VI) and the reagent 

diphenylcarbohydrazine caused a purple tint in the sample. Photometry 

conducted at 525 nm. 

• Copper: The reaction between copper and the reagent bicinchoninate 

causes a reduction in copper from Cu (II) to Cu (I), and a purple tint in the 

sample. Photometry conducted at 575 nm. 

• Iron: The reaction between iron and phenanthroline causes a reduction in 

Fe (II) and an orange tint in the sample. Photometry conducted at 525 nm. 

• Manganese: Periodate method. Reaction between manganese and the 

reagent causes the oxidation of manganese, giving a pink tint in the 

sample. Photometry conducted at 525 nm. 

• Zinc: Zincon method, in which the reaction between zinc and zincon 

causes a chelation, resulting in an orange to dark violet tint in the sample. 

Photometry conducted at 575 nm. 
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3.5 Analysis of bacterial consortium 

3.5.1 DNA extraction 

 

Water samples were also extracted in an attempt to analyse the bacterial 

consortium in each reactor, through DNA analysis. Fifty ml of liquid was eluted 

from each reactor for this purpose. The liquid was then centrifuged for 20 minutes 

at 13 000 rpm to facilitate pellet formation. The supernatant was discarded. The 

pellet was then resuspended in 200µl of deionised water in preparation for DNA 

extraction, which was conducted using the Zymo Research ZR Fungal/ Bacterial 

DNA kit TM, supplied by Inqaba Biotechnical Industries (South Africa), according 

to the manufacturer’s instructions. The extracted DNA, suspended in RNAse-free 

water was then amplified. 

 

3.5.2 Polymerase chain reaction (PCR) 

 

Five µl of the template DNA was used in the amplification. This was added to the 

PCR mix which contained 25µl PCR Master Mix (Fermentas, Switzerland), 1 µl 

each of 10 µM forward and reverse primer, as well as 18 µl DNAse-/ RNAse-free 

water to make up a final PCR volume of 50 µl. The primers used were bacterium-

specific 16S rDNA forward and reverse primers P63f and P518r respectively 

(Dwettinck et al., 2001), which are based on a universally conserved region. In 

addition, a GC clamp of 40 base pairs was constructed into the forward primer, 

specifically for use on DGGE. These were constructed by Inqaba Biotechnical 
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Industries (Pty) Ltd, South Africa. The sequence of the forward primer was 

ATTACCGCGGCTGGCTGG, while that of the reverse primer, together with the 

GC clamp, was 

CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGCCCAGGC

CTAACACATGCAAGTC. 

 

The samples were amplified according to the procedure described in Dwettinck et 

al. (2001) who have found success using the same primers with the present 

procedure. Using the Applied Biosystems GeneAmp® PCR System 2700, the 

samples were held at 94ºC for 5 minutes. This was followed by 30 cycles as 

follows: denaturation at 95ºC for 1 minute, annealing at 53ºC for 1 minute, and 

extension at 72ºC for 2 minutes, with a final extension 72ºC for 10 minutes.  

 

3.5.3 Agarose gel electrophoresis 

 

In order to confirm the presence of amplified DNA fragments, the samples were 

electrophoresed on a 1% agarose gel in a 0.5X TBE buffer. The agarose, water 

and 5X TBE buffer were melted in a microwave for 11/2 to 2 minutes and left to 

cool to approximately 40ºC. To allow visualisation of the DNA fragments through 

UV illumination, 1µl of a 10 mg.ml-1 ethidium bromide solution was then added 

to the agarose gel. Five µl of the PCR products were added to each lane, together 

with a 6X orange loading dye (Fermentas, Switzerland). The DNA ladder used 

was a Fermentas (Switzerland) LabAid MassRulerTM DNA Ladder, Low Range. 
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The bands included in this ladder were of the following sizes: 80; 100; 200; 300; 

400; 500; 600; 700; 800; 900; and 1031 base pairs. The electrophoresis was run at 

100V for 45 minutes in the presence of a 0.5X TBE buffer, following which 

viewing was conducted using the BioRad® Gel Doc transilluminator viewing 

system.  

 

3.5.4 Denaturing Gradient Gel Electrophoresis (DGGE) 

 

Bearing in mind that the DNA extracted and amplified from the reactors in the 

previous steps was from a bacterial consortium, DGGE using the BioRad® 

(California) Dcode Universal Mutation Detection System was employed to 

separate the collectively PCR-amplified fragments, according to the method 

described by Muyzer et al. (1993). The samples, 5µl each, were run for 

approximately 21/2 hours at 130V on an 8% (w/v), 10cm X16 cm polyacrylamide 

gel, with a denaturation gradient ranging from 40% to 65%, where 100% 

denaturant consists of 7 M urea and 40% formamide. A 0.5X TAE buffer was 

used during the electrophoresis run. Following the electrophoresis, the gel was 

carefully removed from the system and stained for 15 minutes and destained for 

another 15 minutes. The staining solution was made by adding 10µl of a 10 

mg.ml-1 ethidium bromide solution to 250 ml of 0.5X TAE buffer. Destaining was 

carried out using 250 ml of the 0.5X TAE buffer. The gel was then viewed using a 

UV transilluminator.  
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3.5.5 Fragment extraction from the polyacrylamide gel 

 

The separated PCR fragments were then excised from the polyacrylamide gel 

under UV light using a scalpel. The bands were then transferred to the BioRad® 

(California) Freeze ‘n Squeeze DNA extraction kit, and according to the 

manufacturer’s instruction, the DNA was extruded from each band, and 

subsequently re-amplified through PCR, as described above, before being 

sequenced by Inqaba Biotechnical Industries (Pty) LTD (South Africa). 

 

The DNA sequences were then tested for homology by comparing them to 

sequences in the Basic Local Alignment Search Tool (BLAST) server of the 

National Centre for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov/BLAST/).  

 

3.5.6 Scanning Electron Microscopy (SEM) 

 

Approximately 50g of the charcoal substrate was extracted from the reactors and 

prepared for SEM in order to visualise biofilms. The samples were first fixed in 

2% gluteraldehyde overnight, and then rinsed in deionised water several times. 

Dehydration followed in increasing concentrations of ethanol, for 10 minutes 

each. The concentrations used were 40%, 50%, 60%, 70%, 80%, 90%, 95% and 

finally in 100% ethanol overnight. Samples were then sent to the Electron 

Microscopy Unit at the University of the Witwatersrand, Johannesburg, where 
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they were subjected to critical point drying, and finally fixed and mounted on 

stubs for viewing. Viewing was conducted using a Joel® JSM-840 Scanning 

microscope. 
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4 RESULTS 

 

4.1 Bacterial culture 

 

Postgate’s (1984) medium B that was used to culture the SRB is shown in Figure 

2 A. This media was inoculated with a soil sample taken from a stream exiting a 

mine dump on the Johannesburg East Rand. Media was prepared at different 

initial pH values (pH 3 to 7.0) to ascertain the range of acidic pHs under which 

the bacteria could grow.  Positive growth of SRB cultures was confirmed by the 

appearance of a black iron sulphide precipitate that was the result of H2S 

production. Figure 2 B shows an example of a positive SRB culture. 

