MOLECULAR CHARACTERIZATION
OF MULTIDRUG-RESISTANT
Salmonella Isangi IN
HOSPITALIZED PATIENTS
IN SOUTH AFRICA

Tersia Kruger

A dissertation submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree
Master of Science in Medicine

2007
Johannesburg
DECLARATION

I, Tersia Kruger, declare that this dissertation is my own work. It is being submitted for the degree of Master of Science in Medicine at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.

Signature of candidate

13th day of JUNE, 2007
PUBLICATION

PRESENTATIONS

ABSTRACT

Extended-spectrum beta-lactamase (ESBL)-producing *Salmonella enterica* serotype Isangi has emerged as a common *Salmonella* serotype affecting mainly children in hospitals throughout South Africa. Between 2000 and 2002, 279 *S*. Isangi isolates from single infection episodes were referred from 21 hospitals in 5 provinces to the Enteric Diseases Reference Unit of the National Institute for Communicable Diseases of South Africa. All isolates were subjected to antibiotic susceptibility testing and three disk-diffusion methods confirmed ESBL-production in 273 isolates. PCR and nucleotide sequencing of 101 isolates identified TEM-1 (2%), TEM-63 (91%), a novel TEM-131 (7%), and SHV-5 (2%), but CTX-M was not found. Plasmid profiling produced types with 1 to 6 plasmids, 7.4kb to 166kb in size, which were neither serotype nor ESBL-type specific. Pulsed-field gel electrophoresis revealed four major clusters while subclusters with identical, or near identical banding patterns suggested extensive intra-hospital transmission and clonal spread between hospitals and provinces in South Africa.
ACKNOWLEDGEMENTS

All praise to God, who inspired me with will and courage, through the angels of friends and family to believe in myself and have faith and determination; despite the obstacles I had to endure in the last two years.

I would like to gratefully acknowledge my supervisor Professor Hendrik Koornhof for his insight, expert advice, guidance, gentle encouragement, as well as courage to take on this task at a fairly late stage and despite being extremely busy, always made time to engage in interesting discussions. It is an honour. Thank you to my co-supervisor, Dr. Anthony Smith for his technical advice and review of the three molecular chapters and Dr. Karen Keddy for her support during the initiation of this project.

The biggest thanks to my colleagues and friends: Sandrama Nadan, Chantelle Roux, Lorraine Arntzen, Leigh Dini, Dr. Jenny Rossouw, Irma Latsky, Debbie van der Sandt and Dr. Nicola Page for putting up with me. Thank you to Sandrama and Jenny for your technical help and advice. I am indebted to each and every one of you for your understanding, support, endless patience and encouragement when it was most needed.

I am also grateful to the following laboratories and individuals for their contributions:
A very special and huge thank-you to Dr. David Paterson and the staff of the Division of Infectious Diseases at the University of Pittsburgh, with special thanks to my kind and patient friend Dr. Dora Szabó. Thank you for sharing your valuable technical knowledge in a 6-week crash course that enabled me to complete the experimental work in this dissertation;
The Respiratory and Meningeal Pathogens Research Unit (RMPRU) for the sharing of laboratory equipment, especially Dr. Mignon du Plessis for her technical advice;
The Vector Control Reference Unit (VCRU) for welcoming me into their “home” for a while. Thank you for your enthusiasm, support and willingness to help;
The Group for Enteric, Respiratory and Meningeal Disease Surveillance in South Africa (GERMS-SA), the coordinators and all laboratory and hospital staff who contribute to the national and “enhanced” surveillance program in South Africa;
Dr. Nelesh Govender, pathologist for The National Microbiology Surveillance Unit (NMSU) of the NICD, for the updated clinical information on S. Isangi in South Africa for 2005;
Greg Duncan-Traill and Tony Chaplin at Davies Diagnostics (PTY Ltd) for providing the ESBL Etests®;
The National Health Laboratory Service (NHLS) for the 3-year grant.
Dr. Linda Meyer from the University of Pretoria for the E. coli (CTX-M-14) strain;

