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4.2.1 The Padé approximations of eθ, θ ∈ R . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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Chapter 1

Introduction

In the Black and Scholes model, Black and Scholes [1973], geometric Brownian motion with constant

volatility is assumed for the underlying process, that is

dSt/St = rdt + σdW̃St

where r the constant risk-free rate, St the stock and σ the constant volatility of the stock. Under these

assumptions closed form solutions for the values of European call and put options are derived. In

practise the assumption of constant volatility is not reasonable, since we require different values for the

volatility parameter for different strikes and different expiries to match market prices. The volatility

parameter that is required in the Black-Scholes formula to reproduce market prices is called the implied

volatility. This is a critical internal inconsistency, since the implied volatility of the underlying should

not be dependent on the specifications of the contract. Thus to obtain market prices of options maturing

at a certain date, volatility needs to be a function of the strike. This function is the so called volatility

skew or smile. Furthermore for a fixed strike we also need different volatility parameters to match the

market prices of options maturing on different dates written on the same underlying, hence volatility

is a function of both the strike and the expiry date of the derivative security. This bivariate function is

called the volatility surface. There are two prominent ways of working around this problem, namely,

local volatility models and stochastic volatility models.

For local volatility models the assumption of constant volatility made in Black and Scholes [1973] is

relaxed. The underlying risk-neutral stochastic process becomes

dSt/St = r(t)dt + σ(St, t)dW̃St

where r(t) is the instantaneous forward rate of maturity t implied by the yield curve and the function

σ(St, t) is chosen (calibrated) such that the model is consistent with market data, see Dupire [1994],

Derman and Kani [1994] and [Wilmott, 2000, §25.6]. It is claimed in Hagan et al. [2002] that local volatility

models predict that the smile shifts to higher prices (resp. lower prices) when the price of the underlying

decreases (resp. increases). This is in contrast to the market behavior where the smile shifts to higher

prices (resp. lower prices) when the price of the underlying increases (resp. decreases).

1



CHAPTER 1. INTRODUCTION

Another way of working around the inconsistency introduced by constant volatility is by introducing a

stochastic process for the volatility itself; such models are called stochastic volatility models. The major

advances in stochastic volatility models are Hull and White [1987], Heston [1993] and Hagan et al. [2002].

Such models have the following general form

dSt = pS(St, σt, t)dt + qS(St, σt, t)dW̃St

dσt = pσ(St, σt, t)dt + qσ(St, σt, t)dW̃σt

where the tradeable security St and its volatility σt are correlated, i.e. dW̃St
dW̃σt

= ρdt and the functional

form of pS, qS, pσ and qσ are determined by the model used. The volatility process is no longer constant

as in the Black-Scholes model nor deterministic as in the local volatility models, but is now subject

to its own random process. In the Black-Scholes world the implied volatility is the only calibration

parameter that needs to be determined by information in the market. In each of the above mentioned

stochastic volatility models there is more than one unknown parameter in the processes involved. These

parameters are solved by using the same backward reasoning as in the Black-Scholes model. First closed

form solutions are derived for vanilla type options. These liquidly traded options are then used to

determine the unknown parameters such that the total error between the theoretical and observed prices

is minimized. Once the model is calibrated, i.e. the model returns market prices for vanilla options, we

can price more exotic type options with the model.

In chapter 2 we derive the well known result that the price of a contingent claim in a stochastic volatility

model can be represented as the solution of a two dimensional convection diffusion partial differential

equation (PDE), with the initial condition given by the payoff function. In this chapter we will derive

the PDEs relevant to the pricing of options in these major stochastic volatility models. In this thesis we

will focus on a specific class of numerical procedures to obtain accurate approximations to the solution

of the relevant PDE, called the finite difference method (FDM). Alternatively one can use Monte Carlo

integration to obtain the values of derivatives in a stochastic volatility environment, see Fouque and

Tullie [2002] and Kahl and Jäckel [2006].

We introduce the reader to the different concepts of the finite difference method by applying the numer-

ical procedure to a one dimensional PDE in chapter 3. In this chapter we apply the θ-method to a one

dimensional convection diffusion equation as well as a one dimensional convection equation. We define

and prove the consistency and stability of these schemes. For each of these problems we investigate the

stability of the θ-method by making use of von Neumann stability analysis as well as a matrix method

of analysis (under the maximum norm). It is noted in chapter 3 that, strictly speaking, von Neumann

stability analysis is not applicable to problems with variable coefficients or problems with non-smooth

initial data. We also investigate a procedure called exponential fitting, introduced in Duffy [2006]. This

procedure is used to improve the stability properties of the θ-method when it is applied to a one dimen-

sional convection diffusion equation. We show how exponential fitting can be used to obtain schemes

that are stable under the maximum norm.

It is well known that the second order accurate Crank-Nicolson scheme is only von Neumann stable

and thus not able to handle non-smooth initial data, see Duffy [2003] and Giles and Carter [2006] for

2



CHAPTER 1. INTRODUCTION

example1. In Gourlay and Morris [1980] extrapolation methods are applied to the one dimensional

heat equation with homogenous Dirichlet boundary conditions, to obtain schemes that are second, third

and fourth order accurate in time. A huge advantage of the extrapolation schemes derived in Gourlay

and Morris [1980] is that these schemes are L0-stable, meaning that these schemes are able to handle

discontinuous initial data. In chapter 4 we extend these ideas to convection diffusion problems with non-

zero Dirichlet boundary conditions. We also obtain a scheme that is L0-stable and fifth order accurate in

time.

In chapter 5 we extend the ideas of chapter 3 to two dimensions. We consider a generalization of the clas-

sical θ-method called the Implicit-Explicit method (IMEX-method) where the implicitness/explicitness

of the convection, diffusion and mixed-derivative part of the FDM can differ. Conditions under which

the IMEX-scheme is stable and the proof of unconditional consistency of the IMEX-scheme can be

found in this chapter. We show how exponential fitting can be used to make special cases of the

IMEX-method stable under the maximum norm. IMEX-schemes require the inversion of large non

tri-diagonal matrices, which can be very time consuming. There are two main FDMs that are used

to work around this problem: Alternating-Direction-Implicit schemes (ADI-schemes) and Locally-One-

Dimensional schemes (LOD-schemes). LOD-schemes are also referred to as splitting schemes. With

these schemes the original problem is rewritten as a sequence of simpler problems, each one of the sim-

pler problems can be solved with a tri-diagonal solver. In chapter 5 we investigate the stability and con-

sistency of a specific LOD-scheme called the Yanenko method, Yanenko [1971]. The Yanenko method

resolves the problems ADI-methods show for parabolic PDE with mixed derivative terms, see Duffy

[2006]. We motivate boundary conditions for the Yanenko scheme that retain the tri-diagonal property

of the matrices and the stability of the scheme. For all methods in this chapter stability is investigated

with von Neumann stability analysis and a matrix method of analysis (under the maximum norm).

In chapter 6 we extend the ideas of chapter 4 to two dimensions. In Khaliq and Twizell [1986] third

and fourth order L0-stable extrapolation schemes are developed for the simple two dimensional heat

equation with homogenous boundary conditions. We show how the schemes developed in Khaliq and

Twizell [1986] can be extended for two dimensional convection diffusion problems with a mixed deriva-

tive term.

In chapter 7 we discuss how non-uniform grids can be applied to stochastic volatility PDEs to improve

the local order of convergence, as proposed in Kluge [2002]. We also show how exponential fitting can

be used to improve the stability of FDMs on non-uniform grids. We derive transformations that removes

the cross derivative term from the Heston PDE, this is in contrast to Zvan et al. [2003] where it is said

that such transformations do not appear to be possible. Finally we give a précis of known remedies for

the problems that arise when FDMs are applied to problems with non-smooth payoff functions.

In chapter 8 we show how the general two dimensional PDE solvers developed in chapters 5, 6 and 7

can be applied to these major stochastic volatility PDEs.

In chapter 9 of this thesis we combine extrapolation, exponential fitting and non-uniform grids to obtain

a robust two dimensional PDE solver. In chapter 9 we compare the pricing formulae of vanilla European

1By non-smooth we mean that either the initial condition or the derivative of the initial condition is discontinuous. Almost all

initial conditions, resulting from pricing problems, are non-smooth.

3



CHAPTER 1. INTRODUCTION

options in the SABR world, derived in Hagan et al. [2002], to the solutions obtained with the FDMs

discussed in this thesis and confirm that the SABR formulae can give bad approximations of the true

solution under certain parameter sets. Hence if calibration of the SABR model results in such a bad

parameter set, it would be inconsistent to value more exotic options with some numerical procedure

such as Monte Carlo or the FDM. We also compare the numerical solutions given by our FDMs to the

semi-analytical pricing formulae of vanilla European options within the Heston model given in Vogt

[2004].

4



Chapter 2

The PDE for Stochastic Volatility

Models

In this chapter the PDE that needs to be solved to obtain the value surface of contingent claims in a

general stochastic volatility environment is derived. In the first section we derive the PDE that the price

of a derivative must solve, where the tradeable security as well as the volatility of the tradeable security

follows general stochastic processes. In the second section we show that all the major stochastic volatility

models are simplifications of the general model discussed in the first section.

2.1 PDE for general stochastic volatility processes

In this section the PDE that governs the prices of derivatives written on a tradeable security with stochas-

tic volatility is derived. This derivation is based a derivation done in [Lewis, 2000, §1.4], a similar deriva-

tion can be found in Wilmott [2000]. The relevant processes are

dSt = (pS(St, σt, t)−Dt)dt + qS(St, σt, t)dW̃St
(2.1)

dσt = pσ(St, σt, t)dt + qσ(St, σt, t)dW̃σt
(2.2)

where the tradeable security St and its volatility σt are correlated, i.e. dW̃St
dW̃σt

= ρdt 1. From the fact

that St ≥ 0 for all t it follows that the dividend rate Dt = D(St, t) must be smaller than pS(St, σt, t) at

St = 0. This general stochastic volatility model reduces to the Black-Scholes model when pS = µSt,

qS = σ0St, pσ ≡ 0 and qσ ≡ 0 where σ0 is a constant. Furthermore it is assumed that the price of a

contingent claim is a function of St, σt and t, i.e. V = V (St, σt, t). Thus in this setting we exclude path

dependent options.

Using the processes above and a generalization of the hedging arguments given in Black and Scholes

[1973] we will derive the PDE that the value of any contingent claim on a tradeable security must solve.

1Notation : For the rest for this chapter W̃ will denote the real world Wiener process while will W denote the process under

the risk-neutral measure.
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CHAPTER 2. THE PDE FOR STOCHASTIC VOLATILITY MODELS

The first step is to construct a portfolio, containing the derivative, that is instantaneously riskless. The

random volatility introduces an extra source of randomness which renders the traditional Black-Scholes

world incomplete. To hedge this extra source of randomness we need another liquid derivative written

on the same tradeable security with a different maturity. Let the replicating portfolio consist of the

derivative that we want to hedge (Vt), −∆ shares of the stock (St) and −∆1 shares of the other liquid

contingent claim (Ṽt), where ∆ and ∆1 are random variables. Denote our portfolio value by Πt such that

Πt = Vt −∆St −∆1Ṽt (2.3)

where Πt = Π(St, σt, t), Vt = V (St, σt, t) and Ṽt = Ṽ (St, σt, t). The replicating portfolio must be self-

financing, which means that there is no additional cash inflow or outflow beyond the initial deposit Π0.

To derive the self-financing condition we are going to consider the dynamics of the replicating portfolio in

discrete time t, t + ∆t, . . . , and then take the continuous time limit, ∆t → dt. It is assumed that events

occur in the following order in this market:

• just prior to a possible dividend, the stock has value St and the replicating portfolio has a value

Πt,

• the stock pays a dividend Dt per share and the stock price drops to its ex-dividend value, S+
t =

St −Dt∆t,

• A monetary value of Πt gets invested as follows: one share of the derivative that needs to be

valued, −∆ shares in the stock and −∆1 shares of another liquidly traded contingent claim.

This results in the following equation for the first discrete time period

Πt = Vt −∆S+
t −∆1Ṽt

= Vt −∆St + ∆Dt∆t−∆1Ṽt (2.4)

and for the second discrete time period, t + ∆t, it is easy to see that

Πt + ∆t = Vt + ∆t −∆St + ∆t −∆1Ṽt + ∆t.

Subtracting (2.4) from the equation above yields

Πt + ∆t −Πt = Vt + ∆t − Vt −∆(St + ∆t − St)−∆Dt∆t−∆1(Ṽt + ∆t − Ṽt).

Taking the continues time limit, ∆t → dt, the instantaneous change in the value of the portfolio becomes

dΠt = dVt −∆(dSt + Dtdt)−∆1dṼt (2.5)

where dSt is known from (2.1). The value processes dVt and dṼt can be obtained by making use of the

multidimensional Itô’s formula,

Proposition 2.1.1. (Itô’s formula, Björk [1998]) Take a vector Wiener process W = (W1, . . . , Wn) with corre-

lation matrix ρ, and assume that the vector process X = (X1, . . . , Xk)T has a stochastic differential. Then the

following hold:

6
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• For any C1, 2 function f, the stochastic differential process f(t, Xt) is given by

df(t,Xt) =
∂f

∂t
dt +

n∑
i = 1

∂f

∂xi

dXi + 1
2

n∑
i, j = 1

∂2f

∂xi∂xj

dXidXj,

with the formal multiplication table

(dt)2 = 0,

dt dWi = 0, i = 1, 2, . . . , n,

dWi dWj = ρi, jdt.

• If, in particular, k = n and dX has the structure

dXi = µidt + σidWi, i = 1, 2, . . . , n,

where µ1, . . . , µn and σ1, . . . , σn are scalar processes, then the stochastic differential of the process f(t,Xt)

is given by

df =

[
∂f

∂t
+

n∑
i = 1

µi

∂f

∂xi

+ 1
2

n∑
i, j = 1

σiσjρi, j

∂2f

∂xi∂xj

]
dt +

n∑
i = 1

σi

∂f

∂xi

dWi.

The derivation can be made compact by defining the following operator

AV (S, σ, t) = (pS −D)
∂V

∂S
+ pσ

∂V

∂σ
+ 1

2q2
S

∂2V

∂S2
+ ρqSqσ

∂2V

∂S∂σ
+ 1

2q2
σ

∂2V

∂σ2
.

The application of Itô’s formula to V = V (S, σ, t) and Ṽ = Ṽ (S, σ, t) results in

dV =
(

∂V

∂t
+AV

)
dt + qS

∂V

∂S
dW̃S + qσ

∂V

∂σ
dW̃σ

and

dṼ =

(
∂Ṽ

∂t
+AṼ

)
dt + qS

∂Ṽ

∂S
dW̃S + qσ

∂Ṽ

∂σ
dW̃σ

respectively. Substituting the equations derived above together with (2.1) in the self financing condition,

(2.5), results in

dΠ = dV −∆(dS + Ddt)−∆1dṼ

=

[
∂V

∂t
+AV −∆1

(
∂Ṽ

∂t
+AṼ

)
−∆pS

]
dt

+

[
qS

∂V

∂S
−∆1qS

∂Ṽ

∂S
−∆qS

]
dW̃S +

[
qσ

∂V

∂σ
−∆1qσ

∂Ṽ

∂σ

]
dW̃σ (2.6)

To eliminate all the noise in the portfolio process the coefficients of dW̃S and dW̃σ need to be set to zero.

This can be achieved by solving a trivial system of two equations in two unknowns, ∆ and ∆1. The

unique solution follows

∆1 =
∂V

∂σ

/
∂Ṽ

∂σ
, (2.7)

∆ =
∂V

∂S
−∆1

∂Ṽ

∂S
. (2.8)

7
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Via this dynamic hedging procedure a risk-less portfolio has been obtained. From arbitrage arguments

it follows that this portfolio must grow at the risk free rate

dΠ = rΠdt

= r(V −∆S −∆1Ṽ )dt. (2.9)

Substituting (2.6), (2.7) and (2.8) in (2.9) results in

∂V

∂t
+AV −∆1

(
∂Ṽ

∂t
+AṼ

)
−

(
∂V

∂S
−∆1

∂Ṽ

∂S

)
pS (2.10)

= rV − rS

(
∂V

∂S
−∆1

∂Ṽ

∂S

)
− r∆1Ṽ

⇒∂V

∂t
+AV − rV + rS

∂V

∂S
− pS

∂V

∂S

= ∆1

[
∂Ṽ

∂t
+AṼ − rṼ + rS

∂Ṽ

∂S
− pS

∂Ṽ

∂S

]

which can be rearranged as follows

(
∂V
∂t +AV − rV + rS ∂V

∂S − pS
∂V
∂S

)
∂V
∂σ

=

(
∂Ṽ
∂t +AṼ − rṼ + rS ∂Ṽ

∂S − pS
∂Ṽ
∂S

)

∂V1
∂σ

. (2.11)

Since the left-hand side is independent of Ṽ and the right-hand side is independent of V , equation (2.11)

must be equal to a function that is independent of the price of the derivative, hence
(

∂V
∂t +AV − rV + rS ∂V

∂S − pS
∂V
∂S

)
∂V
∂σ

= qσλσ(F, σ, t)

which can be rearranged to give the familiar form

∂V

∂t
+(rS −D)

∂V

∂S
+ (pσ − qσλσ(S, σ, t))

∂V

∂σ

+ 1
2q2

S

∂2V

∂S2
+ ρqSqσ

∂2V

∂S∂σ
+ 1

2q2
σ

∂2V

∂σ2
− rV = 0 (2.12)

The function λσ(S, σ, t) is called the market price of volatility risk.

2.2 PDEs for the major stochastic volatility models

2.2.1 SABR model

Non-dynamic SABR model

In Hagan et al. [2002] closed form solutions for the values of European call and put options, written on

a forward value, are derived. The underlying processes are given by,

dFt = σF β

t dWFt
(2.13)

dσt = νσtdWσt
(2.14)

8
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where the forward value Ft and a volatility like parameter σt are correlated, dWFt
dWσt

= ρdt 2. The

absence of drift in the forward process indicates that these processes are in the risk-neutral world. To

use the results from section 2.1 we consider these processes under the real-world measure,

dFt = pF (Ft, σt, t)dt + σF β
t dW̃Ft

(2.15)

dσt = pσ(Ft, σt, t)dt + νσtdW̃σt
(2.16)

where dW̃Ft
dW̃σt

= ρdt. In order to use the PDE derived in the previous section we need to make a

change of variable such that the PDE is applicable to a forward value. When we make the assumption

that the underlying stock has a dividend yield of q, i.e. D = qS, then we can use of the fact that the

arbitrage value of a forward is given by F = Se(r−q)(T−t). By making use of Itô’s formula and the fact

that ∂F
∂t = −(r − q)F we can obtain the dynamics of a forward,

dFt = −(r − q)Ftdt + e(r−q)(T−t)dSt

= [e(r−q)(T−t)pS − rFt]dt + e(r−q)(T−t)qSdW̃St
(2.17)

Since a forward contract is a tradeable security the results of section 2.1 can be applied to obtain the

relevant PDE,

∂V

∂t
+(pσ − qσλσ(Fe−(r−q)(T−t), σ, t))

∂V

∂σ

+ 1
2e2(r−q)(T−t)q2

S

∂2V

∂F 2
+ ρe(r−q)(T−t)qSqσ

∂2V

∂F∂σ
+ 1

2q2
σ

∂2V

∂σ2
− rV = 0 (2.18)

By comparing (2.15) and (2.16) with (2.17) and (2.2) respectively, we see that the following substitutions,

e(r−q)(T−t)qS = σF β

qσ(F, σ, t) = νσ

must be made in (2.18) to obtain,

∂V

∂t
+(pσ − νσλσ(Fe−(r−q)(T−t), σ, t))

∂V

∂σ
(2.19)

+ 1
2σ2F 2β ∂2V

∂F 2
+ ρνσ2F β ∂2V

∂F∂σ
+ 1

2ν2σ2 ∂2V

∂σ2
− rV = 0.

A useful fact of the SABR model is that λσ does not appear in the derivation of the model. The reason for

this is that the authors made an implicit assumption about the market price of volatility risk by choosing

(2.14) as the risk-neutral process for the volatility3. To see this, consider a change of measure in (2.16),

under some technical conditions on λσ we may set

dW̃σt
= dWσt

− λσdt.

Substituting the equation above in (2.16) results in

dσ = (pσ − λσνσ)dt + νσdWσt
.

2The volatility parameter is not a Black-Scholes volatility. It is function of the at-the-money volatility and other calibration

parameters of the SABR model.
3S. Afshani pointed this out to me in one of our ”academic sessions”.
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By comparing the final result above to (2.14) we obtain the implicit assumption on the market price of

volatility risk,

λσ =
pσ

νσ
. (2.20)

Substitution into (2.19) results in the Black-Scholes type PDE that all derivatives, written on a forward,

in the SABR world must solve 4

∂V

∂t
+ 1

2σ2F 2β ∂2V

∂F 2
+ ρνσ2F β ∂2V

∂F∂σ
+ 1

2ν2σ2 ∂2V

∂σ2
− rV = 0. (2.21)

This PDE together with the correct boundary conditions can to be solved to obtain the price of deriva-

tives in the SABR model.

Closed form SABR formulae

In Hagan et al. [2002] they use perturbation expansions to obtain the following closed form approxima-

tion for a European call option with strike K and time to maturity (T − t)

VSABR(K,F0, σ0, β, ν, ρ) = e−r(T−t)
[
F0N(d+)−KN(d−)

]
(2.22)

where

d± =
ln

(
F0
K

)± 1
2σ2

Imp(T − t)

σImp

√
T − t

, (2.23)

F0 and σ0 are the spot underlying and spot volatility of the underlying respectively. The implied volatil-

ity σImp is given by

σImp(K) =
σ0

{
1 +

[
(1−β)2

24
σ2
0

(er(T−t)K)1−β + 1
4

ρβνσ0
(er(T−t)K)(1−β)/2 + 2−3ρ2

24 ν2
]
(T − t) + . . .

}

(er(T−t)K)(1−β)/2
{

1 + (1−β)2

24 ln2
(

er(T−t)

K

)
+ (1−β)4

1920 ln4
(

er(T−t)

K

)
+ . . .

}
(

y

ξ(y)

)
(2.24)

where

y =
ν

σ0

(er(T−t)K)(1−β)/2 ln
(

er(T−t)

K

)
(2.25)

ξ(y) = ln

(√
1− 2ρy + y2 + y − ρ

1− ρ

)
(2.26)

Dynamic SABR model

In Hagan et al. [2002] they propose the dynamic SABR model for derivatives which are path dependent

and hence require a model not only calibrated to a single marginal distribution but to a whole range of

marginal distributions. Examples of such options are Forward-Starting and American options. In the

dynamic SABR model the forward value satisfies

dFt = γ(t)σtF
β
t dWFt

dσt = ν(t)σtdWσt

dWFt
dWσt

= ρ(t)dt.

4The same PDE can be obtained by making use of a result in Heath and Schweizer [2000], where the authors use a reverse

Feyman Kac̃ type theorem to obtain PDEs implied by risk-neutral stochastic processes.
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By using the same arguments as in section (2.2.1) we obtain the following PDE

∂V

∂t
+ 1

2γ2(t)σ2F 2β ∂2V

∂F 2
+ ρ(t)ν(t)σ2F β ∂2V

∂F∂σ
+ 1

2ν2(t)σ2 ∂2V

∂σ2
− rV = 0 (2.27)

that the prices of derivatives on forward values must solve. In general time dependent coefficients

makes the proofs of stability for finite difference schemes more complicated. For this model however,

the time dependent functions will be step functions. By choosing the grid of the finite difference scheme

appropriately, such that the discontinuities only occur on grid points, step functions can be handled as

time-homogenous functions.

2.2.2 Heston model

One of the key differences between the SABR model and the model proposed in Heston [1993] are the

assumptions made about the underlying. In the SABR model it is assumed that the underlying is a

forward value whereas in the tradeable security is assumed to be the stock itself in Heston’s model. For

the model proposed in Heston [1993] the author used the following dynamics for the underlying

dSt = µStdt +
√

σt + StdW̃St

dσt = κ(θ − σt)dt + ν
√

σtdW̃σt

where the stock St and its volatility σt are correlated, dW̃St
dW̃σt

= ρdt. By making the following substi-

tutions
pS = µS, qS =

√
σS,

pσ = κ(θ − σ), qσ = ν
√

σ,

D = 0

and

λσ =
λ
√

σ

ν

in (2.12), to obtain the PDE that the value of derivatives, written on a tradeable security, must solve

∂V

∂t
+rS

∂V

∂S
+ (κ(θ − σ)− λσ)

∂V

∂σ

+ 1
2σS2 ∂2V

∂S2
+ ρνσS

∂2V

∂S∂σ
+ 1

2ν2σ
∂2V

∂σ2
− rV = 0

We can remove the market price of volatility risk from the pricing formulae by introducing the following

new calibration parameters

κ∗ = κ + λ and θ∗ =
κθ

κ + λ
.

The PDE above can now be written in its more familiar form

∂V

∂t
+rS

∂V

∂S
+ κ∗(θ∗ − σ)

∂V

∂σ

+ 1
2σS2 ∂2V

∂S2
+ ρνσS

∂2V

∂S∂σ
+ 1

2ν2σ
∂2V

∂σ2
− rV = 0. (2.28)
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2.2.3 Hull & White model

Similarly as with Heston’s model, the model proposed in Hull and White [1987] uses stock as the under-

lying tradeable security rather than a forward value. For this model the authors assumed the following

dynamics for the underlying

dSt = ψ(St, σt, t)dt +
√

σt + StdW̃St

dσt = µσtdt + ξσtdW̃σt

where the stock St and its volatility σt are correlated, dW̃St
dW̃σt

= ρdt. By making the following substi-

tutions
pS = ψ(S, σ, t), qS =

√
σS,

pσ = µσ, qσ = ξσ,

D = 0

and λσ = 0, in (2.12), we obtain the PDE that the value of derivatives must solve

∂V

∂t
+rS

∂V

∂S
+ µσ

∂V

∂σ

+ 1
2σS2 ∂2V

∂S2
+ ρξσ3/2S

∂2V

∂S∂σ
+ 1

2ξ2σ2 ∂2V

∂σ2
− rV = 0. (2.29)
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Chapter 3

One Dimensional Finite Difference

Methods

In this chapter we will introduce the finite difference method by making use of one dimensional parabolic

PDEs. This chapter will mainly focus on numerical methods to find an approximation to the solution,

u : Ω → R, of the following parabolic equation

∂u

∂τ
= a(x)

∂2u

∂x2
+ d(x)

∂u

∂x
(3.1)

on the domain (x, τ) ∈ Ω where a(x) > 0 and Ω = [xmin, xmax] × R+. The consistency, stability and

convergence of the numerical schemes considered will be discussed in detail. This chapter serves as an

introduction to the finite difference method, hence we will for the most part only discuss the classical

one dimensional solvers, namely: fully explicit, fully implicit and the Crank-Nicolson method. Some

modifications on these schemes will also be discussed such as exponential fitting, see Duffy [2006]. For

reasons that will become clear when we extend the ideas of this chapter to two dimensions we will also

spend some time on the one dimensional convection equation

∂u

∂τ
= d(x)

∂u

∂x
.

We discretisize the domain, Ω, and derive the discrete approximations to the continuous derivatives as

a first step.

3.1 Discrete approximations

In order to approximate the solutions of PDEs with the finite difference method we need to truncate our

infinite domain Ω to the bounded domain Ω = [xmin, xmax] × [0, T ]. Define the following partitions for

[xmin, xmax] and [0, T ] respectively

0 = τ0 < τ1 < . . . < τl = T

xmin = x0 < x1 < . . . < xm = xmax.

13
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Our aim is to find approximations of the exact solution of (3.1) on the mesh

Ω̂ = {(xi, τk)|i = 0, 1, . . . , m, k = 0, 1, . . . , l}.

The approximation at each mesh point is denoted by

uk

i ≈ u(xi, τk).

Assuming that the mesh points are uniformly spaced we can write

xi = xmin + ihx for i = 0, 1, . . . , m

τk = k∆t for l = 0, 1, . . . , l

where hx = xmax−xmin
m and ∆t = T

l . The finite difference approximations for the derivatives in (3.1) at a

reference point (xi, τk) can be obtained by considering the Taylor expansions at the surrounding nodes:

(xi − 1, τk), (xi + 1, τk) and (xi, τk + 1)

u(xi − 1, τk) = u− hx

∂u

∂x
+ 1

2h2
x

∂2u

∂x2
− 1

6
h3

x

∂3u

∂x3
+ O(h4

x) (3.2)

u(xi + 1, τk) = u + hx

∂u

∂x
+ 1

2h2
x

∂2u

∂x2
+

1
6
h3

x

∂3u

∂x3
+ O(h4

x) (3.3)

u(xi, τk + 1) = u + ∆t
∂u

∂t
+ 1

2∆t
∂2u

∂t2
+ O(∆t3). (3.4)

Rearranging (3.2) and (3.3) results in first order forward and backward approximations of the first order

derivative

∂u

∂x
(xi, τk) =

u(xi, τk)− u(xi − 1, τk)
hx

+ 1
2hx

∂2u

∂x2
− 1

6
h2

x

∂3u

∂x3
+ O(h3

x) (3.5)

∂u

∂x
(xi, τk) =

u(xi + 1, τk)− u(xi, τk)
hx

− 1
2hx

∂2u

∂x2
− 1

6
h2

x

∂3u

∂x3
+ O(h3

x). (3.6)

After rearranging (3.4) we obtain the first order approximation of the time derivative

∂u

∂τ
(xi, τk) =

u(xi, τk + 1)− u(xi, τk)
∆t

− 1
2∆t

∂2u

∂τ2
+ O(∆t3)

A second order central difference approximation to the first order spacial derivative can be obtained by

subtracting (3.2) from (3.3)

∂u

∂x
(xi, τk) =

u(xi + 1, τk)− u(xi − 1, τk)
2hx

− 1
6
h2

x

∂3u

∂x3
+ O(h4

x). (3.7)

Finally by adding (3.2) and (3.3) we obtain a second order approximation to the second order spacial

derivative

∂2u

∂x2
(xi, τk) =

u(xi + 1, τk)− 2u(xi, τk) + u(xi − 1, τk)
h2

x

− 1
12

h2
x

∂4u

∂x4
+ O(h4

x). (3.8)
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Discrete difference operators can be defined as follows

∆+
t uk

i =
uk + 1

i − uk
i

∆t

∆+
x uk

i =
uk

i + 1 − uk
i

hx

(3.9)

∆−
x uk

i =
uk

i − uk
i − 1

hx

(3.10)

∆xu
k

i =
uk

i + 1 − uk
i − 1

2hx

∆2
xu

k

i =
uk

i + 1 − 2uk
i + uk

i − 1

h2
x

.

3.2 A model problem

Many valuation problems in the Black-Scholes world can be solved by finding the solution, u(x, t), of a

linear convection-diffusion PDE of the form

∂u

∂τ
= a(x)

∂2u

∂x2
+ d(x)

∂u

∂x
. (3.11)

on the domain (x, τ) ∈ Ω where a(x) is strictly positive. The solution of this PDE will need to satisfy an

initial condition

u(x, 0) = Ψ(x)

and boundary conditions at x = xmin and x = xmax. The boundary condition at xmin will generally be of

the form

α0(τ)u + α1(τ)
∂u

∂x
= α2(τ) (3.12)

where α0(τ) ≥ 0, α1(τ) ≤ 0 and α0(τ)− α1(τ) > 0. The boundary condition at xmax is given by

β0(τ)u + β1(τ)
∂u

∂x
= β2(τ) (3.13)

where β0(τ) ≥ 0, β1(τ) ≥ 0 and β0(τ) + β1(τ) > 0. The reason for the constraints on α0(τ), α1(τ), β0(τ)

and β1(τ) will become clear in later sections when we discuss stability.

3.3 θ-method

By substituting the discrete approximations to the continuous derivatives in equation (3.11) we obtain

uk + 1
i − uk

i

∆t
=θ

[
ai

uk + 1
i − 1 − 2uk + 1

i + uk + 1
i + 1

h2
x

+ di

uk + 1
i + 1 − uk + 1

i − 1

2hx

]

+ (1− θ)
[
ai

uk
i − 1 − 2uk

i + uk
i + 1

h2
x

+ di

uk
i + 1 − uk

i − 1

2hx

]
(3.14)
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for i = 1, 2, . . . , m− 1 and k = 0, 1, . . . , l − 1, where ai = a(xi), di = d(xi) and θ ∈ [0, 1]. The classical

fully implicit, fully explicit and Crank-Nicolson schemes are special cases of the θ-method and can be

obtained by letting θ = 1, θ = −1, and θ = 1
2 respectively. After rearranging we obtain

(−λxxai + diλx)θuk + 1
i − 1 +(1 + 2θλxxai)uk + 1

i + (−λxxai − λxdi)θuk + 1
i + 1

= (λxxai − diλx)(1− θ)uk

i − 1 + (1− 2(1− θ)λxxai) uk

i + (λxxai + λxdi)(1− θ)uk

i + 1

(3.15)

for i = 1, 2, . . . , m− 1 and k = 0, 1, . . . , l − 1, where λx = ∆t
2hx

, λxx = ∆t
h2

x
. The boundary conditions at

x = xmin and x = xmax can be rewritten in discrete form as

(αk

0hx − αk

1)u
k

0 + αk

1u
k

1 = αk

2hx (3.16)

−βk

1 uk

m − 1 + (βk

0 hx + βk

1 )uk

m = βk

2 hx (3.17)

respectively. These approximations remove the second order accuracy of the scheme on the boundaries

and may have an adverse effect on the overall accuracy of the scheme. A well known solution to this

accuracy problem is to choose a new uniform grid such that the boundary value at x = xmin and x = xmax

occurs half way between the first two and last two grid points respectively, the discrete approximations

of (3.12) and (3.13) then become

1
2αk

0(u
k

0 + uk

1) + αk

1

uk
1 − uk

0

hx

= αk

2

1
2βk

0 (uk

m + uk

m − 1) + βk

1

uk
m − uk

m − 1

hx

= βk

2

after rearranging we obtain

( 1
2αk

0hx − αk

1)u
k

0 + ( 1
2αk

0hx + αk

1)u
k

1 = αk

2hx (3.18)

(1
2βk

0 hx − βk

1 )uk

m − 1 + ( 1
2βk

0 hx + βk

1 )uk

m = βk

2 hx (3.19)

It is well known that this approximation of the boundary conditions results in a second order scheme,

see [Morton and Mayers, 1996, 2.13]. To ensure that the solution of (3.11) is unique, one of the boundary

conditions must be a Dirichlet condition, see Morton and Mayers [1996] for example.

3.4 Consistency

This section is based on a discussion of consistency in [Smith, 1985, Chapter 2]. It is possible to construct

a stable finite difference scheme to approximate a certain PDE that can converge to a different PDE as

the step sizes tend to zero. Such a scheme is called inconsistent.

Consider the following initial value problem

∂u

∂τ
= Lu, x ∈ Rn, τ > 0 (3.20)

u(x, 0) = f(x), x ∈ Rn
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and consider some finite difference scheme to obtain an approximation to the solution u(x, τ) : Rn ×
R+ → R of the continuous problem

L∆t

hx
uk

i = 0 (3.21)

u0
i = f(xi)

where i is a multi index, L∆t
hx

is the discrete approximation of L with hx a step size vector containing the

step sizes in the respective directions and ∆t the step size in the τ direction. The following definition is

a well known definition of consistency, see Smith [1985] and Duffy [2006] for example.

Definition 3.4.1. (Consistent, [Smith, 1985, Chapter 2]) The finite difference scheme (3.21) is consistent with

the partial differential equation (3.20) if for any function v = v(x, τ), with a sufficient number of continues

derivatives enabling Lv to a evaluated at (xi, τk), the following relationship holds

T ∆t

hx
v =

(
∂v

∂τ
− Lv

)k

i

− L∆t

hx
v(xi, τk) → 0 as hx, ∆t → 0 and (xi, τk) → (x, τ).

T ∆t
hx

v is also known as the truncation error.