 

 

 

 

 

 

 

 

 BA 

 

Figure 2: A) Postgate medium B before inoculation; B) Positive culture for SRB, 
indicated by black iron sulphide precipitate, formed due to H2S production from 
the SRB, owing to iron sulphate in the culture medium. 
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The resistance of suspended or planktonic SRB to the inhibitory effects of low 

pHs was qualitatively determined by their ability to grow in acidic liquid cultures. 

Table 2 shows the time (days) taken to obtain a positive growth response when 

cultured in liquid media at different pH values. 

 

Table 2: Time (days) taken for positive SRB culture for Postgate medium B at 
different pH values. 
 
 

Medium pH Time taken to positive culture (days) 

7 4 

5 15 

4.5 28 

4 - 

3 - 

 

 

Media at pH 7 displayed the quickest time to achieve a positive culture. With 

decreasing media pH, growth of SRB was retarded, indicated by an increased 

positive culture time. Growth ceased at a media pH of below 4.5, indicating the 

lack of ability of SRB to survive as free cells below this pH. The positive cultures 

were then used to inoculate the bioreactor for the AMD bioremediation study. 
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4.2 Fluidised Bed Bioreactor Studies 

 

 The fluidised bed bioreactor system used in the present study is shown in Figure 

3. The entire system clearly shows the presence of dark metal sulphide precipitate 

during operation, as a result of H2S production. A schematic representation of the 

reactors was shown in Figure 1.  

 

 

 

 

 

Reactor 

 

 
Clarifier

 

 

 

 

Figure 3: Bioreactor system, with clarifiers, used in the present study. 

 

4.2.1 Control: 

A control experiment was conducted in the bioreactors, with all the constituents of 

the synthetic mine water and the media used to feed the cells (Postgate (1984) 

medium B), save for any inoculum. In keeping with the HRTs used in the actual 
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experiments, the same times were used for the control experiment. Table 3 

presents the results obtained from the control experiment. The synthetic mine 

water was retained in the system for 5, 10 and 24 hours. The HRT of 0 hours 

represents the heavy metal concentrations at the start of the study. 

 

Table 3: Heavy metal concentrations after HRTs of 5, 10 and 24 hours in a 
control experiment, run in the bioreactor system with no inoculum. 
 

HRT 

(hours) 

Fe 

(mg.l-1) 

Mn 

(mg.l-1) 

Zn 

(mg.l-1) 

Cu 

(mg.l-1) 

Cr 

(mg.l-1) 

Al 

(mg.l-1) 

0 500 200 50 10 100 10 

5 467 208 48.4 8.3 97.3 9.2 

10 488 189 49.1 9.4 104.6 9.4 

24 453 176 46 8.7 89.7 8.9 

 

 

The change in heavy metal concentration over the increasing HRT in the control 

process (in the absence of SRB) was not substantial, when compared to the 

inoculated system. In the SRB-free control process there was only a marginal 

reduction in the initial heavy metal concentration. In Table 3 it can be seen that 

the high level of heavy metals added to the system was only slightly higher than 

the concentration in the effluent stream leaving the series of bioreactors.  In the 

control process the loss of heavy metals in response to HRT did not differ greatly. 

It was hypothesized that the loss of heavy metals in the control process was 

possibly due the absorption of heavy metals onto the charcoal bed in the 

bioreactor.  Addition of SRB inoculum resulted in large loss of soluble heavy 
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metals from the effluent stream relative to the control process. This was the case 

for all HRTs. 

 

4.2.2 Water analysis 

 

Following the control experiment, the reactors were inoculated with positive SRB 

cultures. To allow the establishment and maintenance of the SRB culture in the 

bioreactor system, the media plus inoculum was recycled through the bioreactor. 

This allowed for biofilm formation and SRB acclimatisation. After this pre-

treatment the operation of the bioreactor was switched from recycle to continuous 

mode. The synthetic mine water was then passed continuously through the reactor 

at HRTs of 5, 10 and 24 hours. The effluent from the final bioreactor was 

collected into a 10 L Schott® bottle. After sedimentation of the insoluble metal 

sulphides the clear supernatant water was analysed for heavy metal concentration. 

Figure 4 A represents the water immediately after extraction from the reactor, 

while Figure 4 B represents the water following precipitate settling. The black 

precipitate is clearly visible at the bottom of the vessel. 
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Figure 4: A) Water extracted from reactor, showing black metal sulphide 
precipitate; B) Water following precipitate settling. Analysis was conducted on 
the supernatant. 
 

 

 

4.2.3 Chemical oxygen demand 

 

The chemical oxygen demand (COD) was determined at the start and at the end of 

the 24-hour HRT for each of the decreasing influent/feed pH runs. Figure 5 

graphically illustrates these changes in COD. 
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Figure 5: Change in COD over a HRT of 24 hours, as a function of the 
influent/feed pH. The difference between influent and effluent COD after 24 
hours decreases with decreasing pH.  
 

When comparing COD usage over a 24-hour HRT for different feed pH values 

(Figure 5), it can be seen that as the feed pH decreases, a decrease in the use of 

organic material by the contained microbes is noticed over a 24-hour HRT. This is 

brought about by a reduction in bacterial activity as pH decreases.  

 

4.2.4 pH change: 

 

In order to investigate the alkaline-generating capability, synthetic mine water at 

decreasing pH values was fed into the system. Figure 6 illustrates the alkaline 

yielding capacity of the system, as a function of decreasing feed pH values, at 

HRTs of 5, 10 and 24 hours. 
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Figure 6: Alkaline generating capacity of the SRB contained within the fluidised 
bed bioreactor. At a given start or feed pH value, the pH was monitored over 5, 10 
and 24 hour HRTs. An increase in HRT results in an increase in alkalinity. 
Alkalinity was generated from influent pH values as low as 2.75. 
 
 
 
 
The bioreactor system was successful in raising the pH values to above 7 from a 

feed or influent pH as low as 4. A HRT of 24 hours allowed sufficient time for the 

alkalinisation of the effluent stream. At pH values between 3 and 4, the bioreactor 

system was capable of generating a final pH of between 6 and 7, after 24 hours; 

while at a feed pH of below 3, a final pH of only 5.4 was achievable after a 24-

hour HRT. In all cases tested in this study the system was capable of generating 

alkalinity. 
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4.2.5 Heavy metal removal from polluted water 

 

 
The heavy metals used in the present study were Fe, Mn, Zn, Cu, Cr and Al. At 

each decreasing feed pH value used, and with each of the HRTs (5, 10 and 24 

hours), the water was analysed for effectiveness in heavy metal precipitation. 

Tables 4 to 12 demonstrate the ability of the bioreactor system to precipitate some 

heavy metals in mine water, under conditions of decreasing feed pH values. 

 

Table 4: Heavy metal removal from water at a feed pH of 7, over increasing 
HRTs (standard deviations of the mean included). 
 