To my parents, especially my mother, who has always supported my dreams and aspirations. Thank you for all that you are and all you have done for me.
Chapter 1 THE GLOBAL PROBLEM OF SALMONELLOSIS AND THE EMERGENCE OF MULTIPLE-DRUG RESISTANCE

1.1 THE THREAT OF INFECTIOUS DISEASES

1.2 SALMONELLAE AS PATHOGENS
 1.2.1 Structure and classification of salmonellae
 1.2.2 Antigenic composition and nomenclature
 1.2.3 Pathogenesis
 1.2.4 Clinical manifestations
 1.2.5 Treatment
 1.2.5.1 Appropriate antimicrobial agents
 1.2.5.2 Indications and treatment options

1.3 GLOBAL SIGNIFICANCE OF SALMONELLAE
 1.3.1 Increasing trend of salmonellosis
 1.3.2 Impact of HIV/AIDS on salmonellae infection
 1.3.3 Invasive salmonellosis in Africa
 1.3.4 Outbreaks involving drug-resistant salmonellae
 1.3.5 The role of nosocomial infections
1.4 EMERGENCE OF DRUG RESISTANCE IN SALMONELLAE 13
 1.4.1 Selection pressure of antimicrobial agent usage 13
 1.4.2 Extent of drug resistance in salmonellae 14

1.5 MOLECULAR INTERACTION BETWEEN FLUOROQUINOLONES AND SALMONELLAE 16
 1.5.1 Target alterations 16
 1.5.2 The efflux system 16
 1.5.3 Outer membrane permeability 17

1.6 MOLECULAR INTERACTION BETWEEN β-LACTAM ANTIBIOTICS AND SALMONELLAE 17
 1.6.1 Mechanism of action of β-lactam agents 17
 1.6.2 Genetic basis of resistance to β-lactam agents 18

1.7 EXTENDED-SPECTRUM BETA (β)-LACTAMASES (ESBLs) 19
 1.7.1 Nature and function of β-lactamases 19
 1.7.2 Definition of extended-spectrum β-lactamases 19
 1.7.3 Evolution of ESBLs 20
 1.7.3.1 Point mutations in the bla gene 20
 1.7.3.2 Spread of ESBLs by plasmids and integrons 21
 1.7.4 Types of ESBLs 21
 1.7.5 Global distribution of ESBLs 23
 1.7.5.1 Geographical variation and type distribution 23
 1.7.5.2 ESBLs identified in Africa and South Africa 24

1.8 Salmonella enterica subspecies enterica serotype Isangi 25
 1.8.1 History and global distribution 25
 1.8.2 Emergence of Salmonella Isangi in South Africa 29

1.9 MOLECULAR CHARACTERISATION OF SALMONELLAE 30
 1.9.1 Molecular typing of Salmonella species 30
 1.9.2 Molecular detection of ESBLs 31
Chapter 2 SUSCEPTIBILITY OF Salmonella Isangi BY MINIMAL INHIBITORY CONCENTRATION (MIC) DETERMINATION USING Etest® TECHNOLOGY

2.1 ANTIMICROBIAL SUSCEPTIBILITY TESTING: INTRODUCTION

2.2 METHODS FOR MIC DETERMINATION
 2.2.1 Conventional routinely used methods
 2.2.2 The Etest®
 2.2.3 Standardization of MIC methodology

2.3 MATERIALS AND METHODS
 2.3.1 Bacterial strains for MIC testing
 3.3.1.1 Control strains
 3.3.1.2 Test isolates
 2.3.2 Antimicrobial agents and CLSI breakpoints
 2.3.3 Preparation of the inoculum for MIC testing

