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ABSTRACT 
 
The work discussed in this thesis is centered on the synthetic protocol developed for the 

synthesis of alkaloids in the organic chemistry laboratories at the University of the 

Witwatersrand. The alkaloids of interest in this thesis are the 5,8-disubstituted indolizidines 

(−)-209I [185] and (−)-223V [174], the piperidine alkaloid (±)-thalictroidine [257] as well as 

several 5-monosubstituted indolizidines including (±)-tashiromine [330a] and (±)-5-epi-

tashiromine [330b]. The work is put into perspective in two parts. The first part is a review of 

all the classes of alkaloids that have currently been isolated and identified from the skin 

extracts of amphibians, in particular the Dendrobatidae family of neotropical frogs. The 

second part gives a chronological review of all previous racemic and enantioselective 

syntheses of the 5,8-disubstituted indolizidines. This is followed by an overview of the 

general synthetic approach used in the syntheses of alkaloids in the “Wits” laboratories. 

Particular emphasis is placed on the enantioselective synthetic strategies, developed by 

Gravestock, for the synthesis of 5,8-disubstituted indolizidine alkaloids. The aims and 

strategies to be used in the present project are then introduced. 

 

The racemic synthesis of (±)-thalictroidine [257], used in model studies in order to practice 

fundamental functional group transformations for the preparation of piperidine systems is 

reported. The key reactions introduced in this section were the preparation of 

bromoacetamides, thiolactams and enaminones, the latter by the application of Eschenmoser’s 

sulfide contraction, as well as the reduction of exocyclic carbon-carbon double bonds in six 

membered vinylogous urethanes. The synthesis of (±)-thalictroidine [257], is the first reported 

synthesis of the natural product, and spectroscopic and crystallographic data are in agreement 

with the structure proposed by Kennelly et al.125 

 

The synthesis of several 5-monosubstituted indolizidines, used in model studies in order to 

establish fundamental skeletal and functional group transformations for 5,8-disubstituted 

indolizidines are then shown. Key reactions include the preparation of several enaminones 

including a vinylogous urethane [312] and a Weinreb amide [314] from thiolactam [304]. 

These enaminones were cyclised under alkylative conditions to afford 5-substituted 

indolizidines [320] and [322] respectively. The synthetic utility of the Weinreb amide for the 

introduction of unbranched alkyl substituents at the 5-position is introduced, and the utility of 
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the vinylogous urethane [320] is shown by a three step conversion into (±)-tashiromine [330a] 

and (±)-5-epi-tashiromine [330b]. 

 

The formal enantioselective synthesis of indolizidine (−−−−)-209I [185] is reported. In order to 

begin the enantioselective synthesis of (−−−−)-209I [185], methodology developed by Gravestock 

was adapted to the preparation and utilization of vinylogous ureas containing the Weinreb 

amide functionality. Conjugate addition of the secondary amine N-benzyl-N-(1R)-1-

phenylethylamine [243] to tert-butyl (2E)-2-hexenoate [267] gave optically pure tertiary 

amine [268]. Debenzylation of this amine gave primary amine [336]. Subsequent lactam 

formation, thionation and sulfide contraction with N-methoxy-N-methyl-2-bromoacetamide 

[271] yielded vinylogous urea [272]. The reduction of tert-butyl ester [272] to liberate alcohol 

[273] was low yielding and an alternative method was used, which involved the reduction of 

the tert-butyl ester at an early stage of the synthesis, protecting it as a silyl ether, and then 

liberating the free alcohol at an appropriate stage in the synthesis. The silyl ether was not 

compatible with the thionation step and was swapped at the lactam stage for an acetate 

protecting group. Subsequent reactions included an acylative cyclisation to form the 

indolizidine skeleton and a stereoselective reduction of the carbon-carbon double bond to 

yield (5R,8S,8aS)-N-methoxy-N-methyl-5-propyloctahydro-8-indolizinecarboxamide [275]. 

Mono-alkylation of the Weinreb amide functionality and epimerization to 1-[(5R,8R,8aS)-5-

propyloctahydro-8-indolizinyl]-1-propanone [191] represented a formal synthesis of 

indolizidine (−)-209I [185]. 

 

Approaches towards the synthesis of a late stage common intermediate [259] which could 

have the substituents at both the 5- and 8-positions modified independent of each other at or 

near the end of the synthesis are discussed. Finally an alternative synthetic approach negating 

the need for several of the protection and deprotection steps is shown with regards to the 

synthesis of the structurally related 1,4-disubstituted quinolizidines. 
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CHAPTER 1 
 

A REVIEW OF ALKALOIDS FROM AMPHIBIAN SOURCES, AND REPORTED 
SYNTHESES OF 5,8 DISUBSTITUTED INDOLIZIDINE ALKALOIDS 

 
1.1 Introduction 
 
A general definition of alkaloids, is that they comprise a group of naturally occurring 

compounds having a basic often cyclic, nitrogen-containing functional group, in many 

respects resembling the alkalis.1 They are primarily found in the plant kingdom which is a 

source of more than 10 000 alkaloids. Many of these alkaloids have common household 

names, and are well known to most people. Common examples include nicotine, the tobacco 

alkaloid, quinine, used in the treatment of malaria and morphine, an analgesic and narcotic 

from the opium poppy. Other alkaloids include poisons such as strychnine and coniine, the 

latter derived from hemlock and famous for being used to poison Socrates; as well as 

numerous illegal recreational drugs like lysergic acid diethylamide (LSD), cocaine and heroin.  

 

The biological importance of most alkaloids to plants undoubtedly revolves around the fact 

that they serve as an alleochemical deterrent to herbivores by eliciting a bitter taste.2 

Pharmacologically, alkaloids are of particular interest as they exhibit striking biological 

activity in insects, mammals and humans. In fact alkaloids have been isolated from plants as 

both pure substances and mixtures for use as medicinal agents in homeopathy and medicine, 

leading to the development of modern pharmacology. Today, natural product chemistry and 

synthetic organic chemistry have both been profoundly affected by the structural elucidation 

and synthesis of alkaloids with the hopes of finding new and better alkaloids for use in 

pharmacology and medicine. 

 

Traditionally, a general definition of alkaloids has almost always made mention of the fact 

that alkaloids have a limited distribution in animals in fact for many years it was believed that 

alkaloids were only found in plants. However it is now well known that alkaloids occur 

readily in both invertebrates and vertebrates in the animal kingdom.3 

 

The first example of an alkaloid from an animal source was established in 1866 when 

samandarine was isolated from a European fire salamander4, Since then amphibians have 

proved to be a rich source of biologically active lipid-soluble alkaloids. To date, over eight 
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hundred compounds having been identified, representing twenty four structural classes.5 

Interestingly, the large majority of these alkaloids have been identified from the skin extracts 

of frogs of the family Dendrobatidae, and as a result are sometimes refered to as ‘dendrobatid’ 

alkaloids.6 

 

The Dendrobatid family includes 170 species spread across 7 genera.5 These frogs are small, 

ranging from 12 mm (Dendrobates minutus) to 60 mm (Dendrobates auratus), and they 

generally display aposematic colouring. These frogs are endemic to Central and South 

America, however there is a population of D. auratus in Hawaii introduced over sixty years 

ago.7 Alkaloids are, however, not unique to dendrobatid frogs. Frogs and toads from the 

families Mantellidae, Bufonidae and Myobatrachidae are also known sources of alkaloids. 

 

The toxicity of these frogs is in general a direct result of the alkaloids located in the granular 

glands in their skins.8 The toxins seem to fulfill two primary requirements: they prevent 

predators from eating the frogs by producing a burning sensation, numb feeling or horrible 

taste; and they prevent bacteria and fungi from colonizing the frog’s permanently moist skin.9 

The degree of toxicity varies across species, with some causing only a mild discomfort while 

others are deadly.  

 

Amphibian alkaloids, with the exception of samandarines and the pseudophrynamines, are all 

believed to be derived from arthropod dietary sources, although to date only a few of the over 

eight hundred amphibian alkaloids have been detected in anthropods.5 Putative sources have 

been shown to be myrmicine and formicine ants, coccinellid beetles, siphonotid millipedes 

and orbatid mites.5 The evidence for a dietary source of these alkaloids stems from the fact 

that dendrobatid frogs raised in captivity have been shown to contain no skin alkaloids, while 

wild-caught frogs still maintain alkaloids in captivity for years. To test this theory Daly and 

co-workers tested a dietary link on D. auratus, by capturing D. auratus tadpoles, which were 

reared to adulthood, at which time they were split into two groups. The one group was fed 

fruit flies devoid of any toxic alkaloids, while the other group was fed on leaf-litter arthropods 

collected from the frog’s natural environment. The trial continued for seven months, after 

which time, as predicted, the frogs raised on the fruit flies showed no sign of alkaloids, 

whereas the frogs raised on the leaf-litter arthropods had significant levels of alkaloids.10-11 
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To date the structures of many of these alkaloids have been rigorously established by either 

NMR spectroscopic analysis or synthesis. However due to the small amounts of material 

available to study, many still remain tentative with proposed structures based only on mass 

spectral and FTIR spectral data, with analogies to the structures of well-defined alkaloids.3 

 

Due to the large number of different amphibian alkaloids Daly and co-workers introduced a 

code system for naming each alkaloid. They used the nominal molecular weight of the 

alkaloid, with a letter added to distinguish between different alkaloids with the same nominal 

molecular weight. To characterize isomers prefixes (eg. cis, trans, epi, iso) and primes (eg. 

A’, A’’) are used. In certain cases trivial names are given.4,12-13 

 
1.2 Review of the major classes of amphibian alkaloids 
 
In the following sections, the major classes of amphibian alkaloids will be introduced. 

Representative structures will be shown for each class along with some commentary on the 

source, structure and pharmacological properties. The 5,8-disubstituted indolizidine alkaloids 

being the alkaloids of interest for this thesis are dealt with in more detail, and previous 

synthetic approaches will be outlined. 

 
1.2.1 Batrachotoxins 
 
Batrachotoxins are one of two classes of steroidal alkaloids, originally isolated from the 

poison-dart frogs found in the rain forests west of the Andes in Columbia.14 It was the 

knowledge of the native Indians that the skin secretions of certain brightly coloured frogs 

were sufficiently toxic to be used for poison blow darts.3,10 This led to studies being initiated 

at the National Institute of Health, Bethesda, Maryland in 1962 to isolate and identify the 

toxic principles. Seven years later in 1969 the toxic principles of the poison-dart frogs were 

shown to be unique steroidal alkaloids, which were named the batrachotoxins.15 The three 

major alkaloids were batrachotoxin, homobatrachotoxin, and batrachotoxinin-A. They have 

been identified in only five species of Phyllobates, the true poison-dart frogs.3,6,15 Only the 

three Colombian species of the five neotropical species of Phyllobates have high levels of 

batrachotoxins, and all three have been used to poison blow-darts. The two Central American 

species have low levels, and for certain species of P. lugubris there are no detectable levels of 

batrachotoxins. The highest levels occur in P. terribilis, which have 1000 µg of batrachotox-
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ins per frog skin, while the other two true poison-dart frogs P. bicolor and P. aurotaenia have 

100 to 200 µg per frog skin.16 
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In recent years, batrachotoxins and several congeners have been isolated from non-amphibian 

sources. One of the remarkable sources is in the skins and feathers of Papua New Guinea 

birds of the genera Pitohui and Ifrita.17-18 The highest levels occur in the hooded pitohui (P. 

dichrous), where it is estimated that 20 µg of homobatrachotoxin are found in the feathers and 

skin of one bird. The commonly seen congeners include an acetate, crotonates, and a 4’-

hydroxypentanoate. Most recently, batrachotoxin, homobatrachotoxin, batrachotoxinin-A, and 

congeners, including crotonates were discovered in beetles (Melyridae, Choresine).19 These 

beetles represent a possible dietary source of poison-dart frogs and the toxic passerine birds. 

 

The batrachotoxins represent a unique class of steroidal alkaloids, which contain several 

unprecedented structural features, namely the homomorpholine ring sharing the steroidal C,D-

ring juncture, 2,4-dialkylpyrrole-3-carboxylate moieties, and a 3,9α-hemiketal oxygen bridge. 

There are no related natural products, making the biosynthetic origin very interesting. The 

nature of the ester function at the 20α position is of critical importance to the toxicity20, with 

the unesterified congener batrachotoxinin-A being 500 times less toxic than batrachotoxin. 

Batrachotoxin is extremely toxic (LD50 mouse 0.1 µg) with an estimated lethal dose in 

humans being less than 200 µg. The toxicity is due to the depolarization of nerve and muscle 

membranes by selective stabilization of sodium channels into an open formation, leading to a 

massive influx of sodium ions. This influx of sodium ions causes ultrastructural damage, most 

probably due to changes in osmotic potential. Batrachotoxins have been used extensively in 
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research on voltage-dependant sodium channels.6 The poison dart frogs have been shown to 

have batrachotoxin resistant sodium channels,21-22 allowing them to eat batrachotoxin-

containing beetles without ill effect. No studies have to date been done on the sodium 

channels of the toxic passerine birds, nor have these birds been raised in captivity on alkaloid-

free diets.   

 

1.2.2 Samandarines 
 
Samandarines are the second of the 

two classes of steroidal amphibian 

alkaloids. They were isolated from the 

parotid skin glands of the fire and 

alpine salamanders.23 The majority of 

samandarines are characterized by the 

presence of an oxazolidine ring in the steroidal backbone. Recent evidence suggests that these 

steroidal alkaloids are synthesized by the salamanders from cholesterol.24 Samandarine is a 

highly toxic (LD50 mouse 70 µg) centrally active neurotoxin which causes potent local 

anaesthetic activity.20
 The salamanders are sensitive to their own toxins, and unlike 

dendrobatid frogs, they continue to produce samandarine alkaloids when reared in captivity.20 

 
1.2.3 Histrionicotoxins 
 

Histrionicotoxins are the major alkaloids 

found in a brightly coloured species of 

South American dendrobatid frogs 

(Dendrobates histrionicus) found in 

western Columbia and north-western 

Ecuador.22 These alkaloids are unique to 

the dendrobatid frogs, with only one exception being a mantellid frog.16 A New World 

myrmicine ant is suspected to be the dietary source of histrionicotoxins.25 To date sixteen 

histrionicotoxins have been detected. All of these alkaloids have an azaspiro[5.5]undecanol 

ring system, with alkylidene substituents at the 2- and 7-positions and an axial hydroxyl group 

at the 8-position. In 1971 histrionicotoxin 283A and isodihydrohistrionicotoxin 285A were 

the first alkaloids of this class to have both their structure and absolute configuration 

determined.26 
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Histrionicotoxins have been found in the skins of dendrobatid frogs at levels of up to 200 

µg/frog. These alkaloids have a relatively low toxicity with 1000 µg in mice only causing 

locomotor difficulties and prostration.13,22 However, they would be noxious to a predator, due 

to bitterness and blockage of nicotinic pathways. Histrionicotoxins act in two ways, firstly by 

blocking both the outward movement of potassium ions through potassium-ion channels of 

the surface membrane of muscle and nerve cells.10 Secondly they block the two-way 

exchange of sodium and potassium ions through complexes of ion channels and acetylcholine 

receptors in the “end plate” between a nerve fibre and a muscle cell. Blockage of potassium 

ions promotes muscle contraction in muscle cells, and prolongs the release of 

neurotransmitters by nerve cells. The blockage of the ion-channel/acetylcholine-receptor 

complexes prevents acetylcholine released from nerves from triggering muscle contraction.6a 

Histrionicotoxins have been widely used in the study of noncompetitive blockers of nicotinic 

receptors and channels.16 

 

1.2.4 Pumiliotoxins 

 

Pumiliotoxins are widely distributed in alkaloid containing anurans from the neotropics 

(Dendrobatidae, Dendrobates, Epipedobates, Minyobaes, Phyllobates), semi-temperate South 

America (Bufonidae, Melanophryniscus), Madagascar (Mantellidae, Mantella) and Australia 

(Myobatrachidae, Pseudophryne).16 Recent studies report the presence of certain 

pumiliotoxins in formicine ants (Brachymyrmex and Paratrechina),27 and in certain oribatid 

mites,28 which themselves are prey items for the formicine ants. The first two pumiliotoxins 

307A and 323A were reported in 1967.29 However it was only in 1980 that X-ray 

crystallography of pumiliotoxin 251D, revealed the basic structure of pumiliotoxins and their 

7-hydroxy congeners, the allopumiliotoxins.30 At present over thirty alkaloids are considered 

to be pumiliotoxins.5 This class of alkaloids is characterized by having an indolizidine ring 

system with equatorial methyl and an axial hydroxyl substituents at the 8-position and an 

alkylidene substituent at the 6-position. 
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Pumiliotoxins are relativelty toxic; pumiliotoxin A (LD50 mouse 50 µg) and pumiliotoxin B 

(LD50 mouse 20 µg) are found at levels of up to 200 µg/frog.5 Pumiliotoxins act by causing an 

influx of sodium ions through voltage dependant sodium channels. This in turn elicits 

repetitive firing of neurons, because of the effects on sodium channel function.31 The nature 

of the side chain at the 6-position is vital in determining toxic activity, illustrated by the fact 

that the 15,16-erythro isomer of pumiliotoxin B has much lower toxicity.30 Interestingly frogs 

from the dendrobatid genus Dendrobates have a pumiliotoxin 7-hydroxylase that can 

enantioselectively convert dietary pumiliotoxin into a more toxic allopumiliotoxin (Section 

1.2.5). This is the only known example where a dietary alkaloid is altered metabolically by a 

frog.32 Several subclasses of pumiliotoxins including the 8-deoxypumiliotoxins, 8-

dehydrodes-methylpumiliotoxins and 8-desmethylpumiliotoxins have been identified as well.5 

 

1.2.5 Allopumiliotoxins 

 

Allopumiliotoxins occur widely in alkaloid containing anurans, with about twenty alkaloids 

being considered to be allopumiliotoxins.5 They have the same structural features as the 

pumiliotoxins with an additional equatorial hydroxyl substituent at the 7-position. Major 

allopumiliotoxins can be present at levels of up to 100 µg/frog, and are about 5 times more 

toxic than the pumiliotoxins.25  
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1.2.6 Homopumiliotoxins  

 

Homopumiliotoxins occur in dendrobatid, mantellid and bufonid anurans in levels up to 50 

µg/frog.5 No toxicity or bioactivity data have been reported to date, and no dietary source has 

been identified. Homopumiliotoxins have the same structural arrangement as pumiliotoxins, 

however they contain a quinolizidine skeleton as opposed to an indolizidine skeleton. There 

are seventeen alkaloids identified as being part of this group, however most structures are 

only tentative at this stage. Two subclasses have been identified, 9-desmethylhomopumilio-

toxins and 9-deoxyhomopumiliotoxins.5 
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1.2.7 Decahydroquinolines 

 

Decahydroquinolines are commonly found in neo-

tropical dendrobatid frogs, and a putative myrmicine 

ant dietary source has been identified.25,33-35 The par-

ent alkaloid cis-195A was isolated in 1969 from a 
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small dendrobatid frog (Dendrobates pumilio) and its structure was elucidated using X-ray 

crystallography.36 Decahydroquinolines contain a quinoline ring system with alkyl/alkylidene 

substituents at the 2- and 5-positions. There are about fifty alkaloids considered to be 

members of the 2,5-disubstituted decahydroquinoline class. Some can occur at levels of up to 

50 µg/frog however they have relatively low toxicities. A minimal lethal dose in mice for cis-

195A and 219A is over 250 µg5. Decahydroquinolines act as noncompetitive blockers of 

nicotinic receptors.16 

 

1.2.8 Pyrrolizidines 

 

3,5-Disubstituted pyrrolizidines were first isolated from anuran skin in 

1993 from a bufonid (Melanophrynscus) toad,37 and have since been 

isolated from species of dendrobatid and mantellid frogs.5 Pyrrolizidines 

were however first discovered in nature in myrmicine ants in 1980,38 and 

one of the anuran pyrrolizidines cis-223H was shown to be identical to a 

pyrrolizidine isolated from a thief ant.5 Pyrrolizidines contain a 5,5 fused skeleton with 

unbranched alkyl substituents at the 3- and 5-positions. A number of the alkyl substituents are 

hydroxylated (237R, 239K, 239R, 239Y and 267H), and there are also examples of an ether 

linkage (237G) and a carbonyl functionality (265J)   At present there are twenty-six alkaloids 

assigned to the 3,5-disubstituted pyrrolizidine group.5 Both cis- and trans-isomers of several 

of these alkaloids have been shown to occur, leading to four possible diastereomers, namely, 

endo-endo, exo-exo, exo-endo and endo-exo, of which only endo-endo has not been detected 

in nature. Toxicity and biological activity has to date not been studied. 

 

1.2.9 3,5-Disubstituted Indolizidines 

 

3,5-Disubstituted indolizidines occur randomly in dendrobatid 

(primarily Dendrobates), mantellid (Mantella) and bufonid (Mel-

anophrynisus) anurans.5 These indolizidines have also been 

isolated from myrmicine ants, which are most probably a dietary 

source for the frogs.34 The parent structure for this class 223AB, 

was isolated in 1978 and its structure was postulated.13 The 

structure was later proved in 1981, by comparison of GC and GC-MS data with that of four 
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synthetic diastereomers.39 These alkaloids have the characteristic bicyclic indolizidine ske-

leton with alkyl/alkenyl substituents at the 3- and 5-positions. The alkyl/alkylidene 

substituents are often hydroxylated. There are nearly thirty alkaloids including stereoisomers 

assigned to this class, however there is almost no data on toxicity. Indolizidine 239CD has a 

minimum lethal dose for mice of 200µg, acting as a noncompetitive blocker of nicotinic 

receptors.16 

 

1.2.10 5,8-Disubstituted Indolizidines 

 

The structures of the first 5,8-disubstituted indolizidines 205A and 235B’’ were described in 

1987 based on data from NMR spectroscopic analysis.40 These indolizidines occur in a wide 

range of dendrobatid and mantellid (Mantella) frogs. They are rare in bufonid 

(Melanophryniscus) toads. At present these alkaloids represent the largest group of amphibian 

alkaloids with about eighty compounds, including stereoisomers.5 Structures range from those 

that are rigorously defined to those which can only be considered tentative. The absolute 

configuration has been determined for six of these alkaloids (203A, 205A, 207A, 223J, 

235B’, 237D),41-43 but the presence of both enantiomers in nature is possible.  

 

5 N
98

R

R'

R = (CH2)2CH3 R' = -CH2OH 197C
R = (CH2)2CH3 R' =(CH2)2CH3 209I

R = (CH2)2CH3 R' = (CH2)3CH3 223V

R = (CH2)2CH3 R' = C4H5 219J

R = (CH2)3C≡CH R' = CH3 205A

R = (CH2)3C=CCH2CH3 R' =CH3 235B''H

5,8-disubstituted indolizidine  
 

Many of the 5,8-disubstituted indolizidines have a methyl group at the 8-position, but there 

are also numerous examples of straight chain alkyl substituents up to four carbons in length. 

A few of these indolizidines have a hydroxylated alkyl chain at the 8-position (197C, 239C, 

263K, 267E), and there is one example of a dihydroxylated alkyl chain 281O.5 The 

substituents at the 5-position are far more varied with numerous straight chain alkyl 

substituents ranging from two to seven carbons and unsaturated chains containing both alkene 

and alkyne functionalities ranging from three to eight carbons. Many of the alkyl substituents 

are hydroxylated, there are two examples where a carbonyl functionality is present (251U, 

267E) and there is even a hydroxylated alkylidene chain 251B.5 The mass spectra of 5,8-
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disubstituted indolizidines are dominated by a base peak due to the loss of the α-substituent at 

the 5-position.5 For all the 5,8-disubstituted indolizidines with a methyl substituent at the 8-

position the base peak occurs at m/z 138. A subsequent retro Diels-Alder elimination of the 

m/z 138 fragment yields a diagnostic ion at m/z 96 for all 5,8-disubstituted indolizidines. The 

relative configuration of hydrogens at C-5 and C-9 are assigned by vapour-phase FTIR 

spectroscopic data.5 A strong, sharp Bohlmann band at about 2789 cm-1 indicates a 5,9Z 

configuration of the attached hydrogens, which is the observed relative configuration for most 

of the 5,8-disubstituted indolizidines. A weak Bohlmann band at 2810 cm-1 indicates a 5,9E 

geometry which has in fact only been confirmed for alkaloid 259B isolated from a bufonid 

toad. The orientation of the substituent at the 8-position has been shown to be equatorial for 

certain 5,9Z-indolizidines based on data from NMR spectroscopy and synthesis of these 

alkaloids. The methyl substituent at the 8-position for 5,9E-259B could be equatorial or 

axial.37 

 

Indolizidines 205A, 207A, 209B, 235B, 235B’, 209I, 223J and 223V have been prepared 

synthetically. A review of all the syntheses of these 5,8-disubstituted indolizidines is 

presented in Section 1.3, outlining the various synthetic approaches and how these syntheses 

have helped in structural elucidation. 

 

Although most indolizidines occur as minor or trace alkaloids, 235B’’, can be found at levels 

up to 100 µg per frog. A dietary source has to date not been identified, however alkaloids 

205A and 235B’’ were present in leaf litter arthropods, most of which contained ants. Ants 

and mites therefore are at this point the most probable dietary sources of these 5,8-

disubstituted indolizidines.45 Interestingly a 5-(3-furyl)-8-methylindolizidine has been 

reported as a trace alkaloid in extracts from the scent gland of beavers.46 

 

Toxicity data for 5,8-disubstituted indolizidines has not been reported. Biological activity 

studies show that these alkaloids are atypical but potent noncompetitive blockers of sodium 

ion influx through nicotinic receptor channels both in muscle and in ganglia. These alkaloids 

are atypical noncompetitive blockers as their potencies are reduced rather than enhanced in 

the presence of the agonist carbamoylcholine.47 Synthetic 235B’ has been reported to be a 

very potent and selective blocker of the α4β2 neuronal nicotinic receptor. Alkaloid 205A 

greatly enhances the binding of tritiated perhydrohistrionicotoxin (a blocking agent), to a 
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noncompetitive blocker site on the nicotinic receptor channel of electric ray electroplax.48 A 

minor change in the degree of unsaturation in the side-chain greatly affects reactivity. Potency 

is greatly reduced when a methyl group at the 8-position is replaced by a hydroxymethyl 

group.47 

 

1.2.11 6,7-Dehydro-5,8-Disubstituted Indolizidines 

 

The 6,7-dehydro-5,8-disubstituted indolizidines are a relatively new class of indolizidine 

alkaloids. These alkaloids occur commonly as minor alkaloids in dendrobatid, mantellid, and 

bufonid anurans. No dietary source has been identified, although it is thought that ants are a 

likely possibility. 6,7-Dehydro-5,8-disubstituted indolizidines differ from 5,8-disubstituted 

indolizidines as it is proposed that there is a double bond at the 6-position. This was shown to 

be the case for alkaloids 245F and 245H where catalytic hydrogenation yielded a perhydro 

derivative that had the same mass spectra as the expected 5,8-disubstituted indolizidines.5 The 

substituents are unbranched alkyl and alkylidene in nature, and are commonly hydroxylated or 

contain a carbonyl functionality. Most of the indolizidines in this class exhibit a moderate, 

sharp Bohlmann band at 2787 cm-1 indicating a 5,9Z geometry of the attached hydrogen 

atoms.5 

 

5 N
98

H

6,7-Dehydro-5,8-disubstituted indolizidine

5 N
98

H

6,7-Dehydro-5,8-disubstituted indolizidine

245F 245H  
 

 

There are about thirty alkaloids assigned to the 6,7-dehydro-5,8-disubstituted indolizidine 

class, however no toxicity or biological activity data have been reported. The large number of 

alkaloids in this class indicates that there may also be similar 6,7-dehydro-5,6,8-trisubstituted 

indolizidines and 2,3-dehydro-1,4-disubstituted quinolizidines.5 
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1.2.12 5,6,8-Trisubstituted Indolizidines 

 

5,6,8-Trisubstituted indolizidines are 

another relatively new class of 

amphibian alkaloids, with the 

structure of the parent member of 

this class 223A only being identified 

in 1997.48 5,6,8-Trisubstituted indo-

lizidines are common in dendrobatid 

frogs, where levels can reach 50 µg/frog in the case of 223A and 231B. However, most occur 

only in trace amounts. These indolizidines are also found in mantellid (Mantella) frogs, but 

rarely in bufonid (Melanophryniscus) toads.5 Non-amphibian sources have been identified and 

include a myrmicine ant and an oribatid mite.28 

 

Although the 5,6,8-trisubstituted indolizidines are a relatively new class they have rapidly 

grown to become the second largest class of amphibian alkaloids with over seventy alkaloids. 

Substituents as with the previous classes of indolizidines are unbranched alkyl and alkenyl in 

nature with the exception of 249H which is anomalous among izidines in having a branched 

chain. Analysis of Bohlmann bands indicates both 5,9Z and 5,9E configurations. Several of 

the indolizidines assigned to the 5,9Z class have a weak Bohlmann signal at 2811 cm-1 

indicating a 5,9E configuration. The conformation was shown to be the less common cis-ring 

fusion, which has the nitrogen lone pair and the H-9 on the same face. Configuration at C-6 

and C-8 is not certain in almost all cases. Although this is the second largest class of 

amphibian alkaloids most structures are at this stage still tentative. No toxicity or biological 

activity data have been reported for these alkaloids.5 

 

1.2.13 4,6-Disubstituted Quinolizidines 

 

4,6-Disubstituted quinolizidines in particular 195C are found in dendrobatid frogs and 

mantellid frogs. Quinolizidine 195C is a major alkaloid from the myrmicine ant (Diplo-

rhoptrum), therefore an ant dietary source is possible.34 

 

6
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The structure of the first 4,6-disubstituted quinolizidine, 195C, 

was reported in 1999,34 and at present only six alkaloids are 

assigned to this class. Structurally these alkaloids are 

characterized by the bicyclic quinolizidine skeleton, with 

unbranched alkyl/alkenyl substituents at the 4- and 6-positions. 

The relative configuration of 195C is 6Z, 10E,34 configurations of the other 4,6-disubstituted 

quinolizidines are unknown. To date no toxicity or biological activity has been reported. 

 

1.2.14 1,4-Disubstituted Quinolizidines 

 

The structure of the parent 1,4-disubstituted quinolizidine alkaloid 217A was reported in 

1996, from material isolated from a mantellid frog (Mantella baroni).49 1,4-Disubstituted 

quinolizidines 217A, 231A and 233A occur commonly in mantellid frogs at levels up to 50 

µg/frog. Most others occur as trace alkaloids in both mantellid 

frogs and dendrobatid frogs but none have been reported from 

bufonid toads. Recently a 1,4-disubstituted quinolizidine was 

tentatively identified from an oribatid mite, pointing towards a 

possible dietary source28. 

 

Structures are mostly tentative, based only on mass spectra and in some cases FTIR data. The 

absolute configurations of 207I, 217A and 233A are known.50-52 The substituents at the 1- and 

4- positions are alkyl or alkenyl in nature with a few examples being hydroxylated. The 

predominant relative configuration is 1,4-trans based on FTIR spectral data,50 with alkaloid 

207I being the only example shown to have 1,4-cis configuration.34,50 A Bohlmann band at 

2790 cm-1 indicates a 4,10Z geometry. There are just over twenty alkaloids assigned to this 

class. No toxicity data has been reported, although a synthetic C-1 epimer of 207I and a 

synthetic (+)-207I are noncompetitive blockers of nicotinic receptors.5 

 

1.2.15 Lehmizidines 

 

The parent structure of izidine 275A was established in 2001 including relative 

configuration.53 They were originally detected only in one population of a Columbian 

dendrobatid frog (Dendrobates lehmanni) after which the class was named.53 Since then trace 
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amounts have been identified in other dendrobatid frogs. No dietary source has been identi-

fied. 

 

The lehmizidines have a pyrrolo[1,2-a]azepine skeleton with 

alkyl/alkenyl substituents at the 3-position and a methyl at the 

5-position. Several of these alkaloids are shown to contain a 

carbonyl moiety in the alkyl/alkenyl chain.  Lehmizidines can 

also be ring hydroxylated on the seven membered ring, but 

positions of the hydroxyl groups are unknown. The absolute configuration is unknown for all 

lehmizidines, but the relative configuration of the hydrogens at C-5 and C-10 of 275A is 

5Z,10E relative to the hydrogen at C-3.53 Other Lehmizidines are postulated to have the same 

relative configuration. There are nine alkaloids in this izidine class, and all structures except 

for 275A are tentative. No toxicity or biological activity data has been reported.5 

 

1.2.16 Epiquinamide 

 

Epiquinamide is an unprecedented quinolizidine reported in 2003 as a trace 

alkaloid in extracts from an Ecuadorian dendrobatid frog (Epipedobates 

tricolor).54 The structure was determined by analysis of mass spectra, FTIR 

spectra and NMR spectroscopic analysis. Epiquinamide is the only member of 

its class and has only been detected in Epipedobates tricolor. No dietary 

source has been identified.54 

 

1.2.17 Pyrrolidines 

 

Pyrrolidine 197B was first identified in 1986 is a major 

alkaloid found in skin extracts of one population of a 

Columbian dendrobatid frog (Dendrobates histrionicus).55 2,5-

Disubstituted pyrrolidines have been known since 1976, when 

they were identified as constituents of myrmicine ant venoms.56. 

 

Pyrrolidines have unbranched alkyl substituents at the 2- and 5-positions. The trans-isomer is 

more commonly observed. To date nine 2,5-disubstituted pyrrolidines have been identified 
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from amphibian sources, occurring rarely in dendrobatid and mantellid frogs as trace alkaloids 

with the exception of 197B5. The occurrence of 197B as a major alkaloid is surprising, since 

pyrrolidines were accumulated poorly when fed to a dendrobatid frog.11 Toxicity of 2,5-

disubstituted pyrrolidines has not been reported, but they are noncompetitive blockers of 

nicotinic receptors11.  

 

1.2.18 Piperidines 

 

2,6-Disubstituted piperidines occur rarely 

in dendrobatid and mantellid frogs as 

trace alkaloids. Myrmicine ants are a 

probable dietary source as 2,6-

disubstituted piperdine alkaloids were 

first identified in 1971 in the venom of certain of these ants.34 The first example of an 

amphibian 2,6-disubstituted piperidine 225B was reported in 1986.55 At that time however the 

structure of 241D, a major alkaloid from the skin extracts of a montane Panamanian 

dendrobatid frog (Dendrobates speciosus), had been determined. The structure was only 

reported in 1988.57 

 

Piperidines have alkyl substituents at the 1- and 6-positions. There is commonly an α-methyl 

substituent at the 1-position. The alkyl chain in the 6-position is often hydroxylated or 

contains a carbonyl moiety. Alkaloid 211J is N-methylated. The relative configuration of the 

substituents can be cis or trans.58 2,6-Disubstituted piperidine 253J is quite toxic to mice and 

has an antifungal activity. Piperidines are noncompetitive blockers of nicotinic receptors.16 

 

A subclass of these piperidines is the 4-hydroxy-2,6-disubstituted piperidines.57 There is also 

mass spectral evidence of certain piperidines that are disubstituted with only the smaller 

substituent in a readily lost α-position.5 
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1.2.19 Gephyrotoxins 

 

The gephyrotoxins occur relatively rarely as minor alkaloids in 

dendrobatid frogs, and only in skin extracts containing 19-carbon 

histrionicotoxins as major alkaloids. It is likely that the dietary source is 

ants.16 The structure of the tricyclic gephyrotoxin 287C isolated from a 

Columbian dendrobatid frog (Dendrobates histrionicus) was determined 

in 1977 based on X-ray crystallography.59 The absolute configuration is 

known, however there is some doubt as to whether it is the major 

enantiomer found in the frogs skin. 

 

Gephyrotoxins have a tricyclic pyrrolo[1,2-a]quinoline skeleton. There is a CH2CH2OH 

substituent α  to nitrogen at the 1-position and there is an alkylidene substituent at the 6- 

position. Gephyrotoxin 287C has a low toxicity in mice (LD50 >>500 µg). It is also a 

noncompetitive blocker of nicotinic receptors.16 

  

1.2.20 Coccinelline-like Tricyclics 

 

Coccinelline alkaloids were originally found in coccinellid beetles, and have been known 

since 1971.60 In 1992 precoccinelline 193C was reported as a minor alkaloid in a Panamanian 

dendrobatid frog (Dendrobates auratus).61 Since then a second beetle alkaloid propyleine 

191B was identified from a Peruvian dendrobatid frog (Epipedobates silverstonei) and species 

of Dendrobates pumilio.5 
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Coccinelline-like tricyclic alkaloid 205B containing a decahydro-1H-pyrrolo[2,1,5-de]quino-

lizidine skeleton, and 261C and 263G containing a decahydropyrrolo[2,1,5-cd]indolizine ske-

leton have also been identified.62 To date five alkaloids have been unambiguously assigned to 

this class, however approximately sixty alkaloids have been tentatively assigned as being 

tricyclic and no doubt many will in future be shown to be members of the coccinelline-like 

tricyclic class. 

 

The coccinelline-like tricyclics occur in dendrobatid, mantellid and bufonid anurans, but 

always as trace alkaloids.5 In addition to one of the dietary sources probably being coccinellid 

beetles, precoccinelline 193C was recently identified from an oribatid mite.28 Toxicity of this 

class of alkaloids has not been identified. The synthetic enantiomer of 205B is a potent and 

selective blocker of α-7 nicotinic receptors.48 

 

1.2.21 Cyclopentaquinolizidines 

 

The cyclopentaquinolizidine parent alkaloid 

251F was detected in the 1970s in skin extracts 

from a small Columbian dendrobatid frog 

(Minyobates bombetes),63 however the 

structure was undetermined until 1992 when 

detailed NMR spectroscopy led to the elucidation of its structure.64 The structure has since 

been confirmed by synthesis.65-66 A number of congeners have been isolated and to date there 

are ten alkaloids assigned to this class5. As the name implies these alkaloids have a 

cyclopenta[b]quinolizidine skeleton. They characteristically have three methyl substituents at 

the 3-, 7- and 10-positions. These alkaloids are disubstituted with a CH2OH group at the 2-

position, and mono-substituted at the 4-position. Substituents are either short chained alkyl 

fragments (1-2 carbons), or hydrogen. The alkyl substituents are commonly hydroxylated and 

there is one example of an aldehyde functionality in 249B. Two examples 245A and 247A are 

dehydro analogues with double bonds at the 2- and 6-positions.5  

 

Cyclopentaquinolizidines have only rarely been detected in dendrobatid frogs, with the tiny 

montane frog Minyobates bombetes being the only species where it occurs as a major 

alkaloid. Toxicity and biological activity has not been investigated.5 
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1.2.22 Spiropyrrolizidines 

 

Spiropyrrolizidines occur rarely in dendrobatid frogs 

and only as minor or trace alkaloids. Three tricyclic 

alkaloids isolated from skin extracts of a Panamanian 

dendrobatid frog (Dendrobates pumilio), were 

incorrectly assigned as being tricyclic amides in 

1987.40 In 1992 NMR spectroscopic analysis 

established that these three alkaloids have a 

spiropyrrolizidine oxime structure and they were 

designated 222, 236 and 252A.67 Certain members in particular 236 have been isolated from 

skin extracts from mantellid and bufonid anurans.5 Alkaloid 252B has been identified as a 

trace alkaloid in a myobatrachid frog.68 A siphonotid millipede (Rhinotus) source of 236 was 

reported as recently as 2003.69 No toxicity data have been reported. (±)-O-Methyloxime 236 

and (±)-nitropolyzonamine 238 are potent noncompetitive blockers of nicotinic receptors.16 

 

1.2.23 Pseudophrynamines 

 

Pseudophrynamines were first detected in 

myobatrachid (Pseudophryne) frogs in 1976.70 

Ten years later the major pseudophrynamines 

were isolated from the skin extracts of an 

Australian myobatrachid frog (Pseudophryne 

coriacea), and the structures of 258 and 286A 

were determined by NMR spectroscopic 

experiments.71 Pseudophrynamines are unique to myobatrachid frogs of the genus 

Pseudophryne, and are found together with the pumiliotoxins.72 To date more than a dozen 

pseudophrynamines have been identified from myobatrachid frogs, but some of the structures 

are still tentative, particularly the alkaloids with molecular weights over 500.5 Structurally 

these alkaloids have a pyrrolo[2,3-b]indole skeleton, and are often classed as indolic 

alkaloids. An alkenyl substituent is found at the 3a-position, with a terminal hydroxyl, 

aldehyde or carboxylic ester moiety. The pyrrolo nitrogen is always methylated, however 

there is only one example 272A where the indole nitrogen is methylated.5 The aromatic ring is 
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often substituted with methoxy or hydroxyl groups and there are two examples, 300 and 330, 

which contain a pyrrolo[2,3-b]indol-5(1H)-one skeleton.5 Pseudophrynamines are unique 

among amphibian skin alkaloids as they do not come from a dietary source, but instead are 

biosynthesized by the frogs.72 Although toxicity has not been reported, synthetic (±)-

pseudophrynaminol (258) is a potent noncompetitive blocker of nicotinic receptors.16 

 

1.2.24 Pyridines 

A potent analgesic alkaloid isolated from skin extracts of an Ecuadoran dendrobatid frog 

(Epipedobates tricolor) in the late 1970s elicited responses in mice that were similar to the 

effect of morphine alkaloids but approximately 200 times more potent.13 The structure of the 

alkaloid responsible for this analgesic effect was finally reported in 1992 on the basis of NMR 

spectroscopic data and was shown to be 208/210.73 NMR spectroscopic analysis was 

preformed on the N-acetyl derivative.73 Three derivatives 

have been identified to date and are known as the 

epibatidines. The pyridinic alkaloids have a 6-chloro-3-

pyridinyl skeleton, and an azabicyclo[2.2.1]-heptane group 

is found at the 3-position and can be N-substituted. A 

structurally related alkaloid phantasmidine 222/224B has 

been isolated from an Ecuadoran dendrobatid frog (Epi-

pedobates tricolor).54 

 

Epibatidine alkaloids have been detected only in South American frogs of the genus 

Epipedobates. A dietary source is presumably a food chain of plant to arthropod to frog. 

Epibatidines are highly toxic with an LD50 of about 0.4 µg per mouse and are potent 

analgesics about 200 fold greater than morphine. The toxicity and analgesic activity of these 

alkaloids are due to their ability to activate nicotinic receptors.74  

 

1.2.25 Tentative and unclassified alkaloids 

 

There are about 150 alkaloids that have not been classified into any of the 24 structural 

classes of amphibian skin alkaloids, of interest are the other izidines. 
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Other Izidines 

 

A number of alkaloids detected in the extracts of anuran skins 

have mass spectra and empirical formulas which suggest that 

they are further bicyclic izidines. Classes include 5-

monosubstituted indolizidines, although two of the three 

alkaloids originally thought to belong to this class were shown to 

be 3,5-disubstituted pyrrolizidines when prepared synthetically.16,75 5-Monosubstituted 

indolizidine 195A is the only alkaloid identified from amphibian sources that is now part of 

this class.5 Several appear to be dehydroizidines, with both the indolizidine and quinolizidine 

skeletons being observed. There are di-, tri-, and tetrasubstituted izidines as well as ring 

hydroxylated izidines. Unfortunately, all these alkaloids are only found in trace amounts in 

dendrobatid frogs, and as a result most of the proposed structures are hypothetical based on 

analogies, mass spectra and occasionally vapor-phase FTIR spectral data. No toxicity or 

biological activity studies have been reported. Interestingly Dendrobates auratus when fed on 

leaf-litter arthropods was shown to contain dehydroizidine 219H as a minor alkaloid.25 
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1.3 Reported syntheses of 5,8-disubstituted indolizidines 

 

 To date there have been several reported syntheses of 5,8-disubstituted indolizidines. The 

majority of groups focus on a primary disconnection between either C-3 and N or C-5 and N 

as illustrated in Scheme 1.1 below, thereby affording access to the bicyclic skeleton via a 

piperidine or pyrrolidine intermediate. Reports of alternative approaches are few, and the 

approach adopted by our own research group (the “Wits approach”) revolves around the 

utilization of enaminone chemistry allowing us a unique approach to the synthesis of these 

alkaloids, with a primary disconnection being between C-7 and C-8 (Chapter 2, Sections 2.2-

2.5) as illustrated below in Scheme 1.1. 
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Scheme 1.1: Disconnection approaches utilized in the synthesis of 5,8-disubstituted indo-

lizidines 
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Presented below is an overview of the previously reported syntheses of 5,8-disubstituted 

indolizidines, presented in chronological order as far as possible, to highlight the progression 

of the syntheses over the years. 

 

1.3.1 Holmes and co-workers76,77 

 

Holmes et al. reported the first formal synthesis of 5,8-disubstituted indolizidine alkaloids in 

1988 in a communication published in the Journal of the American Chemical Society.76 This 

was followed by a full paper in the Journal of Organic Chemistry in 1991,77 detailing the 

stereoselective synthesis of (±)-indolizidines, 205A [1] and 207A [2], as well as the 

enantioselective synthesis of (−)-indolizidine 209B [3]. Their synthetic approach involved 

building the piperidine ring first, followed by the construction of the pyrrolidine ring, with the 

key step involving an intramolecular dipolar cycloaddition of the (Z)-N-alkenylnitrone [4] 

which gave the isoxazolidine [5] as the only isolated product (Scheme 1.2). The stereocontrol 

observed in the cycloaddition arises from the preference for a chair-like folding in which the 

substituent α to nitrogen adopts a pseudo-equatorial orientation. The stereoselective synthesis 

of (±±±±)-205A [1] and (±±±±)-207A [2] proceeded in 15 and 16 steps respectfully, with an overall 

yield of 18% for both alkaloids. 