HRT 

(hours) 

Fe  

(mg.l-1) 

Mn  

(mg.l-1) 

Zn 

(mg.l-1) 

Cu  

(mg.l-1) 

Cr  

(mg.l-1) 

Al  

(mg.l-1) 

0 500 200 50 10 100 10 

5 12.5 ± 6.36 10.5 ± 3.53 13.5 ± 3.53 1.3 ± 1.06 6.9 ± 3.18 3.1 ± 0.56 

10 3 ± 0.84 1.8 ± 0.49 0.4 ± 0.14 0.5 ± 0.35 1.7 ± 1.84 0.4 ± 0.49 

24 0.06 ± 0.06 2.5 ± 0.06 0 0.00013 ± 0.000023 0.00017 ± 0.00028 0 

 

Table 5: Heavy metal removal from water at a feed pH of 6, over increasing 
HRTs (standard deviations of the mean included). 
 

HRT 

(hours) 

Fe  

(mg.l-1) 

Mn  

(mg.l-1) 

Zn 

(mg.l-1) 

Cu  

(mg.l-1) 

Cr  

(mg.l-1) 

Al  

(mg.l-1) 

0 500 200 50 10 100 10 

5 16.5 ± 4.9 16 ± 2.82 15.5 ± 3.5 2.2 ± 1.13 4.6 ± 1.55 2.65 ± 0.77 

10 5 ± 2.8 2.45 ± 0.77 0.5 ± 0.56 0.5 ± 0.56 0.75 ± 0.07 0.35 ± 0.2 

24 0.19 ± 0.21 2.7 ± 1.3 0 0.00011 ± 0.00011 0.02 ± 0.04 0 
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Table 6: Heavy metal removal from water at a feed pH of 5.5, over increasing 
HRTs (with standard deviations of the mean included). 
 

HRT 

(hours) 

Fe  

(mg.l-1) 

Mn  

(mg.l-1) 

Zn 

(mg.l-1) 

Cu  

(mg.l-1) 

Cr  

(mg.l-1) 

Al  

(mg.l-1) 

0 500 200 50 10 100 10 

5 17.5 ± 0.7 14.5 ± 7.77 13 ± 4.2 1.7 ± 1.03 9.6 ± 2.8 1.9 ± 1.9 

10 7.5 ± 2.12 20.1 ± 28.14 0.9 ± 0.9 1.9 ± 0.21 1.1 ± 0.77 1.1 ± 0.6 

24 0.3 ± 0.22 2.7 ± 3.8 0.4 ± 0.4 0.1 ± 0.17 0.003 ± 0.004 0.002 ± 0.003 

 

 

Table 7: Heavy metal removal from water at a feed pH of 5, over increasing 
HRTs (with standard deviations of the mean included). 
 

HRT 

(hours) 

Fe  

(mg.l-1) 

Mn  

(mg.l-1) 

Zn 

(mg.l-1) 

Cu  

(mg.l-1) 

Cr  

(mg.l-1) 

Al  

(mg.l-1) 

0 500 200 50 10 100 10 

5 27 ± 9.90 21 ± 12.73 14.5 ± 3.5 2.3 ± 2.16 11.1 ± 3.6 2.3 ± 1.27 

10 9.5 ± 7.77 35.5 ± 10.6 1.1 ± 0.84 1.9 ± 1.41 1.1 ± 0.28 1.6 ± 1.63 

24 0.4 ± 0.28 2.8 ± 2.07 0.7 ± 0.91 0.2 ± 0.16 0.06 ± 0.05 0.02 ± 0.04 

 

Table 8: Heavy metal removal from water at a feed pH of 4.5, over increasing 
HRTs (with standard deviations of the mean included). 
 

HRT 

(hours) 

Fe  

(mg.l-1) 

Mn  

(mg.l-1) 

Zn 

(mg.l-1) 

Cu  

(mg.l-1) 

Cr  

(mg.l-1) 

Al  

(mg.l-1) 

0 500 200 50 10 100 10 

5 45.9 ± 58.13 103.5 ± 38.89 27 ± 9.89 3.9 ± 1.31 17.7 ± 4.52 2.2 ± 0.56 

10 14.5 ± 9.19 44 ± 29.69 20 ± 4.24 3.6 ± 3.11 3.5 ± 1.13 0.02  

24 0.3 ± 0.09 6.3 ± 8.06 0.9 ± 0.96 0.2 ± 0.16 0.02 ± 0.04 0.014 ± 0.02 
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Table 9: Heavy metal removal from water at a feed pH of 4, over increasing 
HRTs (with standard deviations of the mean included). 
 

HRT 

(hours) 

Fe  

(mg.l-1) 

Mn  

(mg.l-1) 

Zn 

(mg.l-1) 

Cu  

(mg.l-1) 

Cr  

(mg.l-1) 

Al  

(mg.l-1) 

0 500 200 50 10 100 10 

5 47.2 ± 59.17 66.5 ± 44.54 27.5 ± 12.02 2.9 ± 1.73 28.2 ± 6.43 3.3 ± 0.49 

10 9 ± 1.41 65.5 ± 13.43 22.5 ± 13.43 2.6 ± 1.23 3.4 ± 2.75 0.7 ± 0.95 

24 0.6 ± 0.17 30.3 ± 9.61 30.3 ± 1.38 0.4 ± 0.35 0.003 ± 0.003 0.01 ± 0.01 

 

 

Table 10: Heavy metal removal from water at a feed pH of 3.5, over increasing 
HRTs (with standard deviations of the mean included). 
 

HRT 

(hours) 

Fe  

(mg.l-1) 

Mn  

(mg.l-1) 

Zn 

(mg.l-1) 

Cu  

(mg.l-1) 

Cr  

(mg.l-1) 

Al  

(mg.l-1) 

0 500 200 50 10 100 10 

5 57 ± 19.79 93.5 ± 37.48 29.5 ± 9.19 4.9 ± 1.65 47.6 ± 5.37 4 ± 1.27 

10 29.5 ± 12.02 64.5 ± 31.82 22.3 ± 3.18 3.9 ± 1.57 18.5 ± 7.70 2.3 ± 0.78 

24 0.6 ± 0.40 57.7 ± 6.43 11.7 ± 3.05 3.2 ± 1.80 3.9 ± 2.05 2.6 ± 0.71 

 

Table 11: Heavy metal removal from water at a feed pH of 3, over increasing 
HRTs (with standard deviations of the mean included). 
 

HRT 

(hours) 

Fe  

(mg.l-1) 

Mn  

(mg.l-1) 

Zn 

(mg.l-1) 

Cu  

(mg.l-1) 

Cr  

(mg.l-1) 

Al  

(mg.l-1) 

0 500 200 50 10 100 10 

5 49 ± 26.87 125 ± 43.84 32 ± 15.56 5.1 ± 2.40 59.1 ± 10.18 4.9 ± 0.28 

10 15 ± 2.83 86.5 ± 14.85 29.5 ± 3.53 3.6 ± 2.40 35.5 ± 11.67 4.1 ± 3.04 

24 0.9 ± 0.89 52.3 ± 10.56 3.8 ± 3.27 4.6 ± 1.96 16.2 ± 9.87 1.3 ± 1.15 
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Table 12: Heavy metal removal from water at a feed pH of 2.75, over increasing 
HRTs (with standard deviations of the mean included). 
 