2.4 RESULTS
 3.4.1 Species and serotype confirmation of isolates
 3.4.2 MIC status of all isolates

2.5 DISCUSSION
 2.5.1 Species and serotype confirmation of isolates
 2.5.2 Age distribution of patients and rate of extra-intestinal infection
 2.5.3 MICs
 2.5.4 Quinolone resistance
Chapter 3 PERFORMANCE OF METHODS FOR SCREENING AND CONFIRMATION OF ESBL EXPRESSION IN Salmonella Isangi

3.1 REQUISITES FOR ESBL DETECTION

3.2 PHENOTYPIC TESTS FOR ESBL DETECTION
3.2.1 Recommended methods
3.2.2 CLSI recommendations
3.2.2.1 MIC-based methods
3.2.2.2 Disc-diffusion-based methods

3.3 PERFORMANCE OF DISC-DIFFUSION-BASED METHODS
3.3.1 Overview of screening and confirmatory tests to determine ESBL production

3.4 MATERIALS AND METHODS
3.4.1 Bacterial strains for ESBL testing
3.4.1.1 Control strains
3.4.1.2 Test isolates
3.4.2 Antimicrobial agents
3.4.3 Methods applied for demonstration of ESBL expression
3.4.3.1 Double-disc diffusion (DDD) method
3.4.3.2 MAST ID™ ESBL disc method
3.4.3.3 Etest ® ESBL strips

3.5 RESULTS
3.5.1 Double-disc diffusion (DDD) method
3.5.2 MAST ID™ ESBL disc method
3.5.3 Etest ® ESBL strips

3.6 DISCUSSION
3.6.1 DDD method
Chapter 4 CHARACTERIZATION OF EXTENDED-SPECTRUM β-LACTAMASES BY THE POLYMERASE CHAIN REACTION (PCR) 69

4.1 INTRODUCTION 69

4.2 MOLECULAR METHODS FOR ESBL DETECTION 69

4.3 MATERIALS AND METHODS 73

4.3.1 Bacterial strains for β-lactamase characterization 73

4.3.1.1 Control strains 73

4.3.1.2 Test isolates 73

4.3.2 Detection of blatem, blashv and blactx-m genes by PCR 75

4.3.2.1 Genomic DNA extraction 75

4.3.2.2 Amplification of blatem, blashv and blactx-m genes 75

4.3.2.3 Isolation and detection of amplified PCR product 76

4.3.3 Nucleotide Sequencing of blax genes 77

4.4 RESULTS 78

4.4.1 Polymerase chain reaction 78

4.4.2 Nucleotide sequencing 79

4.5 DISCUSSION 85

4.5.1 The hospital setting in South Africa 85

4.5.2 Extended-spectrum β-lactamases 86

4.5.3 Emergence of CTX-M type β-lactamases 88

Chapter 5 STRAIN DIFFERENTIATION OF Salmonella Isangi BY PLASMID TYPING 89

5.1 DISSEMINATION OF RESISTANCE 89
6.4.5 Restriction digestion of DNA
6.4.6 Casting, loading and running of agarose gel
6.4.7 Data capturing and analysis

6.5 RESULTS
6.5.1 Analysis of pulsed-field gel electrophoresis patterns
6.5.2 Clusters produced by PFGE with XbaI restriction
6.5.3 Patients with more than one infection episode
6.5.4 Analysis of PFGE patterns by year
6.5.5 Evidence of persistence ("endemicity") of clones in hospitals

6.6 DISCUSSION

Chapter 7 CONCLUSION

APPENDIX One: Materials used for PCR gel electrophoresis
APPENDIX Two: Materials used in plasmid isolation
APPENDIX Three: Materials used for PFGE
APPENDIX Four: Publication
APPENDIX Five: Ethics certificate

