DECLARATION

I, Eckhart Johannes Buchmann, declare that this thesis is my own work. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other university.

[Signature]

6 ... day of July 2007
In memory of my mother

Elisabeth Marie Buchmann

1.3.1926 – 6.4.2001
PUBLICATIONS AND PRESENTATIONS

Papers presented, related to the contents of this thesis:

Buchmann EJ. Cervical dilatation, descent, moulding and position - how good are obstetricians with clinical signs of labour progress? 25th Conference on Priorities in Perinatal Care in Southern Africa; Champagne Sports Resort, KwaZulu-Natal, 7-10 March 2006.

Published articles:

The following articles have been submitted for publication:

Buchmann EJ, Guidozzi F. Level of fetal head above brim: intrapartum estimation using palpation, fingerbreadths and tape-measure. (To Journal of Obstetrics and Gynaecology)

Buchmann EJ, van Gelderen CJ, Libhaber E. Prospective, blinded and non-participant intrapartum clinical assessment in the prediction of cephalopelvic disproportion. (To British Journal of Obstetrics and Gynaecology)

Buchmann EJ, Libhaber E. Comparison of intrapartum clinical palpation with symphysis-fundal measurement in the prediction of birth weight at term. (To Journal of Maternal-fetal and Neonatal Medicine)
ACKNOWLEDGEMENTS

The author wishes to record his sincere gratitude to the following persons for their invaluable support with this project:

Dr Karlyn Frank for her love, her understanding and her generosity

Nena and Robert Buchmann for their understanding and encouragement

Prof Franco Guidozzi for his ideas and encouragement

Prof Cyril van Gelderen for his supervision, wisdom and time

Prof Peter Cooper for his supervision, wisdom and time

Mrs Elena Libhaber for her statistical knowledge and assistance

Consultants and registrars in the Department of Obstetrics and Gynaecology, Chris Hani Baragwanath Hospital, for their patience and interest
ABSTRACT

Cephalopelvic disproportion (CPD) is a common and serious obstetric condition, especially in sub-Saharan Africa. Recognition relies on clinical observations, such as cervical dilatation, head descent, moulding, and size of fetus, all made in a trial of labour. No prospective studies have investigated intrapartum clinical observations and their predictive value for CPD. The objectives of this research were 1) to determine the association of intrapartum clinical findings, especially level of head and moulding, with the outcome of CPD, 2) to determine inter-observer agreement of these findings between clinicians, and 3) to compare intrapartum clinical palpation with symphysis-fundal height (SFH) measurement in the prediction of birth weight.

A prospective cross-sectional comparative study was done in the Chris Hani Baragwanath labour ward, a large referral centre. The subjects were women at term, in the active phase of labour, with vertex presentations. The author, blinded to previous clinical or ultrasound findings, performed clinical assessments at the same time as the women’s attending clinicians. His observations were not divulged to the clinicians and he did not participate in obstetric management of the women. The primary outcome measures were CPD, defined as caesarean section for poor progress, and birth weight.

Five hundred and eight women were examined, of whom 113 (22.2%) had CPD. Multivariate analysis identified short maternal stature, increased SFH, lesser cervical dilatation, long duration of labour, high degree of parieto-parietal moulding, and high degree of caput succedaneum as independent predictors for CPD. Fetal position and
occipito-parietal moulding were not predictive, and level of head, by fifths and by station, was poorly predictive. Inter-observer agreement between the author and attending clinicians was moderate for cervical dilatation, engagement of the head in fifths, and caput succedaneum, and poor for engagement of the head by station. SFH measurement was a slightly better predictor of birth weight than clinical fetal weight estimation.

The clinical observations that were shown to be predictive for CPD may be useful adjuncts in the management of a trial of labour. Inter-observer agreement of these findings is at best moderate. Measurement of SFH deserves more attention as an intrapartum predictor of birth weight.
TABLE OF CONTENTS

DECLARATION i
DEDICATION ii
PUBLICATIONS AND PRESENTATIONS iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
TABLE OF CONTENTS vii
LIST OF FIGURES xiii
LIST OF TABLES xiv

CHAPTER 1.
CEPHALOPELVIC DISPROPORTION – AN OVERVIEW
1.1 DEFINITION AND CLASSIFICATION 1
1.2. DIAGNOSIS OF CPD: TRIAL OF LABOUR 3
1.3. CPD AS A PUBLIC HEALTH PROBLEM 6
1.4. PREVALENCE OF CPD 7
1.5. PELVIC CONTRACTION IN SUB-SAHARAN AFRICA 9