In other words, we say a finite difference scheme is consistent if the truncation error approaches zero

when the step sizes in the respective directions tend to zero. In particular if we choose v in the definition

above to be the solution of (3.11) we obtain the following very useful definition of consistency

Definition 3.4.2. (Consistent, [Smith, 1985, Chapter 2]) The finite difference scheme (3.21) is consistent with

the partial differential equation (3.20) if

L∆t

hx
v(xi, τk) → 0 as hx, ∆t → 0 and (xi, τk) → (x, τ)

where v is the analytical solution of (3.11).

The truncation error of the θ-method can then be written as

L∆t

hx
v(xi, τk) = ∆+

t v(xi, τk)− θ(a(xi)∆2
xv(xi, τk + 1) + d(xi)∆xv(xi, τk + 1)) (3.22)

− (1− θ)(a(xi)∆2
xv(xi, τk) + d(xi)∆xv(xi, τk))

To compute the truncation error of the θ-method we consider Taylor expansions about (xi, τk + 1
2
)

v(xi, τk) = v(xi, τk + 1
2
)− 1

2∆t
∂v

∂τ
(xi, τk + 1

2
) + 1

2 (1
2∆t)2

∂2v

∂τ2
(xi, τk + 1

2
) + . . .

v(xi, τk + 1) = v(xi, τk + 1
2
) + 1

2∆t
∂v

∂t
(xi, τk + 1

2
) + 1

2 (1
2∆t)2

∂2v

∂τ2
(xi, τk + 1

2
) + . . .

By subtracting and dividing by ∆t we obtain

∆+
t v(xi, τk) =

∂v

∂t
(xi, τk + 1

2
) +

1
24

∆t2
∂3v

∂τ3
(xi, τk + 1

2
) + . . .

Rearranging (3.7) and applying the equation to both time levels τk and τk + 1 yields

∆xv(xi, τk) =
∂v

∂x
(xi, τk) + O(h2

x)

∆xv(xi, τk + 1) =
∂v

∂x
(xi, τk + 1) + O(h2

x) (3.23)
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Expanding the terms on the right about (xi, τk + 1
2
) yields

∆xv(xi, τk) =
(

∂v

∂x
(xi, τk + 1

2
)− 1

2∆t
∂2v

∂τ∂x
(xi, τk + 1

2
) + 1

2 (1
2∆t)2

∂3v

∂x∂t2
(xi, τk + 1

2
) + . . .

)
+ O(h2

x)

∆xv(xi, τk + 1) =
(

∂v

∂x
(xi, τk + 1

2
) + 1

2∆t
∂2v

∂τ∂x
(xi, τk + 1

2
) + 1

2 ( 1
2∆t)2

∂3v

∂x∂τ2
(xi, τk + 1

2
) + . . .

)
+ O(h2

x).

Similarly by rearranging (3.8) and expanding about (xi, τk + 1
2
) we obtain

∆2
xv(xi, τk) =

(
∂2v

∂x2
(xi, τk + 1

2
)− 1

2∆t
∂3v

∂τ∂x2
(xi, τk + 1

2
) + 1

2 (1
2∆t)2

∂4v

∂τ2∂x2
(xi, τk + 1

2
) + . . .

)
+ O(h2

x)

∆2
xv(xi, τk + 1) =

(
∂2v

∂x2
(xi, τk + 1

2
) + 1

2∆t
∂3v

∂τ∂x2
(xi, τk + 1

2
) + 1

2 ( 1
2∆t)2

∂4v

∂τ2∂x2
(xi, τk + 1

2
) + . . .

)
+ O(h2

x).

By substituting the equations above in (3.22) we obtain

L∆t

hx
v(xi, τk) =

∂v

∂τ
(xi, τk + 1

2
) +

1
24

∆t2
∂3v

∂τ3
(xi, τk + 1

2
) + . . .

− a(xi)
[

∂2v

∂x2
(xi, τk + 1

2
) + (2θ − 1) 1

2∆t
∂3v

∂τ2∂x
(xi, τk + 1

2
)

+ 1
2 (1

2∆t)2
∂4v

∂τ2∂x2
(xi, τk + 1

2
) + . . .

]

− d(xi)
[

∂v

∂x
(xi, τk + 1

2
) + (2θ − 1) 1

2∆t
∂2v

∂τ∂x
(xi, τk + 1

2
)

+ 1
2 (1

2∆t)2
∂3v

∂τ2∂x
(xi, τk + 1

2
) + . . .

]

+ O(h2
x)

=
[
∂v

∂τ
(xi, τk + 1

2
)− a(xi)

∂2v

∂x2
(xi, τk + 1

2
)− d(xi)

∂v

∂x
(xi, τk + 1

2
)
]

−
[
a(xi)

∂3v

∂τ2∂x
(xi, τk + 1) + d(xi) 1

2∆t
∂2v

∂τ∂x
(xi, τk + 1

2
)
]

(2θ − 1)1
2∆t

∂3v

∂τ2∂x
(xi, τk + 1)

+ O(∆t2) + O(h2
x)

= −
[
a(xi)

∂3v

∂τ2∂x
(xi, τk + 1) + d(xi) 1

2∆t
∂2v

∂τ∂x
(xi, τk + 1

2
)
]

(2θ − 1) 1
2∆t

∂3v

∂τ2∂x
(xi, τk + 1)

+ O(∆t2) + O(h2
x) (3.24)

where we used the fact that v is a solution of (3.11). From (3.24) it is clear that L∆t
hx

v(xi, τk) → 0 as

hx,∆t → 0 for all θ ∈ [0, 1], hence we conclude that the θ-method is consistent. For general values of

θ we see that the truncation error is of O(∆t) + O(h2
x), a scheme of O(∆t2) + O(h2

x) can be obtained by

letting θ = 1
2 . This scheme is known as the Crank-Nicolson scheme.

3.5 Stability

Stability of the θ-method applied to (3.11) will be discussed using two different methods, namely von

Neumann stability analysis and a matrix method of analysis. In Smith [1985] a nice heuristic description

of stability is given:
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The essential idea defining stability is that the numerical process, applied exactly, should

limit the amplification of all components of the initial conditions.

3.5.1 von Neumann stability analysis

This paragraph is based on a discussion of von Neumann stability analysis in [Smith, 1985, Chapter 2].

We are concerned with the θ-method as hx → 0 and ∆t → 0. The first step is to represent each initial

data point as a Fourier series which is formulated in terms of complex exponential forms

u0
i =

m∑
s = 0

Ase
Iβsihx , for i = 0, 1, . . . , m

where I =
√−1 and βs = sπ

xmax−xmin
. The unknown constants As, s = 0, 1, . . . , m are to be solved. This

requires the solution of a system of m + 1 equations in m + 1 unknowns which has a unique solution.

This shows that the initial data can be expressed in complex exponential form. The linearity of (3.11)

enables us to add different solutions of (3.11) to obtain new solutions. This additive property allows

us to investigate the propagation of one initial value only, eIβihx for example. Since As is constant, for

all s, it can be neglected. We need to investigate the propagation of this term as time increases, for this

purpose we let

uk

i = eIβxeαt = eIβihxeαk∆t = γkeIβihx (3.25)

where γ = eαk is called the amplification factor. A finite difference scheme is said to be stable, in the

sense of Lax-Richtmyer, if the absolute value of the exact solution of the scheme remains bounded for

all k < l as hx → 0 and ∆t → 0. From (3.25) we see that a sufficient condition is

|γ| ≤ 1.

Strictly speaking von Neumann stability analysis applies only to problems with constant coefficients.

For problems with non-constant coefficients von Neumann stability analysis only gives a necessary con-

dition, see Smith [1985] and Morton and Mayers [1996]. In Morton and Mayers [1996] it is stated that

von Neumann stability analysis can still be applied to variable coefficient problems locally, since insta-

bility is a local phenomenon. In Smith [1985] it is stated that von Neumann stability analysis gives useful

results even in cases where its application is not fully justified. In Craig and Sneyd [1988] and McKee

et al. [1996] they use von Neumann stability analysis as an indicator of stability for their non-constant

coefficient problems. We conclude the motivation for application of von Neumann stability analysis to

variable coefficient problems with the following quote from Duffy [2005],

Much of the literature uses the von Neumann theory to prove stability of finite difference

schemes, Tavella and Randall [2000]. This theory was developed by John von Neumann, a

Hungarian-American mathematician, the father of the modern computer and probably one

of the greatest brains of the twentieth century.
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To obtain the conditions under which the θ-method is stable we substitute (3.25) in (3.14) and assume

that the coefficients of (3.11) are constant. The divided difference approximations becomes

∆+
t uk

i =
γk + 1 − γk

∆t
eIβihx

∆xu
k

i =
1

2hx

γkeIβihx(eIβhx − e−Iβhx)

= I
1
hx

γkeIβihx sin(αhx)

∆2
xu

k

i =
1
h2

x

γkeIβihx(eIβhx − 2 + e−Iβhx)

= − 4
h2

x

γk + 1 sin2

(
βhx

2

)
eIβihx

By substituting these equations into (3.14) and rearranging we obtain

γ =
1− (1− θ)a 4∆t

h2
x

sin2
(

βhx

2

)
+ I(1− θ)d∆t

hx
sin(αhx)

1 + θa 4∆t
h2

x
sin2

(
βhx

2

)
− Iθd∆t

hx
sin(αhx)

which results in

|γ|2 =

[
1− (1− θ)a 4∆t

h2
x

sin2
(

βhx

2

)]2

+
[
(1− θ)d∆t

hx
sin(αhx)

]2

[
1 + θa 4∆t

h2
x

sin2
(

βhx

2

)]2

+
[
θd∆t

hx
sin(αhx)

]2

A sufficient condition for |γ| ≤ 1 is given by

[
(1− θ)d

∆t

hx

sin(αhx)
]2

≤
[
θd

∆t

hx

sin(αhx)
]2

(3.26)

[
1− (1− θ)a

4∆t

h2
x

sin2

(
βhx

2

)]2

≤
[
1 + θa

4∆t

h2
x

sin2

(
βhx

2

)]2

(3.27)

By removing the common factors from equation (3.26) we see that the inequality will hold if θ ≥ 1
2 .

Expanding (3.27) yields

1− 2(1− θ)a
4∆t

h2
x

sin2

(
βhx

2

)
+ (1− θ)2a2

(
4∆t

h2
x

)2

sin4

(
βhx

2

)

≤ 1 + 2θa
4∆t

h2
x

sin2

(
βhx

2

)
+ θ2a2

(
4∆t

h2
x

)2

sin4

(
βhx

2

)

From the fact that a ≥ 0 it is easy to see that this inequality will be satisfied when (1− θ)2 ≤ θ2 which in

turn is true if θ ≥ 1
2 . Thus we can conclude that the θ-method applied to (3.11) is von Neumann stable

when θ ≥ 1
2 .

3.5.2 Matrix method of analysis

To state the Lax-Richtmyer definition of stability in terms of vector and matrix norms we will need to

give a quick introduction of these norms. The following subsections of matrix and vector norms are

taken from [Smith, 1985, Chapter 2].
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Vector norms

The norm of a vector x ∈ Rn is a positive scalar valued function, ||x|| : Rn → R, that satisfies the

following axioms,

• ||x|| > 0 if x 6= 0 and ||x|| = 0 if x = 0.

• ||cx|| = |c|||x|| for a complex scalar c.

• ||x + y|| ≤ ||x||+ ||y||.

The most commonly used norms are defined as follows,

• The 1-norm: ||x||1 =
∑n

i = 1 |xi|.

• The infinity norm (maximum norm): ||x||∞ = maxi |xi|.

• The 2-norm: ||x||2 =
[∑n

i = 1 |xi|2
] 1

2 .

The 2-norm gives the “length” of the vector.

Matrix norms

The norm of a matrix A ∈ Rm × Rn is a positive scalar valued function, ||A|| : Rm × Rn → R, that

satisfies the following axioms,

• ||A|| > 0 if A 6= 0 and ||A|| = 0 if A = 0.

• ||cA|| = |c|||A|| for a complex scalar c.

• ||A + B|| ≤ ||A||+ ||B||.

• ||AB|| ≤ ||A||||B||.

Since matrix and vector norms occur together it is essential that they satisfy a condition similar to the

last inequality above. A matrix norm is said to be compatible with a vector norm if

||Ax|| ≤ ||A||||x||, ||x|| 6= 0.

Subordinate matrix norms

Let A be a real n× n matrix and x ∈ S ⊂ Rn where

S = {x ∈ Rn| ||x|| = 1}

An example of a matrix norm that automatically satisfies that compatibility condition is

||A|| = max
x ∈ S

||Ax||.
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To see this, let x1 ∈ S then ||Ax1|| ≤ maxx ∈ S ||Ax|| = ||A|| = ||A||||x1||. This matrix norm is said to be

subordinate to the vector norm and always has the following property

||I|| = max
x ∈ S

||Ix|| = max
x ∈ S

||x|| = 1

where I is the identity matrix. The definitions of the 1, 2 and ∞ norms with ||x|| = 1 leads to the

following well known matrix norms, let A = (ai, j)

• The 1-norm: ||A||1 = maxj

∑n

i = 1 |ai, j|.

• The infinity norm: ||A||∞ = maxi

∑n

j = 1 |ai, j|.

• The 2-norm: ||A||2 = ρ(AT A), where ρ : Rn × Rn → R is the spectral radius function.

Useful definitions

The following definitions will aid our proof for the stability of the θ-method,

Definition 3.5.1. (M-matrix, Johanson et al. [2002]) A matrix M ∈ Rn × Rn of the form

M =




a1, 1 −a1, 2 −a1, 3 · · ·
−a2, 1 a2, 2 −a2, 3 · · ·
−a3, 1 −a3, 2 a3, 3 · · ·

...
...

...
. . .




where ai, j , i 6= j non-negative and ai, i positive, is called a non-singular M-matrix if there exists a positive vector

x ∈ Rn such that the vector Mx is positive1.

Theorem 3.5.1. (M-matrix properties, Horváth [2004]) If A ∈ Rn × Rn is an M-matrix, then

• A is nonsingular,

• A−1 is non-negative (A−1 ≥ 0, so-called monotone matrix),

• the estimation

||A−1||∞ ≤ ||x||∞
mini(Ax)i

where (Ax)i is the ith element of the vector Ax and, x is a positive vector such that Ax > 0, holds.

Lax-Richtmyer stability

This subsection is taken from [Smith, 1985, Chapter 2]. Consider a finite difference scheme where the

numerical approximations along the k-th and (k + 1)-th time-rows are related by the following matrix

equation

Auk+1 = Cuk + bk

1We call a vector (resp. matrix) positive if all the elements of the vector (resp. matrix) are positive.
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where A and C are time-homogenous matrices and bk is a residual vector containing boundary infor-

mation. Assuming that A is non-singular we can rewrite this relationship as

uk+1 = A−1Cuk + A−1bk

which can be expressed more conveniently as

uk+1 = Buk + fk

where B = A−1C and fk = A−1bk. Applied recursively yields

uk = Buk−1 + fk−1

= B(Buk−2 + fk−2) + fk−1

= B2uk−2 + Bfk−2 + fk−1

= . . .

= Bku0 + Bk−1f0 + Bk−2f1 + . . . + fk−1

where u0 is the vector of initial values. To investigate the stability of the numerical scheme consider the

effect of a perturbation on the initial vector from u0 to û0. The exact solution at the k-th time step will

then be given by

ûk = Bkû0 + Bk−1f0 + Bk−2f1 + . . . + fk−1

The perturbation error at the k-th time level is defined by

ek = ûk − uk

It follows that

ek = ûk − uk = Bk(û0 − u0) = Bke0

This equation shows that the matrix B plays an important part in the propagation of the error. For a

scheme to be considered stable we require the initial error not to explode but to dampen, for compatible

matrix and vector norms we have

||ek|| ≤ ||Bk||||e0||

Lax and Richtmyer define a scheme to be stable when there exists a number M ∈ R+, independent of k,

hx and ∆t such that

||Bk|| ≤ M, for k = 1, 2, . . . , l

This limits the amplification of any initial perturbation as well as rounding errors since

||ek|| ≤ M ||e0||

From the fact that

||Bk|| ≤ ||B||k
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it follows that a finite difference scheme will be stable, in the sense of Lax-Richtmyer, if it can be shown

that

||B|| ≤ 1

If this condition holds, the scheme is said to be stable under the appropriate matrix norm. For the rest of

this thesis the maximum norm (∞-norm) will be used when we prove stability with the matrix method

of analysis.

Stability analysis under the maximum norm

An advantage of the following analysis over von Neumann stability analysis is that no assumptions

have to be made about the coefficients of the PDE. A key idea in the proof of stability using the matrix

method is that the matrices that need to be solved during the time marching procedure are required to

be M-matrices. We start the discussion by investigating the effect of the boundary conditions on the

structure of the matrices. When we use (3.18) and (3.19) as our boundary conditions we need to make

the additional assumption that

1
2αk

0hx + αk

1 ≤ 0
1
2βk

0 hx − βk

1 ≤ 0

to ensure that we invert only M-matrices. Although these boundary conditions will give higher order

of convergence near the boundary, using (3.16) and (3.17) does not require extra assumptions about the

relevant parameters. For simplicity we assume that the boundary conditions are time-homogenous and

write them as

α0u
k

0 − α1u
k

1 = α2 (3.28)

−β1u
k

m − 1 + β0u
k

m = β2 (3.29)

where α0 and β0 are strictly positive parameters and α1 and β1 are non-negative real values.

Equations (3.15), (3.28) and (3.29) can be written in matrix form as

(Iim − θ∆tA)uk + 1 = (Iex + (1− θ)∆tA)uk + 1 + b

for k = 1, 2, . . . , l − 1, where uk is the solution vector given by

uk = (u0, u1, . . . , um)T

the matrices Iex, Iim and A are respectively given by,

Iim =




α0 −α1

1
. . .

1

−β1 β0



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Iex =




0

1
. . .

1

0




and

A =




0
a1
h2

x
− d1

2hx
−2 a1

h2
x

a1
h2

x
+ d1

2hx

. . .
am − 1

h2
x

− dm − 1
2hx

−2am − 1
h2

x

am − 1
h2

x
+ dm − 1

2hx

0




.

For all matrices of this thesis blank entries are zeros. The next step is to prove that Iim − θ∆tA is a

M-matrix. Since a(x) > 0 it is trivial to see that the diagonal of Iim − θ∆tA will always be strictly

positive. From the fact that non-positive off-diagonal elements are a necessary condition for the M-

matrix property we deduce the following inequality as a necessary condition for M-matrix property of

Iim − θ∆tA:

hx ≤ sgn(di)
2ai

di

(3.30)

where

sgn(x) =

{
1, if x ≥ 0

−1, if x < 0.

Assuming Dirichlet boundary conditions at both boundaries and that inequality (3.30) is satisfied we

can utilize theorem 3.5.1, with x = (1, . . . , 1)T , to obtain

||(Iim − θ∆tA)−1||∞ ≤ 1.

Thus

||(Iim − θ∆tA)−1(Iim + (1− θ)∆tA)||∞ ≤ ||(Iim − θ∆tA)−1||∞||(Iim + (1− θ)∆tA)||∞
≤ ||(Iim + (1− θ)∆tA)||∞
= max

i

{∣∣∣∣1−
2ai

h2
x

(1− θ)∆t

∣∣∣∣ +
∣∣∣∣
ai

h2
x

− di

2hx

∣∣∣∣ +
∣∣∣∣
ai

h2
x

+
di

2hx

∣∣∣∣ , 1
}

= max
i

{∣∣∣∣1−
2ai

h2
x

(1− θ)∆t

∣∣∣∣ +
2ai

h2
x

, 1
}

= 1

where the second last equality follows from the assumption that (3.30) holds and the last equality is true

if
ai∆t

h2
x

<
1

2(1− θ)
(3.31)

From this it is possible to deduce that the θ-method is only conditionally stable under the maximum

norm for all θ 6= 1. This is a well known constraint, see Morton and Mayers [1996] and Duffy [2006]

for example. The key step in this proof of stability was the restrictive assumption that (3.30) holds. For

convection dominated problems, where ai

di
is very small, this restriction will be too severe. In Duffy

[2006] an exponential fitting method is introduced that can be used to overcome this restriction.
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Exponential fitting

In Duffy [2006] it is shown that the restrictive necessary condition for the M-matrix property in equation

(3.30) can be removed by substituting the coefficient of the diffusion term with the following function

f(ai, di, hx) =
dihx

2
coth

dihx

2ai

. (3.32)

The off-diagonal elements of the matrix A becomes

f(ai, di, hx)
h2

x

+
di

2hx

and
f(ai, di, hx)

h2
x

− di

2hx

(3.33)

Furthermore the proposed function has the property that

f(ai, di, hx) ≥ sgn(di)
dihx

2
(3.34)

for all hx, implying that the off diagonal elements will always be non-positive. Equation (3.34) follows

from the fact that coth θ − 1 ≥ 0 if θ ≥ 0

f(x, y, ε)− yε

2
=

yε

2

(
coth

yε

2x
− 1

)
≥ 0 if y ≥ 0

similarly from the fact that coth θ + 1 < 0 if θ < 0

f(x, y, ε) +
yε

2
=

yε

2

(
coth

yε

2x
+ 1

)
> 0 if y < 0.

Using the analysis in the previous section it is easy to see that the fitted scheme will be stable if the

following inequality holds

f(ai, di, hx)∆t

h2
x

<
1

2(1− θ)
(3.35)

To prove consistency of f(x, y, ε) with x we use L’Hopital’s rule

lim
ε→0

f(x, y, ε) = lim
ε→0

yε

2 tanh yε
2x

= lim
ε→0

x cosh2 yε

2x
= x

Consistency (Revisited)

We have shown that by making use of exponential fitting we can obtain a scheme that has favorable

stability properties. Exponential fitting should not affect the order of convergence of our scheme. Second

order convergence of f(x, y, ε) to x can be shown via a Taylor series expansion of coth(θ)

coth θ =
1
θ

+
1
3
θ − 1

45
θ3 +

2
945

θ5 −+ . . .

which implies that

f(x, y, ε) = x +
1
3

(yε

2

)2 1
x
− 1

45

(yε

2

)4 1
x3

+
1

945

(yε

2

)6 1
x5
−+ . . .

= x + O(ε2) (3.36)
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To ensure convergence to the true solution we require the modification of the coefficients to maintain

the consistency of the original scheme. The truncation error for the modified scheme is given by

L̃∆t

hx
v(xi, τk) = ∆+

t v(xi, τk)− θ(f(a(xi), d(xi), hx)∆2
xv(xi, τk + 1) + d(xi)∆xv(xi, τk + 1))

− (1− θ)(f(a(xi), d(xi), hx)∆2
xv(xi, τk) + d(xi)∆xv(xi, τk))

With similar analysis to section 3.4 we obtain

L̃∆t

hx
v(xi, τk) =

(
∂v

∂τ
(xi, τk + 1

2
)− f(a(xi), d(xi), hx)

∂2v

∂x2
(xi, τk + 1

2
)− d(xi)

∂v

∂x
(xi, τk + 1

2
)
)

−
(

f(a(xi), d(xi), hx)
∂3v

∂τ2∂x
(xi, τk + 1) + d(xi)

∂2v

∂τ∂x
(xi, τk + 1)

)
(2θ − 1) 1

2∆t

+ O(∆t2) + O(h2
x)

=
(

∂v

∂τ
(xi, τk + 1

2
)− a(xi)

∂2v

∂x2
(xi, τk + 1

2
)− d(xi)

∂v

∂x
(xi, τk + 1

2
)
)

−
(

a(xi)
∂3v

∂τ2∂x
(xi, τk + 1) + d(xi)

∂2v

∂τ∂x
(xi, τk + 1)

)
(2θ − 1)1

2∆t

+ O(∆t2) + O(h2
x)

= −
(

a(xi)
∂3v

∂τ2∂x
(xi, τk + 1) + d(xi)

∂2v

∂τ∂x
(xi, τk + 1)

)
(2θ − 1) 1

2∆t + O(∆t2) + O(h2
x)

where we obtained the second equality by substituting (3.36). Again it is clear that L̃∆t
hx

v(xi, τk) → 0 as

hx,∆t → 0 for all θ ∈ [0, 1], we can conclude that the modified θ-method is consistent. Second order

convergence can be obtained by letting θ = 1
2 .

3.6 Convergence

A finite difference scheme is said to be convergent under the relevant norm if

||uk − vk|| → 0 as ∆t → 0

for every u0 for which the problem is well posed in the norm. The vector vk contains the exact solutions

of the original problem evaluated at time steps t = k∆t, for k = 0, 1, . . . , l. The following theorem

relates convergence, consistency and stability

Theorem 3.6.1. (The Lax equivalence theorem) A consistent two-level scheme of the form

uk + 1 = Buk + b (3.37)

where b is a vector containing the boundary information, for a well-posed linear initial value problem is convergent

if and only if it is stable.

Proof. Let vk = (v(x1, τ1), . . . , v(xm − 1, τm − 1))T be the exact solution to the continuous operator. From

definition 3.4.2 it follows that

vk+1 = Bvk + b + wk (3.38)
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where wk is the truncation error at time k. By subtracting (3.37) from (3.38) we obtain

vk+1 − uk+1 = B(vk − uk) + wk

= B2(vk−1 − uk−1) + Bwk−1 + wk

= . . .

= Bk+1(v0 − u0) +
k∑

i=0

Biwk−i

Assuming that v0 − u0 = 0 we obtain

||vk+1 − uk+1|| ≤
k∑

i=0

||B||i||wk−i||

If the scheme is stable it follows that ||B|| ≤ 1 from which it follows that

||vk+1 − uk+1|| ≤
k∑

i=0

||wk−i||

thus if the truncation error tends to zero, i.e. the scheme is consistent, then the scheme will be con-

vergent. The proof of the necessary condition uses the principle of uniform boundedness in functional

analysis and is outside of the scope of this project, see Morton and Mayers [1996] and references therein

for a more complete proof.

We conclude that the exponentially fitted θ-method is convergent under the maximum norm if

f(ai, di, hx)∆t

h2
x

<
1

2(1− θ)

holds for all i = 1, 2, . . . , m− 1.

3.7 A convection equation

In this section we will consider finite difference methods to solve the one dimensional convection equa-

tion

∂u

∂τ
= d(x)

∂u

∂x
(3.39)

on the domain (x, τ) ∈ Ω = [xmin, xmax]× R+. The initial condition is given by

u(x, 0) = Ψ(x). (3.40)

Since this is a first order equation we only need to pose one boundary condition, either at x = xmin or

x = xmax. The sign of d(x) determines the direction of information flow which in turn determines the

position of the boundary condition. If d(x) < 0 then information goes from x = xmin to x = xmax and if

d(x) > 0 information flows in the opposite direction. To see this, note that the analytical solution of

∂u

∂τ
= d

∂u

∂x

u(x, 0) = Ψ(x)
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on the domain (x, τ) ∈ R× R+ is given by

u(x, τ) = Ψ(x + dτ)

where we assumed that d is constant. If d(x) < 0 the well defined problem is given by (3.39), (3.40) and

the boundary condition by

u(xmin, τ) = α(τ)

if d(x) > 0 the boundary condition becomes

u(xmax, τ) = β(τ).

3.7.1 θ-method

The θ-method for the one dimensional convection equation is given by,

∆+
t uk

i = θdi∆xu
k + 1
i + (1− θ)di∆xu

k

i (3.41)

for i = 1, 2, . . . , m− 1 and k = 0, 1, . . . , l − 1, where ai = a(xi), di = d(xi) and θ ∈ [0, 1]. If we insist

on central second order approximation for the spacial derivative we obtain

λxaiθu
k + 1
i − 1 +uk + 1

i − λxdiθu
k + 1
i + 1

= −λxdi(1− θ)uk

i − 1 + uk

i + λxdi(1− θ)uk

i + 1 (3.42)

for i = 1, 2, . . . , m− 1 and k = 0, 1, . . . , l − 1, where λx = ∆t
2hx

. Depending on the sign of d(x) the

discrete form of the boundary condition is given by

uk

0 = αk or uk

m = βk

for k = 0, 1, . . . , l.

3.7.2 Consistency

The truncation error of the θ-method can then be written as

L∆t

hx
v(xi, τk) = ∆+

t v(xi, τk)− θd(xi)∆xv(xi, τk + 1) (3.43)

− (1− θ)d(xi)∆xv(xi, τk)

By simply letting a(x) ≡ 0 in section 3.4 it easy to see that

L∆t

hx
v(xi, τk) = −d(xi)(2θ − 1) 1

2∆t
∂3v

∂τ2∂x
(xi, τk + 1) + O(∆t2) + O(h2

x)

Thus the θ-method is consistent in general and second order when θ = 1
2 .
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3.7.3 Stability

von Neumann stability analysis

Assuming constant coefficient and periodic initial data we can make use of von Neumann stability

analysis by substituting (3.25) in (3.41) to obtain

γ =
1 + I(1− θ)d∆t

hx
sin(αhx)

1− Iθd∆t
hx

sin(αhx)
.

From which it follows that

|γ|2 =
1 +

[
(1− θ)d∆t

hx
sin(αhx)

]2

1 +
[
θd∆t

hx
sin(αhx)

]2

which will be less or equal than one if θ ≥ 1
2 .

Maximum norm analysis

Similarly as in section 3.5.2 the θ-method for the one dimensional convection equation can be written in

matrix form as

(Iim − θ∆tA)uk + 1 = (Iex + (1− θ)∆tA)uk + 1 + b

for k = 1, 2, . . . , l − 1, where the matrices Iex, Iim and A are respectively given by,

Iim =




1

1
. . .

1

1




Iex =




0

1
. . .

1

0




and

A =




0

− d0
2hx

0 d0
2hx

. . .

−dm − 1
2hx

0 dm − 1
2hx

0




From this it is clear that Iim − θ∆tA will only be an M-matrix when θ = 0, which implies that a simple

stability proof under the maximum norm, as done in section 3.5.2, is not possible. To obtain stability
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under the maximum norm we must make use of a well known first order finite difference method called

upwinding.

3.7.4 θ-method for an upwind scheme

An upwind scheme uses backward difference approximations for the spacial derivative if d(x) is neg-

ative and forward difference approximations if d(x) is positive. For the case when d(x) is positive the

θ-method becomes

∆+
t uk

i = θdi∆+
x uk + 1

i + (1− θ)di∆+
x uk

i (3.44)

which can be rewritten as

(2θdiλx + 1)uk + 1
i − 2θdiλxu

k + 1
i + 1 = (−2(1− θ)diλx + 1)uk + 1

i + 2(1− θ)diλxu
k + 1
i + 1

for i = 1, 2, . . . , m− 1 and k = 0, 1, . . . , l − 1. Similarly for the case when d(x) is negative the θ-

method is given by

∆+
t uk

i = θdi∆−
x uk + 1

i + (1− θ)di∆−
x uk

i (3.45)

which can be rewritten as

2θdiλxu
k + 1
i − 1 + (1− 2θdiλx)uk + 1

i = −2(1− θ)diλxu
k + 1
i − 1 + (2(1− θ)diλx + 1)uk + 1

i

for i = 1, 2, . . . , m− 1 and k = 0, 1, . . . , l − 1.

3.7.5 Consistency

The truncation error of the θ-method for the case when d(x) is positive can be written as

L∆t

hx
v(xi, τk) = ∆+

t v(xi, τk)− θd(xi)∆+
x v(xi, τk + 1) (3.46)

− (1− θ)d(xi)∆+
x v(xi, τk)

To compute the truncation error of the θ-method applied to the one dimensional convection equation

we consider Taylor expansions about (xi, τk + 1
2
). Rearranging (3.5) and applying the equation to both

time levels τk and τk + 1 yields

∆+
x v(xi, τk) =

∂v

∂x
(xi, τk) + O(hx)

∆+
x v(xi, τk + 1) =

∂v

∂x
(xi, τk + 1) + O(hx).

Expanding the terms on the right about (xi, τk + 1
2
) yields

∆+
x v(xi, τk) =

(
∂v

∂x
(xi, τk + 1

2
)− 1

2∆t
∂2v

∂t∂x
(xi, τk + 1

2
) + 1

2 ( 1
2∆t)2

∂3v

∂x∂τ2
(xi, τk + 1

2
) + . . .

)
+ O(hx)

∆+
x v(xi, τk + 1) =

(
∂v

∂x
(xi, τk + 1

2
) + 1

2∆t
∂2v

∂τ∂x
(xi, τk + 1

2
) + 1

2 ( 1
2∆t)2

∂3v

∂x∂τ2
(xi, τk + 1

2
) + . . .

)
+ O(hx).
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By substituting the equations above in (3.46) we obtain

L∆t

hx
v(xi, τk) =

∂v

∂τ
(xi, τk + 1

2
) +

1
24

∆t2
∂3v

∂τ3
(xi, τk + 1

2
) + . . .

− d(xi)
[

∂v

∂x
(xi, τk + 1

2
) + (2θ − 1)1

2∆t
∂2v

∂τ∂x
(xi, τk + 1

2
) + 1

2 ( 1
2∆t)2

∂3v

∂τ2∂x
(xi, τk + 1

2
) + . . .

]

+ O(hx)

=
(

∂v

∂τ
(xi, τk + 1

2
)− d(xi)

∂v

∂x
(xi, τk + 1

2
)
)

− d(xi)(2θ − 1) 1
2∆t

∂3v

∂τ2∂x
(xi, τk + 1) + O(∆t2) + O(hx)

= −d(xi)(2θ − 1) 1
2∆t

∂3v

∂τ2∂x
(xi, τk + 1) + O(∆t2) + O(hx) (3.47)

where we used the fact that v is a solution of (3.11). From (3.47) it is clear that L∆t
hx

v(xi, τk) → 0 as

hx,∆t → 0 for all θ ∈ [0, 1], hence we conclude that the θ-method is consistent. Note that this scheme is

first order accurate independent of the choice of θ. A similar proof for consistency can by given for the

case when d(x) < 0.

3.7.6 Stability

In this subsection we will find conditions under which the upwind θ-method is stable.

von Neumann stability analysis

Again assuming constant coefficients we can apply von Neumann analysis to find necessary conditions

for stability. Substitute (3.25) in (3.9) and (3.10) to obtain

∆+
x uk

i =
1
hx

γkeIβihx(eIβhx − 1)

∆−
x uk

i =
1
hx

γkeIβihx(1− eIβhx)

Substituting into (3.44) and (3.45) respectively yields

γ =
1 + 2(1− θ)diλx(eIβhx − 1)

1− 2θdiλx(eIβhx − 1)

γ =
1− 2(1− θ)diλx(eIβhx − 1)

1 + 2θdiλx(eIβhx − 1)

For the case when d(x) > 0 we have

|γ|2 =
[1 + 2(1− θ)diλx(cos(βhx)− 1)]2 + [2(1− θ)diλx sin(βhx)]2

[1− 2θdiλx(cos(βhx)− 1)]2 + [2θdiλx sin(βhx)]2

From the fact that cos(θ) − 1 ≤ 0 it is easy to see that |γ|2 ≤ 1 if θ ≥ 1
2 . Hence we can deduce that the

scheme is von Neumann stable for θ ≥ 1
2 . Similarly when d(x) < 0 we have

|γ|2 =
[1− 2(1− θ)diλx(1− cos(βhx))]2 + [2(1− θ)diλx sin(βhx)]2

[1 + 2θdiλx(1− cos(βhx))]2 + [2θdiλx sin(βhx)]2
.

Following the same arguments we will be able to deduce that the θ-method is von Neumann stable

when θ ≥ 1
2 .
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Maximum norm analysis

The following proof for stability under the maximum norm will have the same general structure as the

previous proofs given for stability under the maximum norm. The θ-method for the upwind scheme can

be written in matrix form as

(Iim − θ∆tA)uk + 1 = (Iex + (1− θ)∆tA)uk + 1 + b

for k = 1, 2, . . . , l − 1. The matrix A is given by,

A =




0

− d1
hx

d1
hx

. . .

−dm − 1
hx

dm − 1
hx

0




when d(x) > 0 and by

A =




0

− d1
hx

d1
hx

. . .