 

The synthesis of (±±±±)-205A [1] and (±±±±)-207A [2] began with an Eschenmoser fragmentation of 

an α,β-epoxy ketone [6] allowing access to the acetylenic side chain. Acetylenic ketone [7] 

was treated with hydroxylamine to give oxime [8]. A sodium cyanoborohydride reduction 

afforded the unstable (±)-N-alkenylhydroxylamine [9] which was condensed with 4-

acetoxybutanal to give (Z)-nitrone [4]. The intramolecular dipolar cycloaddition gave the 

isoxazolidine [5]. Hydrolysis of the acetate under alkaline conditions, mesylation 

accompanied by spontaneous cyclisation and reductive N-O bond cleavage yielded the 5,8-

disubstituted indolizidine [10]. Conversion into (±±±±)-205A [1] and (±±±±)-207A [2] required 

epimerization at the C-8 position and deoxygenation, this was achieved by oxidation to the 

aldehyde, base-catalyzed epimerization to the equatorial aldehyde, and reduction to the 

epimeric alcohol [11]. Mesylation and displacement with Super-Hydride gave (±±±±)-205A [1], 

subsequent reduction of [1] under hydrogen atmosphere with Lindlar catalyst afforded (±±±±)-

207A [2]. 
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Scheme 1.2: (i) CH2=CHCH2CH2MgBr, 96%; (ii) H2O2, NaOH (cat), 98%; (iii) H2NNHTs, 

69%; (iv) NH2OH.HCl, 92%; (v) NaCNBH3; (vi) 4-acetoxybutanal; (vii) PhCH3, ∆, 63%, (3 

steps); (viii) K2CO3 (cat), MeOH, 95%; (ix) MsCl; (x) Zn, HOAc, 99%, (2 steps); (xi) 

(COCl)2, DMSO; (xii) K2CO3 (cat), MeOH; (xiii) NaBH4, 57%, (3 steps); (xiv) MsCl; (xv) 

LiEt3BH, 90%, (2 steps); (xvi) H2, Lindlar catalyst,  EtOAc, 100% 

 

An asymmetric synthesis of (−−−−)-209B [3] was achieved by using an enantiomerically pure N-

alkylhydroxylamine precursor [12] synthesized in 53% overall yield from (S)-5-(hydroxyl-

methyl)-2-pyrrolidone [13] by a chain extension sequence (Scheme 1.3)77. Application of the 
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previously described intramolecular nitrone methodology afforded enantiomerically pure (−−−−)-

209B [3] in a 5-9% yield in 22 steps. 

 

N
H

O
(i)-(iii)

C5H11

NH2

(viii)
C5H11

NHCbz
(ix)-(x)

C5H11

N

OMe

(xi)

C5H11

N

OMe

O

(xii)
C5H11

NHOH (xiii)-(xxii)

(−−−−)-209B

12

13

N

H
Me

C5H11

NHCbz
H

O

(vi)-(vii)

C5H11

NHCbz
OMe

O

OH

O

(iv)-(v)OH

3

 
 

Scheme 1.3: (i) TsCl, 92%; (ii) n-Bu2CuLi, 88%; (iii) 2M HCl, ∆, 100%; (iv) CbzCl, 89%; (v) 

HCl, MeOH, 100%; (vi) DIBAL, 99%; (vii) (COCl)2, DMSO, 86%; (viii) Ph3P=CH2, 91%; 

(ix) 4,4’-di-tert-butylbiphenyl, Li, 95%; (x) p-MeO-C6H4-CHO, 100%; (xi) mCPBA, 88%; 

(xii) NH2OH.TsOH, NaOH,  (xiii)-(xxiii) Scheme 1.2 (steps vi-xvi), 9-17%, (12 steps) 

 

In 1991 Collins and co-workers reported a synthesis of indolizidines (±)-235B [14] and (±)-

235B’ [15]78 expanding on the Holmes methodology,76,77 once again using the intramolecular 

thermal cycloaddition of the (Z)-N-alkenylnitrones. The synthesis involved the preparation of 

oximes [16] and [17] (Scheme 1.4) after which the Holmes approach allowed access to [14] 

and [15].  
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Scheme 1.4: (i)H2NNMe2, 67%; (ii) n-BuLi, Br(CH2)4CH=CH2; (iii) NH2OH.HCl, NaOAc, 

69% (2 steps); (iv) HOCH2CH2OH, pyridinium toluene-p-sulfonate, 75%; (v) n-BuLi, 

TMEDA; (vi) EtI, 67% (2 steps);(vii) NH2OH.HCl, 95% 

 

1.3.2 Polniaszek and Belmont79,80 

 

Polniaszek and Belmont were the second group to report a synthesis of 5,8-disubstituted 

indolizidine alkaloids, publishing a full paper in the Journal of Organic Chemistry in 199180 

detailing the synthesis of indolizidines (−)-205A [1] and (−)-235B [14]. Their synthesis 

involved the preparation of a common late-stage intermediate, α-aminonitrile [18] which 

could be readily converted into (−)-205A [1] and (−)-235B [14] (Scheme 1.5). 

  

The synthesis of (−)-[1] and (−)-[14] began with the thermal condensation of (S)-(−)-α-

phenethylamine (−)-[19] and succinic anhydride. Reduction of the resulting succinimide [20] 

with lithium triethylborohydride produced hydroxy lactam [21] as a 95:5 mixture of 

diastereomers. Tosylation and treatment with crotylmagnesium chloride produced a mixture 

of two crotyl lactams [22] and [23] in a 70:30 ratio. The mixture was hydroborated, separated 

and then oxidized under Swern conditions to give aldehyde (−)-[24]. Wittig olefination 

afforded enol ether [25] as an inseparable mixture of Z and E isomers. Stirring in anhydrous 

methanol in the presence of camphorsulfonic acid yielded the dimethyl acetal [26]. The 
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lactam (−)-[26] was reduced to the corresponding pyrrolidine and the chiral directing group 

was removed under hydrogenolysis to give amino acetal (−)-[27]. 
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Scheme 1.5: (i) Succinic anhydride; (ii) THF-n-Bu2O, CDI, 87% (2 steps); (iii) LiEt3BH, 

95%; (iv) p-MePhSO2H, 99%; (v) crotylmagnesium chloride, 99%; (vi) a) (Sia)2BH b) 

chromatography, 52%; (vii) (COCl)2, DMSO, 93%; (viii) (methoxymethylidene)triphenyl-

phosphorane, 90%; (ix) CSA, MeOH, 99%; (x) LiAlH4, 89%; (xi) H2, 10% Pd/C, 90%; (xii) 

KCN, 99%; (xiii) HC�C(CH2)3MgBr, 74%; (xiv) KF, 83%; (xv) a) LDA, b) HC�C(CH2)3Cl, 

64%; (xvi) KF, 89%; (xvii) NaBH4, 95% 
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Hydrolysis of (−)-[27] in the presence of potassium cyanide afforded the key intermediate, the 

α-aminonitrile (−)-[18]. Bruylants’ reaction of [1-(trimethylsilyl)pent-1-yn-5-yl]magnesium 

chloride with α-aminonitrile (−)-[18] followed by the removal of the trimethylsilyl group with 

aqueous potassium fluoride afforded the 5S,8R,8aS configurational isomer of (−)-205A [1]. 

Alternatively alkylation of α-aminonitrile (−)-[18], with 5-(trimethylsilyl)pent-4-yn-1-yl 

chloride and subsequent desilylation yielded α-aminonitrile (−)-[28]. Reduction of the 

iminium ion derived from (−)-[28] afforded the 5R,8R,8aS configurational isomer of 205A 

(−)-[1]. In a similar manner starting from α-aminonitrile (−)-[18] both conformational isomers 

of 235B (−)-[14] could be obtained by using the appropriate Grignard reagent or haloalkyl 

compound. 

 

1.3.3 Comins and Zeller81 

 

Comins and Zeller reported the synthesis of (±)-indolizidine 209B [3], utilizing an N-

acyldihydropyridone [29] (Scheme 1.6).  
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Scheme 1.6: (i) ClMgO(CH2)3MgCl [31]; (ii) BzOCOCl; (iii) H3O+ 70% (3 steps); (iv) NCS, 

PPh3, 85%; (v) NaHMDS, MeI, 90%; (vi) BF3.OEt2, CuBr, CH3(CH2)4MgBr, 82%; (vii) H2, 

Pd/C, Li2CO3, 87%; (viii) H2, Pt/C, 85%; (ix) N,N’-TCDI, DMAP, 77%; (x) Bu3SnH, AIBN, 

42% 
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The synthesis began with the preparation of dihydropyridone [29] from 4-methoxypyridine 

[30], Grignard reagent [31] and benzyl chloroformate. Conversion of [29] into the desired 

diastereomer [32] was achieved in two steps. Subsequent copper-mediated 1,4-addition of n-

pentyl magnesium bromide gave the cis-piperidone [33]. Hydrogenative removal of the 

benzyl carbamate and cyclisation was achieved by treating initially with palladium on carbon 

for the protecting group removal, and later with platinum on carbon for the cyclisation 

affording alcohol [34]. The alcohol was converted into the thiocarbonyl derivative and 

deoxygenated with tributylstannane and azobisisobutylonitrile to give (±±±±)-209B [3] in seven 

steps in a 10.5% yield from 4-methoxypyridine [30]. 

 

1.3.4 Gnecco and co-workers82 

 

Gnecco et al. reported a short six-step synthesis of indolizidine (+)-209B [3] in 1991. The 

synthesis involved the preparation of the indolizidine from 3-picoline via a 1,4-

dihydropyridine intermediate [35] (Scheme 1.7). Gnecco and co-workers, like Holmes,76-77 

Collins78 and Comins,81 decided to prepare the piperidine ring first, however they were the 

first group to report a synthesis with an initial disconnection between the C-3 and C-4 carbons 

of the indolizidine skeleton. 
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Scheme 1.7: (i) (R)-(−)-phenylglycinol, 80-85%; (ii) Na2S2O4, K2CO3; (iii) filtration over 

alumina, 65% (2 steps); (iv) CH3(CH2)4MgBr, 75%; (v) [40], 35%; (vi) H2, H+, 80% 
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Treatment of 3-picoline with 1-chloro-2,4-dinitrobenzene afforded Zincke’s salt [36]. 

Subsequent refluxing with (R)-(−)-phenylglycinol gave salt [37]. Refluxing a two phase 

mixture of diethyl ether and aqueous [37] with sodium sulfate and potassium carbonate 

yielded the 1,4-dihydropyridine intermediate [35], which isomerized to oxazolidines [38] and 

[39] in a 9:1 ratio. Subsequent treatment with n-pentylmagnesium bromide followed by 

treatment with Grignard reagent [40] afforded a mixture of three new oxazolidines. The major 

isomer [41] was isolated by flash column chromatography, and hydrogenation in acidic media 

furnished (+)-209B [3] in an overall yield of 8-10%.  

 

1.3.5 Kibayashi and Shishido83,84 

 

Kibayashi and Shishido reported a synthesis of indolizidines 205A [1], 207A [2], 209B [3] 

and 235B [14] in 1992. The synthesis was similar in key aspects to those of Holmes76-77 and 

Collins,78 focusing on the preparation of a bicyclic oxazinolactam [42] which could be 

utilized as a common chiral intermediate. Their approach to the oxazinolactam [42] was 

however unique, involving an asymmetric intramolecular Diels-Alder reaction of the chiral N-

acylnitroso compound [43] (Scheme 1.8). 

 

(R)-Citronellol [44] was used to prepare (R)-4-methyl-5-hexanoic acid by known methods,85 

which was then converted into hydroxamic acid [45] in six steps. Oxidation of [45] by 

treatment with tetrapropylammonium periodate generated the N-acylnitroso compound [43] 
which underwent a spontaneous intramolecular [4+2] cycloaddition, yielding a 1.8:1.0 

mixture of trans and cis bicyclic oxazinolactams [42] and [46] respectively. The desired 

product [42] was reduced by catalytic hydrogenation, yielding the desired dihydro product 

[47]. The alkylidene chain at position 8 in the target molecules was introduced at this stage by 

addition of an appropriate Grignard reagent, giving compounds [48], [49] and [50]. The 

indolizidine skeleton was then accessed by reductive cleavage of the N-O bond, followed by 

an intramolecular cyclodehydration upon treatment with triphenylphosphine, carbon tetra 

bromide and triethylamine to give indolizidines 207A [2] and [51]. Reduction of 207A [2] 

under hydrogenation conditions gave indolizidine 209B [3], and removal of the trimethylsilyl 

group from [51] afforded indolizidine 205A [1], which was shown to be identical to the 

natural sample.  
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Scheme 1.8: (i) ref. 85; (ii) CH2N2, 88%; (iii) O3, Me2S, 76%; (iv) (a) Ph3P=CH-CH=CH2 

(b) hv, I2, THF, 41%; (v) KOH, EtOH/H2O, 92%; (vi) (a) (COCl)2, (b) NH2OH, 85%; (vii) n-

Pr4NIO4, CHCl3, 0°C, 88% (50% [42]); (viii) H2, Pd/C, 96%; (ix) (a) RMgBr, THF, (b) 

NaBH4, AcOH, 71% [48], 70% [49], 65% [50]; (x) Zn, AcOH, THF/H2O; (xi) PPh3, CBr4, 

NEt3, 73% [2] (2 steps), 73% [51] (2 steps); (xii) H2, Pd/C, 93%; (xiii) KOH, MeOH, 77%; 

(xiv) (a) CH2CH(CH2)3MgBr, THF, (b) NaBH4, AcOH, 71%;  (xiv) H2, Pd/BaSO4, quinoline; 

(xv) Zn, AcOH, THF/H2O 87% (2 steps); (xvi) PPh3, CBr4, NEt3, 70% 
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Accessing indolizidine 235B [14] required the reduction of compound [50] under a hydrogen 

atmosphere in the presence of palladium and barium sulfate and quinoline, affording [52]. 

Following this reductive cleavage and intramolecular cyclodehydration gave 235B [14]. 

 

1.3.6 Bond and co-workers86 

 

Bond and co-workers reported a novel synthesis of indolizidine alkaloid precursors [53] and 

[54] in 1993. The synthesis involved an intramolecular Fridel-Crafts acylation of a pyrrole 

derived from L-glutamic acid [55] (Scheme 1.9). This was the first synthetic example where 

the primary disconnection of the indolizidine skeleton was not made between nitrogen and 

either C-4 or C-5. 

 

The three step synthesis involved the preparation of pyrrole derivatives [56] from L-glutamic 

acid [55] by treatment with 2,5-dimethoxytetrahydrofuran under acidic conditions. Intra-

molecular Friedel-Crafts acylation of [56] proceeded smoothly, giving [57]. Reduction of [57] 

with rhodium on alumina gave the (S)-alcohol precursor [53] predominantly, whereas 

palladium on carbon gave the fully reduced precursor [54]. In a subsequent paper by Bond 

published in 1994 the origins of this chemoselectivity were discussed.87 
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Scheme 1.9: (i) 2,5-dimethoxytetrahydrofuran, sodium acetate, acetic acid, reflux (10 min), 

50%; (ii) dry HCl, MeOH, 20°C (3h), 50%; (iii) H2, catalyst, 55 psi (16-24 h), 100% 
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1.3.7 Aubé and co-workers88 

 

Aubé and co-workers have described a synthesis of (−−−−)-209B [3] from pulegone [58]. The key 

step was the formation of a bicyclic lactam [59] by the intramolecular Schmidt reaction 

(Scheme 1.10). The synthesis as outlined in detail below was eleven steps long and was 

accomplished in an overall yield of 22%. 

 

A Favorskii rearrangement of pulegone [58] followed by esterification and ozonolysis 

afforded cyclopentanone [60], which was easily converted into α,β-unsaturated ester [61] in 

three steps. The double bond and ester group were both reduced under dissolving metal 

conditions, and the resulting alcohol was converted into the azide under Mitsunobu 

conditions. Mild Lewis acid conditions allowed the selective removal of the ketal in the 

presence of the azide affording keto azide [62]. An intramolecular Schmidt reaction led to 

formation of bicyclic lactam [59]. Treatment of [59] with the appropriate Grignard reagent 

followed by sodium borohydride reduction of the resulting imine gave indolizidine (−−−−)-209B 

[3]. 
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Scheme 1.10: (i) (a) Br2, (b) NaOMe, (c) O3, Me2S, 72% (3 steps); (ii) ethylene glycol, H+, 

89%; (iii) LiAlH4, 99%; (iv) (a) PCC, (b) (EtO)2P(O)CH2CO2Et, DBU, LiBr, 82% (2 steps); 

(v) Li, NH3, 94%; (vi) HN3, PPh3, DEAD, 89%; (vii) LiBF4, H2O/CH3CN, 93%; (viii) TFA, 

89-93%; (ix) (a)  C5H11MgBr, (b) NaBH4, 58% (2 steps)  
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1.3.8 Satake and Shimizu89 

 

Satake and Shimizu reported the chiral synthesis of indolizidines (−−−−)-209B [3], (−−−−)-205A [1] 

and (−−−−)-235B [14] in 1993. The approach, like that of Aubé,88 concentrated on the synthesis 

of a bicyclic lactam [59] which was used as a common precursor (Scheme 1.11). 
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Scheme 1.11: (i) Ti(OiPr)4, (−)DET, t-BuOOH, CH2Cl2, 81%; (ii) (ClCO)2, DMSO, CH2Cl2, 

89%; (iii) (EtO)2P(O)CH2CO2Et, NaH, THF, 0°C, 97%; (iv) Pd2(dba)3, CHCl3, n-Bu3P, 

HCO2H, NEt3, dioxane, rt, 94%; (v) TsCl. pyridine, 4-DMAP (cat), CH2Cl2, 68%; (vi) H2 (1 

atm), Pd/C, AcOEt, NEt3, 91%; (vii) NaN3, DMF, 91%; (viii) H2 (1 atm), Pd/C, AcOEt, 91%; 

(ix) (a) MsCl, NEt3, CH2Cl2, (b) NaI, acetone; (x) NaH, THF, 68% (3 steps); (xi) (a) 

HC�CH(CH2)3MgBr, (b) NaBH3CN, MeOH, pH 3, 12%; (xii) n-Bu4NF, 12%; (xiii) 

CH3(CH2)4MgBr, (b) NaBH3CN, MeOH, pH 3, 64%, (xiii) cis-CH3CH2CH=CH(CH2)3MgBr, 

(b) NaBH3CN, MeOH, pH 3, 27% 
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Starting from alcohol [63] the alkenyloxirane [64] was prepared via Sharpless epoxidation, 

Swern oxidation and Emmons-Horner olefination reactions. Hydrogenolysis of [64] to the 

homoallylic alcohol [65] was achieved with high regio- and stereoselectivity using formic 

acid with a palladium catalyst. Tosylation of [65] followed by hydrogenation of the olefin 

gave sulfonyl ester [66]. Azidation of [66], followed by debenzylation, mesylation and 

iodation gave compound [67], which was cyclised to bicyclic lactam [59] by treatment with 

sodium hydride. In the same manner as used by Aubé,88 [59] was then converted into (−−−−)-

209B [3], (−−−−)-205A [1] and (−−−−)-235B [14]. 

 

1.3.9 Momose and Toyooka90 

 

Momose and Toyooka described the asymmetric synthesis of indolizidines 207A [2], 209B 

[3] and 235B’ [15] by a highly stereocontrolled Michael reaction of a 6-substituted-2,3-

didehydropiperidine-2-carboxylate [68] (Scheme 1.12). 
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Scheme 1.12: (i) TBSCl, NEt3, DMAP, 95%; (ii) NaH, DMF:C6H6 (2:1), 50°C, 92%; (iii) 

Me2CuLi, −60°C-rt, 92%; (iv) Super-Hydride, 94%; (v) NaH, DMF:C6H6 (2:1), 93%; (vi) 

Swern oxidation; (vii) NaH, (Et2O)2P(O)CH2CO2Me, 90% (2 steps); (viii) H2, 5% Pd/C, 

MeOH; (ix) Super-Hydride, rt, 91% (2 steps); (x) MOMCl, Hünig’s base, 93%; (xi) TBAF, 

95%; (xii) MsCl, NEt3, 0°C; (xiii) NaI, acetone, 85% (2 steps); (xiv) CH2=CHCH2MgCl, CuI, 

−30°C, 74%; (xv) n-PrSLi, HMPA; (xvi) HCl (conc), MeOH, ∆, 65% (2 steps) 
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Starting from (−)-[69] the 6-substituted-2,3-didehydropiperidine-2-carboxylate (−)-[68] was 

accessed in two steps. The Michael reaction of (−)-[68] with lithium dimethyl cuprate in 

tetrahydrofuran was highly stereoselective giving compound (+)-[70] as the sole product. 

Subsequent reduction of (+)-[70] with Super-Hydride and treatment of the resulting alcohol 

with base afforded oxazolidinone (−)-[71]. The C-2 and C-6 side chains were modified to give 

olefin (−)-[72] in nine steps, and subsequent deprotection gave amino alcohol (−)-[73]. 

Transformation of (−)-[73] into (−)-207A [2] and (−)-209B [3] was previously reported by 

Kibayashi.83-84. Similarly 235B’ [15] was synthesized for the first time using the Kibayashi 

protocol.83-84  

 

1.3.10 Jefford and co-workers91-92 

 

In 1994 Jefford and co-workers reported the preparation of an indolizidine alkaloid precursor 

[53]91, using the same methodology already described by Bond.86-87 This publication was 

followed up with a full paper in 1995 describing how this precursor [53] was converted into 

indolizidine 209B [3]92 (Scheme 1.13). 

 

N
EtO2C OH

N
OH

N

OMe

N

OH

N

Me

53 74 75

763

2 steps

(i)-(iii) (iv)-(v)

(vi)-(vii)

(−−−−)-209B  

 

Scheme 1.13: (i) DIBAL, hexane, −78°C, 87%; (ii) C4H9PPh3
+Br−, KHMDS, THF, 59%; (iii) 

H2, Pt, AcOEt, 92%; (iv) Jones oxidation, 86%; (v) MeOCH2PPh3
+Cl−, KHMDS, THF, 54%; 

(vi) HCl (aq), Et2O, 94%; (vii) NaBH4, EtOH, 75% 
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Starting from precursor [53] whose preparation was previously reported by Bond,86-87 the 

ester was reduced to the equatorial aldehyde followed by Wittig olefination and 

hydrogenation to afford [74]. Oxidation of the alcohol with Jones’ reagent followed by 

treatment with (methoxymethyl)triphenylphosphonium bromide and potassium hexamethyl-

disilazide gave a mixture of (E)- and (Z)-methyl enol ethers [75]. Acid hydrolysis and 

subsequent reduction yielded alcohol [76] which was converted into 209B [3] in two steps as 

originally described by Holmes76-77. Similarly Jefford et al. showed the synthesis of 

indolizidine (−)-209B was possible using the same approach. 

 

1.3.11 Somfai and Åhman93 

 

Somfai and Åhman described a novel enantioselective synthesis of (−)-indolizidine 209B [3]. 

The synthesis revolved around a highly efficient aza-[2,3]-Wittig rearrangement of 

vinylaziridines [77] into tetrahydropyridine [78] (Scheme 1.14).  

 

The synthesis starts from the known epoxy alcohol [79]. Treatment with sodium azide caused 

a nucleophillic ring opening of the epoxide, affording a mixture of azido diols. The alcohols 

were protected by silylation, and when treated with triphenylphosphine in refluxing toluene 

the aziridine was obtained with opposite stereochemistry to that of the epoxide. The nitrogen 

substituent was introduced by reaction with tert-bromoacetate and potassium carbonate and 

18-crown-6 ether in tetrahydrofuran, giving aziridine [80]. Subsequent deprotection of the 

alcohol followed by Swern oxidation and Wittig olefination gave [77]. Treatment of [77] with 

LDA afforded the cis-2,6-disubstituted tetrahydropyridine derivative [78] as a single 

diastereomer. Hydrogenation of [78] followed by reduction with lithium aluminium hydride 

afforded alcohol [81], after which Swern oxidation and Wittig olefination gave the α,β-

unsaturated ester [82]. Hydrogenation afforded [83] and reduction with trimethylaluminium in 

benzene gave lactam [84]. Finally, reduction of [84] with lithium aluminium hydride yielded 

indolizidine (−)-209B [3]. 
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Scheme 1.14: (i) NaN3, NH4Cl, MeOCH2CH2OH/H2O, 89%; (ii) t-BuMe2SiCl, CH2Cl2, NEt3, 

DMAP, 90%; (iii) PPh3, PhCH3, ∆, 90%; (iv) BrCH2CO2
tBu, K2CO3, 18-crown-6, THF, 60%; 

(v) Bu4NF, THF, 81%; (vi) DMSO, (COCl)2, NEt3, CH2Cl2, −78°C; (vii) Ph3PCH2Me, THF, 

80% (2 steps), (viii) LDA, THF, −78°C, 97%; (ix) H2, 5% Pd/C, EtOH, 55%; (x) LiAlH4, 

THF, 0°C-rt, 90%; (xi) DMSO, (COCl)2, NEt3, CH2Cl2, −78°C, then Ph3PCHCO2Et, 75%; 

(xii) H2, 5% Pd/C, 4 kg/cm2, EtOH, 84%; (xiii); Me3Al, C6H6, 88%; (xiv) LiAlH4, THF, ∆, 

70% 

 

1.3.12 Taber and co-workers94 

 

In 1995 Taber et al. reported a synthesis of (−)-indolizidine 207A [2]. The synthesis was the 

first which allowed the direct establishment of both the relative and absolute configuration of 

the alkaloid. The key steps involved an azide cycloaddition followed by a retro-Mitsunobu 

cyclisation to [85] (Scheme 1.15). 
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The synthesis started from geraniol [86]. Sharpless epoxidation and subsequent reduction 

gave 2-hydroxycitronellol [87]. Tosylation and treatment with allylmagnesium chloride 

afforded product [88]. The alcohol was converted into azide [89] with inversion of 

configuration by mesylation followed by reaction with sodium azide. Subsequent epoxidation, 

ozonolysis and treatment with hydrogen perchlorate yielded the triol [90].  
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Scheme 1.15: (i) L-(+)-diethyl tartrate, (CH3)3COOH, Ti(OiPr)4, CH2Cl2, −20ºC (ii) 

NaBH3CN, BF3.OEt2, 72% (2 steps); (iii) TsCl, (iv) CH2=CHCH2MgCl, 87% (2 steps), (v) 

MsCl, (vi) NaN3, HMPA, 57% (2 steps); (vii) mCPBA; (viii) O3, NaBH4; (ix) HClO4/H2O, 

90% (3 steps); (x) NaIO4; (xi) Ph3P+(CH2)3CH=CH2 Br−, BuLi, 57% (2 steps); (xii) DIBAL, 

160°C, 63%; (xiii) PPh3, CCl4/CH3CN, 71% 
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Treatment with sodium periodate in dichloromethane gave an unstable solution of the 

aldehyde, which immediately underwent Wittig olefination, giving azide [91]. Thermolysis of 

azide [91] proceeded by a dipolar azide cycloaddition and subsequent fragmentation to give 

the cyclic imine. A selective reduction with DIBAL gave trisubstituted piperidine [85]. 

Cyclisation with triphenylphosphine/carbon tetrachloride afforded indolizidine (−)-207A [2]. 

 

1.3.13 Comins and co-workers95 

 

In 1997 Comins et al. reported that chiral N-acyl-2,3-dihydro-4-pyridones are excellent 

synthetic building blocks for the preparation of indolizidines, and they showed the synthesis 

of (−)-205A [1], (−)-207A [2] and (−)-235B [14] from common intermediate [92] (Scheme 

1.16).  

 

The synthesis was both regio- and stereoselective starting from chiral 1-acylpyridinium salt 

[93]. Treatment with the appropriate Grignard reagent gave the diastereomerically pure 

dihydropyridone [94], which when exposed to osmium tetroxide afforded the corresponding 

aldehyde that was then reduced to the alcohol [95] with L-selectride. Removal of the chiral 

auxiliary and protodesilylation gave amino alcohol [96]. Selective N-acylation with benzyl 

chloroformate, followed by conversion of the alcohol into the chloride by treatment with 

triphenylphosphine and N-chlorosuccinimide gave [97]. Enolate formation using lithium 

hexamethyldisilazide and reaction with methyl iodide gave the trans-2,3-dihydro-4-pyridine 

[32] exclusively. Michael reaction of [32] gave (2S,3S,6R)-piperidone [98]. Regiospecific 

enolate formation by deprotonation with lithium hexamethyldisilazide and the addition of N-

(2-pyridyl)triflimide afforded vinyl triflate [99]. Catalytic hydrogenation of the vinyl triflate 

using 5% platinum on carbon and 20% palladium hydroxide on carbon, followed by heating 

with sodium carbonate yielded alcohol [100]. Dess-Martin oxidation gave precursor [92] and 

a subsequent Seyferth-Gilbert reaction gave (−)-205A [1]. Wittig olefination of [92] allowed 

access to (−)-207A [2] and (−)-235B [14]. 
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Scheme 1.16: (i) CH=CH(CH2)2MgBr; then H3O+, 91%; (ii) OsO4 cat., NaIO4; (iii) L-Selec-

tride, 81% (2 steps); (iv) NaOMe, MeOH, 10% HCl, 89%; (v) n-BuLi, BnOCOCl, 79%; (vi) 

PPh3, NCS, CH2Cl2, 94%; (vii) LHMDS, MeI, 96%; (viii) BnO(CH2)4MgBr, CuBr.SMe2, 

BF3.OEt2, THF, −78°C, 89%; (ix) LHMDS, 2-[N,N-bis(trifluoromethylsulfonyl)amino]pyridi-

ne, 87%; (x) (a) H2, Pt/C, EtOH; (b) H2, Pd(OH)2/C; (c) Na2CO3, 82%; (xi) Dess-Martin ox-

idation, 97%; (xii) (MeO)2P(O)CHN2, 41%; (xiii) PPh3P=CH2, 70%; (xiv) Ph3P=CHCH2 

CH3, 86%. 
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1.3.14 Toyooka et al.96 

 

In 1997 Toyooka et al. reported the synthesis of indolizidine 223J [101], building on the 

protocol they had reported three years earlier.90 Once again the synthesis involved the 

preparation of a didehydropiperidinecarboxylate [68] (Scheme 1.17). 
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Scheme 1.17: (i) (n-Butyl)2CuLi, Et2O, 94%; (ii) Super-Hydride, THF, 0°C, 95%; (iii) Swern 

oxidation; (iv) NaH, (EtO)2P(O)CH2CO2Me, 81% (2 steps); (v) H2, 5% Rh-C, EtOAc, 4 atm; 

(vi) Super-Hydride, THF, 0°C, 86% (2 steps); (vii) MOMCl, Hünig base, 86%; (viii) TBAF, 

89%; (ix) Swern oxidation; (x) CH3P+Ph3 Br−, n-BuLi, THF, 64% (2 steps); (xi) H2, 5% 

Pd(OH)2; (xii) n-PrSLi, HMPA; (xiii) conc. HCl, MeOH, ∆; (xiv) PPh3, CBr4, NEt3, 43% (4 

steps) 

 

Starting from the 6-substituted-2,3-didehydropiperidine-2-carboxylate [68], the stereoselec-

tive Michael reaction with (n-butyl)2CuLi in diethyl ether afforded piperidine [102]. Selective 

reduction using Super-Hydride, followed by Swern oxidation and Wittig reaction gave olefin 

[103]. Reduction of the double bond and the ester followed by methoxy methyl protection of 

the resulting alcohol gave piperidine [104]. Desilylation of [104] using tetrabutylammonium 

fluoride, followed by Swern oxidation and Wittig olefination yielded [105]. As in their 

previous paper [105] was converted into indolizidine (−)-223J [101] using the Kibayashi 

protocol.83-84  
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1.3.15 Lhommet et al.97 

A highly diastereoselective synthesis of indolizidine (−)-209B [3] was described by Lhommet 

et al. in 1998. The key step was the diastereoselective alkylation of a chiral cyclic β-amino 

ester [106] (Scheme 1.18). The (S,S) cyclic β-amino ester [106] was prepared in five steps 

from (R)-α-methylbenzylamine.98 Replacement of the chiral auxiliary with an alternative 

protecting group gave [107] which was necessary to afford the transformation of the ester 

group into the aldehyde [108] using diisobutylaluminium hydride. Wittig olefination allowed 

the introduction of the pentyl substituent. Hydrogenation of the alkene, nitrogen deprotection, 

cyclization and diastereoselective reduction of the imine intermediate was achieved in one 

step by treatment with hydrogen in the presence of platinum oxide, yielding (−)-209B [3]. 

N
CO2Et

Ph

N
CO2Et

H
N

CHO

Cbz
N
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(i)-(iii) (iv) (v)-(vii)
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(−−−−)-209B  

Scheme 1.18: (i) LDA, THF −70°C; (ii) CH3I, −70°C; (iii) H2, 10%Pd/C, EtOH, 93% (3 

steps); (iv) ClCO2CH2Ph, K2CO3, CHCl3, 74%; (iv) DIBAL, PhCH3, −78°C, 71%; (v) (a) 

PPh3=CHCOC5H11, C4H9I, −78°C-0°C, (b) PhCH3, 80°C, 90%; (vii) H2, PtO2, MeOH, 50°C, 

56% 

1.3.16 Back and Nakajima99 

Back and Nakajima reported a synthesis of indolizidines (−)-209B [3] and (−)-207A [2] in 

2000. The synthesis was the first approach to disconnect the indolizidine skeleton between C-

6 and C-7, and made use of acetylenic sulfones to access the bicyclic skeleton (Scheme 1.19). 

Starting from chloroamine [109], treatment with an appropriate acetylenic sulfone gave [110], 

or [111], and subsequent reaction with lithium diisopropylamide in tetrahydrofuran allowed 

cyclisation to the bicyclic skeletons [112] and [113] respectively. Reduction of [112] with 

sodium cyanoborohydride, followed by desulfonylation with sodium in liquid ammonia gave 

(−)-209B [3]. Debenzylation of [113] and treatment with thionyl chloride gave hydrochloride 

salt [114], with the subsequent addition of cuprate [115] yielding the desired indolizidine (−)-

207A [2]. 
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Scheme 1.19: (i) C5H11C≡CTs, CH2Cl2, rt; (ii) LDA, THF, 74% (2 steps); (iii) NaCNBH3; (iv) 

Na-NH3, 66% (2 steps)  (v) BnO(CH2)2C≡CTs, CH2Cl2, rt; (vi) LDA, THF, 82% (2 steps); 

(vii) NaCHBH3, TFA-CH2Cl2; (viii) Na-NH3, (ix) H2, Pd/C, 66% (3 steps); (x) SOCl2, HCl, 

74%; (xi) KOH; (xii) [CH=CHCH2]2Cu(CN)Li2 [115], 60% (2 steps) 

1.3.17 Michael and Gravestock100 

 In 2000 Michael and Gravestock published the synthesis of racemic indolizidine 209B [3] 

and its (5R*,8S*,8aS*)-(±) diastereomer, as well as the enantioselective synthesis of (−) 209B 

[3] utilizing the Wits approach towards alkaloid synthesis. The synthesis is dealt with in detail 

in Chapter 2. 

1.3.18 Rassat and Michel50 

Rassat and Michel reported one of the first syntheses not to be restricted to the 8-methyl 

analogues, when they synthesized 209B [3], 209I [116] and 223J [101] (Scheme 1.20), the 

latter two having an 8-n-propyl substituent. 

Starting from the 9-azabicyclo[3.3.1]nonane derivative [117], Swern oxidation and Wittig 

olefination afforded [118]. Reduction of the double bond under hydrogenation conditions 

caused a simultaneous debenzylation. The amine was then protected by carbobenzyloxylation 

to give [119] which was converted into the silyl enol ethers [120] in three steps. 
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Scheme 1.20: (i) Swern oxidation, 93%; (ii) (Ph3PCH2R)Br, t-BuOK, THF, 92% (R=H), 98% 

(R=CH3); (iii) H2, 10% Pd/C (wet), MeOH; (iv) CbzCl, K2CO3, acetone, 95% (R=H) (2 

steps); (v) 40% HF, CH3CN, 97% (R=H), 82% (R=CH3) (3 steps); (vi) Swern oxidation, 86% 

(R=H), 81% (R=CH3); (vii) KH, THF, TBDMSCl, 93% (R=H), 88% (R=CH3); (viii) (a) O3, 

MeOH, CH2Cl2, (b) NaBH4, (c) CH2N2, 71% (R=H), 71% (R=CH3); (ix) Swern oxidation, 

80% (R=H), 81% (R=CH3); (x) (Ph3PCH2OCH3)Cl, t-BuOK, THF, 51% (R=H); (xi) p-TsOH, 

acetone, 58% (R=H); (xii) H2, 10% Pd/C, MeOH/H2O 47% (R=H), 13% (R=CH3) (3 steps); 

(xiii) Super-Hydride, THF 0°C, 76% (R=H), 45% (R=CH3); (xiv) Swern oxidation; (xv) 

(PPh3(CH2)3CH3)Br, t-BuOK, THF,  41% (2 steps) or (PPh3(CH2)2R)Br, t-BuOK, THF, 64% 

(R=H) (2 steps), 45% (R=CH3) (2 steps); (xvi) H2, 10% Pd/C, MeOH, 66% (±)-209B [3], 

64% (±)-209I [116], 78% (±)-223J [101]  
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Swern oxidation followed by ozonlysis of [120] opened the bicycle[3.3.1]nonane skeleton, 

and gave the piperidines [121] and [122] in three steps. Wittig olefination allowed a chain 

extension, followed by treatment with p-toluene sulfonic acid gave the piperidine-substituted 

priopionaldehydes [123] and [124]. Deprotection of the amine by hydrogenation and 

subsequent treatment with Super-Hydride yielded the bicyclic alcohols [125] and [126]. 

Swern oxidation, followed by Wittig olefination and catalytic hydrogenation over palladium 

on carbon afforded indolizidines 209B [3], 209I [116] and 223J [101]. 

1.3.19 Murahashi et al.101   

Murahashi reported the synthesis of indolizidines 205A [1] and 235B [14] in an article 

detailing the preparation of chiral β-amino acids (Scheme 1.21). The key steps involved the 

reaction of N-acyl iminium ions with both boron and titanium(IV) enolates.  
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Scheme 1.21: (i) 56%; (ii) (a) Zn, HCl, (b) BzCl, K2CO3, 88%; (iii) NaBH4, 88%; (iv) CBr4, 

PPh3, 96%; (v) NaCH(CO2Et)2, 86%; (vi) NaCl, H2O, 79%; (vii) (a) DIBAL, (b), MeOH, H+, 

64%; (viii) H2, Pd/C, 86%; (ix) KCN, HCl, 98% 
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The �-amino acid [127] (96% de) was prepared by the reaction of the chiral titanium(IV) 

enolate [128] with an N-acyloxyiminium ion which was derived from nitrone [129] and chiral 

acyl chloride [130]. Reduction of [127] with zinc/hydrochloric acid, followed by protection of 

the amino group with benzyloxycarbonyl gave [131] as a single diastereomer. Reductive 

cleavage of the chiral auxiliary with sodium borohydride, followed by bromination of the 

resulting alcohol and treatment with diethyl malonate gave diester [132]. Decarboxylation of 

[132] afforded �-amino acid ester (−)-[133], which was reduced to the corresponding 

aldehyde upon treatment with diisobutylaluminium hydride (DIBAL). Acetal formation with 

methanol then gave [134]. Deprotection of [134] under catalytic hydrogenation conditions 

gave [135]. Subsequent treatment with potassium cyanide/hydrochloric acid as reported by 

Polniaszek79-80 gave (−)-[18] in a 93:7 ratio along with its epimer at the C-5 position. The α-

amino nitrile can be converted into 205A [1] and 235B [14] as previously reported by 

Polniaszek.79-80 

1.3.20 Enders and Thiebes102 

In 2000 Enders and Thiebes reported the first enantioselective synthesis of indolizidines (−)-

209I [116] and (−)-223J [101] via a common late-stage intermediate amino nitrile [136] 

(Scheme 1.22). The synthesis revolved around a diastereoselective 1,2-addition of an 

organocerium reagent to α-substituted aldehyde RAMP hydrazone (R,R)-[137]. The synthesis 

started from RAMP-hydrazone (R)-[138]. Treatment with lithium diisopropylamide and 2-(2-

iodoethyl)-1,3-dioxolane allowed alkylation, giving hydrazone (R,R)-[137] (90% d.e.). Both 

epimers were then subjected to 1,2-addition by an organocerium reagent prepared from [139], 

yielding [140] as a 95:5 mixture of (R,R,S) and (R,S,S) isomers respectively. Reductive N,N-

bond cleavage followed by protection of the resulting amine with benzyl chloroformate gave 

[141]. Desilylation of [141] and subsequent treatment with mesyl chloride and potassium tert-

butoxide afforded the ring closed product (R,S)-[142]. Deprotection under catalytic 

hydrogenation conditions gave pyrrolidino acetal (R,S)-[143] which was hydrolysed under 

acidic conditions in the presence of potassium cyanide to give amino nitrile [136]. Treatment 

of [136] with lithium diisopropylamide and alkylation with n-propyl or n-butyl bromide gave 

the (5S,8R,8aS) isomers of indolizidines 209I [116] and 223J [101]. The corresponding 

epimers were obtained via Bruylants reaction using n-propylmagnesium bromide and n-

butylmagnesium bromide. 
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Scheme 1.22: (i) LDA, 0 °C, 16 h, then, 2-(2-iodoethyl)-1,3-dioxolane, −100 °C, 81%; (ii) 

[139], CeCl3, THF, −100°C, 82%; (iii) BH3.THF, THF, ∆; (iv) ClCO2Bn, K2CO3, CH2Cl2, 

0°C, 86% (2 steps); (v) TBAF, THF, rt, 100%; (vi) CH3SO2Cl, NEt3, CH2Cl2, 0°C; (vii) t-

BuOK, THF, 0°C-rt, 83% (2 steps); (viii) H2, 1 bar, Pd(OH)2/C, MeOH, rt, 99%; (ix); 10% 

HCl(aq), CH2Cl2, rt, then KCN, pH=3, 92%; (x) RMgBr, THF, 0°C-rt, 91% (R=n-Pr), 87% 

(R=n-Bu); (xi) LDA, THF, 0°C, then RBr 0°C-rt; (xii) excess NaBH4, EtOH, rt, 88% (R=n-

Pr), 89% (R=n-Bu) (2 steps) 
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1.3.21 Liebeskind et al.103 

Liebeskind et al. reported a total synthesis of (−)-indolizidine 209B [3] in 2001. The synthesis 

is particularly interesting as it makes use of enantiopure (η3-dihydropyridinyl)molybdenum 

complexes as chiral scaffolds, and allows the preparation of both all cis-2,3,6- and 2,6-cis-3-

trans-trisubstituted piperidines, which are used as precursors in the synthesis of 209B [3] 

(Scheme 1.23).  
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Scheme 1.23: (i) (a) t-BuOK, (b) Ac2O, 84%; (ii) (a) MeMgBr, (b) NaOH(aq), 79%; (iii) 

CbzCl, 86%; (iv) NaBH4, CeCl3, 100%; (v) (a) Lipase AK, CH2=CHOAc, PhCH3, rt, (b) 

Ac2O, NEt3, DMAP, 82%; (vi) (a) Mo(DMF)3(CO)3, (b) KTp, 88%; (vii) (a) Ph3CPF6, (b) 

NEt3, 88%; (viii) (a) Br2, (b) NaOMe, 95%; (ix) (a) Ph3CPF6, (b) BnO(CH2)3MgBr; (x) (a) 

HBF4, (b) n-CH3(CH2)4MgBr, 67% (2 steps); (xi) (a) NOPF6, (b) NaCNBH3, 59%; (xii) H2, 

Pd/C, 87%; (xiii) (a) PPh3, CBr4, (b) NEt3, 63% 
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Allylic alcohol [144] was prepared in six steps from [145]. Enzymatic kinetic resolution of the 

racemic allylic alcohol [144] gave enantiopure allylic acetate [146]. Oxidative addition of 

Mo(DMF)3(CO)3 to [146] gave the corresponding η3-dihydropyridinyl complex (+)-[147]. 

Abstraction of the hydride from (+)-[147] with Ph3CPF6 followed by deprotonation with 

triethylamine afforded the (η3-pyridinyl)molybdenum complex [148]. Subsequent treatment 

with bromine and sodium methoxide gave the (dimethoxydihydropyridinyl)molybdenum 

complex [149]. A stepwise substituition of the methoxy groups yielded the 2,3,6-trisubstituted 

pyridinyl molybdenum complex [150]. Reductive demetalation with NOPF6 and sodium 

cyanoborohydride afforded [151]. Finally debenzylation and ring closure by treatment with 

triphenylphosphine and carbon tetrabromide yielded (−)-indolizidine 209B [3]. 

1.3.22 Ma, Pu and Wang104 

Ma et al. reported a synthesis of (−)-indolizidine 209B [3] in 2002 from an enantiopure β-

amino ester [152] using an approach sharing a number of similarities to our previously 

published Wits approach.100 Interestingly, they chose to disconnect the bicyclic skeleton at the 

C3-C4 position (Scheme 1.24).  

Starting from (E)-methyl octenoate [153], the β-amino ester [152] was generated. Subsequent 

debenzylation and reduction of the ester using lithium aluminium hydride afforded amino-

alcohol [154]. Condensation of [154] with β-keto ester [155] gave vinylogous urethane [156]. 