CHAPTER 2.
ANTEPARTUM CLINICAL PREDICTORS OF CPD
2.1. MATERNAL ANTHROPOMETRIC MEASUREMENTS 13
2.1.1. Maternal height 13
2.1.2. Shoe size 15
2.1.3. Maternal and paternal head to height ratio 16
2.2. CLINICAL ASSESSMENT OF THE FETOPELVIC RELATIONSHIP 17
2.2.1. Clinical pelvic assessment 17
2.2.2. Non-engagement of the fetal head before labour 19
2.2.3. Head-fitting tests 21
2.2.4. Estimation of fetal weight 22
2.3. PELVIMETRY USING IMAGING TECHNOLOGY
2.3.1. X-ray pelvimetry
2.3.2. Other imaging methods

CHAPTER 3.

INTRAPARTUM PREDICTION AND RECOGNITION OF CEPHALOPELVIC DISPROPORTION

3.1. CERVICAL DILATATION AND CPD
3.1.1. Friedman’s studies
3.1.2. Active management of labour
3.1.3. Philpott: alert and action lines
3.1.4. Accuracy and reproducibility – cervical dilatation

3.2. OCCIPITOPOSTERIOR POSITION
3.2.1. Calkins’ study
3.2.2. Controversy about the occipitoposterior position
3.2.3. Accuracy and reproducibility – fetal position

3.3. FETAL HEAD DESCENT
3.3.1. Methods of estimating head descent
3.3.2. High head in labour
3.3.3. Station versus fifths in assessing head descent
3.3.4. Accuracy and reproducibility – fetal head descent

3.4. MOULDING
3.4.1. Mechanism of moulding
3.4.2. Grades of moulding and CPD
3.4.3. Accuracy and reproducibility – moulding

3.5. CAPUT SUCCEDANEUM AND OTHER CLINICAL SIGNS
3.5.1. Caput succedaneum
3.5.2. Flexion
3.5.3. Asynclitism

3.6. CLINICAL PELVIC ASSESSMENT

CHAPTER 4.

INTRAPARTUM ESTIMATION OF FETAL WEIGHT

4.1. FETAL WEIGHT ESTIMATION AND CPD
4.2. UTERINE MEASUREMENTS
4.2.1. Early studies
4.2.2. Correlation between SFH measurements and birth weight
4.2.3. Limitations of SFH measurement, and standardization
CHAPTER 4.

4.3. UTERINE PALPATION
 4.3.1. Demographic, constitutional and pregnancy factors
 4.3.2. Uterine palpation versus ultrasound

4.4. FACTORS AFFECTING ACCURACY

4.5. MATERNAL ESTIMATION OF FETAL WEIGHT

4.6. PREDICTING MACROSOMIA

CHAPTER 5.

PROBLEM STATEMENT AND OBJECTIVES

5.1. INTRODUCTION
 5.1.1. Antepartum prediction of CPD
 5.1.2. Cervical dilatation - trial of labour
 5.1.3. Clinical observations that may predict CPD

5.2. RESEARCH OPPORTUNITIES
 5.2.1. Cervical dilatation
 5.2.2. Head descent
 5.2.3. Moulding
 5.2.4. Occipitoposterior position
 5.2.5. Fetal weight estimation
 5.2.6. Clinical pelvic assessment
 5.2.7. Other observations

5.3. OBJECTIVES
 5.3.1. Objective 1 - descent, moulding and other clinical findings
 5.3.2. Objective 2 – interobserver agreement of clinical findings
 5.3.3. Objective 3 – estimation of fetal weight

CHAPTER 6.

SETTING AND METHODS

6.1. STUDY DESIGN

6.2. SETTING
 6.2.1. The ideal setting
 6.2.2. Chris Hani Baragwanath Maternity Hospital

6.3. STUDY POPULATION

6.4. SAMPLING AND SAMPLE SIZE

6.5. RECRUITMENT AND INFORMED CONSENT
CHAPTER 8.
INTEROBSERVER AGREEMENT: RESULTS AND DISCUSSION

8.1. THE ATTENDING CLINICIANS 157
8.2. FETAL WEIGHT ESTIMATION 157
8.3. CERVICAL DILATATION 158
8.4. LEVEL OF THE HEAD 161
 8.4.1. Fifths of head 161
 8.4.2. Station 163
8.5. FETAL POSITION 165
8.6. MOULDING 167
8.7. CAPUT SUCCEDANEUM 167
8.8. DISCUSSION 168
 8.8.1. Cervical dilatation 168
 8.8.2. Level of the head 170
 8.8.3. Fetal position 171
 8.8.4. Moulding and caput succedaneum 172
8.9. LIMITATIONS 173

