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Abstract 

 

A test facility was constructed to conduct experimental investigation of erosion 

caused by gas-borne ash particles. The test facility was used to carry out the main 

objective of the study which was the determination of the critical angle of attack that 

gives maximum erosion on the target material, mild steel, and the effect of particle 

velocity and concentration on the erosion of the target material. The tests were carried 

out using ash samples from three different Eskom fossil-fuelled power stations, 

namely Matimba Power Station, Matla Power Station and Lethabo Power Station. The 

selection of the ash samples was based on the ash chemical composition that has the 

highest content of the chemical elements that have a significant influence in the 

material erosion of the target material. These chemical elements are quartz and other 

abrasive materials. These ash samples had a high content of these erosive materials. 

 

The first test that was carried out in this study was the determination of the critical 

angle of attack that gives maximum erosion on the target material. It was decided to 

start by doing this test because the velocity and concentration tests needed a 

predefined critical angle of attack that gives maximum erosion on the target material. 

During the velocity and concentration tests the angle of attack was kept at the 

predefined critical angle of attack. 

 

The results in this study indicate that the critical angle of attack that gives maximum 

erosion on the target material is at 27º ± 3º orientation of the target surface. The 

velocity test results indicate that the material erosion rate increases with increasing 

velocity. The results produced a power relationship between erosion rate and velocity. 

In this power relationship the velocity exponent for the three ash samples was found 

to be in the range between 2.42 and 3.64. The concentration test results also indicate 

that the material erosion rate increases with increasing particle concentration. These 

results produced a linear relationship between erosion rate and particle concentration. 
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1 INTRODUCTION  

 

1.1 Statement of the Problem 

 

In all the thermal power stations for Eskom pulverized coal is burnt in the boiler 

furnace to produce process steam. The hot flue gases leaving the furnace are directed 

towards tube banks of the superheater and reheater. The hot flue gases then lose part 

of their heat to the process steam circulating within the tube banks. From the reheater 

the hot flue gases are directed to the tube banks of the economizer that is used to raise 

the temperature of the water being fed into the boiler. By the time the hot flue gases 

leave the economizer their temperature is in the region of 300 - 350ºC. More heat is 

extracted from the hot flue gases by directing the gases to the rotary regenerative heat 

exchanger that is used to preheat the air being supplied to the boiler.  

The rotary regenerative heat exchanger is made up of a matrix of corrugated mild 

steel plates enclosed in a cylindrical structure. Rotary regenerative heat exchangers 

are commonly used in fossil-fuelled power stations. They improve thermal efficiency 

of the power stations by extracting heat from the flue gases leaving the boiler and use 

it to preheat air from the atmosphere that is drawn into the boiler as combustion air.  

The plates are packed in conveniently sized and robust packs, to facilitate easy 

handling and removal. The corrugated mild steel plates serve as the heat exchanger 

elements. They extract and store heat from the hot flue gases and later release the 

stored heat to the stream of cold air, passing over the heat exchanger elements. In the 

air preheater`, the hot flue gases flow through one side of the rotor, and the cold air 

being supplied to the furnace flows through the opposite side of the rotor. The heat 

exchanger elements pass alternately through the stream of hot flue gas and the stream 

of cold air.  Part of the heat of the hot flue gases is transferred to the heat exchanger 

elements, which in turn are used to heat the stream of cold air being blown into the 

boiler furnace. The two streams of the hot flue gases and cold air are separated from 

each other by a small blanking section of sealing plates. 

The coal supplied to the thermal power stations contains a certain amount of ash 

content that is dependant on the location where it is extracted. Part of this ash is 

removed from the bottom of the boiler. However, the hot flue gases leaving the boiler 
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furnace carry the smaller ash particles away. The hot fly ash particles, traveling at 

high velocities, impinge upon the surfaces of the tubes of the boiler heat exchangers 

and the surfaces of the plates of the regenerative heat exchangers. Over time, the 

bombarded surfaces get eroded. In the extreme cases of erosion, some holes are 

formed in parts of the elements of the heat exchangers. The air preheater elements are 

deemed to have failed once the extent of the erosion of the elements is such that the 

elements cannot maintain their structural integrity or heat transfer performance, or 

both. On average, each power station unit produces 600 Megawatts of power. If there 

is a shut down this production is lost and the cost of maintenance and returning the 

unit back to full operation is very expensive. The cost involved for maintenance of the 

air preheater alone is estimated at R6 million, but this depends on the size of the air 

preheater, the work that needs to be done, required resources, etc. It is desirable to 

predict the rate of erosion by fly ash of the preheater elements so as to be able to take 

measures to minimize the rate of erosion, and also to plan systematically for the 

replacement of the heat exchanger elements. 

At the University of the Witwatersrand, the School of Mechanical, Industrial and 

Aeronautical Engineering has, for a number of years, been collaborating with Eskom. 

The area of research has been the performance of the regenerative air preheaters used 

in Eskom thermal power stations in South Africa. The research has been concerned 

with heat transfer, flow parameters and erosion by gas-borne ash particles. It has 

included experimental work as well as computational modelling. Crookes (2000) 

carried out experimental investigations using the Cold Accelerated Erosion Rig 

(CAER) at Eskom’s Matimba Power Station. He carried out experiments to determine 

erosion rates of different element profiles. The most commonly used element profile 

in power station boilers is KH11, see Section 1.2.3. Wilson (1999) developed a 

numerical model to predict the erosion patterns, but not the erosion rate, of one of the 

designs of the air preheater element profiles, the KH11 profile. de Klerk (2001) 

investigated further the effect of alternating plate thickness of the air preheater 

elements. This was due to the recommendation made by Wilson (1999) of increasing 

the plate thickness of undulated elements, which he found to be eroding the fastest in 

his tests. de Klerk (2001) generated a simulation model to carry out thermal analysis 

in the air preheaters. In his simulation results on thermal analysis he found that 

thicker, colder undulated, plates were at risk of experiencing corrosion and fouling 
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because they could not attain the required temperature in the air preheater as 

compared to the thinner, warmer corrugated, plates. Mabena (2003), in a fouling 

investigation, listed the following problems associated with air preheater failures: 

• Erosion 

• Fouling or plugging 

• Corrosion 

• Fouling and erosion 

• Fire damage 

When running the CAER test rig at Matimba, tons of ash are required for the tests. An 

advantage with this test rig is that it is integrated into the Matimba Power Station 

plant. It is located in one of the power station units and it is integrated in the ash 

system in the plant.  Because of the tons of ash required in order to perform the 

erosion tests, it would be cumbersome and expensive to transport ash samples from 

the different Eskom power stations to Matimba. 

 

Many experimental investigations have been carried out elsewhere to determine or 

predict the rate of erosion by particles entrained in fluid flows on metal surfaces. For 

example, Tabakoff (1979) conducted experimental investigations to determine the 

effects of high temperature on the erosion rate of some selected metal surfaces. The 

test facility was meant to provide data in the range of operating temperatures 

experienced in compressors and turbines. Tabakoff et al. (1979) carried out 

experimental investigations to study the erosion of different materials, using quartz, 

alumina and coal ash particles. The method adopted and the information published is 

relevant in designing and operating a similar test rig. Raask (1985) conducted 

experimental investigations to determine the rate of erosion by fly ash of boiler tubes. 

The erosion tests were done using quartz grains and glass spheres in the range of 90 – 

105 µm, with an average size of 100 µm. The test facility used by Tabakoff et al. 

(1979) involved small quantities of ash, leading to fractions of milligrams of the metal 

specimen being eroded. It may not be accurate to use the results from such low 

quantities of metal erosion to predict the erosion of equipment such as air preheater 

elements. Hence, there is a need to have a laboratory test facility that will achieve 

reasonable rates of erosion of metal surfaces without having to transport excessive 

quantities of ash. 



 19

1.2 Definition of Terms 

 

1.2.1 Erosion 

 

Erosion is the mechanical wear of the target metal surface by a stream of fluid 

carrying entrained solid particles. The type of target material influences the form of 

material removal. Material removal in ductile materials is by extrusion and pitting, 

while material removal in brittle materials is by plastic deformation, Levy (1985). 

 

1.2.2 Rotary Regenerative Heat Exchanger  

 

Rotary regenerative heat exchangers are commonly used in fossil-fuelled power 

stations. They improve thermal efficiency of the power stations by extracting heat 

from the flue gases leaving the boiler and use it to preheat air from the atmosphere 

that is drawn into the boiler as combustion air. Most power stations use two 50% duty 

rotary regenerative heat exchangers per boiler. The rotary regenerative heat 

exchangers are located in a power station as shown in Figure 1.1. 
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Figure 1.1: Regenerative heat exchanger position in operating environment  

      (Crookes, 2000) 

 

The operation of the two main types of rotary regenerative heat exchanger designs is 

shown below. The Ljungstrom design, Figure 1.2, is also known as the rotating matrix 

regenerative heat exchanger. The rotating matrix is alternately exposed to the streams 

of cold air and hot flue gases. The heat extracted from the hot flue gases is transferred 

to the cold air, thereby increasing the temperature of the air entering the boiler 

burners. 
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Figure 1.2: Ljungstrom regenerative heat exchanger, (Crookes, 2000). 

 

The Rothemühle design operates with a static matrix and a rotating hood that directs 

the air flow. Combustion air flows through the rotating hood while flue gas flows 

through the fixed matrix as shown in Figure 1.3. During the rotation of the hood in the 

air preheater the process of heat transfer takes place where heat is extracted from the 

flue gas and transferred to the combustion air.  

 

Figure 1.3: Rothemühle regenerative heat exchanger (Crookes, 2000). 
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1.2.3 Heat Transfer Elements 

 

The regenerative heat exchangers are filled with heat transfer elements that extract 

heat from the flue gases and transfer it to the combustion air. Different element 

profiles are used in regenerative air heaters (RAH). Figure 1.4 shows the undulated 

and corrugated plates. These are the most commonly used plate elements in air 

preheaters. Some profiles that are also used in Eskom power stations are shown in 

Figure 1.5.  Figure 1.6 shows a sectional view of a Ljungstrom regenerative heat 

exchanger showing packed heat transfer elements. The heat transfer elements are 

usually packed in more than one layer. Typically there is a hot layer, an intermediate 

layer and a cold layer with different element profiles. The hot end layer is the top 

layer of the pack elements. It is the layer that is exposed to the hot flue gases coming 

from the boiler. The hot end and intermediate layers are made out of low carbon steel 

material. The cold layer is the bottom layer that is exposed to the cold air from 

atmosphere. It is the first layer that comes into contact with the air from atmosphere 

which is drawn in for combustion purposes in the boiler. The cold layer is often made 

out of low alloy steel (Corten) to protect it against corrosion. These layers are shown 

in Figure 1.7. 

 

 

 

Figure 1.4: Undulated and Corrugated plates (de Klerk, 2001). 
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Figure 1.5: Heat transfer element profiles (Crookes, 2000). 
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Figure 1.6: Heat transfer elements packed in a Ljungstrom RAH (Blackburn, 1996). 

 

 

 

Figure 1.7: Heat transfer elements packed in three layers (Blackburn, 1996). 
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1.3 Objectives of the Present Study 

The present study was undertaken to determine erosion rates of the air pre-heater 

elements’ mild steel material by using ash samples from various Eskom fossil-fuelled 

power stations. This was to be done by using a test facility to be established in the 

laboratory of the School of Mechanical, Industrial and Aeronautical Engineering to 

determine the erosion potential of the ash samples from the various power stations.  