−dm − 1
hx

dm − 1
hx

0




for the case when d(x) < 0. From this it is clear that Iim − θ∆tA is an M -matrix, hence we can apply

definition 3.5.1 with x = (1, . . . , 1)T to deduce that

||(Iim − θ∆tA)−1||∞ ≤ 1

Thus

||(Iim − θ∆tA)−1(Iim + (1− θ)∆tA)||∞ ≤ ||(Iim − θ∆tA)−1||∞||(Iim + (1− θ)∆tA)||∞
≤ ||(Iim + (1− θ)∆tA)||∞
= max

i

{∣∣∣∣−(1− θ)sgn(di)di

∆t

hx

+ 1
∣∣∣∣ + (1− θ)sgn(di)di

∆t

hx

, 1
}

= 1

where the last equality is true if and only if

sgn(di)di∆t

hx

≤ 1
1− θ

(3.48)

From this it is clear that the upwind θ-method is stable under the maximum norm when (3.48) holds.

From (3.48) we see that unconditional stability only occurs when we set θ = 1. Also note that when

θ = 1 the scheme will only be of first order, the following sub section gives some fundamental results on

this.
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Convergence results

Definition 3.7.1. (FDM of positive type, Duffy [2006]) A finite difference scheme of the form

uk + 1 = Buk + b (3.49)

is said to be of positive type if the matrix B is non-negative.

The following theorem states that finite difference approximations of positive type that approximates

(3.39) have a maximum order of convergence of one, see Duffy [2006],

Theorem 3.7.1. (Order of convergence for convection approximations, Duffy [2006]) If the scheme (3.49) is

consistent with (3.39) and is of positive type, then it is of order 1 or ∞.

This theorem shows us that we will not be able to find schemes that are both stable under the maximum

norm and with an higher order of convergence than the one we have obtained.

3.7.7 Convergence

Similarly as in section 3.6 we simply use the Lax equivalence theorem to deduce that the θ-method is

convergent when it is stable2.

2Since it is unconditionally consistent we only need stability to ensure convergence.
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Chapter 4

Alternative Approaches for the One

Dimensional FDM

In this chapter we introduce an alternative approach for the finite difference method by making use

of parabolic equations in one space variable. Most of the results of this chapter, excluding section 4.4,

are based on [Smith, 1985, Chapter 3]. In Smith [1985] only numerical methods that approximate the

solution of the simple one dimensional heat equation are considered. We will attempt to obtain accurate

approximations for the solution, u : Ω → R, of the following convection diffusion equation

∂u

∂τ
= a

∂2u

∂x2
+ d

∂u

∂x
(4.1)

on the domain (x, τ) ∈ Ω where a > 0 and d are a constants and Ω = [xmin, xmax]×R+. For the problem to

be well posed it must satisfy an initial condition u(x, 0) = Ψ(x) and Dirichlet boundary conditions

u(xmin, τ) = α and u(xmax, τ) = β.

4.1 Reduction to a system of ordinary differential equations

To obtain a system of ODEs we only discretisize Ω in the spatial direction and keep the time axis contin-

uous. Consider the following partition of [xmin, xmax]

xmin = x0 < x1 < . . . < xm = xmax.

Truncate the domain Ω such that (x, τ) ∈ Ω = [xmin, xmax]× [0, T ]. The semi-discrete mesh is then given by

Ω̂ = {(xi, τ)|i = 0, 1, . . . , m, τ ∈ [0, T ]}

By making use of the second order approximations derived in section 3.1 we can rewrite (4.1) in semi-

discrete form as

du(xi, τ)
dτ

=
(

a

h2
− d

2h

)
u(xi − 1, τ)− 2a

h2
u(xi, τ) +

(
a

h2
+

d

2h

)
u(xi + 1, τ) + O(h2) (4.2)
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Let the approximations on the lines of Ω̂ be denoted by ui(τ) ≈ u(xi, τ). Incorporating the boundary

conditions allows us to approximate (4.2) by

u0(τ) = α

dui(τ)
dτ

=
(

a

h2
− d

2h

)
ui − 1(τ)− 2a

h2
ui(τ) +

(
a

h2
+

d

2h

)
ui + 1(τ), for i = 1, 2, . . . , m− 1

um(τ) = β.

Which can be written in matrix form as

du(τ)
dτ

= Au(τ) + b (4.3)

where u = (u1(τ), . . . , um − 1(τ))T and the boundary vector, b, is given by

b =
((

a

h2
− d

2h

)
α, 0, . . . , 0,

(
a

h2
+

d

2h

)
β

)T

.

The time homogenous matrix, A, is defined as follows

A =




−2 a
h2

x

a
h2

x
+ d

2hx

a
h2

x
− d

2hx
−2 a

h2
x

a
h2

x
+ d

2hx

. . .
a

h2
x
− d

2hx
−2 a

h2
x

a
h2

x
+ d

2hx

a
h2

x
− d

2hx
−2 a

h2
x




.

4.1.1 The solution of du(τ)
dτ

= Au(τ) + b

The exponential of a real valued square matrix Q ∈ Rn×n is defined as

exp(Q) :=
∞∑

k = 0

Qk

k!
(4.4)

where Q0 = I and I the identity matrix1. By making use of (4.4) it is easy to see that

eQe−Q = I = e−QeQ. (4.5)

From equation (4.5) it follows that

e−Q = (eQ)−1.

It is well known that the solution of

du(τ)
dτ

= Au(τ) + b

where A and b are constants, together with the initial condition u(0) = Ψ, is given by

u(τ) = − b

A
+ eτA

(
Ψ +

b

A

)
.

1Let M be a real number such that |Qi, j | < M for all i and j. Note that |(Qk)i, j | < nkMk + 1 where (Qk)i, j denotes the

ith row and jth column of Qk. From that fact that
∑∞

k = 0
nkMk + 1

k!
converges it follows that exp(Q) converges to a real valued

n× n matrix, see McLeman [2006].
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This can be used as a motivation for the proposition of

u(τ) = −A−1b + eτA (Ψ + A−1b) (4.6)

as a solution of (4.3). This equation clearly satisfies the initial condition u(0) = Ψ. By differentiation we

obtain

du(τ)
dτ

= AeτA (Ψ + A−1b)

= Au(τ) + b

which shows that equation (4.6) is the solution of (4.3). The last equation follows directly from (4.6).

4.2 Alternative derivation of classical one dimensional finite differ-

ence schemes

From the previous section it follows that an approximate solution of (4.1) together with the initial and

boundary conditions is given by (4.6). Consider the following partition of [0, T ]

0 = τ0 < τ1 < . . . < τl = T

where τk = k∆t and ∆t = T
l . If the solution at time τ is known then the solution at time τ + ∆t can be

obtained with

u(τ + ∆t) = −A−1b + e∆tAeτA (Ψ + A−1b)

= −A−1b + e∆tA (u(τ) + A−1b) (4.7)

where we made use of the fact that e∆tAetA = e(t+∆t)A. From the definition of the exponential of a

matrix it follows that

e∆tA = I + ∆tA + 1
2∆t2A2 + 1

3!∆t3A3 + . . .

Since we cannot afford to add an infinite amount of matrices we need to find an approximation of e∆tA

in order to implement this scheme. The higher the order of approximation the more accurate, in time,

the scheme will be. A trivial approximation is given by e∆tA ≈ I + ∆tA, with an error term of O(∆t2).

The finite difference scheme becomes

uk + 1 = −A−1b + (I + ∆tA) (uk + A−1b)

= (I + ∆tA)uk + ∆tb

which is the fully explicit scheme discussed in chapter 3. Different approximations of e∆tA will give

rise to different finite difference schemes, in particular fully implicit and the Crank-Nicolson scheme. To

derive these schemes we make use of Padé’s rational functions that approximate e∆tA.
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4.2.1 The Padé approximations of eθ, θ ∈ R

It is possible to approximate eθ by

eθ =
∑T

i = 0 piθ
i

∑S

i = 0 qiθi
+ cS + T + 1θ

S+T+1 + O(θS+T+2)

where cS + T + 1, pi and qi are constants for all i, see [Smith, 1985, Chapter 3]. The rational function

RS, T (θ) =
∑T

i = 0 piθ
i

∑S

i = 0 qiθi
=

PT (θ)
QS(θ)

is called the (S, T ) Padé approximation of eθ and is of O(S + T ). As an example consider S = T = 1

eθ =
1 + p1θ

1 + q1θ
+ c3θ

3 + O(θ4). (4.8)

The unknown constants p1, q1 and c3 can be obtained by making use of the Taylor expansion of eθ

eθ = 1 + θ + 1
2θ2 + 1

3!θ
3 + O(θ4). (4.9)

Substituting (4.8) in (4.9) and rearranging results in

(1 + q1θ)(1 + θ + 1
2θ2 + 1

3!θ
3 + O(θ4)) = 1 + p1θ + (1 + q1θ)(c3θ

3 + O(θ4)).

Group the terms to obtain

(1 + q1 − p1)θ + ( 1
2 + q1)θ2 + ( 1

3! + 1
2q1 − c3)θ3 + O(θ4) = 0.

It is easy to see that this is uniquely satisfied, with an error term of O(θ4), by

p1 = 1
2 , q1 = − 1

2 and c3 = − 1
12 .

Thus the (1, 1) Padé approximation of eθ is given by

eθ =
1 + 1

2θ

1− 1
2θ
− 1

12θ3 + O(θ4).

The major Padé approximations are given by,

(S, T ) RS, T (θ) Principal error term

(0, 1) 1 + θ 1
2θ2

(1, 0) 1
1−θ − 1

2θ2

(1, 1)
1+

1
2 θ

1− 1
2 θ

− 1
12θ3

4.2.2 Classical FDMs via Padé approximations

We have already shown how the (0, 1) Padé approximation leads to the fully explicit scheme in the

introduction of this section. By approximating e∆tA in equation (4.7) with the (1, 0) Padé approximation

we obtain

uk + 1 = −A−1b + (I−∆tA)−1 (uk + A−1b)

⇒ (I−∆tA)uk + 1 = uk + ∆tb
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which is the fully implicit method discussed in chapter 3.

We can obtain the Crank-Nicolson scheme by making use of the (1, 1) Padé approximation

uk + 1 = −A−1b + (I− 1
2∆tA)−1(I + 1

2∆tA) (uk + A−1b)

⇒ (I− 1
2∆tA)uk + 1 = (I + 1

2∆tA)uk + ∆tb.

4.3 A0-stability, L0-stability and the symbol of the method

To determine the stability of the finite difference scheme we investigate the propagation of a perturbation

made on the initial data from Ψ to Ψ̂ at time τ0. Let the perturbed vector be given by û(τ). Define the

error vector by e(τ). At time τ + ∆t we have

e(τ + ∆t) := û(τ + ∆t)− u(τ + ∆t)

= e∆tAe(τ).

where the last equation follows from (4.7). Let e∆tA be approximated with the (S, T ) Padé approxima-

tion. If the perturbation vector is known at time τk, we can obtain the approximation of the perturbation

vector at time τk + 1 as follows

ek + 1 = RS, T (∆tA)ek

which can be written in terms of the initial data as

ek + 1 = [RS, T (∆tA)]ke0. (4.10)

We state the following useful lemma without proof,

Lemma 1. (Hulley and Lotter [2004]) The eigenvalues of an tri-diagonal m×m matrix




a b

c a b

c a b

. . .

c a b

c a




where a, b and c may be real or complex, are given by

λs = a + 2
√

bc cos
(

sπ

m + 1

)
, for s = 1, 2, . . . , m

The eigenvector, vs, is given by

vs =
[(c

b

) 1
2

sin
(

sπ

m + 1

)
,
c

b
sin

(
2sπ

m + 1

)
, . . . ,

(c

b

)m
2

sin
(

msπ

m + 1

)]T

for s = 1, 2, . . . , m.
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Using lemma 1 it follows that the eigenvalues of the (m− 1)× (m− 1) matrix A are given by

λs = −2a

h2
x

+ 2

√(
a

h2
x

− d

2hx

)(
a

h2
x

+
d

2hx

)
cos

(sπ

m

)
(4.11)

for s = 1, 2, . . . , m− 1, and are distinct. Proofs of the following theorems can be found in Kreyszig

[1999]

Theorem 4.3.1. (Kreyszig [1999]) Let λ1, λ2, . . . , λm be distinct eigenvalues of a m × m matrix. Then the

corresponding eigenvectors are linearly independent.

Theorem 4.3.2. (Kreyszig [1999]) If an m × m matrix A has m distinct eigenvalues, then A has a basis of

eigenvectors for Cm (or Rm).

From these theorems it follows that the initial error vector, e0 = Ψ̂ − Ψ, can be written as an linear

combination of eigenvectors

e0 =
m − 1∑
s = 1

csvs

where cs are constants and vs are the eigenvectors of A for s = 1, 2, . . . , m− 1. Substituting this into

(4.10) results in

ek + 1 = [RS, T (∆tA)]k
m − 1∑
s = 1

csvs

=
m − 1∑
s = 1

cs[RS, T (∆tA)]kvs

=
m − 1∑
s = 1

cs[RS, T (∆tλs)]kvs

where the last equation follows from the fact that Avs = λsvs and that f(A)vs = f(λs)vs, where the

function f is a rational function. From this equation it is clear that the perturbation will diminish if and

only if |RS, T (∆tλs)| < 1 when k →∞. In Gourlay and Morris [1980] and Smith [1985] RS, T (−z), where

z = −∆tλs, is defined to be the symbol of the method.

Definition 4.3.1. (Aα-stable, [Smith, 1985, Chapter 3]) If the eigenvalues of A are within the wedge defined by

π + α < arg λs < π − α, α ∈ (0, π
2 ), then the method is Aα-stable when, within this wedge, |RS, T (∆tλs)| < 1

for all s = 1, 2, . . . , m− 1, ∆t > 0 and hx > 0.

When all the eigenvalues of the matrix are real and |RS, T (∆tλs)| < 1 for all s = 1, 2, . . . , m− 1, ∆t > 0

and hx > 0, then the scheme is A0-stable. For a scheme that is A0-stable it is possible that RS, T (∆tλs)

is close to −1 for particular s, say ŝ. If cŝ is large then the numerical solution may oscillate finitely as k

increases. These oscillations can be avoided by ensuring that the scheme is L0-stable, see Gourlay and

Morris [1980], Smith [1985] and Khaliq and Twizell [1986].

Definition 4.3.2. (L0-stable, [Smith, 1985, Chapter 3]) A finite difference scheme is L0-stable when

max
z ≥ 0

|RS, T (−z)| < 1 and lim
z →∞

RS, T (−z) = 0

where z = −∆tλs ∈ R+\{0}.

40



CHAPTER 4. ALTERNATIVE APPROACHES FOR THE ONE DIMENSIONAL FDM

A similar definition of L0-stability is given in Cash [1984],

Definition 4.3.3. (L0-stable, Cash [1984]) Suppose a numerical integration method is applied to (4.3) gives a

numerical approximation of the form

uk + 1 = −A−1b + R(∆tA) (uk + A−1b)

where R is a rational function of ∆tA. Suppose further

max
z ≥ 0

|RS, T (−z)| < 1 and lim
z →∞

RS, T (−z) = 0

where z = −∆tλs ∈ R+\{0}. Then the numerical method is said to be L0-stable.

Unwanted oscillations are damped much faster by a L0-stable scheme than an A0-stable scheme damps

oscillations, hence L0-stability is preferred to A0-stability. These definitions are based on a definition of

A-stability posed in Dahlquist [1963]

Definition 4.3.4. (L0-stable, Bui [1979]) A method to solve the following system of ODEs

∂u
∂τ

= f(u),

u(0) = Ψ

where f : Rn → Rn, is called A-stable in the sense of Dahlquist if and only if |uk + 1| = c|uk| when the method

is applied with any positive step size ∆t to the test function

du
dτ

= λu,

where λ is a complex constant with negative real part and c ≤ 1 is a real constant.

Definition 4.3.5. (L-stable, Bui [1979]) A method is called L-stable if it is A-stable and c → 0 as λ∆t → −∞.

By applying the numerical method, described in the previous sections, to (4.3) we can use the definitions

above to deduce that the scheme will be A-stable if |RS, T (∆tλ)| < 1, where Re(λ) < 0 and, L-stable if it

is A-stable and λ∆t → −∞

4.3.1 Stability analysis of classical schemes

In this section we are going to consider the stability of the fully implicit and the Crank-Nicolson scheme

applied to the convection diffusion equation (4.1) and the simple Heat equation.

Heat equation

The heat equation can be obtained by letting d = 0 in (4.1). The semi-discrete form of the heat equation

is given by (4.7), where

A =




−2 a
h2

x

a
h2

x

a
h2

x
−2 a

h2
x

a
h2

x

. . .
a

h2
x

−2 a
h2

x

a
h2

x

a
h2

x
−2 a

h2
x



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Thus when d = 0 the eigenvalues of A are given by

λs = − 4
h2

x

sin2
( sπ

2m

)
for s = 1, 2, . . . , m− 1

and are real, negative and non-zero. Alternatively the sign of the eigenvalues of A can also by obtained

by making use of the following theorem,

Theorem 4.3.3. (Gerschgorin’s circle theorem, Kreyszig [1999]) Let λ be an eigenvalue of an arbitrary n × n

matrix A = (ai, j). Then for some integer i, i = 1, 2, . . . , n, we have

|ai, i − λ| ≤
n∑

j=1
j 6=i

|ai, j|

Using Gerschgorin’s theorem and the fact that a > 0 it follows that

−4a

h2
x

≤ λ ≤ 0

for any eigenvalue, λ, of A. From the Padé approximations we see that the symbols of the fully implicit

and the Crank-Nicolson schemes are respectively given by

R1, 0(−z) =
1

1 + z
and R1, 1(−z) =

1− 1
2z

1 + 1
2z

.

It is easy to see that |R1, 0(−z)| < 1 which implies that the fully implicit scheme is unconditionally

A0-stable. From the fact that

lim
z → ∞

R1, 0(−z) = lim
z → ∞

1
1 + z

= 0

it follows that the fully implicit scheme is L0-stable. The A0-stability of the Crank-Nicolson scheme

follows trivially from the fact that |R1, 1(−z)| < 1. Note

lim
z →∞

R1, 1(−z) = lim
z →∞

1− 1
2z

1 + 1
2z

= −1

hence the Crank-Nicolson scheme is not L0-stable and oscillations might occur. At points of discontinu-

ity in the initial data these oscillations will be pronounced, see Smith [1985].

Convection diffusion equation

If we can show that the eigenvalues of A (d 6= 0) are real, negative and non-zero then we can apply the

analysis of the previous section to deduce the following table,

A0-stable L0-stable

Fully implicit Unconditionally Unconditionally

Crank-Nicolson Unconditionally Unstable
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The eigenvalues of A are given by equation (4.11) and may be complex2. To keep the terms under the

square root positive, and the eigenvalues real, we can implement exponential fitting. The eigenvalues

become

λs = −2f(a, d, hx)
h2

x

+ 2

√(
f(a, d, hx)

h2
x

− d

2hx

)(
f(a, d, hx)

h2
x

+
d

2hx

)
cos

(sπ

m

)

= −2f(a, d, hx)
h2

x

+ 2

√(
f(a, d, hx)

h2
x

− d

2hx

)(
f(a, d, hx)

h2
x

+
d

2hx

) (
1− 2 sin2

(sπ

m

))

≤ −2f(a, d, hx)
h2

x

+ 2

√(
f(a, d, hx)

h2
x

− d

2hx

)(
f(a, d, hx)

h2
x

+
d

2hx

)

= −2f(a, d, hx)
h2

x

+ 2

√(
f(a, d, hx)

h2
x

)2

−
(

d

2hx

)2

< 0

for s = 1, 2, . . . , m− 1, where the function f is given by (3.32). The last inequality follows from the fact

that d 6= 0 and f(a, d, hx) > 0. The negativity of the eigenvalues of A can also be shown by making use

of Gerschgorin’s theorem 4.3.3. For any eigenvalue of A it follows that

λ ≤ −2f(a, d, hx)
h2

x

+
∣∣∣∣
f(a, d, hx)

h2
x

− d

2hx

∣∣∣∣ +
∣∣∣∣
f(a, d, hx)

h2
x

+
d

2hx

∣∣∣∣

λ ≥ −2f(a, d, hx)
h2

x

−
∣∣∣∣
f(a, d, hx)

h2
x

− d

2hx

∣∣∣∣−
∣∣∣∣
f(a, d, hx)

h2
x

+
d

2hx

∣∣∣∣ .

From a property of the fitting function (3.34) it follows that

−4f(a, d, hx)
h2

x

≤ λ ≤ 0.

4.4 Extrapolation methods

In this section we will consider extrapolation methods to increase the accuracy in time of the classical

finite difference methods. Consider the L0-stable (1, 0) Padé approximation (exponentially fitted fully

implicit method) of (4.7)

uk + 1 = −A−1b + (I−∆tA)−1 (uk + A−1b)

which can be used to obtain the unknown approximation at time τk + 1 if the solution at time τk is known3.

In Gourlay and Morris [1980] second, third and fourth order accurate methods for the simple heat equa-

tion with homogenous Dirichlet boundary conditions are derived. We will discuss these methods for

the more general case when a convection term is present and non-zero Dirichlet boundary conditions

are posed.

2Since the terms under the square root may be negative.
3We make use of exponential fitting, as done in section 4.3.1, to ensure the the eigenvalues of A are real and non-positive.
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4.4.1 Second order extrapolation scheme

Say the solution at time τk is known, then there are two different ways of obtaining the solution at time

τk + 2. We can simply set the time increment to 2∆t

uk + 2
(1) = −A−1b + (I− 2∆tA)−1 (uk + A−1b)

or make two time steps, with the time increment equal to ∆t

uk + 2
(2) = −A−1b + (I−∆tA)−1 (uk + 1 + A−1b)

= −A−1b + (I−∆tA)−2 (uk + A−1b) .

By making use of the following Binomial expansions

(1 + x)−1 = 1− x + x2 − x3 + x4 − x5 +− . . . (4.12)

(1 + x)−2 = 1− 2x + 3x2 − 4x3 + 5x4 − 6x5 +− . . . (4.13)

we obtain

uk + 2
(1) = −A−1b + (I + 2∆tA + 4∆t2A2) (uk + A−1b) + O(∆t3) (4.14)

uk + 2
(2) = −A−1b + (I + 2∆tA + 3∆t2A2) (uk + A−1b) + O(∆t3). (4.15)

From the definition of the exponential of an matrix we see that

e2∆tA = I + 2∆tA + 2∆t2A2 + O(∆t3).

Hence the approximation to the true solution, with the correct higher order terms, at time τk + 2 is given

by

uk + 2 = −A−1b + e2∆tA (uk + A−1b)

= −A−1b + (I + 2∆tA + 2∆t2A2 + 4
3∆t3A3 + . . .) (uk + A−1b) .

From this it is clear that neither (4.14) nor (4.15) approximates the second order term correctly. With the

following linear combination

uk + 1 = 2uk + 2
(2) − uk + 2

(1)

we obtain a method that is second order accurate in time. The algorithm for this second order accurate

extrapolated scheme is given by

(I− 2∆tA)uk + 2
(1) = uk + 2∆tb

(I−∆tA)uk + 1 = uk + ∆tb

(I−∆tA)uk + 2
(2) = uk + 1 + ∆tb

and

uk + 1 = 2uk + 2
(2) − uk + 2

(1) (4.16)

This scheme is also called the Lawson-Morris scheme, see Lawson and Morris [1978] and Gourlay and

Morris [1980].
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Figure 4.1: The symbol of the Lawson-Morris scheme, SLM
1, 0(−z).

Stability of the Lawson-Morris scheme

The extrapolation step, (4.16), can be written as

uk + 2 = −A−1b + SLM
1, 0(∆tA) (uk + A−1b)

where

SLM
1, 0(∆tA) = 2(I−∆tA)−2 − (I− 2∆tA).

This shows that the symbol of the Lawson-Morris scheme is given by

SLM
1, 0(−z) =

2
(1 + z)2

− 1
1 + 2z

It is easy to see that

lim
z →∞

SLM
1, 0(−z) = 0

Figure 4.1 shows that maxz ≥ 0 |SLM
1, 0(−z)| < 1 and that the symbol attains small negative values for

z > 1 +
√

2. We conclude that the Lawson-Morris scheme is L0-stable. The negative numbers might

introduce some oscillations but the effect will not be too severe since these numbers will be very small

in absolute value.

4.4.2 Third order extrapolation scheme

In the previous section we showed that a second order L0-stable scheme can be obtained by extrapolating

over two time steps. Similarly we can obtain third and fourth order schemes by extrapolating over three

and four time steps respectively, see Gourlay and Morris [1980]. If the solution at time τk is known,
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then there are three different ways of obtaining the solution at time τk + 3. We can simply take the time

increment to be 3∆t

uk + 3
(1) = −A−1b + (I− 3∆tA)−1 (uk + A−1b) ,

march one time step with a time increment of ∆t followed by a time step with the step size equal to 2∆t

uk + 3
(2) = −A−1b + (I− 2∆tA)−1 (uk + 1 + A−1b)

= −A−1b + (I− 2∆tA)−1(I−∆tA)−1 (uk + A−1b) (4.17)

or by making three time steps with an increment size of ∆t

uk + 3
(3) = −A−1b + (I−∆tA)−3 (uk + A−1b) .

By making use of the binomial expansions in (4.12), (4.13) and the following

(1 + x)−3 = 1− 3x + 6x2 − 10x3 + 15x4 − 21x5 +− . . . (4.18)

we obtain

uk + 3
(1) = −A−1b + (I + 3∆tA + 9∆t2A2 + 27∆t3A3) (uk + A−1b) + O(∆t4) (4.19)

uk + 3
(2) = −A−1b + (I + 2∆tA + 4∆t2A2 + 8∆t3A3)

· (I + ∆tA + ∆t2A2 + ∆t3A3) (uk + A−1b) + O(∆t4)

= −A−1b + (I + 3∆tA + 7∆t2A2 + 15∆t3A3) (uk + A−1b) + O(∆t4) (4.20)

and

uk + 3
(3) = −A−1b + (I + 3∆tA + 6∆t2A2 + 10∆t3A3) (uk + A−1b) + O(∆t4). (4.21)

From the definition of the exponential of an matrix we see that

e3∆tA = I + 3∆tA + 9
2∆t2A2 + 9

2∆t3A3 + O(∆t4).

Hence the approximation of the solution, with the correct higher order terms, at time τk + 3 is given by

uk + 3 = −A−1b + e3∆tA (uk + A−1b)

= −A−1b + (I + 3∆tA + 9
2∆t2A2 + 9

2∆t3A3 + . . .) (uk + A−1b) . (4.22)

From this it is clear that neither (4.19), (4.20) nor (4.21) approximates the second or third order terms

correctly. A linear combination of (4.19), (4.20) and (4.21) will match the terms of (4.22) up to O(∆t3)

uk + 3 = η1uk + 3
(1) + η2uk + 3

(2) + η3uk + 3
(3)

where η1, η2 and η3 satisfies the following equations

η1 + η2 + η3 = 1

9η1 + 7η2 + 6η3 = 9
2

27η1 + 15η2 + 10η3 = 9
2 .
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This system of equations has the unique solution

η1 = 1, η2 = − 9
2 and η3 = 9

2 .

The algorithm for this third order accurate extrapolated scheme is given by

(I− 3∆tA)uk + 3
(1) = uk + 3∆tb

(I−∆tA)uk + 1 = uk + ∆tb

(I− 2∆tA)uk + 3
(2) = uk + 1 + 2∆tb

(I−∆tA)uk + 1 = uk + ∆tb

(I−∆tA)uk + 2 = uk + 1 + ∆tb

(I−∆tA)uk + 3
(3) = uk + 2 + ∆tb

and

uk + 3 = uk + 3
(1) − 9

2u
k + 3
(2) + 9

2u
k + 3
(3) . (4.23)

In Gourlay and Morris [1980] exactly the same results are obtained. In the section that follows we will

investigate stability by making use of the symbol of the method as done in Gourlay and Morris [1980].

Stability of the third order Gourlay-Morris scheme

We can rewrite the extrapolation step, (4.23), as

uk + 3 = −A−1b + SGM3
1, 0 (∆tA) (uk + A−1b)

where

SGM3
1, 0 (∆tA) = (I− 3∆tA)−1 − 9

2 (I− 2∆tA)−1(I−∆tA)−1 + 9
2 (I−∆tA)−3.

This shows that the symbol of the third order Gourlay-Morris scheme is given by

SGM3
1, 0 (−z) =

1
1 + 3z

− 9
2(1 + 2z)(1 + z)

+
9

2t(1 + z)3

It is easy to see that

lim
z →∞

SGM3
1, 0 (−z) = 0.

Figure 4.2 shows that maxz ≥ 0 |SGM3
1, 0 (−z)| < 1 and that the symbol is positive. We can conclude that the

third order Gourlay-Morris scheme is L0-stable.
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Figure 4.2: The symbol of the third order Gourlay-Morris scheme, SGM3
1, 0 (−z).

4.4.3 Fourth order extrapolation scheme

If the solution at time τk is known, then there are five different ways of obtaining the solution at time

τk + 4

uk + 4
(1) = −A−1b + (I− 4∆tA)−1 (uk + A−1b)

uk + 4
(2) = −A−1b + (I− 3∆tA)−1(I−∆tA)−1 (uk + A−1b)

uk + 4
(3) = −A−1b + (I− 2∆tA)−2 (uk + A−1b)

uk + 4
(4) = −A−1b + (I− 2∆tA)−1(I−∆tA)−2 (uk + A−1b)

uk + 4
(5) = −A−1b + (I−∆tA)−4 (uk + A−1b) .

By making use of the binomial expansions in (4.12), (4.13) and the following expansion

(1 + x)−4 = 1− 4x + 10x2 − 20x3 + 35x4 − 56x5 +− . . . (4.24)
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we obtain

uk + 4
(1) = −A−1b + (I + 4∆tA + 16∆t2A2 + 64∆t3A3 + 256∆t4A4 + 1024∆t5A5) (uk + A−1b)

+ O(∆t6) (4.25)

uk + 4
(2) = −A−1b + (I + 3∆tA + 9∆t2A2 + 27∆t3A3 + 81∆t4A4 + 243∆t5A5)

· (I + ∆tA + ∆t2A2 + ∆t3A3 + ∆t4A4 + ∆t5A5) (uk + A−1b) + O(∆t6)

= −A−1b + (I + 4∆tA + 13∆t2A2 + 40∆t3A3 + 121∆t4A4 + 364∆t5A5) (uk + A−1b)

+ O(∆t6) (4.26)

uk + 4
(3) = −A−1b + (I + 4∆tA + 12∆t2A2 + 32∆t3A3 + 80∆t4A4 + 192∆t5A5) (uk + A−1b)

+ O(∆t6) (4.27)

uk + 4
(4) = −A−1b + (I + 2∆tA + 4∆t2A2 + 8∆t3A3 + 16∆t4A4 + 32∆t5A5)

· (I + 2∆tA + 3∆t2A2 + 4∆t3A3 + 5∆t4A4 + 6∆t5A5) (uk + A−1b) + O(∆t6)

= −A−1b + (I + 4∆tA + 11∆t2A2 + 26∆t3A3 + 57∆t4A4 + 120∆t5A5) (uk + A−1b)

+ O(∆t6) (4.28)

and

uk + 4
(5) = −A−1b + (I + 4∆tA + 10∆t2A2 + 20∆t3A3 + 35∆t4A4 + 56∆t5A5) (uk + A−1b)

+ O(∆t6). (4.29)

By making use of the definition, of the exponential of a matrix we obtain

e4∆tA = I + 4∆tA + 8∆t2A2 + 32
3 ∆t3A3 + 32

3 ∆t4A4 + 128
15 ∆t5A5 + O(∆t6).

Hence the approximation of the solution, with the correct higher order terms, at time τk + 4 is given by

uk + 4 = −A−1b + e4∆tA (uk + A−1b)

= −A−1b + (I + 4∆tA + 8∆t2A2 + 32
3 ∆t3A3 + 32

3 ∆t4A4 + 128
15 ∆t5A5 + . . .) (uk + A−1b) . (4.30)

We want to find a linear combination of (4.25), (4.26), (4.27), (4.28) and (4.29) which matches the terms of

equation (4.30) up to O(∆t4)

uk + 4 = η1uk + 4
(1) + η2uk + 4

(2) + η3uk + 4
(3) + η4uk + 4

(4) + η5uk + 4
(5)

where η1, η2, η3, η4 and η5 satisfies the following equations

η1 + η2 + η3 + η4 + η5 = 1

16η1 + 13η2 + 12η3 + 11η4 + 10η5 = 8

64η1 + 40η2 + 32η3 + 26η4 + 20η5 = 32
3

256η1 + 121η2 + 80η3 + 57η4 + 35η5 = 32
3

Since this is a system of four equations in five unknowns it has an infinite amount of solutions. In

Gourlay and Morris [1980] they propose the following solutions
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η1 η2 η3 η4 η5

GM4.1 − 7
9

40
9 0 − 32

3 8

GM4.2 − 1
9

16
9 −6 16

3 0

GM4.3 1
3 0 −10 16 − 16

3

GM4.4 − 1
3

8
3 −4 0 8

3

The algorithm for these fourth order accurate extrapolated schemes are given by

(I− 4∆tA)uk + 4
(1) = uk + 4∆tb

(I−∆tA)uk + 1 = uk + ∆tb

(I− 3∆tA)uk + 4
(2) = uk + 1 + 3∆tb

(I− 2∆tA)uk + 2 = uk + 2∆tb

(I− 2∆tA)uk + 4
(3) = uk + 2 + 2∆tb

(I−∆tA)uk + 1 = uk + ∆tb

(I−∆tA)uk + 2 = uk + 1 + ∆tb

(I− 2∆tA)uk + 4
(4) = uk + 2 + 2∆tb

(I−∆tA)uk + 1 = uk + ∆tb

(I−∆tA)uk + 2 = uk + 1 + ∆tb

(I−∆tA)uk + 3 = uk + 2 + ∆tb

(I−∆tA)uk + 4
(5) = uk + 2 + ∆tb

and

uk + 4 = η1uk + 4
(1) + η2uk + 4

(2) + η3uk + 4
(3) + η4uk + 4

(4) + η5uk + 4
(5) . (4.31)

In the section that follows we will investigate stability of the different types of fourth order schemes by

making use of the symbol of the method as done in Gourlay and Morris [1980].

Stability of the fourth order Gourlay-Morris scheme

We can rewrite the extrapolation step, (4.31), as

uk + 4 = −A−1b + SGM4.x
1, 0 (∆tA) (uk + A−1b)

where

SGM4.x
1, 0 (∆tA) = η1(I− 4∆tA)−1 + η2(I− 3∆tA)−1(I−∆tA)−1

+ η3(I− 2∆tA)−2 + η4(I− 2∆tA)−1(I−∆tA)−2 + η5(I−∆tA)−4
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Figure 4.3: The symbols of the fourth order Gourlay-Morris schemes.

for x = 1, 2, 3, 4. This shows that the symbol of the fourth order Gourlay-Morris scheme is given by

SGM4.x
1, 0 (−z) =

η1

1 + 4z
+

η2

(1 + 3z)(1 + z)
+

η3

(1 + 2z)2
+

η4

(1 + 2z)(1 + z)2
+

η5

(1 + z)4
.

Clearly

lim
z → ∞

SGM4.x
1, 0 (−z) = 0.

Figure 4.3 shows that maxz ≥ 0 |SGM4.x
1, 0 (−z)| < 1, x = 1, 2, 3, 4. We can conclude that the proposed fourth

order Gourlay-Morris schemes are L0-stable.

4.4.4 Higher order schemes

We can do even better than fourth order accuracy by simply imposing the following extra constraint on

η1, η2, η3, η4 and η5

1024η1 + 364η2 + 192η3 + 120η4 + 56η5 = 128
15

which allows us to match e4∆tA up to O(∆t5). The unique solution of the system of equations is given

by

η1 = − 17
45 , η2 = 128

45 , η3 = − 18
5 , η4 = − 16

15 and η5 = 16
5 .