CHAPTER 9.
ESTIMATION OF FETAL WEIGHT: RESULTS AND DISCUSSION

9.1. DISTRIBUTION OF BIRTH WEIGHTS 176
9.2. FETAL WEIGHT ESTIMATION BY PALPATION 177
 9.2.1. Percentage error 177
 9.2.2. Simple linear regression 179
9.3. SYMPHYSIS-FUNDAL HEIGHT MEASUREMENT 181
9.4. ADDITIONAL PREDICTORS OF BIRTH WEIGHT 182
9.5. PREDICTING THE MACROSOMIC BABY 186
 9.5.1. The author’s estimation of fetal weight 186
 9.5.2. Symphysis-fundal height measurement 188
9.6. DISCUSSION 188
9.7. LIMITATIONS 192
CHAPTER 10.

CONCLUSION 196

REFERENCES 203
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>The contribution of obstructed labour to causes of maternal mortality</td>
<td>7</td>
</tr>
<tr>
<td>3.1.</td>
<td>Labour graph showing arrest disorder of cervical dilatation</td>
<td>31</td>
</tr>
<tr>
<td>3.2.</td>
<td>Transvaginal estimation of head descent using station</td>
<td>42</td>
</tr>
<tr>
<td>3.3.</td>
<td>Transabdominal estimation of head descent using fifths of head palpable</td>
<td>42</td>
</tr>
<tr>
<td>3.4.</td>
<td>Abdominal palpation for fifths of head above the pelvic brim</td>
<td>43</td>
</tr>
<tr>
<td>3.5.</td>
<td>Misleading assessment of engagement using station</td>
<td>49</td>
</tr>
<tr>
<td>3.6.</td>
<td>Exaggerated depiction of moulding</td>
<td>54</td>
</tr>
<tr>
<td>3.7.</td>
<td>Lateral radiograph of a newborn after elective caesarean section</td>
<td>56</td>
</tr>
<tr>
<td>3.8.</td>
<td>Lateral radiograph of a newborn after vaginal delivery</td>
<td>56</td>
</tr>
<tr>
<td>3.9.</td>
<td>Composite diagram of lateral radiographs of moulded and unmoulded newborn heads</td>
<td>57</td>
</tr>
<tr>
<td>6.1.</td>
<td>Map showing the location of Chris Hani Baragwanath Hospital</td>
<td>102</td>
</tr>
<tr>
<td>6.3.</td>
<td>The Notelowitz method of estimating level of head in fifths</td>
<td>110</td>
</tr>
<tr>
<td>6.4.</td>
<td>Measurement of symphysis to sinciput using a tape measure</td>
<td>110</td>
</tr>
<tr>
<td>7.1.</td>
<td>Receiver operated characteristic plots for four methods of estimating head descent</td>
<td>140</td>
</tr>
<tr>
<td>9.1.</td>
<td>Scatter plot for estimated fetal weight by the author</td>
<td>180</td>
</tr>
<tr>
<td>9.2.</td>
<td>Scatter plot for estimated fetal weight by the clinicians</td>
<td>181</td>
</tr>
<tr>
<td>9.3.</td>
<td>Scatter plot for symphysis-fundal height</td>
<td>182</td>
</tr>
<tr>
<td>9.4.</td>
<td>Receiver-operated characteristic plot for symphysis-fundal height</td>
<td>188</td>
</tr>
<tr>
<td>9.5.</td>
<td>Scatter plot for symphysis-fundal height with regression lines</td>
<td>190</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Assignment of diagnostic criteria for cephalopelvic disproportion in nulliparous women</td>
<td>5</td>
</tr>
<tr>
<td>3.1. Length of first and second stages of labour in Calkins’ series</td>
<td>36</td>
</tr>
<tr>
<td>3.2. Comparison of caesarean section rates in studies reporting findings of unengaged and engaged fetal heads</td>
<td>45</td>
</tr>
<tr>
<td>3.3. Association between fetal head descent in fifths and outcome in women with poor labour progress</td>
<td>47</td>
</tr>
<tr>
<td>3.4. Grades of moulding at delivery associated with normal labour, primary uterine dysfunction, minor CPD and major CPD</td>
<td>63</td>
</tr>
<tr>
<td>4.1. Studies that reported intrapartum fetal weight estimations within 10% of birth weight</td>
<td>83</td>
</tr>
<tr>
<td>4.2. Studies reporting sensitivities and specificities for intrapartum detection of infants with birth weight ≥ 4000 g</td>
<td>88</td>
</tr>
<tr>
<td>7.1. Comparison of supine height with standing height</td>
<td>120</td>
</tr>
<tr>
<td>7.2. Basic clinical data and labour outcomes for nulliparae and multiparae</td>
<td>123</td>
</tr>
<tr>
<td>7.3. Association of maternal demographics and measurements with CPD in nulliparae</td>
<td>124</td>
</tr>
<tr>
<td>7.4. Association of intrapartum clinical observations with CPD in nulliparae</td>
<td>126</td>
</tr>
<tr>
<td>7.5. Association of maternal demographics and measurements with CPD in multiparae</td>
<td>127</td>
</tr>
<tr>
<td>7.6. Association of intrapartum clinical observations with CPD in multiparae</td>
<td>128</td>
</tr>
<tr>
<td>7.7. Univariate and multivariate logistic regression analysis for clinical predictors of CPD using fifths as the measure of head descent</td>
<td>131</td>
</tr>
<tr>
<td>7.8. Stepwise logistic regression model showing independent predictors of CPD with fifths as the measure of head descent</td>
<td>132</td>
</tr>
<tr>
<td>7.9. Univariate and multivariate logistic regression analysis for clinical predictors of CPD using station as the measure of head descent</td>
<td>133</td>
</tr>
</tbody>
</table>
7.10. Stepwise logistic regression model showing independent predictors of CPD with station as the measure of head descent