Ring closure was achieved by treatment of [156] with carbon tetrabromide and 

triphenylphosphine yielding [157]. Hydrogenation in the presence of Raney nickel and 

debenzylation gave 2,3,6-trisubstituted piperidine [158]. Finally treatment of [158] with 

triphenylphosphine and carbon tetrabromide yielded 5,8-indolizidine [159], which is easily 

converted into indolizidine 209B [3] as shown by Michael and Gravestock.100 
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Scheme 1.24: (i) [243], n-BuLi, THF, −78 °C, 90%; (ii) (a) H2, Pd/C, (b) LiAlH4, THF, 91%; 

(iii) [155], 70%; (iv) (a) PPh3, CBr4, CH3CN, 0°C-rt, (b) NEt3, ∆, 71%; (v) H2, Raney Ni, 

80%; (vi) H2, PtO2, 85%; (vii) PPh3, CBr4, CH3CN, 67% 

1.3.23 Sato et al.105 

 
Sato et al. described the preparation of (−)-209B [3] utilizing the asymmetric addition of an 

optically active allenyltitanium to benzyl[4-(tert-butyldimethylsilyloxy)butylidene]amine 

[160] as the key reaction (Scheme 1.25). The synthesis started from an optically active 

secondary propargyl phosphate [160], which was used to prepare the allenyltitanium [161] 

with 97.8% e.e. by treatment with Ti(O-i-Pr)4 and 2 iso-propyl magnesium chloride. The 

resulting allenyltitanium [161] was reacted with [162] to give the desired anti-product [163] 

and its diastereomers syn-[163] in a 9:1 ratio.  
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Scheme 1.25: (i) (a) Ti(O-i-Pr)4, 2 i-PrMgCl, (b) PhCH2N=CH(CH2)3OTBS [162], 87%; (ii) 

TBAF, THF, 89%; (iii) PPh3, imidazole, CCl4, ∆, 91%; (iv) (a) n-BuLi, -78°C, (b) N-methoxy-

N-methylhexanamide, -78°C-0°C; (v) H2, 10% Pd/C, MeOH, 56% (2 steps) 

 

Desilylation of [163] with tetrabutylammonium fluoride, followed by cyclisation with 

triphenylphosphine, imidazole and carbon tetrachloride yielded pyrrolidine [164]. Subsequent 

treatment of [164] with n-butyllithium and N-methoxy-N-methylhexanamide afforded the 

unstable ynone [165], which was subjected to hydrogenation over Pd/C in methanol to give 

(−)-209B [3] in 40% overall yield 

 

 1.3.24 Davis and Yang106 

 

In 2003 Davis and Yang described a route for the preparation of chiral building blocks which 

could be used for the preparation of piperidines. They illustrated the utility of the 

methodology by the preparation of (−)-209B [3] (Scheme 1.26).  
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Scheme 1.26: (i) n-hexanal, Ti(OEt)4, 79%;(ii) C2H5C(O)CH2K, −78°C, 85%; (iii) (a) TsOH, 

HO(CH2)3OH, 78°C, (b) 2.6 N KOH, 87%; (iv) BnOCH2CH=CHCH=O, MgSO4; (v) TsOH, 

75°C, 61% (2 steps); (vi) (a) H2, Pd/C, (b) H2, Pd(OH)2/C, (c) PPh3, CBr4, NEt3, 74%; (vii) 

HS(CH2)2SH, BF3.OEt2, 92%; (viii) Raney nickel, EtOH, 75% 
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Starting from commercially available (R)-(−)-p-toluenesulfinamide [166] treatment with n-

hexanal and Ti(OEt)4 gave sulfinimine [167], which was subsequently converted into β-amino 

ketone (R,R)-(−)-[168] by treatment with the potassium enolate of 2-butanone. A two step 

deprotection-protection sequence gave (R)-[169], and subsequent stirring with anhydrous 

magnesium sulfate and (E)-4-benzyloxy-but-2-enal gave crude imine [170]. Heating of [170] 

with toluene sulfonic acid gave the Mannich product (−)-[171], alkene reduction, 

debenzylation and cyclisation was achieved in three steps to give (−)-[172]. Conversion of 

(−)-[172] to the corresponding thioketal (−)-[173] was achieved by treatment with 

ethanedithiol and boron trifluoride, subsequent Raney nickel desulfurization gave desired 

indolizidine (−)-209B [3]. 

 

1.3.25 Toyooka and Nemoto43 

 

In their third paper published in 2005 Toyooka and Nemoto published an enantioselective 

synthesis of two 8-epimers of 223V [174] (Scheme 1.27). Starting from the meso-diol [175] a 

lipase mediated transesterification afforded the mono-propanoate [176], which was then 

converted into the olefin [177] by treatment with 3,4-dihydro-2H-pyran-2-methanol and 

pyridinium toluene-p-sulfonate followed by reaction with potassium carbonate in methanol. 

Olefin [177] underwent Sharpless asymmetric dihydroxylation, thereafter protection of the 

primary alcohol and substitution of the secondary alcohol afforded azide [178]. Selective 

deprotection of the THP protected alcohol, Swern oxidation and Wittig olefination gave 

unsaturated ester [179]. Hydrogenation of [179] yielded the 5,6-cis- and trans-piperidones. 

The desired 5,6-cis piperidone [180], after conversion into the methyl urethane and treatment 

with Comins’ triflating reagent afforded the enoltriflate [181]. Stille coupling of [181] using 

allyltributyltin, and stereoselective reduction gave [182]. Subsequent conversion of the 

methyl-urethane to the Boc-urethane, Swern oxidation and Wittig olefination allowed the 

elongation of the chain at the 2-position to give [183]. Hydrogenation of [183], hydrolysis of 

the resulting ester, Boc removal and lactam formation using Shioiri’s reagent afforded [184]. 

Reduction of the lactam [184] with lithium aluminium hydride gave the desired product [174]. 

 



Chapter 1         A Review of Alkaloids from Amphibian Sources, and 
Reported Syntheses of 5,8-Disubstituted Indolizidines Alkaloids 

          

 56 

HO OH O OHEt

O

OTHP

OTHP
TBDPSO

N3

TBDPSO
N3

CO2EtN
H

O
TBDPSO

N OTf
HO

CO2Me
N

HO

CO2Me
N
CO2Me

EtO2C

N

O

N

175 176 177

178179180

181 182 183

184174

(i) (ii)-(iv)

(v)-(vi)

(vii)(viii)

(ix)-(x)

(xi) (xii)-(xiii)

(xiv)

(xv)

223V  
 

Scheme 1.27: (i) Lipase from Pseudomonas cepacia (Amano PS), vinyl propanoate, MeCN, 

90%; (ii) (a) MsCl, pyridine, CH2Cl2, 99% (b) NaI, acetone, 94%; (iii) LiAlH4, THF, 69%; 

(iv) (a) DHP, PPTS, CH2Cl,, (b) K2CO3, MeOH, (c) Swern oxidation; (d) CH3P+Ph3I−, n-

BuLi, THF, 80% (4 steps); (v) (DHQD)2Pyr, K2OsO4, K3Fe(CN)6, K2CO3, H2O/t-BuOH, 0°C, 

84%; (vi) (a) TBDPSCl, NEt3, DMAP, CH2Cl2, 99%, (b) MsCl, NEt3, CH2Cl2, 0°C, (c) NaN3, 

DMF, 80°C, 73% (2 steps); (vii) (a) PPTS, EtOH, 60°C, (b) Swern oxidation, (c) 

(EtO)2P(O)CH2CO2Et, NaH, THF, 88% (3 steps); (viii) H2, 4 atm, 10% Pd/C, EtOAc, 56%; 

(ix) n-BuLi, ClCO2Me, THF, −78°C-0°C, 98%; (x) LiHMDS, 2-[N,N-bis(trifluoromethylsul-

fonyl)amino]-5-chloropyridine, THF, −78°C-40°C,96%; (xi) LiCl, allyltributyltin, Pd(PPh3)4, 

THF, rt, 92%; (xii) TFA, NaBH3CN, CH2Cl2, −45°C, 65%; (xii) (a) 2M KOH/i-PrOH, 120°C 

sealed tube; (b) Boc2O, NaOH, dioxane-H2O, 70% (2 steps); (xiii) (a) Swern oxidation, (b) 

NaH, (EtO)2P(O)CH2CO2Et, THF, 95% (2 steps); (xiv) (a) H2, 1 atm, 10% Pd/C, EtOAc, (b) 

LiOH, H2O-EtOH, 60°C, (c) TFA, CH2Cl2, rt, (d) DEPC, NEt3, DMF, rt, 91% (4 steps); (xv) 

LiAlH4, THF, ∆, 81% 
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1.3.26 Ma, Zhu and Yu107 

 

Ma, Zhu and Yu have subsequently reported a synthesis of indolizidine (−)-209I [185] in 

which they describe a facile one pot formal [4+2] cycloaddition synthesis of the piperidine 

ring [186]. Using this approach they are able to access substituted piperidines, indolizidines 

and quinolizidines and they report the preparation of indolizidine (−)-209I [185] as a 

representative example (Scheme 1.28). Once again their synthesis shares a number of 

similarities with the “Wits approach”,100 however as in their previous work they continue to 

disconnect at the C3-C4 bond in the target molecule [185].  
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Scheme 1.28: (i) LiAlH4, THF; (ii) SOCl2, CHCl3; (iii) Pd(OH)2/C, H2 (50 atm), 85% (3 

steps); (iv) C2H5COCH�CH(CH2)3OBn, Na2CO3, NaI, i-PrOH, ∆, 64%; (v) PtO2, H2, AcOH, 

82%; (vi) NaOMe, MeOH, ∆, 75%; (vii) Pd(OH)2, H2; (viii) PPh3, I2, imidazole, 83% (2 

steps); (ix) HS(CH2)2SH, BF3.OEt, 65%, (x) Raney-Ni, i-PrOH, 70°C, 81% 
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Starting from the β-amino ester [187] treatment with lithium aluminium hydride, followed by 

thionyl chloride and debenzylation gave �-chloropropylamine [188]. The [4+2] cycloaddition 

followed and involved the refluxing of a mixture of the �-chloropropylamine [188], 8-

benzyloxy-4-octyn-3-one, sodium carbonate and a catalytic amount of sodium iodide in iso-

propanol. The desired substituted piperidine [189] was obtained. Stereoselective 

hydrogenation of the double bond in [189] using Adams’ catalyst in glacial acetic acid gave 

reduced piperidine [186]. Epimerization at the 3-position by treatment with sodium methoxide 

gave the 3-epimer [190], debenzylation with palladium hydroxide under hydrogenation 

conditions and cyclisation with triphenylphosphine, iodine and imidazole yielded [191]. 

Finally the ketone functionality was removed in two steps by conversion to its 1,2-dithiolane 

[192], followed by treatment with Raney nickel to afford (−) 209I [185] in 11 steps in an 

overall yield of 12.4%. 
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CHAPTER 2 
 

BACKGROUND, AIMS AND SCOPE OF THIS PROJECT 
 

2.1 Introduction 
 
This chapter will initially give an outline of the generalized approach used in the synthesis of 

alkaloids in the laboratories at this University, highlighting the utility and versatility of our 

“Wits approach”. A detailed description of Michael and Gravestock’s synthesis of 

indolizidines 167B [193] and 209B [3] will then be given,100 highlighting how the 

generalized approach is adapted to the synthesis of indolizidine alkaloids. Thereafter the aims 

of this project will be introduced, showing the synthetic targets that we are interested in, why 

we are interested in them and our proposed synthetic approach for these alkaloids. Mention 

will be made to the ways in which we propose to extend the methodology from the work 

previously done in these laboratories, as well as the viability of the approach with reference 

to previous syntheses. 

 

2.2 Enaminones: The “Wits approach” to alkaloid synthesis 

 

The “Wits approach” towards alkaloid synthesis dates back to the early seventies, and is 

based primarily on the utilization of the enaminone structural unit. Alkaloid synthesis using 

the “Wits approach” has been an ongoing topic of interest in our labs and to date fourteen 

Ph.D. theses108, seven M.Sc. dissertations109 and numerous publications100,110 have resulted 

from our investigations. This structural unit most commonly comprises a nitrogen atom 

conjugated through a vinyl fragment to an ester (vinylogous urethane [194]), although in our 

laboratories we have investigated and made extensive used of structural relatives of the 

traditional enaminone, including the vinylogous amides [195], ureas [196], cyanamides [197], 

nitramines [198] and sulphonamides [199] shown in Figure 2.1. An enaminone can therefore 

be visualized as a β-acylated enamine. Our interest in the enaminone manifold, revolves 

around the fact that it displays both ambident nucleophilicity and electrophilicity, in addition 

it has been shown to participate in radical as well as pericyclic reactions.  
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Figure 2.1: Enaminones and their structural relatives used in our laboratories 
 
Alkaloids normally have a five- or six-membered nitrogen containing ring, as a result most of 

the enaminones used in our laboratories comprise either a pyrrolidine or piperidine ring with 

an exocyclic alkylidene fragment at the C-2 position [200]. In almost all cases the nitrogen 

atom is tertiary in nature (Figure 2.2). 
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Figure 2.2: Generalised enaminone structure used in our laboratories 

 

2.3 Access to enaminones 

 

Historically the earliest preparation of an enaminone manifold dates back to 1932, when 

Lukeš performed a Reformatsky reaction between N-methylsuccinimide [201] and ethyl 

bromoacetate (Scheme 2.1) to give vinylogous urethane [202] in a 68% yield111. 
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Scheme 2.1: (i) BrCH2CO2Et, Mg, 68% 
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Since then several methods have been adopted to prepared enaminones,112-120 one of the most 

versatile of which is the Eschenmoser sulphide contraction of thiolactams, originally 

described by Eschenmoser and co-workers in 1970.121-123 

 

In our research group, we initially prepare the desired thiolactams [203] by either thionating 

lactams made from primary amines [204] and bifunctional reagents, or by a useful conjugate 

addition of secondary thiolactams [205] to acrylate esters, acrylonitrile and similar acceptors 

(Scheme 2.2).108-110 

 

N
R

S

n

R NH2 N
H

S

n

203204 205

(i)-(ii) (iii)

R= alkyl  
 

Scheme 2.2: (i) Cl(CH2)nCOCl; (ii) Base, P2S5 or Lawesson’s reagent; (iii) H2C=CHX 

(X=COR’, CO2R’, CN, SO2R’, etc) 

 

The next step, the Eschenmoser sulfide contraction has become an important part of our 

approach towards alkaloid synthesis, and most enaminones synthesized in our laboratories are 

accessed in this manner.  

 

The sulphide contraction involves the reaction of a tertiary thioamide [203] with an α-

halocarbonyl [206] (or related structure) to give N,N-dialkylthioiminoester salt [207] (Scheme 

2.3). The resulting salt [207] in the presence of a suitable base is deprotonated on the 

methylene group, which in turn reacts intramolecularly at the iminium carbon atom to form a 

thiirane intermediate [208]. In the presence of a suitable thiophile the sulfur is extruded 

affording the desired enaminone [209]. 

 

The tertiary nature of the nitrogen atom is important as it enhances the electrophillic nature of 

the iminium ion, thus only a weak base like triethylamine is necessary to afford the formation 

of the thiirane intermediate at room temperature. However in cases where a secondary 

nitrogen or an electron withdrawing substituent is used harsher conditions are required, and 

sometimes a whole alternative approach is neccessary to access the desired enaminone. 
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Scheme 2.3: (i) BrCH2CO2Et [206], CH3CN; (ii) NEt3, CH3CN; (iii) PPh3, CH3CN 

 

An alternative route that we use to access enaminones is the condensation of 

methylthioiminium salts [210] with relatively acidic components like nitromethane or β-

dicarbonyl compounds109a, 110f (Scheme 2.4). 
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Scheme 2.4: (i) MeI, THF; (ii) K2CO3, DMF, CH2(CO2Et)2, MeNO2 etc 

 

2.4 Reactivity of enaminones and their structural analogues 

 

The ambient nucleophilicity and electrophilicity of enaminones is illustrated in Scheme 2.5 

below, giving an overview of the utility of this structural unit. The enaminone can act as a 

nucleophile through the nitrogen atom [211], however this nucleophilicity can be extended to 

the enamine carbon [212] and the carbonyl group [213] by conjugation. An additional 

nucleophilic site can be generated at the site β to the nitrogen atom [214] by either 



Chapter 2                   Background, Aims and Scope of This Project 

 64 

deprotonation with a strong base, or acid-induced tautomerisation. The enaminone unit can 

also act as an electrophile, undergoing both 1,2- and 1,4-addition reactions [215, 216]. 
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Scheme 2.5: Nucleophilic and electrophilic reaction sites of enaminones 

 

2.4.1 Nucleophilic reactivity of enaminones 

 

The exocyclic enaminone skeletons that we build can make use of nucleophilic properties to 

access more complex bicyclic and tricyclic ring systems. If we take our generalized 

enaminone [200] shown above in Figure 2.2, and incorporate a leaving group X [217] or a 

carbonyl functionality [218], we can create numerous indolizidine and quinolizidine ring 

systems [219, 220] utilizing the nucleophilic nature of the enaminone scaffold (Scheme 2.6). 

Disappointingly we have been unable to produce the corresponding pyrrolizidine ring systems 

using the same approach. 
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Scheme 2.6: Cycloalkylation and cycloacylation illustrating the nucleophilic nature of 

enaminones 

 

An alternative cyclisation approach that we have employed utilizing the same nucleophilic 

sites is a Heck cycloarylation of N-(2-bromoaryl) exocyclic enaminones [221], to access a 

tricyclic skeleton incorporating the pyrrolizidine ring system [222] (Scheme 2.7).108f,109d ,110l 
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Scheme 2.7: Cycloarylation illustrating the nucleophilic nature of enaminones 

 

We can also utilize the reactivity of the site β to nitrogen (Scheme 2.8) to access indole type 

structures [223]. As illustrated by Katz’s synthesis of (±)-∆7-mesembrine,108d,110d,110h which 

was later extended by Zwane.108e,110i  
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Scheme 2.8: Cyclisation illustrating the nucleophilic nature of the site β to nitrogen in 

enaminones; (i) (i-Pr)2NEt, 72%; (ii) CF3CO2H, ultrasound, 71% 

 

2.4.2 Electrophilic reactivity of enaminones 

 

The electrophilic nature of enaminones can also be utilized to afford more complex tricyclic 

skeletons. In Scheme 2.9 a 1,2-addition reaction to a carbonyl allows access to tricyclic 4-

quinolines [224]109a. Similarly the Erythrina alkaloid skeleton [225] is accessed via a 1,4-

addition reaction109f. 
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Scheme 2.9:  1,2- and 1,4-cycloaddition reaction illustrating the electrophillic nature of 

enaminones; (i) PPA, ∆; (ii) P2O5, MeSO3H 
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2.5 Selectivity of enaminones 

 

An important aspect of any generalized synthetic approach is the degree of selectivity that the 

approach allows the researcher. Our “Wits approach” utilizing enaminones lends itself well to 

chemoselectivity in the presence of other functional groups, as well as diastereoselectivity and 

enantioselectivity. 

 

The addition of other functional groups to compounds containing enaminone functionalities 

opens the door to perform chemoselective reactions, even in cases when there are two of the 

same functional group present. An example of this chemoslectivity is illustrated in Scheme 

2.10, where a saturated ester [226] is either hydrolysed or reduced in the presence of the 

vinylogous urethane which remains unscathed100. 
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Scheme 2.10: (i) NaOH, H2O, ∆; (ii) Ac2O, MeCN, rt, 86% (2 steps); (iii) LiAlH4, THF, 91%; 

(iv) CBr4, PPh3, MeCN, ∆, 85% 

 

Diastereoselective transformations can also be employed to obtain desired diastereoisomeric 

products, and in the case of bicyclic systems like the indolizidines and quinolizidines 

(Scheme 2.11) the cis-[227] and or trans-[227] products can be obtained by utilizing the 

appropriate reduction conditions. Furthermore, interconversion between the two 

diastereomers can then afford only the cis-[227] or the trans-[227] products. Sections 2.6.1 

and 2.6.2 highlight some of these transformations, with reference to Gravestocks synthesis of 

indolizidines (±)-209B [3] and (−)-209B [3] 100,108h.  
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Scheme 2.11: (i) NaCNBH3, MeOH, pH 3, (ii) H2(g), PtO2.xH2O, Glacial Acetic Acid,(iii) 

NaOMe, MeOH, ∆ 

 

Enantioselective control is described in detail in Section 2.6.2 where our various approaches 

are discussed in relation to Gravestock’s enantioselective synthesis of indolizidine alkaloid 

(−)-209B [3]100,108h. 

 

2.6 Synthesis of Indolizidines 167B [193] and 209B [3] 

 

2.6.1 Synthesis of Racemic Indolizidine 209B [3] 

 

The “Wits approach” to the synthesis of indolizidine alkaloids involves a unique 

disconnection between the C7-C8 bond, to allow the bicyclic skeleton [228] to be accessed 

via the enaminone moiety [229] as shown in Scheme 2.12. This unconventional approach is 

unique to our laboratories as far as the synthesis of 5,8-disubstituted indolizidines are 

concerned. Gravestock was able to use this approach to synthesise indolizidines (±)-167B 

[193] and (±)-209B [3], after which he was able to complete a formal synthesis of (−)-209B 

(3)100,108h. The following two sections give a detailed description of these syntheses, as they 

form the basis of this thesis. 

The racemic approach started with the conjugate addition of pyrrolidine-2-thione [230] to 

ethyl oct-2-enoate [231], this was achieved by treatment with a catalytic amount of sodium 

hydroxide in tetrahydrofuran at room temperature, yielding the thiolactam (±)-[232] (74%) 
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(Scheme 2.12). The resulting thiolactam (±)-[232] was alkylated with ethyl bromoacetate, 

followed by a Eschenmoser sulfide contraction by treatment with triethylamine and 

triphenylphosphine in acetonitrile to give the desired vinylogous urethane (±)-[233] (85%). A 

chemoselective reduction of the saturated ester group of (±)-[233], by treatment with lithium 

aluminium hydride in tetrahydrofuran at room temperature reduced the desired ester affording 

alcohol (±)-[229] (91%). In order to achieve cyclization it was necessary to convert the 

hydroxy group into a better leaving group. This was achieved by treating with carbon 

tetrabromide and triphenylphosphine in the presence of triethylamine, giving the desired 

indolizidine (±)-[228] (85%). The next step was the diastereoselective reduction of the 

carbon-carbon double bond, by treatment with sodium cyanoborohydride at pH 4, the major 

product was the desired diastereomers (±)-[234] (33%), however there was a significant 

proportion of the isomer (±)-[235] (14%) and a third diastereomer tentatively assigned as (±)-

[236] (13%). A much better diastereoselectivity was achieved when the indolizidine (±)-[228] 

was hydrogenated over platinum dioxide in acetic acid, hydrogen was delivered in a cis 

fashion from the least hindered face to give mainly (±)-[234] (71%) with a small quantity of 

(±)-[235] (6%). The two diastereomers (±)-[234] and (±)-[235] were separately reduced to the 

corresponding alcohols by treatment with lithium aluminium hydride in tetrahydrofuran at 

0°C, resulting in (±)-[237] (92%) and (±)-[238] (100%). The stereochemistry of (±)-[237] was 

confirmed by comparison of spectroscopic data with that of Holmes et al.77-78 and Jefford et 

al.91-92 who had previously synthesized indolizidine 209B [3]. Treatment of (±)-[237] and (±)-

[238] with methanesulfonyl chloride and triethylamine in dichloromethane afforded the 

mesylates (±)-[239] and (±)-[240] (88%). Crude (±)-[239] was demesylated by treatment with 

lithium triethylborohydride to give (±)-209B [3] (40%, 2 steps). Reductive demesylation of 

(±)-[240] with lithium triethylborohydride proved to be erratic, however treatment with Raney 

nickel in boiling ethanol afforded the new diastereomer (±)-[241] (65%). Gravestock was also 

able to synthesis indolizidine (±)-167B [193] using similar methodology.  
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Scheme 2.12: (i) NaOH (cat.), THF, rt, 74%; (ii) BrCH2CO2Et, MeCN, rt; (iii) PPh3, NEt3, 

MeCN, rt, 85% (2 steps); (iv) LiAlH4, THF, 0°C to rt, 91%; (v) (a) CBr4, PPh3, NEt3, MeCN, 

0°C to rt, (b) rt to ∆, 85%; (vi) NaBH3CN, HCl (pH 4), EtOH, rt, (±)-[234] (33%), (±)-[235] 

(14%), (±)-[236] (13%) or H2 (1atm), PtO2, AcOH, rt, (±)-[234] (71%), (±)-[235] (6%), (±)-

[236] (0%); (vii) LiAlH4, THF, 0°C to rt, (±)-[237] (92%), (±)-[238] (100%); (viii) CH3SO2Cl, 

NEt3, CH2Cl2, 0°C, (±)-[239] (88%); (ix) LiEt3BH (1M in THF), THF, 0°C, 40% (2 steps); (x) 

Raney Ni, EtOH, ∆, 65% 
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2.6.2 Enantioselective synthesis of indolizidine (−−−−)-209B [3] 

 

Gravestock’s enantioselective synthesis of indolizidine (−)-209B [3], was significant within 

our laboratories since all of our preceding syntheses of alkaloids were racemic. In order to 

modify the racemic synthesis of (±)-209B [3] to produce a single enantiomer, it was decided 

to introduce the required stereochemistry early on in the synthesis, thereby allowing access to 

the thiolactam [242], which contains the first of the targets three stereogenic centres (Scheme 

2.13). Initially attempts involved the conjugate addition of pyrrolidin-2-thione [230] to an 

octyl-2-enoyl system bearing a chiral auxillary, however under the required kinetic reaction 

conditions diastereomeric ratios were always close to 1:1. The solution came from 

methodology developed by Davies et al.124 where they described the synthesis of 

enantomerically pure β-amino esters. In what has proved to be a fairly general route (R)-(+)-

N-benzyl-N-α-methylbenzylamine [243] undergoes a conjugate addition with various tert-

butyl-(2E)-alk-2-enoates, to  give the desired adducts in excellent yields and high 

diastereoselectivities (>95% de), and with a predictable stereochemical outcome. 

Debenzylation under hydrogenolytic conditions yields the enantiomerically pure β-amino 

esters. 

 

The required starting materials for the synthesis of (−)-209B [3] are (R)-(+)-N-benzyl-N-α-

methylbenzylamine [243] and the enoate substrate tert-butyl-(2E)-oct-2-enoate [244]. The 

success of the Davies method requires that the enoate [244] is free of its geometric isomer, as 

such it is prepared from hexanal [245] and tert-butyldiethoxyphosphorylacetate [246] by a 

Horner-Wadsworth-Emmons Wittig olefination (96%). The anion of chiral amine [243], 

prepared by treatment with n-butyllithium in tetrahydrofuran at −78°C, was added slowly to 

[244] affording the diastereomerically pure amino ester (+)-[247] (76%). Debenzylation of 

(+)-[247], under 7 atm hydrogen with 10% palladium on carbon in acetic acid yielded the 

pure β-amino ester (−)-[248], which was subsequently converted to chloroamide (+)-[249] by 

treatment with 4-chlorobutryl chloride and sodium carbonate in refluxing chloroform. The 

crude (+)-[249] was cyclised by treatment with potassium tert-butoxide in dry tert-butanol to 

give lactam (+)-[250] (82%, 2 steps). Thionation of (+)-[250] proceeded smoothly using 

Lawesson’s reagent in refluxing toluene (89%), the sulphide contraction with ethyl 

bromoacetate in acetonitrile yielded the desired (R)-(+)-vinylogous urethane (+)-[251] (94%). 
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 Scheme 2.13: (i)(a) (+)-[243] , n-BuLi, THF, −78°C, (b) [244], 76%; (ii) H2 (7 atm), 10% 

Pd/C, HOAc, rt, 76%; (iii) Cl(CH2)3COCl, NaHCO3, CHCl3, ∆; (iv) KOBut, ButOH, rt, 82% 

(2 steps); (v) Lawesson’s reagent, PhMe, ∆, 89%; (vi) BrCH2CO2Et, MeCN, rt; (vii) PPh3, 

NEt3, MeCN, rt, 94% (2 steps); (viii) LiAlH4, THF, rt, 88%; (ix) I2, Imidazole, PPh3, PhMe, 

110°C, 81%; (x) H2 (1 atm), PtO2, AcOH, rt, 85% (12:88); (xi) NaOEt (cat.), EtOH, ∆, 40%; 

(xii) LiAlH4, THF, 94%; (xiii) see ref. 76-77. 

 

Chemoselective reduction of (+)-[251] with lithium aluminium hydride in tetrahydrofuran 

afforded alcohol (−)-[252], which underwent cycloalkylation by treatment with 

triphenylphosphine, iodine and imidazole in refluxing toluene to give the bicyclic urethane 

(+)-[253] (81%). Reduction of the carbon-carbon double bond of (+)-[253] was achieved by 
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catalytic hydrogenation with platinum oxide in acetic acid resulting in an 88:12 mixture of 

(−)-[254] and [255] (85%). The axial ester group of [255] was successfully epimerized when 

heated with a catalytic amount of sodium ethoxide in ethanol to (−)-[254] (40%). Finally 

reduction of (−)-[254] with lithium aluminium hydride afforded alcohol (−)-[256] (94%), 

thereby completing the formal synthesis of indolizidine (−)-209B [3]. Conversion of (−)-[256] 

into (−)-209B (2) has already been demonstrated by Holmes.76-77 

 

2.7 Aims and Strategies of the Present Project 

 

Having discussed the important features of the “Wits approach” to alkaloid synthesis, and 

having looked at Gravestock’s syntheses in detail, we will now illustrate our plan to extend 

this methodology firstly for the synthesis of a simple piperidine alkaloid thalictroidine [257], 

secondly for the synthesis of three previously identified 5,8-disubstituted indolizidines 197C 

[258], 209I [185] and 223V [174], thirdly for the preparation of a late stage common 

intermediate [259] for the general preparation of almost any 5,8-disubstituted indolizidines. 

Finally we will illustrate how this methodology may be applied to the synthesis of 1,4-

disubstituted quinolizidines. 

 

2.7.1 Thalictroidine [257] 

 

Thalictroidine [257] is a piperidine alkaloid which was isolated from a North American 

flowering plant Blue Cohosh (Caulophyllum thalictroides) in 1999125. The plant is 

traditionally used in certain dietary preparations, however interest was sparked when some of 

the alkaloids isolated from the plant were shown to be toxic and/or teratogenic. As it is a 

relatively newly discovered alkaloid, it was chosen as a simple target for structural 

elucidation, and the synthesis can be readily be adapted from our “Wits approach” to 

alkaloids. 

 

Scheme 2.14 details the proposed synthetic route we envisaged using, employing the “Wits 

approach” to alkaloid synthesis. The synthesis of thalictroidine [257] requires the preparation 

of thiolactam [260] and phenacyl bromide [261] from commercially available staring 

materials. This can be achieved by protecting p-hydroxyacetophenone [262] as an acetate 

(step i) [263], and then subjecting it to bromination to yield [261] (step ii). 1-Methyl-2-
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piperidone [264] can be thionated to give [260] (step iii). Transformation of the thiolactam 

[260] into the desired enaminone [265] (step iv) can be accomplished by sulphide contraction 

with [261]. Deprotection of [265] to [266] (step v), and reduction (step vi) should afford 

thalictroidine [257]. Protection of [262] with a chiral protecting group like (1S)-(+)-

camphorsulfonyl chloride, could allow bias towards one enantiomer when reducing the 

carbon-carbon double bond, and this will also be investigated. 
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Scheme 2.14: Proposed synthetic route for thalictroidine [257] 

2.7.2 Alkaloids 197C [258], 209I [185], 223V [174]  

It was proposed that by using and expanding on the methodology established by Gravestock, 

as outlined in Section 2.3, indolizidines 197C [258], 209I [185] and 223V [174] could be 

accessed as shown in Scheme 2.15.  
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Scheme 2.15: Proposed synthetic route for 5,8-disubstituted indolizidines 197C [258], 209I 

[185] and 223V [174] 

 

Starting from enoate [267] the first step (step i) involves the conjugate addition of (R)-(+)-N-

benzyl-N-α-methylbenzylamine [243]. Debenzylation of the amino ester [268] (step ii), and 

subsequent lactam formation (steps iii and iv) will afford the desired lactam [269], which can 

be thionated to yield the important thiolactam [270] (step v). Sulphide contraction with 2-

bromo-N-methoxy-N-methylacetamide [271] should lead to the desired enaminone [272] 

(steps vi and vii), characterized now by an incorporated Weinreb amide functionality. The 

Weinreb amide adds more versatility to the enaminone, and will hopefully allow us access to 
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a wider range of indolizidines than was previously possible using the existing methodology. 

Chemoselective reduction of the enaminone [272], to the required alcohol [273] (step viii) and 

subsequent cycloalkylation (step ix) should lead to [274]. A stereoselective reduction of the 

carbon-carbon double bond at this stage will lead to the indolizidine [275] with the incorrect 

stereochemistry at C-8 (step x). Alkylation of the Weinreb amide [275], will hopefully result 

in the monoalkylated product [276] being formed (step xi), the stereochemistry at C-8 can 

then be inverted to give the desired stereochemical arrangement as shown for [277] (step xii). 

Subsequent protection as the corresponding thioacetal [278] (step xiii) and desulfurisation 

(step xiv) should lead to indolizidines 209I [185] and 223V [174] with the correct 

stereochemistry. Furthermore reduction of [275] to the aldehyde [279] (step xv) may be 

possible, with subsequent epimerization and reduction (step xvi and xvii) then allowing access 

to 197C [258]. 

 

2.7.3 Preparation of a late stage common intermediate [259] for the synthesis of 5,8-

disubstituted indolizidines 

 

A drawback to the “Wits approach” to date is that it only allows for the modification of the 

substituent at the 8-position near the end of the synthesis, with the substituent at the 5-position 

having to be introduced early on. The establishment of the substituent at the 5-position early 

on has two main drawbacks; a) It means a long synthesis has to be repeated each time a new 

substituent is needed, and b) It limits the choice of substituents to simple saturated alkyl 

chains, as one of the later steps involves the stereoselective reduction of a carbon-carbon 

double bond by hydrogenation, and as a result any alkene or alkyne functionality would be 

lost at this stage. In response to this problem we envisaged the development of a late stage 

common intermediate which would allow the functionalisation of both chains after the 

reductive hydrogenation step. This intermediate would then allow us access to approximately 

80% of the naturally occurring 5,8-disubstituted indolizidines that have been identified to date 

(Scheme 2.16). 
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Scheme 2.16: Proposed synthetic route toward a late stage common intermediate [259] for 

the synthesis of 5,8-disubstituted indolizidines 

 

Starting from cyclooctadiene [280] we invisage a stepwise ozonolysis via [281] to aldehyde 

[282] (steps i and ii). Horner-Wadsworth-Emmons Wittig olefination would give us the 

desired enolate [283] (step iii), which could then undergo a conjugate addition with (R)-(+)-N-

benzyl-N-α-methylbenzylamine [243] (step iv) affording amino ester [284]. As with the route 

proposed in Section 2.7.2, debenzylation (step v), lactam formation (steps vi and vii), 

thionation (step viii), sulphide contraction (step ix), cycloalkylation (step x) and finally 

stereoselective reduction of the carbon-carbon double bond (step xi) will hopefully yield the 

desired intermediate [259]. If successful, [259] could potentially be converted into a library of 

indolizidines in several steps. 
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2.7.4 Extension of the methodology to 1,4-disubstituted quinolizidines 

 

A further application to the methodology that we are interested in investigating is its 

applicability to the synthesis of the analogous 1,4-disubstituted quinolizidines. Previously 

San-Fat described the enantioselective synthesis of such alkaloids using the “Wits 

approach”108k, however the synthesis was marred by the fact that the tert-butyl ester moiety 

used to ensure good stereoselectivity during the chiral alkylation step could not be removed 

later on in the synthesis. As a result several additional deprotections and re-protections had to 

be performed in order to access the desired quinolizidines. We felt that these additional steps 

detracted from the elegance of the synthesis, and made it too long winded. An alternative 

synthesis to access the desired bicyclic system, but still in keeping with the “Wits approach” 

is thus proposed (Scheme 2.17). 
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Scheme 2.17: Alternative cyclisation proposed for the synthesis of 1,4-disubstituted quino-

lizidines 

 

Starting from ethyl-3-oxobutanoate [285], we envisaged an alkylation at the primary carbon 

when treated with 1-bromo-4-chlorobutane (step i), followed by an acetyl protection of the 

ketone [286] (step ii). The key steps would involve the monoalkylation of a suitable primary 
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amine, followed by an acetyl deprotection which should facilitate ring closure to give [287] 

(steps iii & iv). Following the standard “Wits approach”, deprotection of the silyl group will 

afford alcohol [288] (step v) and finally the standard cycloalkylation should afford [289] (step 

vi). If successful [289] could be converted into a small library of 1,4-disubstituted 

quinolizidines. 

 

2.8 Summary of Aims 

 

The main aims for this project can be summarized as follows: 

 

• To extend the synthetic utility of enaminones in alkaloid synthesis, in particular by 

looking at the advantages offered by the incorporation of a Weinreb amide into the 

enaminone functionality. 

 

• To use and expand on the methodology established by D. Gravestock for the 

enantioselective synthesis of 5,8-disubstituted indolizidines, for the synthesis of  

indolizidines 197C [258], 209I [185] and 223V [174] (Figure 2.3). 
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Figure 2.3: Indolizidines 197C [258], 209I [185] and 223V [174] 
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• To synthesize a late stage common intermediate [259] (Figure 2.4), that would allow 

us access to most naturally occurring 5,8-disubstituted indolizidines. 
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Figure2.4: The late stage common intermediate [259] 

 

• To investigate an alternative approach for the synthesis of 1,4-disubstituted 

quinolizidines. 
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CHAPTER 3 
 

SYNTHESIS OF (±±±±)-THALICTROIDINE [257] 
 
3.1 Introduction 
 
This chapter concerns the preparation of the piperidine alkaloid thalictroidine [257] in 

racemic form (Figure 3.1). Attempts at an enantioselective synthesis will also be discussed. 

 

N

O

OH
257  

 

Figure 3.1:  Thalictroidine [257] 

 

Thalictroidine [257] was originally isolated in 1999 by Kennelly et al.125 from a North 

American flowering plant “Blue Cohosh” (Caulophyllum thalictroides), which is used in 

certain dietary preparations. Investigations of the plant metabolites were sparked when it was 

discovered that some of the alkaloids found in the plant were toxic or teratogenic.125 We 

chose to synthesize this alkaloid [257] following the steps outlined in Scheme 2.14 to gain 

experience in the methodology utilized in the “Wits” approach towards alkaloid synthesis. 

 

The next section of this chapter describes the synthesis of racemic thalictroidine [257], 

highlighting the steps which will be important in the synthesis of indolizidines. These include 

the thionation of 1-methylpiperidine-2-one [264] and the preparation of the phenacyl bromide 

[261] (Section 3.2.1). Subsequent reactions include the sulfide contraction between [260] and 

[261], and the reduction of the exocyclic carbon-carbon double bond of the resulting 

enaminone [265] (Sections 3.2.2 & 3.2.3). 

 

The final section describes an alternative route for the enantioselective preparation of 

thalictroidine [257]. The chiral approach focuses on tethering chiral camphorsulfonyl chloride 

[290] to p-hydroxyacetophenone [262] in an attempt to create a stereochemical bias during the 

reduction of the double bond. 
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3.2 Synthesis of (±±±±)-thalictroidine [257] 

 

3.2.1 Preparation of starting materials 

 

1-Methylpiperidine-2-thione [260] was prepared by stirring 1-methylpiperidine-2-one [264] 

with phosphorus pentasulfide in refluxing benzene overnight (Scheme 3.1). Our best result 

gave a 90% yield on a 27.8 mmol scale. The expected thiolactam [260] was obtained as clear 

crystals and the melting point and spectroscopic data corresponded closely with literature 

values126. 

 

N O N S

(i)

264 260  
 

Scheme 3.1: (i) P2S5, C6H6, ∆, 24 h, 90% 

 

The thionation was also performed under milder conditions by stirring with phosphorus 

pentasulfide in chloroform127 at room temperature as well as by Brillon’s procedure.128 The 

yields obtained were 37% and 66% respectively.  The Brillon procedure involves the 

preparation of an in situ reagent by stirring phosphorus pentasulfide and sodium carbonate in 

a 2:1 ratio in tetrahydrofuran. The two components are stirred until a homogeneous solution 

has formed, which is accompanied by the vigorous evolution of carbon dioxide. The exact 

structure of the intermediate is still not known; however, the proposed molecular formula of 

the reagent is Na2P4S10O (Scheme 3.2). 
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Scheme 3.2: (i) THF, rt, 20-30 min; (ii) rt, 5 h 66% 
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1-Methylpiperidine-2-thione [260] was characterized by the appearance of a thiocarbonyl 

signal at 199.3 ppm in the 13C NMR spectrum. Furthermore, the mass spectrum showed an 

ion at m/z 129.06098 (100%), with M+ requiring 129.06122. The obtained melting point of 

34-35 °C was comparable with the literature value of 36-39 °C.126 

 

p-Acetoxyacetophenone [263] was prepared by the acetylation of p-hydroxyacetophenone 

[262] according the conditions outlined by Corson et al.129 in which they obtained a yield of 

93% for the acetylated product (Scheme 3.3). 
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Scheme 3.3: (i) Ac2O, 7.5%  NaOH(aq), 0°C-rt, 24 h, 94%; (ii) Br2, HBr(cat.), CHCl3, 30 

min, 83% 

 

The acetylation involved the slow addition of acetic anhydride to a solution of p-

hydroxyacetophenone [262] in an aqueous sodium hydroxide solution. In our hands, the 

acetylation was successfully carried out on a 37.0 mmol scale in a comparable yield of 94% 

(Scheme 3.3). The melting point of 55-56 °C was comparable with the literature value of 54 

°C reported by Corson et al.129 The compound was characterized by the appearance of a 

signal at 2.32 ppm in the 1H NMR spectrum integrating for three protons and corresponding 

to the acetate CH3. The acetate carbon signals were also seen at 166.8 (C=O) and 21.1 ppm 

(CH3) in the 13C NMR spectrum. The FTIR spectrum also clearly showed two carbonyl 

signals at 1759 cm−1 and 1682 cm−1 due to the ester and ketone carbonyl groups respectively. 

The mass spectrum showed the molecular ion at m/z 178.06394 with the required mass being 

178.06299.  

 

The bromination to access α-bromo-4-acetoxyacetophenone [261] was achieved using the 

reaction conditions outlined by Rosenmund and Pfroeffer130, who obtained a 77% yield of the 

desired bromoketone [261] (Scheme 3.2). They treated a solution of p-acetoxyacetophenone 

[263] in chloroform with bromine. The reaction was initiated by heating a small amount of the 
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sample until hydrogen bromide gas was evolved. This sample was immediately added to the 

bulk of the solution. The hydrogen bromide gas is required in catalytic amounts, allowing the 

bromination to proceed through the enol form of the ketone, which is promoted by the 

protonation of the carbonyl group oxygen atom (Scheme 3.4).  
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Scheme 3.4: Proposed mechanism for the acid-catalysed bromination of a ketone 

 

The rate of formation of the enol decreases as the α-hydrogens are replaced by bromine 

atoms, as the bromine atoms reduce the basicity of the carbonyl group. As a result the use of 

catalytic base to generate the enol is not suitable as it increases the basicity of the carbonyl 

group, and the reaction can not be stopped once the ketone has been brominated once.131 

Furthermore in the case of our substrate there is a methyl group α to the carbonyl group, and 

under basic conditions it would undergo a bromoform reaction instead (Scheme 3.5).132 
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Scheme 3.5: The bromoform reaction 
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At room temperature we found that there was sufficient hydrogen bromide present in the 

bromine that we used to catalyse the reaction without any heating. The reaction proceeded 

quickly and was completed within minutes in an 83% yield. The 1H NMR spectrum were 

characterized by the loss of the ketone CH3 signal at 2.59 ppm and the appearance of a CH2Br 

signal as a singlet integrating for two protons at 4.43 ppm. The mass spectrum showed an ion 

at m/z 255.97435 (6%) with C10H9O3Br requiring 255.97351, and the melting point of 68 °C 

was comparable with the literature value of 67 °C reported by Rosenmund and Pfroeffer.130 

 

The bromination was also attempted by refluxing p-acetoxyacetophenone [263] and N-

bromosuccinimide in dry carbon tetrachloride overnight. Upon workup and purification, 

however, only unreacted p-acetoxyacetophenone [263] was recovered. 

 

3.2.2 Eschenmoser sulfide contraction121-123 between 1-methylpiperidine-2-thione [260] 

and αααα-bromo-4-acetoxyacetophenone [261] 

The overnight reaction of 1-methylpiperidine-2-thione [260] and α-bromo-4-acetoxyaceto-

phenone [261] in acetonitrile gave the corresponding S-alkylated bromide salt [291] (Scheme 

3.6).  
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Scheme 3.6: (i) CH2Cl2, rt, 24 h 

Deprotonation of the acidic proton between the sulfur and the ketone with triethylamine and 

subsequent cyclisation affords the thiirane intermediate [292] (Scheme 3.7). Finally the sulfur 

atom is removed by treatment with the thiophile triphenylphosphine, yielding the desired 

enaminone [265] in a 69% yield (Scheme 3.7). The contraction affords only the correspond-

ing E-isomer, as the methyl substituent at the 1-position of the piperidine ring hinders the 

formation of the Z-isomer. Assignment of the stereochemistry is based on the chemical shift 

of the methylene protons at C-3 of the heterocyclic ring (� approximately 3.3 indicating a 

trans-s-cis structure, whereas � approximately 2.7 would have indicated a cis-s-cis structure). 



Chapter 3                  Synthesis of (±)-Thalictroidine [257] 

 87 

 

O

OAc

N
S

N

O

OAc

N+ S
O

OAc
NEt3

N+ S
O

OAc

PPh3

265

291

292

Br−Br−

 
 

Scheme 3.7: PPh3, NEt3, CH3CN, 3-24 h, 69% (2 steps) 

 

Purification of the crude enaminone [265] in the presence of unreacted triphenylphosphine 

and triphenylphosphine sulfide residues can be challenging, as separation by column 

chromatography using ethyl acetate/hexane mixtures is often ineffective. Fortunately the 

enaminones that we work with generally have a much lower affinity for dichloromethane as 

the mobile phase than the triphenylphosphine and triphenylphosphine sulfide. The unreacted 

triphenylphosphine residues can therefore be removed by initial elution with dichloro-

methane; thereafter the desired products can be obtained by elution with suitable ethyl 

acetate/hexane mixtures. The more polar triphenylphosphine oxide residues which are formed 

occasionally remain on the baseline in ethyl acetate/hexane mixtures, and as such they are not 

as problematic. In the case of very polar enaminones an alternative approach that we have 

used extensively is to perform a simple acid-base workup. An initial acid extraction using 2 M 

hydrochloric acid separates the enaminones from the phosphine impurities which can not be 

protonated, and therefore remain in the organic phase. Subsequent addition of ammonia 

solution to basify the aqueous layer and extraction into dichloromethane yields the desired 

products as almost chromatographically pure samples. Utilising the acid-base extraction 

work-up and purification through a short plug of silica afforded us the desired enaminone 

[265]. The 1H NMR spectrum showed the presence of an expected vinyl singlet at 5.61 ppm. 

The 13C NMR spectrum had a signal at 90.5 ppm characteristic of an enaminone vinyl carbon. 