Figure 4.4 shows that maxz ≥ 0 |SHO
1, 0(−z)| < 1. We conclude that the proposed fifth order scheme is L0-

stable. It is clear that the methodology can be extended to higher order schemes. For example if we

chose to extrapolate over five time intervals we will be able to obtain a scheme of O(∆t7). This comes

from the fact that there are seven different ways of proceeding to τk + 5 if the solution at τk is known.
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Figure 4.4: The symbol of the fifth order scheme, SHO
1, 0(−z).
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Chapter 5

Two Dimensional Finite Difference

Methods

In this chapter we will extend the finite difference schemes discussed in chapter 3 to two dimensions.

The focus of this chapter will be on PDEs of the form

∂u

∂τ
= a(x, y)

∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
+ d(x, y)

∂u

∂x
+ e(x, y)

∂u

∂y
(5.1)

on the domain (x, y, τ) ∈ Ω = [lx, rx]×[ly, ry]×R+ where the coefficients satisfy the following inequalities

ac− b2 > 0, a > 0, c > 0, (5.2)

d ≥ 0, e(x, ly) ≥ 0 and e(x, ry) ≤ 0 (5.3)

and the following equalities

a(x, ly) = b(x, ly) = c(x, ly) = 0. (5.4)

The inequalities in (5.2) must hold for the PDE to be parabolic. The inequalities in (5.3) and the equalities

in (5.4) are general enough to allow for all PDEs that arise in stochastic volatility models. For the problem

to be well posed an initial condition, u(x, y, 0) = Ψ(x, y), and four boundary conditions need to be

specified. A Dirichlet condition will be used for the boundary at x = lx and a von Neumann condition

will be used at x = rx

u(lx, y, τ) = cl

∂u

∂x
(rx, y, τ) = cr.

Neither a Dirichlet nor a von Neumann condition is used as a boundary condition in the y-direction,

the only requirement is that the PDE itself must be solved on the boundaries, see Zvan et al. [2003] and
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Duffy [2006]. Using equation (5.4) and the assumption that ∂u
∂y (x, ry) = 01 we obtain

∂u

∂τ
= d(x, y)

∂u

∂x
+ e(x, y)

∂u

∂y
, y = ly

∂u

∂τ
= a(x, y)

∂2u

∂x2
+ d(x, y)

∂u

∂x
, y = ry.

The fully implicit and Crank-Nicolson schemes require the inversion of non tri-diagonal matrices. Such

schemes turn out to be very slow, we will discuss how splitting methods can be employed to overcome

this problem. Stability, consistency and convergence of these methods will be shown on a uniform

grid. In the first section the general Taylor approximations used to obtain the discrete approximations to

our continuous derivatives will be derived. Then we will investigate different types of finite difference

schemes that can be used to approximate the solutions of two dimensional parabolic PDEs.

5.1 Discrete approximations (Continued)

This section can be seen as an extension of section 3.1 to two dimensions. Again we truncate the un-

bounded domain Ω to the bounded domain Ω = [lx, rx] × [ly, ry] × [0, T ]. Keeping the notation the

same as in section 3.1 we see that our aim is to obtain approximations to the true solution on the three

dimensional mesh

Ω̂ = {(xi, yj, τk)|i = 0, 1, . . . , m, j = 0, 1, . . . , n, k = 0, 1, . . . , l}.

with the approximation at each mesh point given by

uk

i, j ≈ u(xi, yj, τk).

Assuming, for the moment, that the mesh points are uniformly spaced we can write

xi = lx + ihx for i = 0, 1, . . . , m

yi = ly + jhy for j = 0, 1, . . . , n

τk = k∆t for l = 0, 1, . . . , l

where hx = rx−lx
m , hy = ry−ly

n and ∆t = T
l . The finite difference approximations of the derivatives in

(5.1), excluding the approximation of the mixed derivative, can be obtained in exactly the same manner

1In later sections it will become clear that x denotes the underlying and y denotes the volatility of the underlying. It is not

unreasonable to assume that ∂u
∂σ

(x, σmax) = 0 for very large σmax.
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as was done in section 3.1. The difference operators are given by

∆+
x uk

i, j =
uk

i + 1, j − uk
i, j

hx

(5.5)

∆+
y uk

i, j =
uk

i, j + 1 − uk
i, j

hy

(5.6)

∆−
x uk

i, j =
uk

i, j − uk
i − 1, j

hx

(5.7)

∆−
y uk

i, j =
uk

i, j − uk
i, j − 1

hy

(5.8)

∆xu
k

i, j =
uk

i + 1, j − uk
i − 1, j

2hx

(5.9)

∆yu
k

i, j =
uk

i, j + 1 − uk
i, j − 1

2hy

(5.10)

∆2
xu

k

i, j =
uk

i + 1, j − 2uk
i, j + uk

i − 1, j

h2
x

(5.11)

∆2
yu

k

i, j =
uk

i, j + 1 − 2uk
i, j + uk

i, j − 1

h2
y

(5.12)

We still need to derive the divided difference approximation of the mixed derivative. We give a deriva-

tion of the second order approximation to the mixed derivative proposed in Hout and Welfert [2006].

Second order approximations of the cross derivative can be derived with the aid of the following Taylor
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expansions about the reference point (xi, yj, τk)

u(xi + 1, yj + 1, τk) = u + hx

∂u

∂x
+ hy

∂u

∂y
+ 1

2h2
x

∂2u

∂x2
+ hxhy

∂2u

∂x∂y
+ 1

2h2
y

∂2u

∂y2
(5.13)

+
1
3!

h3
x

∂3u

∂x3
+

3
3!

h2
xhy

∂3u

∂x2∂y
+

3
3!

hxh
2
y

∂3u

∂x∂y2
+

1
3!

h3
y

∂3u

∂y3

+ O(h4
x, h

3
xhy, h

2
xh

2
y, hxh

3
y, h

4
y)

u(xi − 1, yj + 1, τk) = u− hx

∂u

∂x
+ hy

∂u

∂y
+ 1

2h2
x

∂2u

∂x2
− hxhy

∂2u

∂x∂y
+ 1

2h2
y

∂2u

∂y2
(5.14)

− 1
3!

h3
x

∂3u

∂x3
+

3
3!

h2
xhy

∂3u

∂x2∂y
− 3

3!
hxh

2
y

∂3u

∂x∂y2
+

1
3!

h3
y

∂3u

∂y3

+ O(h4
x, h

3
xhy, h

2
xh

2
y, hxh

3
y, h

4
y)

u(xi + 1, yj − 1, τk) = u + hx

∂u

∂x
− hy

∂u

∂y
+ 1

2h2
x

∂2u

∂x2
− hxhy

∂2u

∂x∂y
+ 1

2h2
y

∂2u

∂y2
(5.15)

+
1
3!

h3
x

∂3u

∂x3
− 3

3!
h2

xhy

∂3u

∂x2∂y
+

3
3!

hxh
2
y

∂3u

∂x∂y2
− 1

3!
h3

y

∂3u

∂y3

+ O(h4
x, h

3
xhy, h

2
xh

2
y, hxh

3
y, h

4
y)

u(xi − 1, yj − 1, τk) = u− hx

∂u

∂x
− hy

∂u

∂y
+ 1

2h2
x

∂2u

∂x2
+ hxhy

∂2u

∂x∂y
+ 1

2h2
y

∂2u

∂y2
(5.16)

− 1
3!

h3
x

∂3u

∂x3
− 3

3!
h2

xhy

∂3u

∂x2∂y
− 3

3!
hxh

2
y

∂3u

∂x∂y2
− 1

3!
h3

y

∂3u

∂y3

+ O(h4
x, h

3
xhy, h

2
xh

2
y, hxh

3
y, h

4
y)

u(xi − 1, yj, τk) = u− hx

∂u

∂x
+ 1

2h2
x

∂2u

∂x2
− 1

3!
h3

x

∂3u

∂x3
+ O(h4

x) (5.17)

u(xi + 1, yj, τk) = u + hx

∂u

∂x
+ 1

2h2
x

∂2u

∂x2
+

1
3!

h3
x

∂3u

∂x3
+ O(h4

x) (5.18)

u(xi, yj − 1, τk) = u− hy

∂u

∂y
+ 1

2h2
y

∂2u

∂y2
− 1

3!
h3

y

∂3u

∂y3
+ O(h4

y) (5.19)

u(xi, yj + 1, τk) = u + hy

∂u

∂y
+ 1

2h2
y

∂2u

∂y2
+

1
3!

h3
y

∂3u

∂y3
+ O(h4

y). (5.20)

To construct a general second order approximation the following linear combinations are of critical im-

portance

u(xi + 1, yj + 1, τk) + u(xi − 1, yj − 1, τk) = 2u + h2
x

∂2u

∂x2
+ 2hxhy

∂2u

∂x∂y
+ h2

y

∂2u

∂y2
+ O(h4

x, h
3
xhy, h

2
xh

2
y, hxh

3
y, h

4
y)

u(xi − 1, yj + 1, τk) + u(xi + 1, yj − 1, τk) = 2u + h2
x

∂2u

∂x2
− 2hxhy

∂2u

∂x∂y
+ h2

y

∂2u

∂y2
+ O(h4

x, h
3
xhy, h

2
xh

2
y, hxh

3
y, h

4
y)

u(xi − 1, yj, τk) + u(xi + 1, yj, τk) + u(xi, yj − 1, τk) + u(xi, yj + 1, τk) = 4u + h2
x

∂2u

∂x2
+ h2

y

∂2u

∂y2
(5.21)

+ O(h4
x, h

4
y).

By making an appropriate linear combination of the first two equations we obtain

(1 + ω)[u(xi + 1, yj + 1, τk) + u(xi − 1, yj − 1, τk)]− (1− ω)[u(xi − 1, yj + 1, τk) + u(xi + 1, yj − 1, τk)]

= 4ωu + 2ωh2
x

∂2u

∂x2
+ 4hxhy

∂2u

∂x∂y
+ 2ωh2

x

∂2u

∂x2
+ O(h4

x, h
3
xhy, h

2
xh

2
y, hxh

3
y, h

4
y)
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where ω ∈ [−1, 1]. The ∂2u
∂x2 and ∂2u

∂y2 terms can now be eliminated by adding −2ω of (5.21), after rear-

ranging we obtain

∂2u

∂x∂y
=

(1 + ω)[u(xi + 1, yj + 1, τk) + u(xi − 1, yj − 1, τk)]− (1− ω)[u(xi − 1, yj + 1, τk) + u(xi + 1, yj − 1, τk)]
4hxhy

(5.22)

+
4ωu− 2ω[u(xi − 1, yj, τk) + u(xi + 1, yj, τk) + u(xi, yj − 1, τk) + u(xi, yj + 1, τk)]

4hyhy

+ O(h2
x, hxhy, h

2
y)

The difference operator for the mixed derivative can be written as

∆ω

xyu
k

i, j =
(1 + ω)[uk

i + 1, j + 1 + uk
i − 1, j − 1]− (1− ω)[uk

i − 1, j + 1 + uk
i + 1, j − 1]

4hxhy

+
4ωuk

i, j − 2ω[uk
i − 1, j + uk

i + 1, j + uk
i, j − 1 + uk

i, j + 1]
4hxhy

(5.23)

5.2 Implicit Explicit schemes (IMEX-schemes)

IMEX-schemes can be seen as a generalization of the θ-method in the sense that these schemes allow the

implicitness (or explicitness) of the convection and diffusion parts of the PDE to differ. The discretized

PDE for the two dimensional IMEX-method can be written as

∆+
t uk

i, j = θdiff[ai, j∆2
xu

k + 1
i, j + ci, j∆2

yu
k + 1
i, j ] + θcov[di, j∆xu

k + 1
i, j + ei, j∆yu

k + 1
i, j ] + 2θcrossbi, j∆ω

xyu
k + 1
i, j (5.24)

+ (1− θdiff)[ai, j∆2
xu

k

i, j + ci, j∆2
yu

k

i, j] + (1− θcov)[di, j∆xu
k

i, j + ei, j∆yu
k

i, j] + 2(1− θcross)bi, j∆ω

xyu
k

i, j

for i = 1, 2, . . . , m− 1, j = 1, 2, . . . , n− 1 and k = 0, 1, . . . , l − 1, where ai, j = a(xi, yj), bi, j =

b(xi, yj) ci, j = c(xi, yj), di, j = d(xi, yj), ei, j = e(xi, yj) and θdiff, θcov, θcross ∈ [0, 1]. The parameters θdiff, θcov

and θcross respectively determines the implicitness of the diffusion, convection and cross derivative part

of the parabolic PDE. After rearranging we obtain

(−λxxθdiffai, j + λxθcovdi, j)θuk + 1
i − 1, j + (−λyyθdiffci, j + λyθcovei, j)uk + 1

i, j − 1 + (1 + 2θdiffai, jλxx + 2θcovci, jλyy)uk + 1
i, j

+ (−λyyθdiffci, j − λyθcovei, j)uk + 1
i, j + 1 + (−λxxθdiffai, j − λxθcovdi, j)uk + 1

i + 1, j

+ 2λxybi, j(1 + ω)θcross[uk + 1
i + 1, j + 1 + uk + 1

i − 1, j − 1]− 2λxybi, j(1− ω)θcross[uk + 1
i − 1, j + 1 + uk + 1

i + 1, j − 1]

+ 8λxybi, jωθcrossu
k + 1
i, j − 4λxybi, jωθcross[uk + 1

i − 1, j + uk + 1
i + 1, j + uk + 1

i, j − 1 + uk + 1
i, j + 1]

= (λxx(1− θdiff)ai, j − λx(1− θcov)di, j)uk

i − 1, j + (λyy(1− θdiff)ci, j − λy(1− θcov)ei, j)uk

i, j − 1 (5.25)

+ (1− 2(1− θdiff)ai, jλxx − 2(1− θdiff)ci, jλyy)uk

i, j

+ (λyy(1− θdiff)ci, j + λy(1− θcov)ei, j)uk

i, j + 1 + (λxx(1− θdiff)ai, j + λx(1− θcov)di, j)(1− θ)uk

i + 1, j

+ 2λxybi, j(1 + ω)(1− θcross)[uk

i + 1, j + 1 + uk

i − 1, j − 1]− 2λxybi, j(1− ω)(1− θcross)[uk

i − 1, j + 1 + uk

i + 1, j − 1]

+ 8λxybi, jω(1− θcross)uk

i, j − 4λxybi, jω(1− θcross)[uk

i − 1, j + uk

i + 1, j + uk

i, j − 1 + uk

i, j + 1]
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for i = 1, 2, . . . , m− 1, j = 1, 2, . . . , n− 1 and k = 0, 1, . . . , l − 1, where λxy = ∆t
4hxhy

. In discrete

form the boundary conditions can be written as

uk + 1
0, j = cl for j = 0, 1, . . . , n (5.26)

uk + 1
m, j − uk + 1

m − 1, j

hx

= cr for j = 0, 1, . . . , n (5.27)

uk + 1
i, 0 − uk

i, 0

∆t
= θcovdi, 0∆+

x uk + 1
i, 0 + θcovei, 0∆+

y uk + 1
i, 0 (5.28)

+ (1− θcov)di, 0∆+
x uk

i, 0 + (1− θcov)ei, 0∆+
y uk

i, 0 for i = 1, 2, . . . , m− 1
uk + 1

i, n − uk
i, n

∆t
= θdiffai, n∆2

xu
k + 1
i, n + θcovdi, n∆xu

k + 1
i, n (5.29)

+ (1− θdiff)ai, n∆2
xu

k

i, n + (1− θcov)di, n∆xu
k

i, n for i = 1, 2, . . . , m− 1

for k = 0, 1, . . . , l − 1. To ensure the stability of the scheme at the boundary, upwinding is used in

equation (5.28). In particular from section 3.7.6 we see that upwinding will ensure that the scheme is

stable under the maximum norm at the boundary for the case when θcov = 1.

5.3 Consistency

In this section we will prove the consistency of the IMEX-method, the proof will be of the same form as

the proof of consistency given in section 3.4. The truncation error of the IMEX-method in two dimensions

is given by

L∆t

hx, hy
v(xi, yj, τk) = ∆+

t v(xi, yj, τk) (5.30)

− θdiff[ai, j∆2
xv(xi, yj, τk + 1) + ci, j∆2

yv(xi, yj, τk + 1)]− θcov[di, j∆xv(xi, yj, τk + 1)

+ ei, j∆yv(xi, yj, τk + 1)]− 2θcrossbi, j∆ω

xyv(xi, yj, τk + 1)

− (1− θdiff)[ai, j∆2
xv(xi, yj, τk) + ci, j∆2

yv(xi, yj, τk)]− (1− θcov)[di, j∆xv(xi, yj, τk)

+ ei, j∆yv(xi, yj, τk)]− 2(1− θcross)bi, j∆ω

xyv(xi, yj, τk)

As done in section 3.4 we need to compute the Taylor expansions about (xi, yj, τk + 1
2
) in order to ob-

tain the truncation error. Expanding v(xi, yj, τk) and v(xi, yj, τk + 1) about (xi, yj, τk + 1
2
) and subtracting

results in

∆+
t v(xi, yj, τk) =

∂v

∂τ
(xi, yj, τk + 1

2
) +

1
24

∆t2
∂3v

∂τ3
(xi, yj, τk + 1

2
) + O(∆t4)
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Similarly as in section 3.4 we can compute the Taylor expansions of the difference operators at time τk

about the point (xi, yj, τk + 1
2
) to obtain

∆xv(xi, yj, τk) =
(

∂v

∂x
(xi, yj, τk + 1

2
)− 1

2∆t
∂2v

∂τ∂x
(xi, yj, τk + 1

2
) + 1

2 ( 1
2∆t)2

∂3v

∂x∂τ2
(xi, yj, τk + 1

2
) + . . .

)

+ O(h2
x)

∆2
xv(xi, yj, τk) =

(
∂2v

∂x2
(xi, yj, τk + 1

2
)− 1

2∆t
∂3v

∂τ∂x2
(xi, yj, τk + 1

2
) + 1

2 (1
2∆t)2

∂4v

∂τ2∂x2
(xi, yj, τk + 1

2
) + . . .

)

+ O(h2
x)

∆yv(xi, yj, τk) =
(

∂v

∂y
(xi, yj, τk + 1

2
)− 1

2∆t
∂2v

∂τ∂y
(xi, yj, τk + 1

2
) + 1

2 (1
2∆t)2

∂3v

∂y∂τ2
(xi, yj, τk + 1

2
) + . . .

)

+ O(h2
y)

∆2
yv(xi, yj, τk) =

(
∂2v

∂y2
(xi, yj, τk + 1

2
)− 1

2∆t
∂3v

∂τ∂y2
(xi, yj, τk + 1

2
) + 1

2 ( 1
2∆t)2

∂4v

∂τ2∂y2
(xi, yj, τk + 1

2
) + . . .

)

+ O(h2
y)

whereas difference operators applied at time τk + 1 and expanded about the point (xi, yj, τk + 1
2
) yield

∆xv(xi, yj, τk + 1) =
(

∂v

∂x
(xi, yj, τk + 1

2
) + 1

2∆t
∂2v

∂τ∂x
(xi, yj, τk + 1

2
)

+ 1
2 ( 1

2∆t)2
∂3v

∂x∂τ2
(xi, yj, τk + 1

2
) + . . .

)
+ O(h2

x)

∆2
xv(xi, yj, τk + 1) =

(
∂2v

∂x2
(xi, yj, τk + 1

2
) + 1

2∆t
∂3v

∂τ∂x2
(xi, yj, τk + 1

2
)

+ 1
2 ( 1

2∆t)2
∂4v

∂τ2∂x2
(xi, yj, τk + 1

2
) + . . .

)
+ O(h2

x)

∆yv(xi, yj, τk + 1) =
(

∂v

∂y
(xi, yj, τk + 1

2
) + 1

2∆t
∂2v

∂τ∂y
(xi, yj, τk + 1

2
)

+ 1
2 ( 1

2∆t)2
∂3v

∂y∂τ2
(xi, yj, τk + 1

2
) + . . .

)
+ O(h2

y)

∆2
yv(xi, yj, τk + 1) =

(
∂2v

∂y2
(xi, yj, τk + 1

2
) + 1

2∆t
∂3v

∂τ∂y2
(xi, yj, τk + 1

2
)

+ 1
2 ( 1

2∆t)2
∂4v

∂τ2∂y2
(xi, yj, τk + 1

2
) + . . .

)
+ O(h2

y)

To obtain these results for the approximations of the mixed derivative we rearrange (5.22) to obtain

∆ω

xyv(xi, yj, τk) =
∂2v

∂x∂y
(xi, yj, τk) + O(h2

x, hxhy, h
2
y)

∆ω

xyv(xi, yj, τk + 1) =
∂2v

∂x∂y
(xi, yj, τk + 1) + O(h2

x, hxhy, h
2
y)
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Expanding the terms on the right about (xi, yj, τk + 1
2
) yields

∆ω

xyv(xi, yj, τk) =
(

∂2v

∂x∂y
(xi, yj, τk + 1

2
)− 1

2∆t
∂3v

∂τ∂x∂y
(xi, yj, τk + 1

2
)

+ 1
2 ( 1

2∆t)2
∂4v

∂τ2∂x∂y
(xi, yj, τk + 1

2
) + . . .

)
+ O(h2

x, hxhy, h
2
y)

∆ω

xyv(xi, yj, τk + 1) =
(

∂2v

∂x∂y
(xi, yj, τk + 1

2
) + 1

2∆t
∂3v

∂τ∂x∂y
(xi, yj, τk + 1

2
)

+ 1
2 ( 1

2∆t)2
∂4v

∂τ2∂x∂y
(xi, yj, τk + 1

2
) + . . .

)
+ O(h2

x, hxhy, h
2
y)

Substitution of these equations into equation (5.30) results in

L∆t

hx, hy
v(xi, yj, τk) =

∂v

∂τ
(xi, yj, τk + 1

2
) +

1
24

∆t2
∂3v

∂τ3
(xi, yj, τk + 1

2
) + . . . (5.31)

− a(xi, yj)
[

∂2v

∂x2
(xi, yj, τk + 1

2
) + (1− 2θdiff) 1

2∆t
∂3v

∂τ2∂x
(xi, yj, τk + 1

2
)

+ 1
2 ( 1

2∆t)2
∂4v

∂τ2∂x2
(xi, yj, τk + 1

2
) + . . .

]

− d(xi, yj)
[

∂v

∂x
(xi, yj, τk + 1

2
) + (1− 2θcov) 1

2∆t
∂2v

∂τ∂x
(xi, yj, τk + 1

2
)

+ 1
2 ( 1

2∆t)2
∂3v

∂τ2∂x
(xi, yj, τk + 1

2
) + . . .

]

− c(xi, yj)
[
∂2v

∂y2
(xi, yj, τk + 1

2
) + (1− 2θdiff)1

2∆t
∂3v

∂τ2∂y
(xi, yj, τk + 1

2
)

+ 1
2 ( 1

2∆t)2
∂4v

∂τ2∂y2
(xi, yj, τk + 1

2
) + . . .

]

− e(xi, yj)
[
∂v

∂y
(xi, yj, τk + 1

2
) + (1− 2θcov) 1

2∆t
∂2v

∂τ∂y
(xi, yj, τk + 1

2
)

+ 1
2 ( 1

2∆t)2
∂3v

∂τ2∂y
(xi, yj, τk + 1

2
) + . . .

]

− 2b(xi, yj)
[

∂2v

∂x∂y
(xi, yj, τk + 1

2
) + (1− 2θcross)1

2∆t
∂3v

∂τ∂x∂y
(xi, yj, τk + 1

2
)

+ 1
2 ( 1

2∆t)2
∂4v

∂τ2∂x∂y
(xi, yj, τk + 1

2
) + . . .

]

+ O(h2
x, hxhy, h

2
y).
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Grouping the terms and using the fact that v is the solution of (5.1) we obtain

L∆t

hx, hy
v(xi, yj, τk)

=
[
∂v

∂τ
(xi, yj, τk + 1

2
)− a(xi, yj)

∂2v

∂x2
(xi, yj, τk + 1

2
)− d(xi, yj)

∂v

∂x
(xi, yj, τk + 1

2
) (5.32)

−c(xi, yj)
∂2v

∂y2
(xi, yj, τk + 1

2
)− e(xi, yj)

∂v

∂y
(xi, yj, τk + 1

2
)− 2b(xi, yj)

∂2v

∂x∂y
(xi, yj, τk + 1

2
)
]

−
[
a(xi, yj)

∂3v

∂τ2∂x
(xi, yj, τk + 1

2
) + c(xi, yj)

∂3v

∂τ2∂y
(xi, yj, τk + 1

2
)
]

(1− 2θdiff) 1
2∆t (5.33)

−
[
d(xi, yj)

∂2v

∂τ∂x
(xi, yj, τk + 1

2
) + e(xi, yj)

∂2v

∂τ∂y
(xi, yj, τk + 1

2
)
]

(1− 2θcov)1
2∆t

− 2(1− 2θcross)b(xi, yj) 1
2∆t

∂3v

∂τ∂x∂y
(xi, yj, τk + 1

2
)

+ O(∆t2) + O(h2
x, hxhy, h

2
y)

= −
[
a(xi, yj)

∂3v

∂τ2∂x
(xi, yj, τk + 1

2
) + c(xi, yj)

∂3v

∂τ2∂y
(xi, yj, τk + 1

2
)
]

(1− 2θdiff) 1
2∆t

−
[
d(xi, yj)

∂2v

∂τ∂x
(xi, yj, τk + 1

2
) + e(xi, yj)

∂2v

∂τ∂y
(xi, yj, τk + 1

2
)
]

(1− 2θcov)1
2∆t

− 2(1− 2θcross)b(xi, yj) 1
2∆t

∂3v

∂τ∂x∂y
(xi, yj, τk + 1

2
) + O(∆t2) + O(h2

x, hxhy, h
2
y).

From the last equation it is clear that L∆t
hx, hy

v(xi, yj, τk) → 0 as ∆t, hx, hy → 0, hence we can deduce

that the IMEX-method is consistent. It is also clear that this method will be of second order only if

θdiff = θcov = θcross = 1
2

2.

5.4 Stability

Similarly as in section 3.5 we will discuss the stability of the IMEX-method in two dimensions using

both von Neumann stability analysis and the matrix method of analysis.

5.4.1 von Neumann stability analysis

As done in the previous sections we will assume constant coefficients when we apply von Neumann

stability analysis. Similarly as for the one dimensional case we can investigate the propagation of initial

data points by substituting

uk

i, j = γkeIαihxeIβjhy (5.34)

2Note that this is the θ-method in two dimensions with θ = 1
2

, also known as the Crank-Nicolson scheme.
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where I =
√−1 in (5.24), see Thomas [1995] and Duffy [2006]. We start the proof by computing ∆xu

k
i, j ,

∆yu
k
i, j , ∆2

xu
k
i, j , ∆2

yu
k
i, j and ∆0

xyu
k
i, j for a general time step τk

∆xu
k

i, j =
uk

i + 1, j − uk
i − 1, j

2hx

=
1

2hx

γkeIαihxeIβjhy
(
eIαhx − e−Iαhx

)

= I
1
hx

γkeIαihxeIβjhy sin(αhx)

similarly

∆yu
k

i, j = I
1
hy

γkeIαihxeIβjhy sin(βhy).

For the approximations of the second order terms we have

∆2
xu

k

i, j =
uk

i + 1, j − 2uk
i, j + uk

i − 1, j

h2
x

=
1
h2

x

γkeIαihxeIβjhy
(
e−Iαhx − 2 + eIαhx

)

=
2
h2

x

γkeIαihxeIβjhy (cos(αhx)− 1)

= − 4
h2

x

γkeIαihxeIβjhy sin2

(
αhx

2

)

and similarly

∆2
yu

k

i, j = − 4
h2

y

γkeIαihxeIβjhy sin2

(
βhy

2

)
.

The cross derivative term becomes

∆0
xyu

k

i, j =
uk

i + 1, j + 1 − uk
i − 1, j + 1 − uk

i + 1, j − 1 + uk
i − 1, j − 1

4hxhy

=
1

4hxhy

γkeIαihxeIβjhy

(
eI(αhx+βhy) + e−I(αhx+βhy) − eI(αhx−βhy) − e−I(αhx−βhy)

)

=
1

2hxhy

γkeIαihxeIβjhy (cos(αhx + βhy)− cos(αhx − βhy))

= − 1
hxhy

γkeIαihxeIβjhy sin(αhx) sin(βhy).

By substituting these results in (5.24) we obtain

γ =
1− (1− θdiff)∆tε1 − (1− θcross)∆tω1 + I(1− θcov)ε2

1 + θdiff∆tε1 + θcross∆tω1 − Iθcov∆tε2

where

ε1 = a
4
h2

x

sin2

(
αhx

2

)
+ c

4
h2

y

sin2

(
βhy

2

)

ε2 = d
1
hx

sin(αhx) + e
1
hy

sin(βhy)

ω1 =
2b

hxhy

sin(αhx) sin(βhy).
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It follows that

|γ|2 =
(1− (1− θdiff)∆tε1 − (1− θcross)∆tω1)2 + ((1− θcov)ε2)2

(1 + θdiff∆tε1 + θcross∆tω1)2 + (θcov∆tε2)2
.

From section 3.7.6 we see that the θ-method for convection equation is stable when θ ≥ 1
2 . We will use

this as our main motivation for assuming that θcov ≥ 1
2 , which results in

|γ|2 ≤ (1− (1− θdiff)∆tε1 − (1− θcross)∆tω1)2

(1 + θdiff∆tε1 + θcross∆tω1)2
. (5.35)

Finding general ranges of θdiff, θcross and ω for which |γ| ≤ 1 is a non-trivial task. Since second order

accuracy is only obtained when θdiff = θcross = 1
2 we feel that it is unnecessary to prove stability for

complete ranges of these values. We will focus on specific choices of these parameters.

θdiff = θcross = Θ and ω = 0

Substituting in (5.35) results in

|γ|2 ≤ (1− (1−Θ)∆t(ε1 + ω1))2

(1 + Θ∆t(ε1 + ω1))2
.

From the assumption that Θ ≥ 1
2 it follows that |γ|2 ≤ 1 if we can show that ε1 + ω1 ≥ 0. To show this

we will make use of the following lemma

Lemma 5.4.1. (McKee et al. [1996])

q sin2 θ

2
+ r sin2 φ

2
+

s

4
sin θ sin φ ≥ 0 (5.36)

if q ≥ 0, r ≥ 0 and 4qr > s2.

Proof. The inequality trivially holds if s
4 sin θ sin φ ≥ 0. If s

4 sin θ sin φ < 0 then

q sin2 θ

2
+ r sin2 φ

2
+

s

4
sin θ sin φ

= q sin2 θ

2
+ r sin2 φ

2
− |s|

4
| sin θ sin φ|

> q sin2 θ

2
+ r sin2 φ

2
−
√

qr

2
| sin θ sin φ|

=
(√

q

∣∣∣∣sin
θ

2

∣∣∣∣−
√

r

∣∣∣∣sin
φ

2

∣∣∣∣
)2

+ 2
√

qr

∣∣∣∣sin
θ

2
sin

φ

2

∣∣∣∣−
√

qr

2
| sin θ sin φ|

=
(√

q

∣∣∣∣sin
θ

2

∣∣∣∣−
√

r

∣∣∣∣sin
φ

2

∣∣∣∣
)2

+ 2
√

qr

∣∣∣∣sin
θ

2
sin

φ

2

∣∣∣∣−
√

qr

2

∣∣∣∣4 sin
θ

2
cos

θ

2
sin

φ

2
cos

φ

2

∣∣∣∣

=
(√

q

∣∣∣∣sin
θ

2

∣∣∣∣−
√

r

∣∣∣∣sin
φ

2

∣∣∣∣
)2

+ 2
√

qr

∣∣∣∣sin
θ

2
sin

φ

2

∣∣∣∣
(

1−
∣∣∣∣cos

θ

2
cos

φ

2

∣∣∣∣
)

≥ 0

where the first inequality follows from the assumption that 4qr > s2 and the final inequality from the

fact that
∣∣∣cos θ

2 cos φ
2

∣∣∣ ≤ 1.
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Corollary 5.4.1.

qc sin2 θ

2
+ rc sin2 φ

2
− sc

4
sin θ sin φ ≥ 0

if 4qcrc ≥ s2
c.

Proof. Simply use lemma 5.4.1 with q = qc, r = rc and s = −sc

4qr = 4qcrc ≥ s2
c = (−sc)2 = s2

By letting

q =
a

h2
x

, r =
c

h2
y

and s =
2b

hxhy

in lemma 5.4.1 we see that ε1 + ω1 ≥ 0 if we can show that 4qr ≥ s2. Consider

4qr =
4ac

h2
xh

2
y

≥ 4b2

h2
xh

2
y

= s2

where the inequality follows from the assumption that the PDE is parabolic. From the corollary it fol-

lows that ε1−ω1 ≥ 0. In particular we have shown that the second order Crank-Nicolson scheme is von

Neumann stable. The explicitness of a finite difference method scheme is directly linked to the stabil-

ity and the computational effort of the scheme. Explicit schemes require less computational effort but

tend to be more unstable than the slower implicit schemes. In the following subsection we discuss a

combination of these schemes where we keep the cross derivative term explicit and the diffusion part

implicit,

θdiff = 1, θcross = 0 and ω = 0

Substituting in (5.35) results in

|γ|2 ≤ (1−∆tω1)2

(1 + ∆tε1)2

=
1− 2∆tω1 + ∆t2ω2

1

1 + 2∆tε1 + ∆t2ε2
1

From the fact that ε1 + ω1 ≥ 0 it follows that |γ|2 ≤ 1 if we can show that ε2
1 ≥ ω2

1 . Consider

ε2
1 − ω2

1 = (ε1 + ω1)(ε1 − ω1) ≥ 0.

where the inequality follows from the fact that ε1 + ω1 ≥ 0 and ε1 − ω1 ≥ 0. This case will play an

important role when we consider more modern FDMs in the later sections.
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5.4.2 Matrix formulation

Before we attempt to prove stability under the maximum norm we will rewrite the IMEX-method in

matrix form. Equation (5.25) together with the boundary conditions can be written in matrix form as

(Iim − θdiff∆t(Adiff + Cdiff)− θcov∆t(Acov + Ccov)− 2θcross∆tB)uk + 1 (5.37)

= (Iex + (1− θdiff)∆t(Adiff + Cdiff) + (1− θcov)∆t(Acov + Ccov) + 2(1− θcross)∆tB)uk + 1 + b

for k = 0, 1, . . . , l − 1. To proceed from one time level to the next, this matrix equation (5.37) must be

solved. The (m+1)(n+1)× (m+1)(n+1)-matrices Adiff and Cdiff contain the divided difference approx-

imations for the diffusion operator in the x and y directions respectively, whereas the approximation of

the convection operators are contained in Acov and Ccov. The (m+1)(n+1)×(m+1)(n+1)-matrix B con-

tains the approximations of the cross derivative at the respective grid points. The (m+1)(n+1) vector b

contains the information given by the boundary conditions. The rows of Iim and Iex corresponding to in-

terior grid points have one as a diagonal element and zeros as off-diagonal elements. The rows of these

matrices corresponding to boundary points, at x = lx and x = rx, incorporate the relevant boundary

conditions.

The ordering of the elements in u will determine the structure of Adiff, Cdiff, Acov, Ccov and B. Two different

orderings will be considered in this project, the first will ensure that Adiff + Acov is a tri-diagonal matrix

and the second that Cdiff + Ccov is a tri-diagonal matrix. Tri-diagonal matrices can be viewed as banded

matrices with upper and lower bandwidths of one3. We will denote the first ordering by the subscript A

and the second by the subscript C

uA = (u0, 0, u1, 0, . . . , um, 0; . . . . . . ; u0, j, u1, j, . . . , um, j; . . . . . . ;u0, n, u1, n, . . . , um, n)T

uC = (u0, 0, u0, 1, . . . , u0, n; . . . . . . ; ui, 0, ui, 1, . . . , ui, n; . . . . . . ; um, 0, um, 1, . . . , um, n)T

A banded matrix with an upper band of b and an lower band of a can be represented in a-1-b bandwidth

form as suggested in Press et al. [1992] and Hagan and West [2006]4. For an arbitrary matrix, G, |G||u|
will denote Gu in bandwidth form.