 

1.3.1 Construction of the Erosion Test Facility   

The construction of the test facility was considered as the most important objective 

since there was no other available facility that could be used to carry out the 

investigations that led to the conception of this study. The following had to be borne 

in mind when constructing the test facility: 

• The test facility had to give erosion data that would be measurable and 

compared with data received from system engineers at various Eskom fossil-

fuelled power stations. 

• It had to be an accelerated erosion test facility that could give measurable 

results. 

• It had to be used for similar work in future. 

• It had to able to test different angular positions of the test specimen. 

• It should be able to test erosion rates of mild steel. 

• The test facility had to be constructed completely within budget. 

• It had to fit the space available in the laboratory and still leave space for other 

apparatus, ash storage and other activities. 

 

The test facility was then designed, built and commissioned at the University of the 

Witwatersrand in the School of Mechanical, Industrial and Aeronautical Engineering, 

for the reasons already mentioned above. 

 

1.3.2 Collection of Ash Samples 

 

Looking at the number of fossil-fuelled power stations that Eskom has, it would not 

be possible to collect ash samples from all power stations and test them. This is due to 
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the time allocated for the study and budget. So, a strategy had to be devised on how 

the tests could be done such that they are representative of the ash that is generally 

available at power stations. Ash analysis information was available at Eskom 

Technology Research and Investigations located in Rosherville, Johannesburg, and 

this indicated that not all power stations experience severe erosion. This came out of 

an analysis done by Bosch (1993). It was decided that by testing three or four ash 

types, a fair reflection of erosion that is experienced at power stations could be 

obtained. A few parameters were considered in the ash composition to be the most 

significant in the selection of the ash samples that would be broadly representative of 

the wide range of ash from different power stations. These parameters are the silica 

content (SiO2), particle size, abrasiveness and ash content in coal. 

 

1.3.3 Determination of Erosion Rates 

 

This objective was broken down into three main series of tests to be conducted. These 

were the determination of the critical angle of attack that gives maximum erosion on 

the target material, and determination of the effect of particle velocity and 

concentration on the erosion rate of the target material. The first tests to be conducted 

were the determination of the critical angle of attack that gives maximum erosion on 

the target material. This test was the most important one to start with because the 

critical angle of attack that gives maximum erosion was to be used in the velocity and 

concentration tests with the target material in a fixed position throughout these tests.  

 

1.3.4 Comparison with Work of Others 

At the end of the first three objectives there were test results that came from the series 

of tests carried out in the determination of the erosion rates. These results were 

compared with the work of others from their investigations. This had to be done to 

measure the findings from this study against the findings from other investigations. 

 

1.4 Structure and Outline of the Report 

 

Chapter 2, the literature survey, describes some of the investigations that have been 

carried out on erosion as a material removal process. In most of the investigations 
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done the focus was on erosion experienced in gas turbines and boiler tubes. These 

investigations are also relevant to the present study because fly ash is the main 

erodent considered.  

Chapter 3 deals with the test facility that was used to carry out the experimental 

investigations. The test facility was constructed and commissioned in the laboratory 

of the School of Mechanical, Industrial and Aeronautical Engineering. The design of 

the test facility is described in detail in this chapter. 

Chapter 4 gives a detailed experimental procedure that was used in this study. This 

procedure also serves as a guideline to anyone operating the test facility. 

Chapter 5 presents the test results from the tests carried out in this investigation. In 

this chapter the results are discussed in detail. 

Chapter 6 gives conclusions and recommendations that were drawn from the results 

presented in Chapter 5. 
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2 LITERATURE SURVEY 

 

Lee at al. (1999) have given a comprehensive summary of the factors that determine 

erosion. The factors that determine erosion are outlined below and discussed in this 

order in the text that follows. 

 

2.1 Factors Determining the Rate and Nature of Erosion 

 

1. Angle of impingement of the erodent. 

2. Particle size. 

3. Particle shape and hardness. 

4. Particle impact velocity and the velocity exponent. 

5. Particle concentration in the fluid stream. 

6. Temperature effects. 

7. Nature of material removal. 

 

2.1.1 Angle of Impingement of the Erodent 

 

In the investigations carried out by most researchers it has been found that the erosion 

rate is greatly affected by the angle of impingement of the erodent. Tabakoff and 

Wakerman (1979) observed that the erosion mass parameter (expressed as milligrams 

of material eroded per gram of abrasive impacting on the specimen surface) has a 

maximum value at an angle of attack of approximately 25°. They found that the effect 

of the angle of attack is independent of the particle velocities; however, the definition 

of the point of maximum erosion becomes much more explicit with increasing 

velocity, as shown in Figure 2.1. The tests were done using Kingston coal ash (a 

British power station). The tests were run with the target temperature varied from 

ambient to 649°C. 

 

Raask (1985) observed that the maximum erosion occurs at impaction angle between 

30° and 45°. Experiments were carried out using quartz grains and glass spheres as 

erodents on mild steel material. These erodents were chosen as they are major 
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abrasives found in coal. Zhong and Minemura (1996) found that the erosion mass 

parameter has a maximum value at an angle of attack of approximately 50°.  

 

Oka et al. (1997), Tilly and Sage (1970), Grant and Tabakoff (1980), all found that 

the maximum value of the erosion mass parameter occurs at an impaction angle of 

approximately 20°. From these and other investigations about the effect of the angle 

of impingement on the eroded material it has generally been found that maximum 

erosion occurs at angles between 20° and 25°.  

 

 

Figure 2.1: Effect of angle of attack on erosion rate (Tabakoff and Wakerman, 1979). 
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2.1.2 Particle Size 

 

The particle size has also been found to be a very important contributing factor in 

accelerating erosion. Big particles traveling at high velocity can cause significant 

erosion at the point of impact because of their inertia. If these particles have high 

silica content the target surface will experience even more severe erosion at the point 

of impact, see section 2.1.3. 

 

Zhong and Minemura (1996) carried out an investigation for the measurement of 

erosion due to particle impingement and numerical prediction of wear in a pump 

casing. They found that wear (W) on a target material is the sum of deformation wear 

(Wd) and cutting wear (Wc). They related this finding by the following equations: 

 

W = Wd + Wc         (2.1) 

where 

Wd = (1/2)Mp(Vni – K1)
2
/εd       (2.2) 
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The terms εc and εd are coefficients of erosion, Vn and Vt are normal and tangential 

velocity components, respectively; Mp is the mass of the particles, B, K1 and K2 are 

constants depending on the material properties of the particle and wall, such as 

density and Poisson’s ratio. The results of their investigation are shown in Figure 2.2. 

From these equations and Figure 2.2, it is apparent that an increase in particle size 

causes a decrease in cutting wear, while the deformation wear will not change. 

 

Tilly and Sage (1970) observed erosion caused by quartz particles of sizes ranging 

from 0 to 150 µm. The results of their investigation are shown in Figure 2.3. It can be 

seen that erosion is very small for particles smaller than a threshold size of about 

20µm, which is dependent upon the target material. For nylon and steel there is also a 

saturation level where erosion is independent of particle size. 
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Finnie et al. (1967) eroded annealed commercially pure aluminum (1100-0), at 

impaction angle of 20° and velocity of 152.4 m/s, with different sizes of silicon 

carbide (SiC) particles. It was found that the particles with sharp edges produced high 

erosion rates compared to spherical particles. This was due to the sharp edges cutting 

deeper into the target surface resulting in more material eroded from the surface. 

 

 

 

 

 

 

 

Figure 2.2: Effect of particle size on erosion rate (Zhong and Minemura, 1996). 



 32

 

 

Figure 2.3: Effect of particle size (Tilly and Sage, 1970). 
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2.1.3 Particle Shape and Hardness 

 

It has been found that angular particles are more erosive than spherical particles. 

Angular particles erode materials by cutting. When a material is struck by spherical 

particles, some of the particles bounce off the material without eroding it. 

 

Levy and Chik (1982) carried out investigations on the effects of erodent composition 

and shape on the erosion of steel. They used particles of five different erodents, all 

angular in shape, and in the size range 180 – 250 µm. Also, two different shapes of 

the same particle composition were used to study the effect of shape on erosion rate. 

The particles used were steel shot (spherical) and grit (angular) with an average size 

of 100 µm. The steady state erosion rates of the AISI 1020 steel with a Vickers 

hardness number, Hv = 150 kg f mm
-2

, eroded by each type of particle are listed in 

Table 2.1. The rates for the brittle erodents are plotted in Figure 2.4. It can be seen 

that the erosion rates are very low for the softest materials, such as calcite and apatite. 

Once the Vickers hardness number of the particles reaches approximately 700 kg f 

mm
-2

, the erosion rates remain essentially constant as the hardness of the particles 

increases further. Thus silica (SiO2) at Hv = 700 kgfmm
-2

 has nearly the same 

erosivity as silicon carbide (SiC) at Hv = 3000 kg f mm
-2

 although silicon carbide has 

over four times the hardness of the silica. 

 

When coal is burnt in a boiler flame, the coal’s abrasive characteristics are markedly 

changed, Raask (1985). The mineral in coal consists of a mixture of different species, 

which have widely different hardness numbers, as shown in Table 2.2. The ash 

particles have less variable hardness characteristics. Shown in Figure 2.5, the glassy 

particles, which make up the bulk of pulverized fuel ash, have a comparatively high 

Vickers hardness number of about 600 kg f mm
-2

. Raask (1985) observed that the 

erosion damage caused by these particles is limited because of their spherical shape. 

The gritty fraction of the pulverized fuel ash consists largely of unfused quartz 

particles and irregularly shaped agglomerates of sintered ash. Raask (1985) 

determined the relationship between erosion and Vickers hardness for a number of 

steels, as shown in Figure 2.5. 
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Table 2.1: Erodent particles and rates of erosion of AISI 1020 steel (Levy and Chik, 

1982). 

 

 

 

 

Figure 2.4: Erosion rates of AISI 1020 steel by five erodents: ∆, α = 30°, ο, α = 90°,  

                   (Levy and Chik, 1996). 
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Table 2.2: Coal minerals and hardness numbers of ash products (Raask, 1985). 
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Figure 2.5: Erosion wear of steel alloys of different hardness (Raask, 1985). 

Quartz impaction; velocity 27.5 m/s 

1-Mild steel      

2-Austenitic 

3, 4, 5, 6-Hardened steels  

7-CrB-steel 

8-Ni-hard. 

 

2.1.4 Particle Impact Velocity and the Velocity Exponent  

 

Tabakoff and Wakerman (1979) carried out experiments at high velocities of 85, 120 

and 137 m/s, as shown in Figure 2.1. They found the occurrence of maximum erosion 

to be independent of velocity, but the definition of maximum erosion becomes much 

more defined at high velocities.  
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Tilly and Sage (1970) developed a relationship between erosion rate, ε, and velocity, 

V, by the power law: 

ε = a Vα         (2.4) 

where a and α are material constants characterizing the relative erosivity and velocity 

exponent, respectively. For 125 – 150 µm quartz, the velocity exponent was found to 

be 2.3 for materials as diverse as metals and plastics. For particles of 125 µm down to 

25 µm in size, the velocity exponent was found to decrease from 2.3 to 2.0. 

 

Grant and Tabakoff (1980) investigated the effect of velocity at angles of impaction of 

20° to 90°. At the angle of impaction of 20° they observed that the velocity exponent 

was approximately 2.8. At normal impaction or 90° impact, they found the velocity 

exponent to be of the order of 4. 