HRT 

(hours) 

Fe  

(mg.l-1) 

Mn  

(mg.l-1) 

Zn 

(mg.l-1) 

Cu  

(mg.l-1) 

Cr  

(mg.l-1) 

Al  

(mg.l-1) 

0 500 200 50 10 100 10 

5 182.5 ± 34.65 149.5 ± 37.48 51.5 ± 6.36 6 ± 1.56 59.6 ± 0.92 5.9 ± 2.76 

10 70.5 ± 10.61 100 ± 7.07 31.5 ± 3.56 5.5 ± 3.75 51.5 ± 6.36 5.7 ± 0.85 

24 9.6 ± 1.52 80.7 ± 24.76 6.2 ± 2.96 4.5 ± 3.93 20.7 ± 16.00 2.2 ± 1.82 

 

Tables 4 to 12 demonstrate the ability of the SRB contained within the fluidised 

bed bioreactor system to precipitate heavy metals from solution. This precipitation 

was still achievable at the upper ranges of the low pH values that AMD usually 

occurs, between 2.5 and 3.5. The amount of heavy metal precipitated increases in 

each case with increasing HRT. As the influent pH values decrease however, the 

amount of heavy metal precipitated decreases over a given HRT. This trend was 

consistent for each of the heavy metals used.  

 

Iron, for example, at a concentration of 500 mg.l-1, was reduced to 0.06 mg.l-1 at a 

feed pH of 7 (Table 4), and to 9.6 mg.l-1 at a feed pH as low as 2.75 (Table 12), 

each at a HRT of 24 hours. The other heavy metals used also displayed marked 

decreases in concentration between the feed concentration and the effluent 

concentrations.  
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4.2.6 Percentage efficiency of each heavy metal precipitation 

 

The precipitation percentage efficiency for each heavy metal tested at every 

influent pH value was calculated, over a HRT of 24 hours. Figures 7 to 12 

graphically represent these percentage efficiencies. 
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Figure 7: Percentage efficiency Fe removal at decreasing feed pH values 
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Figure 8: Percentage efficiency Mn removal at decreasing feed pH values 
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Figure 9: Percentage efficiency Zn removal at decreasing feed pH values 
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Figure 10: Percentage efficiency Cu removal at decreasing feed pH values 
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Figure 11: Percentage efficiency Cr removal at decreasing feed pH values 
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Figure 12: Percentage efficiency Al removal at decreasing feed pH values 
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It is seen from Figures 7 to 12 that the percentage efficiencies of the system in 

precipitating heavy metals decreases with decreasing feed-pH, but still remains 

above 50%, over a HRT of 24 hours. Almost all the heavy metals are removed at 

pH values above 4. Below this value the system’s efficiency decreases, indicating 

a reduction in bacterial activity.  

 

4.3 Analysis of bacterial consortium 

 

Two samples were taken from each reactor for microbial community analysis. The 

DNA from these was extracted and amplified, then run on a 1% agarose gel to 

confirm the presence of amplified fragments. Figure 13 shows the agarose gel 

with the amplified fragments visible. The sizes of the fragments on the ladder 

(Lane M) are as follows: 1031, 900, 800, 700, 600, 500, 400, 300 and 200 base 

pairs. 

 

The amplified fragments correspond to a size of approximately 400 to 430 base 

pairs. Since these fragments represent a bacterial consortium, in order to elucidate 

the bacterial species present, DGGE was conducted on these amplified fragments. 

Each of the fragments present in Figure 13 was separated in the gradient gel as 

represented in Figure 14. 
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Lane M: Marker 

Lane 1: Reactor 1 

Lane 2: Reactor 1 

Lane 3: Reactor 2 

Lane 4: Reactor 2 

Lane 5: Reactor 3 

Lane 6: Reactor 3 

 

 

 

 

Figure 13: 1% Agarose gel electrophoresis of amplified fragments. Lane M 
represents the marker lane; while lanes 1 and 2 represent DNA extracted and 
amplified from reactor 1; 3 and 4 from reactor 2; and 5 and 6 from reactor 3.  
 

 

 

2 3 1 1 2 3 Reactor:  

 
Sample 1

 

 Sample 2
Sample 3

 

 

 

 

Figure 14:  DGGE electrophoresis of bacterial consortiums from each reactor. 
The single bands from the amplification stage (Figure 13) were separated into a 
number of fragments, representing different bacterial species. Samples 1 to 3 
indicate the bands excised for sequencing. Banding pattern is similar for each 
reactor’s microbial community. At least 8 different species were present. 
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From the fragments generated in Figure 14, it is seen that the bioreactors 

contained at least 8 different bacterial species. However, only 3 bands (sample 1 

to 3) were successfully excised and sequenced. The similar banding patterns 

present for each reactor consortium, indicates a similar bacterial community 

throughout the system. Although more bands were excised, the sequencing of 

these was unsuccessful. The sequencing results of the three samples represented in 

Figure 14 are shown in Table 13.  

 

The results of the DGGE microbial community analysis were therefore largely 

inconclusive. 

 

Table 13: BLAST search homology sequence for the three samples sequenced. 

 

SAMPLE 1: 

Accession 
number 

Description Max 
Identity 

Reference 

 
EF103571.1 Acinetobacter sp. JB54 16S ribosomal 

RNA gene, partial sequence 
96% Lee, S.S. and Lee,  

H.Y. (2006) 
EF103561.1 Acinetobacter sp. JB7 16S ribosomal 

RNA gene, partial sequence 
96% Lee, S.S. and Lee, H.Y. 

(2006) 
AJ534674.1 Uncultured gamma proteobacterium 

partial 16S rRNA gene 
96% Selena-Pobell, S.I. (2002) 

DQ342794.1 Uncultured bacterium clone ADPS1_12D 
16S ribosomal RNA gene 

96% Robinson, et al. (2005) 

AY642549.1 Uncultured gamma proteobacterium clone 
LV57-17 16S ribosomal RNA 

 Lopez-Garcia et al. 
(2005) 
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SAMPLE 2: 
 

Accession 
number 

Description Max 
Identity 

Reference 

 
EF434413.1 Acinetobacter sp. VKPM45 16S 

ribosomal RNA gene, partial sequence 
94% Sunitha et al. (2007) 

DQ343038.1 Uncultured bacterium clone 2G6F04 16S 
ribosomal RNA gene 

94% Robinson et al. (2005) 

DQ342738.1 Uncultured bacterium clone S2-2D 16S 
ribosomal RNA gene 

94% Robinson et al. (2005) 

EF149067.1 Uncultured bacterium G1Clone54 16S 
ribosomal RNA gene 

94% Maknojia et al. (2006) 

    

SAMPLE 3: 
 

   

Accession 
number 

Description Max 
Identity 

Reference 

 
AY221636.1 Acinetobacter glutaminasificans 

16S ribosomal RNA gene 
90%  

Vanbroekhoven,K. et al. 
(2003) 

DQ342500.1 Uncultured bacterium clone PSAD1_06B 
16S ribosomal RNA gene 

90% Robinson et al. (2005) 

DQ342794.1 Uncultured bacterium clone ADPS1_12D 
16S ribosomal RNA gene 

90% Robinson et al. (2005) 

AJ534674.1 Uncultured gamma proteobacterium 
partial 16S rRNA gene 

90% Selenska-Pobell, S.I. 
(2002) 
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4.4 Scanning electron microscopy 

 

Samples of the charcoal substrate contained within the reactor were extracted and 

prepared for SEM. Figure 15 gives an example of the morphology of some of the 

bacterial cells, colonies and biofilms present within the system. 