REFERENCE LIST
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Electron micrograph of Salmonella showing the flagella</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Colour-enhanced scanning electron micrograph showing Salmonella Typhimurium invading cultured human cells</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>The gram-negative bacterial envelope and the peptidoglycan structure showing the polysaccharide chains, tetrapeptide side chains, and peptide interbridges</td>
<td>18</td>
</tr>
<tr>
<td>1.4</td>
<td>Occurrence of Salmonella Isangi worldwide, 1946 to 2006</td>
<td>26</td>
</tr>
<tr>
<td>2.1</td>
<td>Increase in MIC levels of (a) nalidixic acid and (b) ciprofloxacin of Salmonella Isangi isolates during the period 2000 to 2002</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Demonstration of ESBL production with the double-disc diffusion (DDD) test</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Demonstration of ESBL production with the MAST ID™ ESBL disc test</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Demonstration of non-determinable (ND) results with the MAST ID™ ESBL disc test</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>Growth-inhibition patterns of the Etest® ESBL strips of cefotaxime (CT), ceftazidime (TZ) and cefepime (PM)</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Geographical distribution of Salmonella Isangi isolates identified between 2000 and 2002 in the provinces of South Africa</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>A 1% (w/v) agarose gel depicting PCR amplified bla<sub>TEM</sub> and bla<sub>SHV</sub> ESBL genes</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>A 1% (w/v) agarose gel depicting PCR amplified bla<sub>CTX-M</sub> ESBL genes</td>
<td>79</td>
</tr>
</tbody>
</table>
4.4 Partial nucleotide and amino acid sequences of TEM-1, TEM-63 and TEM-131 depicting the point mutations at amino acid positions 21, 104, 164, 182 and 237 81

4.5 Partial nucleotide and amino acid sequences of SHV-1 and SHV-5 depicting the point mutations at amino acid positions 238 and 240 83

5.1 Plasmid banding patterns of isolates expressing different β-lactamases 95

5.2 Plasmid banding patterns of isolates from Helen Joseph (Lanes 3 to 6) and Tembisa hospitals (Lanes 7 to 10) 97

5.3 Plasmid banding patterns of isolates from ten hospitals 99

5.4 Plasmid banding patterns of isolates from Tambo Memorial Hospital 100

5.5 Plasmid banding patterns of the six ESBL-negative isolates 101

6.1 PFGE of XbaI digested genomic DNA of Salmonella. Isangi depicting the 2 major types of patterns (XP1 and XP2) 111

6.2 Dendrogram representing the six major clusters A to D of the total (265) Salmonella Isangi isolates produced by PFGE with XbaI restriction 112

6.3 Partial dendrogram depicting Cluster A (n=126) 115

6.4 Partial dendrogram depicting Cluster B (n=103) 119

6.5 Partial dendrogram depicting Cluster C (n=15) 120

6.6 Partial dendrogram depicting Cluster D (n=12) 121

6.7 Distribution of clinical isolates from major clusters during the years 2000, 2001 and 2002 respectively 124

6.8 Dendrogram of PFGE with XbaI restriction depicting Salmonella Isangi isolates from 2000 126

6.9 Dendrogram of PFGE with XbaI restriction depicting Salmonella Isangi isolates from 2001 128
Dendrogram of PFGE with XbaI restriction depicting *Salmonella* Isangi isolates from 2002
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Number of S. Isangi isolated from clinical specimens</td>
<td>37</td>
</tr>
<tr>
<td>2.2</td>
<td>List of Etest® strips used to determine minimal inhibitory concentrations of Salmonella Isangi isolates and interpretive standards for MIC breakpoints</td>
<td>38</td>
</tr>
<tr>
<td>2.3</td>
<td>Minimal inhibitory concentrations (MICs) of the ESBL-negative Salmonella Isangi isolates determined by Etest® strips</td>
<td>41</td>
</tr>
<tr>
<td>2.4</td>
<td>Minimal inhibitory concentrations (MICs) of ESBL-positive Salmonella Isangi isolates, determined by the Etest® strips</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>Susceptibility of Salmonella Isangi to nalidixic acid, ciprofloxacin and imipenem, 2000 to 2002</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison of clinical microbiology techniques for ESBL detection</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Antimicrobial agents used to evaluate the three ESBL screening methods</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of the DDD method with each cephalosporin tested for synergy against Augmentin</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary of the results of the MAST ID™ ESBL disc method</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Summary of the results of the Etest® ESBL strip method</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Comparative performance of the three methods for ESBL detection in Salmonella Isangi</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of molecular techniques for ESBL detection</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>Number of non-typhoidal Salmonella (NTS) and percentage of Salmonella Isangi isolates submitted from provinces in South Africa, 2000-2002</td>
<td>75</td>
</tr>
</tbody>
</table>
4.3 Oligonucleotide primers used for amplification and sequencing of bla genes 77
4.4 Nucleotide and amino acid changes of the TEM-63, TEM-131 and SHV-5 β-lactamases as compared to TEM-1 80
4.5 Minimal inhibitory concentrations (MICs) of TEM-1, TEM-131, TEM-131 + SHV-5 and TEM-63 + SHV-5 Salmonella Isangi isolates 84