 

Sheldon and Kanhere (1972) observed that the amount of material eroded, w, is a 

function of the particle impacting velocity, V, as well as the particle diameter, dp. It is 

represented by power law equation: 

w = kV
a
dp

b
         (2.5) 

where; 

k = material constant characterizing the relative erosiveness 

a = velocity exponent 

b = constant relative to particle size 

The material tested was 6061-TO aluminum alloy. They found that the velocity 

exponent is higher (2.83 for glass shot and 2.80 for steel shot) when either steel or 

glass shot impacts work hardened surfaces than annealed surfaces (2.52 for glass shot 

and 2.34 for steel shot) at a 20° angle. At 90° impaction, the results for the work 

hardened and annealed surfaces are equal, the velocity exponent being 2.41 when 

glass shot was used and 2.19 when steel shot was used. 

 

Singh et al. (1990) studied room temperature erosion behavior of 304, 316 and 410 

stainless steels. They related the erosion rate, ε, to particle velocity, V, by the power 

law: 

ε = a V
α
         (2.6) 
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where α and a are velocity exponent and material constant, respectively. 

From the results shown in Figure 2.6 it can be seen that the maximum velocity 

exponent for 304 and 316 stainless steels occurs at 30° impact angle, and that for 410 

stainless steel occurs at 60° impact angle. 

 

Figure 2.6: Effect of impact angle on velocity exponent (Singh et. al., 1990). 

 

 

2.1.5 Particle Concentration in the Fluid Stream 

 

Zhongi and Minemura (1996) investigated the relationship between erosion 

coefficients, εc, and εd, and particle concentration, Cv. The results are shown in Figure 

2.7. Both εc and εd are seen to increase as Cv increases. 

 

Tilly and Sage (1970) carried out experiments on a titanium alloy and steel to 

determine the effect of particle concentration on erosion under vacuum. They 

observed that the change in erosion was small. Two sizes of quartz dust, shown in 
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Figure 2.8 shows effect of particle concentration using dust particles as erodent to 

attack target material, Titanium alloy and 11% Chromium steel. This figure shows 

that small particles cause less erosion when compared to big particles. The highlight 

in this figure is the relationship between erosion rate and concentration. It shows 

erosion as decreasing with increasing concentration. This is totally opposite to the 

relationship shown in Figure 2.7. This is one finding that came up with a trend that 

did not follow any of the work done by others. This was not explained as to why it is 

so.  

 

 

Figure 2.7: Effect of particle concentration (Cv) (Zhong, 1996). 

 

Figure 2.8: Influence of dust concentration on erosion (Tilly, 1970). 

Particle Concentration 
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2.1.6 Temperature Effects of the Two Phase Flow 

 

Tabakoff and Wakerman (1979) investigated the effect of temperature on erosion. The 

results are presented in Figure 2.9. From the two curves of Figure 2.9, it can be seen 

that for both velocities the erosion rate decreases very slightly for increased 

temperature between the ambient temperature and 150°C. The predominant influence 

of the temperature on erosion is observed, however, at temperatures above 150°C. 

With increased temperature, the erosion rate is found to increase initially at a lower 

rate up to about 316°C, and then to increase at a higher rate. 

 

Levy and Chik 1(982) investigated the changes in wear rates for temperature up to 

550°C, as shown in Figure 2.10. It can be seen that both silicon carbide, SiC, and 

silica, SiO2, particles cause a marked increase in wear rate with temperature, 

particularly above 300 - 400°C. The erosion rate when using ash increased only 

slightly with temperature. 

 

Figure 2.9: Effect of temperature on erosion (Tabakoff, 1979). 
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Figure 2.10: Differences in particle erosivity at a constant particle velocity 24±2 m/s, 

                     (Levy and Chik, 1982) 

 

2.1.7 Nature of Material Removal 

 

In most of the studies carried out on the erosion of materials by small particles 

entrained in moving fluids, it was found that the particle shape plays a major role in 

the form of material removal. Angular particles have been found to erode materials by 

cutting, while spherical particles erode materials by plastic deformation. 

 

Finnie et al. (1967) carried out tests on both ductile and brittle materials eroded by 

silicon carbide particles. In their investigation they carried out tests for individual 

materials at the same velocity of 76.20 m/s. They bombarded the material surface with 

a flow stream of silicon carbide particles. They found that out of the ten materials they 

tested eight experienced peak erosion rate at the same angle of attack, 25 º, with the 

other two experiencing peak erosion also at the same angle of attack, 90 º. The eight 

materials that experienced erosion at 25 º are ductile materials. Their findings are 

shown in Figure 2.11. This shows that the ductile material experiences severe erosion 
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when the particles cut into the target surface. When the particles attack the target 

surface they remove material in the chip form. 

 

Tilly and Sage (1970) suggested that erosion occurs by a two-stage process. In the 

first stage, for brittle materials the mechanism of material removal appears to be 

cracking upon impact, while for predominantly ductile materials the situation is more 

complex because impaction causes pronounced pitting and extrusion of material in the 

direction of motion of the particle, to form a hump or lip. The second stage occurs as 

fragments of the particle cause the radial or secondary scars. 

 

Levy and Chik (1982) observed that the loss of metal from an eroding surface appears 

to occur by a combined extrusion-forging mechanism. The erosion occurs by the 

generation of and loss from the surface of the plate-like pieces of metal. The effect of 

particle velocity on the platelet formation process is shown in Figure 2.12. The 

increased size of the platelets is caused by the marked increase in the force imparted 

to the surface by the much faster moving particles. The increased particle velocity 

does not change the erosion mechanism but only the size of the platelets. The larger 

size platelets result in the peak erosion rates. 
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Figure 2.11: Weight removed by erosion as a function of angle for a number of metals 

eroded by silicon carbide particles at 76.20 m/s, (Finnie et al., 1967). 
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Figure 2.12: Platelet formation on metal surface (Levy and Chik, 1982). 

 

2.2 Summary of the Findings from the Literature Review 

 

The literature highlights factors that have significant influence in the material removal 

on a target surface. These factors include material of the target surface, chemical 

composition and particle size and shape of the erodent, the particle velocity and angle 

of attack. The ductile mild steel material experiences the most severe material erosion. 

This is backed by a number of investigations done over the years.  

The literature also indicates that the critical angle of attack is between 20º and 30º. 

Most investigations in the literature found the critical of angle attack to be in the range 

between 25º and 30º. A lot of work has been done in this regard to determine the 

critical angle of attack. It also shows that most erosive chemical elements are quartz 

and abrasive materials. The particle size and shape also have a significant effect in the 
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erosion of the target material. The particle velocity also influences the erosion of the 

target material. The literature shows that erosion rate increases with increasing 

velocity. The other factor that influences erosion of the target material is the particle 

concentration. The erosion rate also increases with increasing concentration. The 

literature found that these relationships, erosion rate and particle velocity and erosion 

rate and particle concentration, are related by a power law. 
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3 DESIGN OF THE TEST FACILITY 

 

Figure 3.1: Layout of the test facility. 

 

Figure 3.1 shows a layout of the test facility that was used to carry out the 

investigations in this study. The test facility was designed and constructed at the 

University of the Witwatersrand in the School of Mechanical, Industrial and 

Aeronautical Engineering. The manufacturing of the test facility was also done at the 

school. The manufacturing drawings of the test facility are attached in Appendix A. 

The layout shows the complete assembly of the test facility as it was in full operation 

during the tests. The sequence of operations in the test facility is as follows: 

• The blower pumps air into the pipeline at a particular velocity. This velocity is 

regulated by a speed controller that is connected directly to the blower motor 

main power supply line. 

• The pressure gauge in front of the blower indicates the pressure reading of the 

air flowing in the pipeline coming from the blower. 

• The air flows through the vertical section and horizontal section of the 

pipeline. In the latter section of the pipeline the air flows through the orifice 

meter. 

• After the orifice meter there is another constriction, a venturi, in the conical 

section from D1 to D3, see Figure 3.1. In this section of the pipeline ash 

particles are fed into the pipeline by the ash feeder. The air that is pumped into 
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the pipeline by the blower carries these ash particles through the acceleration 

section of the pipeline where the mixture is allowed to attain the velocity of 

the air. 

• At the end of the acceleration section there is a test section where the target 

surface is mounted. The flow stream of the ash particles coming out of the 

acceleration section impacts on the target surface in the test section. 

• After the ash particles have impinged on the target surface they come out of 

the test section through the ducting at the bottom of the test section. These ash 

particles get collected in the filter.  

• The filter collects ash at the bottom allowing air to exit at the top of the filter. 

Small ash particles that get entrained in the air collect on the sides of filter 

bags inside the filter. An extractor fan was mounted in a window facing the 

exit of the filter to draw the entrained ash particles out of the laboratory. This 

fan provides good ventilation in the laboratory. 

 

3.1 TEST FACILITY REQUIREMENTS 

A test facility needed to be designed and constructed to meet the objectives of this 

investigation. The most important criterion that had to be addressed was the data to be 

provided by the test facility. The test facility should provide measurable erosion of 

material when the target surface is hit by a flow stream of the ash particles. The test 

facility should provide accelerated erosion of material on the target surface. The 

amount of the ash fed into the main pipeline by the ash feeder should be accurately 

measured. The facility should be able to provide variable flow velocity in the flow 

stream of the ash particles that hit the target surface. The test specimen was also 

another design factor of the test facility. The sizing of the test specimen could also be 

derived from the size of the facility. The facility should provide variable angle 

orientation of the test specimen. 

All these requirements needed to be taken into consideration when deciding on the 

final layout of the test facility. There were other constraints that had to be dealt with 

in order to design the test facility that was going to meet the stated requirements. 

These constraints are space available in the laboratory that was identified to be used to 

build and commission the test facility, storage of the ash samples that were going to 
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be used to run the tests, collection of the ash after the tests and ventilation in the 

laboratory to prevent health hazards. The other constraints were budget and time 

allocated for the study. The budget constraint saw the use of already available 

equipment for the main air supply and measurement of the pressure difference across 

the orifice meter. The time limitation dictated the type and number of tests that had to 

be done. 

3.1.1 BLOWER 

The main air supply in the pipeline was provided by the blower. The budget constraint 

led to the selection of this blower. This blower was suitable for the type of tests that 

were carried out in the study. The maximum velocity that could be achieved with the 

blower was 27 m/s. This velocity is almost three times the actual flue gas velocity of 

10 m/s that flows through the air preheater at power station boilers. For accelerated 

erosion test purposes the velocity range that could be achieved by the blower was 

adequate. The variable speed of the blower was controlled by the use of a speed 

controller. This type of speed controller is called Siliconics, PWM Inverter-ACD. The 

speed controller was regulating the speed of the three phase power motor that was 

coupled to the blower. The regulation of the speed was done by changing the 

frequency in the speed controller that could produce the variable speed. The speed 

controller and motor were also readily available with the blower. Using them in this 

study also helped in the cost cutting exercise. 

 

The blower specification on the name plate that was attached to it read as follows: 

Davidson & Co. 

Fan Number: 96978 

Belfast 

Northern Ireland 

Size: 17 ½’’ 

Fan Number: 10332 (RSA) 

 

The motor specification on the name plate that was attached to it read as follows: 

Size   : C184 

Power   : 3 Hp 

Speed   : 1420 RPM 
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Number of cycles : 50 

Current  : 5.36 Amps 

BS 2960: 1958 

 

3.1.2 ORIFICE METER 

Along the main pipeline there were pipe constrictions and fittings that allowed pipe 

diameter changes. One of these items was the orifice meter that was fitted before the 

point of introduction of the ash particles into the main pipeline. The orifice meter was 

designed in accordance with design information from Douglas (1987). The pressure 

difference across the orifice meter was measured by the use of a pressure manometer. 

After the orifice there was a ball valve that was used to regulate air flow downstream. 

The ball valve was opened in stages like partially open up to fully open position. This 

was done so to provide different velocities in the flow stream. When the ball valve 

was partially open the flow stream velocity was low and increased with the valve 

moving to the fully open position. 