 

10µm 

 

 

 

 

 

 1µm 
A B 
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 1µm
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Figure 15: A) Biofilm formed and attached to the charcoal substrate by resident 
microbes (7000X); B) A bacterial colony on the surface of the charcoal (2200X); 
C) Two single cells of different morphology, a rod and a filamentous cell (14000); 
D) Small bacterial colony attached to the charcoal surface (7000X). 
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The bacterial consortiums within the reactors were able to form biofilms 

successfully, as established from Figure 15. Some single cells were also present, 

and clearly these were of different morphology, either rods (curved or straight) or 

filamentous. This demonstrates the existence of consortiums, rather than a single 

bacterial species. The possible presence of extracellular polymeric substances 

(EPS) should also not be discounted, as seen in Figure 15 D. These can only be 

confirmed with more analyses. 
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5 DISCUSSION 

 

5.1 Bacterial culture 

 

A modification of Postgate’s (1984) medium B proved to be successful for the 

selection and culturing of the SRB isolated from soil samples that were 

waterlogged with mine dump water. The production of an iron sulphide (FeS) 

precipitate after inoculating the medium with the mine dump soil sample was 

taken as an indication of the successful growth of a culture of anaerobic SRB. The 

use of acetate as the carbon source instead of lactate, as prescribed by Postgate 

(1984), would have promoted the selection of acetate-utilising sulphidogenic 

species. The selection of acetate as a substitute of lactate was based on the fact 

that acetate is one of the main volatile fatty acids in anaerobic sewage effluents, 

and other anaerobic treatments (Elefsiniotis et al., 2004). The ability of 

sulphidogenic microbes to grow in the absence of the reducing agent thioglycollic 

acid prescribed by Postgate (1984) was an interesting finding. This suggests that 

the growth of the SRB in the soil sample were not inhibited in culture medium 

that was initially not strictly anaerobic or strongly reducing. The ability of the 

bacteria isolated from the soil sample to generate H2S was confirmed by the 

production of the characteristic odour associated with this compound and also by 

the appearance of the black FeS precipitate in the medium. Hence it was 

concluded that a suitable sulphidogenic bacterial consortium was successfully 

cultured in the modified Postgate (1984) media B. 
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This sulphidogenic culture that had been isolated at pH 7.0 was then sub-cultured 

in Postgate medium B adjusted to lower pHs. The low pH experiments indicated 

that the planktonic forms of the bacterial consortium were tolerant to or could be 

adapted to pHs below 7.0. It was seen that the SRB were unable to adjust to pH 

values below 4.5. However, SRB in the bioreactor were able to adjust to influent 

pH values as low as 3. This increased pH tolerance can be attributed to the 

establishment of biofilms in the reactor, which protect the microbes from 

environmental stresses (Lindsay and von Holy, 2006), in this case a low influent 

pH value.   

  

5.2 Control experiment 

 

The control experiment demonstrated the absence of H2S production and hence 

the absence of metal sulphide precipitation. This showed that in the absence of 

SRB heavy metal precipitation was chemically not possible when only the 

modified Postage (1984) medium B was recycled through the bioreactor system. 

The high levels of heavy metals added to the control system were the same as 

those added to the inoculated system. At each of the HRT, although the 

concentrations deviated from those added, the change was not consistent with the 

increasing HRT and no trend was adhered to. Therefore the deviations can be 

attributed to either absorption of some heavy metals by the charcoal substrate, or 

to experimental error in analysis, which mostly likely was a result of the dilutions 

necessary to facilitate analysis of the heavy metal concentrations beyond the 
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tolerance range of the photometer. Nevertheless, the control experiment did 

sufficiently demonstrate that the bioreactor system excluding inoculum was 

incapable of precipitating heavy metals, and no biological or chemical H2S could 

be produced in the absence of SRB. 

 

5.3 Water analysis 

 

Since the analysis of heavy metal concentration was carried out using photometric 

procedures, the water extracted from the reactor had to be free from heavy metal 

precipitate in order to allow absorption of light and exclude scattering, in keeping 

with the requirements for accurate photometry. Therefore, the effluent had to 

undergo a precipitate settling step prior to analysis. This step was carried out at 

4ºC to repress microbial activity and further H2S and HCO3
- production. In 

addition to this, it was found that carrying out this step at 4ºC allowed the 

precipitate to settle faster than at ambient temperature, which usually took more 

than 8 hours, compared to between 3 to 4 hours in the cold.  

 

The bioreactor system included clarifiers specifically in place to allow metal 

sulphide precipitate to settle, thus allowing for clearer effluents. It was seen 

however, that the precipitate was too light to settle while the bioreactors were in 

operation, and so in such a system, a final undisturbed settling step was necessary, 

out of which the treated supernatant was collected.  
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The differences observed in the parameters tested presently were brought about by 

differences in microbial activity, as a function of the decreasing influent pH 

during the study. 

 

5.4 COD 

 

A good indication of the microbial activity as a function of the decreasing influent 

pH was indicated by the declining COD depletion rate with falling pH. This 

dynamic shows the change in COD concentration over a HRT of 24 hours. 

Decreasing influent pH resulted in a decreasing COD depletion rate. This was 

attributed to decreasing microbial activity, resulting in reduced consumption of 

organic substrates, as the microbes could not readily adapt to the decreasing pH, 

especially at low HRTs. 

 

5.5 pH change 

 

The bioreactor system was capable of increasing the pH of the polluted mine 

water through the metabolic production of HCO3
-. Influent with initial pH values 

of between 4 and 7 were increased to between 7 and 7.8 after a 24 HRT; while 

influent with initial pH values of between 2.75 and 3.5 were increased to between 

5.4 and 6.8 when the HRT was increased to 24 hours. In order to attain an effluent 

pH of greater than 7, a HRT of 5 hours was not sufficiently long enough, except in 

the case of an influent pH of 6 and above. A HRT of 10 hours was sufficient to 
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reach an effluent pH of 7 from feed pH values of 4.5 and above. Below a feed pH 

of 4.5, it was necessary to retain the synthetic mine water for at least 24 hours. 

Studies by Elliot et al. (1998), using SRB in a much smaller bioreactor of 

approximately 1 litre, showed an increase in pH from 4.5 to 6.1 after a 2-day 

HRT; and an influent pH of 3.25 was raised to 5.82 after 21 days. Kaksonen et al. 