7.11. CPD rates with percentages for unengaged vs. engaged heads by fifths estimation, at cervical dilation <7 cm and ≥7 cm

7.12. CPD rates with percentages for unengaged vs. engaged heads by estimation of station, at cervical dilation <7 cm and ≥7 cm

7.13. Intrapartum maternal supine height and CPD

7.14. Intrapartum symphysis-fundal height measurement and CPD

7.15. Positive predictive value and likelihood ratio for CPD, for a combination of short stature and high SFH

7.16. Positive predictive value and likelihood ratio for CPD, for a combination of tall stature and small SFH

7.17. Positive predictive value and likelihood ratio for CPD, for a combination of parieto-parietal moulding ≥grade 2 and unengaged fetal head

7.18. Positive predictive value and likelihood ratio for CPD, for a combination of parietoparietal moulding <grade 2 and engaged fetal head

7.19. Sensitivity, specificity, prevalence of CPD and likelihood ratio for fifths, symphysis-to-sinciput measurement and station

8.1. Rank of clinicians that did the intrapartum examinations

8.2. Agreement, underestimation and overestimation for cervical assessments by clinicians, compared to the author’s assessments

8.3. Clinicians’ mean observed cervical dilatation using the author’s estimated dilatation as the standard

8.4. Percentage agreement in estimation of cervical dilatation between the author and the clinicians, using the author’s estimation as the standard

8.5. Univariate and multivariate ordinal regression analysis showing influence of independent variables on disagreement in estimation of cervical dilatation

8.6. Clinicians’ estimates of level of the head according to fifths against the author’s estimates as the standard

8.7. Interobserver agreement in terms of engagement of the head in fifths between the author and clinicians

8.8. Clinicians’ estimates of level of the head by station against the author’s estimates as the standard
8.9. Interobserver agreement in terms of engagement of the head by station between the author and clinicians

8.10. Comparison of the author’s and clinicians’ findings of fetal position

8.11. Fetal position findings of the author and clinicians in 30 patients who had suprapubic ultrasound scans to identify fetal position

8.12. Comparison of the author’s and the clinicians’ findings of caput succedaneum

9.1. Distribution of birth weights, in intervals of 500 g

9.2. Percentage error of intrapartum estimated fetal weight with respect to birth weight, for author and clinicians

9.3. Distribution of percentage error showing underestimation and overestimation of fetal weight

9.4. Mean percentage error in estimation of fetal weight for the author and Clinicians

9.5. Univariate and multivariate linear regression for birth weight with independent variables including estimated fetal weight by the author

9.6. Stepwise linear regression showing partial r^2 of each clinical variable, including estimated fetal weight by the author

9.7. Univariate and multivariate linear regression for birth weight with independent variables including symphysis-fundal height

9.8. Stepwise linear regression showing partial r^2 of each variable, including symphysis-fundal height

9.9. Two-by-two table for estimated fetal weight in the prediction of birth weight at a 4000 g cut-off

9.10. Two-by-two table for symphysis-fundal height measurement of 40 cm in the prediction of birth weight at a 4000 g cut-off