 

3.1.3 ASH FEEDER 

One of the test facility requirements was to accurately measure the amount of ash that 

was fed into the main pipeline to be carried into the test section by air. The feeder had 

to introduce ash that would be enough to form a good mixture with the air supply and 

be able to hit the target surface in the test section. The ash from the feeder was fed 

into the main pipeline through a venturi that was designed in accordance with design 

information from Douglas (1987). The feeder had a variable speed controller that 

made it possible to regulate feed rate. The type of speed controller used is called 

Siemens Micromaster. The feed rate in the feeder was regulated by varying the 

frequency in the speed controller, hence the feed rate would change. 

The feeder was built onto load cells that were used to accurately measure the amount 

of ash fed into the main pipeline. This configuration of the feeder is known as a 

weight loss metering unit with a screw. This feeder could give the initial quantity of 

the ash, amount of ash fed into the main pipeline and the final mass left in the feeder 

after each test run. 

The feeder was purchased from a South African supplier called Alkamee cc. The 

original equipment manufacturer of the feeder was Torex S. R. L., Medolla (MO) 
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Italy. The specification of the feeder is attached in Appendix B. The description of the 

feeder is as follows: 

Description  : Screw Feeder “DCC32/S” Type 

Type   : DCC 

Size   : 32 

Serial Number  : 01102501 

Job   : 2188/1 

Construction Year : 2001 

 

3.1.4 TEST SPECIMEN 

The test specimen was made out of mild steel material. This material is the most 

commonly used in air preheater plates at fossil-fuelled power stations. This could give 

results that are representative to a certain degree of the real situation at fossil-fuelled 

power stations. The test specimen should produce measurable erosion rate using the 

accelerated test facility. Its target surface that was going to be exposed to the flow 

stream of ash particles should allow all the ash particles entrained in the flow stream 

to impact on it. This meant that the ash stream issuing from the last pipe section 

impacted on the test specimen before collecting at the bottom of the test chamber. 

The last pipe section had a major influence in sizing of the test specimen. The 

thickness of the test specimen was also chosen according to the reasonable erosion 

that could be experienced by the target surface. The test specimen size was 100mm 

square with 2mm thickness. 

 

3.1.5 DATA ACQUISITION 

One of the requirements of the test facility was the gathering of measurable data from 

the tests. This facility provided different types of data that were used in the 

investigation conducted in this study. The pressure in the main pipeline was measured 

by the use of pressure gauge and manometer. The pressure gauge was used to measure 

the pressure in the air supply coming from the blower. It was mounted in front of the 

blower. The pressure manometer was used to measure pressure difference across the 

orifice meter. 

The amount of ash in the feeder hopper was measured by the load cells in the ash 

feeder. The feed rate and the final ash quantity left in the feeder left after each test run 
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was also measured by the load cells in the feeder. All this data was displayed in a 

display unit called Microcontroller 9300 NS. This equipment was also supplied by 

Alkamee cc. In this unit the amount of ash used throughout the test programme could 

be retrieved. This unit could also be programmed to control the operations in the 

feeder. There was also an option to toggle between functions and desired display of 

results while the test was still running. 

The amount of wear experienced by the test specimen had to be measured after each 

test run. This was done by weighing the test specimen before the test and after the 

test. The difference between these two parameters was the amount of material eroded 

by the flow stream of the ash particles. This amount of eroded material was in 

milligrams. In order to measure this quantity a reasonably small balance scale had be 

acquired. The type of the balance scale that was used for this exercise was called 

ADA 210LE. This equipment was supplied by Adam Equipment. The specification of 

this equipment is attached in Appendix C. 

 

3.1.6  SIZING OF THE TEST FACILITY 

The main air supply was decided by the blower which was a readily available unit that 

was to be used in the test facility. Dimensions at the outlet of the blower were used as 

the basis of sizing the facility. This section of the blower allowed a 50mm diameter 

pipe to be joined onto it. This pipe diameter was used to get the right pipe material 

that could be used in the joint. A PVC pipe was chosen because it is light, cheaper, 

lasts long and is wear resistant, besides that PVC is the best selection for usage in 

pneumatics. 

Other pipework used were 32mm diameter and 22mm diameter stainless steel pipes. 

Since this section was exposed to the mixture of air from the blower and ash particles 

from the feeder, a wear resistant material selection was necessary. Stainless steel was 

chosen in this section. Pipe constrictions were used to step down from big diameter 

pipe size to small diameter pipe size. The type of pipe constriction used in particular 

was a venturi. Stepping down in pipe sizes was also used to accelerate the flow stream 

in the pipework. 

The size of the test specimen was decided on 100 x 100 x 2 mm. The flow stream 

coming out of the 22 mm diameter pipe could hit this size test specimen at the test 

section. This size took into consideration the target surface that would be hit by the 
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flow stream at all angular positions. The other consideration was mounting of the test 

specimen and still have enough target surface with no obstructions. 

 

3.1.6.1 Parameters Used in the Sizing of the Test Facility 

The test facility sizing had a direct influence in the type of flow that could be 

achieved by the ash particles downstream. The blower size dictated the whole sizing 

exercise of the test facility. Since the blower dictated the pipeline sizing the velocity 

range that could be achieved had to be determined using the pipeline size parameters. 

This section gives theoretical derivations that were used to determine the possible 

velocities that the mixture could attain downstream. The values used were taken from 

known properties of air at room temperature of 20ºC. It should be noted that the 

theoretically calculated velocity values differ significantly to the velocity values from 

the actual test. 

 

Density of air, ρair = 0.993kg/m
3
 

Gravitational acceleration, g = 9.81m/s
2
 

Viscosity of air, µair = 18.12x10
-6

Ns/m
2
 

PVC pipe diameter, D = 46.6mm 

Acceleration section pipe diameter, stainless steel pipe, dm = 22.2mm 

Acceleration length, Lm = 1m 

PVC pipe length, L = 4m 

Mass load ratio, 1.0==
al

pl

m

m
µ       (3.1) 

 

Where mpl and mal are ash particles and air mass flow rates respectively. 

Ash particles mean diameter, dp = 35µm 

Diameter of orifice meter mounted in the PVC pipe, do = 32mm 

Air velocity in the PVC pipe, this value came from blower dry test, V1 = 16m/s 

Bulk density of ash particles, ρash = 720kg/m
3
 

Mass flow rate of ash particles, mp = 0.007kg/s 
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Using continuity equation of flow, Q = A1V1 = A2V2, velocity of air passing through 

the orifice can be calculated and velocity of the mixture in the acceleration section can 

also be calculated assuming that the mixture will attain velocity of air. 

Velocity of air passing through the orifice is given by the following equation, 

smV
A

A
V

o

o /64.3316
32

4.46
2

2

1
1 ===       (3.2) 

This velocity is more than the actual velocity for the tests. Assuming that in the 

acceleration section the mixture will attain the velocity of air, then the mixture flow 

velocity can be calculated using continuity equation of flow as follows; 

A1V1 = AmVm         (3.3) 
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This could be the maximum velocity attained by the flow stream when it reached the 

test section. These velocity calculations were used in the estimation of the possible 

pressure drop in the main pipeline of the test facility when in operation. These were 

purely theoretical predictions, but the real scenario produced a maximum velocity of 

27 m/s. 

 

3.1.6.2 Pressure Drop in the Test Section 

There is a drop in pressure when the air suddenly expands as it enters the test section. 

Wallis (1961) gives a range of pressure drop factor to be 30 to 50% of the mean 

dynamic head downstream of the flow. Taking a factor of 50%, the maximum 

pressure drop due to the sudden expansion of the air is given by; 
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    (3.4) 

 

3.1.6.3 Pressure Drop in the Acceleration Section 

The ash particles injected into the main air stream are kept afloat by the drag and 

buoyancy forces. However, at low values of the air velocity, the gravitational force 

causes the particles to fall to the bottom of the main pipeline.  Saltation velocity is the 

minimum velocity of the air below which the particles entrained in the air stream will 

separate from the air stream and fall to the bottom of the pipeline. Marcus et al. 

(1990) give the acceleration length, La, as follows; 
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where, 

µ = mass load ratio = 0.1 

dm = pipe diameter = 22.2mm 

dp = particle diameter = 35µm 

Re2 = Reynolds Number 
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Therefore, substituting all these values back into the acceleration equation, the 

acceleration length is found to be, 
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In order to allow for adequate smoothing of the flow, the length of the pipeline 

between the test section and the point at which the ash particles are injected into the 

air stream was made to be 1.0m. 

The friction factors, fl and λl, for air and ash particles respectively, are given (Marcus 

et. al., 1990) by the following equations; 

 

fl2 = 0.0014 + 0.125(Re)
-0.32

        (3.7) 
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The pressure drop in the pipeline between the test section and the point at which the 

ash particles are injected into the air stream is given by the following; 
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It is assumed that the initial velocity of the ash particles as they are released into the 

air stream is zero. It is assumed that before striking the test specimen, the ash particles 

will have attained the velocity of the air in the acceleration section. The rate of 

increase in the momentum of the ash particles will be equal to the rate of decrease in 

the momentum of the air. The pressure drop due to ash particles is given by the 

following; 
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The Reynolds Number in the PVC pipe, airside, is given by the following; 
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The friction factor, fl, for the air flowing in the PVC pipe is given by the following; 

 

fl 1= 0.0014 + 0.125(Re1)
-0.32

 = 0.0014 + 0.125(4.07x10
4
)
-0.32

 = 0.0056 (3.12) 

 

The pressure drop in the PVC pipe is given by the following; 
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The pressure drop in the orifice plate, ∆Po = 4Pa, from Ower and Pankhurst (1977). 
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4 EXPERIMENTAL PROCEDURE 

The first two objectives, construction of the test facility and collection of ash samples 

from the three power stations, were carried out successfully and after their completion 

the tests programme had to be carried out. The initial tests programme was drawn up 

as shown in Table 4.1. This was the anticipated tests programme that would probably 

be taken through the investigation in the study. In this programme the test for the 

determination of the critical angle of attack was going in the range between 15º and 

90º. Between 15º and 50º the angular position of the test specimen was going to be 

increase by 5º increments, then by 10º increments thereafter up to 90º. This setup 

would see a total number of 36 tests of three hours each just for the determination of 

the critical angle of attack test alone. A decision was taken to reduce the total number 

of tests from 36 to 21. The number of tests in each angular position of the test 

specimen was kept at three and the duration of each test run was also kept at three 

hours. The range of angular position that was going to be tested for critical angle of 

attack was reduced. In the process of reducing this range the investigations that were 

done before by others and their findings were taken into consideration. In most 

investigations it was found that the critical angle of attack that gives maximum 

erosion is between 20º and 30º with a few finding it to be between 30º and 40º. The 

other parameter that was considered in the selection of the range of angular position 

of the test specimen was the mechanism of erosion experienced by the target surface 

at different angular positions. In the investigations done by others there were findings 

about different erosion mechanisms experienced at each angular position. After taking 

all this into consideration a new tests programme for the determination of the critical 

angle of attack was drawn up. This tests programme is shown in Table 4.2. 

 
The velocity and concentration tests needed a predefined critical angle of attack that 

gives maximum erosion. The critical angle of attack that was found from the tests 

programme of determining the critical angle of attack was used in the velocity and 

concentration tests programmes. In drawing up these tests programmes the limitations 

of the velocity range that would be provided by the blower was taken into 

consideration. The velocity range that was found possible to test in these tests 

programmes was between 18.50 m/s and 27.66 m/s. In this velocity range five 
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velocities were tested. Again in these tests programmes the duration of each test run 

was kept at three hours and three test runs were done in each velocity. These tests 

programmes are shown in Tables 4.3 through 4.5. 