To illustrate the structure of the matrices in (5.37) it is convenient to give a simple example. The case

when m = 3 and n = 2 will be used to illustrate the structure of the matrices Adiff + Acov, Cdiff + Ccov, B,

Iim and Iex for both of the orderings. Figure (5.1) shows the finite difference grid for our example. The

1-1-1 bandwidth form of Adiff,A + Acov,A is given by,

3When A is banded : Ai, j = 0 if i − j > a or i − j < −b where 0 ≤ a, b < n. The numbers a and b are called the lower

bandwidth and upper bandwidth respectively.
4A matrix in a-1-b bandwidth form means that the entry in the ith row and jth column in this representation actually lies in

the ith row and i + j − a− 1th column in the original matrix representation. The entries denoted by× are irrelevant.

65



CHAPTER 5. TWO DIMENSIONAL FINITE DIFFERENCE METHODS

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

i

j

Smoothing condition
Neumann boundary condition
Dirichlet boundry condition
Unknown grid point

Figure 5.1: Finite difference grid when m = 3 and n = 2.
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Cdiff,A + Ccov,A can be written in (m + 1)-1-(m + 1) bandwidth form as
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|Cdiff,A + Ccov,A||uk
A| =

×
m columns︷︸︸︷. . . 0 uk

0, 0

× − e1, 0
hy

e1, 0
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× − e2, 0
hy
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3, 2

and BA can be written in (m + 2)-1-(m + 2) bandwidth form as
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The boundary vector is given by

bA = (cl, 0, 0, crh
−
x ; cl, 0, 0, crh

−
x ; cl, 0, 0, crh

−
x )T

For the second ordering of the elements in u it is easy to see that Adiff,C + Acov,C can be written in (n + 1)-

1-(n + 1) bandwidth form as
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The tri-diagonal matrix Cdiff,C + Ccov,C can be written in 1-1-1 bandwidth form as
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and BC can be written in (n + 2)-1-(n + 2) bandwidth form as

69



CHAPTER 5. TWO DIMENSIONAL FINITE DIFFERENCE METHODS
|B

C
||u

k C
|=

×
×

×
n
−

2
co

l
︷︸

︸︷
..

.
×

0
u

k 0
,
0

×
×

×
0

u
k 0

,
1

×
×

0
u

k 0
,
2

×
0

u
k 1

,
0

(1
+

ω
)b

1
,
1

4
h

x
h

y
−

2
ω

b
1

,
1

4
h

x
h

y
−

(1
−

ω
)b

1
,
1

4
h

x
h

y
−

2
ω

b
1

,
1

4
h

x
h

y

4
ω

b
1

,
1

4
h

x
h

y
−

2
ω

b
1

,
1

4
h

x
h

y
−

(1
−

ω
)b

1
,
1

4
h

x
h

y
−

2
ω

b
1

,
1

4
h

x
h

y

(1
+

ω
)b

1
,
1

4
h

x
h

y
u

k 1
,
1

0
u

k 1
,
2

0
u

k 2
,
0

(1
+

ω
)b

2
,
1

4
h

x
h

y
−

2
ω

b
2

,
1

4
h

x
h

y
−

(1
−

ω
)b

2
,
1

4
h

x
h

y
−

2
ω

b
2

,
1

4
h

x
h

y

4
ω

b
2

,
1

4
h

x
h

y
−

2
ω

b
2

,
1

4
h

x
h

y
−

(1
−

ω
)b

2
,
1

4
h

x
h

y
−

2
ω

b
2

,
1

4
h

x
h

y

(1
+

ω
)b

2
,
1

4
h

x
h

y
u

k 2
,
1

0
×

u
k 2

,
2

0
×

×
u

k 3
,
0

0
×

×
×

u
k 3

,
1

0
×

..
.

︸︷
︷︸

n
−

2
co

l

×
×

×
u

k 3
,
2

Th
e

m
od

ifi
ed

id
en

ti
ty

m
at

ri
ce

s
ar

e
gi

ve
n

by
,

|I i
m

,C
||u

k C
|=

×
n

co
l

︷︸
︸︷

..
.

1
u

k 0
,
0

×
1

u
k 0

,
1

×
1

u
k 0

,
2

1
u

k 1
,
0

1
u

k 1
,
1

1
u

k 1
,
2

1
u

k 2
,
0

1
u

k 2
,
1

1
u

k 2
,
2

−1
1

u
k 3

,
0

−1
1

u
k 3

,
1

−1
1

u
k 3

,
2

an
d

|I e
x,

C
||u

k C
|=

0
u

k 0
,
0

0
u

k 0
,
1

0
u

k 0
,
2

1
u

k 1
,
0

1
u

k 1
,
1

1
u

k 1
,
2

1
u

k 2
,
0

1
u

k 2
,
1

1
u

k 2
,
2

0
u

k 3
,
0

0
u

k 3
,
1

0
u

k 3
,
2

70



CHAPTER 5. TWO DIMENSIONAL FINITE DIFFERENCE METHODS

The boundary vector is given by

bC = (cl, cl, cl; 0, 0, 0; 0, 0, 0; crh
−
x , crh

−
x , crh

−
x )T .

5.4.3 Stability under the maximum norm

For this subsection we replace the von Neumann condition in (5.27) with a Dirichlet condition. It is easy

to see that if

Iim − θdiff∆t(Adiff + Cdiff)− θcov∆t(Acov + Ccov)− 2θcross∆tB (5.38)

is a M-matrix, definition 3.5.1 can be applied with x = (1, . . . , 1)T to deduce that

||(Iim − θdiff∆t(Adiff + Cdiff)− θcov∆t(Acov + Ccov)− 2θcross∆tB)−1|| ≤ 1.

Hence, as done in section 3.5, the IMEX-method will be stable if we can show that (5.38) is a M-matrix

and that

||Iex + (1− θdiff)∆t(Adiff + Cdiff) + (1− θcov)∆t(Acov + Ccov) + 2(1− θcross)∆tB||∞ ≤ 1.

We will make use of the following theorems to find conditions under which the IMEX-scheme is stable

under the maximum norm.

Lemma 2. For any sequence of real numbers (xi)n
i = 1 ∈ R we have

n∑
i = 1

(|xi| − xi) ≥ 0 and
n∑

i = 1

(|xi| − xi) = 0 ⇐⇒ xi ≥ 0 ∀i.

Proof. The first statement follows directly from the fact that |x| ≥ x ∀x ∈ R. It is easy to see that∑n

i = 1(|xi|−xi) = 0 if xi ≥ 0 for all i, to prove the converse we will make use of induction. It is clear that

the statement must be true if n = 1, assume the statement holds for n = k. Then for n = k + 1 we have

0 =
k + 1∑
i = 1

(|xi| − xi) =
k∑

i = 1

(|xi| − xi) + |xk + 1| − xk + 1.

From the fact that |x| − x ≥ 0 ∀x ∈ R it follows that the equation above can only be true if
∑k

i = 1(|xi| −
xi) = 0 and |xk + 1| − xk + 1 = 0. By making use of the induction assumptions we see that it must be true

that xi ≥ 0 ∀i.

Lemma 3. Consider the parabolic PDE

∂u

∂t
= Lu

on the domain Ω ∈ R2. Let Ω denote the truncated computational domain and L the discrete difference operator.

Let the discrete operator L be a linear combination of the Taylor expansions about the reference grid point and

immediate surrounding grid points

Luk

i, j =
i + 1∑

q = i − 1

j + 1∑
r = j − 1

αq, ruq, r.
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If L is consistent with L then it will always be the case that

αi, j = −
i + 1∑

q=i−1
q 6=i

j + 1∑
r=j−1

r 6=j

αq, r.

Proof. The linear parabolic operator L can be approximated by taking linear combinations of equations

(5.13) to (5.20) that removes the lower order terms

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

αq, ru(xq, yr, τk) =




i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

αq, r


 u(xi, yj, τk) + Lu(xi, yj, τk) + O(h3

x, h
3
xhy, hxh

3
y, h

3
y)

≈




i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

αq, r


 uk

i, j + Luk

i, j

which can be rewritten as

Luk

i, j =
i + 1∑

q=i−1
q 6=i

j + 1∑
r=j−1

r 6=j

αq, ru
k

q, r −




i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

αq, r


uk

i, j. (5.39)

Theorem 5.4.1. Consider a consistent finite difference scheme

∆+
t uk

i, j = Luk + 1
i, j + L̃uk

i, j (5.40)

where L and L̃ are of the form (5.39). If the coefficients of the difference operators L and L̃, excluding the coefficient

of ui, j , that approximates the continues parabolic operator L is non-negative and

1 + ∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

αq, r ≥ 0

1−∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

α̃q, r ≥ 0

then the θ-method is stable.

Proof. By making use of lemma 3 we see that equation (5.40) can be rewritten as

−∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

αq, ru
k + 1
q, r +


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q 6=i
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r 6=j

αq, r
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uk + 1
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q 6=i
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r 6=j

α̃q, ru
k

q, r +
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q 6=i
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r 6=j

α̃q, r


uk

i, j

Ignoring the boundary conditions for the moment, note that these equations can be written in matrix

form as

(I−∆tX)uk + 1 = (I + ∆tX̃)uk.

As noted in section 3.5.2 this scheme will be stable under the maximum norm if we can show that
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• the implicit matrix, (I−∆tX), is an M-matrix,

• (I−∆tX)e = e where e = (1, . . . , 1)T ,

• ||I + ∆tX̃||∞ ≤ 1.

The second property follows directly from lemma 3. By making use of the the definition of an M-matrix,

definition 3.5.1, we see that the implicit matrix implied by the equation above will only be an M-matrix

when αq, r ≥ 0 ∀(q, r) ∈ {(i + 1, j + 1), (i− 1, j − 1), (i + 1, j − 1), (i− 1, j + 1), (i + 1, j), (i− 1, j), (i, j +

1), (i, j − 1)} and if

1 + ∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

αq, r ≥ 0.

By definition of the maximum norm we have

||I + ∆tX̃||∞ = max
i, j





∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

|α̃q, r|+

∣∣∣∣∣∣∣
1−∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

α̃q, r

∣∣∣∣∣∣∣





.

Which will be less equal to one if we can show that

Υ := ∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

|α̃q, r|+

∣∣∣∣∣∣∣
1−∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

α̃q, r

∣∣∣∣∣∣∣
≤ 1 (5.41)

for all (i, j). Assume that there exists a node point (i, j) such that

1−∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

α̃q, r < 0. (5.42)

Using lemma 2 we see that

∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

|α̃q, r| ≥ ∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

α̃q, r > 1

where the last inequality follows from the assumption made in equation (5.42). This implies that

∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

(|α̃q, r|+ α̃q, r) > 2.

If we substitute (5.42) in (5.41) we see that for the scheme to be stable under the maximum norm it must

be true that

∆t
i + 1∑

q=i−1
q 6=i

j + 1∑
r=j−1

r 6=j

(|α̃q, r|+ α̃q, r) ≤ 2.

This contradiction implies that for the scheme to be stable we must have that

1−∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

α̃q, r ≥ 0. (5.43)
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Substituting in (5.41) results in

Υ = ∆t

i + 1∑
q=i−1

q 6=i

j + 1∑
r=j−1

r 6=j

(|α̃q, r| − α̃q, r) ≤ 0.

Using lemma 2 we see that Υ can only be equal to zero and that this will only be true when all the

coefficients are non-negative.

In order to prove stability we are going to use theorem 5.4.1, hence we need to obtain the relevant

coefficients. These coefficients can obtained by expanding and rearranging equation (5.24)

∆+
t uk

i, j = Lθdiff, θcov, θcross, ωuk + 1
i, j + L1 − θdiff, 1 − θcov, 1 − θcross, ωuk

i, j

where

Lθdiff, θcov, θcross, ωuk

i, j =
(

θdiff

ai, j

h2
x

− θcov

di, j

2hx

− θcrossω
bi, j

hxhy

)
uk

i − 1, j +
(

θdiff

ai, j

h2
x

+ θcov

di, j

2hx

− θcrossω
bi, j

hxhy

)
uk

i + 1, j

+
(

θdiff

ci, j

h2
x

− θcov

ei, j

2hx

− θcrossω
bi, j

hxhy

)
uk

i, j − 1 +
(

θdiff

ci, j

h2
x

+ θcov

ei, j

2hx

− θcrossω
bi, j

hxhy

)
uk

i, j + 1

+
(

θcross(1 + ω)
bi, j

2hxhy

)
uk

i + 1, j + 1 +
(

θcross(1 + ω)
bi, j

2hxhy

)
uk

i − 1, j − 1

+
(

θcross(1− ω)
−bi, j

2hxhy

)
uk

i − 1, j + 1 +
(

θcross(1− ω)
−bi, j

2hxhy

)
uk

i + 1, j − 1

+
(
−θdiff

2ai, j

h2
x

− θdiff

2ci, j

h2
y

+ 2θcrossω
bi, j

hxhy

)
.uk

i, j (5.44)

From theorem 5.4.1 it follows that this scheme will be stable if we can prove that all coefficients, exclud-

ing the coefficients of uk
i, j , are non-negative. First we consider the case when bi, j 6= 0. From the fact

that θdiff, θcov, θcross ∈ [0, 1] and ω ∈ [−1, 1] it follows that the coefficients of uk + 1
i + 1, j + 1, uk + 1

i − 1, j − 1, uk + 1
i + 1, j − 1,

uk + 1
i − 1, j + 1, uk

i + 1, j + 1, uk
i − 1, j − 1, uk

i + 1, j − 1 and uk
i − 1, j + 1 will be non-negative if and only if ω = sgn(bi, j).

For purposes of computational efficiency the implicit matrices must not be functions of the corner points

i.e. the coefficients of uk + 1
i + 1, j + 1, uk + 1

i − 1, j − 1, uk + 1
i + 1, j − 1 and uk + 1

i − 1, j + 1 must be zero. The motivation for this

point will become clearer when we introduce splitting. For this reason we propose to keep the cross-

derivative explicit and the convection terms implicit. The difference operator becomes

∆+
t uk

i, j = Lθdiff, 1, 0, sgn(bi, j)u
k + 1
i, j + L1 − θdiff, 0, 1, sgn(bi, j)u

k

i, j

where θdiff ∈ (0, 1), we do not allow θdiff = 1 or θdiff = 0 since it is needed to control the positivity of

the off-diagonal elements for both the implicit and explicit side of the matrix equation. Control of the

positivity will be done via exponential fitting.

Exponential fitting

Using the fact that

f(x, y, ε) =
yε

2
coth

yε

2x
≥ |y|ε

2
(5.45)
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we deduce that the fitted scheme defined by

∆+
t uk

i, j =
[
θdiffai, j∆2

xu
k + 1
i, j + θdiffci, j∆2

yu
k + 1
i, j + di, j∆xu

k + 1
i, j + ei, j∆yu

k + 1
i, j

]

+
[
(1− θdiff)ãi, j∆2

xu
k

i, j + (1− θdiff)c̃i, j∆2
yu

k

i, j

]
+ 2bi, j∆sgn(bi, j)

xy uk

i, j,

where

ai, j = f

(
ai, j,

di, j

θdiff

, hx

)

ci, j = f

(
ci, j,

ei, j

θdiff

, hy

)

ãi, j = f

(
ai, j,

2|bi, j|
(1− θdiff)

hy, hx

)

c̃i, j = f

(
ci, j,

2|bi, j|
(1− θdiff)

hx, hy

)
,

will be stable under the maximum norm if the coefficients of uk + 1
i, j and uk

i, j are positive

1 + 2θdiff

ai, j∆t

h2
x

+ 2θdiff

ci, j∆t

h2
y

> 0 (5.46)

1− 2(1− θdiff)
ãi, j∆t

h2
x

− 2(1− θdiff)
c̃i, j∆t

h2
y

+ 2
|bi, j|∆t

hxhy

> 0. (5.47)

The parabolic nature of the PDE ensures that the first inequality will always be true. Furthermore θdiff

can be chosen such that the constraint in the second equation is not too severe. Another possibility

is to define separate parameters that determine implicitness of the diffusion operator for the x and y

direction respectively, we will not pursue this idea further. Considering both orderings, we can rewrite

these equations in matrix form as follows

(Iim,A − θdiff∆t(Adiff,A + Cdiff,A)−∆t(Acov,A + Ccov,A))uk + 1
A

= (Iex,A + (1− θdiff)∆t(Ãdiff,A + C̃diff,A) + 2∆tBA)uk + 1
A + bA

for the first ordering, and

(Iim,C − θdiff∆t(Adiff,C + Cdiff,C)−∆t(Acov,C + Ccov,C))uk + 1
C

= (Iex,C + (1− θdiff)∆t(Ãdiff,C + C̃diff,C) + 2∆tBC)uk + 1
C + bC

for the second, where the implicit matrices are M-matrices under the stability condition (5.46). As a

special case we will consider the stability of the scheme when bi, j = 0 on the computational domain Ω.

Stability when b(x, y) ≡ 0

The operator defined in (5.44) becomes

Lθdiff, θcov, θcross, ωuk

i, j =
(

θdiff

ai, j

h2
x

− θcov

di, j

2hx

)
uk

i − 1, j +
(

θdiff

ai, j

h2
x

+ θcov

di, j

2hx

)
uk

i + 1, j

+
(

θdiff

ci, j

h2
x

− θcov

ei, j

2hx

)
uk

i, j − 1 +
(

θdiff

ci, j

h2
x

+ θcov

ei, j

2hx

)
uk

i, j + 1

+
(
−θdiff

2ai, j

h2
x

− θdiff

2ci, j

h2
y

)
uk

i, j.
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Since the cross derivative term is zero we do not have to keep the convection part fully implicit, we only

need to make sure that the convection is never fully explicit (resp. fully implicit) whenever the diffusion

part is fully implicit (resp. explicit). The reason for this is that we need the diffusion part to control the

positivity of the off-diagonal elements. Using (5.45) we see that the following IMEX-scheme will have

positive off-diagonal terms

∆+
t uk

i, j =
[
θdiffai, j∆2

xu
k + 1
i, j + θdiffci, j∆2

yu
k + 1
i, j + θcovdi, j∆xu

k + 1
i, j + θcovei, j∆yu

k + 1
i, j

]

+
[
(1− θdiff)ãi, j∆2

xu
k

i, j + (1− θdiff)c̃i, j∆2
yu

k

i, j + (1− θcov)di, j∆xu
k

i, j + (1− θcov)ei, j∆yu
k

i, j

]
,

where

ai, j = f

(
ai, j,

θcovdi, j

θdiff

, hx

)

ci, j = f

(
ci, j,

θcovei, j

θdiff

, hy

)

ãi, j = f

(
ai, j,

(1− θcov)di, j

(1− θdiff)
, hx

)

c̃i, j = f

(
ci, j,

(1− θcov)ei, j

(1− θdiff)
, hy

)
.

Hence this scheme will be stable if the diagonal terms of the implicit and explicit matrices are positive.

This is trivially true for the implicit matrix, for the explicit matrix we need

1− (1− θdiff)
2ai, j∆t

h2
x

− (1− θdiff)
2ci, j∆t

h2
y

> 0

for the scheme to be stable under the maximum norm. Note for this very special case we can obtain

second order convergence and a scheme that is stable under the maximum norm if we choose θdiff =

θcov = 1
2 and ensure that

1− ai, j∆t

h2
x

− ci, j∆t

h2
y

> 0

We can obtain a scheme that is unconditionally stable under the maximum norm if we let θdiff = θcov = 1.

5.5 Convergence

Similarly as in section 3.6 we can use the Lax equivalence theorem to show convergence. Since IMEX-

schemes discussed are unconditionally consistent, we deduce that they are convergent whenever they

are stable.
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5.6 The Yanenko scheme

For equations of the form (5.1) Yanenko, Yanenko [1971], proposed the following stable and convergent

scheme

ũi, j − uk
i, j

∆t
= ai, j∆2

xũi, j + di, j∆xũi, j + bi, j∆ω

xyu
k

i, j (5.48)

uk + 1
i, j − ũi, j

∆t
= ci, j∆2

yu
k + 1
i, j + ei, j∆yu

k + 1
i, j + bi, j∆ω

xyũi, j (5.49)

where ai, j = a(xi, yj), bi, j = b(xi, yj) ci, j = c(xi, yj), di, j = d(xi, yj) and ei, j = e(xi, yj) for k =

0, 1, . . . , l. From these equations it is clear why we call this method a fractional step method, to proceed

from one time level to the next we first compute the solution at some fictitious intermediate time level.

It is clear that we only need to invert tri-diagonal matrices in the time marching procedure. In Ikonen

and Toivanen [2004] they note that finite difference methods which only invert M-matrices has better

stability properties. By making use of their observation and the discussions of the previous sections we

can deduce that the following fitted Yanenko scheme will show better stability properties than that of

the classical scheme5

ũi, j − uk
i, j

∆t
= f(ai, j, di, j, hx)∆2

xũi, j + di, j∆xũi, j + bi, j∆ω

xyu
k

i, j (5.50)

uk + 1
i, j − ũi, j

∆t
= f(ci, j, ei, j, hy)∆2

yu
k + 1
i, j + ei, j∆yu

k + 1
i, j + bi, j∆ω

xyũi, j (5.51)

After rearranging we obtain

(−λxxf(ai, j, di, j, hx) + λxdi, j)uk + 1
i − 1, j + (1 + 2f(ai, j, di, j, hx)λxx)uk + 1

i, j

+ (−λxxf(ai, j, di, j, hx)− λxdi, j)uk + 1
i + 1, j

= λxybi, j(1 + ω)[uk

i + 1, j + 1 + uk

i − 1, j − 1]− λxybi, j(1− ω)[uk

i − 1, j + 1 + uk

i + 1, j − 1] (5.52)

+ 4λxybi, jωuk

i, j − 2λxybi, jω[uk

i − 1, j + uk

i + 1, j + uk

i, j − 1 + uk

i, j + 1]

and

(−λyyf(ci, j, ei, j, hy) + λyei, j)uk + 1
i, j − 1 + (1 + 2f(ci, j, ei, j, hy)λyy)uk + 1

i, j

+ (−λyyf(ci, j, ei, j, hy)− λyei, j)uk + 1
i, j + 1

= λxybi, j(1 + ω)[uk

i + 1, j + 1 + uk

i − 1, j − 1]− λxybi, j(1− ω)[uk

i − 1, j + 1 + uk

i + 1, j − 1] (5.53)

+ 4λxybi, jωuk

i, j − 2λxybi, jω[uk

i − 1, j + uk

i + 1, j + uk

i, j − 1 + uk

i, j + 1]

for i = 1, 2, . . . , m− 1, j = 1, 2, . . . , n− 1 and k = 0, 1, . . . , l − 1, where the function f : R+ × R ×
R+ → R+ is defined by equation (5.45).

5.6.1 Boundary conditions

To obtain boundary conditions for the Yanenko scheme we simply use boundary conditions that coin-

cide with those of the original problem. It is well known that the time-dependance of such boundary
5This follows from the observation of the previous section that exponential fitting allows for stability under the maximum

norm.
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conditions might result in a lower rate of convergence near the boundary than the rate of convergence

on the interior of the grid, see Fairweather and Mitchell [1967], Khaliq and Twizell [1986] and Kis̃kis

and C̃iegis [1997]. All the boundary conditions that we are going to use are either time-independent or

smoothing conditions. The Dirichlet condition posed in equation (5.26) can be split as follows

ũ0, j = cl for j = 0, 1, . . . , n (5.54)

uk + 1
0, j = cl for j = 0, 1, . . . , n

where upwinding is used to ensure stability under the maximum norm. we From the fact that cr is

time independent it follows that the von Neumann condition in equation (5.27) can be made locally one

dimensional as follows
ũm, j − ũm − 1, j

h−x
= cr for j = 0, 1, . . . , n (5.55)

uk + 1
m, j = ũm, j for j = 0, 1, . . . , n.

The smoothing condition at y0 results in a two dimensional convection equation. For such problems we

have the following first order, consistent and convergent locally one dimensional scheme

ũi, 0 − uk
i, 0

∆t
= di, 0∆+

x ũi, 0 for i = 1, 2, . . . , m− 1 (5.56)

uk + 1
i, 0 − ũi, 0

∆t
= ei, 0∆+

y uk + 1
i, 0 for i = 1, 2, . . . , m− 1.

As noted in section 3.7 we need to make use of upwinding to ensure the stability of this scheme under

the maximum norm. The smoothing condition at yn results in a one dimensional convection diffusion

equation. As shown in chapter 3 such problems can be solved with the following stable and convergent

scheme
ũi, n − uk

i, n

∆t
= ai, n∆2

xũi, n + di, n∆xũi, n for i = 1, 2, . . . , m− 1 (5.57)

uk + 1
i, n = ũi, n i = 1, 2, . . . , m− 1.

As noted in section 3.5.2 we can make use of exponential fitting to ensure that this boundary condi-

tion is stable under the maximum norm. Note that the proposed boundary conditions do not remove

the tri-diagonal property from the relevant matrices. We conclude the motivation for these boundary

conditions with the following quote from Kis̃kis and C̃iegis [1997]

Note that purely implicit locally one dimensional methods do not require any correction

of the boundary conditions, since they are unconditionally stable and preserve the optimal

accuracy order.

5.7 Consistency

By adding the two fractional steps in the Yanenko scheme, (5.50) and (5.51), we obtain

uk + 1
i, j − uk

i, j

∆t
= f(ai, j, di, j, hx)∆2

xũi, j + di, j∆xũi, j (5.58)

+ bi, j∆ω

xyũi, j + bi, j∆ω

xyu
k

i, j

+ f(ci, j, ei, j, hx)∆2
xu

k + 1
i, j + ei, j∆yu

k + 1
i, j .
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Subtracting equation (5.50) from (5.51) results in

uk + 1
i, j − 2ũi, j + uk

i, j

∆t
= −f(ai, j, di, j, hx)∆2

xũi, j − di, j∆xũi, j

+ bi, j∆ω

xyũi, j − bi, j∆ω

xyu
k

i, j

+ f(ci, j, ei, j, hx)∆2
xu

k + 1
i, j + ei, j∆yu

k + 1
i, j

which implies that

ũi, j =
uk + 1

i, j +uk
i, j

2 −∆t

2
[−f(ai, j, di, j, hx)∆2

xũi, j − di, j∆xũi, j

+bi, j∆ω

xyũi, j − bi, j∆ω

xyu
k

i, j

+f(ci, j, ei, j, hx)∆2
xu

k + 1
i, j + ei, j∆yu

k + 1
i, j

]

=
uk + 1

i, j +uk
i, j

2 +O(∆t).

Substitution in equation (5.58) shows that the Yanenko scheme is equivalent to

uk + 1
i, j − uk

i, j

∆t
= f(ai, j, di, j, hx)∆2

x

(
uk + 1

i, j + uk
i, j

2

)
+ di, j∆x

(
uk + 1

i, j + uk
i, j

2

)

+ bi, j∆ω

xy

(
uk + 1

i, j + uk
i, j

2

)
+ bi, j∆ω

xyu
k

i, j

+ f(ci, j, ei, j, hx)∆2
xu

k + 1
i, j + ei, j∆yu

k + 1
i, j + O(∆t)

The truncation error becomes

L∆t

hxhy
v(xi, yj, τk) =

v(xi, yj, τk + 1)− v(xi, yj, τk)
∆t

−
[
f(ai, j, di, j, hx)∆2

x

(
v(xi, yj, τk + 1) + v(xi, yj, τk)

2

)

+ di, j∆x

(
v(xi, yj, τk + 1) + v(xi, yj, τk)

2

)

+ bi, j∆ω

xy

(
v(xi, yj, τk + 1) + v(xi, yj, τk)

2

)

+ f(ci, j, ei, j, hx)∆2
xv(xi, yj, τk + 1) + ei, j∆yv(xi, yj, τk + 1)

+ bi, j∆ω

xyv(xi, yj, τk)

]
+ O(∆t)
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where the last term is known as the splitting error. Substituting the Taylor approximations derived in

section 5.3 results in

L∆t

hx, hy
v(xi, yj, τk) =

∂v

∂τ
(xi, yj, τk + 1

2
) +

1
24

∆t2
∂3v

∂τ3
(xi, yj, τk + 1

2
) + . . .

− f(ai, j, di, j, hx)
[

∂2v

∂x2
(xi, yj, τk + 1

2
) + 1

2 ( 1
2∆t)2

∂4v

∂τ2∂x2
(xi, yj, τk + 1

2
) + . . .

]

− di, j

[
∂v

∂x
(xi, yj, τk + 1

2
) + 1

2 (1
2∆t)2

∂3v

∂τ2∂x
(xi, yj, τk + 1

2
) + . . .

]

− f(ci, j, ei, j, hy)
[
∂2v

∂y2
(xi, yj, τk + 1

2
) + 1

2∆t
∂3v

∂τ2∂y
(xi, yj, τk + 1

2
) + 1

2 ( 1
2∆t)2

∂4v

∂τ2∂y2
(xi, yj, τk + 1

2
) + . . .

]

− ei, j

[
∂v

∂y
(xi, yj, τk + 1

2
) + 1

2∆t
∂2v

∂τ∂y
(xi, yj, τk + 1

2
) + 1

2 ( 1
2∆t)2

∂3v

∂τ2∂y
(xi, yj, τk + 1

2
) + . . .

]

− 2bi, j

[
∂2v

∂x∂y
(xi, yj, τk + 1

2
)− 1

4∆t
∂3v

∂τ∂x∂y
(xi, yj, τk + 1

2
) + 1

2 ( 1
2∆t)2

∂4v

∂τ2∂x∂y
(xi, yj, τk + 1

2
) + . . .

]

+ O(h2
x, hxhy, h

2
y, ∆t)

=
[
∂v

∂τ
(xi, yj, τk + 1

2
)− ai, j

∂2v

∂x2
(xi, yj, τk + 1

2
)− di, j

∂v

∂x
(xi, yj, τk + 1

2
)

−ci, j

∂2v

∂y2
(xi, yj, τk + 1

2
)− ei, j

∂v

∂y
(xi, yj, τk + 1

2
)− 2bi, j

∂2v

∂x∂y
(xi, yj, τk + 1

2
)
]

− 1
2∆t

[
ci, j

∂3v

∂τ2∂y
(xi, yj, τk + 1

2
) + ei, j

∂2v

∂τ∂y
(xi, yj, τk + 1

2
)− 2bi, j

∂3v

∂τ∂x∂y
(xi, yj, τk + 1

2
)
]

(5.59)

+ O(h2
x, hxhy, h

2
y, ∆t)

= O(h2
x, hxhy, h

2
y, ∆t)

where we used the fact that f(x, y, ε) = x + O(ε2) to obtain the second equation and the fact that v is the

solution of (5.1) to obtain the last equation. From the last equation it is clear that L∆t
hx, hy

v(xi, yj, τk) → 0

as ∆t, hx, hy → 0 hence we can deduce that the Yanenko scheme is consistent.

5.8 Stability

In this section we will discuss the stability of the fitted Yanenko scheme by making use of von Neumann

stability analysis and the matrix method of analysis.

5.8.1 von Neumann stability analysis

Again assuming constant coefficients we use von Neumann stability analysis to obtain necessary condi-

tions for stability. Substitution of (5.34) in (5.50) and (5.51) results in

γ̃

γk
=

1− bij
∆t

hxhy
sin(αhx) sin(βhy)

1 + 4f(ai, j, di, j, hx)∆t
h2

x
sin2(αhx

2 )− Idi, j
∆t
hx

sin(αhx)
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and

γk + 1

γ̃
=

1− bi, j
∆t

hxhy
sin(αhx) sin(βhy)

1 + 4f(ci, j, ei, j, hy)∆t
h2

y
sin2(βhy

2 )− Iei, j
∆t
hy

sin(βhy)

respectively. By multiplying these two equations we obtain

γk + 1

γk
=

α

ω1 − ω2 − I(β1 + β2)

where I =
√−1 and

α =
(

1− bi, j

∆t

hxhy

sin(αhx) sin(βhy)
)2

= 1− 2bij

∆t

hxhy

sin(αhx) sin(βhy) + b2
ij

(
∆t

hxhy

)2

sin2(αhx) sin2(βhy)

= 1− 2bij

∆t

hxhy

sin(αhx) sin(βhy) + 16b2
ij

(
∆t

hxhy

)2

sin2

(
αhx

2

)
sin2

(
βhy

2

)
cos2

(
αhx

2

)
cos2

(
βhy

2

)
,

β1 = ei, j

∆t

hy

sin(βhy)
(

1 + 4f(ai, j, di, j, hx)
∆t

h2
x

sin2

(
βhy

2

))
,

β2 = di, j

∆t

hx

sin(αhx)
(

1 + 4f(ci, j, ei, j, hy)
∆t

h2
y

sin2

(
βhy

2

))
,

ω1 = 1 + 4f(ai, j, di, j, hx)
∆t

h2
x

sin2

(
αhx

2

)
+ 4f(ci, j, ei, j, hy)

∆t

h2
y

sin2

(
βhy

2

)

+ 16f(ai, j, di, j, hx)f(ci, j, ei, j, hy)
(

∆t

hxhy

)2

sin2

(
αhx

2

)
sin2

(
βhy

2

)
,

and

ω2 = ei, jdi, j

∆t2

hxhy

sin(αhx) sin(βhy).

By making use of the following identity
∣∣∣∣
a + Ib

c + Id

∣∣∣∣
2

=
a2 + b2

c2 + d2

and the fact that ω1ω2 = β1β2 we deduce that
∣∣∣∣
γk + 1

γk

∣∣∣∣
2

=
α2

ω2
1 + ω2

2 + β2
1 + β2

2

≤ α2

ω2
1

.

The inequality above arises from the fact that ω2
2 + β2

1 + β2
2 ≥ 0. Since α ≥ 0 and ω1 ≥ 0 we can rewrite

the equation above as
∣∣∣∣
γk + 1

γk

∣∣∣∣ ≤
α

ω1

.

It follows that the scheme will be proven stable if we can show that

α

ω1

≤ 1.
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Note that this will be true if we can prove

16
(

∆t

hxhy

)2

sin2

(
αhx

2

)
sin2

(
βhy

2

)[
f(ai, j, di, j, hx)f(ci, j, ei, j, hy)− b2

ij cos2

(
αhx

2

)
cos2

(
βhy

2

)]
≥ 0

(5.60)

and

4f(ai, j, di, j, hx)
∆t

h2
x

sin2

(
αhx

2

)
+ 4f(ci, j, ei, j, hy)

∆t

h2
y

sin2

(
βhy

2

)
+ 2bij

∆t

hxhy

sin(αhx) sin(βhy) ≥ 0.

(5.61)

To show this we will need to make use of the following lemma.

Lemma 5.8.1.

f(ai, j, di, j, hx)f(ci, j, ei, j, hy)− b2
ij > 0

Proof. If we can show that f(x, y, ε) ≥ x for all x, y, ε ∈ R+ × R× R+ then we have that

f(ai, j, di, j, hx)f(ci, j, ei, j, hy)− b2
ij ≥ ai, jci, j − b2

ij

> 0

where the final inequity follows from the assumption that the PDE considered is parabolic. Consider

the following

f(x, y, ε)− x =
yε

2
coth

yε

2x
− x

= x
[ yε

2x
coth

yε

2x
− 1

]

= x

[
θ
cosh θ

sinh θ
− 1

]

= x
θ

sinh θ

[
cosh θ − sinh θ

θ

]

where θ = yε
2x ∈ R. The following Taylor expansions of cosh θ and sinh θ are valid for all θ ∈ R

cosh θ = 1 +
θ2

2!
+

θ4

4!
+

θ6

6!
+ . . .

sinh θ = θ +
θ3

3!
+

θ5

5!
+

θ7

7!
+ . . .

By back substitution we obtain

f(x, y, ε)− x = x
θ

sinh θ

[(
1
2!
− 1

3!

)
θ2 +

(
1
4!
− 1

5!

)
θ4 +

(
1
6!
− 1

7!

)
θ6 + . . .

]

≥ 0. (5.62)

The last line follows from the fact that θ
sinh θ ≥ 0 and 1

n! − 1
(n+1)! > 0 for all n ∈ N.

