The Oxidation And Precipitation Of Iron From A Manganese Sulphate Solution

Germaine Darko

A Dissertation Submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg in fulfilment of the requirements for the Degree of Master of Science in Engineering.

November 2004
Declaration

I, the undersigned, Germaine Darko, do hereby declare that the contents of this dissertation are solely my work except where specific acknowledgement is made. This dissertation has not been submitted for a degree at any other university or institution.

____________________

Germaine Darko
ABSTRACT

In many metallurgical processes such as the production of zinc, copper, manganese, nickel and cobalt, the mineral ore usually has metallic impurities, of which iron is the most common. Separating the iron from the mineral of interest is a common problem in these processes. In this dissertation, the oxidation of ferrous sulphate in the presence of manganese was studied in a stirred batch reactor operating at atmospheric pressure. Molecular oxygen and air were used as oxidants.

Systematic kinetic experiments were carried out at initial ferrous concentration and temperature ranges of 5 – 20 g/l and 55 – 85 ºC respectively. The results revealed that iron could be selectively precipitated out from manganese sulphate solution. Analysis of the solids showed that iron is separated out in form of goethite precipitate (Fe₂O₃·H₂O). Although this compound seemed to be the most dominant species in the solids, small amounts of sulphate and manganese contaminants were also evident.

The experimental data were fitted to a rate equation and found to be fractional order with respect to the ferrous concentration and first order with respect to the oxygen partial pressure. The rate equation was similar to that proposed by Rönnholm et al (1999) based on a non-catalytic mechanism of the oxidation of ferrous sulphate. The model fitted the experimental data reasonably well.
ACKNOWLEDGEMENTS

I will like to thank the following people and institutions for making this dissertation possible.

Professors A.W. Bryson and D. Hildebrandt who as supervisors of this research provided invaluable advice and assistance;

Professor I. Cukrowski for his inputs;

Centre Of Materials and Process Synthesis (COMPS) at University of the Witwatersrand, Johannesburg for their financial contributions and support;

National Research Fund (NRF) for their Financial Support;

My parents, for their encouragement.
# TABLE OF CONTENTS

## 1.0 INTRODUCTION AND LITERATURE SURVEY ........................................1

1.1 STATEMENT OF THE PROBLEM ..................................................1

1.2 IRON REMOVAL FROM A SULPHATE SOLUTION ..........................2

1.2.1 Iron Problem in Hydrometallurgical Manganese Circuits ..........3

1.2.2 eH – pH diagrams .....................................................................4

1.2.3 Separation of iron in a form of goethite precipitate ..................8

1.3 OXIDATION OF FERROUS IONS BY DISSOLVED OXYGEN ...............9

1.3.1 Reaction Mechanisms of Fe$^{2+}$ oxidation with oxygen ..........12

1.4 THEORY ON KINETICS OF IRON OXIDATION ..............................15

## 2.0 EXPERIMENTAL .................................................................................19

2.1 EXPERIMENTAL SET-UP ...............................................................21

2.2 EXPERIMENTAL PROCEDURE ....................................................22

2.3 FILTRATION SYSTEM .....................................................................24

2.4 PRELIMINARY RESULTS .............................................................25

2.5 EXPERIMENTS CONDUCTED .......................................................25

## 3.0 RESULTS AND DISCUSSIONS .......................................................26

3.1 CONFIRMATION THAT MASS TRANSFER EFFECTS CAN BE NEGLECTED 26

3.2 REPRODUCIBILITY OF EXPERIMENTAL RESULTS .....................28

3.3 DETERMINATION OF SOLIDS COMPOSITION ...............................29

3.3.1 Solution Phase Analysis ..........................................................29

3.3.2 Solid Phase Analysis ..................................................................30

3.3.3 TGA Analysis of the solids ......................................................33

3.3.4 XRD Analysis of the solids ......................................................35

3.4 EFFECT OF PARAMETERS ON OXIDATION RATE ..........................36

3.4.1 Effect of Initial ferrous concentration ........................................36

3.4.2 Effect of oxidant type ...............................................................37

3.4.3 Effect of temperature ...............................................................37

3.4.4 Effect of pH .............................................................................38

3.4.5 eH-pH diagram .........................................................................40