 

Table 4.1: Initial tests programme, determination of the critical angle of attack. 
Weight of Test 

piece (g) 

Test 

Number Temp(˚C) 

Velocity 

(m/s) 

Orientation 

(Degrees) 

Concentration 

(kg/m3) Duration of Test(h) Before After 

Erosion 

Rate 

[weight 

lost(mg)/ash(kg)] 

20  15  3    

20  15  3    1 

20  15  3    

20  20  3    

20  20  3    2 

20  20  3    

20  25  3    

20  25  3    3 

20  25  3    

20  30  3    

20  30  3    4 

20  30  3    

20  35  3    

20  35  3    5 

20  35  3    

20  40  3    

20  40  3    6 

20  40  3    

20  45  3    

20  45  3    7 

20  45  3    

20  50  3    

20  50  3    8 

20  50  3    

20  60  3    

20  60  3    9 

20  60  3    

20  70  3    

20  70  3    10 

20  70  3    

20  80  3    

20  80  3    11 

20  80  3    

20  90  3    

20  90  3    12 

20  90  3    
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Table 4.2: Determination of the critical angle of attack, Matimba Ash Sample. 
Weight of Test 

piece (g) 

Test 

Number Temp(˚C) 

Velocity 

(m/s) 

Orientation 

(Degrees) 

Concentration 

(kg/m3) Duration of Test(h) Before After 

Erosion 

Rate 

[weight 

lost(mg)/ash(kg)] 

20 26.59 20  3    

20 26.59 20  3    1 

20 26.59 20  3    

20 26.59 25  3    

20 26.59 25  3    2 

20 26.59 25  3    

20 26.59 35  3    

20 26.59 35  3    3 

20 26.59 35  3    

20 26.59 45  3    

20 26.59 45  3    4 

20 26.59 45  3    

20 26.59 55  3    

20 26.59 55  3    5 

20 26.59 55  3    

20 26.59 70  3    

20 26.59 70  3    6 

20 26.59 70  3    

20 26.59 90  3    

20 26.59 90  3    7 

20 26.59 90  3    

 
 
Table 4.3: Effect of particle velocity and concentration, Matimba Ash Sample. 

Weight of Test 

piece (g) 

Test 

Number Temp(˚C) 

Velocity 

(m/s) 

Orientation 

(Degrees) 

Concentration 

(kg/m3) Duration of Test(h) Before After 

Erosion 

Rate 

[weight 

lost(mg)/ash(kg)] 

20 19.41 27  3    

20 19.41 27  3    1 

20 19.41 27  3    

20 21.86 27  3    

20 21.86 27  3    2 

20 21.86 27  3    

20 24.70 27  3    

20 24.70 27  3    3 

20 24.70 27  3    

20 25.55 27  3    

20 25.55 27  3    4 

20 25.55 27  3    

20 26.59 27  3    

20 26.59 27  3    5 

20 26.57 27  3    
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Table 4.4: Effect of particle velocity and concentration, Lethabo Ash Sample. 

Weight of Test 

piece (g) 

Test 

Number Temp(˚C) 

Velocity 

(m/s) 

Orientation 

(Degrees) 

Concentration 

(kg/m3) Duration of Test(h) Before After 

Erosion 

Rate 

[weight 

lost(mg)/ash(kg)] 

20 19.41 27  3    

20 19.41 27  3    1 

20 19.41 27  3    

20 21.86 27  3    

20 21.86 27  3    2 

20 21.86 27  3    

20 24.70 27  3    

20 24.70 27  3    3 

20 24.70 27  3    

20 25.55 27  3    

20 25.55 27  3    4 

20 25.55 27  3    

20 26.59 27  3    

20 26.59 27  3    5 

20 26.57 27  3    

 

 

Table 4.5: Effect of particle velocity and concentration, Matla Ash Sample. 
Weight of Test 

piece (g) 

Test 

Number Temp(˚C) 

Velocity 

(m/s) 

Orientation 

(Degrees) 

Concentration 

(kg/m3) Duration of Test(h) Before After 

Erosion 

Rate 

[weight 

lost(mg)/ash(kg)] 

20 19.41 27  3    

20 19.41 27  3    1 

20 19.41 27  3    

20 21.86 27  3    

20 21.86 27  3    2 

20 21.86 27  3    

20 24.70 27  3    

20 24.70 27  3    3 

20 24.70 27  3    

20 25.55 27  3    

20 25.55 27  3    4 

20 25.55 27  3    

20 26.59 27  3    

20 26.59 27  3    5 

20 26.57 27  3    
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4.1 Test Facility 

4.1.1 Test Specimen 

1. The test specimens are 100mm square and 2mm thick. They are constructed 

from mild steel plates (BS144-CR4). 

2. Keep test specimens in dust free environment and should not be exposed to 

moisture. 

3. The surface of the test specimen should be kept clean. 

4. Use soft cloth to clean the surface of the test specimen. 

5. After cleaning it, weigh it and record its mass then mount it in the test section. 

6. Keep it in the test section throughout the test. 

7. After the duration of the test take it out of the test section. 

8. Clean its surface using the soft cloth and make sure that the surface is dust 

free. 

9. Weigh it and record its mass. 

10. Keep it in a dust free environment and should not be exposed to moisture. 

 

4.1.2 Test Section 

1. The test section should be kept clean at all times before and after the test. 

2. The test specimen holder in the test section should be kept clean at all times, 

this is done so to prevent subjecting the test specimen to wear and corrosion 

before starting the test.. 

3. Orientation of the test specimen should be set after the test specimen has been 

mounted otherwise it will be cumbersome if it is done other way round. The 

angular is set by turning the protractor on the side of the test box to the desired 

position. Once the desired position has been reached then the protractor can be 

locked into that position by the use of a bolt on the side of the test box inside 

the slot of the protractor. 

4. The window on the side of the test box should be kept clean so that the test 

specimen can be viewed during the test. 

5. The test section should be sealed properly to prevent dust from oozing out of 

the test box. Sealing gaskets should be fitted between flanges and the lid in the 

test section should be in place when running the test. 
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6. Every time when the test is stopped for refill of the ash in the feed line, the ash 

that might have deposited on the sides of the test box should be taken out of 

the test section via the filter at the exit. This should be done repeatedly until 

the completion of the test. 

 

4.1.3 Ash Filter 

1. The filter should be switched off during tests. If this is not done it will cause 

vibration in the test facility. 

2. Each time when refilling ash in the hopper the filter has to be switched on to 

shake off dust that might have accumulated on the sides of the filter bags. 

3. When the filter is switched on other apparatus have to be stopped because 

vibration that comes out of the filter might disturb the working condition of 

those apparatus which might result in an error in the results. 

4. In order to maintain high efficiency of the filter dust accumulation in the filter 

bags should be avoided. 

5. The filter has a ball valve that is used to close the filter for the ash to collect at 

the bottom, and also used to get rid of the ash by opening it to release the 

accumulated ash. 

 

4.1.4 Ash Hopper 

1. Clean the hopper before commencing tests. 

2. Check the rubber seal at the interface between the hopper and the feeder to 

ensure that it is sealing properly. 

3. Fill the hopper with ash. 

4. Keep an eye in the hopper to make sure that when the test is running the 

volume of ash decreases with time. This serves as an indication that the feeder 

is working and that there are no blockages in the pipeline. 

5. When there is little ash remaining in the hopper, stop the test and refill. 

6. After refilling run the filter to clear the ash from the test box and sides of the 

filter bags. 

7. Switch off the filter and resume running the tests. 
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4.1.5 Ash Feeder 

1. Check the feeder before every test to see if it is properly working. This can be 

done by running it empty to see if it is working, then add ash that will be 

enough to cover the feeder just to see if it can feed that material through. 

2. Record the initial load in the feeder. 

3. Program the feeder to the desired feed rate. 

4. The feeder should be delayed when starting the test. The main air line that is 

used to carry the ash particles should be started first to fill the pipeline. Once 

this has been done the air in the pipeline will have momentum that can be used 

to carry the ash particles to the test section. This also prevents clogging in the 

test ducting and or to maintain a dilute two-phase flow in the pipeline. 

5. When there is insufficient ash in the hopper the feeder should be stopped. 

6. Record the final load in the feeder before refilling. 

7. Refill the hopper and record the new load in the feeder. 

8. Resume running the tests after the refill. 

9. Repeat this procedure until the completion of the test. 

 

4.1.6 Orifice Meter 

1. Check that the pressure manometer is working before starting the test. 

2. Connect the manometer across the orifice. 

3. Take note of the reading appearing on the manometer’s display and record it. 

4. Record the pressure before the introduction of the ash particles. 

5. Record the pressure after the introduction of the ash particles. 

6. Take note of pressure readings during the test. 

 

4.1.7 Blower 

1. Check the pressure gauge at the exit of the blower if it is properly working 

before starting the test. 

2. Set the blower to the desired speed by varying frequency in the blower motor. 

3. Start the blower. 

4. Record the pressure reading indicated on the pressure gauge when the pressure 

settles at a particular value. 

5. Start the feeder once the desired speed has been reached. 
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6. Stop the blower when refilling the ash hopper. 

7. Do not switch on the blower when the filter is still running. 

8. Resume the test. 

9. Repeat this procedure until the completion of the test. 

 

4.2 Overall Experimental Procedure 

1. Check that all instrumentation that will be used in the test is in a proper 

working condition. 

2. Weigh the test specimen and record its initial weight. 

3. Mount the test specimen in the test specimen holder in the test section. 

4. Set the test specimen in the desired orientation and lock it into that position. 

5. Close the test section properly to prevent dust from oozing out. 

6. Put a bag at the exit of the filter to collect dust. 

7. Tie the mouth of the bag around the exit of the filter. 

8. Record the mass reading displayed in the micro controller before loading ash 

in the hopper. 

9. Load ash into the hopper. 

10. Record the new reading of the load in the hopper. 

11. Program the feeder to the desired feed rate. 

12. Record the pressure reading in the manometer across the orifice. 

13. Set the blower to the desired speed. 

14. Start the blower. 

15. Record the pressure reading displayed in the pressure gauge when the blower 

reaches the desired speed. 

16. Record the pressure reading across the orifice as indicated in the manometer. 

17. Start the feeder. 

18. When the desired feed rate is reached record the pressure across the orifice as 

indicated in the pressure manometer. 

19. When there is little ash remaining in the hopper, stop the feeder first, then stop 

the blower. 

20. Record the load remaining in the hopper. 

21. Refill the ash in the hopper. 

22. Switch on the filter to clear the ash from the test section and filter bags. 
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23. Stop the filter. 

24. Repeat the same procedure as from 10 above. 

25. Repeat this procedure until the completion of the test. 

 

4.3 Scanning Electron Microscope (SEM) 

The scanning electron microscope was used to gain the insight into a microscopic 

view of the erosion process occurring on the test specimen. This was done in Biology 

laboratory at the University of the Witwatersrand. The samples used were obtained 

from the eroded test specimens. 

1. The test specimen was machined into a 100mm diameter sample in order to fit 

it into the SEM. 

2. The samples were then cleaned by alcohol to prepare their surface for testing. 

3. The samples were put in the SEM and scanned. 

 

4.4 Method of Analysis of the Eroded Plates 

A JEM-840 Scanning Electron Microscope (SEM), JEOL, set at 20kV, was used in 

the examination of the eroded mild steel plates. The eroded plates were cleaned by 

alcohol before scanning them. 