Furthermore the thiocarbonyl carbon signal around 200 ppm in 1-methyl piperidine-2-thione 
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[260] was absent. The FTIR spectrum show a characteristic α,β unsaturated ketone stretch at 

1691 cm−1 and finally the mass spectrum possessed an ion at m/z 273.13601 (54%) and the 

parent ion of C16H19NO3 requires 273.13649. 

 

3.2.3 Completion of the synthesis of (±±±±)-thalictroidine [257] 

 

We initially envisaged the preparation of the desired target by deprotecting the phenol group 

and subsequently reducing the exocyclic carbon-carbon double bond. The deprotection of 

[265] proceeded smoothly under mild conditions using potassium carbonate in methanol to 

afford a slow release of sodium methoxide, which removes the acetate group. The desired 

phenol [266] was obtained as a green solid in an 85% yield (Scheme 3.8). 
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Scheme 3.8: (i)K2CO3, MeOH, rt, 1-3 h, 85%; (ii) NaCNBH3, pH 4, rt, 1 h, 43% 

 

The loss of the acetate singlet at 2.98 ppm, and the appearance of a broad OH peak between 

2.60 and 4.00 integrating for one proton in the 1H NMR spectrum showed that the 

deprotection was successful. The acetate carbon signals at 169.2 (OCOCH3) and 19.4 

(OCOCH3) were also absent from the 13C NMR spectrum. FTIR spectrum had a characteristic 

hydroxyl peak at 3422 cm−1 with no acetate carbonyl signal around 1720 cm−1 and the mass 

spectrum possessed an ion at m/z 231.12526 (47%), while the parent ion of C14H17NO2 

requires 231.12593. 

 

The reduction of [266] proved to be more challenging than initially expected. Several 

attempts were made to reduce the carbon-carbon double bond under hydrogenation conditions 

using 10% palladium on carbon and Adams’ catalyst under various reaction conditions, to no 

avail. In all cases the palladium catalyst gave no reduced product, whereas the platinum 

catalyst seemed to reduce both the carbon-carbon double bond and the carbonyl group. 

Lithium aluminium hydride also showed no evidence of any reduction occurring. Finally, 
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reduction with sodium cyanoborohydride under acidic conditions afforded (±)-thalictroidine 

[257] in a 43% yield as a dark green solid (Scheme 3.8). The spectroscopic data obtained 

were comparable to those published by Kennelly et al.,125 thus confirming the proposed 

structure of the natural product. We felt at this point that deprotection of the hydroxyl group 

may have led to the formation of a zwitterion species formed by proton transfer between the 

acidic phenol and the basic enaminone, and as such we were losing product in the aqueous 

workup. When repeated without an aqueous workup, however, we found no improvement in 

the yield and we were unable to optimize the reaction further. 

 

We were not pleased with the poor yield for the final step, and as such decided to first reduce 

the enaminone and then perform the deprotection. Reduction of [265] using the establish 

sodium cyanoborohydride method afforded the desired product [293] in a 46% yield as a dark 

green solid (Scheme 3.9).  
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Scheme 3.9: (i) NaCNBH3, pH 4, rt, 1 h, 46%; (ii) K2CO3, MeOH, rt, 1-3 h, 80% 

 

The loss of the vinyl proton at 5.61 ppm in the 1H NMR spectrum indicated that the reduction 

was successful. Furthermore there were no carbon signals around 170 and 90 ppm in the 13C 

NMR spectrum further indicating the reduction of the double bond. The mass spectrum 

contained an ion at m/z 275.15385 (6%) and the parent ion of C16H21NO3 requires 275.15214.  

 

The reduction of the exocyclic double bond was once again low yielding. However as the 

phenol was protected as an acetate the formation of a zwitterion species could be eliminated 

as the reason for the low yield. Once again, despite several attempts we were unable to 

optimize the reaction. 
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Deprotection of [293] using sodium carbonate in methanol proceeded smoothly, affording 

(±)-thalictroidine [257] in an 80% yield (Scheme 3.9). Once again the spectroscopic data 

were comparable to those published by Kennelly et al.125 as summarized below in Tables 3.1 

and 3.2. 

 

Table 3.1: Comparison of 1H NMR spectroscopic data for (±)-thalictroidine [257]  

 

 1H NMR (CDCl3)  1H NMR (CDCl3)  
Proton Riley (300 MHz) Kennelly et al.125 (300 MHz) 

H-2 & H-6 7.79 (d, J  8.5 Hz) 7.81 (d, J 8.8 Hz) 

H-3 & H-5 6.83 (d, J 8.6 Hz) 6.81 (d, J 8.8 Hz) 

CH2COa 3.42 (dd, J 5.1 & 16.7 Hz) 3.38 (dd, J 5.4 & 16.6 Hz) 

H-2’ & H-6’a 3.21-2.92 (m) 3.07 (m) & 3.03 (dt, J 3.4 & 11.5 Hz) 

CH2COb 2.87 (dd, J 5.9 & 16.7 Hz) 2.85 (dd, J 6.3 & 16.6 Hz) 

H-6’b 2.48-2.41 (m) 2.39 (dt, J 5.0 & 11.0 Hz) 

NCH3 2.41 (s) 2.38 (s) 

H-3’, H-4’ and H-5’ 1.85-1.38 (m) 1.75-1.40 (m) 

 

Table 3.2: Comparison of 13C NMR spectroscopic data for (±)-thalictroidine [257]  

 

 13C NMR (CDCl3) 13C NMR (CDCl3) 

Carbon Riley (300MHz) Kennelly et al.125 (300 MHz) 

C=O 197.2 196.4 

C-4 163.8 164.0 

C-2 & C-6 131.0 131.0 

C-1 128.2 127.8 

C-3 & C-5 116.4 116.4 

C-2’ 59.8 59.9 

C-6’ 56.4 56.4 

NCH3 43.2 42.7 

CH2CO 41.6 41.2 

C-3’ 31.6 31.2 
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C-5’ 25.0 24.5 

C-4’ 23.6 23.4 

 

3.2.4 Preparation of the hydrochloride salt [294] of thalictroidine [257] 

 

We attempted to obtain a crystal structure of thalictroidine [257] to provide further evidence 

for the structure of the natural product. As thalictroidine [257] is an oil we decided to convert 

it into the corresponding hydrochloride salt [294] by treatment with dry hydrogen chloride gas 

(Scheme 3.10). 
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Scheme 3.10: (i) Dry HCl (g), MeOH 

 

The hydrochloride salt [294] obtained was recrystallised from methanol, and a single crystal 

XRD structure was obtained. The crystal data, data collection and refinement parameters are 

shown below in Table 3.3. 

 

Table 3.3: Crystal Data, data collection and refinement parameters 

 

Empirical Formula C14H22ClNO3 

Formula weight 287.78 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal System Orthorhombic 

Space Group Pca2(1) 

Unit Cell Dimensions a = 27.727(3) Å          α = 90° 

 b = 7.0807(11) Å          β = 90° 

 c = 7.4199(9) Å          γ = 90° 
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Volume 1456.7(3) Å3 

Z 4 

Density (calculated) 1.312 Mg.m−3 

 

Table 3.3 continued: Crystal Data, data collection and refinement parameters 

 

Absorption coefficient 0.266 mm−1 

F(000) 616 

Crystal Size 0.40 × 0.11 × 0.05 mm3 

Theta range for data collection 1.47 to 26.99° 

Index ranges −35<=h<=29, −6<=k<=9, −9<=l<=9 

Reflections collected 5962 

Independent reflections 2867 [R(int) = 0.0779] 

Completeness to theta = 26.99° 99.7% 

Absorption correction Integration 

Max. and min. transmission 0.9868 and 0.9010 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2867 / 2 / 181 

Goodness of fit on F2
 1.038 

Final R indices [I>2sigma(I)] R1 = 0.0467, wR2 = 0.1022 

R indices (all data) R1 = 0.0756, wR2 = 0.1251 

Absolute structure parameter −0.09(10) 

Largest diff. peak and hole 0.233 and −0.231 e.Å−3 

 

The structure is shown schematically by the ORTEP diagram illustrated below in Figure 3.2. 

The crystal structure confirmed the structure of thalictroidine [257] proposed by Kennelly et 

al.123 The structure is that of the hydrochloride salt of thalictroidine [294], and as such 

consists of a piperidine ring joined to an aromatic carbonyl through a CH2 group. The 

phenolic alcohol is seen in the position para to the ketone. The nitrogen atom is protonated 

and sp3 hybridised, and is hydrogen bonded to a chloride anion. The crystal also contains one 

molecule of water that is hydrogen bonded to the phenolic alcohol. The geometry observed 
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for the six-membered piperidine ring indicates that it is in a chair conformation, and the 

aromatic ring is nearly perpendicular to the piperidine ring. 

 

 
 

Figure 3.2: ORTEP diagram of the hydrochloride salt of thalictroidine [294] (Showing the 

50% probability thermal ellipsoids for all non-hydrogen atoms) 

 

The unit cell is orthorhomobic, with z = 4 and has a Pca2(1) space group (Figures 3.3 and 

3.4). When viewed along the a-axis there appears to be π-stacking between the aromatic rings, 

and the chloride anions are sandwiched between the two layers of molecules.  
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Figure 3.3: Packing pattern viewed along the a-axis 

 
 

Figure 3.4: Packing pattern viewed along the c-axis 

 

3.3 Attempted enantioselective synthesis of thalictroidine [257] 

 

During the synthesis of thalictroidine [257], we wondered if we could achieve any degree of 

stereocontrol by attaching a chiral auxiliary to the phenol hydroxyl group of [262]. As the 

hydroxyl group is quite far from the stereogenic centre in thalictroidine [257] we envisaged 

the need for a fairly large chiral auxiliary if we hoped to see any selectivity in the sodium 

cyanoborohydride reduction. In addition, in order to determine the stereochemistry in the 
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proposed enantioselective synthesis we would ideally require a crystal structure of 

thalictroidine [257] while tethered to a chiral auxiliary. As a result we chose to use a 

camphorsulfonyl group owing to its size and crystalline nature, which we hoped would 

provide enough steric hindrance for a stereoselective reduction and provide a crystalline 

product. 

 

3.3.1 Preparation of the chiral auxiliary [290] and tethering it to p-hydroxyacetophenone 

[262] 

 

The chiral camphorsulfonyl auxiliary was prepared from commercially available (1S)-(+)-10-

camphorsulfonic acid [295], which was refluxed with thionyl chloride for approximately one 

hour, yielding (1S)-(+)-camphorsulfonyl chloride [290] as a fine white solid in a 98% yield on 

a 22 mmol scale (Scheme 3.11).  
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Scheme 3.11: (i) SOCl2, ∆, 1 h, 98% or PCl5, 0 °C, 4 h, 30%; (ii) [290], NEt3, CH2Cl2, 1 h, 

88%; (iii) Br2, CHCl3, 30 min, 84% 

 

(1S)-(+)-Camphorsulfonyl chloride [290] was also prepared by treating (1S)-(+)-10-camphor-

sulfonic acid [295] with phosphorus pentachloride; however, yields were erratic with a best 

result of only 30%. Spectroscopic data were comparable with those published previously in 

the literature.133 The mass spectrum requires 250.04304 for C10H15ClO3S and the required 

peak was present at m/z 250.04490 (0.25%). 
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The (1S)-(+)-camphorsulfonyl chloride [290] was tethered to p-hydroxyacetophenone [262] 

by treatment with triethylamine in dichloromethane. The reaction was accompanied by the 

evolution of hydrochloric acid gas along with the precipitation of the product [296]. The 

desired product 1-[(4-acetylphenylsulfonyl)methyl]-7,7-dimethybicyclo-[2.2.1]-heptan-2-one 

[296] was obtained as a yellow-orange solid in an 88% yield on a 14.6 mmol scale. The use of 

a 7.5% aqueous solution of sodium hydroxide as the base resulted in a 2.2:1 ratio of the 

desired product to starting material. Sodium hydride was also used, yielding a 1.5:1 ratio of 

desired product to starting material. The FTIR spectra showed no sign of any broad signals 

above 3000 cm−1, indicating the loss of an alcohol group. The mass spectrum possessed an ion 

at m/z 351.12525 [(M+N)+ 4%, C18H23O5S requires 351.12662]. 

 

Bromination of [296] using the protocol of Rosenmund and Pfroeffer130 gave the desired 

phenacyl bromide [297] as a colourless solid in an 84% yield on a 0.56 mmol scale. The 1H 

NMR spectrum showed a characteristic loss of a CH3 signal at 2.61 ppm accompanied by the 

appearance of a CH2Br singlet at 4.42 ppm. The 13C NMR spectrum also showed the loss of a 

CH3 signal at 26.6 and the appearance of a CH2Br signal at 30.4 ppm. The mass spectrum 

showed an ion at m/z 335.09641 (7%), corresponding to M+−CH2Br, C17H19O5S requires 

335.09532. 

 

3.3.2 Sulfide contraction of 1-methylpiperidine-2-thione [260] and phenacyl bromide 

[297] 

 

A standard sulfide contraction between 1-methylpiperidine-2-thione [260] and phenacyl 

bromide [297] afforded the desired vinylogous amide [298] as an orange solid in a 64% yield 

on a 4.7 mmol scale (Scheme 3.12).  
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Scheme 3.12: (i) CH2Cl2, rt, 24 h; (ii) PPh3, NEt3, CH3CN, 3-24 h, 64% (2 steps) 
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A vinyl proton appeared as a singlet in the 1H NMR spectrum at 5.59 ppm and the 

corresponding carbon signal was found at 90.4 ppm in the 13C NMR spectrum.  The loss of 

the thiocarbonyl signal at 199.3 ppm and the appearance of an additional carbonyl signal at 

185.8 ppm and a vinyl carbon signal at 165.4 ppm pointed towards the fact that the 

vinylogous amide [298] had been formed. The FTIR spectrum also had two clear carbonyl 

signals at 1744 cm−1 and 1690 cm−1. The mass spectrum showed an ion at m/z 445.19287 

(13%), and M+ requires 445.19229. 

 

 

 

3.3.3 Reduction of vinylogous amide [298] and removal of the chiral auxiliary to give 

thalictroidine [257] 

At this stage we wanted to reduce the vinylogous amide [298], and in doing so introduce a 

second stereogenic centre (Scheme 3.13). The chiral auxiliary provides a fixed absolute 

reference point, but there is the possibility of producing both the R and S configurations at the 

newly created stereogenic centre after reduction. We hoped that one would be formed in 

excess, but we still expected to see both diastereomers, which we hoped to separate and 

characterize individually. 
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Scheme 3.13: (i) NaCNBH3, pH 4, rt, 1 h 
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The reduction of vinylogous amide [298] with sodium cyanoborohydride in methanol under 

acidic conditions afforded the desired product [299] in a 46% yield. However, to our 

disappointment the product was not crystalline and despite numerous attempts we were 

unable to crystallize [299] (Scheme 3.14).  
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Scheme 3.14: (i) NaCNBH3, pH 4, rt, 1 h, 46%; (ii) 0.3M, KOH (aq), rt, 1 h, 100%  

In the 1H NMR spectrum the vinyl proton singlet at 5.59 ppm disappeared along with the 

alkene carbon signals at 165.4 and 90.4 ppm in the 13C spectra. The proton signals at 2.76-

2.62 ppm integrating for one proton and 1.67-1.62 integrating for two protons were due to the 

NCH and the CH2CO protons respectively. The mass spectrum showed an ion at m/z 

447.20745 (6%), and the parent ion requires 447.20794. To our surprise the 13C spectra 

showed no sign of any doubling up of peaks, which is characteristic of diastereomers. 

However, as the two stereogenic centers are eleven bonds apart an explanation would be that 

they are simply too far apart to result in a noticeable difference in the diastereomers. 

We initially tried to remove the chiral auxiliary by refluxing [299] in an aqueous sodium 

hydroxide solution (1M), however we only recovered an unidentifiable product. Under milder 

conditions of stirring in a 0.3M potassium hydroxide solution for one hour we recovered 

thalictroidine [257] in a quantitative yield as a clear oil (Scheme 3.12). Once again the 

spectroscopic data were comparable to those published by Kennelly et al.125  
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3.4 Conclusion 

We were able to prepare (±)-thalictroidine [257] in an overall yield of 23% along the shortest 

synthetic path and 20% along the longest synthetic path highlighted below in Scheme 3.15, 

and our synthesis along with the obtained crystal structure proved the structure of the natural 

product originally proposed by Kennelly et al.125  

Attempts to achieve an enantioselective synthesis by using a chiral camphorsulfonyl auxiliary 

were not successful. At this stage, having gained expertise in several key steps in the “Wits 

approach” to alkaloid synthesis, we decided to press on with the primary aim of the project, 

namely, the synthesis of 5,8-disubstituted indolizidines (Chapters 4 & 5). An 

enantioselective synthesis of thalictroidine [257] was therefore put on hold for the time being, 

as further investigations would not show us anything new pertaining to the “Wits approach” 

for the preparation of 5,8-disubstituted indolizidines and related 1,4-disubstituted 

quinolizidines. 
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Scheme 3.15: (i) Ac2O, 7.5%  NaOH(aq), 0°C-rt, 24 h, 94%; (ii) Br2, HBr(cat.), CHCl3, 30 

min, 83%, (iii) P2S5, C6H6, ∆, 24 h, 90%, (iv) (a) CH2Cl2, rt, 24 h, (b) PPh3, NEt3, CH3CN, 3-

24 h, 69% (2 steps), (iii) Na2CO3, MeOH, rt, 1-3 h, 85%; (ii) NaCNBH3, pH 4, rt, 1 h, 43%
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CHAPTER 4 
 

SYNTHESIS OF MONO-SUBSTITUTED INDOLIZIDINES 
 
4.1 Introduction 
 
This chapter concerns the preparation of a variety of racemic mono-substituted indolizidines. 

We wanted to prepare these indolizidines following the key steps outlined in the “Wits 

approach” to alkaloid synthesis (Chapter 2) to gain experience in the preparation of 

indolizidines, in particular steps vi, vii, ix and x outlined in Scheme 2.15, Section 2.7.2. A 

more important aspect to this line of research was to examine the impact of the substituent at 

what would be the 5-position in 5,8-disubstituted indolizidines. We show the progress 

towards the preparation of indolizidines with a ketone [300], carboxylic ester [301], nitrile 

[302] and Weinreb amide [303] substituent at the 5-position (Figure 4.1). The synthesis of 

these four systems [300-303] would allow us insight into how the different substituents affect 

the preparation of the bicyclic indolizidine skeleton. Further investigations were performed to 

determine whether or not these groups could be converted into substituents commonly seen at 

the 5-position of naturally occurring 5,8-disubstituted indolizidines. 

 

N

O
H

N

O OEt
H

N

CN
H

N

O N
H

Me

OMe

300 301 302 303  
 

Figure 4.1: 5-substituted indolizidines 

 

4.2 Preparation of starting materials 

 

The preparation of all four 5-substituted indolizidines was envisaged going through 3-(2-

thioxo-1-pyrrolidinyl)-propyl acetate [304], which was prepared in three steps from 

commercially available 3-amino-1-propanol [305] and γ-butyrolactone [306]110m (Scheme 

4.1). 
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Scheme 4.1: (i) 250 °C, sealed tube, 18 h, 81%; (ii) Ac2O, pyridine, 0°C, 10  min,  then, rt, 18 

h, 87%; (iii) Na2CO3, P2S5, THF, 5 h, 90% 

 

3-Amino-1-propanol [305] was condensed with γ-butyrolactone [306] in a sealed Carius tube 

at 250 °C, to give 1-(3-hydroxypropyl)-pyrrolidin-2-one [307] in an 81% yield on a 312 mmol 

scale. 1-(3-Hydroxypropyl)-pyrrolidin-2-one [307] was obtained as a clear oil and its boiling 

point and spectroscopic data corresponded with those reported in the literature110m. The 1H 

NMR spectrum showed the presence of a hydroxyl group at 3.69 ppm. The 13C NMR 

spectrum had a characteristic carbonyl peak at 176.1 ppm, and a peak at 58.2 ppm 

corresponding to the CH2OH carbon. The mass spectrum possessed an ion at m/z 143.09591 

(18%) and the parent ion of C7H13NO2 requires 143.09463. The FTIR spectrum showed a 

broad OH signal at 3380 cm-1 as well as a lactam carbonyl signal at 1655 cm-1
. 

 

The unprotected hydroxyl group on 1-(3-hydroxypropyl)-pyrrolidin-2-one [307] was then 

protected as an acetate by treatment with acetic anhydride and pyridine. 3-(2-Oxo-1-

pyrrolidinyl)-propyl acetate [308] was obtained as a clear oil in an 87% yield on a 144 mmol 

scale. The acetate [308] had a boiling point of 146-148 °C at 2 mmHg. The 1H NMR 

spectrum showed the loss of the hydroxyl peak at 3.69 ppm, and the corresponding 

appearance of a singlet integrating for three protons at 2.06 ppm representing the acetate CH3. 

The 13C NMR spectrum showed an additional carbonyl peak at 170.7 ppm due to the acetate 

carbonyl. The FTIR spectrum showed a characteristic ester carbonyl stretch at 1735 cm-1 in 

addition to the lactam carbonyl peak at 1674 cm-1. The mass spectrum possessed an ion at m/z 

185.10543 (19%) and the parent ion of C19H15NO3 requires 185.10519. The spectroscopic 

data compared well with those previously reported.110m 

 

The protected lactam [308] was thionated in accordance with the Brillion procedure128, by 

treatment with phosphorus pentasulfide and sodium carbonate in tetrahydrofuran, affording 3-

(2-thioxo-1-pyrrolidinyl)-propyl acetate [304] in a 90% yield on a 28 mmol scale. The 1H 
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NMR spectrum showed the loss of the CH2C=O protons at 2.38 ppm and the corresponding 

appearance of the CH2C=S protons at 3.04 ppm. The 13C NMR spectrum showed the loss of 

the lactam carbonyl at 174.8 ppm and the appearance of the thiolactam carbonyl at 201.6 

ppm. The mass spectrum possessed an ion at m/z 201.08194 (100%) and the parent ion of 

C19H15NO2S requires 201.08235, once again the spectroscopic data were comparable with 

those reported previously.110m 

 

4.3 The Eschenmoser sulfide contraction121-123 

 

4.3.1 Proposed reagents for the sulfide contraction 

 

Having prepared the thiolactam [304], the next step was its homologation using the sulfide 

contraction reaction (Scheme 4.2). An important aspect that we were interested in at this stage 

was how readily the substituents intended to end up at the 5-position of the indolizidine 

system could be introduced at this stage. This group, labeled R, needs to be easily modified 

into the typical types of substituents found at this position in natural products. The most 

commonly seen substituents are unbranched saturated or sometimes unsaturated alkyl chains, 

and as such this R-group must facilitate the introduction of these groups. 
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Scheme 4.2: i) BrCH2R, CH3CN, rt, 24 h; ii) PPh3, NEt3, CH3CN, 5 h 

 

The most straightforward, although ultimately least attractive route, would be to have some 

sort of a vinylogous amide (R=COR’, R’= alkyl chain), as all that would be required to 

modify the chain would simply be to defunctionalise the carbonyl group (Scheme 4.3). 

Unfortunately this method would require the thiolactam [304] to be homologated with the 

correct length chain early on in the synthesis at the sulfide contraction stage (step i). The 

disadvantages should be immediately apparent. One would have to repeat most of the 
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synthetic steps for each different target compound, and one is limited to saturated chains as 

one of the later steps involves the catalytic hydrogenation of an exocyclic double bond. 
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Scheme 4.3: Proposed modification of the vinylogous amide system 

 

A better approach would rather be to add the desired chain late in the synthesis, allowing 

modification into a wide range of different compounds from a single late stage common 

intermediate. A possible reagent of choice for the sulfide contraction would be ethyl 

bromoacetate, allowing access to a vinylogous urethane [301]. The vinylogous urethanes are 

useful as they can either be reduced to the corresponding alcohol (step i), mesylated (step ii) 

and then alkylated using a suitable organometallic reagent (step iii) (Scheme 4.4). 
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Scheme 4.4: Proposed modification of vinylogous urethanes by direct substitution 

 

Alternatively the enaminone double bond can be reduced, and the alkyl substituent could be 

introduced by base-assisted substitution (step i), followed by decarboxylation (step ii) 

(Scheme 4.5). In this case the carboxylic ester needs to be part of a β-ketoester system [309], 

requiring an acylative cyclization, and this unfortunately leaves the complication of removing 

the ketone functionality in the ring late in the synthesis (step iii). 
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Scheme 4.5: Proposed modification of vinylogous urethanes by base-assisted substitution 

 

A more straightforward approach would be the use of bromoacetonitrile or N-methoxy-N-

methyl-2-bromoacetamide [271] to introduce a nitrile or a Weinreb amide at the 5-position, as 

both can potentially be mono-alkylated directly by treatment with a suitable organometallic 

reagent to afford the corresponding ketone (step i) (Scheme 4.6).  
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Scheme 4.6: Proposed modification of the vinylogous nitrile and urea systems 

 

Subsequent carbonyl removal would then yield the desired substituent (step ii). The N-

methoxy-N-methyl-2-bromoacetamide [271], in particular was outlined initially as the most 

promising reagent, as Weinreb amides have been utilized extensively for the straightforward 

preparation of ketones by simply treatment with a suitable Grignard or organolithium species. 

Interestingly the synthesis and use of enaminones containing Weinreb amides appears not to 

have been reported other than in our own work.108j A more comprehensive overview of the 
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synthesis and synthetic utility of Weinreb amides is given in Section 4.7.4. In the case of the 

nitrile, although mono-alkylation is often reported, one can sometimes experience 

complications with side reactions in systems with protons α to the nitrile carbon as they are 

acidic. As a result, treatment with a Grignard or organolithium reagent can cause 

deprotonation at the α position. 

 

We decided to investigate all four of these classes using bromoacetone, ethyl bromoacetate, 

bromoacetonitrile and N-methoxy-N-methyl-2-bromoacetamide [271] as the alkylating 

reagents. The latter was prepared by the treatment of bromoacetyl bromide [310] with N,O-

dimethylhydroxylamine hydrochloride and pyridine (Scheme 4.7) affording the desired 

bromoacetamide [271] as a crystalline colourless solid in a 64% yield on a 55 mmol scale. 

The spectroscopic data corresponded well with those previously reported134. 
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Scheme 4.7: (i) Me(NH)(O)Me.HCl, Py, CH2Cl2, 0-20 °C, 18 h, 64% 

 

The CH2Br protons appear as two singlets at 4.27 and 4.02 ppm in the 1H NMR spectrum 

integrating for two protons. The OCH3 protons also appear as two individual singlets at 3.81 

and 3.76 ppm integrating for three protons together. Finally, the NCH3 group shows a singlet 

at 3.25 ppm integrating for three protons. The 13C NMR spectrum had characteristic carbonyl 

peaks at 167.3 and 167.1 ppm, and OCH3 and NCH3 peaks at 61.4 and 40.6 ppm respectively. 

The CH2Br peak is observed at 25.1 ppm. 

 

4.3.2 Preparation of the enaminones 

 

The Eschenmoser sulfide contraction121-123 was used to access the enaminones [311-314] in 

accordance with the procedure outlined in Section 3.2.2. by simply using an appropriate 

alkylating reagent to form the desired S-alkylated halide salt. Subsequent treatment with 

triethylamine and triphenylphosphine yielded the desired products [311-314] (Scheme 4.8). 
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Scheme 4.8: (i) BrCH2R, CH3CN, rt, 24 h; (ii) PPh3, NEt3, CH3CN, 5 h 

 

Treatment of 3-(2-thioxo-1-pyrrolidinyl)propyl acetate [300] with the appropriate �-halo-

genated carbonyl derivative using the general procedure and work-up gave the four desired 

enaminones, the yields for which are shown below in Table 4.1. 

 

Table 4.1: Yields for the Eschenmoser sulfide contraction 

 

Compound R αααα-Halocarbonyl Yield (%) Scale (mmol) 

[311] COCH3 BrCH2COCH3 95 5.1  

[312] CO2CH2CH3 BrCH2CO2CH2CH3 90 19.3 

[313] CN BrCH2CN 44 5.0 

[314] CON(OCH3)CH3 BrCH2CO(OCH3)CH3 [271] 85 33.5 

 

An alternative approach used to prepare 3-[(2E)-2-(2-oxopropylidene)-pyrrolidinyl]-propyl 

acetate [311] involved the treatment of chloroacetone, which is resistant to the standard 

sulfide contraction procedure, with sodium iodide to form iodoacetone in situ in accordance 

with the Finkelstein procedure135. The iodoacetone then readily undergoes the contraction 

affording the desired enamine [311] in a 76% yield on a 0.97 mmol scale.  

 

In the case of ethyl (2E)-{1-[3-(acetyloxy)propyl]-2-pyrrolidinylidene}ethanoate [312] the 1H 

NMR spectrum showed the appearance of the characteristic vinyl proton at 4.53 ppm as a 

singlet integrating for one proton. The ester OCH2CH3 group appeared as a quartet integrating 

for two protons at 4.09 ppm and the OCH2CH3 as a triplet integrating for three protons at 1.25 

ppm. The 13C NMR spectrum showed the loss of the characteristic thiocarbonyl peak at 201.6 

ppm, as well as the appearance of the corresponding vinyl carbons at 169.3 and 77.9 ppm. 

The ester OCH2CH3 and OCH2CH3 signals appeared at 58.1 and 14.6 ppm respectively. The 
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mass spectrum possessed an ion at m/z 255.14773 (27%) and the parent ion of C13H21NO4 

requires 255.14706. The FTIR spectrum showed two carbonyl signals at 1736 and 1586 cm-1. 

 

The remaining three enaminones were all characterized in a similar fashion. The characteristic 

signals used to determine that these compounds had formed are outlined below in Table 4.2. 

 

Table 4.2: Selected spectroscopic data for the Eschenmoser sulfide contraction 

 

 1H NMR (ppm) 13C NMR (ppm) HRMS m/z (EI) FTIR (cm-1) 

[311] 5.05 (C=CH) 170.8 (C=CH-) C12H19NO3 1736 (OC=O) 

 2.09 (C=CHCOCH3) 165.1 (COCH3) Calculated: 225.13649 1538 (C=O) 

  89.5 (C=CH) Found: 225.13555  

  20.8 (COCH3)   

     

[312] 4.53 (C=CH) 169.3 (C=CH) C13H21NO4 1736 (C=O) 

 4.09 (OCH2CH3) 77.9 (C=CH) Calculated: 255.14706 1586 (C=O) 

 1.29 (OCH2CH3) 58.1 (OCH2CH3) Found: 255.14773  

  14.6 (OCH2CH3)   

     

[313] 3.67 (C=CH) 170.7 (C=CH) C11H16N2O2 2187 (C�N) 

  122.5 (C≡N) Calculated: 208.12118 1734 (OC=O) 

  53.6 (C=CH) Found: 208.12880  

     

[314] 5.01 (C=CH) 170.8 (C=CH) C13H22N2O4 1734 (OC=O) 

 3.67 (NOCH3) 164.3 (C=O) Calculated: 270.15796 1646(NC=O) 

 3.15 (NCH3) 76.7 (C=CH) Found: 270.15621  

  60.8 (NOCH3)   

  33.0 (NCH3)   

 

In all four cases the trans-s-cis structure was shown by virtue of the chemical shifts of the C-3 

of the heterocyclic ring all approximately 3.2 ppm. 
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4.4 Deprotection of the vinylogous enaminones 

 

The prepared enaminones [311-314] were deprotected to afford the corresponding alcohols 

[315-318] by treatment with potassium methoxide, generated in situ from potassium 

carbonate and methanol as outline in Section 3.2.3. (Scheme 4.9). The yields for which are 

outlined in Table 4.3 below 
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Scheme 4.9: (i) K2CO3, MeOH, rt, 3 h 

 

Table 4.3: Yields for the hydrolysis of the acetates 

 

Compound R Yield (%) Scale (mmol) 

[315] COCH3 82 2.87 

[316] CO2CH2CH3 85 15.0 

[317] CN 89 5.85 

[318] CON(OCH3)CH3 83 23.9 

 

The 1H NMR spectrum of ethyl (2E)-[1-(3-hydroxypropyl)-2-pyrrolidinylidene]ethanoate 

[316] showed the loss of the acetate singlet at 2.08 ppm and the appearance of a broad 

hydroxyl singlet at 1.92 ppm. The CH2OAc triplet signal at 4.07 ppm has shifted up-field to 

3.67 ppm, indicating the conversion to a CH2OH group. The 13C NMR spectrum also showed 

the loss of the acetate signals at 170.9 and 20.8 ppm and the appearance of a CH2OH signal at 

52.6 ppm. The mass spectrum possessed an ion at m/z 213.13665 (39%) and the parent ion of 

C11H19NO3 requires 213.13649. The FTIR spectrum showed the presence of a hydroxyl group 

by virtue of a broad OH signal at 3415 cm-1. The remaining three deprotected enaminones 

were characterized in a similar fashion, as highlighted in Table 4.4 below. 
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Table 4.4: Selected spectroscopic data for the acetate removal 

 

 1H NMR (ppm) 13C NMR (ppm) HRMS m/z (EI) FTIR (cm-1) 

[315] 3.68 (CH2OH) 52.6 (CH2OH) C10H17NO2 3366 (O-H) 

 2.30 (OH)  Calculated: 183.12593  

   Found: 183.12533  

[316] 3.67 (CH2OH) 52.7 (CH2OH) C11H19NO3 3415 (O-H) 

 1.92 (-OH)  Calculated: 213.13649  

   Found: 213.13665  

     

[317] 3.64 (CH2OH) 52.7 (CH2OH) C9H14N2O 3404 (O-H) 

 2.47 (OH)  Calculated: 166.11061  

   Found: 166.10937  

     

[318] 3.68 (CH2OH) 52.3 (CH2OH) C11H20N2O3 3353 (O-H) 

 2.04 (OH)  Calculated: 228.14739  

   Found: 228.14788  

 

4.5 Alkylative cyclisation of the deprotected vinylogous enaminones 

 

The cyclisation of the deprotected enaminones [315-318] was of great interest to us, as it gave 

us insight into how general the procedure is. In addition it allowed us to determine whether or 

not the Weinreb amide functionality would be suitable to use in the chiral synthesis of 

indolizidines as proposed in Sections 2.7.2 and 2.7.3. 

 

The cyclisation was achieved by initially treating the deprotected enaminones [315-318] with 

imidazole and triphenylphosphine in acetonitrile at ambient temperature, followed by 

iodine136. Finally the reaction mixture was heated up to reflux temperature for 45-60 minutes 

affording the cyclised products [319-322] (Scheme 4.10). 
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Scheme 4.10: (i) Imidazole, PPh3, I2, CH3CN:PhCH3, ∆, 45 min 

 

The mechanism for the alkylative cyclisation is shown below in Scheme 4.11. The 

triphenylphosphine and iodine initially react to form diiodo(triphenyl)phosphorane (step i). 

The imidazole then facilitates the deprotonation and subsequent substitution of the hydroxy 

hydrogen with phosphorane (step ii), thereafter the iodine substitutes the phosphorane group 

giving the corresponding iodinated product and triphenylphosphine oxide (step iii). As 

described in Section 2.4.1. under refluxing conditions the nucleophilicity of the nitrogen is 

extended to the enamine carbon allowing cyclisation to occur at the exocyclic carbon-carbon 

double bond (step iv), affording the bicyclic indolizidine skeleton.  
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Scheme 4.11: Alkylative cyclization 
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Purification by column chromatography after the standard work-up afforded the desired 

cyclised vinylogous urethane [320] and cyanamide [321]. The yields for them are outlined in 

Table 4.5 below. In the case of the cyclised vinylogous urea [322] flash column 

chromatography had to be employed to achieve effective separation from the 

triphenylphosphine oxide residues. Finally in the case of the cyclised vinylogous amide [319] 

the triphenylphosphine oxide residues were partially removed by recrystallisation from 

hexane. 

 

Table 4.5: Yields for cyclisations of the deprotected enaminones 

 

Compound R Yield (%) Scale (mmol) 

[319] COCH3 27* 38.5 

[320] CO2CH2CH3 59 4.05 

[321] CN 72 3.51 

[322] CON(OCH3)CH3 64 2.79 
* Traces of triphenylphosphine oxide present 

 

In the 1H NMR spectrum the formation of the vinylogous urethane [320] was shown by the 

loss of the characteristic vinyl proton at 4.56 ppm. In addition the spectrum showed four 

triplets each integrating for two protons, a pair at 3.19 and 3.06 ppm corresponding to H-4 

and H-5, and a pair at 2.96 and 2.25 ppm corresponding to H-2 and H-7. Two quintets at 1.82 

ppm also integrating for two protons showed the presence of H-3 and H-6. Finally a quartet 

integrating for two protons, and a triplet integrating for three protons at 4.00 and 1.16 ppm 

provides evidence for the carboxylic ester substituent at the 1-position. The 13C NMR 

spectrum showed the presence of the COCH2CH3 carbonyl at 168.1 ppm as well as the alkene 

carbons C-8 and C-1 at 158.6 and 86.9 ppm respectively. The HRMS showed the parent ion at 

195.12471 and C11H17NO2 requires 195.12593. 

 

The same procedure was used to determine whether the other cyclised enaminones [320-322] 

had formed. The characteristic signals used to determine that these compounds had formed 

are outlined in Table 4.6 below. 
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Table 4.6: Selected spectroscopic data for the cyclization of the N-hydroxypropyl 

enaminones 
 

 1H NMR (ppm) 13C NMR (ppm) HRMS m/z (EI) 

[319] 3.27 & 3.11 (H-4 & H-5) N/A* N/A* 

 3.05 & 2.33 (H-2 & H-7)   

 2.03 (COCH3)   

 1.84-1.70 (H-3 & H-6)   

[320] 3.19 & 3.06 (H-4 & H-5) 168.1 (C=O) C11H17NO2 

 2.96 & 2.25 (H-2 & H-7) 158.6 (C-8) Calculated: 195.12593 

 4.00 (OCH2CH3) 86.9 (C-1) Found: 195.12471 

 1.82 (H-3 & H-6)   

 1.16 (OCH2CH3)   

    

[321] 3.33 & 3.15 (H-4 & H-5) 159.2 (C-8) C9H12N2 

 2.74 & 2.23 (H-2 & H-7) 123.8 (CN) Calculated: 148.10005 

 1.97 & 1.84 (H-3 & H-6) 64.2 (C-1) Found: 148.09995 

    

[322] 3.62 (OMe) 174.4 (C-8) C11H18N2O2 

 3.26 & 3.18 (H-4 & H-5) 157.7 (C=O) Calculated: 210.13683 

 3.06 (NMe) 90.0 (C-1) Found: 210.13519 

 3.01 & 2.38 (H-2 & H-7) 59.7 (OCH3)  

 1.90 & 1.83 (H-3 & H-6) 34.3 (NCH3)  
*Further characterization was not done as the sample still had triphenylphosphine oxide residues present, despite recrystallisation from 

hexane. At this stage we decided to use the crude mixture in the next step, hoping that purification would then be easier. 

 

Although we were able to purify the bicyclic vinylogous urethane [320] and cyanamide [321] 

by standard chromatographic techniques, purification of the bicyclic vinylogous urea [322] 

required more careful flash column chromatography. The bicyclic ketone [319] proved to be 

most problematic as it has the same Rf as triphenylphosphine oxide, the byproduct of the 

triphenylphosphine, and as such could not be purified by chromatographic techniques. Several 

attempts were made to remove the triphenylphosphine oxide residues by recrystallisation from 

hexane with a best recovery of 27% of the ketone [319] which still showed traces of the 
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impurities. As a result of the problems associated with the purification of these compounds 

we felt it pertinent to investigate alternative methods for synthesizing the cyclized products.   

 

As we were most interested in the Weinreb amide and its applicability to the synthesis of 

indolizidines we investigated the use of alternatives to triphenylphosphine (Scheme 4.12) for 

the preparation of the vinylogous urea [322]. 

N
N

322318

N

O
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O N
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Me
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OH

 
 

Scheme 4.12: (i) Imidazole, PBu3 or POEt3, I2, CH3CN:PhCH3, ∆, 45 min 

 

We had hoped that the polarity of the oxidized by-products would be sufficiently different 

from that of the bicyclic urea [322], to allow purification by standard column 

chromatography. We initially chose tributylphosphine, unfortunately, although the desired 

product was formed, purification in this case proved impossible even under flash 

chromatographic conditions. We then decided to try triethyl phosphite, as it had proved 

effective in circumventing the same problem when performing Eschenmoser sulfide 

contractions. It was used as it is sparingly soluble in water and can therefore be removed by 

washing with water if chromatographic separation was not feasible. The reaction did not 

proceed as well as hoped, with the crude 1H NMR spectrum only showing trace amounts of 

the desired product being formed. Separation was again not possible by chromatography and 

despite extensive efforts to remove the oxidized by-product by washing with water the 1H 

NMR spectrum still showed vast amounts of contamination. 

 

A second alternative was to use high-loading chloromethylated polystyrene (Merrifield resin) 

[323] to mop up the triphenylphosphine and triphenylphosphine oxide residues after the 

reaction was finished according to the protocol outlined by Lipshutz and Blomgren137. Upon 

addition of sodium iodide and stirring overnight at room temperature the Merrifield resin 

[323] acts as a scavenger resin, removing all triphenylphosphine present (Scheme 4.13).  
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Scheme 4.13: (i) NaI, acetone, rt 

 

The authors also showed that triphenylphosphine oxide could be removed completely, and 

that the resin was chemoselective for triphenylphosphine and triphenylphosphine oxide in the 

presence of most nucleophiles including basic amines. The approach initially seemed very 

attractive, as the amount of resin [323] required was reasonable, with 1 g of resin being 

required to remove 2 mmol of phosphine at 25 °C. In all attempts, however, we were still left 

with contaminated samples despite stirring with an excess of the resin [323]. The protocol 

certainly looked promising, however, due to the costs of the resin we decided to investigate an 

alternative approach. 

 

The third alternative that we looked into was to convert the alcohol into a different leaving 

group such as a mesylate or a tosylate (Scheme 4.14), which in turn could then be replaced by 

iodine to enhance the rate of cyclisation109g. Nucleophilic substitution of the iodo group would 

then give us the cyclised products as described previously, however with no 

triphenylphosphine or triphenylphosphine oxide residues present, purification should then be 

trivial.  
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Scheme 4.14: (i) TsCl or MsCl, NEt3, DMAP, CH2Cl2,  rt, 18 h; (ii) NaI, CH3CN, ∆, 45 min 
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The tosylation/mesylation was achieved by treating the N-hydroxypropyl enaminones with a 

solution of either toluenesulfonyl chloride or methanesulfonyl chloride in the presence of 

triethylamine and a catalytic amount of DMAP. The procedure was attempted on both the 

vinylogous cyanamide [317] and the vinylogous urea [318], and in both cases the tosylation 

worked giving the desired products [324 and 325] and [326 and 327] in a 19 and 71% yield on 

a 4.2 and 0.9 mmol scale respectively. In addition to the expected product, the corresponding 

chlorinated product was also obtained in small amounts, and in the case of the vinylogous 

cyanamide careful column chromatography afforded a small amount of the pure chlorinated 

product [325] for spectroscopic analysis. The mesylated products [328 and 329] decomposed 

when they were subjected to column chromatography and as such were used directly in the 

subsequent cyclisation step.  

 

In the case of the vinylogous cyanamide the 1H NMR spectrum showed the loss of the 

hydroxyl protons at 2.47 ppm. The corresponding appearance of doublets at 7.79 ppm and 

7.38 ppm each integrating for two hydrogens, showed the presence of the aromatic hydrogens 

from the tosyl group. In addition a singlet integrating for three hydrogens at 2.47 ppm showed 

the presence of the tosyl CH3. In the 13C NMR spectrum the corresponding aromatic signals 

from the tosyl group were seen at 145.2, 132.5, 129.9 and 127.8 ppm and the tosyl methyl 

was seen at 20.7 ppm. The FTIR spectrum also showed no broad peak above 3000 cm-1, 

indicating the hydroxyl group was protected. 

 

In the 1H NMR spectrum the chlorinated by-product was also characterized by the loss of the 

hydroxyl protons at 2.47 ppm. The CH2OH triplet at 3.64 ppm was replaced by a CH2Cl 

triplet at 3.56 ppm.  

 

In a similar fashion the tosylated vinylogous urea was shown to have formed by the presence 

of the aromatic doublets at 7.79 and 7.36 ppm, and the tosyl CH3 at 2.45 ppm in the 1H NMR 

spectrum. Once again, as expected, the peak corresponding to the hydroxyl proton at 2.04 

ppm was missing. The 13C NMR spectrum again showed the presence of the tosyl aromatic 

protons at 144.9, 132.7, 129.9 and 127.8 ppm, and the tosyl CH3 at 21.2 ppm.  

 

Having the tosylated/mesylated products in hand we attempted to cyclise the vinylogous 

cyanamide and urea by refluxing with sodium iodide in acetonitrile. All attempts to cyclise 
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the tosylated product resulted only in the recovery of the unreacted tosylate and chloride 

starting materials. The mesylated product fared worse with only decomposed material being 

recovered. In a final attempt to afford the desired products we attempted the cyclisation in a 

microwave reactor; however the results were the same as described above in both cases.  

 

Finally we reverted to the original procedure, and resorted to separating the product and 

triphenylphosphine oxide residues from the baseline impurities by column chromatography. 

Once the baseline impurities were removed it was possible to remove most of the 

triphenylphosphine oxide by recystallisation from hexane. The relatively impure product was 

then subjected to the catalytic reduction of the enaminone system, after which purification 

was possible as described below in Section 4.6. 

 

4.6 Catalytic reduction of the enaminone system 

 

The catalytic reduction of the cyclised enaminones [301-303] was achieved by subjecting 

them to hydrogenation conditions at one atmosphere in the presence of Adams’ catalyst 

(PtO2.xH2O) in an acidic solvent such as glacial acetic acid (Scheme 4.15).  
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Scheme 4.15: (i) H2(g), 1 atm, Adams’ catalyst, glacial acetic acid, 24 h, rt 

 

There are two possible routes that the hydrogenation might take for the reduction138. Both 

involve the absorption of hydrogen onto the catalyst’s surface, thereby weakening the H-H 

bond and allowing its delivery across a double bond. One possibility is a direct catalytic 

hydrogenation of the conjugated enaminones with hydrogen being delivered across the C-1/C-

8 bond (Figure 4.2).  
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Figure 4.2: Hydrogenation across the C-1/C-8 bond 

 

The other is a catalytic hydrogenation of an iminium system (Figure 4.3), wherein the 

molecule is protonated thereby generating the iminium system. Hydrogen is then delivered 

across the C-8a/N bond, and under a basic workup the nitrogen is deprotonated.  
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Figure 4.3: Hydrogenation across the C-8 – N bond 

 

Whether or not this is the case is still debatable as the conjugated tertiary amine is a weak 

base, and the acid source in the reaction, glacial acetic acid is a weak acid itself, therefore it 

may not be strong enough to protonate the molecule. Regardless of which mechanism is in 

play the outcome is the same. Further reference to the stereochemical consequences of this 

reduction are delt with in detail in Section 5.17. 