3.4.6 Kinetic variables considered for modelling ...............................43

## 4.0 MODELLING OF EXPERIMENTAL DATA .......................................45

4.1 EMPIRICAL MODEL OF RATE EQUATION .....................................45

4.2 MECHANISTIC MODELLING OF THE REACTION RATE ..................48

## 5.0 CONCLUSIONS AND RECOMMENDATIONS ...............................57

NOMENCLATURE ......................................................................................59
REFERENCES.................................................................................................................................61

APPENDICES........................................................................................................................................65

APPENDIX A1: ATOMIC ABSORPTION SPECTROMETRY (AAS) ....................................................65
  Principles of AAS ..............................................................................................................................65
  Relationship between Absorption and Concentration .................................................................66
  Analytical Curve Technique ..........................................................................................................68
  Interferences ....................................................................................................................................70
  Analytical Analysis of Samples ......................................................................................................71

APPENDIX A2: CONSTRUCTION OF POURBAIX DIAGRAMS .....................................................73

APPENDIX A3: RATE CURVES ........................................................................................................77

APPENDIX A4: GRAVIMETRIC ANALYSIS OF SULPHATES AS BARIUM ..................................79
  Sulphate ..........................................................................................................................................79
  Experimental Procedure ................................................................................................................79
  Calculations .....................................................................................................................................80

APPENDIX A5: DERIVATION OF MECHANISTIC RATE EQUATION ........................................82

APPENDIX A6: MORE ON FITTED DATA .........................................................................................85

APPENDIX A7: PROGRAM FOR NON-LINEAR REGRESSION MODELLING .................................88
LIST OF FIGURES

Section 1

Figure 1.1  $E_h$ – pH diagram of Fe – H$_2$O system at 298K  5
Figure 1.2  $E_h$ – pH diagram of Mn – H$_2$O system at 298K  6
Figure 1.3  $E_h$ – pH diagram of Fe –Mn – H$_2$O system at 298K  7
Figure 1.4  Mass Transfer Of Oxygen Based On The “Stagnant Film” Model  16

Section 2

Figure 2.1  Calibration Curve For Air Rotameter  20
Figure 2.2  Temperature Control Set-up  21
Figure 2.3  Experimental Set-up  23
Figure 2.4  Filtration System Set-up  24

Section 3

Figure 3.1  Effect of Flowrate on Oxidation Rate  26
Figure 3.2  Effect of Stirrer Speed on Oxidation Rate  27
Figure 3.3  Reproducibility Of Experimental Runs  28
Figure 3.4  Evidence Of Selective Precipitation Of The Iron From Manganese  29
Figure 3.5  TGA Analysis Of The Solid Sample  34
Figure 3.6  XRD Analysis Of The Solid Sample  35
Figure 3.7  Effect Of Starting [Fe (II)] On The Oxidation Reaction  36
Figure 3.8  Effect Of Different Oxidant On The Oxidation Reaction  37
Figure 3.9  Effect Of Temperature On The Oxidation Reaction  38
Figure 3.10  Effect Of Starting pH On The Oxidation Rate  39
Figure 3.11  The Release of [H+] in Oxidation Reaction  40
Figure 3.12  eH-pH Diagram of Reaction Solution  41
Section 4

Figure 4.1 Least Squares fits to experimental initial rates 47
Figure 4.2 Estimation of Activation Energy from the Model presented by Rönnholm et al (1999) 50
Figure 4.3 Arrhenius Plot For Rönnholm et al (1999) Model 51
Figure 4.4 Effect Of α-Parameter On SSE 52
Figure 4.5 Effect Of β-Parameter On SSE 53
Figure 4.6 Predicted Ferrous Concentrations vs. Experimental 54
Figure 4.7 Histogram of normal distribution of the residuals 55
Figure 4.8 Comparison Of Model With Experimental Data 56
LIST OF TABLES

Section 1
Table 1.1  Industrial Processes For Iron Removal  3
Table 1.2  Thermodynamic Data Of Species Involved  
in Fe - H2O system  5
Table 1.3  Values of K_i for [O_2]_{sat} estimation  18

Section 3
Table 3.1  Solids Analyses  31
Table 3.2  Theoretical contents of species present in solid precipitates  32

Section 4
Table 4.1  Estimated Parameters from Rönholm et al (1999) model  53