To prove (5.60) consider the following

16
(

∆t

hxhy

)2

sin2

(
αhx

2

)
sin2

(
βhy

2

)[
f(ai, j, di, j, hx)f(ci, j, ei, j, hy)− b2

ij cos2

(
αhx

2

)
cos2

(
βhy

2

)]

≥ 16
(

∆t

hxhy

)2

sin2

(
αhx

2

)
sin2

(
βhy

2

) [
f(ai, j, di, j, hx)f(ci, j, ei, j, hy)− b2

ij

]

≥ 0
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where the first inequality follows from the fact that cos2
(

αhx

2

)
cos2

(
βhy

2

)
≤ 1 and the second from

lemma 5.8.1. To see that (5.61) is true, note that it is exactly the same as equation (5.36) in lemma 5.4.1 if

we make the following substitutions

a = 4f(ai, j, di, j, hx)
∆t

h2
x

, c = 4f(ci, j, ei, j, hy)
∆t

h2
y

and b = 8bij

∆t

hxhy

.

From the fact that

4ac− b2 = 64
(

∆t

hxhy

)2 (
f(ai, j, di, j, hx)f(ci, j, ei, j, hy)− b2

ij

)

> 0

it follows that we can apply lemma 5.4.1 to deduce that equation (5.61) holds.

5.8.2 Matrix formulation

Equations (5.50) and (5.51) can be rewritten in matrix form as

(Iim,A −∆t(Adiff,A + Acov,A))u
k + 1

2
A = (Iex,A + ∆tBA)uk

A + b1, A (5.63)

(Iim,C −∆t(Cdiff,C + Ccov,C))uk + 1
C = (Iex,C + ∆tBC)u

k + 1
2

C + b2, C (5.64)

where Adiff,A and Cdiff,C are the exponentially fitted versions of the matrices defined in section 5.4.2. Let

the boundary vectors b1, A and b2, C be defined as

b1, A = (cl, 0, 0, crh
−
x ; cl, 0, 0, crh

−
x ; cl, 0, 0, crh

−
x )T

b2, C = (cl, cl, cl; 0, 0, 0; 0, 0, 0; 0, 0, 0)T

and Iim,C and Iex,C redefined as

|Iim,C ||uk
C| =

1 uk
0, 0

1 uk
0, 1

1 uk
0, 2

1 uk
1, 0

1 uk
1, 1

1 uk
1, 2

1 uk
2, 0

1 uk
2, 1

1 uk
2, 2

1 uk
3, 0

1 uk
3, 1

1 uk
3, 2

and |Iex,C ||uk
C | =

0 uk
0, 0

0 uk
0, 1

0 uk
0, 2

1 uk
1, 0

1 uk
1, 1

1 uk
1, 2

1 uk
2, 0

1 uk
2, 1

1 uk
2, 2

1 uk
3, 0

1 uk
3, 1

1 uk
3, 2

The fundamental motivation of splitting becomes clear in equations (5.63) and (5.64). For the classical

schemes considered in the previous section a single matrix equation, with five non zero diagonals, needs

to be solved. Splitting allows to us solve two tri-diagonal system of equations instead. The fact that tri-

diagonal systems can be solved very efficiently is one of the main reasons why splitting methods became

very popular. As an aside we will give a more intuitive explanation of the error that arises when splitting

is implemented.
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Splitting error

Even when Crank-Nicolson time marching is used in each fractional step this splitting method will still

only be first order accurate, see Ikonen and Toivanen [2005a]. To see this consider (5.1) with b(x, y) ≡ 0

and homogeneous Dirichlet boundary conditions, this problem can be solved by applying the classical

fully implicit scheme

(I−∆t(Adiff,A + Acov,A)−∆t(Cdiff,A + Ccov,A))uk + 1
A = uk

A (5.65)

for k = 0, 1, . . . , l − 1. To first order we can approximate (5.65) by

(I−∆t(Adiff,A + Acov,A)−∆t(Cdiff,A + Ccov,A) (5.66)

+ ∆t2(Adiff,A + Acov,A)(Cdiff,A + Ccov,A))uk + 1
A = uk

A

⇒ (I−∆t(Adiff,A + Acov,A))(I−∆t(Cdiff,A + Ccov,A))uk + 1
A = uk

A

for k = 0, 1, . . . , l − 1. The last equation above can be rewritten as

(I−∆t(Adiff,A + Acov,A))u
k + 1

2
A = uk

A

(I−∆t(Cdiff,A + Ccov,A))uk + 1
A = u

k + 1
2

A .

This shows that the Yanenko scheme is a first order approximation of the fully implicit scheme. The

second matrix equation above is not a tri-diagonal matrix equation. By reordering the elements of the

solution vector we can obtain the following tri-diagonal system of equations

(I−∆t(Cdiff,C + Ccov,C))uk + 1
C = u

k + 1
2

C .

5.8.3 Stability under the maximum norm

Elimination of the intermediate time step in equations (5.63) and (5.64) results in

uk + 1
A = (Iim,A −∆t(Cdiff,A + Ccov,A))−1(Iex,A + ∆tBA)(Iim,A −∆t(Adiff,A + Acov,A))−1(Iex,A + ∆tBA)uk

A

+ (Iim,A −∆t(Cdiff,A + Ccov,A))−1(Iex,A + ∆tBA)(Iim,A −∆t(Adiff,A + Acov,A))−1b1, A

+ (Iim,A −∆t(Cdiff,A + Ccov,A))−1b2, A.

From this it is clear that the Yanenko method will be stable under the maximum norm if we can show

that

||(Iim,A −∆t(Cdiff,A + Ccov,A))−1(Iex,A + ∆tBA)(Iim,A −∆t(Adiff,A + Acov,A))−1(Iex,A + ∆tBA)||∞ ≤ 1

The fitting procedure ensures that (Iim,A −∆t(Adiff,A + Acov,A)) and (Iim,A −∆t(Cdiff,A + Ccov,A)) are invertible

M -matrices. It follows from definition 3.5.1 with x = (1, . . . , 1)T that

||(Iim,A −∆t(Adiff,A + Acov,A))−1||∞ ≤ 1

and

||(Iim,A −∆t(Cdiff,A + Ccov,A))−1||∞ ≤ 1
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From the fact that

||(Iim,A −∆t(Cdiff,A + Ccov,A))−1(Iex,A + ∆tBA)(Iim,A −∆t(Adiff,A + Acov,A))−1(Iex,A + ∆tBA)||∞
≤||(Iim,A −∆t(Cdiff,A + Ccov,A))−1||∞||(Iex,A + ∆tBA)||∞

||(Iim,A −∆t(Adiff,A + Acov,A))−1||∞||(Iex,A + ∆tBA)||∞
≤||(Iex,A + ∆tBA)||2∞ (5.67)

it follows that we only need to prove that

||(Iex,A + ∆tBA)||2∞ ≤ 1

for the scheme to be stable. From the proof of theorem 5.4.1 it follows that all the off-diagonal elements

must be non-negative for the equation above to hold. Equations (5.52) or (5.53) can be used to obtain the

off-diagonal elements of (Iex,A + ∆tBA). From these equations it is clear that the off-diagonal elements

will only be non-negative when bi, j = 0, ∀i, j. Hence we are not able to prove stability under the

maximum norm with the proposed method.

We have shown that the Yanenko method is unconditionally stable if we make use of von Neumann

stability analysis. Since von Neumann stability analysis is, strictly speaking, not applicable to problems

with non-constant coefficients, we have introduced an alternative method to prove stability namely, the

matrix method of analysis under the maximum norm. Using the matrix method of analysis we have

only been able to show stability for the case when b(x, y) ≡ 0. Nonetheless, extensive experiments with

b(x, y) 6= 0 have as yet not resulted in a single case of instability.

5.8.4 Convergence

As done in the previous section the fictitious time step can be eliminated to obtain the desired form for

the Yanenko scheme (3.37). Using the Lax equivalence theorem we deduce that the Yanenko scheme is

convergent whenever it is stable.
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Chapter 6

Alternative Approaches for the Two

Dimensional FDM

In this chapter we extend the methods discussed in chapter 4 to two dimensions. We will attempt to

derive higher order L0-stable schemes to solve PDEs of the form

∂u

∂τ
= a

∂2u

∂x2
+ 2b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
(6.1)

on the domain (x, y) ∈ Ω = [lx, rx]× [ly, ry]×R+ where all the coefficients are real constants and satisfies

the following inequalities

ac− b2 > 0, a > 0 and c > 0.

For the problem to be well posed the unknown function u(x, y, τ) must satisfy an initial condition

u(x, y, 0) = u0(x, y) = Ψ(x, y) and four boundary conditions

u(lx, y, τ) = cl

u(rx, y, τ) = cr

u(x, ly, τ) = cb

u(x, ry, τ) = ct.

Note that we simplified the problem posed in chapter 5 by assuming constant coefficients and Dirichlet

boundary conditions.

6.1 Reduction to a system of ordinary differential equations

To obtain a system of ODEs we only discretisize Ω in the spatial direction and keep the time axis contin-

uous. After truncating the domain Ω such that (x, τ) ∈ Ω = [xmin, xmax] × [0, T ] we obtain the following

semi-discrete mesh

Ω̂ = {(xi, yj, τ)|i = 0, 1, . . . , m, j = 0, 1, . . . , n, τ ∈ [0, T ]}.
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By making use of the second order approximations derived in section 5.1 we can rewrite (6.1) as a system

of ordinary differential equations

duA(t)
dτ

= (AA + 2BA + CA)uA(τ) + bA (6.2)

where the solution vector uA and the boundary vector, bA are defined in section 5.4.2. The choice of the

ordering of u is completely arbitrary and we could have chosen to use uC instead of uA. The matrices

AA and CA are given by

AA = Adiff,A + Acov,A

CA = Cdiff,A + Ccov,A

where Adiff,A, Acov,A, Cdiff,A, Ccov,A and BA have the same form as in section 5.4.2 if we make the simplifying

assumptions of constant coefficients and Dirichlet boundary conditions. We also assume that AA and

CA are row reduced such that the Dirichlet boundary conditions are no longer present, as we have done

for the matrix A of section 4.1.

6.2 A derivation of the Yanenko scheme

As shown in section 4.1.1 the solution of (6.2) is given by

u(τ) = −(AA + 2BA + CA)−1bA + eτ(AA+2BA+CA) (ΨA + (AA + 2BA + CA)−1bA) . (6.3)

where ΨA is the vector containing the initial data. Consider the usual uniform partition of [0, T ]

0 = τ0 < τ1 < . . . < τl = T

where τk = k∆t and ∆t = T
l . If the solution at time τ is known then the solution at time τ + ∆t can be

obtained as follows

uA(τ + ∆t) = −(AA + 2BA + CA)−1bA

+ e∆t(AA+2BA+CA)eτ(AA+2BA+CA) (ΨA + (AA + 2BA + CA)−1bA)

= −(AA + 2BA + CA)−1bA + e∆t(AA+2BA+CA) (u(τ) + (AA + 2BA + CA)−1bA) . (6.4)

Assuming that A and C do not commute results in the following first order approximations, see Khaliq

and Twizell [1986]1

e∆t(A+C) = e∆tCe∆tA + O(∆t2) (6.5)

e∆t(A+C) = e∆tAe∆tC + O(∆t2). (6.6)

The error introduced in the equation above is known as the splitting error. We can use equation (6.6) to

rewrite (6.4) in the following form

uA(τ + ∆t) = −(AA + 2BA + CA)−1bA

+ e∆t(AA+BA)e∆t(BA+CA)(u(τ) + (AA + 2BA + CA)−1bA) + O(∆t2).
1This result can be obtained by direct substitution of ∆t(A + C) in the definition of the exponential of a matrix.
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Let R(∆tA, ∆tC) be a rational approximation of e∆t(A+C). We can obtain the solution at time τk + 1 if

the solution at time τk is known via

uk + 1
A = −(AA + 2BA + CA)−1bA (6.7)

+ R(∆tAA, ∆tBA)R(∆tCA, ∆tBA)(uk

A + (AA + 2BA + CA)−1bA)

which can be rewritten as

u
k + 1

2
A = R(∆tCA,∆tBA)uk

A (6.8)

uk + 1
A = −(AA + 2BA + CA)−1bA + R(∆tAA, ∆tBA)R(∆tCA, ∆tBA)(AA + 2BA + CA)−1bA

+ R(∆tAA,∆tBA)u
k + 1

2
A . (6.9)

By making use of the Padé approximations of section 4.2.1 it is easy to see that

eθ+β =
1 + β

1− θ
+ O(θ2, β2).

From this we can deduce the following rational approximation for e∆t(A+C)

e∆t(A+C) = R(∆tA, ∆tC) + O(∆t2) = [I−∆tA]−1[I + ∆tC] + O(∆t2).

By substituting into (6.8) and (6.9) we obtain

(I−∆tCA)u
k + 1

2
A = (I + ∆tBA)uk

A

(I−∆tAA)uk + 1
A = [−(I−∆tAA) + (I + ∆tBA)(I−∆tCA)−1(I + ∆tBA)] (AA + 2BA + CA)−1bA

+ (I + ∆tBA)u
k + 1

2
A . (6.10)

The coefficient of the boundary vector, bA, requires the inversion of (AA +2BA +CA) which is a lengthy

procedure and defies the point of splitting. The problem can be avoided by making use of the following

first order approximation

− I + (I−∆tAA)−1(I + ∆tBA)(I−∆tCA)−1(I + ∆tBA)

=− I + e∆t(AA+2BA+CA) + O(∆t2)

=∆t(AA + 2BA + CA) + O(∆t2). (6.11)

Substituting back into (6.10) results in the Yanenko scheme

(I−∆tCA)u
k + 1

2
A = (I + ∆tBC)uk

C

(I−∆tAA)uk + 1
A = (I + ∆tBA)u

k + 1
2

A + (I−∆tAA)∆tbA.

As done in previous chapters we can rewrite the scheme in the following form

(I−∆tCC)u
k + 1

2
C = (I + ∆tBC)uk

C

(I−∆tAA)uk + 1
A = (I + ∆tBA)u

k + 1
2

A + (I−∆tAA)∆tbA.

to solve only tri-diagonal matrices.
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6.2.1 L0-stability of the Yanenko method

By making use of Gerschgorin’s theorem 4.3.3 it follows that BA might have non-negative eigenvalues2.

Thus we can not apply definition 4.3.3 to deduce the stability of the Yanenko scheme whenever there is

a cross-derivative term present. The explicitness of the cross derivative term will also have an adverse

effect on the A-stability and L-stability of the Yanenko scheme scheme. In this section we will show

that the Yanenko scheme is L0-stable when there is no cross-derivative term. When the coefficient of the

cross-derivative term is zero the Yanenko scheme can be written in compact form as

uk + 1
A = [I−∆tCA]−1[I−∆tAA]−1uk

A + ∆tbA. (6.12)

By making use of exponential fitting, as done in section 4.3.1, we can ensure that the eigenvalues of CA

and AA are real and non-positive3. Which implies that the symbol of the Yanenko method is given by

RYanenko(−zA,−zC) = R1,0(−zA)R1,0(−zC) =
1

(1 + za)(1 + zc)
(6.13)

from which it it easy to see that the Yanenko scheme is L0-stable. The same results are obtained in Khaliq

and Twizell [1986] and Ayati et al. [2006].

6.3 Extrapolation methods

In this section we extend the discussion of section 4.4 to two dimensions. L0-stability will be proved for

the case when there is no cross derivative term. Although the approximation made in (6.11) allows us to

dramatically increase the speed of computation it is only first order accurate. Whenever the boundary

conditions are non-zero we will not be able use extrapolation methods to increase the order of accuracy

near the boundary. In this section we assume zero Dirichlet boundary conditions, i.e. bA = 0. If the

solution at time τk is known, then we can use the exponentially fitted Yanenko scheme to proceed to

time τk + 1

uk + 1
A = L∆tuk

A

(6.14)

where L∆t = [I−∆tAA]−1[I+∆tBA][I−∆tCA]−1[I+∆tBA] and, AA and CA are the exponentially fitted

versions of the matrices defined in section 5.4.2 after we made the simplifying assumptions of Dirichlet

boundary conditions.

6.3.1 Third order extrapolation scheme

In Khaliq and Twizell [1986] a third and fourth order accurate scheme is proposed for the simple two

dimensional heat equation. In this section and the following section we will give a derivation of their
2Since BA is a real symmetric matrix, all the eigenvalues of BA are real.
3With exactly the same arguments as given in section 4.3.1 we can deduce that all the eigenvalues of CC are real and non-

positive. Let λ be an arbitrary eigenvalue of CA and be vA the corresponding eigenvector, ie. CAvA = λvA. Clearly CCvC =

λvC . This shows that λ is also an eigenvalue of CC , hence all eigenvalues of CA real and non-positive.
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extensions on the Gourlay-Morris scheme and show that these modifications can be applied to two

dimensional convection diffusion equations with cross-derivative terms. Say the solution at time τk is

known then the solution at time τk + 3 can be obtained as follows

uk + 3
A(1) = L3

∆tu
k

A (6.15)

uk + 3
A(2) = L2∆tL∆tuk

A (6.16)

uk + 3
A(3) = L∆tL2∆tuk

A (6.17)

uk + 3
A(4) = L3∆tuk

A. (6.18)

Define

N(k,Θ1,Θ2,Θ3,Γ1,Γ2,Γ3) := (I + k∆tΘ1 + k2∆t2Θ2 + k3∆t3Θ3)

· (I + k∆tΓ1 + k2∆t2Γ2 + k3∆t3Γ3)

= I + k∆t(Θ1 + Γ1) + k2∆t2(Θ2 + Θ1Γ1 + Γ2)

+ k3∆t3(Θ3 + Θ1Γ2 + Θ2Γ1 + Γ3) + O(∆t4)

where Θ1, Θ2, Θ3, Γ1, Γ2 and Γ3 are square matrices. After some tedious manipulations we obtain

N(k1,Θ1,Θ2,Θ3,Γ1,Γ2,Γ3)N(k2,Θ1,Θ2,Θ3,Γ1,Γ2,Γ3)N(k3,Θ1,Θ2,Θ3,Γ1,Γ2,Γ3)

= I + (k1 + k2 + k3)∆t(Θ1 + Γ1)

+ ∆t2[(k2
3 + k2

2 + k2
1)Θ2 + (k1k3 + k2k3 + k1k2)Γ1Θ1 + (k2

3 + k2
2 + k2

1 + k1k3 + k2k3 + k1k2)Θ1Γ1

+ (k2
3 + k2

2 + k2
1)Γ2 + (k1k3 + k2k3 + k1k2)Θ1

2 + (k1k3 + k2k3 + k1k2)Γ1
2]

+ ∆t3[(k3
3 + k3

2 + k3
1)Θ3 + (k2

1k2 + k2
2k3 + k2

1k3)Θ2Θ1 + (k1k
2
2 + k2k

2
3 + k1k

2
3)Θ1Θ2 + k1k2k3Θ1

3

+ (k3
3 + k3

2 + k3
1 + k1k

2
2 + k2k

2
3 + k1k

2
3)Θ1Γ2 + (k2

1k2 + k2
2k3 + k2

1k3 + k1k2k3)Θ1Γ1
2

+ (k3
3 + k3

2 + k3
1 + k2

1k2 + k2
2k3 + k2

1k3)Θ2Γ1 + (k1k
2
2 + k2k

2
3 + k1k

2
3 + k1k2k3)Θ1

2Γ1

+ (k3
3 + k3

2 + k3
1)Γ3 + (k2

1k2 + k2
2k3 + k2

1k3)Γ2Γ1 + (k1k
2
2 + k2k

2
3 + k1k

2
3)Γ1Γ2 + k1k2k3Γ1

3

+ (k1k
2
2 + k2k

2
3 + k1k

2
3 + k1k2k3)Γ1Θ1Γ1 + (k1k

2
2 + k2k

2
3 + k1k

2
3)Γ1Θ2 + k1k2k3Γ1Θ1

2

+ (k2
1k2 + k2

1k3 + k2
2k3)Γ2Θ1 + k1k2k3Γ1

2Θ1 + (k2
1k2 + k2

1k3 + k2
2k3 + k1k2k3)Θ1Γ1Θ1]

+ O(∆t4)

:= Λk1, k2, k3 + O(∆t4)

where Λk1, k2, k3 = Λ(k1, k2, k3,Θ1,Θ2,Θ3,Γ1,Γ2,Γ3). By making use of the binomial expansions in (4.12)

we obtain

Lk∆t = (I + k∆t(AA + BA) + k2∆t2AA(AA + BA) + k3∆t3A2
A(AA + BA) + k4∆t4A3

A(AA + BA))

· (I + k∆t(CA + BA) + k2∆t2CA(CA + BA) + k3∆t3C2
A(CA + BA) + k4∆t4C3

A(CA + BA))

+ O(∆t5) (6.19)

= N(k,Θ1,Θ2,Θ3,Γ1,Γ2,Γ3) + O(∆t4)

where

Θ1 = AA + BA, Θ2 = AA(AA + BA), Θ3 = A2
A(AA + BA)

Γ1 = CA + BA, Γ2 = CA(CA + BA), Γ3 = C2
A(CA + BA).
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Equations (6.15) to (6.18) can be written in terms of the Λ-function as follows

uk + 3
A(1) = Λ1, 1, 1uk

A + O(∆t4)

uk + 3
A(2) = Λ2, 1, 0uk

A + O(∆t4)

uk + 3
A(3) = Λ1, 2, 0uk

A + O(∆t4)

uk + 3
A(4) = Λ3, 0, 0uk

A + O(∆t4).

Hence

uk + 3
A(1) = [I + 3∆t(Θ1 + Γ1) + ∆t2(3Θ2 + 6Θ1Γ1 + 3Γ2 + 3Γ1Θ1 + 3Θ1

2 + 3Γ1
2)

+ ∆t3(3Θ3 + 6Θ2Γ1 + 6Θ1Γ2 + 3Γ3 + 3Θ1Θ2 + 4Θ1
2Γ1 + 3Γ1Θ2 + 4Γ1Θ1Γ1 + 3Γ1Γ2

+ 3Θ2Θ1 + 4Θ1Γ1Θ1 + 3Γ2Θ1 + Γ1Θ1
2 + Θ1

3 + Γ1
2Θ1 + Γ1

3 + 4Θ1Γ1
2 + 3Γ2Γ1)]uk

A

+ O(∆t4)

uk + 3
A(2) = [I + 3∆t(Θ1 + Γ1) + ∆t2(5Θ2 + 7Θ1Γ1 + 5Γ2 + 2Γ1Θ1 + 2Θ1

2 + 2Γ1
2)

+ ∆t3(9Θ3 + 13Θ2Γ1 + 11Θ1Γ2 + 9Γ3 + 2Θ1Θ2 + 2Θ1
2Γ1 + 2Γ1Θ2 + 2Γ1Θ1Γ1 + 2Γ1Γ2

+ 4Θ2Θ1 + 4Θ1Γ1Θ1 + 4Γ2Θ1 + 4Θ1Γ1
2 + 4Γ2Γ1)]uk

A

+ O(∆t4)

uk + 3
A(3) = [I + 3∆t(Θ1 + Γ1) + ∆t2(5Θ2 + 7Θ1Γ1 + 5Γ2 + 2Γ1Θ1 + 2Θ1

2 + 2Γ1
2)

+ ∆t3(9Θ3 + 11Θ2Γ1 + 13Θ1Γ2 + 9Γ3 + 4Θ1Θ2 + 4Θ1
2Γ1 + 4Γ1Θ2 + 4Γ1Θ1Γ1 + 4Γ1Γ2

+ 2Θ2Θ1 + 2Θ1Γ1Θ1 + 2Γ2Θ1 + 2Θ1Γ1
2 + 2Γ2Γ1)]uk

A

+ O(∆t4)

uk + 3
A(4) = [I + 3∆t(Θ1 + Γ1) + ∆t2(9Θ2 + 9Θ1Γ1 + 9Γ2)

+ ∆t3(27Θ3 + 27Θ2Γ1 + 27Θ1Γ2 + 27Γ3)]uk

A + O(∆t4).

From the definition of the exponential of a matrix

e3∆t(AA+2BA+CA) = e3∆t(Θ1+Γ1)

= I + 3∆t(Θ1 + Γ1) + 9
2∆t2(Θ1

2 + Γ1Θ1 + Θ1Γ1 + Γ1
2)

+ 9
2∆t3(Θ1

2Γ1 + Γ1Θ1Γ1 + Θ1Γ1Θ1 + Γ1Θ1
2

+ Θ1
3 + Γ1

2Θ1 + Γ1
3 + Θ1Γ1

2) + O(∆t4)

we see that the correct approximation to solution at time τk + 3 is given by

uk + 3
A = e3∆t(AA+2BA+CA)uk

A

= [I + 3∆t(Θ1 + Γ1) + 9
2∆t2(Θ1

2 + Γ1Θ1 + Θ1Γ1 + Γ1
2)

+ 9
2∆t3(Θ1

2Γ1 + Γ1Θ1Γ1 + Θ1Γ1Θ1 + Γ1Θ1
2

+ Θ1
3 + Γ1

2Θ1 + Γ1
3 + Θ1Γ1

2) + . . .]uk

A.

From this it is clear that none of the methods match the second or third order terms correctly. But

we might be able to match the second and third order terms by making use of the following linear

combination

uk + 3
A = η1uk + 3

A(1) + η2uk + 3
A(2) + η3uk + 3

A(3) + η4uk + 3
A(4)
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where η1, η2, η3 and η4 satisfies

η1 + η2 + η3 + η4 = 1

3η1 + 5η2 + 5η3 + 9η4 = 0

6η1 + 7η2 + 7η3 + 9η4 = 9
2

3η1 + 2η2 + 2η3 = 9
2

3η1 + 9η2 + 9η3 + 27η4 = 0

6η1 + 13η2 + 11η3 + 27η4 = 0

6η1 + 11η2 + 13η3 + 27η4 = 0

3η1 + 2η2 + 4η3 = 0

4η1 + 2η2 + 4η3 = 9
2

3η1 + 4η2 + 2η3 = 0

4η1 + 4η2 + 2η3 = 9
2

η1 = 9
2 .

This system of equations is in fact not over specified and has the following unique solution

η1 = 9
2 , η2 = η3 = − 9

4 and η4 = 1.

The third order accurate extrapolation algorithm follows

(I−∆tCC)u
k + 1

2
C = (I + ∆tBC)uk

C

(I−∆tAA)uk + 1
A = (I + ∆tBA)u

k + 1
2

A

(I−∆tCC)u
k + 3

2
C = (I + ∆tBC)uk + 1

C

(I−∆tAA)uk + 2
A = (I + ∆tBA)u

k + 3
2

A

(I−∆tCC)u
k + 5

2
C = (I + ∆tBC)uk + 2

C

(I−∆tAA)uk + 3
A(1) = (I + ∆tBA)u

k + 5
2

A

(I−∆tCC)u
k + 1

2
C = (I + ∆tBC)uk

C

(I−∆tAA)uk + 1
A = (I + ∆tBA)u

k + 1
2

A

(I− 2∆tCC)uk + 2
C = (I + 2∆tBC)uk + 1

C

(I− 2∆tAA)uk + 3
A(2) = (I + 2∆tBA)uk + 2

A

(I− 2∆tCC)uk + 1
C = (I + 2∆tBC)uk

C

(I− 2∆tAA)uk + 2
A = (I + 2∆tBA)uk + 1

A

(I−∆tCC)u
k + 5

2
C = (I + ∆tBC)uk + 2

C

(I−∆tAA)uk + 3
A(3) = (I + ∆tBA)u

k + 5
2

A
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(I− 3∆tCC)u
k + 3

2
C = (I + 3∆tBC)uk

C

(I− 3∆tAA)uk + 3
A(4) = (I + 3∆tBA)u

k + 3
2

A

and

uk + 3
A = 9

2u
k + 3
A(1) − 9

4u
k + 3
A(2) − 9

4u
k + 3
A(3) + uk + 3

A(4) .

L0-stability of the third order Khaliq-Twizwell scheme

By removing the cross derivative term we obtain a version Khaliq-Twizwell scheme that uses exponen-

tial fitting to handle the convection terms. It is easy to see that the third order Khaliq-Twizwell scheme

can be written in compact form as

uk + 3
A = RKT3(∆tAA, ∆tCA)uk

A

where

RKT3(∆tAA, ∆tCA) = 9
2 ([I−∆tAA]−1[I−∆tCA]−1)3

− 9
4 [I− 2∆tAA]−1[I− 2∆tCA]−1[I−∆tAA]−1[I−∆tCA]−1

− 9
4 [I−∆tAA]−1[I−∆tCA]−1[I− 2∆tAA]−1[I− 2∆tCA]−1

+ [I− 3∆tAA]−1[I− 3∆tCA]−1.

From this we can deduce that the symbol of the third order Khaliq-Twizwell scheme is given by

RKT3(−zA,−zC) =
9

2(1 + zA)3(1 + zC)3
− 9

2(1 + 2zA)(1 + 2zC)(1 + zA)(1 + zC)

+
1

(1 + 3zA)(1 + 3zC)
.

From figure 6.1 we see that

max
zA, zC ≥ 0

|RKT3(−zA,−zC)| ≤ 1

and

lim
zA, zC →∞

RKT3(−zA,−zC) = 0.

Hence we can deduce that this scheme is indeed L0-stable.

6.3.2 Fourth order extrapolation scheme

The derivation of the fourth order accurate scheme will have a similar form to that of the third order

scheme in section 6.3.1. Say the solution at time τk is known then the solution at time τk + 4 can be
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Figure 6.1: The symbol of the third order Khaliq-Twizwell scheme, RKT3(−zA,−zC).

obtained as follows

uk + 4
A(1) = L4

∆tu
k

A (6.20)

uk + 4
A(2) = L∆tL3∆tuk

A (6.21)

uk + 4
A(3) = L3∆tL∆tuk

A (6.22)

uk + 4
A(4) = L2

∆tL2∆tuk

A (6.23)

uk + 4
A(5) = L2∆tL

2
∆tu

k

A (6.24)

uk + 4
A(6) = L2

2∆tu
k

A (6.25)

uk + 4
A(7) = L∆tL2∆tL∆tuk

A (6.26)

uk + 4
A(8) = L4∆tuk

A. (6.27)

Define

N(k,Θ1,Θ2,Θ3,Θ4,Γ1,Γ2,Γ3,Γ4) := (I + k∆tΘ1 + k2∆t2Θ2 + k3∆t3Θ3 + k4∆t4Θ4)

· (I + k∆tΓ1 + k2∆t2Γ2 + k3∆t3Γ3 + k4∆t4Γ4)

= I + k∆t(Θ1 + Γ1) + k2∆t2(Θ2 + Θ1Γ1 + Γ2)

+ k3∆t3(Θ3 + Θ1Γ2 + Θ2Γ1 + Γ3)

+ k4∆t4(Θ4 + Θ1Γ3 + Θ3Θ3 + Θ3Γ1 + Γ4) + O(∆t5)

where Θ1, Θ2, Θ3, Θ4, Γ1, Γ2, Γ3 and Γ4 are square matrices. Define a new Λ-function which is accurate

to fourth order via the following4

N(k1,Θ1,Θ2,Θ3,Θ4,Γ1,Γ2,Γ3,Γ4)N(k2,Θ1,Θ2,Θ3,Θ4,Γ1,Γ2,Γ3,Γ4)

·N(k3,Θ1,Θ2,Θ3,Θ4,Γ1,Γ2,Γ3,Γ4)N(k4,Θ1,Θ2,Θ3,Θ4,Γ1,Γ2,Γ3,Γ4) (6.28)

= Λk1, k2, k3, k4 + O(∆t5)

4We will not give the explicit form of the fourth order accurate Λ-function as we did for the third order accurate Λ-function in

section 6.3.1, since the function expression is extremely long for this case and does not give extra intuition.
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where Λk1, k2, k3, k4 = Λ(k1, k2, k2, k3, k4,Θ1,Θ2,Θ3,Θ4,Γ1,Γ2,Γ3,Γ4). By making use of equation (6.19)

we obtain

Lk∆t = N(k,Θ1,Θ2,Θ3,Θ4,Γ1,Γ2,Γ3,Γ4) + O(∆t5)

where

Θ1 = AA + BA, Θ2 = AA(AA + BA), Θ3 = A2
A(AA + BA), Θ4 = A3

A(AA + BA)

Γ1 = CA + BA, Γ2 = CA(CA + BA), Γ3 = C2
A(CA + BA), Γ4 = C3

A(CA + BA).

Equations (6.20) to (6.27) can be written in terms of the Λ-function as follows

uk + 4
A(1) = Λ1, 1, 1, 1uk

A + O(∆t5)

uk + 4
A(2) = Λ1, 3, 0, 0uk

A + O(∆t5)

uk + 4
A(3) = Λ3, 1, 0, 0uk

A + O(∆t5)

uk + 4
A(4) = Λ1, 1, 2, 0uk

A + O(∆t5)

uk + 4
A(5) = Λ2, 1, 1, 0uk

A + O(∆t5)

uk + 4
A(6) = Λ2, 2, 0, 0uk

A + O(∆t5)

uk + 4
A(7) = Λ1, 2, 1, 0uk

A + O(∆t5)

uk + 4
A(8) = Λ4, 0, 0, 0uk

A + O(∆t5).

The approximation of the solution at time τk + 4 with the correct higher order terms is given by

uk + 4
A = e4∆t(AA+2BA+CA)uk

A.