 

After the usual workup and purification by column chromatography the desired 5-substituted 

indolizidines were obtained, the yields for which are outlined below in Table 4.7.  
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Table 4.7: Yields for reduction of the cyclised enaminones 

 

Compound R Yield (%) Scale 

(mmol) 

Diastereomeric Ratio 

(cis/trans) 

[300] COCH3 0 8.51 N/A 

[301] CO2CH2CH3 72 2.63 85:15 

[302] CN 85 1.95 92:8 

[303] CON(OCH3)CH3 25* 0.82 95:5 
* Based on the N-hydroxypropyl enaminone 

 

As the nitrogen in the reduced indolizidines is now basic an acid-base extraction could also be 

performed in addition to the usual workup to remove any residual triphenylphosphine oxide 

residues still present after the previous step. The products were obtained as a racemic mixture 

of diastereomers, as expected the major diastereomer showed the characteristic cis addition of 

hydrogen across the double bond. However, in the case of ethyl octahydro-8-

indolizinecarboxylate [301] careful flash column chromatography afforded us small portions 

of pure samples of both the diastereomers (±)-[301a] and (±)-[301b] illustrated below in 

Figure 4.4. 
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Figure 4.4: Diastereomers of ethyl octahydro-8-indolizinecarboxylate [301] 

The cis and trans compounds were identified by comparing the NMR spectroscopic data with 

analogous compounds containing a pentyl chain at the 4-position prepared previously in the 

Wits laboratories100. In the 1H NMR spectrum, proton H-8a in diastereomer (±)-[301a] was 

identified at 2.13 ppm as a quartet, integrating for one proton with a coupling constant of 9.0 

Hz. The corresponding proton in the other diastereomer (±)-[301b] could not be identified. 

Other characteristic signals that could be identified were H-3eq at 3.06 and 2.96 ppm in (±)-

[301a] and (±)-[301b] respectively, H-3ax could only be identified in (±)-[301b] as a multiplet 

at 2.14-2.07 ppm. The carboxylic ester CH2 was clearly seen as a quartet integrating for two 



Chapter 4            Synthesis of Mono-Substituted Indolizidines 

 120 

protons at 4.13 ppm in (±)-[301a] and as a multiplet integrating for two protons at 4.16-3.99 

in (±)-[301b]. The terminal CH3- was identified in both (±)-[301a] and (±)-[301b] as a triplet, 

integrating for three protons, at 1.26 and 1.18 ppm respectively. 

The 13C NMR spectra were more useful as they showed the loss of the alkene carbons at 

158.6 and 86.9 ppm. The carbonyl group was present in both (±)-[301a] and (±)-[301b] at 

174.3 and 173.0 ppm respectively. The HRMS possessed an ion at m/z 197.13962 (8%) for 

(±)-[301a], and 197.14182 (43%) for (±)-[301b], and the parent ion of C11H19NO2 requires 

197.14158. The remaining cyclised systems were identified in a similar manner. The data is 

summarized below in Table 4.8. 

 

Table 4.8: Spectroscopic data for the catalytic reduction of the enaminone system 

 

 1H NMR (ppm) 13C NMR (ppm) HRMS m/z (EI) 

[301a] 2.13 (H-8) 174.3 (C=O) C11H19NO2 

 3.06 (H-3eq)  Calculated: 197.14158 

 4.13 (OCH2CH3)  Found: 197.13962 

 1.26 (OCH2CH3)   

[301b] 2.96 (H-3eq) 173.0 (C=O) C11H19NO2 

 2.14-2.07 (H-3ax)  Calculated: 197.14158 

 4.16-3.99 (OCH2CH3)  Found: 197.14182 

 1.18 (OCH2CH3)   

    

[302] 3.16-3.02 (H-3eq) 120.0 (C≡N) N/A 

  63.3 (C-8a)  

  31.9 (C-8)  

    

[303] 3.67 (NOCH3) 174.7 (C=O) C11H20N2O2 

 3.18 (NCH3) 63.5 (C-8a) Calculated: 212.15248 

 3.08-2.94 (H-8 & H-8a) 61.2 (NOCH3) Found: 212.15176 

  37.0 (C-8)  

  29.6 (NCH3)  
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Unfortunately, to our disappointment the reduction of the alkene fragment in the bicyclic 

cyanamide [321] was not reproducible. We were only able isolated the desired compound 

once, despite repeating the reaction several times, altering reaction times and pressure to try 

optimize the reaction conditions. In most cases, the nitrile group appeared to have been fully 

or partially reduced. In the case of the reduction of [319] which still had triphenylphosphine 

residues present we were unable to isolate any product. Interestingly we were also never able 

to isolate any of the reduced vinylogous urea [303] when the starting material [322] had 

anything more than trace amounts of the triphenylphosphine residues present.  

 

4.7 Functionalising the substituent  

 

Having synthesized the desired mono-substituted indolizidines [301-303], we decided to 

investigate the applicability of the various groups for the addition of substituents found in the 

5-position of the naturally occurring 5,8-disubstituted indolizidines. These attempted 

modifications are dealt with below class by class. 

 

4.7.1 Reduction and alkylation of the carboxylic ester [301] 

 

We envisaged being able to reduce the carboxylic ester moiety in ethyl octahydro-8-

indolizinecarboxylate [301] to an alcohol [330], which could then be mesylated, allowing 

alkylation with a suitable Grignard reagent as outlined in Scheme 4.16 below. 
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Scheme 4.16: (i) LiAlH4, Et2O, 3 h, 85%; (ii) MsCl, NEt3, CH2Cl2, 324 h; (iii) RMgBr, THF 
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4.7.1.1 Preparation of (±±±±)-tashiromine [330a] and (±±±±)-5-epitashiromine [330b] 

 

Reduction of the diastereomeric mixture of [301] to the corresponding alcohol and subsequent 

separation of the resulting diastereomers represents a complete synthesis of the (±)-

tashiromine [330a] and its epimer (±)-5-epitashiromine [330b] (Figure 4.5).  

 

N
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H
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Figure 4.5: (±)-Tashiromine [330a] and (±)-5-epitashiromine [330b] 

 

(±)-Tashiromine [330a] and (±)-5-epitashiromine [330b] have both been prepared previously 

and prior to 2005 all syntheses of these indolizidines involved the use of either chiral 

auxiliaries or molecules derived from the chiral pool139-142. In 2005 Dieter et al.143 described 

an asymmetric preparation of 2-alkenyl-N-Boc-pyrrolidines [331] which, when N-Boc 

deprotected, cyclised via intramolecular N-alkylation yielding an indolizidine [332] skeleton. 

Hydroboration-oxidation of [332] and finally amine–BH3 cleavage using trimethyl silyl 

chloride in methanol afforded a racemic mixture of the two diastereomers [330a] and [330b] 

(Scheme 4.17). The two diastereomers were then separated by flash column chromatography 

affording (+)-tashiromine [330a] (98:2 er) and (+)-5-epitashiromine [330b] (95:5 er) in a 

diastereomeric ratio of 70:30 (82%) to 80:20 (85%) depending on the reaction conditions.   
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Scheme 4.17: (i) (a) Me3SiCl, MeOH, 12 h, 25 °C,  NaHCO3; (b) H2, Pd/C (10%), CH2Cl2, 12 

h; (ii) (a) BH3.THF (2.2 eq.), THF, 0-25 °C, 1 h, then 60 °C, 1h; (b) 10 M NaOH (3 eq.), 

H2O2 (30%, 5 eq.), 0-25°C, 12 h, 96%; (iii) (a) BH3.THF, THF, 0-25 °C, 1 h; (b) 9-BBN (1 

eq.), THF, 60 °C, 1 h; (c) 10 M NaOH (3 eq.), H2O2 (30%, 5 eq.), 0-25 °C, 12 h, 96% 
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Interestingly Dieter et al.143 noted that (+)-epitashiromine [330b] displayed a dextrorotatory 

rotation after initial isolation, which changed to a levorotatory rotation after additional 

passage through silica gel, a phenomenon that had been previously reported in 1998139c.  

 

We introduced the racemic mixture of [301] to a slurry of lithium aluminium hydride in 

diethyl ether. Upon workup and purification by flash column chromatography using a 

95:4.75:0.25 ratio of methanol:dichloromethane:ammonium hydroxide as eluent we obtained 

(±)-tashiromine [330a] (Figure 4.6) and its epimer (±)-5-epitashiromine [330b] (Figure 4.7) 

as pure compounds in an 87:13 ratio in 87% yield respectively on an 4.3 mmol scale. The 

spectroscopic data compared well with previously published results.143-144 The data are 

summarized below in Tables 4.9 - 4.12. Separation of the diastereomers using flash column 

chromatography had previously been described by Dieter et al. although they claimed to have 

used a 95:4.75:0.25 ratio of dichloromethane:methanol:ammonium hydroxide as eluent. We 

found that under these conditions the product remained on the baseline, and when we changed 

to the more polar solvent system separation became straightforward. The HRMS showed 

155.12940 (93%) and 155.12955 (81%) for (±)-tashiromine [330a] and (±)-5-epitashiromine 

[330b] respectively, and C9H17NO requires 155.13101. 
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Figure 4.6: (±)-Tashiromine [330a] 

 

Table 4.9: Comparison of 1H NMR spectroscopic data for (±)-Tashiromine [330a] 

 

 1H NMR (CDCl3) 1H NMR (CDCl3) 

Proton Riley (300 MHz) Dieter143 

CH2aOH 3.60 (dd, J 10.7, 4.6 Hz, 1H) 3.62 (dd, J 10.7, 4.6 Hz, 1H) 

CH2bOH 3.43 (dd, J 10.7, 6.5 Hz, 1H) 3.48 (dd, J 10.8, 6.1 Hz, 1H) 

OH 3.25 (s, broad, 1H)  
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Table 4.9 continued: Comparison of 1H NMR spectroscopic data for (±)-Tashiromine [330a] 

 

 1H NMR (CDCl3) 1H NMR (CDCl3) 

Proton Riley (300 MHz) Dieter143 

H-4eq & H-5eq 3.12-3.04 (m, 2H) 3.15-3.02 (m, 2H) 

H* 2.08 (q, J 9.1, 1H) 2.09-2.01 (m, 1H), 

H* 1.98-1.85 (m, 1H) 2.05-1.80 (m, 3H) 

H* 1.94 (ddd, J 16.7, 12.4, 2.8, 2H)  

H* 1.85-1.59 (m, 4H) 1.74-1.37 (m, 7H) 

H* 1.55-1.42 (m, 2H)  

H* 1.04 (ddd, J 24.7, 12.4, 5.0, 2H)   1.23-1.15 (m, 1H) 
* Remianing hydrogens 

 

Table 4.10: Comparison of 13C NMR spectroscopic data for (±)-Tashiromine [330a] 

 

 13C NMR (CDCl3) 13C NMR (CDCl3) 
13C NMR (CDCl3) 

Carbon Riley (300MHz) Dieter143 Kim144 

C-8 66..5 65.6 65.8 

CH2OH 65.0 65.6 65.0 

C-5 54.0 53.5 53.6 

C-4 52.6 52.6 52.1 

C-1 44.3 44.3 44.1 

C-2* 28.8 28.9 28.5 

C-7* 27.5 27.4 27.1 

C-3* 24.9 24.9 24.6 

C-6 20.6 20.8 20.2 
*Interchangeable 
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Figure 4.7: (±)-5-epitashiromine [330b] 
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Table 4.11: Comparison of 1H NMR spectroscopic data for (±)-5-epitashiromine [330b] 

 

 1H NMR (CDCl3) 1H NMR (CDCl3) 

Proton Riley (300 MHz) Dieter143 

OH 4.53 (s, broad, 1H)  

CH2aOH 4.12 (dd, J 10.7, 4.5, 1H) 4.15 (dd, J 10.9, 4.1 Hz, 1H) 

CH2bOH 3.74 (dd, J 10.7, 1.8, 1H) 3.71 (br d, J 9.7Hz, 1H) 

H-4eq 3.11-3.07 (m, 1H) 3.11-3.05 (m, 1H) 

H-5eq 3.01 (ddd, J J 9.1, 2.9, 1.8, 1H) 3.03-2.91 (m, 1H), 

H-8 2.29-2.23 (m, 1H) 2.36-2.24 (m, 1H) 

H* 2.07-1.95 (m, 3H) 2.12-1.93 (m, 3H) 

H* 1.93-1.87 (m, 2H) 1.90-1.61 (m, 6H) 

H* 1.84-1.65 (m, 4H)  

H* 1.64-1.47 (m, 2H) 1.60-1.42 (m, 2H) 
* Remianing hydrogens 

 

Table 4.12: Comparison of 13C NMR spectroscopic data for (±)-5-epitashiromine [330b] 

 

 13C NMR (CDCl3) 13C NMR (CDCl3) 
13C NMR (CDCl3) 

Carbon Riley (300MHz) Dieter143 Kim145 

C-8 66.5 66.8 66.8 

CH2OH 64.9 66.5 65.7 

C-5 54.3 54.4 54.5 

C-4 53.3 54.0 53.5 

C-1 35.4 35.3 35.3 

C-2* 29.9 30.5 30.6 

C-7* 25.6 25.7 25.8 

C-3* 22.9 23.2 23.3 

C-6 20.6 20.8 20.8 
*Interchangeable 
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4.7.1.2 Mesylation and alkylation of alcohol [330] 

 

Mesylation of the diastereomeric mixture of alcohol [330] under standard conditions appeared 

to proceed smoothly by tlc, however on work-up the product obtained rapidly discoloured and 

spectroscopic analysis indicated an unidentifiable product (Scheme 4.18).  
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(iii)
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Scheme 4.18: (i) MsCl, CH2Cl2, 0 °C-rt; (ii) RMgBr, THF, 0 °C-rt, 24 h  0%; (iii) Raney 

nickel, i-PrOH, ∆, 3 h, 0% 

 

As a result we decided to use the mesylated alcohol [333] immediately in the alkylation step 

on a 0.2-0.3 mmol scale. Ethylmagnesium bromide and methylmagnesium iodide were used 

as alkylating reagents, and despite promising tlc analysis no product could be recovered after 

work-up. Treatment with Raney nickel to defuntionalise the mesylate [333], leaving behind a 

methyl substituent also proved fruitless. A possible reason for the failure of this approach is 

that the nucleophilic nitrogen may be reacting preferentially in either an intra- or 

intermolecular manner with the mesylate, a good leaving group. If this is the case it would 

make this approach useless, however, we have in the past successfully mesylated alcohols on 

analogous indolizidines and quinolizidines and then defunctionalised them by treatment with 

Raney nickel.100, 108k, 108h We also felt that we may have been losing the compounds due to 

volatility problems, but because we were more interested in the Weinreb amide and nitrile 

functionalisations we decided to abandon any further investigation into this route. 
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4.7.2 Defunctionalisation of the carbonyl group in the bicyclic ketone 

 

We had originally planned to test the removal of the carbonyl group by converting the 

bicyclic ketone [300] to the thioacetal derivative. Subsequent treatment with Raney nickel 

should then have afforded the desired ethyl chain. However, due to the inability to purify the 

precursors in the previous two steps we were not able to test this approach. Fortunately there 

is precedent for the removal of the carbonyl group using this method. Ma and Zhu107 in their 

synthesis of indolizidine (−)-209I [185] converted ketone [191] into thioacetal [192] by 

treatment with 1,2-ethanedithiol and boron trifluoride diethyl etherate. The thioacetal [192] 

was then defunctionalised by exposure to Raney nickel in isopropanol to afford 209I [185] 

(Scheme 4.19). This approach is useful, as we could prepare comparable ketones from our 

nitrile and Weinreb amide precursors. 
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Scheme 4.19: (i) HSCH2CH2SH, BF3OEt2.Et2O, 65%; (ii) Raney-nickel, i-PrOH, 70°C, 81% 

 

4.7.3 Attempted alkylation of the bicyclic nitrile [321]  

 

Owing to the reproducibility problems associated with the catalytic reduction of the 

enaminone backbone in the 1,2,3,5,6,7-hexahydro-8-indolizinecarbonitrile [321] we 

envisaged having to alkylate the nitrile prior to the reduction step. Alkylation prior to the 

catalytic reduction was not really desirable as it limited us to the preparation of saturated 

chains at the 5-position. However, having prepared the material we felt it would still be 

interesting to see if we could alkylate the nitrile [321] with the enaminone backbone in place. 

 

We attempted two alkylating routes, the first involved the direct reaction of the nitrile [321] 

with an appropriate Grignard reagent, and the second involved the use of 

alkylidenephosphoranes to afforded the desired transformation as reported by Barnhardt, Jr. 

and McEwen145 (Scheme 4.20). 
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Scheme 4.20: (i) RMgBr, THF, −78°C - rt; (ii) a) Ph3P+CH3Br−, n-BuLi, 1h, b) LiI, [321], ∆ 

48 h 

 

We attempted several alkylations of the nitrile [321] using methyllithium or ethylmagnesium 

chloride at temperatures ranging from −78 °C to room temperature. In all cases unidentifiable 

products were obtained. It was during these investigations that we came across a report by 

Barnhardt, Jr. and McEwen145 detailing the use of alkylidenephosphoranes to convert nitriles 

into ketones. They reported that the reaction of both aliphatic and aromatic nitriles with ylides 

derived from a range of phosphonium iodides, followed by acid-catalyzed hydrolysis afforded 

very good yields of the corresponding ketones. The use of phosphonium bromides and 

chlorides however afforded very limited if any conversion to ketones. They suggest that the 

reactivity of the phosphonium iodides is because they form homogeneous solutions when 

reacting with organolithium compounds, whereas the corresponding chlorides and bromides 

form heterogeneous mixtures. They also showed that the addition of powdered lithium iodide 

to an unreactive chloride or bromide caused the reaction to occur in high yield. A mechanism 

is proposed wherein the lithium ion complexes with the nitrile, increasing its electrophillic 

nature (Scheme 4.21). 
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Scheme 4.21: Proposed mechanism of the condensation step  
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Using a similar protocol with a milder workup outlined by Taber and Cai146 we treated [321] 

with n-butyllithium in diethyl ether. Powdered anhydrous lithium iodide was added after one 

hour of refluxing and the solution was refluxed for a further hour. The nitrile [321] was then 

added and the mixture was refluxed for 48 hours, after which time the residue was hydrolysed 

with methanol:water. The standard purification only afforded recovered starting material. 

Although the method was unsuccessful it could potentially be more useful when applied to the 

reduced bicyclic nitrile [302]. Unfortunately due to the problems associated with the over 

reduction of [321], we were unable to produce material on which to test this approach.  

 

4.7.4 Attempted alkylation of the Weinreb amide 

 

4.7.4.1 Overview of the synthetic utility of Weinreb’s amide 

 

The synthesis and utility of the Weinreb amide was originally reported by Weinreb and 

Nahm.147 Since then Weinreb amides have been used regularly to produce ketones and 

aldehydes by their reaction with Grignard or organolithium reagents. The synthetic utility of 

the Weinreb amide revolves primarily around the fact that they can be used to produce both 

ketones and aldehydes when treated with large excesses of organometallics.148 The problem of 

multiple additions is overcome owing to the chelation of the metal ion between the carbonyl 

oxygen and the N-methoxy oxygen, preventing the collapse of the tetrahedral intermediate 

[334] until an aqueous acidic or basic work-up is used (Scheme 4.22). 
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Scheme 4.22: Mechanism of Grignard/organolithium addition to a Weinreb amide; (i) 

R’MgBr (excess) or R’Li (excess); (ii) Acidic or basic hydrolysis 

 

Weinreb amides have traditionally been prepared from carboxylic acid halides, by treatment 

with N,O-dimethylhydroxylamine hydrochloride.149 Esters and lactones have also been used 

by treating them N,O-dimethylhydroxylamine hydrochloride and trimethyl aluminium150-158 or 
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chloro(dimethyl)aluminium159, and hindered esters have been converted into the amide by the 

treatment of N,O-dimethylhydroxylamine hydrochloride with the magnesium amide 

[Me(MeO)N-MgCl]160. Sn[N(TMS)2]2 and N,O-dimethylhydroxylamine hydrochloride also 

convert esters into amides161. The direct conversion of carboxylic acids into Weinreb amides 

has been reported using numerous acid activating agents.148a, 162 Aldehydes are not converted 

into the amides directly, however under oxidative conditions in the presence of N,O-

dimethylhydroxylamine hydrochloride and triethylamine they give the corresponding 

Weinreb amides148a. 

 

The most useful application of Weinreb amides is in the synthesis of ketones from various 

alkyl, alkenyl, alkynyl, aryl and heteroaryl Grignards and organolithiums148a. The Weinreb 

amide has also been successfully used to synthesize aldehydes by treatment with lithium 

aluminium hydride,163 Vitride,164 [LiAl(O-t-Bu)3H], 165 LTEPA165 and modified-AD-mix-β.166 

In addition Murphy et al. showed the conversion of Weinreb amides to ketones via a 

nonclassical Wittig reaction.167 

 

4.7.4.2 Attempted alkylation of the Weinreb amide 

 

Investigations were undertaken on the potential alkylation of both the saturated [303] and 

unsaturated cyclised mono-substitued indolizidines [322] (Scheme 4.23). In the case of the 

unsaturated system [322], alkylation was attempted using methyllithium, n-butyllithium, 

ethylmagnesium bromide and allylmagnesium bromide on a 0.2-0.47 mmol scale. In all four 

cases we were only able to recover unreacted starting material. 
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Scheme 4.23: (i) a) RMgBr, THF, 0-25 °C b) NH4Cl; (ii) H2(g), PtO2.xH2O, glacial acetic 

acid, rt; (iii)RMgBr, THF, 0-25 °C b) NH4Cl   
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This result was not unexpected. In fact Mechelke and Meyers168 reported that Weinreb amides 

incorporated into an enaminone backbone were resistant to alkylation with organometallics. 

When the alkene fragment was reduced, the amide then underwent the expected mono-

alkylation when treated with a Grignard or alkyl organolithium reagent (Scheme 4.24). 
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Scheme 4.24: (i) N-methoxy-N-methyl-2-bromoacetamide; then P(OMe)3, NEt3, ∆, 69%; (ii) 

Pd/C, H2 (60 psi), Na2CO3, EtOAc, 96%; (iii) MeLi, THF, −78°C, 85% 

 

As with the unsaturated system [322] we attempted to alkylated the saturated system [303], 

using methyllithium, n-butyllithium, ethylmagnesium bromide and allylmagnesium bromide 

on a 0.3-0.6 mmol scale. To our disappointment we were unable to recover any of the 

alkylated products, despite repeating the reactions several times using different amounts of the 

organometallic reagent. Despite the outcome of the Weinreb amide alkylations, we decided 

that in light of the overwhelming amount of literature precedent, this was still the best bet for 

the enantioselective preparation of 5,8-disubstituted indolizidines. This topic will be pursued 

in Section 5.17. 

 

4.8 Summary of the results for the attempted synthesis of 5-substituted indolizidines 

 

At the onset of this model study we already agreed that the preparation of vinylogous amides 

was the least attractive route. It required that the alkyl substituent be introduced early on at the 

sulfide contraction stage, and it limited us to the preparation of saturated substituents due to 

the late stage catalytic hydrogenation of the exocyclic double bond. 

 

The use of vinylogous urethanes, although feasible, is not really attractive as it involves the 

cumbersome preparation of mesylates and the subsequent substitution using organometallics. 

The model study clearly showed that the mesylates, if formed, are particularly unstable and 

we were not able to isolated and purify any of them. 
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The lack of reproducibility in the catalytic hydrogenation of the exocyclic double bond of the 

vinylogous cyanamide required that any alkylation would have to be done prior to the 

reduction step. This once again would limit us to saturated substituents. In the model study 

however, the nitrile remained untouched when treated with organometallic while the 

enaminone backbone was still in place.   

 

Despite the outcome of the Weinreb amide alkylations we decided the preparation of 

vinylogous ureas was still the best bet for the enantioselective synthesis of our target 5,8-

disubstituted indolizidines. The vinylogous urea was stable with regards to the sulfide 

contraction, alkylative cyclisation and catalytic hydrogenation steps. The apparent ease of 

conversion of the Weinreb amide into corresponding ketones is well documented in the 

literature, and appears to suffer fewer reactivity problems than the equivalent nitrile. As a 

result we decide to proceed with the attempted enantioselective synthesis of indolizidines 

[174, 185 and 258] utilizing the Weinreb amide functionality to introduce the appropriate 

substituent at the 5-position. 
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CHAPTER 5 
 

ENANTIOSELECTIVE SYNTHESIS OF 5,8-DISUBSTITUTED INDOLIZIDINES  
 
5.1 Introduction 
 

This chapter is concerned with the progress towards the enantioselective preparation of three 

5,8-disubstituted indolizidines 209I [185], 223V [174] and  197C [258] (Figure 5.1).  

 

N N N

OH

197C [258]223V [174]209I [185]  

 

Figure 5.1: Indolizidines 209I [185], 223V [174] and 197C [258] 

 

The synthesis of these three alkaloids formed the primary focus of my doctoral studies. We 

aimed to achieve an enantioselective synthesis based on the “Wits approach” methodology 

developed in our labs, in particular the work done by Gravestock100, 108h as outlined in 

Chapter 2. In addition the insights gained into the use of a Weinreb amide at the 5-position of 

an indolizidine, introduced previously in Chapter 4, were used to extend the known 

methodology.  

 

5.2 Preparation of tert-butyl (2E)-2-hexenoate [267] 

 

The required starting materials for the enantioselective synthesis are (R)-(+)-N-benzyl-N-α-

methylbenzylamine [243] which was purchased commercially, and the enoate substrate tert-

butyl (2E)-oct-2-enoate [267]. tert-Butyl (2E)-oct-2-enoate [267] is synthesized from tert-

butyl bromoacetate [335] in two steps (Scheme 5.1). 
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Scheme 5.1: (i) P(OEt)3, ∆, 4 h, 90%; (ii) LiCl, DBU, CH3(CH2)2CHO, 24 h, 80% 

 

The initial step involved an Arbuzov reaction169 between tert-butyl bromoacetate [335] and 

triethyl phosphite, affording the phosphonate [246] in a 90% yield on a 91 mmol scale after 

distillation (Scheme 5.2). 
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Scheme 5.2: Arbuzov reaction 

 

The obtained boiling point of 115 °C at 1 mmHg was comparable to the values quoted in the 

literature.100, 108h, 108k Spectroscopic data corresponded with those published previously. The 
1H NMR spectrum was characterized by the presence of a singlet integrating for nine protons 

corresponding to the tert-butyl hydrogens at 1.48 ppm, and a doublet at 2.88 ppm (J = 21.5 

Hz) intergrating for two protons corresponding to the CH2P=O group. The CH2P=O carbon 

was split into a doublet (J = 133.5 Hz) seen at 35.5 ppm in the 13C NMR spectrum; the 

coupling constant shows the coupling to the phosphorus atom. The FTIR spectrum showed a 

carbonyl stretch at 1731 cm−1. 

 

The phosphonate [246] was then subjected to a Horner-Wadsworth-Emmons Wittig 

olefination170 by treatment with lithium chloride, 1,8-diazabicyclo[5.4.0]undec-7-ene and 
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freshly distilled butanal. The reaction is a modification of the standard Wittig reaction, and is 

used as it affords the geometrically pure E-�,�-unsaturated ester. The selectivity arises from 

the chelation of the lithium ions with the deprotonated phosphonoacetate (Scheme 5.3). 

Treatment with butanal then affords only the desired E-isomer. 
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Scheme 5.3: (i) DBU, LiCl, CH3CN, 80% 

 

After purification by distillation, tert-butyl (2E)-2-hexenoate [267] was obtained as a clear 

liquid in an 80% yield on a 63 mmol scale, with none of the Z-isomer present. Spectroscopic 

data were comparable to those reported by Gravestock100, 108h. In the 1H NMR spectrum the 

alkene protons were clearly seen as a doublet of triplets integrating for one proton at 6.86 ppm 

(J 6.9 and 15.2 Hz) and a doublet integrating for one proton at 5.74 ppm (J 15.6 Hz). The 

coupling constants of 15.5 and 15.5 Hz confirmed the desired E-geometry. The 13C NMR 

spectrum showed the characteristic alkene carbons at 147.9 and 123.1 ppm.  

 

5.3 Preparation of tert-butyl (3R)-3-amino-hexanoate [336] 

 

Having prepared the desired enoate [267] in the correct E-configuration we then needed to 

introduce the chirality at what would become the 5-position. This was done by employing the 

methodology developed by Davies and co-workers124 (Scheme 5.4). 
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Scheme 5.4: (i) n-BuLi, -78 °C, THF,  3 h, 77%; (ii) 7 atm H2(g), 10% Pd/C, AcOH, 3 d, 65% 

 

The Davies group has been interested in the preparation of �-amino esters as important 

intermediates in the synthesis of pharmaceutical drugs, and to date have developed a 

generalized approach to access enantiomerically pure �-amino esters.124 Their protocol 

involves the addition of various chirally pure lithium amides to �,�-unsaturated esters. They 

initially reported the addition of lithium N-(3,4-dimethoxybenzyl)-�-methylbenzylamide to an 

iron crotyl complex E-[(C5H5)Fe(CO)(PPh3)(COCH=CHMe)] in good diastereoselectivity.171 

In a subsequent report the Michael addition between lithium (R)-�-methylbenzylamide amine 

[337] and simple E-crotonates was described124 (Scheme 5.5).  
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Scheme 5.5: (i) n-BuLi, THF, -78 °C; (ii) CH3CH=CHCO2Me; (iii) CH3CH=CHCO2Me, 

EtOH, ∆ 

 

To their disappointment the reactions showed little or no selectivity at all. The use of more 

bulky secondary amines however afforded the desired alkylated adducts in good yield and 

high diastereoselectivity124 (Scheme 5.6).  
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Scheme 5.6: (i) n-BuLi, THF, -78 °C 

 

The nature of the ester also seemed to play an important role with �,�-unsaturated tert-butyl 

esters giving the best selectivity124 (Table 5.1). 

 

Table 5.1: Selectivity and yields for the addition of chiral amines to various �,�-unsaturated 

esters 

 

OR

O

 

R 

Ph N
H

Ph
 

243 

Ph N
H

R PhR

 
Ph N

H
OMe

OMe  

Me 95 (85%) >99* (57%) 95 (68%) 

CH2Ph 95 (88%) 98** (23%) 96 (74%) 

t-Bu >99 (82%) >99* (27%) >99 (83%) 
* None of the minor diastereomer was detected 

** 0 °C  

 

Since their initial observations Davies and co-workers have applied and reported this 

methodology on numerous substrates including crotonates, cinnamates, cyclopentanoates172, 

cyclohexanoates173, �,�-unsaturated acrylates possessing ethyl, iso-propyl, benzyl, E-

CH3CH=CH and 2-furyl groups174-176. They have also reported the addition of (R)-(+)-N-

benzyl-N-α-methylbenzylamine [243] to E-tert-butyl dec-2-enoate [338]124. The conjugated 

product [339] was formed in a 91% yield with diastereoselectivity >95%. The debenzylated 

amino ester [340] was then obtained after a high pressure hydrogenation in a 92% yield 

(Scheme 5.7).  
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Scheme 5.7: (i) n-BuLi, -78 °C, 91%; (ii) 7 atm H2(g), Pd/C, AcOH, 92% 

 

This result prompted Gravestock to investigate the addition of lithiated (R)-(+)-N-benzyl-N-α-

methylbenzylamine [243] to various tert-butyl E-alk-2-enoates in our laboratories.108h 

Gravestock demonstrated the preparation of a number of debenzylated amino esters in both 

high yield and diastereoselectivity. A comparison with the model proposed by Davies124, 

allowed the assignment of the absolute configuration. 

 

In the present project to afford the Davies alkylation product a solution of (R)-(+)-N-benzyl-

N-α-methylbenzylamine [243] in tetrahydrofuran was cooled to −78 °C and lithiated with n-

butyllithium. The enoate [267] was then added to the lithiated amine dropwise, and after three 

hours at −78 °C the reaction was worked up. The crude product was purified by column 

chromatography to give tert-butyl (3R)-3-{benzyl[(1S)-1-phenylethyl]amino}hexanoate [268] 

in a 77% yield on a 15.5 mmol scale. The spectroscopic data compared well with those 

reported previously by Gravestock.100 The 1H NMR spectrum showed the loss of the alkene 

protons at 6.86 and 5.74 ppm. The aromatic protons were shown by a multiplet at 7.43-7.20 

ppm intergrating for ten protons, and the benzylic protons were seen as a quartet at 3.81 ppm 

in the case of H-1’’ and as two doublets at 3.81 and 3.48 ppm in the case of H-1’’’. Finally a 

methyl group was shown by the presence of a doublet intergrating for three protons at 1.32 

ppm.  The 13C NMR spectrum also showed the loss of the characteristic alkene protons at 

147.9 and 123.1 ppm, once again the benzyl groups were shown by the presence of aromatic 

protons in the 143.1-126.5 ppm region, benzylic protons at 79.8 and 50.1 ppm and the methyl 

substituent at 20.5 ppm. The product was optically active, and gave an optical rotation of 

[α]D
19 +8.00 (c 2.00 CHCl3). 

 

The next step involved a high pressure debenzylation of the free amino ester [268] by 

treatment with hydrogen at 7 atmospheres in glacial acetic acid in the presence of 10% 
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palladium on carbon for 3 days. The desired primary amine [336] was obtained in 65% yield 

on a 9.2 mmol scale as a light yellow oil. The spectroscopic data correlated well with those 

obtained by Gravestock.100 The 1H NMR spectrum showed the loss of the benzyl groups by 

the disappearance of the aromatic protons (7.43-7.20 ppm), benzylic protons (3.81 and 3.48 

ppm) and the methyl substituent (1.32 ppm). The spectrum showed the NH2 protons as a 

singlet intergrating for two protons at 1.50 ppm. The 13C spectrum also showed the loss of the 

aromatic carbons (143.1-126.5 ppm), benzylic carbons (79.8 and 50.1 ppm) and the methyl 

substituent (20.5 ppm). The product was optically active, and gave an optical rotation of 

[α]D
21 + 1.43 (c 0.70 CHCl3). 

 

5.4 Acylation and cyclisation of the primary amine [336] 

 

The construction of the five-membered ring involved the acylation of the primary amine [336] 

with 4-chlorobutyryl chloride, followed by treatment with potassium tert-butoxide to afford 

the lactam [269] (Scheme 5.8) 
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Scheme 5.8: (i) Cl(CH2)3COCl, NEt3, CH2Cl2, 0 °C, 30 min, 96%; (ii) KOtBu, t-BuOH, 5 h, 

73% 

 

Freshly distilled 4-chlorobutyryl chloride was added dropwise to a solution of tert-butyl (3R)-

3-aminohexanoate [336] and triethylamine in dichloromethane at 0 °C. The resulting 

condensation between the amine and the acid chloride was extremely vigorous, with a rapid 

evolution of hydrogen chloride gas being observed. The reaction went to completion in a few 

minutes, and once worked up and purified by column chromatography gave tert-butyl (3R)-3-

[(4-chlorobutanoyl)amino]hexanoate [341] as an orange oil in a 96% yield on a 5.1 mmol 

scale. The 1H NMR spectrum showed the NH as a broad doublet integrating for one proton at 

6.18 ppm. H-2’’ and H-4’’ were seen as triplets at 2.35 and 3.60 ppm, and the H-3’’ protons 



Chapter 5                Enantioselective Synthesis of 5,8-Disubstituted Indolizidines 

 141 

were obsevred as a quintet at 2.11 ppm. The 13C NMR spectrum showed the presence of a 

new carbonyl group at 170.9 ppm. An optical rotation of [αααα]D
23 1.75 (c 2.28, absolute EtOH) 

was observed for [341]. 

 

The cyclization of the amide [341] was initially attempted using the protocol described by 

Manhas and Jeng,177 which had been used extensively by Stanbury108i and Gravestock108h in 

our labs (Scheme 5.8). The amide [341] was treated with potassium tert-butoxide in dry tert-

butanol, and after 24 hours the reaction mixture was neutralized with glacial acetic acid. After 

the usual workup and purification by column chromatography, tert-butyl (3R)-3-(2-oxo-1-

pyrrolidinyl)hexanoate [269] was obtained as a yellow oil with the best yield being 40% on a 

1.9 mmol scale. In comparison, Gravestock108h reported a 56% yield across two steps for the 

same substrate. Despite several attempts we were unable to improve our yield and it appeared 

that the longer the reaction stirred for, and the more potassium tert-butoxide we used or the 

larger the reaction scale was, the lower the yields were. The decrease in the yields was 

thought to be due to the formation of a series of unidentifiable by-products, most probably 

arising from the elimination of hydrogen chloride gas and the subsequent re-arrangement of 

the alkene fragment.  Having failed to optimize the cyclization we investigated the use of 

sodium methoxide in methanol and sodium ethoxide in ethanol to afford the ring closed 

product; however in both cases the reaction failed with a quantitative recovery of starting 

material being obtained.  

 

The formation of the unwanted by-products when treating the amide [341] with potassium 

tert-butoxide was eventually overcome by simply adding the potassium-tert-butoxide 

portionwise over 5 h. We found that the addition of 0.1 equivalents of the base every 30 min 

prevented the formation of any side products, even when we had added 1.5 equivalents in 

total of the base. After tlc analysis indicated the complete consumption of starting material, 

the reaction was neutralized with glacial acetic acid as usual, worked-up and purified by 

column chromatography to afford the desired tert-butyl (3R)-3-(2-oxo-1-

pyrrolidinyl)hexanoate [269] as a yellow oil in a 73% yield on a 6.9 mmol scale. The 

spectroscopic data correlated well with those reported by Gravestock100, 108h. The product was 

optically active, giving an optical rotation of [αααα]D
18 −5.03 (c 1.59, CHCl3). The 1H NMR 

spectrum showed the loss of the characteristic broad doublet of the amide hydrogen at 6.18 

ppm. The CH2Cl protons at 3.60 ppm in the starting material had disappeared and were 
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replaced by the protons on the C-5’’ position at 3.38 and 3.26 ppm. The 13C NMR spectrum 

showed the loss of the characteristic CH2Cl signal at 44.4 ppm, and the appearance of the C-

5’’ signal at 42.4 ppm. The FTIR spectrum showed two carbonyl stretches at 1723 and 1686 

cm-1.  

 

5.5 Thionation of the lactam [269] 

 

We initially investigated the use of Lawesson’s reagent178-180 for the thionation of lactam 

[269], as this was the procedure of choice for Gravestock. In addition it has been used on 

numerous occasions in our laboratories for the thionation of N-aryl lactams (Scheme 5.9). 
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Figure 5.9: (i) PhCH3, ∆, 5 h, 68% 

 

Removal of the solvent and purification by column chromatography yielded tert-butyl (3R)-3-

(2-thioxo-1-pyrrolidinyl)hexanoate [270] as a yellow oil in a 68% yield on a 0.9 mmol scale. 

The use of the mild Brillon method128 discussed in Section 3.2.1 was also investigated 

(Scheme 5.10). 
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Scheme 5.10: (i) P2S5, Na2CO3, THF, 5 h, 80% 

 

The active reagent was generated in situ by stirring phosphorus pentasulfide and sodium 

carbonate in a 2:1 ratio in tetrahydrofuran. Once a homogeneous solution had formed, the 
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lactam [269] was introduced, and the solution was stirred for 5 h, after which time the 

standard Brillon work-up and purification by column chromatography afforded tert-butyl 

(3R)-3-(2-thioxo-1-pyrrolidinyl)hexanoate [270] as a yellow oil in an 80% yield on a 0.5 

mmol scale. To our surprise the Brillon128 procedure actually gave better results, and as such 

was used as our method of choice, not only because of the better yield, but also because of the 

lower cost of the reagents. The spectroscopic data corresponded well with those reported by 

Gravestock100, 108h.  The 1H NMR spectrum showed a shift in the CH2C=O protons at 2.42-

2.34 ppm, to 3.00 ppm indicating the conversion to CH2C=S. The 13C NMR spectrum showed 

the loss of the carbonyl peak at 170.2 ppm and the corresponding appearance of a 

thiocarbonyl peak at 201.8 ppm. The observed optical rotation for [270] is [�]D
22 +17.9 (c 

0.96, EtOH abs.) 

 

5.6 The sulfide contraction 

 

The sulfide contraction was performed using the method outlined in Sections 3.2.2 and 

4.3.2.121-123 Reaction of the thiolactam [270] with N-methoxy-N-methyl-2-bromoacetamide 

[271] gave the vinylogous urea [272] in a 77% yield on a 1.5 mmol scale (Scheme 5.11). 
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Scheme 5.11: (i) N-methoxy-N-methyl-2-bromoacetamide [271], CH3CN, rt, 24 h; (ii) PPh3, 

NEt3, CH3CN, 3 h, 77% (two steps) 

 

The 1H NMR spectrum showed the characteristic vinyl proton as a singlet integrating for one 

proton at 5.26 ppm. In addition the OMe and Me peaks were shown by two singlets, both 

integrating for three protons, at 3.68 and 3.14 ppm. The CH2C=S signal shifted from 3.00 

ppm to a multiplet at 3.32-3.19 ppm, indicating the conversion into a CH2C=CH- group. The 
13C NMR spectrum showed the loss of the characteristic thiocarbonyl peak at 201.8 ppm. The 
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alkene carbons and the amide carbonyl were shown by signals at   170.1, 77.7 and 164.7 ppm 

respectively. Finally the OMe and Me groups were found at 60.8 and 33.0 ppm respectively.  

 

5.7 Attempted reduction of the tert-butyl ester [272] 

 

The next step in the synthesis required the reduction of the tert-butyl ester of the vinylogous 

urea [272] to afford the corresponding alcohol [273]. The reduction was initially seen as being 

potentially problematic for several reasons. The tert-butyl ester is sterically hindered and as 

such is only really susceptible to reduction using lithium aluminium hydride, although there 

are reports of the reduction being performed with sodium borohydride albeit in low yield in 

almost all cases181. The Weinreb amide itself is susceptible reduction when treated with 

lithium aluminium hydride, but with the enaminone backbone still in place its reactivity 

should be somewhat masked (Section 4.6.4.1). Gravestock showed that the tert-butyl group 

could be reduced to the alcohol [252] readily with lithium aluminium hydride in the presence 

of a vinylogous urethane,100, 108h however San-Fat found the same reduction on the analogous 

six membered ring system [342] to be low yielding and irreproducible108k (Scheme 5.12).  
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Scheme 5.12: (i) (a) LiAlH4 (2.0 eq.), THF, 24 h, 88%; (ii) LiAlH4 (2.3 eq.), THF, 16 h, 29% 

 

As we were interested in the five-membered systems we felt confident that with careful 

optimization the reduction of the tert-butyl ester was a distinct possibility. We added the 

vinylogous urea [272] to a slurry of lithium aluminium hydride in dry THF at 0 °C. The 

reaction slurry was warmed to room temperature and stirred overnight. The usual work-up 
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involved washing with water and 15% sodium hydroxide several times, and after column 

chromatography we recovered (2E)-2-{1-[(1R)-1-(2-hydroxyethyl)butyl]-2-pyrrolidinyli-

dene}-N-methoxy-N-methylethanamide [273] as a yellow oil in only a 10% yield on a 0.49 

mmol scale (Scheme 5.13) 
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Scheme 5.13: (i) LiAlH4, THF, 0 °C – rt, 24 h, 11% 

 

The reaction was repeated several times using different quantities of lithium aluminium 

hydride, different solvents such as toluene, diethyl ether, as well as solvent mixtures of 

diethyl ether and toluene. The reaction proved to be both low yielding and to have results that 

were not reproducible.  

 

5.8 An alternative approach to the enantioselective synthesis 

 

Owing to the problems associated with the reduction of the tert-butyl ester, we investigated an 

alternative approach. This still involved using the tert-butyl ester to ensure good 

enantioselectivity during the Wittig olefination170 and Davies alkylation124, however, we 

would then remove the ester early in the synthesis and replace it with a suitable protecting 

group. The approach mirrors the strategy San-Fat used to overcome the same problem108k, and 

involves the reduction of the tert-butyl group immediately after the addition of the chiral 

amine. The resulting alcohol [343] is then protected as a silyl ether [344] and the synthesis 

then follows the same steps proposed in Section 2.7.2. An outline of the alternative synthesis 

highlighting the relevant changes is shown below in Scheme 5.14. 
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Scheme 5.14: Alternative approach for the enantioselective synthesis of 5,8-disubstituted 

indolizidines 

 

5.9 Reduction of the tert-butyl ester of [268] and subsequent silylatio 

 

The reduction of the chiral amine [268] to the alcohol [343] was achieved using the 

methodology described by Davies182, wherein a cooled slurry of lithium aluminium hydride in 

diethyl ether was prepared. The chiral amine [268] was then added to this slurry dropwise, the 

solution was warmed to room temperature and stirred for 16 h. The usual work-up and 

purification by column chromatography then yielded the alcohol [343] in a 97% yield on a 32 

mmol scale (Scheme 5.15). 
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Scheme 5.15: (i) LiAlH4, Et2O, 0 °C; (ii) [268], Et2O, 0 °C, 16 h, 97% 

 

The 1H NMR spectrum showed the loss of the tert-butyl protons by the disappearance of the 

singlet at 1.39 ppm. The spectrum of the alcohol also showed the CH2OH protons as two 

multiplets at 3.24-3.17 ppm and 2.83-2.76 ppm each integrating for one proton. The hydroxyl 
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proton was also visible as a singlet integrating for one at 2.64 ppm. The 13C NMR spectrum 

also showed the loss of the characteristic tert-butyl carbons at 79.8 and 28.0 ppm, and the 

carbonyl at 172.2 ppm, the CH2OH carbon was visible at 56.7 ppm. The HRMS showed 

311.22532 (100%) and the parent ion C21H29NO requires 311.22491. The FTIR showed no 

carbonyl stretch, but the hydroxyl group was clearly shown by the broad signal at 3367 cm-1. 