 

Fly ash analysis was done by Set Point Laboratories, a specialist laboratory in 

Wynberg, Johannesburg. All this analysis is available in Appendix D. The quantities 

measured were: particle size, particle and bulk densities and chemical composition of 

the ash. 

Chemical analysis of the mild steel plates was done by Scrooby’s Laboratory 

Services, Johannesburg. This analysis is shown in Appendix F. The intention of this 

exercise was to do a full analysis in terms of chemical composition of the mild steel. 

This was done to determine what grade of the mild steel material was tested. Since the 

mild steel is commonly used in the air preheaters on both hot and intermediate layers 

the analysis will help in the comparison of the tested material and the manufacturing 

material of the air preheater pack elements. The other work that was done by 

Scrooby’s Laboratory was the mechanical test in the mild steel plates. This test was 

done to determine mechanical properties of the plates like yield stress, tensile strength 

and elongation. 
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5 RESULTS AND DISCUSSION 

The objectives of the study culminated in the set of results from the three ash samples, 

Matimba, Lethabo and Matla. The test facility was constructed that was used to run 

the tests programme. The three ash samples were collected from the power stations in 

order to carry out the desired tests. After these two objectives were completed the 

tests programme then started. The data that was gathered in the tests was used for the 

presentation of the test results. In this section the test results are presented and 

compared to other work done by others in their investigations. Analysis of the ash 

samples from the three power stations are attached in Appendix D. There is also a 

daily coal analysis report from Matimba Power Station that was sampled and tested by 

the power station. This report and e-mail communication between the power station 

analyst and the author are attached in Appendix E.  

 

The degree of accuracy of the results is detailed in the uncertainty analysis attached in 

Appendix G. The author would like to acknowledge Mbabazi (2004) for his 

contribution in this analysis. He used part of this work in his computational fluid 

dynamics (CFD) study to predict erosion on boiler air heater plate elements. 

 

5.1 Determination of Critical Angle of Attack 

The test specimen was bombarded by a flow stream of ash particles. The ash particles 

hitting the test specimen were in a range of 0.1 to 300 µm in size. The mean diameter 

of the ash particles was 57.46 µm. These ash properties are taken from ash analysis 

that was done by Set Point Laboratories. The full ash analysis is available in 

Appendix B. 

The tests were done at room temperature conditions. The velocity that was used in the 

tests is 27 m/s. This is the maximum velocity that could be achieved using the air 

supply, the blower. A decision was taken to use this blower because it was readily 

available and could help in cutting down costs. Orientation of the test specimen was 

varied from 20° through 90°. The results are shown in Figure 5.1 below. A sharp 

increase in erosion is seen between 20° and 25°. Between 25° and 30° the figure 

changes shape with maximum erosion noticed in this region. The erosion rate seems 
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to reach its peak just before the centre point between 25° and 30°. From the figure the 

angle of attack that gives maximum erosion is approximately 27°±3°. Tabakoff and 

Wakerman (1979) found the critical angle of attack to be 25° which is 2° below the 

finding in this investigation. Above 30° erosion rate decreases with the least erosion 

rate experienced at 90°. 

 

The test specimen showing erosion after being subjected to the different orientation 

tests is shown in Figures 5.2 through 5.15. The figures show macroscopic and 

microscopic erosion. The difference between the two is that macroscopic erosion is 

visual inspection whereas microscopic is taken under a scanning electron microscope. 

The figures show the test specimen orientation from 90° through 20°. They show that 

least erosion is experienced at 90°. The scanning electron microscopic (SEM) figures 

show different types of material removal mechanisms that were experienced by the 

test specimen in each orientation. At 90° the test specimen target surface was dented 

by the flow stream of the ash particles and the form of material removal mechanism 

experienced is pitting. At 70° orientation there was more significant erosion 

experienced by the test specimen. This orientation also showed a significant change in 

the form of material removal on the target surface. The ash particles hit the target 

surface and removed the material forming something like a lip. When the test 

specimen is continuously hit by the flow stream of the ash particles the lip formed 

something like a platelet. This form of material removal mechanism is called platelet 

mechanism. This form of material removal mechanism was also seen at 55° 

orientation. At 45° orientation there was another form of material removal that started 

developing on the target surface. The platelet mechanism was still showing with the 

new form of material removal mechanism. The new material mechanism that was 

seen is cutting. This form of material removal mechanism was became more clear 

from 35° down to 20°. This mechanism showed that as the flow stream of the ash 

particles hit the target surface they were cutting into the test specimen thus removing 

more material from the test specimen. This mechanism produced the highest erosion 

rates on the test specimen. When the ash particles have sharp edges they leave open 

cuts on the target surface. This is another characteristic of the ash particles that shows 

that erosion rate is also influenced by the shape of the ash particles. 
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As the test specimen orientation decreases more and more significant material 

removal is experienced. Between 35° and 20° the most significant material removal is 

experienced. This interval shows that almost all ash particles in the flow stream attack 

material surface. The microscopic figures show the 25° test specimen orientation with 

the deepest and biggest cut into the material. This shows that most material removal is 

the result of the cutting into the material surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Effect of angle of attack. 
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Figure 5.2: 90 degrees orientation. 

 

 

Figure 5.3: 90 degrees orientation. 
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Figure 5.4: 70 degrees orientation. 

 

 

Figure 5.5: 70 degrees orientation. 
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Figure 5.6: 55 degrees orientation. 

 

 

Figure 5.7: 55 degrees orientation. 

 



 71

 

Figure 5.8: 45 degrees orientation. 

 

 

Figure 5.9: 45 degrees orientation. 
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Figure 5.10: 35 degrees orientation. 

 

 

Figure 5.11: 35 degrees orientation. 
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Figure 5.12: 25 degrees orientation. 

 

 

Figure 5.13: 25 degrees orientation. 
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Figure 5.14: 20 degrees orientation. 

 

 

Figure 5.15: 20 degrees orientation. 
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5.2 Effect of Particle Velocity, Shape and Size 

The effect of particle velocity becomes more significant owing to the shape and size 

of the ash particles. The small hard particles can cause significant material removal on 

the target surface when traveling at high velocity. Big particles need to be accelerated 

to higher velocity in order to achieve the same erosion like small particles.  

The ash particles with sharp edges can cause even more significant material removal 

on the target surface. The sharp edges cut into the target surface leaving the test 

specimen with open cuts. When the flow stream of the ash particles continuously 

attack these open cuts the test specimen experiences accelerated erosion. 

The ash samples used in this study were scanned under an electron microscope to see 

their particle shape. The results of these samples are shown in Figures 5.16 through 

5.18. The ash sample from Matimba Power Station had ash particles with sharp edges. 

This is a characteristic of most erosive ash particles. The sample from Matla Power 

Station had round ash particles. This is another characteristic of ash particle size that 

influences erosion rate. In this sample there was a good mix between big and small 

ash particles. The ash sample from Lethabo Power Station also had round particles but 

they were very small.  

The ash particles can produce more significant erosion rates owing to their chemical 

composition. There are compounds like silica that have been found to be the most 

erosive erodents. The form of silica that was found to be most erosive erodent is 

quartz. The chemical composition of the three ash samples is shown in Table 5.1. The 

ash sample from Matimba Power Station had the highest silica content followed by 

the ash samples from Lethabo Power Station and Matla Power Station. The silica 

content was found to be 60.10%, 55.20% and 46.30% for the three samples, Matimba, 

Lethabo and Matla; respectively. 

 

The particle velocity has a big influence in erosion experienced by a target surface. At 

higher velocity the erosion on the target surface is also high. This erosion is 

accelerated by the shape and size of the ash particles and the silica content in the ash. 
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Figure 5.16: Particles in the ash sample from Matimba Power Station. 

 

 

Figure 5.17: Particles in the ash sample from Matla Power Station. 
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Figure 5.18: Particles in the ash sample from Lethabo Power Station. 
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Table 5.1: Chemical (elemental) composition of the three ash samples. 

Percentage composition Element Compound occurring in ash  

Lethabo Matimba Matla 

Silicon Silica (SiO2)     55.20     60.10                                     46.30         

Aluminium Aluminium Oxide (Al2O3)     30.80     26.50                     29.50         

Iron Iron Oxide (Fe2O3)       3.67 5.64          4.55         

Titanium Titanium Oxide (TiO2) 1.61 1.26 1.73         

Phosphorus Phosphorus Pentoxide (P2O5) 0.35 0.31 1.12 

Calcium Calcium Oxide (CaO) 5.01 2.95      10.70 

Magnesium Magnesium Oxide (MgO) 1.40 0.70 2.40 

Sodium Sodium Oxide (Na2O) 0.20 0.10 0.50 

Potassium Potassium Oxide (K2O) 0.73 0.75        0.88 

Sulphur Sulphur  (S) 0.20 0.10 0.70 

Manganese Manganese Oxide (MnO) 0.03 0.06        0.05 

 SiO2 + Al2O3 + Fe2O3     89.67     92.24     80.35 

 

The determination of the critical angle of attack test had to be done so that a fixed 

orientation of the test specimen could be maintained at different velocity tests. The 

critical angle of attack was kept at 27°. The maximum velocity that could be provided 

by the blower was already known to be 27 m/s. Since this was the case, it was decided 

to identify a velocity range that would provide significant material removal. This was 

experimentally done by determining the minimum velocity at which the least material 

removal is experienced. At very low velocities fewer ash particles reach the target 

surface of the test specimen with the bulk of the ash particles accumulating in the 

pipeline thus causing blockage in the pipeline. This situation was prevented by 

choosing the velocity range to be between 18 m/s and the maximum velocity of 27 

m/s. The test results in this velocity range are shown in Figures 5.19 through 5.21. 
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The results show that erosion rate increases with increasing velocity. The test results 

produced a power relationship between erosion rate and ash particle velocity. 

The Matimba velocity test results produced the following equation: 

ε = 0.0004V
3.09

        (5.1) 

where ε is the erosion rate and V is the particle velocity. These results produced an 

erosion constant to the value of 0.0004 (4 x 10
-3

). The velocity exponent was found to 

be 3.09, Mbabazi (2004) found the velocity exponent to be 3 in his erosion prediction 

model. This finding also concurs with what Grant and Tabakoff (1980) discovered. At 

20° angle of attack they found the velocity of exponent to be 2.8 and at 90° angle of 

attack they found the velocity exponent to be 4. The finding in this study is within the 

range of their findings. 

 

y = 0.0004x
3.09

3

4

5

6

7

8

9

10

18 20 22 24 26 28

Ash particle velocity (m/s)

E
ro

si
o

n
 r

a
te

 (
m

g
/k

g
)

 

Figure 5.19: Effect of particle velocity, Matimba ash. 

 

The Lethabo velocity test results also produced a power relationship. These results 

produced the following power equation: 

ε = 0.002V
2.42

        (5.2) 

where ε is the erosion rate and V is the particle velocity. The erosion rate constant was 

found to be 0.002 (2 x 10
-3

). The velocity exponent was found to be 2.42. This finding 

is very much interesting when compared to what other investigations have produced. 
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In the investigation done by Sheldon and Kanhere (1972) they found the velocity 

exponent to be 2.41. The difference between theirs and from this study is only 0.01. In 

another investigation done by Tilly and Sage they found the velocity exponent to be 

2.3. In another investigation done by Raask (1969) he found the velocity exponent to 

be 2.5 where a mild steel target surface was hit by a flow stream of quartz particles. 

The findings from these investigations concur with the finding in this study. 
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Figure 5.20: Effect of particle velocity, Lethabo ash. 