The following tables give the coefficients of the first, second, third and fourth order terms of the relevant

Λ-functions and e4∆t(AA+2BA+CA)

O(·) Λ1, 1, 1, 1 Λ1, 3, 0, 0 Λ3, 1, 0, 0 Λ1, 1, 2, 0 Λ2, 1, 1, 0 Λ2, 2, 0, 0 Λ1, 2, 1, 0 Λ4, 0, 0, 0 e4∆t(AA+2BA+CA)

I 1 1 1 1 1 1 1 1 1

∆t Γ1 + Θ1 4 4 4 4 4 4 4 4 4

∆t2

Γ2 4 10 10 6 6 8 6 16 0

Γ1Θ1 10 13 13 11 11 12 11 16 8

Θ2 4 10 10 6 6 8 6 16 0

Γ1
2 6 3 3 5 5 4 5 0 8

Γ1Θ1 6 3 3 5 5 4 5 0 8

Θ1
2 6 3 3 5 5 4 5 0 8
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O(·) Λ1, 1, 1, 1 Λ1, 3, 0, 0 Λ3, 1, 0, 0 Λ1, 1, 2, 0 Λ2, 1, 1, 0 Λ2, 2, 0, 0 Λ1, 2, 1, 0 Λ4, 0, 0, 0 e4∆t(·)

∆t3

Γ3 4 28 28 10 10 16 10 64 0

Θ1Γ2 10 37 31 19 15 24 17 64 0

Θ2Γ1 10 31 37 15 19 24 17 64 0

Θ3 4 28 28 10 10 16 10 64 0

Γ1Γ2 6 9 3 9 5 8 7 0 0

Γ1Θ1Γ1 10 9 3 11 7 8 9 0 32
3

Γ1Θ2 6 9 3 9 5 8 7 0 0

Θ1Θ2 6 9 3 9 5 8 7 0 0

Θ1
2Γ1 10 9 3 11 7 8 9 0 32

3

Γ2Γ1 6 3 9 5 9 8 7 0 0

Γ2Θ1 6 3 9 5 9 8 7 0 0

Θ1Γ1
2 10 3 9 7 11 8 9 0 32

3

Θ1Γ1Θ1 10 3 9 7 11 8 9 0 32
3

Θ2Θ1 6 3 9 5 9 8 7 0 0

Γ1
3 4 0 0 2 2 0 2 0 32

3

Γ1
2Θ1 4 0 0 2 2 0 2 0 32

3

Γ1Θ1
2 4 0 0 2 2 0 2 0 32

3

Θ1
3 4 0 0 2 2 0 2 0 32

3

∆t4

Γ4 4 82 82 18 18 32 18 256 0

Θ1Γ3 10 109 85 35 23 48 29 256 0

Θ2Γ2 10 91 91 27 27 48 27 256 0

Θ3Γ1 10 85 109 23 35 48 29 256 0

Θ4 4 82 82 18 18 32 18 256 0

Γ1Γ3 6 27 3 17 5 16 11 0 0

Γ1Θ1Γ2 10 27 3 21 7 16 13 0 0

Γ1Θ2Γ1 10 27 3 19 7 16 15 0 0

Γ1Θ3 6 27 3 17 5 16 11 0 0

Θ1
2Γ2 10 27 3 21 7 16 13 0 0

Θ1Θ2Γ1 10 27 3 19 7 16 15 0 0

Θ1Θ3 6 27 3 17 5 16 11 0 0

Γ2
2 6 9 9 9 9 16 9 0 0

Γ2Θ1Γ1 10 9 9 11 13 16 11 0 0

Γ2Θ2 6 9 9 9 9 16 9 0 0

Θ1Γ1Γ2 10 9 9 13 11 16 11 0 0

Θ1Γ1Θ1Γ1 15 9 9 15 15 16 13 0 32
3

Θ1Γ1Θ2 10 9 9 13 11 16 11 0 0
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O(·) Λ1, 1, 1, 1 Λ1, 3, 0, 0 Λ3, 1, 0, 0 Λ1, 1, 2, 0 Λ2, 1, 1, 0 Λ2, 2, 0, 0 Λ1, 2, 1, 0 Λ4, 0, 0, 0 e4∆t(·)

∆t4

Θ2Θ1Γ1 10 9 9 11 13 16 11 0 0

Θ2
2 6 9 9 9 9 16 9 0 0

Γ3Γ1 6 3 27 5 17 16 11 0 0

Γ3Θ1 6 3 27 5 17 16 11 0 0

Θ1Γ2Γ1 10 3 27 7 19 16 15 0 0

Θ1Γ2Θ1 10 3 27 7 19 16 15 0 0

Θ2Γ1
2 10 3 27 7 21 16 13 0 0

Θ2Γ1Θ1 10 3 27 7 21 16 13 0 0

Θ3Θ1 6 3 27 5 17 16 11 0 0

Γ1
2Γ2 4 0 0 4 2 0 2 0 0

Γ1
2Θ1Γ1 5 0 0 4 2 0 2 0 32

3

Γ1
2Θ2 4 0 0 4 2 0 2 0 0

Γ1Θ1Θ2 4 0 0 4 2 0 2 0 0

Θ1
2Θ2 4 0 0 4 2 0 2 0 0

Γ1Θ1
2Γ1 5 0 0 4 2 0 2 0 32

3

Θ1
3Γ1 5 0 0 4 2 0 2 0 32

3

Γ1Γ2Γ1 4 0 0 2 2 0 4 0 0

Γ1Γ2Θ1 4 0 0 2 2 0 4 0 0

Γ1Θ1Γ1
2 5 0 0 2 2 0 4 0 32

3

Θ1
2Γ1

2 5 0 0 2 2 0 4 0 32
3

Γ1Θ1Γ1Θ1 5 0 0 2 2 0 4 0 32
3

Θ1
2Γ1Θ1 5 0 0 2 2 0 4 0 32

3

Γ1Θ2Θ1 4 0 0 2 2 0 4 0 0

Θ1Θ2Θ1 4 0 0 2 2 0 4 0 0

Γ2Γ1
2 4 0 0 2 4 0 2 0 0

Γ2Γ1Θ1 4 0 0 2 4 0 2 0 0

Γ2Θ1
2 4 0 0 2 4 0 2 0 0

Θ1Γ1
3 5 0 0 2 4 0 2 0 32

3

Θ1Γ1
2Θ1 5 0 0 2 4 0 2 0 32

3

Θ1Γ1Θ1
2 5 0 0 2 4 0 2 0 32

3

Θ2Θ1
2 4 0 0 2 4 0 2 0 0

Γ1
4 1 0 0 0 0 0 0 0 32

3

Γ1
3Θ1 1 0 0 0 0 0 0 0 32

3

Γ1
2Θ1

2 1 0 0 0 0 0 0 0 32
3

Γ1Θ1
3 1 0 0 0 0 0 0 0 32

3

Θ1
4 1 0 0 0 0 0 0 0 32

3

From these tables it is clear that none of the methods match the second, third and fourth order terms

correctly. By solving the resulting system of equations we see that the following linear combination
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matches the second, third and fourth order terms

uk + 4
A = η1uk + 4

A(1) + η2uk + 4
A(2) + η3uk + 4

A(3) + η4uk + 4
A(4)

+ η5uk + 4
A(5) + η6uk + 4

A(6) + η7uk + 4
A(7) + η8uk + 4

A(8)

where

η1 = 32
3 , η2 = η3 = 8

3 , η4 = η5 = η7 = − 16
3 , η6 = 2 and η8 = −1.

The fourth order accurate extrapolation algorithm follows

(I−∆tCC)u
k + 1

2
C = (I + ∆tBC)uk

C

(I−∆tAA)uk + 1
A = (I + ∆tBA)u

k + 1
2

A

(I−∆tCC)u
k + 3

2
C = (I + ∆tBC)uk + 1

C

(I−∆tAA)uk + 2
A = (I + ∆tBA)u

k + 3
2

A

(I−∆tCC)u
k + 5

2
C = (I + ∆tBC)uk + 2

C

(I−∆tAA)uk + 3
A = (I + ∆tBA)uk + 5

2
A

(I−∆tCC)u
k + 7

2
C = (I + ∆tBC)uk + 3

C

(I−∆tAA)uk + 4
A(1) = (I + ∆tBA)u

k + 7
2

A

(I−∆tCC)u
k + 1

2
C = (I + ∆tBC)uk

C

(I−∆tAA)uk + 1
A = (I + ∆tBA)u

k + 1
2

A

(I− 3∆tCC)u
k + 5

2
C = (I + 3∆tBC)uk + 1

C

(I− 3∆tAA)uk + 4
A(2) = (I + 3∆tBA)u

k + 5
2

A

(I− 3∆tCC)u
k + 3

2
C = (I + 3∆tBC)uk

C

(I− 3∆tAA)uk + 3
A = (I + 3∆tBA)u

k + 3
2

A

(I−∆tCC)u
k + 7

2
C = (I + ∆tBC)uk + 3

C

(I−∆tAA)uk + 4
A(3) = (I + ∆tBA)u

k + 7
2

A

(I−∆tCC)u
k + 1

2
C = (I + ∆tBC)uk

C

(I−∆tAA)uk + 1
A = (I + ∆tBA)u

k + 1
2

A

(I−∆tCC)u
k + 3

2
C = (I + ∆tBC)uk + 1

C

(I−∆tAA)uk + 2
A = (I + ∆tBA)u

k + 3
2

A

(I− 2∆tCC)uk + 3
C = (I + 2∆tBC)uk + 2

C

(I− 2∆tAA)uk + 4
A(4) = (I + 2∆tBA)uk + 3

A
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(I− 2∆tCC)uk + 1
C = (I + 2∆tBC)uk

C

(I− 2∆tAA)uk + 2
A = (I + 2∆tBA)uk + 1

A

(I−∆tCC)u
k + 5

2
C = (I + ∆tBC)uk + 2

C

(I−∆tAA)uk + 3
A = (I + ∆tBA)u

k + 5
2

A

(I−∆tCC)u
k + 7

2
C = (I + ∆tBC)uk + 3

C

(I−∆tAA)uk + 4
A(5) = (I + ∆tBA)u

k + 7
2

A

(I− 2∆tCC)uk + 1
C = (I + 2∆tBC)uk

C

(I− 2∆tAA)uk + 2
A = (I + 2∆tBA)uk + 1

A

(I− 2∆tCC)uk + 3
C = (I + 2∆tBC)uk + 2

C

(I− 2∆tAA)uk + 4
A(6) = (I + 2∆tBA)uk + 3

A

(I−∆tCC)u
k + 1

2
C = (I + ∆tBC)uk

C

(I−∆tAA)uk + 1
A = (I + ∆tBA)u

k + 1
2

A

(I− 2∆tCC)uk + 2
C = (I + 2∆tBC)uk + 1

C

(I− 2∆tAA)uk + 3
A = (I + 2∆tBA)uk + 2

A

(I−∆tCC)u
k + 7

2
C = (I + ∆tBC)uk + 3

C

(I−∆tAA)uk + 4
A(7) = (I + ∆tBA)u

k + 7
2

A

(I− 4∆tCC)uk + 2
C = (I + 4∆tBC)uk

C

(I− 4∆tAA)uk + 4
A(8) = (I + 4∆tBA)uk + 2

A

and

uk + 4
A = 32

3 uk + 4
A(1) + 8

3u
k + 4
A(2) + 8

3u
k + 4
A(3) − 16

3 uk + 4
A(4)

− 16
3 uk + 4

A(5) + 2uk + 4
A(6) − 16

3 uk + 4
A(7) − uk + 4

A(8) .

L0-stability of the fourth order scheme

As done in section 6.3.1 we remove the cross-derivative term and write the fourth order extrapolation

scheme as

uk + 3
A = RKT4(∆tAA, ∆tCA)uk

A
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Figure 6.2: The symbol of the fourth order extrapolation scheme, RKT4(−zA,−zC).

where

RKT3(∆tAA, ∆tCA) = 32
3 ([I−∆tAA]−1[I−∆tCA]−1)4

+ 8
3 [I− 3∆tAA]−1[I− 3∆tCA]−1[I−∆tAA]−1[I−∆tCA]−1

+ 8
3 [I−∆tAA]−1[I−∆tCA]−1[I− 3∆tAA]−1[I− 3∆tCA]−1

− 16
3 ([I−∆tAA]−1[I−∆tCA]−1)2 [I− 2∆tAA]−1[I− 2∆tCA]−1

− 16
3 [I− 2∆tAA]−1[I− 2∆tCA]−1 ([I−∆tAA]−1[I−∆tCA]−1)2

+ 2 ([I− 2∆tAA]−1[I− 2∆tCA]−1)2

− 16
3 [I−∆tAA]−1[I−∆tCA]−1 ([I−∆tAA]−1[I−∆tCA]−1)2 [I−∆tAA]−1[I−∆tCA]−1

− [I− 4∆tAA]−1[I− 4∆tCA]−1.

From this we can deduce that the symbol of this fourth order scheme is given by

RKT3(−zA,−zC) =
32

3(1 + zA)4(1 + zC)4
+

16
3(1 + 3zA)(1 + 3zC)(1 + zA)(1 + zC)

− 16
(1 + zA)2(1 + zC)2(1 + 2zA)(1 + 2zC)

+
2

(1 + 2zA)2(1 + 2zC)2

− 1
(1 + 4zA)(1 + 4zC)

.

From figure 6.2 we see that

max
zA, zC ≥ 0

|RKT4(−zA,−zC)| ≤ 1

and

lim
zA, zC →∞

RKT4(−zA,−zC) = 0.

Hence we can deduce that this scheme is indeed L0-stable.
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Comparison of the efficiency between the third and fourth order extrapolation schemes

Suppose we want to solve (6.1) by making use of extrapolation schemes. Let lKT3 denote the number of

time steps used for the third order extrapolation scheme and lKT4 denote the number of time steps used

for the fourth order extrapolation scheme. In this section we will determine if there exists a lKT3 such that

the following holds:

• The third order scheme has a similar order of accuracy than that of the fourth order scheme

• The third order scheme is computationally less demanding than the fourth order scheme.

Clearly if there exists a range for lKT3 in which it satisfies the criteria above, the third order scheme has

preference over the fourth order scheme in this range. The third and fourth order extrapolation schemes

will have a similar order of convergence if

O(∆t3KT3) = O(∆t4KT4) (6.29)

where ∆tKT3 = T
lKT3

and ∆tKT4 = T
lKT4

. Hence the third and fourth order extrapolation schemes will ap-

proximately have the same order of convergence if

lKT4 = T 1/4l3/4
KT3 . (6.30)

The third order extrapolation scheme solves 16 tri-diagonal matrices to advance three time increments,

this is equivalent to solving 16
3 tri-diagonal matrices to advance one time increment. The fourth order

extrapolation scheme solves 40 tri-diagonal matrices to advance four time increments, this is equivalent

to solving 10 tri-diagonal matrices to advance one time increment. From this we can deduce that the

fourth order extrapolation scheme takes 15
8 times as long as the third order scheme to advance one time

step. Assume it takes γ seconds for the third order scheme to advance one time step. A certain level of

accuracy can be obtained with the third order extrapolation scheme using lKT3 time steps in lKT3γ seconds.

Using equation (6.30) and the arguments above we see that the same level of accuracy can be obtained

with the fourth order scheme in 15
8 T 1/4l3/4

KT3 γ seconds. From this we can deduce that whenever

l3/4
KT3 (l1/4

KT3 − 15
8 T 1/4) < 0

the third order scheme will be more efficient than the fourth order scheme. The inequality above can be

simplified to obtain the following condition

lKT3 <
(

15
8

)4
T ≈ 12.36T. (6.31)

Note that this analysis is done simply to show that there might be cases where the third order extrapo-

lation scheme is preferable to the fourth order scheme. Equation (6.31) might not be a very sharp bound

since (6.29) is not a very effective method to compare the order of convergence of different schemes. A

better method would be to equate the exact leading error terms of the third and fourth order extrapola-

tion schemes.
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Chapter 7

Extensions on the Finite Difference

Method

In chapter 5 we discussed two different finite difference methods that can be implemented to approxi-

mate the solution of two dimensional parabolic partial differential equations. Although IMEX-methods

can give second order accuracy they are computationally inefficient. Since the Yanenko method only

solves tri-diagonal systems it can be implemented very efficiently, the downfall is that the Yanenko

method is only first order accurate. In chapter 6 we showed how extrapolation methods can be used to

obtain a computationally efficient scheme that is third or fourth order accurate in time. In this chapter

we will discuss different methods of further improving finite difference schemes.

The first modification will be to replace the uniform grid with a non-uniform grid that is more dense at

a point of interest. The non-uniform grid can be chosen such that local error is minimized, see Kluge

[2002]. Non-uniform grids increase the accuracy in spatial direction whereas extrapolation increases the

accuracy in the time direction.

7.1 Non-uniform grids

Up and till now we defined our partition of the x-axis and y-axis to be uniform. In the next section we

will show how a uniform partition can be mapped onto a non-uniform partition by making use of a grid

generating function.

7.1.1 Grid generating functions

This section is based on a section from Kluge [2002]. In section 3.1 we defined a uniform mesh by an

ordered evenly spaced sequence of numbers

xmin = x0 < x1 < . . . < xm = xmax
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Figure 7.1: Grid generating function with y∗ = 0.4, c = 0.2, p = 7.1 and xmax = 1

where xi − xi − 1 = h for i = 1, 2, . . . , m. To obtain more accurate solutions at the point y∗ ∈ [xmin, xmax]

the number of grid points can be increased, at the expense of computational time, or restructured such

that the grid is more dense at y∗. A grid generating function, g : [xmin, xmax] → [xmin, xmax], is a continuously

differentiable, bijective and strictly monotone increasing function that satisfies the following compati-

bility equations

g(xmin) = xmin

g(xmax) = xmax.

The non-uniform grid can be generated via the following relationship

x̃i = g(xi)

for i = 0, 1, . . . , m. For the case when xmin = 0 we can use the following grid generating function, see

Kluge [2002]

g(x) = y∗ +
c

p
sinh

(
px + arcsinh

(
−p

c
y∗

))
(7.1)

where c is the density of the non-uniform grid at x∗ and p is chosen such that g(xmax) = xmax
1. Figure 7.1

shows how the density at y∗ = 0.4 is increased, without increasing the number of grid points, using this

grid generating function. For some problems it might be the case that xmin 6= 0, for example a down-and-

out barrier option. In such cases we can use a third degree polynomial as a grid generating function

g(x) = a3(x− x∗)3 + a2(x− x∗)2 + a1(x− x∗) + a0 (7.2)
1It is easy to implement any one dimensional numerical solver to obtain the correct value of p.
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where x∗ ∈ [xmin, xmax] is a constant with the property that g(x∗) = y∗, see Kluge [2002]. The five unknown

parameters, a0, a1, a2, a3 and x∗, can be solved if we can obtain five equations. From the definition of x∗

and the compatibility requirements at xmin and xmax it follows that

g(x∗) = y∗

g(xmin) = xmin

g(xmax) = xmax.

The gradient of g(x) is directly related to the density of the mapped grid compared to the uniform grid.

If g′(x∗) > 1 (resp. g′(x∗) < 1) then the density of the grid at y∗ will be lower (resp. higher) than that

of the uniform grid. An extra equation can be obtained from the fact that the solution of g′′(x) = 0 will

give the unique point where the grid is most dense2. Using the additional requirement that the grid

points are 1
c times as dense at the concentration point as in the uniform case we can obtain the following

equations

g′(x∗) = c

g′′(x∗) = 0.

Substituting (7.2) into these equations results in

a0 = y∗

a3(xmin − x∗)3 + a2(xmin − x∗)2 + a1(xmin − x∗) + a0 = xmin

a3(xmax − x∗)3 + a2(xmax − x∗)2 + a1(xmax − x∗) + a0 = xmax

a1 = c

2a2 = 0.

By rearranging we obtain the following non-linear system of equations

a3(xmin − x∗)3 + c(xmin − x∗) + y∗ = xmin

a3(xmax − x∗)3 + c(xmax − x∗) + y∗ = xmax

which can be solved using a numerical method. Figure 7.2 shows how the density at y∗ = 3 is increased

for the case when xmin = 1 and xmax = 5, without increasing the number of grid points, using the second

generating function.

7.1.2 Divided differences

Let h−x and h+
x be the non-uniform step sizes adjacent to a reference node xi

h+
x = xi + 1 − xi

h−x = xi − xi − 1

2This is based on the observation that the solution of f ′(x) = 0 will be a local extreme value of f(x).
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Figure 7.2: Grid generating function with y∗ = 3, x∗ = 3, c = 0.2, a3 = 0.2, xmin = 1 and xmax = 5

and h−y and h+
y be the non-uniform step sizes adjacent to a reference node yj

h+
y = yj + 1 − yj

h−y = yj − yj − 1.

The finite difference approximations at the respective grid points are denoted by

uk

ij ≈ u(xi, yj, τk).

where τk = k∆t for k = 0, 1, . . . , l. The spacial nodes xi and yj are generated by a grid generating

function for i = 0, 1, . . . , m and j = 0, 1, . . . , n. The relevant forward and backward finite difference

approximations for a reference grid point uk
ij are given by

∆−
x uk

i, j =
uk

i, j − uk
i − 1, j

h−x
(7.3)

∆−
y uk

i, j =
uk

i, j − uk
i, j − 1

h−y
(7.4)

∆+
x uk

i, j =
uk

i + 1, j − uk
i, j

h+
x

(7.5)

∆+
y uk

i, j =
uk

i, j + 1 − uk
i, j

h+
y

. (7.6)
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We will need the following Taylor approximations to derive the central difference approximations for

the case when the mesh is non-uniform.

u(xi + 1, yj + 1, τk) = u + h+
x

∂u

∂x
+ h+

y

∂u

∂y
+ 1

2h+
x

2 ∂2u

∂x2
+ h+

x h+
y

∂2u

∂x∂y
+ 1

2h+
y

2 ∂2u

∂y2
(7.7)

+
1
3!

h+
x

3 ∂3u

∂x3
+

3
3!

h+
x

2h+
y

∂3u

∂x2∂y
+

3
3!

h+
x h+

y 2
∂3u

∂x∂y2
+

1
3!

h+
y

3 ∂3u

∂y3

+ O(h+
x

4, h+
x

3h+
y , h+

x

2h+
y

2, h+
x h+

y

3, h+
y

4)

u(xi − 1, yj + 1, τk) = u− h−x
∂u

∂x
+ h+

y

∂u

∂y
+ 1

2h−x
2 ∂2u

∂x2
− h−x h+

y

∂2u

∂x∂y
+ 1

2h+
y

2 ∂2u

∂y2
(7.8)

− 1
3!

h−x
3 ∂3u

∂x3
+

3
3!

h−x
2h+

y

∂3u

∂x2∂y
− 3

3!
h−x h+

y

2 ∂3u

∂x∂y2
+

1
3!

h+
y

3 ∂3u

∂y3

+ O(h−x
4, h−x

3h+
y , h−x

2h+
y

2, h−x h+
y

3, h+
y

4)

u(xi + 1, yj − 1, τk) = u + h+
x

∂u

∂x
− h−y

∂u

∂y
+ 1

2h+
x

2 ∂2u

∂x2
− h+

x h−y
∂2u

∂x∂y
+ 1

2h−y
2 ∂2u

∂y2
(7.9)

+
1
3!

h+
x

3 ∂3u

∂x3
− 3

3!
h+

x

2h−y
∂3u

∂x2∂y
+

3
3!

h+
x h−y

2 ∂3u

∂x∂y2
− 1

3!
h−y

3 ∂3u

∂y3

+ O(h+
x

4, h+
x

3h−y , h+
x

2h−y
2, h+

x h−y
3, h−y

4)

u(xi − 1, yj − 1, τk) = u− h−x
∂u

∂x
− h−y

∂u

∂y
+ 1

2h−x
2 ∂2u

∂x2
+ h−y h−y

∂2u

∂x∂y
+ 1

2h−y
2 ∂2u

∂y2
(7.10)

− 1
3!

h−x
3 ∂3u

∂x3
− 3

3!
h−x

2h−y
∂3u

∂x2∂y
− 3

3!
h−x h−y

2 ∂3u

∂x∂y2
− 1

3!
h−y

3 ∂3u

∂y3

+ O(h−x
4, h−x

3h−y , h−x
2h−y

2, h−x h−y
3, h−y

4)

u(xi − 1, yj, τk) = u− h−x
∂u

∂x
+ 1

2h−x
2 ∂2u

∂x2
− 1

3!
h−x

3 ∂3u

∂x3
+ O(h−x

4) (7.11)

u(xi + 1, yj, τk) = u + h+
x

∂u

∂x
+ 1

2h+
x

2 ∂2u

∂x2
+

1
3!

h+
x

3 ∂3u

∂x3
+ O(h+

x

4) (7.12)

u(xi, yj − 1, τk) = u− h−y
∂u

∂y
+ 1

2h−y
2 ∂2u

∂y2
− 1

3!
h−y

3 ∂3u

∂y3
+ O(h−y

4) (7.13)

u(xi, yj + 1, τk) = u + h+
y

∂u

∂y
+ 1

2h+
y

2 ∂2u

∂y2
+

1
3!

h+
y

3 ∂3u

∂y3
+ O(h+

y

4). (7.14)

We define the following parameters to shorten the formulas in the derivation

ζ−1 := h−x (h−x + h+
x )

ζ0 := h+
x h−x

ζ1 := h+
x (h−x + h+

x )

ϕ−1 := h−y (h−y + h+
y )

ϕ0 := h+
y h−y

ϕ1 := h+
y (h−y + h+

y ).

By subtracting h−x
2 times equation (7.12) from h+

x

2 times equation (7.11) and rearranging we obtain

∂u

∂x
= − h+

x

ζ−1

u(xi − 1, yj, τk) +
(h+

x − h−x )
ζ0

u(xi, yj, τk) +
h−x
ζ1

u(xi + 1, yj, τk) + O(h+
x h−x ).
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Similarly by subtracting h−y
2 times equation (7.14) from h+

y

2 times equation (7.13) we obtain

∂u

∂y
= − h+

y

ϕ−1

u(xi, yj − 1, τk) +
(h+

y − h−y )
ϕ0

u(xi, yj, τk) +
h−y
ϕ1

u(xi, yj + 1, τk) + O(h+
y h−y ).

Subtracting h−x times equation (7.12) from h+
x times equation (7.11) we obtain

∂2u

∂x2
=

2
ζ−1

u(xi − 1, yj, τk)− 2
ζ0

u(xi, yj, τk) +
2
ζ1

u(xi + 1, yj, τk) + O

(
h−x

3 + h+
x

3

h−x + h+
x

)
.

Similarly by subtracting h−y times equation (7.14) from h+
y times equation (7.13) we obtain

∂2u

∂y2
=

2
ϕ−1

u(xi, yj − 1, τk)− 2
ϕ0

u(xi, yj, τk) +
2
ϕ1

u(xi, yj + 1, τk) + O

(
h−y

3 + h+
y

3

h−y + h+
y

)
.

To obtain the approximation of the cross derivative term we consider the following linear combination

of (7.7) to (7.10) that eliminates the ∂2u
∂x2 and ∂2u

∂y2 terms

h+
x

2h+
y

2u(xi − 1, yj − 1, τk)− h−x
2h+

y

2u(xi + 1, yj − 1, τk)− h+
x

2h−y
2u(xi − 1, yj + 1, τk) + h−x

2h−y
2u(xi + 1, yj + 1, τk)

= (h+
x

2 − h−x
2)(h+

y

2 − h−y
2)u

− h+
x h−x (h+

y

2 − h−y
2)(h−x + h+

x )
∂u

∂x
− h+

y h−y (h+
x

2 − h−x
2)(h−y + h+

y )
∂u

∂y

+ h+
x h−x h+

y h−y (h−x + h+
x )(h−y + h+

y )
∂2u

∂x∂y

− 1
3!

h+
x

2h−x
2(h+

y

2 − h−y
2)(h−x + h+

x )
∂3u

∂x3
− 1

3!
h+

y

2h−y
2(h+

x

2 − h−x
2)(h−y + h+

y )
∂3u

∂y3

+ Higher order terms (7.15)

The ∂2u
∂x2 and ∂2u

∂y2 terms can also be eliminated from (7.11) to (7.14) with the following linear combinations

−h+
x

2u(xi − 1, yj, τk) + h−x
2u(xi + 1, yj, τk)

= −(h+
x

2 − h−x
2)u + h+

x h−x (h+
x + h−x )

∂u

∂x
+

1
3!

h+
x

2h−x
2(h−x + h+

x )
∂3u

∂x3

+ Higher order terms

−h+
y

2u(xi, yj − 1, τk) + h−y
2u(xi, yj + 1, τk)

= −(h+
y

2 − h−y
2)u + h+

y h−y (h+
y + h−y )

∂u

∂y
+

1
3!

h+
y

2h−y
2(h−y + h+

y )
∂3u

∂y3

+ Higher order terms.

We are only left to eliminate the first order terms from (7.15), this can be achieved with the following

linear combination

h+
x

2h+
y

2u(xi − 1, yj − 1, τk)− h−x
2h+

y

2u(xi + 1, yj − 1, τk)− h+
x

2h−y
2u(xi − 1, yj + 1, τk) + h−x

2h−y
2u(xi + 1, yj + 1, τk)

− h+
x

2(h+
y

2 − h−y
2)u(xi − 1, yj, τk) + h−x

2(h+
y

2 − h−y
2)u(xi + 1, yj, τk)

− h+
y

2(h+
x

2 − h−x
2)u(xi, yj − 1, τk) + h−y

2(h+
x

2 − h−x
2)u(xi, yj + 1, τk)

= −(h+
x

2 − h−x
2)(h+

y

2 − h−y
2)u + h+

x h−x h+
y h−y (h−x + h+

x )(h−y + h+
y )

∂2u

∂x∂y
+ Higher order terms.
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Rearranging results in

∂2u

∂x∂y
=

h+
x h+

y

ζ−1ϕ−1

u(xi − 1, yj − 1, τk)−
(h+

x − h−x )h+
y

ζ0ϕ−1

u(xi, yj − 1, τk)−
h−x h+

y

ζ1ϕ−1

u(xi + 1, yj − 1, τk)

− h+
x (h+

y − h−y )
ζ−1ϕ0

u(xi − 1, yj, τk) +
(h+

x − h−x )(h+
y − h−y )

ζ0ϕ0

u(xi, yj, τk) +
h−x (h+

y − h−y )
ζ1ϕ0

u(xi + 1, yj, τk)

− h+
x h−y

ζ−1ϕ1

u(xi − 1, yj + 1, τk) +
(h+

x − h−x )h−y
ζ0ϕ1

u(xi, yj + 1, τk) +
h−x h−y
ζ1ϕ1

u(xi + 1, yj + 1, τk)

+ Higher order terms.

The same result is obtained in Kluge [2002] by making use of matrix equations. The difference approxi-

mations are then given by

∆xu
k

i, j = − h+
x

ζ−1

uk

i − 1, j +
(h+

x − h−x )
ζ0

uk

i, j +
h−x
ζ1

uk

i + 1, j (7.16)

∆yu
k

i, j = − h+
y

ϕ−1

uk

i, j − 1 +
(h+

y − h−y )
ϕ0

uk

i, j +
h−y
ϕ1

uk

i, j + 1 (7.17)

∆2
xu

k

i, j =
2

ζ−1

uk

i − 1, j −
2
ζ0

uk

i, j +
2
ζ1

uk

i + 1, j (7.18)

∆2
yu

k

i, j =
2

ϕ−1

uk

i, j − 1 −
2
ϕ0

uk

i, j +
2
ϕ1

uk

i, j + 1 (7.19)

∆xyu
k

i, j =
h+

x h+
y

ζ−1ϕ−1

uk

i − 1, j − 1 −
(h+

x − h−x )h+
y

ζ0ϕ−1

uk

i, j − 1 −
h−x h+

y

ζ1ϕ−1

uk

i + 1, j − 1

− h+
x (h+

y − h−y )
ζ−1ϕ0

uk

i − 1, j +
(h+

x − h−x )(h+
y − h−y )

ζ0ϕ0

uk

i, j +
h−x (h+

y − h−y )
ζ1ϕ0

uk

i + 1, j (7.20)

− h+
x h−y

ζ−1ϕ1

uk

i − 1, j + 1 +
(h+

x − h−x )h−y
ζ0ϕ1

uk

i, j + 1 +
h−x h−y
ζ1ϕ1

uk

i + 1, j + 1.

7.1.3 Matrix formulation

It is easy to see that we can apply the non-uniform grid to the IMEX and Yanenko schemes defined

in chapter 5 and the extrapolated Yanenko schemes in chapter 6 by simply redefining the difference

operators in equations (5.5) to (5.12) and (5.23) by those given in (7.3) to (7.6) and (7.16) to (7.20). As

in chapter 5 the structure of the matrices involved can be made clear if we give a simple example. We

give the matrices, in bandwidth form, for the case when m = 3 and n = 2 (see figure 5.1). The 1-1-1

bandwidth form of Adiff,A + Acov,A is given by
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|Adiff,A + Acov,A||uk
A| =

× 0 uk
0, 0

−d1, 0

h+
x

d1, 0

h+
x

uk
1, 0

−d2, 0

h+
x

d2, 0

h+
x

uk
2, 0

0 uk
3, 0

0 uk
0, 1

2
ζ−1

(
a1, 1 − h+

x

2 d1, 1

)
− 2

ζ0

(
a1, 1 − (h+

x−h−x )
2 d1, 1

)
2
ζ1

(
a1, 1 + h−x

2 d1, 1

)
uk

1, 1

2
ζ−1

(
a2, 1 − h+

x

2 d2, 1

)
− 2

ζ0

(
a2, 1 − (h+

x−h−x )
2 d2, 1

)
2
ζ1

(
a2, 1 + h−x

2 d2, 1

)
uk

2, 1

0 uk
3, 1

0 uk
0, 2

2
ζ−1

(
a1, 2 − h+

x

2 d1, 2

)
− 2

ζ0

(
a1, 2 − (h+

x−h−x )
2 d1, 2

)
2
ζ1

(
a1, 2 + h−x

2 d1, 2

)
uk

1, 2

2
ζ−1

(
a2, 2 − h+

x

2 d2, 2

)
− 2

ζ0

(
a2, 2 − (h+

x−h−x )
2 d2, 2

)
2
ζ1

(
a2, 2 + h−x

2 d2, 2

)
uk

2, 2

0 × uk
3, 2

Cdiff,A + Ccov,A can be written in (m + 1)-1-(m + 1) bandwidth form as

|Cdiff,A + Ccov,A||uk
A| =

×
m columns︷︸︸︷. . . 0 uk

0, 0

× − e1, 0

h+
y

e1, 0

h+
y

uk
1, 0

× − e2, 0

h+
y

e2, 0

h+
y

uk
2, 0

× 0 uk
3, 0

0 uk
0, 1

2
ϕ−1

(
c1, 1 − h+

y

2 e1, 1

)
− 2

ϕ0

(
c1, 1 − (h+

y −h−y )

2 e1, 1

)
2

ϕ1

(
c1, 1 + h−y

2 e1, 1

)
uk

1, 1

2
ϕ−1

(
c2, 1 − h+

y

2 e2, 1

)
− 2

ϕ0

(
c2, 1 − (h+

y −h−y )

2 e2, 1

)
2

ϕ1

(
c2, 1 + h−y

2 e2, 1

)
uk

2, 1

0 uk
3, 1

0 × uk
0, 2

0 × uk
1, 2

0 × uk
2, 2

0 m columns. . .︸︷︷︸ × uk
3, 2

and BA can be written in (m + 2)-1-(m + 2) bandwidth form as
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|B

A
||u

k A
|=

×
×

×
m
−

2
co

l
︷︸

︸︷
..

.
×

0
u

k 0
,
0

×
×

×
0

u
k 1

,
0

×
×

×
0

u
k 2

,
0

×
×

0
u

k 3
,
0

×
0

u
k 0

,
1

h
+ x

h
+ y

b
1

,
1

ζ
−

1
ϕ
−

1
−

(h
+ x
−

h
− x

)h
+ y

b
1

,
1

ζ
0
ϕ
−

1
−

h
− x

h
+ y

b
1

,
1

ζ
1
ϕ
−

1
−

h
+ x

(h
+ y
−

h
− y

)b
1

,
1

ζ
−

1
ϕ

0

(h
+ x
−

h
− x

)(
h
+ y
−

h
− y

)b
1

,
1

ζ
0
ϕ

0

h
− x

(h
+ y
−

h
− y

)b
1

,
1

ζ
1
ϕ

0
−

h
+ x

h
− y

b
1

,
1

ζ
−

1
ϕ

1

(h
+ x
−

h
− x

)h
− y

b
1

,
1

ζ
0
ϕ

1

h
− x

h
− y

b
1

,
1

ζ
1
ϕ

1
u

k 1
,
1

h
+ x

h
+ y

b
2

,
1

ζ
−

1
ϕ
−

1
−

(h
+ x
−

h
− x

)h
+ y

b
2

,
1

ζ
0
ϕ
−

1
−

h
− x

h
+ y

b
2

,
1

ζ
1
ϕ
−

1
−

h
+ x

(h
+ y
−

h
− y

)b
2

,
1

ζ
−

1
ϕ

0

(h
+ x
−

h
− x

)(
h
+ y
−

h
− y

)b
2

,
1

ζ
0
ϕ

0

h
− x

(h
+ y
−

h
− y

)b
2

,
1

ζ
1
ϕ

0
−

h
+ x

h
− y

b
2

,
1

ζ
−

1
ϕ

1

(h
+ x
−

h
− x

)h
− y

b
2

,
1

ζ
0
ϕ

1

h
− x

h
− y

b
2

,
1

ζ
1
ϕ

1
u

k 2
,
1

0
×

u
k 3

,
1

0
×

×
u

k 0
,
2

0
×

×
×

u
k 1

,
2

0
×

×
×

u
k 2

,
2

0
×

..
.

︸︷
︷︸

m
−

2
co

l

×
×

×
u

k 3
,
2

110



CHAPTER 7. EXTENSIONS ON THE FINITE DIFFERENCE METHOD

The modified identity matrices Iim,A and Iex,A structure is the same as in the case for the uniform grid. The

boundary vector is given by

bA = (cl, 0, 0, crh
−
x ; cl, 0, 0, crh

−
x ; cl, 0, 0, crh

−
x )T .