5.1 Summary of plasmids isolated from S. Isangi in Figure 5.1 96
5.2 Summary of plasmids isolated from S. Isangi in Figure 5.2 97
5.3 Summary of plasmids isolated from S. Isangi in Figure 5.3 99
5.4 Summary of plasmids isolated from S. Isangi in Figure 5.4 100

6.1 Clinical isolates of S. Isangi collected and tested by PFGE between 2000 and 2002 from five of the nine provinces in South Africa 108
6.2 Description of large clusters (≥5 isolates) at 100% similarity 116
6.3 Comparison of clusters with isolates at 100% similarity 117
6.4 Clustering by PFGE typing involving ESBL-negative isolates 122
6.5 Persistent (“endemic”) clones in hospitals 129
NOMENCLATURE

°C degrees Celcius
A adenine
aa amino acid
Ag antigen
AIDS acquired immune deficiency syndrome
APA amino-penicillanic acid
ATCC American Type Culture Collection
AUG clavulanic acid
β beta
bp base pair
BSAC British Society for Antimicrobial Chemotherapy
C cytosine
CAZ ceftazidime
CARL Carletonville Hospital
CHB Chris Hani Baragwanath Hospital
CIP ciprofloxacin
CLSI Clinical Laboratory Standards Institute
CPD cefpodoxime
CT cefotaxime Etst
CTL cefotaxime + clavulanic acid Etst
CTX cefotaxime
DDD double disk diffusion
DNA deoxyribonucleic acid
dNTPs deoxynucleoside triphosphate
DRC Democratic Republic of Congo
EC Eastern Cape Province
EDRU Enteric diseases reference unit
EDTA ethylenediaminetetraacetic acid
ESBL(s) extended-spectrum beta-lactamase(s)
ESC extended-spectrum cephalosporins
et al. and others
EtBr ethidium bromide
FEP cefepime
FS Free State Province
g gram
G guanine
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMB</td>
<td>Tembisa Hospital</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetramethyl-ethylenediamine</td>
</tr>
<tr>
<td>TET</td>
<td>tetracycline</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hydroxymethyl)-aminomethane</td>
</tr>
<tr>
<td>TSE</td>
<td>Tsepong Hospital</td>
</tr>
<tr>
<td>µg/ml</td>
<td>micrograms per milliliter</td>
</tr>
<tr>
<td>µl</td>
<td>microliters</td>
</tr>
<tr>
<td>U</td>
<td>uracil</td>
</tr>
<tr>
<td>UPGMA</td>
<td>unweighted pair group method with arithmetic averages</td>
</tr>
<tr>
<td>URE</td>
<td>urea</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VNTR</td>
<td>variable number tandem repeat analysis</td>
</tr>
<tr>
<td>VP</td>
<td>Voges Proskauer</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>WC</td>
<td>Western Cape Province</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
<tr>
<td>XP</td>
<td>pulsed-field gel electrophoresis banding pattern</td>
</tr>
</tbody>
</table>