(2006), in a study similar to the present, using a fluidised bed bioreactor, showed 

that pH could be increased from 2.5-3 to 7.5-8.5. In that study, the results were 

obtained while operating a lactate-fed bioreactor of 0.5 litres, with a HRT of 16 

hours. 

 

It was evident that with decreasing influent pH, the HRT needed to be increased 

in order to attain a neutral or slightly alkaline effluent pH. It should be noted 

however, that an influent with an initial pH of 2.75 did not readily become more 

alkaline with passage of the medium through the bioreactor system. It appears that 

long HRTs are necessary for the system to cope with extremely low influent pHs. 

Bacterial activity was reduced dramatically when this pH was maintained. For 

extremely acidic pHs, if the HRT was less than 24-hours, then bacteria were 

unable to generate sufficient alkalinity. The increase in pH from an influent of 

2.75 could thus be in part, attributed to residual HCO3
- in the system. However, it 

can be hypothesised that if the HRT were increased from 24 hours to perhaps a 

few days, the microbial communities in the bioreactor would have more time to 

adjust and therefore would be capable of treating mine waters with a pH below 

2.75. 
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5.6 Heavy metal precipitation   

 

The heavy metals added to the system were successfully precipitated through the 

action of biologically produced H2S. Fe, Mn, Zn, Cu, Cr and Al were the heavy 

metals used, at concentrations based on the high range values reported (except for 

Al) by Naicker et al. (2003). A similar trend as observed for the alkaline 

generating efficiency, was also noticed for the heavy metal precipitation study, in 

that as the influent pH decreased, the amount of heavy metals precipitated 

decreased. This again could be explained by the reduction in bacterial activity 

with decreasing pH, as was demonstrated by the COD depletion rate study. The 

heavy metal precipitation study is represented in Tables 4 to 12.  

 

The South African Water Quality Guidelines manuscript (Holmes, 1996) has 

stipulated the water tolerance ranges for a number of water uses, such as 

domestic, industrial, recreation, agriculture and irrigation. It was useful to 

compare the water quality of the effluent from the present study, in terms of heavy 

metal concentration, to those given in the guideline.  

 

The tolerance levels for heavy metal concentration for domestic use were met 

after a 24-hour HRT for the influent pH values of 7 and 6. However, below this 

pH, the high levels of Fe, Mn and Zn added to the system, as a reflection of the 

levels typically occurring in AMD, were not sufficiently reduced to remain within 

these limits.  

 

 65

 

 



As the feed pH decreased, the effluent water quality over a 24-hour HRT 

decreased, and subsequently became more suited to livestock feeding, short-term 

irrigation and finally industry. However, with a HRT of greater than 24 hours, 

more heavy metals will invariably be precipitated, and thus the HRT of the 

influent can be tested and stipulated with reference to the desired effluent water 

quality.  

 

The percentage efficiencies of heavy metal removal over a 24-hour HRT, as a 

function of feed pH values decreased with decreasing feed pH values. For all the 

influent pH values tested, the percentage efficiencies of heavy metal removal after 

a HRT of 24 hours, was greater than 65%. These efficiencies were all above 98% 

for feed pH values of 4 and above, over the same HRT. Evidently, an influent pH 

of 4 was the lowest pH value necessary to allow greater than 98% heavy metal 

precipitation efficiency in the bioreactor system used presently. Although 

significant precipitation did occur at feed pH values as low as 2.75, a HRT of 

greater than 24 hours is more desirable for treating these low pH influents. 

 

Kaksonen et al. (2006), using SRB in a fluidised bed bioreactor and a HRT of 6.5 

hours, were able to precipitate 600 mg.l-1 Zn and 300mg.l-1 Fe per day on a lactate 

and ethanol carbon source. Jong and Parry (2003) also had similar success in 

treating water with a low pH and rich in metals and sulphates. Those authors, 

using an upflow anaerobic packed bed reactor inoculated with a mixed population 

of SRB from a mine site, were able to remove 97.5% of Cu, Zn and Ni; greater 

than 77% As; and >82% Fe from synthetic mine water.   
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While it may be more informative to compare the heavy metal removal 

efficiencies from other studies with the present investigation, it must be 

remembered that different bioreactors will have different volumes and operational 

methods. For this reason, flow rates and HRTs will differ between studies, while 

possibly still attaining similar results. Due to the diversity of bioreactor 

assemblies and operational methods, attempts at scaling up a successful bench-

scale bioreactor system often present numerous difficulties. Even in the present 

study, the system often behaved as a packed bed bioreactor when flow rates were 

reduced to allow longer HRTs. 

 

5.7 Microbial community analysis 

 

DNA was extracted from each reactor in order to gain some understanding of the 

bacterial consortium present. The DNA extraction procedure was successful, as 

well as the amplification process that followed. Amplification yielded products of 

between 400 to 430 base pairs, using the forward and reverse primers p63f and 

p518r respectively. Boon et al. (2000b) pointed out that PCR products using the 

abovementioned primers should yield fragments of 530 base pairs, with the GC 

clamp attached. However, in yet another study by Boon et al. (2000a) using the 

same forward and reverse primers as in the present study, it was reported the 

expected size of the amplified fragments was 474 base pairs. Repeated 

electrophoresis using the same primers in the present study, however yielded 

fragments of the same size, i.e. 400 to 430 base pairs. This difference could either 
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be attributed to the quality of the primers supplied, or to the detachment of the GC 

clamp at some stage during amplification. The purpose of the 40 base pair GC 

clamp was to strengthen the DNA fragments and make them robust for later use in 

DGGE. The amplified products, and not the fragments from the agarose gel, were 

then subjected to DGGE in order to separate the bacterial consortium, so as not to 

erroneously select non-specific bound fragments. 

 

The DGGE process did achieve the purpose of separating the amplified fragments. 

The products were separated into at least 8 bands, representing at least 8 species 

of bacteria present in the bioreactor system. Similar banding patterns for each of 

the reactors implied that a similar consortium was present throughout the system. 

Some of the separated bands were too feint to be separated accurately, and so only 

5 prominent bands were chosen from each lane. These were excised and 

sequenced by Inqaba Biotechnical Industries (Pty) LTD (South Africa). However, 

2 of the bands could not be sequenced, and hence only 3 bands were successfully 

sequenced.  

 

The close sequence similarity among the SRB in the bioreactors was evident from 

in that the bands are quite close together, implying minimal difference among the 

16S rDNA. As a consequence of this, it was difficult to separate the bands more 

than that that represented in Figure 14, even after attempting to run the 

polyacrylamide gels for longer periods, or at reduced voltage. For this reason 

some bands were too close together to resolve sufficiently, and were thus 
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probably excised together as one, possibly accounting for the fact that 2 of the 

excised bands could not be sequenced. 