 

The Matla velocity test results also produced a power relationship between erosion 

rate and particle velocity. This relationship is presented by the following power 

equation: 

ε = 0.00002V
3.64

        (5.3) 

where ε is the erosion rate and V is the particle velocity. In these tests the erosion rate 

constant was found to be 0.00002 (2 x 10
-5

). The velocity exponent was found to be 

3.64. This finding is also backed by the finding from the investigation done by Grant 

and Tabakoff (1980) where they found the velocity exponent to be 4 at 90° angle of 

attack. These results are also of great interest since the difference between their 

finding and from this study is only 0.36, this is a great achievement. 
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Figure 5.21: Effect of particle velocity, Matla ash. 

 

The summary of the velocity test results from the three ash samples are presented in 

Figure 5.22 with their uncertainties presented in Figure 5.23. The results show 

Matimba ash as the most erosive. The Matimba results produced the highest erosion 

rates. This result justified the effect of particle shape. In the photos taken under the 

scanning electron microscope the Matimba ash had sharp edges. This means that the 

target surface of the test specimen was exposed to more cutting form of material 

removal mechanism thus resulting in higher erosion rate. This form of material 

removal mechanism is known to be the most severe erosion that a target surface can 

be exposed to. The other factor that made a significant contribution to these Matimba 

high erosion rates was silica (quartz). The silica content in the ash composition was 

found to be 60.10%. The effect of this high silica content is also seen in the high 

erosion rates from the Matimba test results. 

The Lethabo test results brought about very interesting findings which concur with 

what other investigations came up with before. When looking at the summary of the 

test results it can be seen that the highest erosion rate achieved in the Lethabo tests is 

almost half of the highest erosion rate achieved from Matimba tests. This can be 

related to the ash particle size and shape and silica content. The photos of the Lethabo 
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ash that were taken under an electron microscope showed that the ash particles were 

round and small. The round particles can cause severe erosion if they are hard and 

traveling at high velocity. The silica content was relatively high at 55.20% but less 

than that of Matimba ash. This was another contributing factor to the high erosion rate 

in the Lethabo results. 

The Matla results showed the least erosion rates of the three ash samples. In the 

results summary figure these results show the highest erosion rate achieved that is 

almost half of the Lethabo highest erosion rate achieved.  

The results shown in Figure 5.22 clearly indicate that erosion rate is influenced by the 

following factors: 

• Particle size – small particles cause more erosion on the surface of the target 

material as compared to big particles. 

• Particle velocity – big particles will have to be accelerated to a higher velocity 

in order to produce the same erosion rate as the small particles. 

• Particle shape – particles with sharp edges cause more erosion on the surface 

of the target material as compared to round particles. 

• Ash chemical composition – high silica content causes more erosion. 
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Figure 5.22: Velocity test results for the Matimba, Lethabo and Matla. 
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The test results degree of accuracy was measured by the uncertainty in the results. The 

uncertainty analysis showed that the uncertainty in the erosion rate was relatively 

constant at 0.01 mg/kg. The only significant uncertainty experienced was on the 

velocity results. The Matimba results produced an uncertainty ranging between 0.22 

and 0.30 m/s of the velocity range tested during the velocity tests. The Lethabo test 

results also produced an uncertainty ranging between 0.22 and 0.30 m/s in the velocity 

range tested. The Matla test results produced an uncertainty ranging between 0.21 and 

0.31 m/s in the velocity range tested. These velocity test results produced an overall 

velocity uncertainty of about ±1%. This is a good indication of the working condition 

of the apparatus used for data acquisition and the way the whole investigation was 

carried out. 
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Figure 5.23: Uncertainties in the test results for the Matimba, Lethabo and Matla ash. 
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5.3 Effect of Particle Concentration 

This test needed a predefined angle of attack that gives maximum material removal. 

The orientation of the test specimen was kept at 27°. This test was done in the same 

velocity range as in the velocity tests, 18 to 28m/s. The test results are shown in 

Figure 5.24. It can be seen from the results presented that erosion rate increases with 

increasing concentration. The results produced a linear relationship between erosion 

rate and particle concentration. This relationship was presented by the following 

equation: 

ε = 0.5552Cv – 30.307        (5.4) 

where ε is the erosion rate and Cv is the particle concentration. These results produced 

a gradient to the value of 0.555223 ± 0.118(mg/kg)/(kg/m^3) with an intercept to the 

value of -30.3068 ± 7.927mg/kg. The coefficient of determination, R
2
, was found to 

be 0.8799. This finding concurs with the findings from other investigations done 

before by other researchers. 
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Figure 5.24: Effect of particle concentration. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 

When this study was taken up there were four main objectives that had to be carried 

out. The objectives of the study were as follows: 

• Construction of the test facility that could produce measurable data in erosion 

experienced by a mild steel target material. A test facility had to be built using 

a space available at the university laboratory. This was a primary objective 

that could make it possible to carry out other objectives of the study as well as 

future work. 

• Collection of ash samples – ash samples were needed to carry out the tests 

using the test facility in a laboratory environment. 

• Determination of critical angle of attack – once the abovementioned objectives 

were completed this was the first test to be carried out. This was done so 

because the angle of attack was used as a predefined angle in other tests that 

follow. 

• Effect of particle velocity – this test was going to give an indication as to how 

does particle velocity influence erosion of target material. 

Since the erosion experienced by air preheater elements in a boiler at a power station 

takes long to take effect due to low flue gas velocity of 10m/s passing through the air 

preheater this test facility had to produce accelerated erosion with minimum of about 

18.50 m/s which is almost double the velocity at which flue gas flows inside an air 

preheater. There were two constraints that had to be dealt with in the process of the 

test facility construction. These constraints were budget and space available in the 

laboratory. The budget constraint saw this study making use of some of the already 

available equipment that was needed in the tests. This equipment could provide 

velocity range between 18.50 and 27m/s that was used in the tests. This velocity range 

was found suitable to carry out the tests. 

The test facility had to be designed to fit the space available in the laboratory and 

leave enough room for storage of the ash samples, experiment apparatus, and other 

activities. These objectives were carried out successfully leading to the collection of 

the ash samples from the three power stations. 
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The ash samples had to be collected from the three power stations, which is one of the 

four main objectives of the study. The logistics involved in getting ash from the power 

stations and transporting them to the laboratory were a serious challenge.  

The ash circulation system at power stations makes it cumbersome to tap samples of 

ash. Almost all fossil-fuelled power stations have never had a situation where they 

had to tap huge quantities of ash samples from their ash circulation system. This was a 

first time experience that required more thought to be put into it. This had to be done 

without interrupting the usual operations in the power plant. Plans were made and the 

required amount of the ash samples were collected from the power stations. The most 

expensive collection was from Matimba Power Station because they were furthest of 

them all. The ash samples from Matimba had to be transported over a 400 km distance 

to the laboratory. The distance between the laboratory and the other two power 

stations Lethabo and Matla was 150 and 190 km, respectively.  

 

The test programme was put together to determine the type of tests that could be done 

with the available ash quantity collected from the power stations. This section saw the 

third objective of determining erosion rates being carried out. This objective was 

broken down into other smaller objectives that had to be carried out to effect this 

major objective. These objectives are the determination of the critical angle of attack, 

determining the effect of particle size and shape, velocity and concentration. The first 

test that was done was the determination of the critical angle of attack that gives 

maximum erosion on the target surface. This angle was found to be 27º ± 3º. This 

angle of attack is within the range of what other researchers have come up with in 

their investigations. Most investigations found the critical angle of attack that gives 

maximum erosion to be 25º with a few that found it to be 20º and 30º.  

The other objectives needed this predefined angle in order to be carried out. The 

velocity test results were carried. These results also produced a remarkable finding in 

the effect of particle size and shape and the chemical composition of the ash particles. 

At the completion of these results it was found that the particle size and shape had a 

major influence in the erosion rates. The other finding which was known from the 

investigations from other researchers which was confirmed in this study that is the 

influence of the silica (quartz) in the erosion rate experienced by the target material. 
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The higher the silica content in the ash particles the more erosive they become. This is 

one of the greatest findings that came out of this study. 

 

The results from the tests produced very good findings that compare well with the 

work from the investigations done by other researchers. The effect of particle velocity 

in the erosion of the target surface was found to have a power relationship. This 

power relationship produced three power equations from the three ash samples. These 

equations are as follows: 

ε = 0.0004V
3.09

        (6.1) 

 

ε = 0.002V
2.42

         (6.2) 

 

ε = 0.00002V
3.64

        (6.3) 

 

These equations 6.1 – 6.3 are for Matimba, Lethabo and Matla test results; 

respectively. The findings in the velocity exponent are within the range of what other 

investigations came up with. The investigations that were done by others in their work 

produced velocity exponents ranging from 2 to 4. In this study the velocity exponent 

ranges between 2.42 and 3.64. 

 

The other finding that this study produced was the effect of particle concentration on 

the erosion of the material of the target surface. This finding also produced a linear 

relationship between the erosion rate of the target surface and the particle 

concentration of the particle that hit the target surface. This linear relationship 

produced the following linear equation: 

ε = 0.5552Cv – 30.307        (6.4) 

These results also showed a proportional relationship between erosion rate and ash 

particle concentration. Other researchers also came up with similar findings that 

erosion rate increases with increasing particle concentration. 

 

The results of this study were published in a Wear technical paper, it is attached in 

Appendix H.  
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6.2 RECOMMENDATIONS 

The objectives of this study were completed and results presented. These results could 

serve as basis for more future work that can still be carried out. In this study only 

three ash samples were tested from three Eskom fossil-fuelled power stations. All in 

all there are about thirteen Eskom fossil-fuelled power stations that also experience 

erosion in their air preheaters even though the scale is not the same as the tested ones. 

It could be of great interest to carry out this same study for all other power stations 

that were not tested in this study. The same programme of the tests done in this study 

should be rolled out to all those power stations. 

The material of the target surface that was used in this study was mild steel. The 

future work should explore other material types to see if the same erosion trends stay 

the same. This could produce some very remarkable results on the effect of the 

selection of the material of the target surface to the erosion rate experienced by the 

target surface. 

In this study the velocity range tested was limited to the maximum velocity of 27 m/s. 

In future work these tests should be done at higher velocity range than the case in this 

study. This will also serve as a comparison of erosion trends if they stay the same at 

higher velocity range. 

There could also be a need of doing more particle concentration tests in future to take 

the investigation of the particle concentration effect further. Very little has been done 

in this regard by others in their work to determine the effect of particle concentration 

in the erosion rate. If more work could be done at least this study will have more 

investigations to be compared with it. 

There should be more tests done to determine the critical angle of attack that gives 

maximum erosion on the target surface. It could e interesting to see if the same result 

could be found in another investigation. This result has always been found to hovering 

around 25º. This is because in each investigation done the erodent was not the same. 

In these tests at least the erodent will be ash from different power stations. 

The other work that can be carried out in future would be determining different forms 

of silica that are found in ash. In most investigations they did not do the mineralogy of 

the silica to find out what other forms of silica influence erosion on the material of the 

target surface. 
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APPENDIX A 

 
 

ENGINEERING DRAWINGS OF THE TEST FACILITY 
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APPENDIX B 

 
 

ASH FEEDER TECHNICAL SPECIFICATION 
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APPENDIX C 

 
 

MASS BALANCE SCALE TECHNICAL SPECIFICATION 
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APPENDIX D 

 
 

ASH ANALYSIS FOR THE THREE POWER STATIONS
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Hi Richard 

 

This is what I have for now, about density I'll hav e to find out from 

Performance and Testing or from the mine. 