The product showed optical activity with [�]D
19 −32.1 (c 1.09, CHCl3). 

 

The subsequent protection of the alcohol [343] as the tert-butyl(dimethyl)silyl ether [344] was 

chosen as the silyl group is acid labile but resistant to basic conditions. As several succeeding 

steps required the use of strong bases such as potassium tert-butoxide, but no strong acids, the 

silyl group appeared to be the protecting group of choice. San-Fat in her synthesis of 

quinolizidine alkaloids found that the silyl group was not compatible with the thionation 

step.108k Pelly, however, did research on the five-membered ring systems and found that the 

silyl group was compatible with both the thionation and the sulfide contraction conditions.109g, 

110q As we were working on the five-membered systems we envisaged none of the associated 

problems that San-Fat had encountered108k. 

 

Following the protocol described by Öhrlein and co-workers,183 imidazole was added to a 

solution of the alcohol in dry dimethylformamide. To this was added the tert-

butyl(dimethyl)silyl chloride in dry dimethylformamide dropwise. The mixture was stirred at 

room temperature for 16 h, after the work-up and purification by column chromatography the 

silyl ether [344] was obtained as a clear oil in an 88% yield on a 30.0 mmol scale (Scheme 

5.16) 
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Scheme 5.16: (i) (a) Imidazole, DMF, (b) TBDMSCl, DMF, 16 h, 88% 

 

The 1H NMR spectrum showed the presence of the tert-butyl protons at 0.85 ppm and the 

SiMe2 protons at −0.02 ppm and no hydroxyl peak could be found. The 13C NMR spectrum 
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showed the tert-butyl carbons at 18.3 and 26.0 ppm, as well as the characteristic SiMe2 

carbons at –5.3 ppm. The HRMS showed 425.30974 (100%) with C27H43NOSi requiring 

425.31139. There was no evidence of an alcohol peak in the FTIR spectrum. The product 

[344] was optical active, and gave a rotation of [�]D
20 +18.9 (c 1.27, CHCl3). 

 

5.10 Debenzylation of the protected alcohol [344] 

 

San-Fat found that the debenzylation in hydrogen at 7 atmospheres using 10% palladium on 

activated carbon when performed in glacial acetic acid afforded none of the debenzylated silyl 

ether [345]. Instead when she used a protocol described by Davies involving the use of 

Pearlmann’s catalyst124 (20% palladium hydroxide on activated carbon) at 5 atmospheres the 

desired compound [345] was formed in a quantitative yield (Scheme 5.17). 
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Scheme 5.17: (i) 10% Pd/C, H2(g) 7 atm, AcOH, 3 d; (ii) 20% Pd(OH)2/C, H2(g) 5 atm, abs. 

EtOH, 16 h, 100% 

 

We found that the use of Pearlmann’s catalyst was not necessary. We treated the protected 

alcohol [344] with 10% palladium on activated carbon in hydrogen at 7 atmospheres in 

absolute ethanol instead of glacial acetic acid for 3 days. The standard workup and 

purification by column chromatography yielded the debenzylated amine [346] in an 85% 

yield on a 26 mmol scale (Scheme 5.18). 
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Scheme 5.18: (i) 10% Pd/C, H2(g) 7 atm, EtOH, 3 d, 85% 
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The 1H NMR spectrum confirmed the debenzylation by the loss of the aromatic protons at 

7.40-7.16 ppm, the benzylic protons at 3.87, 3.78 and 3.64 ppm and the methyl group at 1.29 

ppm. The NH2 group was seen as a broad singlet integrating for two protons at 1.50 ppm. The 
13C NMR spectrum also showed the loss of the corresponding aromatic (144.9-126.3 ppm), 

benzylic (61.9 & 50.2 ppm) and methyl protons (20.5 ppm). The product was optically active, 

with an optical rotation of [�]D
21 +1.43 (c 0.70, CHCl3). Although the free amine [346] 

appeared to be stable at room temperature, it was used immediately as it was found to be 

volatile at room temperature. 

 

5.11 Lactam formation 

 

The five-membered lactam ring [347] now needed to be formed (Scheme 5.19).  
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Scheme 5.19: (i) Cl(CH2)3COCl, NEt3, CH2Cl2, 0 °C, 30 min, 100%; (ii) KOBut, t-BuOH, 5 h, 

94% 

 

The free amine [346] in the presence of triethylamine in dichloromethane was treated with 4-

chlorobutryl chloride as previously described. Vigorous evolution of hydrogen chloride gas 

was observed, and after thirty minutes the reaction was quenched and worked up. Purification 

by column chromatography afforded the acylated product [348] in a quantitative yield on an 

11.5 mmol scale. The 1H NMR spectrum showed the NH signal as a broad doublet at 6.10 

ppm. There were two triplets both integrating for two protons at 3.57 and 2.28 ppm due to H-

4’ and H-2’ respectively. The H-3’ signal was seen as a quintet integrating for two protons at 

2.08 ppm. The FTIR spectrum showed the NH group by a broad stretch at 3281 cm-1. The 

product was optically active, giving a rotation of [�]D
23 −1.75 (c 2.28, EtOH abs). The 

obtained amide [348] also decomposed rapidly and as such was used immediately. 
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The ring closure was performed by the portionwise addition of potassium tert-butoxide to the 

acylated amine [348] in dry tert-butanol, as described in Section 5.4. The lactam [347] was 

obtained in a 94% yield on a 10.7 mol scale. The 1H NMR spectrum showed the shifting of 

the CH2Cl signal at 3.57 ppm to a multiplet at 3.32-3.18 ppm and the loss of the broad doublet 

at 6.10 ppm representing the NH group. The FTIR spectrum showed a carbonyl stretch at 

1668 cm-1 and the HRMS showed 299.22292 (74%) with C16H33NO2Si requiring 299.22806. 

The optical rotation of [347] was [�]D
19 −9.86 (c 0.71, CHCl3). 

 

5.12 Attempted thionation of the lactam [347] 

 

We were now in the position to thionate the lactam [347] (Scheme 5.20). Initially we refluxed 

the lactam with Lawesson’s reagent178-180 in toluene for 5 h, and to our disappointment we 

only recovered an unidentifiable product. 
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Scheme 5.20: (i) Lawesson’s reagent, PhCH3, ∆, 5 h, 0%; (ii) P2S5, Na2CO3, THF, 5 h, 0% 

 

We then tried using the Brillon procedure128 that Pelly had used to successfully thionate five-

membered ring lactams containing a silyl ether group. 109g, 110q Once again we were not able to 

isolate any of the thionated lactam, despite the complete consumption of starting material. The 

inability to thionate the lactam [347] was a great disappointment, and we had to now be 

content with replacing the silyl ether with a second protecting group. 

 

5.13 Deprotection of the lactam [347] and reprotection as an acetate [349] 

 

Fortunately the synthesis did not need to be re-designed completely. In an analogous manner 

to San-Fat108k, we opted to desilylate the lactam [347] and replace it with an acetate to afford 

[349] (Scheme 5.21).  
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Scheme 5.21: (i) TBAF, THF, 100 min, 74% or (ii) HF, MeOH, 100 min, 74%; (iii) Ac2O, Py, 

16 h , 84% 

 

The acetate was the protecting group used in the model study described in Chapter 4, and on 

the model system was shown to be tolerant not only of the thionation but also the sulfide 

contraction procedure. The acetate was also easily removed from the enaminones under 

standard conditions. As a result we were now confident that the acetate protecting group 

would allow us to access the deprotected vinylogous urea [273]. Unfortunately, it is not 

feasible to introduce the acetate at the same stage where the silyl ether was introduced as the 

subsequent lactam formation made use of potassium tert-butoxide which would simply cleave 

off the acetate group.  

 

The lactam [347] was initially treated with tetrabutylammonium fluoride, a mild source of F−, 

in dry tetrahydrofuran. After the required workup and purification by column chromatography 

the desilylated lactam [350] was obtained as a clear oil in a 74% yield on a 0.3 mmol scale. 

Attempts to scale up the desilylation resulted in a decrease in the yield of product recovered. 

We instead found that treating the lactam [347] with 40% hydrofluoric acid under dilute 

conditions in methanol afforded the desired lactam in a 74% yield but this time on a 6.3 mmol 

scale. The 1H NMR spectrum showed the loss of the tert-butyl protons at 0.86 ppm and the 

SiMe2 protons at 0.02 and 0.01 ppm. The hydroxyl proton was seen as a singlet integrating for 

one proton at 3.11 ppm. The 13C NMR spectrum also showed the loss of the tert-butyl carbons 

at 25.9 and 18.2 ppm, as well as the SiMe2 carbons at −5.39 and −5.44 ppm. The HRMS 

showed 185.14044 (100%) and C10H19NO2 requires 185.14158. The product showed an 

optical rotation of [�]D
23 −0.61 (c 11.5, EtOH, abs). 

 

The acetylation was performed by treating the alcohol [350] with acetic anhydride in pyridine 

as described in Section 4.2. The acetylated product [349] was obtained as a clear oil in an 

84% yield on a 9.0 mmol scale. The 1H NMR spectrum showed the acetate –CH3 group as a 
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singlet intergrating for three protons at 2.04 ppm. The corresponding carbon signal was seen 

at 20.9 ppm in the 13C NMR spectrum, in addition to a new carbonyl signal at 171.0 ppm. The 

HRMS of C12H21NO3 requires 227.15214 and showed 227.14413 (32%). The product was 

optically active, giving a rotation of [�]D
23 +1.89 (c 11.1, CHCl3). 

 

5.14 Thionation of the acetate-protected lactam [349] 

 

We now had a system analogous to that of the model study (Chapter 4). Using the Brillon 

protocol128 that was successful in the model study we attempted to thionate the acetate-

protected lactam [349] (Scheme 5.22). 
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Scheme 5.22: (i) (a) P2S5, Na2CO3, THF (b) [349], THF, 3 h, 91% 

 

Phosphorus pentasulfide and sodium carbonate were stirred in dry tetrahydrofuran. Once a 

homogeneous solution had formed the lactam [349] was added in one portion. The mixture 

was stirred at room temperature for 3 h, after which time the usual workup and purification by 

column chromatography afforded the thiolactam [351] as a yellow oil in a 91% yield on a 7.3 

mmol scale. The 1H NMR spectrum showed a shift in the triplet for CH2C=O at 2.40 ppm to a 

triplet at 3.03 ppm due to the CH2C=S group. The 13C NMR spectrum showed the loss of the 

characteristic carbonyl signal at 171.0 ppm and the corresponding appearance of the 

thiocarbonyl signal at 202.3 ppm. The HRMS showed 243.12852 (100%) and C12H21NO2S 

requires 243.12930. The thiolactam [351] had an optical rotation of [�]D
17 +23.7 (c 1.69, 

CHCl3). 

 

5.15 Sulfide contraction and acetate removal 

 

The sulfide contraction121-123 was performed in the usual manner by treating thiolactam [351] 

with N-methoxy-N-methyl-2-bromoacetamide [271] (Scheme 5.23). 
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Scheme 5.23: (i) [271], CH3CN, rt, 24 h; (ii) PPh3, NEt3, CH3CN, 3 h 

 

In an effort to achieve a high yield, we followed the protocol of van der Westhuyizen,108j 

using 1.8 equivalents of the N-methoxy-N-methyl-2-bromoacetamide [271] and 1.5 

equivalents of triphenylphosphine and triethylamine. We were however disappointed as the 

crude vinylogous urea [352] was still contaminated with triphenylphosphine residues after the 

acid-base extraction and further purification by flash column chromatography was ineffective. 

The contaminated product [352] was used directly in the next step where purification was 

possible. The 1H NMR spectrum showed the characteristic vinyl proton as a singlet 

integrating for one proton at 5.19 ppm, the OMe and Me groups were seen as singlets both 

integrating for three protons at 3.66 and 3.14 ppm. The 13C NMR spectrum clearly showed an 

additional carbonyl group at 165.4 ppm, as well as the OMe and Me carbons at 67.0 and 33.0 

ppm. The characteristic alkene protons were visible at 170.8 and 76.9 ppm.  

 

Although the vinylogous urea [352] was still contaminated with triphenylphosphine residues, 

we felt that once the acetate was removed the alcohol [273] would be significantly more polar 

than the phosphine residues, therefore making purification by standard column 

chromatography trivial. The acetate was removed using the standard procedure of treatment 

with potassium carbonate in methanol (Scheme 5.24), and the desired alcohol was obtained in 

59% overall yield (3 steps), based on thiolactam [351] on a 6.5 mmol scale.  
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Scheme 5.24: (i) K2CO3, MeOH, 64% (3 steps from [351]) 
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The 1H NMR spectrum showed the loss of the acetate CH3 at 2.04 ppm. The 13C NMR 

spectrum showed the loss of the characteristic acetate carbonyl at 172.1 ppm and the acetate 

CH3 at 20.8 ppm. The FTIR spectrum showed a broad stretch at 3358 cm-1 indicating the 

presence of the hydroxyl group.  

 

5.16 Alkylative cyclisation 

 

The standard alkylative cyclisation was achieved by dissolving the alcohol [273] in a 2:1 ratio 

mixture of toluene:acetonitrile.108k, 136 The dissolved alcohol [273] was then treated with 

imidazole and tripenylphosphine, and once a homogeneous solution had formed iodine was 

introduced in one portion. The reaction mixture was refluxed for about 45 minutes. The 

bicyclic amide [274] was obtained as an orange oil in 47% yield on a 0.38 mmol scale 

(Scheme 5.25). 
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Scheme 5.25: (i) (a) Imidazole, PPh3, CH3CN:PhCH3 (1:2), (b) I2, ∆, 47% 

 

The 1H NMR spectrum showed no sign of the hydroxyl group. However, more 

characteristically the signals due to the CH2OH protons at 3.96-3.86 ppm and the vinyl proton 

at 5.25 ppm were absent. The 13C NMR spectrum showed the characteristic alkene protons at 

174.4 and 90.1 ppm. The HRMS showed 252.18281 and C14H24N2O2 requires 252.18378. 

 

5.17 Catalyic hydrogenation 

 

We were now at the point where we could investigate the stereoselective reduction of the 

double bond. The bicyclic enaminone [274] was treated with Adams’ catalyst (PtO2.xH2O) in 

glacial acetic acid under a hydrogen atmosphere (1 atm) for 24 h (Scheme 5.26). 

 



Chapter 5                Enantioselective Synthesis of 5,8-Disubstituted Indolizidines 

 155 

(i)

N

NO
OMe

Me

RN

NO
OMe

Me

R

H
S

S

274 275  
 

Scheme 5.26: (i) Adams’ catalyst, H2(g) 1 atm, glacial acetic acid, 24 h, 80% 

 

After purification the desired indolizidine [275] was isolated as a single diastereomer as a 

yellow oil in an 80% yield on a 0.7 mmol scale. The stereochemical outcome can be 

explained by the fact that the hydrogen is adsorbed onto the surface of the catalyst, which is 

bulky in comparison to the molecule. The hydrogen will therefore be delivered from the less 

hindered face of the double bond (Scheme 5.27). 
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Scheme 5.27: Stereochemical basis for the catalytic reduction of the double bond 

 

In our case the bulky propyl chain at the 5-position ensures that the hydrogen is delivered 

from the opposite face, and since the propyl chain is in the R-configuration exclusively the 

reduction is diastereoselective.138 The reduction will therefore occur from one face only 

regardless of whether it is going through the neutral molecule or the iminium species, and in 

this case the selectivity is completely governed by steric hindrance with little or no 

opportunity for stereoelectronic effects to play a role.138 

 

The singlets at 3.65 and 3.17 ppm in the 1H NMR spectrum indicated that the Weinreb amide 

was still in place. This was further shown by the signals at 174.9, 61.0 and 35.8 ppm in the 
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13C NMR spectrum. The 1H NMR spectrum is very complicated and the only other 

characterisable signals are a doublet of triplets at 3.33 ppm integrating for 1 proton due to the 

equatorial hydrogen at C-3, and the triplet at 0.90 ppm due to the terminal CH3. The 13C NMR 

spectrum showed the loss of the characteristic alkene signals at 174.4 and 90.1 ppm, and the 

characteristic signals for C-8 and C-8a were observed at 43.9 and 65.7 ppm. The product was 

optically active, giving a rotation of [αααα]D
21 −57.3 (3.07, EtOH, abs). 

 

5.18 Modification of the Weinreb amide 

 

Having synthesized the key bicyclic indolizidine we were now at the point where the 

synthesis could diverge, allowing us access to several 5,8-disubstituted indolizidines. The 

progress towards the synthesis of indolizidines 209I [185] and 223V [174] will be dealt with 

below in Section 5.18.1. 

 

5.18.1 Alkylation of the Weinreb amide 

 

In order to access 209I [185] and 223V [174] we needed to introduce the appropriate length 

alkyl chain at the 8-position. This was done by treating the bicyclic Weireb amide [275] with 

ethylmagnesium bromide for 209I [185] and n-propylmagnesium chloride for 223V [174]. 

The Weinreb amide was dissolved in dry tetrahydrofuran and cooled to −78 °C, the Grignard 

reagent was added and the solution was slowly warmed to room temperature (Scheme 5.28). 
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Scheme 5.28: (i) (a) EtMgBr, THF, −78 °C-rt, 24 h (b) 0.2N HCl(aq), 83%; (ii) (a) n-PrMgCl, 

THF, −78 °C-rt, 24 h (b) 0.2 N HCl(aq), 26% 
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 The reaction mixture was stirred for 24 hours after which the chelation complex (Section 

4.7.4.1) was quenched by treatment with 0.2 N HCl solution. Purification by column 

chromatography afforded the desired alkylated products [353] and [354] albeit in widely 

different yields of 83 and 26% yield respectively. The low yield appeared to be due to the loss 

of product during the purification stage, as analysis of the crude product indicated a good 

recovery of material and NMR analysis showed the crude mixture to be mainly the desired 

products. Interestingly, when we tried to collapse the chelation complex using saturated 

aqueous ammonium chloride we were unable to recover any product. 

 

The preparation of the ethyl ketone [353] was shown by the loss of the singlets at 3.65 and 

3.17 ppm in the 1H NMR spectrum and the appearance of a second triplet at 1.01 ppm 

integrating for three protons due to the ethyl chains terminal CH3. Additional characteristic 

peaks in the 1H NMR spectrum include a doublet of triplets at 3.28 ppm due to the equatorial 

proton at the 3 position, and a multiplet at 2.81 due to the protons at the 8 position. A doublet 

of quartets at 2.63 ppm and a multiplet at 2.52-2.39 ppm due to the protons at the 2’’ position, 

and a multiplet at 2.15-2.02 ppm integrating for two protons due to the proton at the 5 

position and the axial proton at the 3 position. The triplet due to the terminal CH3 on the chain 

at the 5 position is still clearly visible at 0.91 ppm. Characteristic signals in the 13C NMR 

spectrum include a ketone carbonyl signal at 213.6 ppm, and a signal at 7.7 ppm due to the 

terminal carbon at the 3’’ position. The HRMS showed 223.19358 (94%) with C14H25NO 

requiring 223.19361. The product showed an optical rotation of [αααα]D
19 +48.3 (c 0.95, CHCl3). 

 

The propyl ketone [354] also showed the loss of the singlets at 3.65 and 3.17 ppm in the 1H 

NMR spectrum. In this case a second triplet due to the terminal CH3 at the 4’’ position was 

seen at 0.90 ppm overlying the triplet at 0.91 ppm due to the terminal CH3 at the 3’ position. 

As in the previous case the equatorial proton at the 3 position was visible as a doublet of 

triplets at 3.29 ppm. The protons � to the ketone at the 2’’ position were visible as two 

doublets of triplets at 2.58 and 2.41 ppm. The proton at position 8 appeared as a multiplet 

between 2.83 and 2.77 ppm. Finally the axial proton at the 3 position and the proton at the 5 

position appeared together as a multiplet between 2.25 and 2.08 ppm. The 13C NMR spectrum 

showed a ketone carbonyl signal at 212.9 ppm. The product was optically active, giving a 

rotation of [αααα]D
18 +7.60 (c 0.92 CHCl3) 
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5.18.2 Epimerisation of the alkylated indolizidines [353, 354] 

 

We were now at the stage where we could epimerize the ketone substituent at the 5-position 

to afford us products with the correct stereochemistry observed in the natural compounds. 

Simple base-catalysed epimerization of [353] and [354] by refluxing with sodium methoxide 

in methanol for three hours afforded the epimerized indolizidines [191] and [355] in 80 and 

48% yields respectively on a 0.04 and 0.03 mmol scale (Scheme 5.29). 
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Scheme 5.29: (i) Na, MeOH, ∆, 80%; (ii) Na, MeOH, ∆, 48% 

 

In both cases the success of the epimerization was shown by the disappearance of the signal 

for the proton at the 8 position as it shifts upfield, where it is obscured by the signals in the 

2.15-1.00 ppm region. Epimerized ethyl ketone [191] has been prepared previously by Ma107, 

and a comparison of our spectral data and those published by Ma is shown below in Tables 

5.2 – 5.3. 
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Table 5.2: Comparison of 1H NMR spectroscopic data for [191] with results published by Ma 

et al.107 

 

 1H NMR (CDCl3)  1H NMR (CDCl3)  
Proton Riley (300 MHz) Ma et al.107(300 MHz) 

H-3eq 3.27 (dt, J 1.9 & 8.3 Hz) 3.24 (dt, J 2.7 & 9.0 Hz) 

H-2’’ 2.59-2.35 (m) 2.55-2.38 (m) 

Remaining H’s 2.15-1.16 (m) 2.12-1.82 (m) 

Remaining H’s  1.79-1.62 (m) 

Remaining H’s  1.46-1.13 (m) 

H-3’’ 1.04 (t, J 7.3 Hz) 1.04 (t, J 7.5 Hz) 

H-3’ 0.91 (t, J 7.1 Hz) 0.92 (t, J 6.3 Hz) 

 

Table 5.3: Comparison of 13C NMR spectroscopic data for [191] with results published by 

Ma et al.107 

 

 13C NMR (CDCl3)  13C NMR (CDCl3)  
Carbon Riley (300 MHz) Ma et al.107 (300 MHz) 

C=O 213.4 213.5 

C-8a 65.5 65.4 

C-5 62.8 62.8 

C-8 54.4 54.7 

C-3 50.9 51.0 

C-2’’ 36.6 36.8 

C-1’ 36.0 36.0 

C-1 30.3 30.4 

C-6 28.9 29.0 

C-7 28.4 28.4 

C-2 20.4 20.4 

C-2’ 18.9 18.9 

C-3’ 14.4 14.5 

C-3’’ 7.6 7.6 
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The HRMS showed 223.19248 (84%) and the parent ion of C14H25NO requires 223.19361. 

Finally the observed optical rotation [�]D
17 −74.3 (c 0.35 CHCl3) was comparable with the 

results published by Ma107  [�]D
20 −84.4 (c 1.0 CHCl3).  

 

5.18.3 Completion of the synthesis of indolizidine 209I [185]  

 

The preparation of epimerized ketone [191] represents a formal synthesis of 209I [185]. Ma 

already reported that [191] could be converted into indolizidine 209I [185] in two steps 

(Scheme 5.30).  
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Scheme 5.30: (i) 1,2-ethanedithiol, BF3.OEt2, 65%, (ii) Raney-Ni, i-PrOH, 70°C, 81% 

 

Ma showed that treatment of the ketone [191] with boron trifluoride etherate and ethanedithiol 

afforded the thioacetal [192] in a 65% yield, and subsequent defunctionalisation with Raney 

nickel in iso-propanol at 70 °C afforded indolizidine 209I [185] in an 81% yield.107 

 

Unfortunately, we were unable to recover enough of the epimerized ketones [191] and [355] 

to repeat to work done by Ma107 for the preparation of 209I [185], or to prepare 223V [174] 

using the same protocol. 

 

5.19 Conclusion 

 

The formal preparation of 209I [185] using the “Wits approach”, in particular Gravestock’s 

methodology100, showed that there were distinct differences in reactivity depending on the 

substituent at the 5-position. Differences are highlighted all through Chapter 5, the key 

difference being the inability to reduce the tert-butyl ester [272] at an advanced stage of the 

synthesis. An alternative approach to access alcohol [273] was employed and involved the 
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reduction of the tert-butyl ester at an earlier point in the synthesis, followed by a series of 

protections and deprotections before being able to access the desired alcohol [273]. Owing to 

the time constraints and lack of material we were not able to prepare indolizidines 197C [258] 

and 223V [174]. The formal enantioselective preparation of 209I [185] was achieved in 18 

steps in an overall yield of 3.1% and is shown below in Schemes 5.31 and 5.32. 
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Scheme 5.31: (i) (a) −78 °C, THF, 30 min, (b) [267], −78 °C, 3 h, 77%; (ii) LiAlH4, Et2O, 16 

h, 97%; (iii) TBDMSCl, imidazole, DMF, rt, 24 h, 88%; (iv) 10% Pd/C, absolute EtOH, 

H2(g), 7 atm, 3 d, 88%; (v) Cl(CH2)3COCl, NEt3, CH2Cl2, 30 min, 100%; (vi) KButO, t-BuOH, 

5 h, 94%; (vii) HF, MeOH, 3 h, 90%; (viii) Ac2O, Py, rt, 16 h, 84% 
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Scheme 5.32: (ix) P2S5, Na2CO3, THF, rt, 3 h, 91%; (x) [271], CH3CN, rt, 16 h; (xi) PPh3, 

NEt3, CH3CN, rt, 3 h; (xii) K2CO3, MeOH, rt, 3 h, 64% (3 steps); (xiii) imidazole, PPh3, NEt3, 

CH3CN:PhCH3, ∆, 1 h, 47%; (xiv) PtO2.xH2O, glacial acetic acid, H2(g), 1 atm, rt, 24 h, 

80%; (xv) (a) EtMgBr, THF, rt, 24 h, 83%; (xvi) Na, MeOH, ∆, 3 h, 80% (xvii) HS(CH2)2SH, 

BF3.OEt2, 65%, (xviii) Raney-Ni, i-PrOH, 70°C, 81% 
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CHAPTER 6 
 

PROGESS TOWARDS THE SYNTHESIS OF A 
LATE STAGE COMMON INTERMEDIATE 

[259] FOR THE PREPARATION OF 5,8-
DISUBSTITUTED INDOLIZIDINES 
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CHAPTER 6 
 

PROGESS TOWARDS THE SYNTHESIS OF A LATE STAGE COMMON 
INTERMEDIATE [259] FOR THE PREPARATION OF 5,8-DISUBSTITUTED 

INDOLIZIDINES 
 
6.1 Introduction 
 

This chapter concerns our attempts to synthesise a late stage common intermediate [259] 

(Figure 6.1) which could be converted into almost any 5,8-disubstituted indolizidine.  

  

N

O N
Me

OMe

H

MeO

OMe

259

S
S

R

 
 

Figure 6.1: The late stage common intermediate [259] 

 

We envisaged that the introduction of an acetal protected aldehyde at the 5-position would 

allow us a handle to selectively modify the substituents at the 5- and the 8-positions (Scheme 

6.1). 

N

O N
Me

OMe

MeO

OMe

H

N

R

MeO

OMe

H

R = alkyl

N

R

O

H

H

N

R
H

R'

R' = alkyl

259

S S
S S

S S S
S

R R

R R

 

 

Scheme 6.1: Stepwise modification of the substituents at the 5- and 8-positions 
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The acetal protecting group is resistant to organometallic alkylating reagents and as such we 

would be able to selectively alkylate and epimerize the Weinreb amide to afford a range of 

both saturated and unsaturated substituents. Subsequent acetal removal under acidic 

conditions would afford the corresponding aldehyde from which there are several routes that 

can be followed, depending on the substituent required. The drawback to using the acetal 

protecting group is its lability in acidic media; it will require the modification of several steps 

to limit exposure to acid sources. The preparation of such a common late stage intermediate 

will pave the way for the first synthesis where the substituents at both the 5- and the 8-

position could be introduced at or near the end of the synthesis. This route would fit in with 

our “Wits approach” towards alkaloid synthesis, and would allow the preparation of more 

than 90% of the naturally occurring 5,8-disubstituted indolizidines from [259] in just a few 

steps. 

 

6.2 Preparation of 4,4-dimethoxybutanal [282] 

 

The preparation of the desired key intermediate [259] required the preparation of 4,4-

dimethoxybutanal [282], the preparation of which is not straightforward. The direct 

monoacetalization of the corresponding dialdehyde has not been reported. There are several 

methods reported for the preparation of [282]; however, most methods are cumbersome, 

requiring numerous steps or suffer from low overall yields184-193. We decided to use the two-

step protocol described by Li, Wang and Zhao194 which they claimed overcame many of the 

drawbacks traditionally experienced during the preparation of this monoacetalized dialdehyde 

[282]. They reported a stepwise ozonolysis of 1,5-cyclooctadiene [280] to access [282] in two 

steps in an overall yield of 82% (Scheme 6.2). 
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Scheme 6.2: (i) (a) O3, CH2Cl2:MeOH, −78°C, (b) p-TsOH, rt, 1 h, (c) Me2S, H+, rt,  24 h; (ii) 

(a) O3, CH2Cl2, −78°C, (b) Me2S, 82% (2 steps) 

 



Chapter 6   Progress Towards the Synthesis of a Late Stage Common  Intermediate [259] for                     
the Preparation of 5,8-Disubstituted Indolizidines 

 166 

In order to determine the time required to afford the partial ozonolysis of 1,5-cyclooctadiene 

[280], we initially determined the relative rate of ozonolysis by testing how long it took for 

the double ozonolysis of 1,5-cyclooctadiene [280]. This was done by monitoring the time it 

took for a solution of 1,5-cyclooctadiene [280] in dichloromethane:methanol at −60°C to start 

turning blue when exposed to ozone. When the solution started turning blue it would indicate 

that it was saturated with excess ozone. 1,5-Cyclooctadiene [280] was then treated with ozone 

in a dichloromethane:methanol solvent mixture at −60°C for the appropriate time required for 

the delivery of one molar equivalent of ozone. Treatment with para-toluenesulfonic acid 

followed by reduction with dimethyl sulfide afforded cis-4-octene-1,8-dialdehyde which was 

protected in situ by the methanol in the presence of the acid catalyst to give [281] (Scheme 

6.3). 
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Scheme 6.3: (i) (a) O3, CH2Cl2: MeOH, −60°C, (b) p-TsOH, rt, 1 h, (c) Me2S, H+, rt,  24 h, 

65%; (ii) (a) O3, CH2Cl2, −60°C, (b) Me2S 0% or PPh3 47% 

 

Our best result for [281] was a 65% yield on a 192 mmol scale, and despite repeating the 

reaction numerous times on various scales we could not optimize the yield any further. The 
1H NMR spectrum showed the characteristic alkene signal at 5.38 ppm as a broad triplet 

integrating for two protons and the methoxy signals appeared as a singlet at 3.32 ppm 

integrating for twelve protons. The CH(OMe)2 proton also gave a characteristic triplet at 4.36 

ppm integrating for two protons. The alkene carbons and the methoxy carbons were seen at 

129.3 and 52.6 ppm in the 13C NMR spectrum, the CH(OMe)2 carbon was found at 104.0 

ppm.    

 

The protected cis-4-octene-1,8-dialdehyde [281] was then dissolved in dichloromethane and 

treated with ozone at −60 °C until the solution turned blue, indicating the complete ozonolysis 

of [281] (Scheme 6.3). Treatment with dimethyl sulfide to reduce the ozonide in accordance 

with Li, Wang and Zhao’s protocol194 did not afford the desired 4,4-dimethoxyaldehyde 
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[282]. Li, Wang and Zhao did however make mention of the fact that owing to the unpleasant 

smell of dimethyl sulfide, on large scales they used slightly less than one equivalent of 

dimethyl sulfide and finished the reduction with triphenylphosphine. We found that regardless 

of the scale, treatment with only dimethyl sulfide yielded none of the desired aldehyde [282]. 

However, when using only triphenylphosphine as the reductant we obtained the aldehyde 

[282] as a clear oil in a 47% yield on a 91 mmol scale. The aldehyde was characterized by the 

appearance of a triplet at 9.74 ppm integrating for one proton in the 1H NMR spectrum and 

the disappearance of the alkene signal at 5.38 ppm. The aldehyde carbon was seen in the 13C 

NMR spectrum at 202.0 ppm and the alkene signal at 129.3 ppm was missing. The FTIR 

spectrum showed a strong characteristic carbonyl stretch at 1729 cm-1, and the HRMS showed 

132.07753 (100%) and the parent ion of C6H12O3 requires 132.07864. 

 

6.3 Preparation of tert-butyl (2E)-6,6-dimethoxy-2-hexenoate [283] 

 

The monoacetylated aldehyde [282] was subjected to the standard Horner-Wadsworth-

Emmons Wittig olefination170 by treatment with phosphonate [246], DBU and lithium 

chloride. The desired E-isomer [283] was isolated in 59% yield on a 5 mmol scale (Scheme 

6.4). 
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Scheme 6.4: (i) (EtO)2POCH2CO2C(CH3)3 [246], DBU, LiCl, CH3CN, 24 h, 59% 

 

The yield obtained is significantly lower than the 80% for the preparation of tert-butyl (2E)-2-

hexenoate [267] (Section 5.2). A possible explanation is that there is increased steric 

hindrance due to the acetal protecting group which is inhibiting the addition of the 

phosphonate [246] to the aldehyde. Increasing the reaction temperature may improve the 

yield; however we felt that it may also lead to the formation of the unwanted Z-isomer and as 

such did not try refluxing the reaction mixture. Leaving the reaction to stir for longer than 24 

hours did not show any improvement in the yield. The 1H NMR spectrum showed the alkene 

protons as two doublets of triplets at 6.86 (J 6.9 & 15.6Hz) and 5.76 ppm (J 1.6 & 15.6 Hz); 
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the J coupling constant of 15.6 Hz confirms the E-geometry. The 13C NMR spectrum showed 

the characteristic alkene peaks at 146.8 and 123.4 ppm. The tert-butyl ester carbonyl group 

was characterized by a very strong signal at 1717 cm-1 in the FTIR spectrum. 

 

6.4 Preparation of tert-butyl 3-amino-6,6-dimethoxyhexanoate [356] 
 

The Michael addition of dibenzylamine to tert-butyl (2E)-6,6-dimethoxy-2-hexenoate [283] 

was perfomed according to the Davies alkylation protocol124 (Section 5.3), yielding tert-butyl 

3-(dibenzylamino)-6,6-dimethoxyhexanoate [357] in 69% yield on a 42.3 mmol scale 

(Scheme 6.5). As this synthetic route was a model study, and at this stage we were not 

concerned with an enantioselective synthesis of [259], we decided to use the relatively cheap 

dibenzylamine as a substitute for the more expensive (R)-(+)-N-benzyl-N-α-

methylbenzylamine [243] which was used during the enantioselective synthesis (See Section 

5.3). 
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Scheme 6.5: (i) HNBn2, n-BuLi, −78 °C, 69%; (ii) 7 atm H2(g), Pd/C (10%), EtOH, 3d,  92% 

or (iii) 7 atm H2(g), Pd/C (20%), EtOH, 3d, 100% 

 

The success of the alkylation was shown by the disappearance of the alkene protons at 6.86 

and 5.76 ppm, and the corresponding appearance of the aromatic protons in the 7.36-7.18 ppm 

region of the 1H NMR spectrum. The benzylic protons are also clearly seen as doublets at 

3.71 and 3.67 ppm. The 13C NMR spectrum also showed the presence of the aromatic protons 

between 139.7 and 126.9 ppm, and the benzylic protons at 55.0 ppm. The FTIR spectrum 
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showed the characteristic aromatic stretches as weak signals at 3063 and 3028 cm-1. Finally 

the HRMS showed 427.27214 and the parent ion of C26H37NO4 requires 427.27226. 

 

The high pressure debenzylation was previously performed in glacial acetic acid124 (Section 

5.3). However, in order to preserve the acetal protecting group we chose to use ethanol 

instead. At seven atmospheres of hydrogen, in ethanol using 10% palladium on carbon we 

obtained tert-butyl 3-amino-6,6-dimethoxyhexanoate [356] in a 92% yield after 3 days. The 

yield was improved to 100% when using 20% palladium on carbon. The 1H NMR spectrum 

showed the loss of the characteristic aromatic (7.36-7.18 ppm) and benzylic protons (3.71 and 

3.67 ppm) respectively, this loss was also shown in the 13C NMR spectrum (139.7-126.9 & 

55.0 ppm). Finally the FTIR spectrum showed an NH2 signal at 3377 cm−1. 

 

6.5 Acylation and cyclisation of the primary amine [356] 

 

As with the enantioselective synthesis (Section 5.4) the lactam ring was accessed by acylating 

the amine with 4-chlorobutanoyl chloride followed by cyclisation by treatment with 

potassium tert butoxide (Scheme 6.6). 

 

OtBu

ONH2 (i)

OtBu

ONHO

Cl

(ii) N

O OtBu

O

OMe

MeO

OMe

MeO
OMe

MeO

356 358 359  
 
 
Scheme 6.6: (i) Cl(CH2)3COCl, NEt3, CH2Cl2, 0 °C, 30 min, 99%; (ii) KtBuO, t-BuOH, 5 h, 

53% 

 

The dropwise addition of freshly distilled 4-chlorobutanyoyl chloride to tert-butyl 3-amino-

6,6-dimethoxyhexanoate [356] in dichloromethane under basic conditions facilitated the 

acylation of the primary amine. A primary concern was the vigorous evolution of hydrogen 

chloride gas. We found that the use of a solid base such as sodium hydrogen carbonate as 

described by Gravestock was ineffective in neutralizing the acid, and the 1H NMR spectrum 

clearly showed the loss of the acetal methoxy groups, regardless of how many molar 

equivalents of the base were used. We solved the deacetalation problem by switching to a 
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homogeneous base, and found that when 4-chlorobutanoyl chloride was added dropwise to 

[356] in dichloromethane in the presence of 2.2 molar equivalents of triethylamine, we were 

able to recover tert-butyl 3-[(4-chlorobutanoyl)amino]-6,6-dimethoxyhexanoate [358] in 99% 

yield. The 1H NMR spectrum showed the NH proton as a broad doublet at 6.26 ppm 

integrating for one proton. The COCH2 and CH2Cl protons were seen as triplets, both 

intergrating for two protons at 2.35 and 3.60 ppm, and the COCH2CH2CH2Cl protons 

appeared as a quintet at 2.11 ppm. The acetal methoxy protons were still clearly seen as two 

singlets integrating for three protons each at 3.32 and 3.31 ppm. The 13C NMR spectrum 

showed an additional carbonyl group at 171.1 ppm, and once again the two methoxy signals 

at 53.0 and 52.9 ppm were still visible. The FTIR spectrm showed the NH stretch as a strong 

broad signal at 3330 ppm, and the two carbonyl stretches were also clearly visible as a strong 

signals at 1729 and 1654 cm-1. 

 

Treatment of tert-butyl 3-[(4-chlorobutanoyl)amino]-6,6-dimethoxyhexanoate [358] with 

potassium tert-butoxide in tert-butanol in accordance with the protocol outline in Section 5.4 

afforded the required lactam [359] in 53% yield (Scheme 6.6). The success of the reaction 

was shown by the disappearance of the broad doublet at 6.26 ppm due to the NH proton in the 

starting material and the shift in the signal at 3.60 ppm due to the CH2Cl protons to 2.11 ppm 

in the 1H NMR spectrum. The FTIR spectrum showed no NH signals above 3000 cm-1, and 

once again the carbonyl stretches were visible as two strong signals at 1724 and 1688 cm-1. 

 

6.6 Thionation of the lactam [359] 

 

The thionation of lactam [359] (Scheme 6.7) was attempted on several occasions using both 

the Brillon procedure128 (Section 3.2.1), and the Lawesson’s178-180 approach (Section 5.5) and 

despite working well on our other systems we were unable to recover any thionated product. 
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Scheme 6.7: (i) P2S5, Na2CO3, THF, 3-5 h, 0%; (ii) Lawesson’s reagent, PhCH3, ∆, 5 h, 0%; 

(iii) Lawesson’s reagent, microwave, 100 W, 120°C, 90 sec 

 

With no success using our two standard approaches, we attempted to thionate the lactam [359] 

by treating it with Lawesson’s reagent under solventless conditions in a microwave reactor. 

At 100 watts we raised the temperature to 120 °C, however after only 90 seconds we 

recovered an unidentifiable black product. As the thionation reaction requires the use of bulky 

reagents, we felt that the acetal and tert-butyl ester groups were too bulky to allow access to 

the lactam carbonyl inhibiting the formation of the 4-membered cyclic intermediate. 

 

6.7 An alternative approach  

 

At this stage we decided that further investigations into the thionation of lactam [359] were 

probably not going to be feasible, and instead decided to try the alternative approach 

described in Section 5.8. The success of this alternative procedure for the preparation of the 

bicyclic vinylogous urea [274] prompted us to attempt the Davies alkylation124 on [283] using 

(R)-(+)-N-benzyl-N-α-methylbenzylamine [243] instead of the achiral dibenzylamine. As 

previously described this approach required the reduction of the tert-butyl ester after the 

Davies alkylation124, and subsequent silylation with tert-butyl dimethyl silyl chloride 

(Scheme 6.8). 
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Scheme 6.8: (i) (R)-(+)-N-benzyl-N-α-methylbenzylamine [243], n-BuLi, -78 °C, 47%; (ii) 

LiAlH4, Et2O, 0 °C; (iii) [284], Et2O, 0 °C, 16 h, 98%; (iv) (a) Imidazole, DMF, (b) 

TBDMSCl, DMF, 16 h, 76% 

  

The alkylation of [283] proceeded smoothly, yielding [284] in 47% yield when following the 

standard protocol124, albeit in a lower yield than when performed using dibenzylamine. As 

previously the success of the reaction was shown by the presence of aromatic proton signals 

in the 1H NMR spectrum in the 7.44-7.21 ppm region. The benzylic protons appeared as an 

AB doublet at 3.79 and 3.48 ppm integrating for one proton each and a quartet at 3.82 ppm 

also integrating for one proton. The methyl substituent was also apparent as a doublet, 

integrating for three protons at 1.34 ppm. The FTIR spectrum showed the characteristic 

aromatic stretches at 3083, 3062 and 3026 cm-1. 

 

The reduction of the tert-butyl ester182 [284] using lithium aluminium hydride in diethyl ether 

afforded alcohol [360] in 98% yield on a 2.5 mmol scale. The loss of the tert-butyl ester was 

shown by the disappearance of the singlet at 1.43 ppm in the 1H NMR spectrum, as well as 

the loss of the carbonyl signal at 172.2 ppm in the 13C NMR spectrum. The FTIR spectrum 

showed an OH stretch as a strong broad signal at 3380 cm-1. The HRMS showed 371.24536 

(100%) and C23H33NO3 requires 371.24604. 
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The silylation proceeded smoothly by treating alcohol [360] in dimethylformamide with 

imidazole and tert-butyldimethylsilyl chloride183, affording the silylated product [361] in a 

76% yield on a 3.4 mmol scale. The 1H NMR spectrum showed the silylation was successful 

by the appearance of the SiMe2 protons as a singlet at −0.07 ppm integrating for six protons, 

and the tert-butyl protons as a singlet at 0.80 ppm integrating for nine protons. The 13C NMR 

spectrum also showed the SiMe2 carbons at −5.3 ppm and the tert-butyl carbons at 18.3 and 

26.0 ppm. The FTIR spectrum had no broad alcohol stretch in the region above 3000 cm-1. 

The HRMS showed 485.32116 and the parent ion of C29H47NO3Si requires 485.33252. 

 

6.8 Debenzylation of the silylated alcohol [361] 

 

Treatment of the silylated alcohol [361] with 10% palladium on carbon and hydrogen at 7 

atmospheres in absolute ethanol afforded the debenzylated amine [362] in 98% yield on a 2.4 

mmol scale (Scheme 6.9). 
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Scheme 6.9: (i) 10% Pd/C, H2(g) 7 atm, EtOH, 3 d, 98% 

 

After the standard workup and purification by column chromatography, the 1H NMR 

spectrum showed the loss of the aromatic protons (7.26-7.08 ppm), the benzylic protons (3.82, 

3.75 and 3.58 ppm) and the benzylic methyl substituent (1.25 ppm). The 13C NMR spectrum 

also did not show any aromatic protons (144.6-126.4 ppm) or benzylic protons (61.7 and 50.1 

ppm). The FTIR spectrum showed the NH2 stretch at 3356 cm-1 as a broad medium strength 

signal.  

 

6.9 Lactam formation 

 

To our surprise acylation and cyclisation of the amine [362] to access lactam [363] using 4-

chlorobutyryl chloride (Scheme 6.10) did not afford the expected lactam [363]. The acylation 
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proceeded smoothly, giving N-[(1R)-1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)-4,4-dimeth-

oxybutyl]-4-chlorobutanamide [364] in 99% yield. The 1H NMR spectrum showed the 

characteristic triplets at 3.58 and 2.29 ppm due to the ClCH2 and COCH2 protons 

respectively. The quintet at 2.09 ppm due to the COCH2CH2CH2Cl, was also clearly visible. 

The 13C NMR spectrum showed a carbonyl signal at 170.9 ppm, and the FTIR spectrum also 

showed the NH stretch at 3399 cm-1. 

 

The cyclisation with potassium tert-butoxide, however, yielded an unidentifiable black 

residue, which after column chromatography did not show any traces of the expected lactam 

[363]. 
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Scheme 6.10: (i) Cl(CH2)3COCl, NEt3, CH2Cl2, 0 °C, 30 min, 99%; (ii) ButOK, t-BuOH, 5 h, 

0% 

 

We attempted the cyclisation step using sodium ethoxide in ethanol as a base (Scheme 6.11). 