 

The three bands that were sequenced, on the other hand, rendered rather 

inconclusive results. Sequencing identified these bacteria as either Acinetobacter 

sp., or uncultured bacterium clones. Since a bacterial consortium was present in 

the bioreactor during operation, it was expected that bacteria other than 

dissimilatory sulphate reducers would be present. However, Acinetobacter sp. are 

not known to, and many have been proved to be unable to produce H2S (Shakibaie 

et al., 2003). Therefore it is unlikely that the Acinetobacter sp. were responsible 

for heavy metal precipitation. In addition, some Acinetobacter sp. are able to grow 

on a range of aromatic alcohols and esters as energy sources (Jones et al., 1999). 

Acinetobacter sp. have also been extensively used in the remediation and 

biodegradation of phenols and other organic compounds (Abdel-El-Haleem, 

2003). Acinetobacter sp. are widespread in the environment, and it is therefore 

likely that these microbes live in a commensal relationship with SRB.  

 

In a study by Kaksonen et al. (2006), in which the diversity of SRB in a bioreactor 

was studied, it was shown that several bacterial strains isolated from the reactors 

in that study were previously uncultured. Those authors go on to say that those 

uncultured strains could possibly represent novel species or novel genera. 

 

Pruden et al. (2007) conducted a study on the effect of inoculum on the 

performance of sulphate reducing columns. Those authors also made use of 
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DGGE to ascertain the microbial community active with the columns, and also 

found that the columns contained a number of uncultured bacterium clones. 

Interestingly, in that study the proportion of SRB within the columns was 

relatively low compared with the proportion of Clostridium sp. The majority of 

the microbes represented cellulose- and other polysaccharide- degrading bacteria. 

 

In many acid mine drainage treatment systems, SRB have been shown to 

represent a relatively low proportion of the total bacterial population present 

(Johnson and Hallberg, 2003; Hallberg and Johnson, 2005). This was true for the 

present study as well, since the effects of SRB metabolism was present in the 

bioreactor through dissimilatory sulphate reduction and H2S and HCO3
- 

production, but the molecular techniques employed were unable to classify the 

species present. The low proportion of SRB in the total bacterial population 

probably accounted for this. 

 

However, it cannot be discounted that the uncultured bacterium clones possibly 

represent novel species, since PCR-DGGE analysis of bacterial consortiums often 

encounters previously uncultured anaerobic bacteria (Kaksonen et al., 2006; 

Pruden et al., 2007). Further molecular analysis is warranted in this regard.  

 

Each of the samples however, did show homology to isolates that were either pH 

tolerant over a large range, heavy metal tolerant, or tolerant to anoxic 

environments. One such example would be the 96% homology that sample 1 

showed to an uncultured gamma proteobacterium clone LV57-17 (Lopez-Garcia 
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et al., 2005). Those authors showed that this proteobacterium was alkaline 

tolerant. Similarly, the uncultured gamma proteobacterium that sample 3 shared 

90% homology with, was isolated from deep-well injection sites, suggesting a 

possible anoxic environment. Similarities can thus be drawn between the 

properties that the SRB exhibited in the present study with those that displayed a 

high degree of sequence homology to them. Bacteria that share homology with the 

SRB isolated in the present study also tend to share some of the properties, such 

as tolerance to extreme pH values, as well as to low oxygen levels.  

 

5.8 Scanning electron microscopy 

 

The results from the SEM study lent valuable insight into the bacterial 

consortiums present in the reactor. From the initial culture experiment using 

Postgate’s (1984) media at different pHs, it was seen that planktonic SRB in 

liquid media were unable to survive at pH values below 4.5. However, the 

performance of the bacterial consortiums within the bioreactor did not reflect this 

pH intolerance. 

 

It was seen that the bioreactor was able to operate effectively at influent pH values 

as low as 3. The presence of biofilms attached to the charcoal substrate was 

observed. As mentioned by Lindsay and von Holy (2006); and Singh et al. (2006), 

biofilms confer upon the cells tolerances to environmental stresses that are not 

present in the planktonic stage. Baumgartner et al. (2006) also pointed out that 

SRB are often found in oxic zones of microbial mats, illustrating the oxygen 
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tolerance that these biofilms confer. Hence, the formation of biofilms within the 

reactors allowed the bacterial consortiums to withstand variation in influent pH, as 

well as high concentrations of heavy metals.  

 

Although the presence of at least 8 different bacterial species based on differences 

in the sequences of their 16S rDNA was confirmed, these microbes could not be 

easily detected with the scanning electron microscope. This could be attributed to 

the fact that most bacterial species would have been attached and confined to 

biofilms, hence altering their morphology and making the description of their 

planktonic morphology impossible.  

 

5.9 Conclusion 

 

The effects of AMD and other industrial water pollutants need urgent attention, 

especially in a water-scarce country like South Africa where mining and industrial 

pollutants cause widespread environmental damage to sensitive ecosystems and 

wetland habitats. A large portion of South Africa’s revenue is generated from eco-

tourism. With water pollutants entering sensitive habitats, a number of endemic 

and endangered wildlife become threatened. As industrial and mining operations 

expand in South Africa and around the world, more effective and economical 

measures are needed to combat resulting pollutants. As discussed previously, 

existing AMD treatment and remediation programs are often expensive, require 

removal of heavy precipitate, or are selective either in the metals they remove or 

in the pH range in which they are efficient.  
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The present study represents an economical and effective method of treating 

wastewater that may be rich in heavy metals, and/or have a low pH. The high 

efficiency of heavy metal precipitation is encouraging, and the alkalinity 

generation efficiency lends promise to the treatment of a range of polluting waters 

from many industrial processes. In a one-step operation, both the low pH and the 

heavy metal content can be addressed and treated, thereby saving costs associated 

with step-wise treatments that deal with each AMD pollution individually. 

 

Future studies can expand on the present and explore the effectiveness of a range 

of carbon sources and volatile fatty acids, as well as explore the effect of different 

HRTs, bioreactor designs, bioreactor volumes, etc. on wastewater treatment. 

Another area that offers opportunities for further study is in microbial community 

analyses of these bioreactor systems. It was seen from the present study that not 

only SRB were present in the bioreactors, and hence the relationship between 

these microbial communities can be elucidated to develop better bioremediation 

systems in future. 
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6 APPENDICES 

 

6.1 Appendix A: Media and solution constituents 

50X TAE Buffer:

Tris base 242 g 2M 

Acetic acid, glacial 57.1 g 1M 

0.5M EDTA, pH 8 100 ml 50mM

dH2O to 1000 ml  

 

Denaturation solutions (for a 6% (w/v) gel):

40% Denaturation:     60% Denaturation solution: 

40% Acrylamide/Bis 15 ml 40% Acrylamide/Bis 15 ml 

50X TAE buffer 2 ml 50X TAE buffer 2 ml 

Formamide 16 ml Formamide 26 ml 

Urea 16.8 g Urea 27.3 g 

dH2O to 100 ml dH2O to 100 ml 

 

1X TAE Running buffer: 

50 X TAE buffer 140 ml 

dH2O 6860 ml

Total volume 7000 ml
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PCR Master Mix composition:

Taq DNA polymerase  0.05 units.µl-1

MgCl2 4mM 

dNTPs 0.4mM of each

 

1% Agarose gel:

Agarose 0.5 g 

5X TBE buffer 10 ml

Distilled water 40 ml

Heat until agarose has dissolved  

Ethidium bromide 1µl 

 

5X TBE buffer:  

Tris base 54 g 

Boric acid 27.5 g 

0.5M EDTA (pH 8) 20 ml 

dH2O to 1000ml

 

LB media (pH 7):

Tryptone 10 g 

Yeast extract 5 g 

NaCl 10 g 
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Postgate Media B:

KH2PO4 0.5 g 

NH4Cl 1 g 

CaSO4 1 g 

MgSO4·7H2O 2 g 

FeSO4·7H2O 0.5 g 

Ascorbic acid 0.1 g 

Thioglycollic acid 0.1 g 

Yeast extract 1 g 

Sodium lactate 3.5 g 
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6.2 Appendix B: Sequences of 3 samples extracted from DGGE gel 

 

Sequence of sample 1:

CGACTAGTGCTATGCACCATTGCATAAATCTTGGACGGGTGAGTATATCG 

CTTAGGAATCTGCCTATTAGTGGGGGACAACATCCCGAAAGGAATGCTAA 

TACCGCATACGCCCTACGGGGGAAAGCGGGGGATCTTCGGACCTTGCGCT 

AATAGATGAGCCTAGAGTCGGATTAGCTAGGTGGTGGGGAAAAGGCCCAC 

CAAGGCGACGATCTGTAGCGGGTCTGAGAGGATGATCCGCCACACCTGGG 

ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCGGTGGGGAATATTGG 

ACAATGGGGGGAACCCTGATCCAGCCCGCCGCGGTAATAAGCATTTTTCT 

TTTACTTTTTGTTTTTTTTTTTTGGGGGTTGCTCCGGGGACGCTGCGACG 

AGCGCGCCGGAACGTTTTTGCTTGGTCTTTGTGGCTGACAATTGATGATG 

ATGGGCTATATGTGCTTTGTGGGGGTGTGTTGTGTGTGCTGGGCTAAAGG 

AGAGCGCAGGCGACTCGTCGTCCTCTCCCGACACACTACCCGCAGTCGTC 

TTTTAGGATATATTGATGTTTTATGCTGCGATGTATCTGTCTGTGTGTGT 

GTGTGTGAGTGACGTGCATGGCTGAGCTGTCTGCTGTCGCTGTTCTCATG 

TCGTTTTTCTAGTTGCACGAGTGTACGACGCGCCGCCCCCCCGTCGCGTG 

CGTTGCAGATGACAGGAGGAGATAGGGGGTAGCTGGTTGGTGTGTGTTGT 

TTGGTGTTGTTGGCGTCTGTGAGGACGTGTCCGTGAGAGCACAACACAAC 

ACTGATCCAGTGTGGCCGCTCCGTACCGCTGGACCGTGGCGCGTCTGCAT 

GTCGATCTGTGTGTGAGGAAAGATAGCACTGTCACATGGCGTATGTGGGT 

TTGGT 
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Sequence of sample 2: 

 

TACGGGGCATTGCATCCATTGACTAAAATCTTGGACGGGTGAGTGATCAT 

GCTTAGAATCTGCCTATTAGTGGGGGACAACATCCCGAAAGGAATGCTAA 

TACCGCATACGCCCTACGGGAGAAAGCGGGGGATCTTCGGACCTTGCGCT 

AATAGATGAGCCTAGGTCGGATTAGCTAGTTGGGGGGGTAAAGGCCCTAC 

CAAGGCGACGATCTGTAGCGGGTCTGAGAAGATGATCCGCCACACTGGGA 

CTGAGACGCGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGTA 

CTATGGGCGGAAGCCTGATCCACGCCCGCCGCGGTAATATAGTAGTGTTT 

TTTGCCCTCTTCTTTTATTTTGTGTGGGCGTGTGGCGCTGGCGCATTTAG 

TACATGTATATGAGAATATGTGTTGTGCTGCTCTGCATGCATCGAACGAT 

CCAAGTTATAGATAGACTAAACATCGTGTGTCGTCTGTCGCGCGTGGTGT 

GTGTGGCTGTGGTGGGGCGCGCGTCGCGCGCGGGCCAGCTGCCCCGCGTG 

AAGAAGGATGAAAGAGAGGTGTGTTGGACGCGCCCTGTCGCGCGTGTGGC 

CGACAGAAGTTGGGGGCGGGGGTGCGTCGCGTGCTCTTAAGTTTTGTTTT 

TTGTTGTGTGGTTGTTGTGAGTGGGAGAACGTGATAATGATATTTTATCG 

CGTGCACGCGCACTAGACTGCCTCCTCCGTTCTTTCTCTGGTTGTAGTGG 

GTGTGGTCGTCGGCGTTGGCGGGCGGGGAGAAGTGGCTGCGATGCTGTTC 

GTTGCTGATGAGATCATGATACATATATCTTTTATACTACAAATGATATG 

TACTTGTGGTCTCTGGTGCTCGAGCTAGCGCCACAGAGAATC 
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Sequence of sample 3: 

 

GCTGAGCCTGTGCGGGACGGGTGAGTATATGCTTAGGAATCTGCCTATTA 

GTGGGGGACAACATCCCGAAAAGAATGCTAATACCGCATACGCCCTACGG 

GGGAAAGCGGGGGATCTTCGGACCTTGCGCTATTAGATGAGCCTAACTCG 

GATTAGCTAGTTGGGGGGGTAAAGGCCCACCAAGGCGACGATCCTGACGC 

GGGTCTGAGAGGATGATCCGCCCCGCTGGAACTGAGACGCGGCCCAGACT 

CCTATCGGGAGGCAGCTACGTGGGGAATATTAGGACAGTGGGGGGAACCC 

TGATCCGGCCCGCCGCGGTAATATTGTAGTTTTTGTAGTTGGTCCATTTT 

TGGTAGAGCGGCGAGGCTGGCTTGGGGGGGTGTGGTGATGTTGACAAACA 

ATCTCGTGTGTGTGTGTGTTCTCCCTCTCGCACGGCTTGTCTGCGTTCCC 

CCATCGGCTGTGAGCGAGTGTGAGCTAGATTGTACATGTGTATGTGCCGT 

CACTCGTGAGCTGTGGGCTGGCGCGCGCCTGAGCCACGATGCTGGTGTGC 

TCTCTATATTGTGTCGTGGCCGATGTCGACGTATGCGAGTCGAGCGCTGC 

TGCTGCGCGTCTCTGCGTGGTGACGACACACACGCAAGACACAGCCGCCG 

CGCGTGGGTGGTCTGCGCCCGTGCTCGACGTGCGATGCGCGAGTGATGTA 

TGAGGCTCGTTACGTTCTGGGGGTGGGCGGGCCCGTAAGCATACGCACTA 

TGATGTGATGTGTGAGAGTAGTAAAGAGACTATCACGCTTGAGCGCATAG 

CTGTCACTTGCTGTCGTTGTGTCGTCGTGCGTGGGGGGGACCGCAGCCGC 

ACACCTGCGCTGCGCACTGGTCTGC 
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