 

ASH ELEMENTAL % 

                           JAN 02            FEB 02   Mar 02 

SILICON (AS SiO2)          58.1              48.7            59.3 

    

ALUMINIUM (AS AL2O3)        27.5              28.4           25.5 

 

IRON (AS Fe2O3)             5.8               3.3          5.7 

         

TITANIUM (AS TiO2)          1.3               1.5           1.1 

        

PHOSPHORUS (AS P2O5)        0.45              0.83       0.37           

 

CALCIUM(ASCaO)              3.1               8.8           2.7 

         

MAGNESIUM(AS MgO)           1.0               2.6            0.9    

     

SODIUM(AS Na20)             0.0               0.5           0.3 

         

POTASIUM(AS K2O)            0.6               0.5            0.7 

        

SULPHUR (AS SO3)            1.5               3.4           1.9 

         

MANGANESE (AS MnO)          0.06              0.04         0.06        

   

 

I hope this will help some how. 

 

Bye, 

 
Pinky 
Analyst 
Matimba Power Station  
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APPENDIX F 

 

TEST SPECIMEN ANALYSIS 
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Figure F.1: Test Specimen Analysis 
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APPENDIX G 

 

UNCERTAINTY ANALYSIS 
 
 

In the uncertainty analysis this is where the test results’ degree of accuracy is determined. 

The experimental results’ certainty is clarified in this section. This analysis starts by giving 

derivations of equations relevant to each parameter of the test results, for instance the 

determination of velocity derived from volumetric flow rate. The volumetric flow rate of air 

is given by the following equation: 

 

ρ
π Pd

CQ d

∆= 2

4

2

0        (G.1) 

 

where; Q is the volumetric flow rate, Cd is the coefficient of discharge of the orifice, do is 

the orifice diameter, ρ is the density of air, ∆P is the pressure drop across the orifice. 

Particle velocity is assumed to be the same as the velocity of the free stream of air before 

mixture, thus the particle velocity is given by the following equation: 

 

ρπ
P

d

d
C

d

Q
V d

∆







== 24
2

0

2
      (G.2) 

 
where d is the diameter of the pipeline transporting the ash to the test section. 
 
 
The uncertainty in the velocity is given by the following equation: 
 

)()()()()( 22222222 ρρUCPCdUCdUCVU Pdodo +∆++= ∆   (G.3) 

 

where; U(V), U(do), U(d), U(∆P) and U(ρ) are the uncertainties in the measured values of 

the velocity, orifice diameter, diameter of the pipe at the inlet to the test section, pressure 

drop across the orifice and the density of air, respectively; Cdo, Cd, C∆P and Cρ are the 

sensitivity coefficients for the orifice diameter, diameter of the pipe at the inlet to the test 

section, pressure drop across the orifice and the density of air, respectively. The sensitivity 

coefficients are calculated by using the following equations: 
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ρ
P

d

d
C

d

V
C o

d

o

do

∆=
∂
∂= 2

2
2

      (G.4) 

 

ρ
P

d

d
C

d

V
C o

dd
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2
3

2

      (G.5) 
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∂=∆ ρ

2
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2

     (G.6) 

 

3

2
2

2

1

ρρρ
P

d

d
C

V
C o

d

∆







−=
∂
∂=      (G.7) 

 
Table G.1 Parameters used in the experimental test 
 

Parameter Value 

Orifice diameter, do 0.032m 

Pipe diameter at the inlet to the test section, d 0.0224m 

Coefficient of discharge, Cd 0.6 

Density of air, ρ 1.17kg/m
3
 

 

These parameter values and experimental results were used in equations (G.1) – (G.7) 

above to get the sensitivity coefficients shown here below in Table G.4. 

 
Table G.2 Sensitivity coefficients for Matimba Power Station ash 
 

V (m/s) ∆P (N/m
2
) C∆P Cdo Cd Cρ 

19.41 146.99 0.07 1213.11 -1733.02 -8.29 

21.86 186.44 0.06 1366.24 -1951.77 -9.34 

24.70 238.03 0.05 1543.74 -2205.34 -10.56 

25.55 254.70 0.05 1596.88 -2281.25 -10.92 

26.59 275.86 0.05 1670.90 -2374.12 -11.36 

 
 
 Table G.3 Sensitivity coefficients for Lethabo Power Station ash 
 

V (m/s) ∆P (N/m
2
) C∆P Cdo Cd Cρ 

18.49 133.39 0.07 1155.63 -1650.90 -7.90 

21.14 174.36 0.06 1321.24 -1887.48 -9.03 

23.49 215.28 0.06 1468.11 -2097.30 -10.04 

24.62 236.49 0.05 1538.73 -2198.19 -10.52 

26.66 277.31 0.05 1666.25 -2380.36 -11.39 
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Table G.4 Sensitivity coefficients for Matla Power Station ash 
 

V (m/s) ∆P (N/m
2
) C∆P Cdo Cd Cρ 

18.28 130.38 0.07 1142.52 -1632.17 -7.81 

20.29 160.62 0.06 1268.11 -1811.59 -8.67 

23.15 209.10 0.06 1446.89 -2066.98 -9.89 

24.54 234.96 0.05 1533.75 -2191.07 -10.49 

27.66 298.50 0.05 1728.74 -2469.63 -11.82 

 
Measuring tools that were used to measure ambient temperature, pressure drop across the 
orifice and pipeline diameters are thermometer, manometer and vernier callipers; 
respectively. 

 
 
 
Table G.5 Uncertainties in the measured values of temperature, pressure drop and diameters 
 

Measuring Tool Uncertainty Value 

Thermometer U(T) ± 1ºC 

Manometer U(∆P) ± 1 N/m
2
 

Vernier callipers U(do), U(d) ±10
-4

 m 

 
Density of gas is given by the following equation: 
 

RT

P=ρ         (G.8) 

 

where; P is the gas pressure, R is the Universal Gas Constant and T is the gas temperature. 

Sensitivity coefficients equations of these parameters were derived from the density 

equation thereby taking first order derivative of the equation with respect to each parameter. 

Since R is a constant its sensitivity coefficient is zero. Thus the uncertainty in the air 

density is given as follows: 

 

)()()( 2222
TUCPCU TP +=ρ       (G.9) 

 

where; U(ρ), U(P) and U(T) are uncertainties in the density of air, ambient pressure and  

temperature, respectively; CP and CT are sensitivity coefficients in the measured values of  

the ambient pressure and temperature, respectively. These sensitivity coefficients are  

given by the flowing equations: 

 

RTP
C p

1=
∂
∂= ρ

       (G.10) 
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2
RT

P

T
CT −=

∂
∂= ρ

       (G.11) 

 
Table G.6 Parameters used to calculate uncertainty in the air density 
 

Parameter Value 

Ambient temperature, T 293 K (20ºC) 

Ambient pressure 98 500 N/m
2
 

Universal Gas Constant 287 J/kg.K 

 

These parameters were used in equations (G.10) – (G.11) to calculate the sensitivity 

coefficients of the ambient pressure and temperature values. These values were then used to 

calculate the uncertainty in the air density. The calculated results are presented in Table G.7 

here below. 

 
Table G.7 Sensitivity coefficients and uncertainty in the air density 

 

CP CT Density of air, ρ (kg/m
3
) Uncertainty, U(ρ) (kg/m

3
) 

-0.004 1.19 x 10
-5

 1.17 ±0.004 

 
The overall uncertainties in the experimental results are tabulated in Tables G.8 – G.10. 
 
Table G.8 Uncertainties in the Matimba Power Station velocity test results 
 

Velocity, V (m/s) Uncertainty, U (V) (m/s) 

19.41 ± 0.22 

21.86 ± 0.25 

24.70 ± 0.28 

25.55 ± 0.29 

26.59 ± 0.30 

 
Table G.9 Uncertainties in the Lethabo Power Station velocity test results 

 

Velocity, V (m/s) Uncertainty, U (V) (m/s) 

18.49 ± 0.22 

21.14 ± 0.24 

23.49 ± 0.26 

24.62 ± 0.28 

24.66 ± 0.30 
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Table G.10 Uncertainties in the Matla Power Station velocity test results 
 

Velocity, V (m/s) Uncertainty, U (V) (m/s) 

18.28 ± 0.21 

20.29 ± 0.23 

23.15 ± 0.26 

24.54 ± 0.28 

27.66 ± 0.31 

 

The experimental erosion rate was determined by two parameters, mass of the test specimen 

that was attacked by ash particles and the total mass of the ash that was used in that specific 

test. The erosion rate is equal to the difference between the mass of the test specimen before 

and after the test divided by the total mass of the ash used in the test. The quantity of the 

ash used in each test run was determined by the use of a load cell whereas the amount of 

eroded material in the test specimen was determined by weighing the test specimen in the 

electronic balance scale before and after the test. The calibration of these measuring tools 

gave uncertainties of ±1g for the load cell and ±0.001g for the electronic balance scale.  

 

 
The erosion rate is given by the following equation: 
 

p

m

M

M
E =          (G.12) 

 

where; Mm is the difference between the initial and final mass of the test specimen, and Mp 

is the total mass of the ash that was used in the test to erode the test specimen material. 

The uncertainty in the erosion rate is given by the following equation: 
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pmpmmm MUCMUCEU +=     (G.13) 

 

where Cmm and Cmp are sensitivity coefficients for the amount of eroded material and total 

mass of the ash used in the test run, respectively; U (Mm) and U (Mp) are the uncertainties 

for the amount of eroded material and total mass of the ash used in the test run, 

respectively. 

The sensitivity equations are derived from the erosion rate equation by taking the first 

derivative of the erosion rate with respect to each parameter. The result of the derivative 

gives the following sensitivity equations: 
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Table G.11 Uncertainties in the measured values 
 

Measuring Tool Uncertainty Value 

Electronic Balance Scale U (Mm) ±1mg 

Load Cell U (Mp) ±0.001kg 

 

The uncertainties in the measured values shown in Table G.11 were used to determine the 

overall uncertainties in the erosion rates and the sensitivity coefficients. These results are 

presented in Tables G12 – G14 here below. 

 
 
Table G.12 Sensitivity coefficients and uncertainties in Matimba Power Station test results 
 

V (m/s) Mp (kg) Cmm Cmp (x10
-6

) E (mg/kg) U (E) (mg/kg) 

19.41 70.78 0.01 -0.05 3.53 ±0.01 

21.86 70.15 0.01 -0.08 5.41 ±0.01 

24.70 76.83 0.01 -0.10 7.59 ±0.01 

25.55 79.85 0.01 -0.11 8.49 ±0.01 

26.59 81.37 0.01 -0.12 9.37 ±0.01 

 
 
Table G.13 Sensitivity coefficients and uncertainties in Lethabo Power Station test results 
 

V (m/s) Mp (kg) Cmm Cmp (x10
-6

) E (mg/kg) U (E) (mg/kg) 

18.49 93.95 0.01 -0.02 2.18 ±0.01 

21.14 102.27 0.01 -0.03 3.38 ±0.01 

23.49 114.28 0.01 -0.04 4.38 ±0.01 

24.62 124.32 0.01 -0.04 4.39 ±0.01 

26.66 143.92 0.01 -0.04 5.40 ±0.01 

 
 

Table G.14 Sensitivity coefficients and uncertainties in Matla Power Station test results 
 

V (m/s) Mp (kg) Cmm Cmp (x10
-6

) E (mg/kg) U (E) (mg/kg) 

18.28 79.61 0.01 -0.01 0.60 ±0.01 

20.29 87.74 0.01 -0.01 1.09 ±0.01 

23.15 96.72 0.01 -0.02 1.81 ±0.01 

24.54 71.15 0.01 -0.03 1.84 ±0.01 

27.66 106.40 0.01 -0.03 2.88 ±0.01 
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APPENDIX H 

 

PUBLISHED TECHNICAL PAPER 
 