For the second ordering of the elements in u it is easy to see that Adiff,C + Acov,C can be written in (n + 1)-

1-(n + 1) bandwidth form as

|Adiff,C + Acov,C||uk
C | =

×
n col︷︸︸︷. . . 0 uk

0, 0

× 0 uk
0, 1

× 0 uk
0, 2

−d1, 0

h+
x

d1, 0

h+
x

uk
1, 0

2
ζ−1

(
a1, 1 − h+

x

2 d1, 1

)
− 2

ζ0

(
a1, 1 − (h+

x−h−x )
2 d1, 1

)
2
ζ1

(
a1, 1 + h−x

2 d1, 1

)
uk

1, 1

2
ζ−1

(
a1, 2 − h+

x

2 d1, 2

)
− 2

ζ0

(
a1, 2 − (h+

x−h−x )
2 d1, 2

)
2
ζ1

(
a1, 2 + h−x

2 d1, 2

)
uk

1, 2

−d2, 0

h+
x

d2, 0

h+
x

uk
2, 0

2
ζ−1

(
a2, 1 − h+

x

2 d2, 1

)
− 2

ζ0

(
a2, 1 − (h+

x−h−x )
2 d2, 1

)
2
ζ1

(
a2, 1 + h−x

2 d2, 1

)
uk

2, 1

2
ζ−1

(
a2, 2 − h+

x

2 d2, 2

)
− 2

ζ0

(
a2, 2 − (h+

x−h−x )
2 d2, 1

)
2
ζ1

(
a2, 2 + h−x

2 d2, 2

)
uk

2, 2

0 × uk
3, 0

0 × uk
3, 1

0 . . .︸︷︷︸
n col

× uk
3, 2

The tri-diagonal matrix Cdiff,C + Ccov,C can be written in 1-1-1 bandwidth form as

|Cdiff,C + Ccov,C||uk
C | =

× 0 uk
0, 0

0 uk
0, 1

0 uk
0, 2

− e1, 0

h+
y

e1, 0

h+
y

uk
1, 0

2
ϕ−1

(
c1, 1 − h+

y

2 e1, 1

)
− 2

ϕ0

(
c1, 1 − (h+

y −h−y )

2 e1, 1

)
2

ϕ1

(
c1, 1 + h−y

2 e1, 1

)
uk

1, 1

0 uk
1, 2

− e2, 0

h+
y

e2, 0

h+
y

uk
2, 0

2
ϕ−1

(
c2, 1 − h+

y

2 e2, 1

)
− 2

ϕ0

(
c2, 1 − (h+

y −h−y )

2 e2, 1

)
2

ϕ1

(
c2, 1 + h−y

2 e2, 1

)
uk

2, 1

0 uk
2, 2

0 uk
3, 0

0 uk
3, 1

0 × uk
3, 2

and BC can be written in (n + 2)-1-(n + 2) bandwidth form as
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|B

C
||u

k C
|=

×
×

×
n
−

2
co

l
︷︸

︸︷
..

.
×

0
u

k 0
,
0

×
×

×
0

u
k 0

,
1

×
×

0
u

k 0
,
2

×
0

u
k 1

,
0

h
+ x

h
+ y

b
1

,
1

ζ
−

1
ϕ
−

1
−

h
+ x

(h
+ y
−

h
− y

)

ζ
−

1
ϕ

0
−

h
+ x

h
− y

b
1

,
1

ζ
−

1
ϕ

1
−

(h
+ x
−

h
− x

)h
+ y

b
1

,
1

ζ
0
ϕ
−

1

(h
+ x
−

h
− x

)(
h
+ y
−

h
− y

)

ζ
0
ϕ

0

(h
+ x
−

h
− x

)h
− y

b
1

,
1

ζ
0
ϕ

1
−

h
− x

h
+ y

b
1

,
1

ζ
1
ϕ
−

1

h
− x

(h
+ y
−

h
− y

)

ζ
1
ϕ

0

h
− x

h
− y

b
1

,
1

ζ
1
ϕ

1
u

k 1
,
1

0
u

k 1
,
2

0
u

k 2
,
0

h
+ x

h
+ y

b
2

,
1

ζ
−

1
ϕ
−

1
−

h
+ x

(h
+ y
−

h
− y

)

ζ
−

1
ϕ

0
−

h
+ x

h
− y

b
2

,
1

ζ
−

1
ϕ

1
−

(h
+ x
−

h
− x

)h
+ y

b
2

,
1

ζ
0
ϕ
−

1

(h
+ x
−

h
− x

)(
h
+ y
−

h
− y

)

ζ
0
ϕ

0

(h
+ x
−

h
− x

)h
− y

b
2

,
1

ζ
0
ϕ

1
−

h
− x

h
+ y

b
2

,
1

ζ
1
ϕ
−

1

h
− x

(h
+ y
−

h
− y

)

ζ
1
ϕ

0

h
− x

h
− y

b
2

,
1

ζ
1
ϕ

1
u

k 2
,
1

0
×

u
k 2

,
2

0
×

×
u

k 3
,
0

0
×

×
×

u
k 3

,
1

0
×

..
.

︸︷
︷︸

n
−

2
co

l

×
×

×
u

k 3
,
2
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The modified identity matrices Iim,C and Iex,C structure is the same as in the case of the uniform grid. The

boundary vector is given by

bC = (cl, cl, cl; 0, 0, 0; 0, 0, 0; crh
−
x , crh

−
x , crh

−
x )T .

Exponential fitting

By making use of the fact that

f(x, y, ε) =
yε

2
coth

( yε

2x

)

is a strictly increasing function of ε, we see that by substituting ai, j and ci, j with f(ai, j, di, j,max(h+
x , h−x ))

and f(ci, j, ei, j,max(h+
y , h−y )) the off-diagonal elements of Adiff,A + Acov,A and Cdiff,C + Ccov,C will be non-

negative3. Furthermore, from the fact that max(h+
y , h−y ) ≥ {h+

y , h−y , |h+
y −h−y |} it follows that the diagonals

of Adiff,A + Acov,A and Cdiff,C + Ccov,C will be negative.

7.2 Removing the cross-derivative term

In this section we will show that the cross-derivative term of the Heston-model can be removed by

making use of the appropriate transformations4. Consider the following transformations

S → α(S, σ) and σ → β(S, σ)

such that

V (S, σ) = V (α(S, σ), β(S, σ))

in equation (2.28). We obtain

∂V

∂S
=

∂α

∂S

∂V

∂α
+

∂β

∂S

∂V

∂β

∂V

∂σ
=

∂α

∂σ

∂V

∂α
+

∂β

∂σ

∂V

∂β

∂2V

∂S2
=

∂2α

∂S2

∂V

∂α
+

(
∂α

∂S

)2
∂2V

∂α2
+

∂2β

∂S2

∂V

∂β
+

(
∂β

∂S

)2
∂2V

∂β2
+ 2

∂α

∂S

∂β

∂S

∂2V

∂α∂β

∂2V

∂σ2
=

∂2α

∂σ2

∂V

∂α
+

(
∂α

∂σ

)2
∂2V

∂α2
+

∂2β

∂σ2

∂V

∂β
+

(
∂β

∂σ

)2
∂2V

∂β2
+ 2

∂α

∂σ

∂β

∂σ

∂2V

∂α∂β

∂2V

∂S∂σ
=

∂2α

∂S∂σ

∂V

∂α
+

∂α

∂S

∂α

∂σ

∂2V

∂α2
+

∂2β

∂S∂σ

∂V

∂β
+

∂β

∂S

∂β

∂σ

∂2V

∂β2
+

(
∂α

∂S

∂β

∂σ
+

∂α

∂σ

∂β

∂S

)
∂2V

∂α∂β
.

3To see that f(x, y, ε) is a strictly increasing function of ε, consider

∂f

∂ε
=

y

2 sinh2 θ
(cosh θ sinh θ − θ)

=
y

4 sinh2 θ
(sinh 2θ − 2θ)

> 0

where θ = yε
2x

. The inequality follows from the fact that sinh 2θ
2θ

> 1 whenever θ 6= 0.
4These calculations was inspired by conversations with Daniel J. Duffy.
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Substituting into (2.28) and rearranging results in

∂V

∂τ
=

[
rS

∂α

∂S
+ κ∗(θ∗ − σ)

∂α

∂σ
+ 1

2σS2 ∂2α

∂S2
+ ρνσS

∂2α

∂S∂σ
+ 1

2ν2σ
∂2α

∂σ2

]
∂V

∂α

+
[
rS

∂β

∂S
+ κ∗(θ∗ − σ)

∂β

∂σ
+ 1

2σS2 ∂2β

∂S2
+ ρνσS

∂2β

∂S∂σ
+ 1

2ν2σ
∂2β

∂σ2

]
∂V

∂β

+

[
1
2σS2

(
∂α

∂S

)2

+ ρνσS
∂α

∂S

∂α

∂σ
+ 1

2ν2σ

(
∂α

∂σ

)2
]

∂2V

∂α2

+

[
1
2σS2

(
∂β

∂S

)2

+ ρνσS
∂β

∂S

∂β

∂σ
+ 1

2ν2σ

(
∂β

∂σ

)2
]

∂2V

∂β2

+
[
σS

∂α

∂S

(
S

∂β

∂S
+ ρν

∂β

∂σ

)
+ νσ

∂α

∂σ

(
ν

∂β

∂σ
+ ρS

∂β

∂S

)]
∂2V

∂α∂β
.

Note that the coefficient of the cross-derivative term will be zero if

σS
∂α

∂S
= νσ

∂α

∂σ
and S(1 + ρ)

∂β

∂S
= −ν(1 + ρ)

∂β

∂σ
.

It is easy to show that

α(S, σ) = ln S +
1
ν

σ and β(S, σ) = ln S − 1
ν

σ (7.21)

satisfies these equations. Thus we have obtained transformations that will remove the cross-derivative

term from the Heston PDE. This is in contrast to Zvan et al. [2003] where it is said that such transforma-

tions do not appear to be possible. The non-zero coefficient of the cross-derivative term was the main

reason why we could not prove the extrapolated Yanenko scheme L0-stable in section 6.3. Now that

we have removed the cross-derivative term we can simply apply the L0-stable Khaliq-Twizwell scheme,

which we modified such that it incorporates convection terms as well, to solve the transformed Hes-

ton PDE. The main reason why we do not pursue this idea further is the complications that arise with

the boundary conditions. Suppose that we want to solve the Heston PDE on the rectangular domain

[lnSmin, ln Smax]× [0, σ] with the boundary conditions given by

∆BC1V (lnSmin, σ) = 0, ∀σ
∆BC2V (lnSmax, σ) = 0, ∀σ

∆BC3V (ln S, σmin) = 0, ∀ ln S

∆BC4V (ln S, σmax) = 0, ∀ ln S

where ∆BC1, ∆BC2, ∆BC3 and ∆BC4 are linear differential operators. Using (7.21) to remove the cross-

derivative term we see that the transformed boundary conditions are given on the boundaries of a

non-rectangular domain, see figure 7.3

∆̃BC1V
∣∣∣
α+β=ln Smin

= 0

∆̃BC2V
∣∣∣
α+β=ln Smax

= 0

∆̃BC3V
∣∣∣
α−β= 2

ν σmin

= 0

∆̃BC4V
∣∣∣
α−β= 2

ν σmax

= 0
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Figure 7.3: The original and transformed domain, where ν = 2, ln Smin = 0.2, ln Smax = 0.8, σmin = 0.2 and

σmax = 0.8.

for all α and β where ∆̃BC1, ∆̃BC2, ∆̃BC3 and ∆̃BC4 are the transformed boundary conditions. This non-

rectangular domain will have an adverse effect on the ordered structure of the matrices, we feel that the

transformed problem becomes more complicated than the untransformed problem.

7.3 Non-Smooth payoff functions

In financial mathematics we almost always work with functions that are not smooth, i.e. either the payoff

function or the derivative of the payoff function is discontinuous. These discontinuities can lower the

order of convergence of a scheme and have an adverse effect on the stability of the implied hedging

parameters, see Heston and Zhou [2000] and Pooley et al. [2003]. In this section we will give three algo-

rithms to handle these problems, namely: Rannacher time-marching, the averaging of initial conditions,

and grid shifting.

7.3.1 Rannacher time-marching

Rannacher time marching has been implemented to smooth the initial data for Heston’s stochastic

volatility model in Ikonen and Toivanen [2005b], Ikonen and Toivanen [2005c] and Giles and Carter
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[2006]. Say we have chosen a finite difference scheme, Crank-Nicolson for example, with a time incre-

ment of ∆t. The Rannacher algorithm is then given by:

• Set the time increment to ∆t
2 and make 2n steps with the classical fully implicit method.

• Change the time increment back to ∆t and continue with the chosen scheme.

where n ∈ N. In Giles and Carter [2006] it is shown that n = 2 is optimal. For n > 2 the first order

accurate fully implicit scheme can have an adverse effect on the accuracy of the scheme and for n < 2

the initial data will not be smooth enough. The intuition behind this scheme is that a robust scheme must

be used for the startup procedure which can “handle” the discontinuities. After a few time steps with

the first order fully implicit scheme the initial data is smooth enough for the Crank-Nicolson scheme to

be stable and second order accurate.

7.3.2 Averaging of initial conditions

In Thomee and Wahlbin [1974] and Pooley et al. [2003] they propose the following method to smooth

the initial data, Ψ(S, σ)

u0
i, j =

1
Si + 1

2
− Si − 1

2

∫ S
i + 1

2

S
i − 1

2

Ψ(Si − y, σj)dy

where Si + 1
2

denotes the point halfway between Si and Si + 1. Note that we only need to smooth the

payoff function in the stock direction since the payoff functions of the contingent claims we consider

will not be dependent on volatility.

7.3.3 Shifting the mesh

In Tavella and Randall [2000] they shift the grid such that the discontinuity of the initial condition (or

the derivative of the initial condition) falls exactly between two adjacent nodes. It is suggested in Tavella

and Randall [2000] and Pooley et al. [2003] that this simple remedy improves the rate of convergence.
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Chapter 8

Numerical solution of stochastic

volatility PDEs: Heston, Hull & White,

and SABR

In this chapter we apply the two dimensional PDE solvers derived in chapters 5, 6 and 7 to obtain

numerical solutions of the PDEs derived in sections 2.2.1, 2.2.2 and 2.2.3.

8.1 Stochastic volatility models

In this section the FDM schemes derived in the previous chapters are applied to obtain numerical so-

lutions of the PDEs arising in stochastic volatility models. For illustrative purposes the valuation of

European call and put options will be considered. For all stochastic volatility models the PDE govern-

ing the value of the derivatives can be written in the following form

∂V

∂τ
=rS

∂V

∂S
+ (pσ − qσλσ(S, σ, t))

∂V

∂σ

+ 1
2q2

S

∂2V

∂S2
+ ρqSqσ

∂2V

∂S∂σ
+ 1

2q2
σ

∂2V

∂σ2
− rV (8.1)

on the truncated domain (S, σ) ∈ [0, Smax] × [0, σmax], with the initial condition determined by the payoff

function

V (S, σ, 0) = Ψ(S, σ).

In order to apply the FDMs from the previous chapters we need to remove the discounting term from

this PDE and prove that the PDE is parabolic. We can remove the discounting term by making use of

the transformation V (S, σ, τ) = u(S, σ, τ)e−rτ . Thus the pricing problem becomes

∂u

∂τ
= a(S, σ)

∂2u

∂S2
+ 2b(S, σ)

∂2u

∂S∂σ
+ c(S, σ)

∂2u

∂σ2
+ d(S)

∂u

∂S
+ e(S, σ)

∂u

∂σ
(8.2)
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with the initial condition

u(S, σ, 0) = Ψ(S, σ)

where
a(S, σ) = 1

2q2
S d(S) = rS

c(S, σ) = 1
2q2

σ e(S, σ) = (pσ − qσλσ(S, σ, t))

b(S, σ) = 1
2ρqSqσ.

We will also have to transform the original boundary conditions using V = ue−rτ . The final step is to

confirm the inequalities. It is trivial to see that a(S, σ) > 0 and c(S, σ) > 0, for the final inequality we

have

ac− b2 =
1
4
q2

Sq2
σ(1− ρ2) > 0.

The inequality follows from the fact that ρ ∈ (−1, 1).

8.1.1 European put

To find the value of a European put option we need to numerically solve (8.1) with the initial condition

V (S, σ, 0) = Ψ(S, σ) = max(K − S, 0)

and the boundary conditions

V (0, σ, τ) = Ke−rτ

∂V

∂S
(Smax, σ, τ) = 0

∂V

∂τ
(S, σ, τ) = d(S)

∂V

∂S
+ e(S, σ)

∂V

∂σ
− rV, σ = 0

∂V

∂τ
(S, σ, τ) = a(S, σ)

∂2V

∂S2
+ d(S)

∂V

∂S
− rV, σ = σmax.

To see where the first boundary condition comes from, note that when the stock price is zero then the

European put option will definitely give its owner a cash inflow of K at maturity. The value of this cash

flow at time t is Ke−rτ . The second boundary conditions comes from the assumption that the price of a

put will be independent of the underlying for very large values of the underlying. Neither Dirichlet nor

Neumann boundary conditions are posed at σ = 0 and σ = σmax, instead we require that the PDE itself

must be satisfied on these boundaries, this is known as a smoothing condition. The third boundary

condition arises from the fact the the parabolic part of the PDE on the boundary σ = 0 is zero for all

the stochastic volatility models that we are going to consider. Similar boundary conditions to those

discussed here can be found in the literature, see Heston [1993], Zvan et al. [1998], Ikonen and Toivanen

[2005a] and Duffy [2006] for example. Equivalently (8.2) can be solved with the following boundary
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conditions

u(0, σ, τ) = K

∂u

∂S
(Smax, σ, τ) = 0

∂u

∂τ
(S, σ, τ) = d(S)

∂u

∂S
+ e(S, σ)

∂u

∂σ
, σ = 0

∂u

∂τ
(S, σ, τ) = a(S, σ)

∂2u

∂S2
+ d(S)

∂u

∂S
, σ = σmax.

8.1.2 European call

Similarly to a European put, (8.1) needs to be solved with the following initial condition

V (S, σ, 0) = Ψ(S, σ) = max(S −K, 0)

to obtain the correct value surface. The boundary conditions are given by

V (0, σ, τ) = 0

∂V

∂S
(Smax, σ, τ) = e−rτ

∂V

∂τ
(S, σ, τ) = d(S)

∂V

∂S
+ e(S, σ)

∂V

∂σ
− rV, σ = 0

∂V

∂τ
(S, σ, τ) = a(S, σ)

∂2V

∂S2
+ d(S)

∂V

∂S
− rV, σ = σmax.

Equivalently (8.2) can be solved with the following boundary conditions

u(0, σ, τ) = 0

∂u

∂S
(Smax, σ, τ) = 1

∂u

∂τ
(S, σ, τ) = d(S)

∂u

∂S
+ e(S, σ)

∂u

∂σ
, σ = 0

∂u

∂τ
(S, σ, τ) = a(S, σ)

∂2u

∂S2
+ d(S)

∂u

∂S
, σ = σmax.

8.2 The SABR model

When we consider European options we need not concern ourselves with the dynamic SABR model. By

comparing (2.21) with (2.12) we see that we can use the arguments in the previous section after we make

the following substitutions,
qS = σF β qσ = νσ

S = F D = −rS

pσ − qσλσ = 0.

To find the value of a European option in the SABR world with a payoff Ψ(F, σ) at maturity, we need

to solve (2.21) with the payoff function as a terminal condition. Using the arguments above we deduce
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that we can obtain the solution of the problem above by solving

∂u

∂τ
= 1

2σ2F 2β ∂2u

∂F 2
+ ρνσ2F β ∂2u

∂F∂σ
+ 1

2ν2σ2 ∂2u

∂σ2
(8.3)

with the initial condition

u(F, σ, 0) = Ψ(F, σ)

on the truncated domain (F, σ) ∈ [0, Fmax]× [0, σmax]. We can transform back to financial variables, from u

to V , via V (F, σ, τ) = u(F, σ, τ)e−rτ .

8.3 The Heston model

By comparing (2.28) with (2.12) we see that we can use the arguments in section 8.1 after we make the

following substitutions,
qS =

√
σS qσ = ξσ

pσ − qσλσ = µσ D = 0.

To find the value of a European option in the Heston model with a payoff Ψ(F, σ) at maturity, we need

to solve (2.28) with the payoff function as a terminal condition. Using the arguments in section 8.1 we

deduce that we can obtain the solution of the problem above by solving

∂u

∂τ
=rS

∂u

∂S
+ κ∗(θ∗ − σ)

∂u

∂σ

+ 1
2σS2 ∂2u

∂S2
+ ρνσS

∂2u

∂S∂σ
+ 1

2ν2σ
∂2u

∂σ2

with the initial condition

u(S, σ, 0) = Ψ(S, σ)

on the truncated domain (S, σ) ∈ [0, Smax]× [0, σmax]. We can transform back to financial variables, from u

to V , via V (S, σ, τ) = u(S, σ, τ)e−rτ .

8.4 The Hull & White model

By comparing (2.29) with (2.12) we see that we can use the arguments in section 8.1 after we make the

following substitutions,
qS =

√
σS qσ = ξσ

pσ − qσλσ = µσ D = 0.

To find the value of a European option in the Hull & White model with a payoff Ψ(F, σ) at maturity, we

need to solve (2.29) with the payoff function as a terminal condition. Using the arguments in section 8.1

we deduce that we can obtain the solution of the problem above by solving

∂u

∂τ
=rS

∂u

∂S
+ µσ

∂u

∂σ

+ 1
2σS2 ∂2u

∂S2
+ ρξσ3/2S

∂2u

∂S∂σ
+ 1

2ξ2σ2 ∂2u

∂σ2
(8.4)
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with the initial condition

u(S, σ, 0) = Ψ(S, σ)

on the truncated domain (S, σ) ∈ [0, Smax]× [0, σmax]. We can transform back to financial variables, from u

to V , via V (S, σ, τ) = u(S, σ, τ)e−rτ .
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Chapter 9

Numerical Results

In this chapter we compare the numerical solutions obtained with the finite difference method for a

European call in the Heston and SABR model with the known solutions. We will conclude this chapter

by giving an example to illustrate how exponential fitting improves the fully implicit method for the

evaluation of one dimensional convection diffusion equations.

9.1 The algorithm

The numerical results, regarding stochastic volatility models, in this chapter are obtained with the two

dimensional finite difference methods discussed in chapters 5, 6 and 7. For the two dimensional case we

use non-uniform grids, structured such that they are most dense near the strike of the call options and

the spot volatility, see figure 9.1. The non-uniform grid is generated with the grid generating function

defined in equation (7.1). Let Sî and Sî + 1 be the nodes immediately adjacent the strike K. To ensure

that the strike of the option is placed precisely in the middle of Sî and Sî + 1, we make use of a two

dimensional optimization procedure on Smax and p to ensure that the following equalities hold:

K =
Sî + 1 + Sî

2
g(Smax) = Smax.

We make use of exponential fitting, as shown in section 7.1, whenever there are non-zero convection

terms. For the implementation of splitting methods we have written a procedure that dynamically

reorders the solution vector such that only tri-diagonal matrices are solved.

Since two dimensional finite difference schemes require the iterative solution of large matrices, these

schemes must be implemented in a computer language that can handle large data sets. We chose to

implement the finite difference schemes in MATLAB since large sparse systems of equations are easy to

construct and solve in MATLAB. We used MATLAB’s sparse function to construct the relevant matri-

ces. Once the matrices are constructed it is easy to implement the different time marching procedures:

fully implicit, Crank-Nicolson, Yanenko and extrapolation schemes. The engine for the Yanenko scheme
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Figure 9.1: A structured non-uniform grid with a concentration point (σ0,K).

is given by the following piece of MATLAB code1

% Preliminary definitions

% Iim1ForA, Iex1ForA, Iim2ForC, Iex2ForC, boundaryVec1ForA and

% boundaryVec2ForC are defined in section 5.4.2.

ThetaA1 = (Iim1ForA - dt*A1);

ThetaA1B = (Iex1ForA + dt*B1);

ThetaC2 = (Iim2ForC - dt*C2);

ThetaC2B = (Iex2ForC + dt*B2);

for i = 1:l % l = number of time steps, m = number of steps in the stock

% direction and n = number steps in the volatility direction.

u = ThetaA1\(ThetaA1B*u + boundaryVec1ForA);

u = order1to2(u,m,n); % Change the ordering such that we can use the

% tri-diagonal form of C. This is done such that

% only tri-diagonal matrices are inverted

% (See Chapter 5).

u = ThetaC2\(ThetaC2B*u + boundaryVec2ForC);

u = order2to1(u,m,n); % Change the ordering such that we can use the

% tri-diagonal form of A.

end

1We omit the engines for the extrapolation schemes since they are lengthy and do not give any extra intuition.
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function u2 = order1to2(u1,m,n)

% Change the ordering of the elements in u from order 1 to order 2.

u1 = reshape(u1,m+1,n+1);

u1 = u1’;

u2 = reshape(u1,(m+1)*(n+1),1);

function u1 = order2to1(u2,m,n)

% Change the ordering of the elements in u from order 2 to order 1.

u2 = reshape(u2,n+1,m+1);

u2 = u2’;

u1 = reshape(u2,(m+1)*(n+1),1);

The code was executed on a personal computer with an AMD 2800+ CPU and 1GB RAM.

9.2 Heston model

The benchmark solution for the value a European option in the Heston model is obtained with the VBA

code given in Vogt [2004]. For the numerical results of this section we used the following parameter

values2

K = 123.4, σ0 = 0.02, τ = 1, r = 0.1, ρ = −0.9

κ∗ = 1.988937, θ∗ = 0.011876, ν = 0.15

σmin = 0, σmax = 0.2

Smin = 0, Smax = 300

m = 200

n = 100

l = 81

where m, n and l are the number of grid points in the x, y and τ direction respectively. The bound-

aries Smax and σmax must be chosen such that the boundary conditions at these boundaries do not have

an adverse effect on the interior point of interest. Ideally we would like to compare the finite difference

approximations to the benchmark solutions on a whole range of volatilities [σmin, σmax]. Since the bench-

mark solution given in Vogt [2004] is computationally too intense for the construction of value surfaces

we only compare the finite difference solution to the benchmark solution at a single volatility value.

Classical Alternating Direction Implicit schemes (ADI-schemes) are problematic when the coefficient of

the cross-derivative term is large, see Kluge [2002] and Duffy [2006]. In Hout and Welfert [2006] an un-

conditionally stable ADI scheme is proposed for the solution of two dimensional convection diffusion

2Note that the spot volatility can be quite small, this means that the boundary condition at σmin may have an adverse effect on

the accuracy of the scheme at this point. We can work around this problem my making the grid more dense near the boundary

and imposing appropriate boundary conditions. It turns out that the smoothing condition at σmin is appropriate.
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equations with mixed derivatives3. Although we could not prove the extrapolated schemes L0-stable

for the case when ρ 6= 0, we were unable to find a parameter set for which these schemes are unstable.

Figure 9.2, 9.3 and 9.4 shows the the error at σ = 0.02 when we use the fully implicit, Crank-Nicolson

and Yanenko schemes respectively to value a European call in the Heston model.

ATM-value ATM Average Elapsed time

relative error (%) absolute error (seconds)

Exact solution 13.8571

Fully Explicit −3.7935× 10169 −2.7376× 10170 6.3716× 10168 6.52

Fully Implicit 13.8588 0.01243 0.0096 48.32

CN 14.1853 2.3683 0.0603 49.85

Craig-Sneyd 13.8598 0.01926 0.0020 18.05

Yanenko 13.8617 0.0327 0.0106 7.14

KT3 13.8569 −0.0015 3.8468× 10−4 18.05

KT4 13.8570 −0.0011 3.6191× 10−4 32.39

From the table above we see that although the fully implicit scheme is stable, it is computationally

inefficient. The Crank-Nicolson scheme is computationally inefficient and unstable, hence we conclude

that the Crank-Nicolson scheme is not appropriate for this problem. The Craig-Sneyd scheme has better

convergence than the Yanenko method but worse than the extrapolation schemes. Yanenko splitting

is stable with a slightly higher error than the fully implicit scheme due to splitting error. Since we

solve only tri-diagonal systems with the Yanenko scheme it is almost as computationally efficient as the

fully explicit scheme where no matrix inversions are required. The lowest error is obtained with the

extrapolation type schemes at a reasonable computational cost.

From figure 9.3 we see that the instability is greatest at the strike, this supports the idea that the dis-

continuous derivative of the payoff function has an adverse effect on the stability of the Crank-Nicolson

scheme.

3Stability is proven with von Neumann stability analysis, which is not a suitable method if the initial data is not smooth.
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Figure 9.2: The difference between the true Heston solution and the solution obtained with the fully

implicit method at σ = 0.02.
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Figure 9.3: The difference between the true Heston solution and the solution obtained with the Crank-

Nicolson at σ = 0.02.
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Figure 9.4: The difference between the true Heston solution and the solution obtained with the Yanenko

scheme σ = 0.02.
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Figure 9.5: The difference between the true Heston solution and the solution obtained with the third

order extrapolated Yanenko scheme at σ = 0.02.
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Figure 9.6: The difference between the true Heston solution and the solution obtained with the fourth

order extrapolated Yanenko scheme at σ = 0.02.

The following tables show the results for different correlations in the Craig-Sneyd scheme, Yanenko

scheme, extrapolated Yenenko scheme and the Crank-Nicolson scheme respectively

Correlation Craig-Sneyd Exact Absolute difference

-0.9000 13.8598 13.8571 0.0027

-0.8000 13.8197 13.8173 0.0024

-0.7000 13.7785 13.7763 0.0022

-0.6000 13.7360 13.7341 0.0019

-0.5000 13.6922 13.6906 0.0016

-0.4000 13.6470 13.6457 0.0013

-0.3000 13.6002 13.5993 0.0009

-0.2000 13.5518 13.5512 0.0006

-0.1000 13.5016 13.5013 0.0003

0 13.4494 13.4495 0.0001
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Correlation Yanenko Exact Absolute difference

-0.9000 13.8617 13.8571 0.0045

-0.8000 13.8217 13.8173 0.0044

-0.7000 13.7805 13.7763 0.0042

-0.6000 13.7382 13.7341 0.0040

-0.5000 13.6945 13.6906 0.0039

-0.4000 13.6494 13.6457 0.0037

-0.3000 13.6028 13.5993 0.0035

-0.2000 13.5545 13.5512 0.0034

-0.1000 13.5045 13.5013 0.0032

0 13.4524 13.4495 0.0029

Correlation KT4 Exact Absolute difference

-0.9000 13.8570 13.8571 0.0002

-0.8000 13.8171 13.8173 0.0002

-0.7000 13.7762 13.7763 0.0002

-0.6000 13.7340 13.7341 0.0002

-0.5000 13.6905 13.6906 0.0002

-0.4000 13.6455 13.6457 0.0002

-0.3000 13.5991 13.5993 0.0002

-0.2000 13.5510 13.5512 0.0002

-0.1000 13.5011 13.5013 0.0002

0 13.4493 13.4495 0.0002

Correlation Crank-Nicolson Exact Absolute difference

-0.9000 13.4857 13.8571 0.3714

-0.8000 13.8035 13.8173 0.0138

-0.7000 13.7750 13.7763 0.0013

-0.6000 13.7331 13.7341 0.0011

-0.5000 13.6896 13.6906 0.0011

-0.4000 13.6447 13.6457 0.0010

-0.3000 13.5983 13.5993 0.0009

-0.2000 13.5504 13.5512 0.0008

-0.1000 13.5007 13.5013 0.0006

0 13.4491 13.4495 0.0004

From these tables we can see that the Craig-Sneyd scheme as well as Crank-Nicolson scheme’s accuracy

decreases as the correlation becomes more negative. Both the Yanenko scheme and the extrapolated

Yanenko scheme’s accuracy are almost independent of the size of the correlation.
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9.3 SABR model

From the previous section we can deduce that the third order extrapolated Yanenko scheme gives accept-

able results. It is well known that the perturbation expansion of the SABR model requires the volatility

of the volatility, ν, to be small and the time to maturity, T , to be relatively short, see Skabelin [2005]

for example. Thus we cannot compare the finite difference solutions to the perturbation solutions for

arbitrary parameter sets. Consider the following parameter set

K = 100, T = 0.5, r = 0.02, β = 0.7, ρ = 0, ν = 0.1

σmin = 0, σmax = 0.2

Fmin = 0, Fmax = 300

m = 250

n = 128

l = 81

where m, n and l are the number of grid points in the x, y and τ direction respectively. Unlike for the

benchmark solution of the Heston model in section 9.2, the pricing formulae given in Hagan et al. [2002]

is instantaneous, hence we can compute option values for a whole range of volatility like parameters.

The spot value of the second stochastic process in the SABR model is not the spot volatility of the under-

lying but is linked to the at-the-money implied volatility and the other calibration parameters, see West

[2005]

σ0 = f(F, σATM, ρ, β, ν, T ).

In this parameter set we chose ν and T relatively small to ensure that the closed form approximations

of European options in the SABR model, derived in Hagan et al. [2002], gives accurate results. We chose

ρ = 0 to be certain that the finite difference scheme is L0-stable and convergent for the test case. For

the results that follow we used the extrapolated Yanenko scheme on a grid with m = 200, n = 100 and

l = 81. Figure 9.7 shows the error obtained when we use the ideal parameter set. From the figure we see

that the error spikes near the strike of the option, this is not too surprising since the first derivative of

the payoff function is discontinuous at this point.

Figures 9.8, 9.9 and 9.10 shows the error surfaces obtained if we perturb ρ, ν and T respectively. From

these figures we see that the perturbations do not have a dramatic effect on the error surface in the

domain of importance. Figure 9.11 shows the error surface if we perturb all the parameters at once.

We deduce that the closed form SABR formulae fails to give accurate solutions for a case when all the

parameters are perturbed.
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Figure 9.7: The error obtained on both the original domain and a truncated domain of importance for

the case when, K = 100, T = 0.5, r = 0.02, β = 0.7, ρ = 0 and ν = 0.1.

Figure 9.8: The error obtained on both the original domain and a truncated domain of importance for

the case when, K = 100, T = 0.5, r = 0.02, β = 0.7, ρ = −0.9 and ν = 0.1.
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Figure 9.9: The error obtained on both the original domain and a truncated domain of importance for

the case when, K = 100, T = 0.5, r = 0.02, β = 0.7, ρ = 0 and ν = 1.

Figure 9.10: The error obtained on both the original domain and a truncated domain of importance for

the case when, K = 100, T = 4, r = 0.02, β = 0.7, ρ = 0 and ν = 0.1.
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9.4 Exponential fitting

Consider an at-the-money European call option with a strike K = 50, maturity T = 5/12, volatility

σ = 0.07 and risk-free rate r = 0.46. We compute the price and the delta of the option with both the

closed form Black-Scholes equation and the one dimensional fully implicit method, see figure 9.12. We

used the following parameters for the finite difference method, m = 80, l = 50 and Smax = 200. From

figure 9.12 we see that although the fully implicit method gives a good approximation of the price, it

does not give a stable solution for the delta of the call option. This follows from the fact that the unfitted

fully implicit method is not L0-stable for convection-diffusion PDEs, see section 4.3.1.

In section 4.3.1 we showed that the exponential fully implicit scheme is unconditionally L0-stable. Figure

9.13 shows that the exponentially fitted fully implicit method gives stable solutions for both the price

and the delta of the option.

9.5 Conclusion

The accurate prices obtained for the Heston model with the VBA code given in Vogt [2004] produces

value surfaces at a high computational cost. The proposed extrapolated Yanenko scheme can be used to

obtain value surfaces at a much lower computational cost. Value surfaces obtained with the FDM can in

turn be used to give approximations of the delta, gamma and vega surfaces. Although we where unable

to prove the extrapolated Yanenko scheme L0-stable whenever ρ 6= 0, extensive experiments with ρ 6= 0

have as yet not resulted in a single case of instability.

Figure 9.11: The error obtained on both the original domain and a truncated domain of importance for

the case when, K = 100, T = 4, r = 0.02, β = 0.7, ρ = −0.9 and ν = 1
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Figure 9.12: The price and the delta of a European call option in the Black-Scholes world computed with

the closed form solution and the classical fully implicit method.

Although the analytical solutions of the SABR model derived in Hagan et al. [2002] gives instantaneous

results, these solutions are perturbation expansions. Hence there might be parameter values for which

the analytical solutions are not appropriate. If one calibrates the SABR model and obtain a bad param-

eter set, it would be inconsistent to price non-vanilla European options with any other approximation

method4.

From section 9.4 we see that the fitting method proposed in Duffy [2006] improves the, already robust,

one dimensional fully implicit method. We used this fitting procedure to improve the stability properties

of our two dimensional schemes.

4Calibration can be done as discussed in West [2005].
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Figure 9.13: The price and the delta of an European call option in the Black-Scholes world computed

with the closed form solution and the exponentially fitted fully implicit method.
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