However we were once again unable to isolate any of the lactam [363]. 
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Scheme 6.11: (i) Na, EtOH , rt, 24 h, 0% 
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We thought that we may have better luck if we had a better leaving group than chlorine 

present, and as such, decided to use 4-bromobutyryl chloride [365]. The 4-bromobutyryl 

chloride [365] was prepared in two steps from γ-butyrolactone [366] (Scheme 6.12). 
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Scheme 6.12: (i) (a) HBr, H2SO4, ∆, 2 h (b) rt, 24 h, 68%; (ii) (a) oxalyl chloride, cat. NEt3, 

CH2Cl2, 0 °C, 3 h, (b) rt, 16 h, 88% 

 

γ-Butyrolactone [366] was refluxed with hydrobromic acid and a small amount of 

concentrated sulfuric acid for 2 hours, thereafter the solution was stirred at room temperature 

for 24 hours195. After workup and purification by recrystallisation from dichloromethane, 5-

bromobutanoic acid [367] was obtained as a beige solid in a 68% yield on a 68 mmol scale. 

 

The 5-bromobutanoic acid [367] was then converted into the corresponding acid chloride by 

treatment with oxalyl chloride in dichloromethane at 0 °C, in the presence of a catalytic 

amount of triethylamine196. The desired acid chloride [365] was obtained in 88% yield on a 79 

mmol scale after purification by distillation. 

 

Acylation of [362] using 4-bromobutyryl chloride proceeded smoothly. As usual, the reaction 

was complete within a few minutes and was characterized by the evolution of hydrogen 

chloride gas. The acylated amine decomposed rapidly at room temperature and the crude 

product [368] was used immediately in the cyclisation step. To our disappointment despite 

several attempts, treatment with potassium tert-butoxide in tert-butanol afforded only an 

unidentifiable product (Scheme 6.13).  
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Scheme 6.13: (i) Br(CH2)3COCl, NEt3, CH2Cl2; (ii) KtOBu  t-BuOH, rt, 5 h, 0%  

 

6.10 Conclusion 

 

Owing to the time constraints of the project we were unable to look at alternative methods of 

accessing lactam [363]. If we had been successful in preparing [363] we would still have 

needed to remove the silyl protecting group and re-protect the lactam as an acetate [369] due 

to the problems associated with thionating the lactam in the presence of a silyl ether as 

described in Section 5.12. An overview of our planned synthetic route to access lactam [363] 

and its conversion into the late stage common intermediated [259] is discussed in detail in 

Section 8.2.3. 
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CHAPTER 7 
 

APPLICABILITY OF THE METHODOLOGY TO THE SYNTHESIS OF 1,4-DI-
SUBSTITUTED QUINOLIZIDINES  

 
 
7.1 Introduction 
 
This chapter is concerned with the application of the methodology described in Chapters 2-6 

towards the synthesis of the structurally related class of amphibian alkaloids, the 1,4-

disubstituted quinolizidines. Shown below in Figure 7.1 is a representative example: 217A, 

the first quinolizidine reported49 (Chapter 1, Section 1.2.14). 

 

N

H

217A  
 

Figure 7.1: Structure of 1,4-disubstituted quinolizidine 217A 

 
Quinolizidines have been synthesized before in our laboratories using the “Wits approach”, 

but they have proved to be somewhat more challenging targets. During the course of her 

doctoral studies San-Fat described the preparation of quinolizidines.108k However, once she 

had formed the six-membered vinylogous urethane [342] (Scheme 7.1) she was able to reduce 

the tert-butyl ester to the alcohol [370] only in low yield. The problem was that the 

conjugated ester was rather labile, and the C=C bond was easily reduced as well. 
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Scheme 7.1: (i) LiAlH4, THF, 19 h, 29% 
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In comparison Gravestock reported a 91% yield for the reduction of the analogous five-

membered system [251] (Scheme 7.2), and as such the enaminone unit in this system was far 

more resistant to competing reduction.100, 108h 
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Scheme 7.2: LiAlH4, THF, 0°C to rt, 91%, 24 h 

 

San-Fat had to be content with a more long-winded approach, which involved a series of 

deprotections and reprotections before being able to access the desired alcohol [370] in a 

reasonable and reproducible yield108k (Scheme 7.3). 
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Scheme 7.3: (i) LiAlH4, Et2O, 0 °C, [247], rt, 97%; (ii) TBDMSCl, imidazole, DMF, rt, 99%; 

(iii) 40% HF, MeOH, rt, 89%; (iv) Ac2O, Py, rt, 100% 
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As related in Section 5.7, when we attempted to reduce the tert-butyl ester of the vinylogous 

urea [272] we were only able to isolated the alcohol [273] product in a low 10% yield 

(Scheme 7.4).  
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Scheme 7.4: (i) LiAlH4, THF, 0 °C – rt, 24 h, 10% 

 

The reduction of the tert-butyl ester is therefore not as general as we had hoped for the five-

membered systems. The work reported in this chapter therefore relates an alternative approach 

that can be used for the preparation of 5,8-disubstituted indolizidines and 1,4-disubstituted 

quinolizidines, negating the need for the reduction of a tert-butyl ester group late in the 

synthesis. 

 

7.2 Approach A 

 

San-Fat originally tried to solve the reactivity problem by looking at the condensation of 7-

chloro-3-oxoheptanoate [371] with primary amines, followed by an alkylative cyclisation108k 

(Scheme 7.5). Michael108b and Hosken109a had successfully adapted this approach from 

Carrié197, when they prepared a series of N-aryl vinylogous urethanes by treating various 

substituted anilines with ethyl 6-chloro-3-oxohexanoate. 

 

Ph

NH2 (i)

Ph

HN

Cl
CO2Et

Ph

N
CO2Et

 

 

 

Scheme 7.5: (i) Cl(CH2)4COCH2CO2Et [371],  CH2Cl2, room temperature, 16 h, 100% or 

Cl(CH2)4COCH2CO2Et, THF, ∆, 16 h, 81% 
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San-Fat was unsuccessful in forming any six membered ring systems. The initial condensation 

proceeded well in high yield, however the cyclisations inevitably yielded unreacted starting 

material. Reaction conditions used to attempt the cyclisation included the conversion of the 

chloro group into an iodo group by a Finkelstein reaction, followed by treatment with various 

bases such as potassium carbonate, sodium bicarbonate or sodium hydroxide108k.  

 

7.3 Approach B 

 

The route we investigated was similar to the Carrié approach197, however it involved a change 

in the timing of the reactions. We envisaged the alkylation of a primary amine with ethyl [2-

(4-chlorobutyl)-1,3-dioxolan-2-yl]acetate [368]. Subsequent acetal removal and condensation 

should afford the piperidine system [372] (Scheme 7.6). 
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Scheme 7.6: Alternative approach to access vinylogous urethanes 

 

The approach is particularly appealing since, as it stands, it would allow us to access the 

cyclised enaminone [372] from the primary amine in only two steps. 

 

7.4 Preparation of ethyl [2-(4-chlorobutyl)-1,3-dioxolan-2-yl]acetate [371] 

 

Ethyl [2-(4-chlorobutyl)-1,3-dioxolan-2-yl]acetate [371] is easily prepared in two steps from 

ethyl acetoacetate [285] (Scheme 7.7).197 In the first step ethyl acetoacetate [285] was 

converted into a dianion by treatment with sodium hydride, followed by n-butyllithium. 

Subsequent treatment with 1-bromo-3-chloropropane afforded [286] in an 80% yield on a 32 

mmol scale. 
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Scheme 7.7: (i) (a) NaH, THF, 0 °C, [285], 10 min (b) n-BuLi, THF, 0 °C, 10 min, (c) 

Cl(CH2)3Br, THF, −50 °C, (d) −15°C, 24 h, 80%; (ii) HO(CH2)2OH, p-TsOH, C6H6, Dean-

Stark, 24 h, 83% 

 

Treatment of ethyl acetoacetate [285] with one equivalent of sodium hydride deprotonates the 

more acidic proton on the carbon α to both the carbonyl groups (Scheme 7.8, Step i). 

Subsequent treatment of the resulting anion [373] with n-butyllithium affords the desired 

dianion [374] (Step ii). Under kinetic conditions electrophilic substitution of 1-bromo-3-

chloropropane occurs preferentially at the terminal carbon of the dianion as the coordinated 

sodium cation hinders attack at the more reactive site (Step iii).197 
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Scheme 7.8: (i) NaH, THF, 0 °C, [285], 10 min; (ii) n-BuLi, THF, 0 °C, 10 min; (iii) (a) 

Cl(CH2)3Br, THF, −50 °C  (b) −15 °C, 24 h, 80% 

  

The 1H NMR spectrum showed the presence of the chlorinated butyl chain by the presence of 

two triplets both integrating for two protons at 3.54 and 2.61 ppm as well as a multiplet at 

1.85-1.70 ppm integrating for four protons. Interestingly, signals due to the stabilized enol 

form were clearly visible.  
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The acetal protection of [286] was achieved by refluxing in benzene in the presence of 

ethanediol and a catalytic amount of para-toluenesulfonic acid. The reaction vessel was fitted 

with a Dean-Stark apparatus for the azeotropic removal of water, thereby ensuring the 

reaction ran to completion and there was no competitive acetal removal occurring. The acetal-

protected product [371] was obtained in an 83% yield on a 5.6 mmol scale. 

 

The success of the reaction was shown by the appearance of a multiplet at 3.97-3.86 ppm in 

the 1H NMR spectrum integrating for four protons due to the acetal CH2 groups. The 13C 

NMR spectrum also showed the loss of the characteristic ketone carbonyl signal at 206.5 

ppm. The HRMS showed 206.07067 and C9H15O3Cl requires 206.07097. 

 

7.5 Monoalkylation of primary amines 

 

In order for our proposed reaction scheme to be successful we first had to contend with the 

problem of mono-alkylating a primary amine. Mono-alkylation of a primary amine is not 

trivial as alkylation increases the nucleophilic nature of the nitrogen, and as a result one tends 

to get a mixture of products, even if only one equivalent of the alkylating agent is used. We 

felt that the larger the primary amine, the more likely it would result in the preferential 

formation of the mono-alkylated product. We chose to use cyclohexanamine as our model 

amine. Before we attempted any alkylations we first needed to perform a Finkelstein 

reaction135 on [368] to afford the iodo-analogue [375] as we felt direct substitution of the 

chlorine was unlikely to occur in good yield (Scheme 7.9). 
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Scheme 7.9: (i) NaI, CH3CN, ∆, 3 h 

 

Refluxing [371] with sodium iodide in acetonitrile yielded the iodinated product as a brown 

oil. Analysis of the 1H NMR spectrum of the crude product showed the substitution was 

successful as the triplet due to the CH2Cl protons at 3.46 ppm in the starting material had 
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shifted to 3.19 ppm indicating conversion to a CH2I group. The product decomposed rapidly, 

and was used crude in the next step. 

 

Owing to the instability of the iodo adducts we decided to prepare the iodinated species in situ 

for use in the alkylation of various primary amines (Scheme 7.10).  
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Scheme 7.10: (i) (a) NaI, CH3CN, ∆, 3h, (b) K2CO3, 4 Å molecular sieves, cyclohexanamine, 

∆, 18 h, 75% 

 

Treatment of [371] with sodium iodide in refluxing acetonitrile for 3 hours, afforded the in 

situ iodo-species. Potassium carbonate and crushed 4 Å molecular sieves were added to the 

reaction mixture followed by one equivalent of cyclohexanamine. After refluxing for a further 

eighteen hours the reaction was worked up and after purification we isolated the mono-

alkylated product [376] in 75% yield on a 2 mmol scale. The 1H NMR spectrum showed the 

presence of the cyclohexylamine CH2 protons as a doublet of triplets integrating for four 

protons at 2.24 ppm and two multiplets at 1.88-1.51 ppm and 1.32-1.23 ppm. The CH2Cl 

triplet had shifted from 3.46 ppm in the chlorinated starting material to 3.53 ppm in the 

alkylated product indicating the formation of a NHCH2 group. The NH proton was observed 

as a multiplet at 3.36-3.28 ppm. Owing to rapid decomposition further characterization was 

not possible. 

 

7.6 Alkylative cyclisation 

 

Having successfully mono-alkylated cyclohexanamine, the next step involved the removal of 

the acetal protecting group and alkylative cyclisation to afford the piperidine enaminone 

[377]. We predicted that after the acetal removal the now secondary amine would 

immediately condense with the deprotected ketone, affording the desired enaminone [377]. 

We found that simply treating the alkylated products with acid was ineffective in removing 

the acetal group. The most promising results came from refluxing [376] with sodium iodide 
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and cerium trichloride heptahydrate for three hours198, or by treating [376] with freshly 

distilled boron trifluoride etherate in dichloromethane at 0 °C overnight199. The desired 

cyclised product [377] was obtained in 10 and 49% yield respectively (Scheme 7.11). 
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Scheme 7.11: (i) NaI, CeCl3.7H2O, ∆, 3 h, 10%, (ii) BF3.OEt2, CH2Cl2, 0 °C, 24 h, 49%  

 

The 1H NMR spectrum showed the presence of the characteristic vinyl proton as a singlet at 

4.86 ppm integrating for one proton. Furthermore the multiplet at 3.97-3.86 ppm due to the 

acetal protons was gone. The 13C NMR spectrum showed the vinyl carbons at 169.3 and 109.0 

ppm. The HRMS shows 251.18870, with C15H25NO2 requiring 251.18853. 

 

7.7 Application of approach B to the preparation of quinolizidines 

 

To test the approach for the preparation of quinolizidines we chose to prepare and use 1-

{[tert-butyl(dimethyl)silyl]oxy}-3-octanamine [378] (Figure 7.2) which coincides with the 

work performed by San-Fat108k.  

 

NH2

OTBDMS
378  

 

Figure 7.2: 1-{[tert-Butyl(dimethyl)silyl]oxy}-3-octanamine [378]  

We envisaged the preparation of 1-{[tert-butyl(dimethyl)silyl]oxy}-3-octanamine [378] from 

hexanal [245] and tert-butyl diethoxyphosphorylacetate [246] using the “Wits approach”. 
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7.7.1 Wittig olefination and alkylative addition of dibenzylamine 

 

The preparation of tert-butyl 3-(dibenzylamino)octanoate [379] was achieved in two steps 

from hexanal [245] and tert-butyl diethoxyphosphorylacetate [246] (Scheme 7.12) 

 

NBn2

OtBuOtBuH

O O(i) (ii) O

380245 379  
 

Scheme 7.12: (i) (EtO)2POCH2COC(CH3)3 [246], LiCl, DBU, CH3CN, rt, 24 h, 89%; (ii) 

NH(Bn)2, THF, −78 °C, 30 min, [380], 3 h, 78% 

 

The Wittig olefination of hexanal [245], using the Horner-Wadsworth-Emmons protocol170 

afforded tert-butyl (2E)-2-octenoate [380] as a single isomer in 89% yield on a 29 mmol 

scale. The 1H NMR spectrum showed the alkene protons as doublets of triplets intergrating 

for one proton each at 6.86 (J 7.0 & 15.5 Hz) and 5.73 ppm (J 1.4 & 14.9 Hz). The coupling 

constant of 15.2 Hz indicates an E-geometry. The 13C NMR spectrum also showed the 

characteristic alkene carbon signals at 148.1 and 122.9 ppm.  

 

Alkylation with freshly distilled dibenzylamine, according to the Davies protocol124, yielded 

[379] in a 78% yield on a 23 mmol scale. As expected, the 1H NMR spectrum showed the 

aromatic protons as a multiplet integrating for ten protons at 7.35-7.20 ppm, as well as the 

benzylic protons as doublets of doublets integrating for two protons each at 2.62 and 2.11 

ppm respectively. The 13C NMR spectrum also showed the presence of aromatic carbons in 

the 140.0-126.8 ppm region as well as the benzylic carbons at 55.3 ppm. The HRMS showed 

395.28300 and C26H37NO2 requires 395.28243. 

 

7.7.2 Reduction of the tert-butyl ester, silylation and debenzylation. 

 

The work outlined in Section 5.7, as well as that done by San-Fat108k suggests that reduction 

of the tert-butyl ester after the enaminone has been formed is not feasible. We decided at this 

stage to reduce the ester to the alcohol [381] and then protect it as the tert-butyldimethylsilyl 

ether [382] (Scheme 7.13). As this route dispenses with the need for the thionation step, 
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which is incompatible with the silyl ether (Section 5.12) we envisaged no problems with 

using the silyl protecting group.  
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Scheme 7.13: (i) LiAlH4, Et2O, 0 °C, [379], 3 h, 70%; (ii) Imidazole, TBDMSCl, DMF, rt, 24 

h, 71%; (iii) H2(g), 10% Pd/C, EtOH, 94%  

 

Reduction of the tert-butyl ester with lithium aluminium hydride in diethyl ether proceeded 

smoothly, affording alcohol [381] in a 70% yield after workup and purification on a 3.8 mmol 

scale. The 1H NMR spectrum showed the loss of the tert-butyl protons at 1.42 ppm and the 

appearance of alcohol signal as a broad singlet at 4.60 ppm. The 13C NMR spectrum also 

showed the loss of the characteristic tert-butyl carbon signals at 80.0 and 28.0 ppm. The 

HRMS spectrum found 325.24060 with C26H37NO2 requiring 325.24056. 

 

Subsequent silylation by treatment with imidazole and tert-butyldimethylsilyl chloride in 

dimethylformamide183 afforded the silyl ether [382] in 71% yield on an 8.5 mmol scale. The 

silylation was shown to be successful by the appearance of the characteristic Si(CH3)2 and 

C(CH3)3 signals as singlets integrating for six and nine protons respectively at 0.85 and 0.08 

ppm in the 1H NMR spectrum. The 13C NMR spectrum also showed the characteristic signals 

for the Si(CH3)2 carbons at −5.27 ppm and the C(CH3)3 carbons at 26.0 and 18.3 ppm. The 

HRMS showed 439.32680 and M+ for C28H45NOSi requires 439.32704. 

 

Finally the high pressure debenzylation, performed under hydrogenation conditions in 

absolute ethanol in the presence of 10% palladium on carbon,, afforded the desired amine 

[378] in 94% yield on a 6.0 mmol scale. The 1H NMR spectrum showed the loss of the 

characteristic aromatic and benzylic protons.   
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7.7.3 Alkylative addition and cyclisation 

 

Having prepared 1-{[tert-butyl(dimethyl)silyl]oxy}-3-octanamine [378],  we were now able 

to test the critical mono-alkylation, followed by the deprotection of the acetal and subsequent 

cyclisation to afford the desired cyclised enaminone [287] (Scheme 7.14). 
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Scheme 7.14: (i) NaI, K2CO3, ∆, 24 h, 73%; (ii) BF3.Et2O, CH2Cl2, 0 °C, 24 h, 0% or 

CeCl3.7H2O, NaI, ∆, 3 h, 0% or PPTs, H2O, acetone, rt, 24 h, ∆, 24 h,  0% or AcOH, THF, 

H2O, 40-45 °C, 24 h, 0% or PdCl2, acetone, rt, 24 h, 0% 

 

Subjecting 1-{[tert-butyl(dimethyl)silyl]oxy}-3-octanamine [378] to the alkylative addition of 

[371] by treatment with potassium carbonate and sodium iodide as described above in Section 

7.5 proceeded smoothly, yielding the desired mono-alkylated amine [379] in a 73% yield on a 

0.37 mmol scale. The mono-alkylated amine was extremely unstable and decomposed in less 

than an hour at room temperature. 

 

The deprotection of the acetal and cyclisation was first attempted using the methods shown to 

be successful in Section 7.6. Treatment with boron trifluoride etherate199 was unsuccessful 

with an unidentifiable product being isolated, which showed that the silyl protecting group 

had been removed. Treatment with acetic acid or cerium trichloride heptahydrate:sodium 

iodide198 only afforded unreacted starting material in a 75% or 91% recovery. Cyclisation 

using para-toluenesulfonic acid gave an unidentifiable product and finally a palladium 
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mediated cyclisation using palladium chloride in acetone200 afforded starting material in a 

68% recovery. 

 

During the course of the above mentioned investigations we came across a report by 

Lhommet and co-workers.201 in which they described the preparation of chiral pyrrolidine and 

piperidine β-enamino esters starting from ω-halo β-keto esters. Preparation of pyrrolidine 

enamino ester [380] was trivial through the reaction of 6-chloro-3-oxohexanoate [381] with 

(S)-1-phenylethylamine [382] in the presence of iodine, sodium sulfate and disodium 

hydrogen phosphate in accordance with a previously reported procedure108b, 109a, 197 (Scheme 

7.15). 
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Scheme 7.15: (i) Na2HPO4, Na2SO4, I2, 60% [380], ~10% [383] 

 

The desired compound [380] was obtained in 60% yield, along with about 10% of the 

tetrahydrofuranyl derivative [383] resulting from the O-cycloalkylation of [381].  

 

Lhommet found, by contrast that the application of this methodology for the preparation of 

piperidine enamino ester [384] was not straightforward. The use of 7-chloro-3-oxoheptanoate 

[385] to access [384] under the same conditions afforded a quantitative recovery of product 

[386] (Scheme 7.16). 
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Scheme 7.16: (i) Na2HPO4, Na2SO4, I2, 100% 
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It seems that when forming the five-membered ring the initial substitution of the halogen by 

the amine is favoured, whereas when forming the six-membered ring the amine preferentially 

reacts with the keto moiety. Lhommet and co-workers found that by converting the chloro 

group in [385] to an iodo [387] they obtained a mixture of the desired piperidine enamino 

ester [384] together with the cyclohexene derivative [386] and the tetrahydropyranyl 

derivative [388] in a 25:55:20 ratio (Scheme 7.17)201. 
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Scheme 7.17:  (i) Na2HPO4, Na2SO4, I2, 25% [384], 55% [386], 20% [388] 

 

The above results were observed in our own laboratories when San-Fat attempted to use this 

approach to access an analogous piperidine enamino ester.108k San-Fat found that treatment of 

(1S)-1-phenylethylamine and 7-chloro-3-oxoheptanoate [389] in dichloromethane afforded C-

alkylated product [390] which was isolated in quantitative yield. Treatment of [390] with 

potassium hexamethyldisilazide in dry tetrahydrofuran yielded the debenzylated cyclohexene 

by-product [391], whereas refluxing with sodium iodide in super dry acetone afforded the 

tetrahydropyranyl derivative [383] (Scheme 7.18).108k 
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Scheme 7.18: (i) CH2Cl2, (1S)-1-phenylethyl amine, rt, 16 h, 100%, (ii) KHMDS, THF, −78 

°C, 100 min, 27%, (iii) NaI, acetone, ∆, 16 h, 89% 
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In light of the above results Lhommet and co-workers.201 decided to protect the keto 

functionality of [385] in the same manner as we have described above in Sections 7.3 and 7.4. 

They found that substitution occurred readily at the halogen by refluxing dioxolane [392] with 

sodium carbonate, tetra-butylammonium iodide and sodium iodide, affording mono-alkylated 

amine [393] in a 97% crude yield. Deprotection and spontaneous cyclisation was achieved by 

treatment with boron trifluoride etherate in dichloromethane yielding [384] in 74% yield 

(Scheme 7.19). 
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Scheme 7.19: (i) HO(CH2)2OH, HC(OMe)3, cat. p-TsOH, 82% (ii) Na2CO3, TBAI, NaI, [382] 

(97% crude), (iii) BF3.Et2O, CH2Cl2, 74% 

 

The results reported by Lhommet et al.201 confirm that the protocol can be used for the 

preparation of both pyrrolidine and piperidine β-enamino esters. The use of boron trifluoride 

etherate to deprotect acetal groups199 has however been the downfall in our particular case as 

it is incompatible with the silyl ether protecting group which was used to circumvent the 

problems associated with reducting the tert-butyl ester late in the synthesis (Section 5.7). In 

fact Lhommet et al.201 found that when their protocol was applied to (S)-phenylglycinol [394], 

compound [395] formed in 95% crude yield, but the deprotection-cyclisation step afforded 

bicyclic derivative [396] as a mixture of diastereomers in 67% yield instead of the desired 

[397] (Scheme7.20). In addition the formation of the decarboxylation product [398] was also 

observed. 
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Scheme 7.20: (i) Na2CO3, TBAI, NaI, 95% crude (ii) BF3.Et2O, CH2Cl2, 67% 

 

7.8 Conclusion 

 

In our case the boron trifluoride etherate in addition to deprotecting the acetal is a source of 

F−, and as a result readily removes the silyl ether, exposing the hydroxyl group. We propose 

that the reaction then follows the same path as shown above in Scheme 7.20 affording a 

mixture of bicyclic compounds. In order to use this route we would therefore have to remove 

the silyl ether and reprotect the resulting hydroxy group. As a result this route does not negate 

any of the deprotections and reprotections that San-Fat had to be content with during her 

synthesis of 1,4-disubstituted quinolizidines, and unfortunately does not offer a shorter 

alternative to the route described by San-Fat108k. The approach described for the preparation 

of pyrrolidine β-enamino esters, may however still afford a significantly shorter route to 5,8-

disubstituted indolizidines incorporating the “Wits approach” described in detail in Chapters 

2-6. This approach is outlined in detail as part of the future work in Section 8.2 of this thesis. 
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CHAPTER 8 
 

SUMMARY, CONCLUSIONS AND FUTURE WORK 
 

8.1 Summary and conclusions 
 
The aims of this project were discussed in Section 2.8. The main aims will be discussed in 

turn, thereby giving an idea of the success of the project. 

 

• To extend the synthetic utility of enaminones in alkaloid synthesis, in particular by looking 

at the advantages offered by the incorporation of a Weinreb amide into the enaminone 

functionality. 

 

As highlighted in Chapters 3, 4 and 5, the ambident nucleophilicity and electrophilicity of 

enaminones was useful in the construction of piperidine, 5-monosubstituted and 5,8-

disubstituted indolizidines. The incorporation of the Weinreb amide functionality into the 

enaminone backbone gave us a handle to introduce various substituents at the 8-position of 

the 5,8-disubstituted indolizidines, through its unique ability to undergo mono-alkylations in 

the presence of excess Grignard reagents. In addition, the Weinreb amide was compatible 

with all of the key functional group conversions necessary for the synthesis of both 5-

monosubstituted and 5,8-disubstituted indolizidines, such as sulfide contractions, alkylative 

cyclisations and catalytic hydrogenations.  

 

• To use and expand on the methodology established by Gravestock for the enantioselective 

synthesis of 5,8-disubstituted indolizidines, for the synthesis of  indolizidines 197C [258], 

209I [185] and 223V [174].  

N N N

OH

209I 223V 197C

185 174 258

 
 

Figure 8.1: Indolizidines 209I [185], 223V [174] and 197C [258] 
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Initial attempts to use Gravestock’s methodology100 to prepare vinylogous urethanes incor-

porating the Weinreb amide functionality were successful. Unfortunately, the reduction of the 

tert-butyl ester to form alcohol [273] was problematic and low yielding (Scheme 8.1 and 

Section 5.7), and an alternative approach following the work done by San-Fat had to be 

employed (Section 5.8).  
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Scheme 8.1: (i) LiAlH4, THF, 0 °C – rt, 24 h, 11% 

 

The successful formal enantioselective synthesis of indolizidines (−)-209I [185] and progress 

made towards the preparation of indolizidine 223V [174], further demonstrated how the use 

of the Weinreb amide functionality could extend the known methodology to include the 

preparation of indolizidines with a variety of substituents at the 8-position. In addition, several 

of the protocols described by Gravestock were improved, including the two-step lactam 

formation which is now high yielding and does not suffer from competing elimination 

reactions. Thionation of the resulting lactam [349], using the more cost effective Brillon 

protocol128, was also shown to be higher yielding and easier to purify than when performed 

with the more expensive, yet traditionally used, Lawesson’s reagent178-180. Time constraints of 

the project prevented us from completing the synthesis of indolizidine 197C [258] and 223V 

[174], however, based on the evidence from the formal preparation of (−)-209I [185] we do 

not envisage any complications in preparing these alkaloids in the future. 
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• To synthesize a late stage common intermediate [259], that would allow us access to most 

naturally occurring 5,8-disubstituted indolizidines. 
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Figure 8.2: The late stage common intermediate [259] 

 

Although the preparation of a late stage intermediate [259] was not completed, a great deal of 

the methodological groundwork has been done, paving the way for the future preparation of 

[259]. Key aspects include the preparation of a monoacetylated aldehyde [282] from 

cyclooctadiene [276] (Scheme 8.2), and the modification of the debenzylation and the lactam 

formation steps to prevent the loss of the acetyl protecting group under acidic conditions.  
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Scheme 8.2: (i) (a) O3, CH2Cl2: MeOH, −60°C, (b) p-TsOH, rt, 1 h, (c) Me2S, H+, rt,  24 h, 65 

%; (iii) (a) O3, CH2Cl2, −60°C, (b) Me2S 0% or PPh3, 47%.  

 

• To investigate an alternative approach for the synthesis of 1,4-disubstituted 

quinolizidines. 

 

Investigations into an alternative approach towards the preparation of the structurally related 

1,4-disubstituted quinolizidines, negating the need for the reduction of a tert-butyl ester group 

late in the synthesis were undertaken. The proposed route involved the mono-alkylation of a 

primary amine with ethyl [2-(4-chlorobutyl)-1,3-dioxolan-2-yl]acetate [371], followed by 

acetal removal and condensation to afford a piperidine system (Scheme 8.3).  



Chapter 8               Summary, Conclusions and Future Work 

 197 

R
NH2 RHN

OEt

OOO
N
R

CO2Et

371 372

4

Cl
OEt

OOO

4
+

 
 

Scheme 8.3: Proposed route to access vinylogous urethanes 

 

We were able to demonstrate the successful mono-alkylation of primary amines with [371], 

but we only had limited success removing the acetal group and cyclising to access the desired 

piperidine skeletons. A literature review suggests that while the preparation of pyrrolidines 

using this method is feasible, the corresponding preparation of piperidines is marred by low 

yields and side reactions.    

 

As can be seen from the summary above, many of the key aims of the project were met the 

most notably of which was the enantioselective preparation of indolizidine (−)-209I [185]. 

The important contributions made by this project include the successful establishment of 

methodology for the preparation of vinylogous urethanes incorporating the Weinreb amide 

functionality, and the utilization of this methodology for the enantioselective synthesis of 5,8-

disubstituted indolizidines, and the use of the Weinreb amide’s unique reactivity to introduce 

a variety of substituents at the 8-position. 
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8.2 Future work 

 

8.2.1 Proposed synthetic route for the synthesis of 197C [258] 

 

Indolizidine 197C [258] was originally identified as one of the synthetic targets during the 

course of this project. Unfortunately owing to time constraints and lack of material we were 

never able to synthesise it. Given below is the proposed synthetic route that we had outlined 

to access 197C [258] starting from Weinreb amide [275] (Scheme 8.1) 
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Scheme 8.1: (i) LiAlH4, THF, 0°C; (ii) Na, MeOH, ∆; (iii) LiAlH4, THF, 0 °C 

 

Indolizidine 197C [258] is unique in our target molecules as it has a –CH2OH substituent as 

opposed to a simple alkyl substituent at the 8-position. Weinreb amides can be readily 

reduced to their corresponding aldehydes when treated with lithium aluminium hydride. 

Accessing the aldehyde [399] would afford us the opportunity of epimerizing at the 8-position 

to the stereochemistry found in the natural product [400]. Finally, reduction of the epimerized 

aldehyde would afford indolizidine 197C [258]. 
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8.2.2. Introduction of different groups at the 5-position 

 

The successful enantioselective synthesis of indolizidine (−)-209I [185] has established the 

methodology required for the future enantioselective synthesis of known 5,8-disubstituted 

indolizidines. The results obtained during the course of this project suggest that we should be 

able to adapt this methodology for the preparation of indolizidines with any unbranched 

saturated or unsaturated substituents, with or without oxygen functionalities at the 8-position 

that have currently been identified in natural products. Unfortunately, we are limited to the 

preparation of indolizidines with a saturated alkyl substituent at the 5-position. Nevertheless 

this methodology should allow us to access 25 of the 78 5,8-disubstituted indolizidines 

described in Daly’s review of amphibian alkaloids published in 2005.5 Highlighted below in 

Scheme 8.2 is our proposed synthetic route to access these various substituents. The 

substituents that have been identified in natural products are shown in blocks. 

 

In accordance with the protocol outlined in Sections 5.17.1-5.17.3, Weinreb amide [401] can 

be alkylated with a suitable Grignard or organo-lithium reagent affording [402]. 

Epimerisation to [403], and two-step carbonyl defunctionalisation via [404] should afford the 

desired indolizidines [405] with either saturated or unsaturated substituents at the 8-position. 

Reduction of the Weinreb amide [401] to the corresponding aldehyde [406], followed by 

epimerization to [407] and reduction should allow access to [408] with a CH2OH group at the 

8-position, which in turn can be defunctionalised, affording the commonly seen methyl 

substituent [409]. Another substituent that is seen in natural products is a vinyl fragment at the 

8-position [410]; accessing this should be possibly by simple Wittig olefination of epimerized 

aldehyde [407]. 
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Scheme 8.2: (i) LiAlH4, Et2O, (ii) Na, MeOH, ∆,  (iii) LiAlH4, Et2O, (iv) (a) MsCl, NEt3, 

CH2Cl2 (b) Raney Nickel, i-PrOH, (v) Ph3P+CH3 Br−, n-BuLi, (vi) RMgBr or RLi, THF, (vii) 

Na, MeOH, ∆, (viii) HS(CH2)2SH, BF3OEt, (ix) Raney Nickel, i-PrOH 

 

A further four indolizidines contain saturated alkyl substituents at the 5-position with an 

alcohol functionality. Unfortunately in all four cases the position of the alcohol group has not 

been established. Assuming that a terminal alcohol group is the most likely arrangement we 

can also access these systems by preparing Grignard reagent [411] from 3-bromopropanol 

[412] (Scheme 8.3).  
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Scheme 8.3: (i) TBDMSCl, imidazole, DMF, (ii) Mg, THF, (iii) [401], THF, (iv) Na, MeOH, 

∆, (v) HS(CH2)2SH, BF3OEt, (vi) Raney Nickel, i-PrOH, (vii) HF, MeOH 

 

If successful, comparison of data with those recorded on the natural products may help to 

establish if these alcohol groups are terminal in nature, if not it is still possible repeat the 

synthesis giving the alcohol functionality at the 2 or 3 positions as indicated in Scheme 8.2 by 

treatment with a suitably substituted Grignard reagent. Finally, to access the indolizidine with 

the alcohol at the 4-position would simple require the condensation of the Weinreb amide 

with propylmagnesium bromide, followed by reduction of the resulting ketone with lithium 

aluminium hydride to access the required alcohol. 

 

The only substituent not accounted for in the above proposed synthetic routes is a C4H9O2 

chain with two alcohol groups. However, one could imagine preparing this sort of system in 

an analogous manner to the ones prepared in Scheme 8.3. It simply requires the preparation of 

an appropriate Grignard reagent with two protected alcohols, and repeating the synthesis until 

the correct substitution pattern is obtained. 
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8.2.3 A more streamlined approach towards 5,8-disubstituted indolizidines 

 

A possible shorter synthetic route that can be investigated is analogous to that used by 

Michael108b and Hosken109a adapted from the work of Carrié197. In their investigations they 

reacted various anilines [413] with ethyl 6-chloro-3-oxohexanoate [414] to produce a number 

of N-aryl vinylogous urethanes [415] as shown in Scheme 8.4. 
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Scheme 8.4: (i) Na2SO4, Na2HPO4, I2 (cat.) 

 

We feel that it may be possible to convert ethyl 6-chloro-oxohexanoate [414], whose 

preparation is well established, into the analogous Weinreb amide [416] in three steps as 

shown below in Scheme 8.5.  
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Scheme 8.5: (i) HO(CH2)2OH, p-TsOH, C6H6, (ii) Me(NH)(O)Me.HCl, AlMe3 or 

Me(NH)(O)Me.HCl, AlMe2Cl or Me(NH)(O)Me.HCl, [Me(MeO)N-MgCl], (iii) H+, MeOH 

 

Acetal protection of ethyl 6-chloro-oxohexanoate [414] followed by treatment with N,O-

dimethylhydroxylamine hydrochloride in the presence of either trimethylaluminium or 

chloro(dimethyl)aluminium should afford the Weinreb amide [417]. Finally deprotection of 

[417] should afford the required 6-chloro-N-methoxy-N-methyl-3-oxohexanamide [416].  
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6-Chloro-N-methoxy-N-methyl-3-oxohexanamide [416] when treated with amine [346] 

should undergo a spontaneous condensation and cyclisation to give vinylogous urea [418] 

(Scheme 8.6). Alternatively, amine [346] could be mono-alkylated with [417], and once the 

acetal group is removed, the system should cyclise to give [418]. Although we showed that 

this second route was not feasible for the preparation of piperidine systems, literature 

precedent suggests the pyrrolidine systems are likely to be formed in good yields. 
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Scheme 8.6: (i) [416], Na2SO4, Na2HPO4, I2 (cat.), CH2Cl2, (ii) [417], NaI, K2CO3, TBAI, ∆, 

(iii) NaI, CeCl3.7H2O or BF3.OEt 

 

The successful application of this route would cut the number of synthetic steps from twenty 

to eleven, and the use of boron trifluride etherate in step iii may also facilitate the cyclisation 

and the removal of the silyl protecting group all in on step, cutting the number of synthetic 

steps down to ten. 

 

As highlighted in Chapter 6 the preparation of a late stage common intermediate [259] with 

an acetal protected aldehyde in the 5-position the synthesis was marred by low yields and was 

incompatible with the thionation step. As discussed in Section 6.9 conversion of the tert-

butyldimethylsilyl ether [363] to an acetate [419] may free up the steric hindrance in the 

system enough to allow the thionation to occur (Scheme 8.7).  
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Scheme 8.7: (i) TBAF, THF; (ii) Ac2O, Py; (iii) P2S5, Na2CO3, or Lawesson’s reagent, 

PhCH3, ∆ 

 

The difficulties experienced with this route are probably a combination of both steric 

hindrance and acetal lability, and as a result may require the use of a more robust protecting 

group. A possible alternative is to have a protected alcohol instead of a protected aldehyde, 

which can be deprotected and oxidized to the required aldehyde when one needs to 

functionalise the chain in the 8-position. Starting with monoacetalized dialdehyde [282], the 

preparation of which was shown in Section 6.2, treatment with lithium aluminium hydride 

should give alcohol [420], which can be protected, yielding [421] (Scheme 8.8). Acetal 

removal will afford aldehyde [422], and following the general protocol outlines in Section 6.2 

intermediate [423] can be accessed in several steps. When required the alcohol can be 

deprotected and oxidized to the aldehyde.  
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Scheme 8.8: (i) LiAlH4, THF, (ii) protecting group addition, (iii) H+ 

 

The most feasible way of accessing different substituents at both the 5- and 8-positions would 

be to first functionalize the 5-position as described above and shown in Scheme 8.2.3 

affording intermediate [424] or [425]. In the case of [424] simple acetal removal will afford 
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the required aldehyde [426]. If using the protected alcohol [425], deprotection followed by 

oxidation should give [426] (Scheme 8.9). 
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Scheme 8.9: (i) H+, H2O, (ii) protecting group removal, (iii) PCC 

 

8.2.4 Introduction of different groups at the 8-position 

 

Having accessed [426] a large variety of the substituents currently identified in natural 

products can be accessed in a few steps. Highlighted below in Scheme 8.10 is our proposed 

synthetic route to access these various substituents. Once again the substituents that have been 

identified in natural products are shown in blocks. 

 

Saturated and unsaturated alkyl substituents possessing four or more carbon atoms can be 

accessed by treatment of [426] with a suitable Grignard or organo-lithium reagent, giving 

alcohol [427]. Removal of the alcohol functionality by converting it into the corresponding 

mesylate and exposing it to Raney nickel will afford indolizidine [428]. To access a three-

carbon saturated alkyl chain all that is required is to reduce aldehyde [426] to the 

corresponding alcohol [429] which can be defunctionalised to give indolizidine [430]. Access 

to a two carbon saturated alkyl substituent is also possible through alcohol [429], which when 

dehydrated gives alkene [431]. Subsequent ozonolysis gives aldehyde [432] and reduction of 

the aldehyde gives alcohol [433]. The resulting alcohol group can be removed as described 

above, affording indolizidine [434]. Treatment of aldehyde [426] with acetylene in the 

presence of sodamide in liquid ammonia will afford alcohol [435], which can be dehydrated 

to give indolizidine [436]. Finally, treatment of [426] with vinylmagnesium bromide will give 

alcohol [437], as described previously, dehydration will yield indolizidine [438] with a 

conjugated substituent at the 5-position. 
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Scheme 8.10: (i) R-MgBr, THF or R-Li, THF; (ii) (a) MsCl, CH2Cl2, (b) Raney Nickel, i-

PrOH; (iii) LiAlH4, THF; (iv) SOCl2, Py; (v) (a) O3, CH2Cl2, (b) Me2S, CH2Cl2; (vi) LiAlH4, 

THF; (vii) (a) MsCl, CH2Cl2; (b) Raney Nickel, i-PrOH; (viii) (a) MsCl, CH2Cl2 (b) Raney 

Nickel, i-PrOH; (ix) HC�CH, NaNH2, NH3(l); (x) SOCl2, Py; (xi) H2C=CHMgBr, THF; (xii) 

SOCl2, Py 
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In conclusion, it has been shown that using the methodology developed in this project it is 

possible to access a variety of 5,8-disubstituted indolizidines. In conjunction with the 

proposed future work we have laid the ground work for the development of a true general 

approach which can be used to access almost any 5,8-disubstituted indolizidines that have 

already been identified in nature. The synthesis of these compounds will allow us to confirm 

the structures and absolute stereochemistries of these alkaloids, many of which have only 

been given tentative structural assignments. 
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CHAPTER 9 

 

EXPERIMENTAL 

GENERAL DETAILS 

 

9.1 Purification of solvents and reagents 

 

All reagents used for reactions and preparative chromatography were distilled. Solvents used 

in reactions were pre-dried in their reagent bottles and then distilled over the appropriate 

drying mediums under a nitrogen atmosphere. 

  

• Tetrahydrofuran and diethyl ether were pre-dried over sodium wire, and distilled 

from sodium metal wire and benzophenone. 

• Toluene and benzene was pre-dried over sodium wire, and distilled from sodium 

metal. 

• Acetonitrile, dichloromethane, methanol and tert-butanol were distilled from 

calcium hydride. 

• Triethylamine was distilled from, and stored over potassium hydroxide. 

• N,N-dimethylformamide was distilled from, and stored over 4 Å molecular sieves. 

• Pyridine was distilled from a 1:1 mixture of potassium hydroxide and 4 Å 

molecular sieves, and stored over potassium hydroxide. 

• Acetic anhydride was distilled, and stored over 4 Å molecular sieves. 

• Triethyl phosphate was dried over sodium metal overnight and distilled from 

sodium immediately prior to use. 

• Absolute ethanol was used without further purification. 

 

Chloroform was dried by passing it through a column of alumina (Merck aluminium oxide; 

basic; grade activity I). Potassium tert-butoxide was resublimed under vacuum immediately 

prior to use. Anhydrous lithium chloride was obtained after drying under reduced pressure (1 

mmHg) at 140 °C for 24 hours. Tosyl chloride was purified according to Perrin202 before use 

and stored in a dessicator until required. It was purified by dissolving (~10 g) in the minimum 

volume of dichloromethane (~25 cm3), filtered, and diluted with hexane (5 × 25 cm3) to 

precipitate the impurities. The solution was then filtered and concentrated in vacuo to 40 cm3. 
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White crystals precipitated on standing (m.p. was in agreement with the literature value of 67-

69 °C). Toluene sulfonic acid was recrystallised from concentrated hydrochloric acid. 

 

9.2 Experimental techniques 

 

All reactions were performed under an inert atmosphere (either nitrogen or argon) using a 

standard manifold line connected to a vacuum pump. The nitrogen and argon were dehydrated 

by bubbling the gas through sulfuric acid, and then neutralizing by passing through sodium 

hydroxide pellets. The vessels were oven dried, then flame dried while under vacuum and 

were allowed to cool to room temperature under the inert atmosphere. 

 

The microwave reactor used is the CEM Discovery, and operating conditions employed are 

outlined in the experimental procedures. 

 

9.3 Chromatographic separations 

 

The Rf values quoted are for thin layer chromatography (TLC) on aluminium-backed 

Macherey-Nagel ALUGRAMSil G/UV254 plates pre-coated with 0.25 mm silica gel 60 or 

Aldrich TLC plates, silica gel on aluminium. Spray reagents were used on thin layer 

chromatography plates for the detection of compounds that were not highly UV active. 

General reagents used include acidic vanillin, basic KMNO4, acidic ceric ammonium sulfate, 

acidic anisaldehyde and iodine adsorbed onto silica. Acidic DNPH was used for the detection 

of ketones and aldehydes, and Dragendorff’s reagent was used for the detection of lactams. 

 

Macherey-Nagel Silica gel 60 (particle size 0.063 – 0.200 mm) was used as the adsorbent for 

conventional preparative column chromatography, with a silica to product ratio of 30:1. The 

silica was packed into a suitable column, and the indicated solvent was passed through several 

times under pressure, until no air bubbles were visible in the column. The crude product was 

adsorbed onto silica, loaded onto the silica surface and covered with a plug of cotton wool. 

The elution process was performed using the indicated solvent mixtures either under 

gravitation or air pump pressure conditions. 
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Whatman Partisil Prep 40 (particle size 0.040 – 0.063 mm) was used for preparative flash 

chromatography. The elution solvent system was adjusted to afford an Rf of 0.30-0.35. The 

column was prepared as described above, and the elution process was performed using the 

indicated solvent system at a flow rate of 5 cm/min. 

 

9.4 Spectroscopic and physical data 

 

All melting points were obtained on a Reichert hot-stage microscope, and are uncorrected. 

 

Optical rotations were obtained on a Jasco DIP-370 Digital Polarimeter. The values reported 

each represent an average of several consistent measurements. 

 

Infrared spectra were obtained on a Bruker Vector 22 spectrometer, or a Varian 800FTIR 

spectrometer (Scimitar Series). The absorptions are reported on the wavenumber (cm−1) scale, 

in the range 400-4000 cm−1. The signals are reported: value (relative intensity, assignment if 

possible). Abbreviations used in quoting spectra are: v = very, s = strong, m = medium, w = 

weak. 

 

Hydrogen (1H NMR) and carbon (13C NMR) nuclear magnetic resonance spectra were 

recorded on Bruker Avance-300 at 300.13 MHz respectively using standard pulse sequences. 

The probe temperature for all experiments was 300±1 K. All spectra were recorded in 

deuterated chloroform (CDCl3) in 5 mm NMR tubes unless otherwise stated. Chemical shirts 

are reported in parts per million (ppm) relative to tetramethylsilane as internal standard, in the 

case of 1H NMR and relative to the central signal of deuterated chloroform taken at δ 77.00 

for the 13C NMR. The 1H NMR chemical shifts are reported: value (number of hydrogens, 

splitting pattern, coupling constant(s) in hertz (Hz) where applicable, assignment). 13C NMR 

chemical shifts are reported: value (assignment). DEPT, CH-correlated and COSY spectra 

were sometimes used for the complete assignment of NMR signals. Abbriviations used: s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet. 

 

High-resolution mass spectra were recorded on a VG7-SEQ Double Focussing Mass 

Spectrometer at 70 eV and 200 µA. The polarity was positive, ionization employed was EI, 
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with a resolution of 3000, a mass range of 3000 amu (8kV) and a scan rate of 5 secs/decade. 

Data are quoted: m/z value (relative abundance). 

 

Crystal structure intensity data were collected on a Bruker SMART 1K CCD area 

diffractometer with graphite monochromated Mo Kα radiation (50kV, 30 mA). The collection 

method involved ω-scans of width 0.3°. Data reduction was carried out using the program 

SAINT+.203 and face indexed absorption corrections were made using the program XPREP.203 

The crystal structure was solved by direct methods using SHELXTL.204 Non-hydrogen atoms 

were first refined isotropically followed by anisotropic refinement by full matric least-squares 

calculations based on F2 using SHELXTL.204 Hydrogen atoms were first located in the 

difference map then positioned geometrically and allowed to ride on their respective parent 

atoms. Diagrams and publication material were generated using SHELXTL,204 PLATON 205 

and Mercury.206 

 

9.5 Other general procedures 

 

Bulb-to-bulb distillations were performed under reduced pressure (1mm Hg) in a Kugelrohr 

apparatus. 

 

Concentration of evaporation in vacuo refers to the removal of solvent under reduced pressure 

(~ 20 mm Hg, 45 °C) on a rotary evaporator and final drying on an oil pump (~ 1-2 mmHg) at 

room temperature. Solvents dried under “high vacuum (oil pump)” were also dried using an 

oil pump. 

 

Yields are calculated from the mass of the immediate synthetic precursor used, unless 

otherwise specified. 

 

9.6 Nomenclature and numbering of compounds 

 

The compounds prepared during the course of this project are named in the following sections 

according to systematic nomenclature. However, the numbering system used to illustrate the 

diagrams of these compounds is one adopted for convenience and is not meant to reflect 

systematic numbering of these compounds. 
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Chapter 10                           Experimental Relating to Chapter 3 

 

 214 

CHAPTER 10 

 

EXPERIMENTAL RELATING TO CHAPTER 3 

THE SYNTHESIS OF (±±±±)-THALICTRODINE [257] 

 

10.1 1-Methyl-2-piperidinethione [260]  

N S
2

3
4

5

6

260

1

 

Method 1127 

 

A solution of 1-methyl-2-piperidone [264] (5.00 g, 44.0 mmol) and phosphorus pentasulfide 

(2.20 g, 17.0 mmol, 0.40 equiv.) in dry chloroform (30 cm3) was stirred at room temperature 

for 24 h. The solution was then quenched with a saturated aqueous sodium bicarbonate 

solution (50 cm3) and extracted with chloroform (3 × 50 cm3). Then the combined organic 

extracts were washed with water (50 cm3), dried (anhydrous magnesium sulfate), filtered and 

evaporated in vacuo to yield a yellow oil. This was purified by column chromatography on 

silica gel using 30-50% ethyl acetate:hexane as eluent to give 1-methyl-2-piperidinethione 

[260], as clear crystals (1.97 g, 16.3 mmol, 37%); mp 36 oC (literature127 mp 36-39 oC); Rf 

0.44 (50% ethyl acetate: hexane); vmax (film)/cm−−−−1  2952 (C-H str, m), 2870 (C-H str, m), 

1534 (s), 1450 (CH3 bend, m), 1407 (m), 1349 (CH3 bend, s), 1222 (C-N str, s), 1097 (C-N, 

m); 1H 3.48 (2 H, t, J 6.1 Hz, H-6), 3.47 (3 H, s, NCH3), 3.00 (2 H, t, J 6.4 Hz, H-3), 1.92 (2 

H, tt, J 3.1 and 6.1 Hz, H-5), 1.75 (2 H, tt, J 3.1 and 6.1 Hz, H-4); 13C 199.3 (C-2), 52.9 (C-6), 

43.2 (C-3), 41.3 (NCH3), 22.8 (C-4), 20.5 (C-5); HRMS m/z (EI) 129.06098 (M+ 100%, 

C6H11NS requires 129.06122), 128 (56), 114 (26), 96 (13), 68 (20), 55 (17). 

 

Method 2128 

 

A solution of phosphorus pentasulfide (4.70 g, 21.1 mmol, 2.0 equiv.) and sodium carbonate 

(1.12 g, 10.6 mmol, 1.0 equiv.) in dry tetrahydrofuran (75 cm3) was stirred for 15 min, to this 

was added 1-methyl-2-piperidone [264] (1.20 g, 10.6 mmol) in one portion and the solution 

was stirred for 24 h. The solution was then quenched with a 10% aqueous sodium carbonate 
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solution (50 cm3), ethyl acetate (40 cm3) and hexane (10 cm3). The aqueous phase was 

extracted with dichloromethane (3 × 40 cm3), and the organic phases were combined, dried 

(anhydrous magnesium sulfate), filtered and evaporated in vacuo to yield a yellow oil. This 

was then purified by column chromatography on silica gel using 30-50% ethyl acetate:hexane 

as eluent to give 1-methyl-2-piperidinethione [260] as clear crystals (0.660 g, 7.00 mmol, 

66%); product characterized as shown above. 

 

Method 3 

 

To solution of 1-methyl-2-piperidone [264] (2.00 g, 17.6 mmol) in dry benzene (90 cm3), was 

added phosphorus pentasulfide (3.99 g, 17.9 mmol, 1.0 equiv.) in one portion. This 

suspension was refluxed for 24 h. The supernatant benzene was decanted off and filtered 

through celite. Dichloromethane (100 cm3) was added to the residue and gently heated with a 

hairdryer for approximately 2 min. The supernatant was again decanted off and filtered 

through celite. To the remaining residue was added ammonia solution (100 cm3), and it was 

stirred until a homogeneous solution formed. The aqueous solution was extracted with 

dichloromethane (3 × 100 cm3), dried (anhydrous magnesium sulfate), filtered and evaporated 

in vacuo to yield a yellow oil which was purified by column chromatography on silica gel 

using 30-50% ethyl acetate: hexane as eluent. The 1-methyl-2-piperidinethione [260] was 

obtained as clear crystals (1.81 g, 13.9 mmol, 79%); product characterized as shown above. 

 

10.2 p-Acetoxyacetophenone [263]129 
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Acetic anhydride (5.20 cm3, 55.5 mmol, 1.5 equiv.) was added dropwise over 5 min to a 

solution of p-hydroxyacetophenone [262] (5.04 g, 37.0 mmol, 1.0 equiv.) in an aqueous 

sodium hydroxide solution (7.5%, 40 cm3) at 5-10 °C. The mixture was stirred at 5-10 °C for 

1 h, during which time the product precipitated out as a white solid. The solution was filtered 

under suction and rinsed with chilled water to remove any excess sodium hydroxide. The 
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white solid obtained was recrystallised from ethanol-water to yield p-acetoxyacetophenone 

[263] (6.13 g, 94%) as a colourless solid; mp 55-56 °C (literature129 54 °C); Rf 0.71 (50% 

ethyl acetate: hexane); vmax (film)/cm−−−−1 3022 (Ar-H str, m), 2402 (m), 1759 (C=O ester, s), 

1682 (C=O ketone, s), 1598 (C=C Ar, m), 1513 (C=C Ar, m), 1424 (CH3 bend, m), 1366 

(CH3 bend, m), 1216 (C-O, s), 767 (s); 1H 7.99 (2 H, dd, J 4.7 and 8.8 Hz, H-3 and H-5), 7.19 

(2 H, dd, J 4.7 and 8.8 Hz, H-2 and H-6), 2.59 (3 H, s, CH3CO), 2.32 (3 H, s, CH3CO2); 13C 

196.8 (CH3CO), 168.8 (CH3CO2), 154.3 (C-1), 134.7 (C-4), 129.9 (C-3 and C-5), 121.7 (C-2 

and C-6), 26.5 (CH3CO), 21.1 (CH3CO2); HRMS m/z (EI) 178.06394 (M+ 6%, C10H10O3 

requires 178.06299), 136 (38), 121 (100), 107 (2), 93 (28), 77(9), 65(26). 

 
10.3 4-(2-Bromoacetyl)phenyl acetate [261]130 
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To a solution of p-acetoxyacetophenone [263] (1.00 g, 5.80 mmol) in dry chloroform (20.0 

cm3) was added bromine (0.120 cm3, 0.400 g, 2.3 mmol, 0.4 equiv.) in one portion. The 

solution was stirred at room temperature until it turned clear. Bromine (0.180 cm3, 0.600 g, 

3.50 mmol, 0.7 equiv.) in dry chloroform (10.0 cm3) was then added dropwise and stirring 

was continued until the solution remained clear. The solution was washed with water (20.0 

cm3), the organic fraction was dried (anhydrous magnesium sulfate), filtered and evaporated 

in vacuo to give a yellow oil, which was recrystallised from methanol-water to give 4-(2-

bromoacetyl)phenyl acetate [261] as a colourless solid (1.15 g, 4.47 mmol, 77%); mp 68 °C 

(literature130 67 °C); Rf 0.68 (50% ethyl acetate:hexane); vmax (film)/cm−−−−1 3023 (Ar-H str, m), 

2362 (m), 1762 (C=O ester, m), 1687 (C=O ketone, m), 1601 (C=C Ar, m), 1514 (C=C Ar, 

m), 1426 (w), 1371 (w), 1278 (m), 1214 (C-O, s), 773 (Ar-H out of plane bend, s); 1H 8.02 (2 

H, dd, J 4.7 and 8.5, H-3 and H-5), 7.23 (2 H, dd, J 4.7 and 8.5, H-2 and H-6), 4.43 (2 H, s, 

CH2Br), 2.33 (3 H, s, CH3CO2); 13C 190.0 (BrCH2CO), 168.6 (CH3CO2), 154.9 (C-1), 131.4 

(C-4), 129.9 (C-3 and C-5), 121.7 (C-2 and C-6), 30.6 (CH2Br), 21.1 (CH3CO2); HRMS m/z 

(EI) 255.97435 (M+ 6%, C10H9O3Br requires 255.97351), 214 (31), 163 (39), 121 (100), 107 

(21), 93(14), 65(12).  
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10.4 4-[(2E)-2-(1-Methyl-2-piperidinylidene)ethanoyl]phenyl acetate [265] 
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Method 1 

 

1-Methyl-2-piperidinethione [260] (0.580 g, 4.46 mmol, 1.0 equiv.) was dissolved in 

dichloromethane (5.00 cm3). In a separate vessel 4-(2-bromoacetyl)phenyl acetate [261] (1.26 

g, 3.49 mmol, 1.1 equiv.) was dissolved in dichloromethane (5 cm3). Once the contents of 

both vessels had dissolved, they were mixed together and stirred for 30 min. The solvent was 

removed in vacuo to yield a white salt, which was stirred for 24 h at rt and the salt was then 

dissolved in acetonitrile (20.0 cm3). In a separate vessel triethyl phosphite (0.84 cm3, 4.90 

mmol, 1.1 equiv.) and triethylamine (0.68 cm3, 0.496 g, 4.90 mmol, 1.1 equiv.) were 

dissolved in acetonitrile (10 cm3). Once the salt had dissolved the contents of the two vessels 

were mixed together. The solution rapidly turned yellow, and was stirred for 1 h at rt. The 

reaction mixture was evaporated in vacuo to give a brown solid, which was purified by 

column chromatography (40% ethyl acetate:hexane - ethyl acetate) to yield 4-[(2E)-2-(1-

methyl-2-piperidinylidene)ethanoyl]phenyl acetate [265] as a yellow solid (0.923 g, 3.08 

mmol, 69%); mp 119oC-122.5 oC; Rf  0.41 (ethyl acetate); vmax (film)/cm−−−−1 3022 (Ar-H str, 

m), 2404 (w), 1746 (C=O ester, m), 1691 (C=O α,β unsaturated ketone, w), 1647 (C=C, w), 

1610 (C=C Ar, w), 1531 (C=C Ar, s), 1216 (C-O, s), 1043 (C-N, m); 1H 7.86 (2 H, dd, J 4.7 

and 8.7 Hz, H-3 and H-5), 7.09 (2 H, dd, J 4.7 and 8.7 Hz, H-2 and H-6), 5.61 (1 H, s, 

CH=C), 3.34 (2 H, t, J 6.2 Hz, H-6’), 3.31 (2 H, t, J 6.4 Hz, H-3’), 2.98 (3 H, s, CH3CO2), 

2.30 (3 H, s, NCH3), 1.82 (2 H, tt, J 3.1 and 6.2 Hz, H-5’),1.66 (2 H, tt, J 3.1 and 6.1 Hz, H-

4’); 13C 186.4 (C=CHCO), 169.2 (OCOCH3), 165.1 (C-2’), 152.0 (C-1), 140.8 (C-4), 128.5 

(C-3 and C-5), 120.9 (C-2 and C-6), 90.5 (C=CH), 52.1 (C-6’), 40.3 (NCH3), 28.4 (C-3’), 

23.1 (C-4’), 21.1 (C-5’), 19.4 (OCOCH3); HRMS m/z (EI) 273.13601 (M+ 54%, C16H19NO3 

requires 273.13649), 272 (34), 256 (100), 230 (24), 214 (57), 202 (9), 138 (30), 121 (28), 110 

(44), 93 (5), 82 (14), 44 (8).   
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10.5 (2E)-1-(4-Hydroxyphenyl)-2-(1-methyl-2-piperidinylidene)ethanone [266] 
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Sodium carbonate (0.0960 g, 0.917 mmol, 1.2 equiv.) was added to a solution of 4-[(2E)-2-(1-

methyl-2-piperidinylidene)ethanoyl]phenyl acetate [265] (0.151 g, 0.554 mmol) in methanol 

(20.0 cm3), and stirred at room temperature for 4 h. The solution was filtered through celite, 

dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo to give a green solid 

which was purified by column chromatography on silica gel using 5% methanol:ethyl acetate 

The (2E)-1-(4-hydroxyphenyl)-2-(1-methyl-2-piperidinylidene)ethanone [266] was obtained 

as a clear oil (0.102 g, 0.734 mmol, 80%); Rf  0.71 (10% ethanol:dichloromethane); vmax 

(film)/cm−−−−1 3422 (O-H str, s), 1647 (C=O α,β unsaturated ketone, m), 1550 (m), 1073 ( C-N, 

m); 1H 7.72 (2H, d, J 8.6 Hz, H-2 and H-6), 6.80 (2H, d, J 8.7 Hz, H-3 and H-5), 5.64 (1H, s, 

C=CH), 4.00-2.60 (1H, broad s, OH), 3.36 (2H, t, J 6.1 Hz, H-6’), 3.26 (2H, t, J 6.4 Hz, H-

3’), 3.00 (3H, s, NCH3), 1.87-1.79 (2H, m, H-5’), 1.73-1.65 (2H, m, H-4’); 13C 185.7 (C=O), 

163.3 (C-2’), 158.8 (C-4), 133.4 (C-1), 128.2 (C-2 and C-6), 114.0 (C-3 and C-5), 89.4 

(=CH), 51.1 (C-6’), 39.5 (NCH3), 27.4 (C-3’), 22.4 (C-4’), 18.7 (C-5’); HRMS m/z (EI) 

231.12526 (M+ 47%, C14H17NO2 requires 231.12593), 230 (28), 215 (19), 214 (100), 202 

(13), 138 (22), 121 (22), 110 (30), 82 (11), 69 (17), 65 (11), 57 (14), 55 (17), 43 (13), 41 (17). 

 

10.6 (±±±±)-Thalictroidine [257] from [266] 
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Sodium cyanoborohydride (0.040 g, 0.55 mmol, 1.1 equiv.) was added to a solution of (2E)-1-

(4-hydroxyphenyl)-2-(1-methyl-2-piperidinylidene)ethanone [266] (0.050 g, 0.021 mmol) and 

bromocresol green (0.5% in ethanol, 1 drop) in methanol (3 cm3). Hydrochloric acid (conc.) 
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was added dropwise until the solution remained orange (pH 4) and the solution was stirred at 

rt for 1 h. The solution was quenched with aqueous sodium hydroxide (2 M, 10 cm3), the 

aqueous phase was extracted with dichloromethane (3 × 10 cm3) and the organic fractions 

were combined, dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo to 

give a glassy solid. This was purified by column chromatography on silica gel using 50% 

ethyl acetate:hexane as eluent to give (±)-thalictroidine [257] as a dark green gum (0.021 g, 

0.0090 mmol, 43%); Rf  0.42 (20% ethanol:dichloromethane); vmax (film)/cm−−−−1 3421 (O-H 

str, s), 2100 (w), 1655 (C=O, s), 1220 (C-O, m), 1107 (m), 773 (w); 1H 7.79 (2H, d, J 8.5 Hz, 

H-2 and H-6), 6.83 (2H, d, J 8.6 Hz, H-3 and H-5), 3.42 (1H, dd, J 5.1 and 16.7 Hz, 

CH2COa), 3.21-2.92 (2H, m, H-2’ and H-6’a), 2.87 (1H, dd, J 5.9 and 16.7 Hz, CH2COb), 

2.48-2.41 (1H, m, H-6’b), 2.41 (3H, s, NCH3), 1.85-1.38 (6H, m, H-3’, H-4’ and H-5’); 13C 

197.2 (C=O), 163.8 (C-4), 131.0 (C-2 and C-6), 128.2 (C-1), 116.4 (C-3 and C-5), 59.8 (C-

2’), 56.4 (C-6’), 43.2 (NCH3), 41.6 (CH2CO), 31.6 (C-3’), 25.0 (C-5’), 23.6 (C-4’); HRMS 

m/z (EI) 233.14350 (M+ 5%, C14H19NO2 requires 233.14158), 136 (47), 121 (100), 110 (5), 

99 (6), 98 (75), 97 (12), 96 (10), 93 (27), 70 (5), 65 (21), 43 (8), 42 (8), 39 (13).    

 

10.7 4-[2-(1-Methyl-2-piperidinyl)acetyl]phenyl acetate [293] 
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Sodium cyanoborohydride (0.040 g, 0.55 mmol, 1.1 equiv.) was added to a solution of 4-

[(2E)-2-(1-methyl-2-piperidinylidene)ethanoyl]phenyl acetate [265] (0.14 g, 0.50 mmol) and 

bromocresol green (1 drop) in methanol (5 cm3). Hydrochloric acid (conc.) was added 

dropwise until the solution remained orange (pH 4) and the solution was stirred at rt for 1.5 h. 

The solution was quenched with water (10 cm3), ethyl acetate (20 cm3) and brine (10 cm3). 

The aqueous phase was extracted with ethyl acetate (3 × 50 cm3) and the organic fractions 

were combined, dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo to 

give a green solid which was purified by column chromatography on silica gel using 5% 

triethylamine:ethyl acetate as eluent to give 4-[2-(1-methyl-2-piperidinyl)acetyl]phenyl 

acetate [293] as a dark green solid (0.064 g, 0.23 mmol, 46%); Rf  0.54 (5% 
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methanol:dichloromethane); vmax (film)/cm−−−−1 3022 (Ar-H str, s), 2402 (w), 1754 (C=O ester, 

m), 1676 (C=O ketone, m), 1602 (C=C Ar, m), 1516 (C=C Ar, m), 1427 (C=C Ar, w), 1369 

(w), 1216 (C-O, s), 1169 (m), 1044 (C-N, m); 1H 8.07 (2H, d, J 8.7 Hz, H-3 and H-5), 7.23 

(2H, d, J 8.7 Hz, H-2 and H-6), 4.01 (1H, dd, J 5.4 and 18.6 Hz, CH2COa), 3.75-3.71 (1H, m, 

H-2’), 3.50-3.46 (1H, m, H-6’a), 3.27 (1H, dd, J 5.2 and 18.6 Hz, CH2COb), 2.91-2.83 (1H, 

m, H-6’b), 2.67 (3H, s, NCH3), 2.33 (3H, s, CH3CO2), 2.28-1.54 (6H, m, H-3’, H-4’ and H-

5’); 13C 194.9 (CH2CO), 168.7 (CH3CO2), 155.2 (C-1), 133.0 (C-4), 130.2 (C-3 and C-5), 

122.2 (C-2 and C-6), 60.5 (C-2’), 56.5 (C-6’), 40.8 (NCH3), 40.7 (CH2CO), 30.0 (C-3’), 29.7 

(C-5’), 22.5 (C-4’), 21.1 (CH3CO2); HRMS m/z (EI) 275.15385 (M+ 6%, C16H21NO3 requires 

275.15214), 256 (6), 220 (8), 219 (13), 149 (6), 138 (11), 121 (21), 99 (8), 98 (100), 97 (9), 

83 (6), 73 (8), 71 (6), 70 (8), 69 (12), 60 (8), 57 (11), 55 (11), 45 (8), 43 (13), 41 (11).    

 

10.8 (±±±±)-Thalictroidine [257] from [293] 
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Potassium carbonate (0.037 g, 0.254 mmol, 1.1 equiv.) was added to a solution of 4-[2-(1-

methyl-2-piperidinyl)acetyl]phenyl acetate [293] (0.064 g, 0.231 mmol) in methanol (10 cm3), 

and stirred at room temperature for 1 h.The solution was filtered through celite, dried 

(anhydrous magnesium sulfate), filtered and evaporated in vacuo to give a green solid which 

was purified by column chromatography on silica gel using 5% methanol:ethyl acetate to 

yield (±)-thalictroidine [257] as a brown gum (0.042 g, 0.18 mmol, 80%); characterisation as 

described in Section 10.6. 
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10.9 2-[2-(4-Hydroxyphenyl)-2-oxoethyl]-1-methylpiperidinium chloride [294] 
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Dry hydrogen chloride gas was generated by adding concentrated sulfuric acid dropwise to 

concentrated hydrochloric acid. The hydrogen chloride gas generated was then passed through 

activated carbon and self-indicating silica before being bubbled through a stirred solution of 

(±)-thalictroidine [257] (0.200 g, 0.45 mmol) in dry methanol (5 cm3). The product separated 

out as a white oil which solidified upon standing. The crude crystalline product was 

recrystallised from ethanol to give 2-[2-(4-hydroxyphenyl)-2-oxoethyl]-1-methylpiperidinium 

chloride [294] as light pink crystals; mp 119-123 °C; Rf  0.42 (10% 

ethanol:dichloromethane);  vmax (film)/cm−−−−1 3021 (Ar-H, s), 2402 (s), 1695 (C=O, w), 1516 

(C=C Ar, m), 1216 (C-O, s), 1075 (C-N, m), 774 (s), 670 (s); 1H (d-DMSO) 7.92 (2H, d, J 8.7 

Hz, H-2 and H-6), 6.95 (2H, d, J 8.7 Hz, H-3 and H-5), 4.5-2.5 (1H, broad s, OH), 3.64-3.59 

(2H, m, H-6’), 3.36-3.27 (2H, m, CH2), 3.07-3.00 (1H, m, H-2’), 2.67 (3H, s, NCH3), 1.90-

1.45 (6H, m, H-3’, H-4’ and H-5’); 13C 195.8 (C=O), 163.7 (C-4), 131.8 (C-2 and C-6), 128.7 

(C-1), 116.4 (C-3 and C-5), 60.3 (C-2’), 55.0 (C-6’), 39.3 (NCH3), 22.1 (CH2), 28.9 (C-3’), 

28.9 (C-4’), 21.9 (C-5’); HRMS m/z (EI) 233.14350 (M+ 5%, C14H19NO2 requires 

233.14158), 136 (47), 121 (100), 110 (5), 99 (6), 98 (75), 97 (12), 96 (10), 93 (27), 70 (5), 65 

(21), 43 (8), 42 (8), 39 (13). 

 

 10.10 (1S)-(+)-Camphorsulfonyl chloride [290] 
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Method 1 

 

(1S)-(+)-10-Camphorsulfonic acid [295] (5.00 g, 22.0 mmol) was added to a vessel containing 

phosphorus pentachloride (4.48 g, 21.5 mmol, 1.0 equiv.) at 0 oC. The reaction is very 

vigorous evolving hydrogen chloride gas, and as a result was stirred slowly at first. Stirring 

was continued at room temperature until all the contents had completely dissolved. The 

solution was left to stand for 4 h. It was then poured onto crushed ice, and ice was added until 

all evidence of reaction disappeared. The fine white product was collected by suction 

filtration and washed several times with cold water. The solid was immediately dried under 

high vacuum to yield (1S)-(+)-camphorsulfonyl chloride [290] as a fine white solid (1.59 g, 

6.60 mmol, 30%); [αααα]D
20 +19.5 (c 1.80 H2O); mp 66-68oC (literature133 mp 67-68oC); Rf  0.82 

(50% ethyl acetate: hexane); vmax (film)/cm−−−−1 3020 (s), 2968 (C-H str, w), 2400 (w), 1749 

(C=O, s), 1417 (CH3 bend, w), 1377 (SO2Cl, s), 1216 (SO2Cl, s), 1173 (m), 1054 (w), 929 

(w), 778 (vs), 669 (s); 1H 4.31 (1H, d, J 14.6 Hz, CH2SO2Cla), 3.74 (1H, d, J 14.6 Hz, 

CH2SO2Clb), 2.51-2.46 (1H, m, H-6a), 2.47-2.40 (1H, m, H-3a), 2.17 (1H, t, J 4.5 Hz, H-4), 

2.09 (1H, m, H-5a), 2.03-1.96 (1H, d, J 18.6 Hz, H-3b), 1.83-1.73 (1H, m, H-6b), 1.53-1.45 

(1H, m, H-5b), 1.14 (3H, s, H-2’), 0.93 (3H, s, H-1’); 13C 212.7 (C-2), 64.3 (CH2SO2Cl), 59.7 

(C-1), 48.1 (C-7), 42.8 (C-4), 42.3 (C-3), 26.8 (C-5), 25.3 (C-6), 19.7 (CCH3)*, 19.6 (CCH3)*; 

HRMS m/z (EI) 250.04490 (M+ 0.25%, C10H15ClO3S requires 250.04304), 151 (67), 133 

(10), 123 (68), 110 (11), 109 (100), 108 (11), 107 (21), 95 (12), 93 (27), 91 (13), 81 (66), 79 

(17), 77 (12), 69 (14), 67 (40), 55 (22), 53 (18), 43 (14), 41 (38), 39 (15).  
* These assignments may be interchanged 

 

Method 2 

 

(1S)-(+)-10-Camphorsulfonic acid [295] (20.0 g, 86.2 mmol) was added to a vessel containing 

thionyl chloride (41.0 g, 345 mmol, 4.0 equiv.). The reaction mixture was refluxed for 1 h. 

The solution that formed was cooled, evaporated in vacuo, and dried under high vacuum to 

yield pure (1S)-(+)-camphorsulfonyl chloride [290] as a fine white solid (21.1 g, 84.5 mmol, 

98%); product characterized as described above. 
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10.11 1-[(4-Acetylphenylsulfonyl)methyl]-7,7-dimethylbicyclo[2.2.1]heptan-2-one [296] 
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To a solution of p-hydroxyacetophenone [262] (1.98 g, 14.6 mmol) and triethylamine (5.10 

cm3 , 3,69 g, 36.5 mmol, 2.5 equiv.) in dichloromethane (30 cm3) was added (1S)-(+)-

camphorsulfonyl chloride [290] (7.30 g, 29.2 mmol, 2.0 equiv.) in dichloromethane (10 cm3) 

dropwise over 5 minutes. Effervescence was observed as hydrogen chloride gas was evolved, 

and the product precipitated. The solution was left to stir for 1 h, the solvent was removed in 

vacuo in a fume hood to give a yellow-orange solid. The crude solid was recrystallised from 

ethanol to yield 1-[(4-acetylphenylsulfonyl)methyl]-7,7-dimethybicyclo[2.2.1]heptan-2-one 

[296] as colourless crystals (4.47 g, 12.9 mmol, 88%); mp 55-56 oC; Rf  0.71 (50% ethyl 

acetate:hexane); [αααα]D
20 +29.7 (c 4.18, MeOH); vmax (film)/cm−−−−1 3022 (Ar-H str, m), 2971 (C-

H str, w), 2404 (w), 2361 (s), 1745 (C=O, s), 1687 (C=O Ar, s) 1593 (C=C Ar, m) 1513 (C=C 

Ar, s) 1422 (CH3 bend, m), 1370 (SO2O, s), 1262 (C-O, m), 1216 (SO2O, s), 1151 (s), 1050 

(s); 1H 8.02 (2H, d, J 8.8 Hz, H-2 and H-6), 7.40 (2H, d, J 8.8 Hz, H-3 and H-5), 3.86-3.84 

(1H, d, J 15.0 Hz, CH2SO2a), 3.24 (2H, d, J 15.0 Hz, CH2SO2b), 2.61 (3H, s, CH3CO), 2.54 

(1H, m, H-6’a), 2.44 (1H, m, H-3’a), 2.16 (1H, t, J 4.5 Hz, H-4’), 2.12-2.09 (1H, m, H-5’a), 

1.99 (1H, d, J 18.5 Hz, H-3’b), 1.79-1.70 (1H, m, H-6’b), 1.52-1.45 (1H, m, H-5’b), 1.16 (3H, 

s, CCH3), 0.92 (3H, s, CCH3); 13C 213.8 (C-2’), 196.5 (CH3CO), 152.5 (C-4), 135.7 (C-1), 

130.3 (C-2 and C-6), 122.0 (C-3 and C-5), 58.1 (C-1’), 48.2 (CH2SO2), 48.0 (C-7’), 42.8 (C-

4’), 42.4 (C-3’), 26.8 (C-5’), 26.6 (CH3O), 25.1 (C-6’) , 19.8 (CCH3)*, 19.6 (CCH3)*; HRMS 

m/z (EI) 351.12525 ((M+N)+ 4%, C18H23O5S requires 351.12662), 215 (100), 151 (79), 123 

(93), 109 (94), 107 (34), 93 (30), 81 (78), 67 (44), 55 (21). * These assignments may be 

interchanged. 
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10.12 4-(2-Bromoacetyl)phenyl (7,7-dimethyl-2-oxobicyclo[2.2.1]hept-1-yl)methanesulfo-

nate [297] 
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To a solution of 1-[(4-acetylphenylsulfonyl)methyl]-7,7-dimethybicyclo[2.2.1]heptan-2-one 

[296] (0.198 g, 0.564 mmol, 1.0 equiv.) in dry chloroform (5 cm3) was added bromine (0.011 

cm3, 0.033 g, 0.209 mmol, 0.37 equiv.) in one portion and the mixture was stirred until it 

turned clear. Bromine (0.018 cm3, 0.057 g, 0.356 mmol, 0.63 equiv.) in dry chloroform (5 

cm3) was then added dropwise and stirring was continued until the solution remained clear. 

The solution was washed with water (10 cm 3), the organic fraction was dried (anhydrous 

magnesium sulfate), filtered and evaporated in vacuo to give a yellow oil, which was 

recrystallised from methanol-water to give 4-(2-bromoacetyl)-phenyl-(7,7-dimethyl-2-

oxobicyclo[2.2.1]hept-1-yl)methanesulfonate [297] as a colourless solid (0.205 g, 0.474 

mmol, 84%); mp 55-56 oC; Rf  0.71 (50% ethyl acetate:hexane); [αααα]D
21 +24.5 (c 3.31, 

MeOH);  vmax (film)/cm−−−−1 3022 (Ar-H, m), 2975 (C-H str, w), 2404 (w), 2361 (s), 1745 

(C=O, s), 1690 (C=O Ar, s), 1647 (w), 1515 (C=C Ar, s), 1425 (m), 1216 (SO2O, vs), 1154 

(w), 1043 (s); 1H 8.07 (2H, d, J 8.8 Hz, H-2 and H-6), 7.44 (2H, d, J 8.8 Hz, H-3 and H-5), 

4.42 (2H, s, CH2Br), 3.86 (1H, d, J 15.0 Hz, CH2SO2a), 3.25 (2H, d, J 15.0 Hz, CH2SO2b), 

2.54-2.52 (1H, m, H-6’a), 2.50-2.39 (1H, m, H-3’a), 2.17 (1H, t, J 4.5 Hz, H-4’), 2.12-2.08 

(1H, m, H-5’a), 1.99 (1H, d, J 18.6 Hz, H-3’b), 1.79-1.70 (1H, m, H-6’b), 1.53-1.44 (1H, m, 

H-5’b), 1.16 (H-2’’), 0.92 (H-1’’); 13C 213.8 (C-2’), 189.9 (BrCH2CO), 153.1 (C-4), 132.5 

(C-1), 131.1 (C-2 and C-6), 122.3 (C-3 and C-5), 58.1 (C-1’), 48.4 (CH2SO2), 48.0 (C-7’), 

42.9 (C-4’), 42.4 (C-3’), 30.4 (CH2Br), 26.9 (C-5’), 25.2 (C-6’) , 19.9 (CCH3)*, 19.7 (CCH3)*; 

HRMS m/z (EI) 335.09641 (M+ −CH2Br 7%, C17H19O5S requires 335.09532), 216 (41), 215 

(100), 133 (21), 123 (99), 121 (29), 109 (99), 107 (51), 93 (48), 81 (93), 79 (21), 67 (61), 55 

(28). * These assignments may be interchanged 
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10.13 4-[(2E)-2-(1-Methyl-2-piperidinylidene)ethanoyl]phenyl(7,7-dimethyl-2-oxobicyclo 

-[2.2.1]hept-1-yl)methanesulfonate [298] 
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1-Methylpiperidine-2-thione [260] (0.610 g, 4.70 mmol, 1.0 equiv.) was dissolved in 

dichloromethane (5 cm3). In a separate vessel 4-(2-bromoacetyl)phenyl(7,7-dimethyl-2-

oxobicyclo[2.2.1]hept-1-yl)methanesulfonate [297] (2.21 g, 5.16 mmol, 1.1 equiv.) was 

dissolved in dichloromethane (5 cm3). Once the contents of both vessels had dissolved, they 

were mixed together and stirred for 30 min. The solvent was removed in vacuo to yield a 

white salt, which was stirred at room temperature for 24 h and the salt was dissolved in 

acetonitrile (25 cm3). In a separate vessel triphenylphosphine (1.35 g, 5.16 mmol, 1.1 equiv.) 

and triethylamine (0.72 cm3, 0.520 g, 5.1 mmol, 1.1 equiv.) were mixed in acetonitrile (20 

cm3). Once the salt had dissolved the contents of the two vessels were mixed together. The 

solution rapidly turned yellow, and was stirred at room temperature for 1 h, during which time 

a precipitate formed. The solution was filtered through celite, and the solvent was removed in 

vacuo to yield an orange solid, which was triturated in ethyl acetate for 1.5 h, after which time 

the solution was again filtered through celite. The solution was extracted with aqueous 

hydrochloric acid (2 M, 3 × 40 cm3), the aqueous extracts were combined and basified to pH 

11 with aqueous ammonia solution, and the basified solution was extracted with 

dichloromethane (3 × 50 cm3). The organic fractions were combined, dried (anhydrous 

magnesium sulfate), filtered and evaporated in vacuo to yield an orange solid.   The solid was 

purified by column chromatography (5% triethylamine:ethyl acetate) to yield 4-[(2E)-2-(1-

methyl-2-piperidinylidene)ethanoyl]phenyl(7,7-dimethyl-2-oxobicyclo[2.2.1]hept-1-yl)meth-

anesulfonate [298] as an orange solid (1.34 g, 3.01 mmol, 64%); mp 123-124oC; Rf  0.49 

(ethyl acetate); [αααα]D
21 +26.6 (c 2.56, methanol); vmax (film)/cm−−−−1 3021 (Ar-H str, m), 2969 (C-

H str, w), 2404 (w), 2361 (s), 1744 (C=O, s), 1690 (C=O Ar, m), 1647 (C=C Ar, m), 1532 

(C=C Ar, s), 1482 (m), 1423 (m), 1365 (m), 1216 (SO2O, vs), 1146 (C-N, w), 1046 (C-N, m); 
1H 7.89 (2H, d, J 8.5 Hz, H-2 and H-6), 7.31 (2H, d, J 8.5 Hz, H-3 and H-5), 5.59 (1H, s, 
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C=CH), 3.81 (1H, d, J 15.0 Hz, CH2SO2a), 3.39-3.30 (4H, 2 × t, J 5.9 and 6.0 Hz, H-3’’and 

H6’’), 3.20 (2H, d, J 15.0 Hz, CH2SO2b), 3.00 (3H, s, NCH3), 2.59-2.49 (1H, m, H-6’a), 2.46-

2.37 (1H, m, H-3’a), 2.15-2.04 (2H, m, H-4’ and H-5’a), 1.97 (1H, d, J 18.5 Hz, H-3’b), 1.88-

1.69 (5H, m, H-6’b, H-4’’ and H-5’’), 1.50-1.42 (1H, m, H-5’b), 1.16 (3H, s, CCH3), 0.90 

(3H, s, CCH3); 13C 213.9 (C-2’), 185.8 (C=CHCO), 165.4 (C-2’’), 150.4 (C-4), 142.1 (C-1), 

128.9 (C2 and C-6), 121.3 (C-3 and C-5), 90.4 (C=CHCO), 58.1 (C-1’), 52.1 (C-6’’), 47.9 (C-

7’), 47.6 (CH2SO2), 42.8 (C-4’), 42.4 (C-3’), 40.3 (NCH3), 28.4 (C-3’’), 26.8 (C-5’), 25.1 (C-

6’), 23.0 (C-4’’), 19.9 (CCH3)*, 19.6 (CCH3)*, 19.3 (C-5’’); HRMS m/z (EI) 445.19287 (M+ 

13%, C24H31NO5S requires 445.19229), 428 (31), 230 (100), 214 (9), 202 (11), 138 (7), 110 

(10).  
* These assignments may be interchanged 

 

10.14 4-[2-(1-Methyl-2-piperidinyl)acetyl]phenyl(7,7-dimethyl-2-oxobicyclo[2.2.1]-hept-

1-yl)methanesulfonate [299] 
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 Sodium cyanoborohydride (0.145 g, 2.26 mmol, 1.1 equiv.) was added to a solution of 4-

[(2E)-2-(1-methyl-2-piperidinylidene)ethanoyl]phenyl(7,7-dimethyl-2-oxobicyclo[2.2.1]hept-

1-yl)methanesulfonate [298] (0.917 g, 2.06 mmol) and bromocresol green (0.5% in ethanol, 1 

drop) in methanol (25 cm3). Hydrochloric acid (conc.) was added dropwise until the solution 

remained orange (pH 4) and the solution was stirred at rt for 1 h. The solution was quenched 

with water (30 cm3), ethyl acetate (50 cm3) and brine (30 cm3), the aqueous phase was 

extracted with ethyl acetate (3 × 50 cm3) and the organic fractions were combined, dried 

(anhydrous magnesium sulfate), filtered and evaporated in vacuo to give an orange oil. The 

oil was purified by column chromatography on silica gel using 5% triethylamine:ethyl acetate 

as eluent to give 4-[2-(1-methyl-2-piperidinyl)acetyl]phenyl(7,7-dimethyl-2-oxobicyclo-

[2.2.1]hept-1-yl)methanesulfonate [299], as an orange oil (0.923 g, 2.06 mmol, 100%); Rf  

0.22 (10% triethylamine:ethyl acetate); [αααα]D
20 +22.2 (c 1.76, methanol); vmax (film)/cm−−−−1 
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3021 (Ar-H, s), 2965 (C-H str, s), 2401 (w), 1748 (C=O, s), 1682 (C=O Ar, s), 1597 (C=C Ar, 

s), 1500 (C=C Ar, s), 1416 (s), 1377 (CH3 bend, s), 1266 (C-N, s), 1216 (SO2O, s), 1175 (s), 

1150 (s), 1055 (C-N, m), 1015 (m), 869 (s), 771 (s), 668 (s); 1H 7.96 (2H, d, J 8.8 Hz, H-2 

and H-6), 7.34 (2H, d, J 8.8 Hz, H-3 and H-5), 3.77 (1H, d, J 15.0 Hz, CH2SO2a), 3.28 (1H, 

dd, J 4.7 and 16.0 Hz, H-3’’a), 3.17 (1H, d, J 15.0 Hz, CH2SO2b), 2.83-2.76 (1H, m, H-3’’b), 

2.83-2.73 (1H, m, H-6’’a), 2.76-2.62 (1H, m, H-2’’), 2.50-2.38 (1H, m, H-6’a), 2.40-2.31 

(1H, m, H-3’a), 2.19 (3H, s, NCH3), 2.15-2.11 (1H, m, H-6’’b), 2.10 (1H, t, J 4.4 Hz, H-4’), 

2.05-1.96 (1H, m, H-5’a), 1.94-1.88 (1H, d, J 18.1 Hz, H-3’b), 1.71-1.67 (1H, m, H-6’b), 

1.71-1.65 (2H, m, H-4’’a and H-5’’a), 1.67-1.62 (2H, m, CH2CO), 1.54-1.36 (1H, m, H-5’b), 

1.30-1.10 (2H, m, H-4’’b, H-5’’b), 1.08 (3H, s, CCH3)*, 0.84 (3H, s, CCH3)*; 13C 213.7 (C-

2’), 197.6 (CH2CO), 152.5 (C-4), 135.7 (C-1), 130.1 (C-2 and C-6), 121.9 (C-3 and C-5), 59.2 

(C-2’’), 58.0 (C-1’), 56.1 (C-6’’), 48.1 (SO2CH2), 47.9 (C-7’), 43.5 (NCH3), 42.7 (C-4’), 42.3 

(C-3’), 42.1 (C-3’’), 32.1 (C-4’’), 26.7 (C-5’), 25.6 (CH2CO), 25.0 (C-6’), 23.5 (C-5’’), 19.7 

(CCH3)*, 19.5 (CCH3)*; HRMS m/z (EI) 447.20745 (M+ 6%, C24H33NO5S requires 

447.20794), 277 (13), 232 (29), 215 (23), 151 (14), 123 (25), 121 (11), 109 (29), 99 (14), 98 

(100), 97 (25), 96 (21), 81 (27), 70 (13), 67 (19), 55 (15). * These assignments may be 

interchanged 

 

10.15 (±±±±)-Thalictroidine [257] from [299] 
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A solution of 4-[2-(1-methyl-2-piperidinyl)acetyl]phenyl(7,7-dimethyl-2-oxobicyclo-

[2.2.1]hept-1-yl)methanesulfonate [299] (0.066 g, 0.147 mmol) was added to aqueous 

potassium hydroxide (0.3 M, 0.089 g) in methanol (5 cm3) in one portion. The solution was 

stirred at room temperature for 1 h, after which time it was acidified with aqueous acetic acid, 

the solvent and water were evaporated in vacuo to yield a white solid. This was purified by 

column chromatography on silica gel using 5% triethylamine:ethyl acetate to yield (±)-

thalictroidine [257] as a dark orange oil (0.041 g, 100%); characterisation as described 

previously in Section 10.6 
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CHAPTER 11 

 

EXPERIMENTAL RELATING TO CHAPTER 4 

SYNTHESIS OF 5-SUBSTITUTED INDOLIZIDINES 

 

11.1 1-(3-Hydroxypropyl)-2-pyrrolidin-2-one [307]110m 
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A mixture of 3-amino-1-propanol [305] (12.9 g, 24.0 cm3, 312 mmol, 1.05 eq.) and γ-

butyrolactone [306] (22.4 g, 22.8 cm3, 149 mmol) was heated at 250 °C for 18 h in a sealed 

Carius tube placed in a tube furnace. After cooling, the crude product was taken up in 

dichloromethane (230 cm3, 10 cm3.mmol−1) and dried (anhydrous magnesium sulfate), and 

the resulting orange oil was distilled (134°C at 0.8 mm Hg, lit.110m, 123-128 °C at 0.5 mm Hg) 

to give 1-(3-hydroxypropyl)pyrrolidin-2-one [307] as a clear liquid (37.24 g, 260 mmol, 

81%); Rf   0.23 (50% hexane-acetone); vmax (film)/cm−−−−1 3380 (O-H str, s), 2936 (C-H str, s), 

2871 (C-H str, s), 1655 (C=O str, s), 1425 (s), 1289 (s), 1053 (C-O str, s); 1H 3.69 (1H, br s, 

OH), 3.54 (2H, t, J 5.7 Hz, H-3’), 3.44 (2H, t, J 6.0 Hz, H-5), 3.41 (2H, t, J 6.2 Hz, H-1’), 

2.43 (2H, t, J 8.1 Hz, H-3), 2.06 (2H, quintet, J 7.6 Hz, H-4), 1.70 (2H, quintet, J 6.0 Hz, H-

2’); 13C 176.1 (C-2), 58.2 (C-3’), 47.5 (C-5), 38.8 (C-1’), 30.7 (C-3), 29.5 (C-2’), 17.9 (C-4); 

HRMS m/z (EI) 143.09591 (M+ 18%, C7H13NO2 requires 143.09463), 128 (56), 41 (42), 

69(48), 70 (57), 98 (100), 99 (41), 112 (22), 125 (51), 126 (25), 131 (25). 

 
11.2 3-(2-Oxo-1-pyrrolidinyl)propyl acetate [308]110m 
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A solution of acetic anhydride (14.8 g, 13.6 cm3, 144 mmol, 1.5 eq.) in pyridine (11.4 g, 11.9 

cm3, 96.0 mmol, 1.5 eq.) was added dropwise over 10 min to a stirred solution of 1-(3-
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hydroxypropyl)pyrrolidin-2-one [307] (13.8 g, 96.0 mmol) in pyridine (5.06 g, 7.80 cm3, 64.0 

mmol, 1.0 eq.) at 0 °C under argon. The solution was allowed to warm to 25 °C over 5 h. 

Ethyl acetate (290 cm3, 3 cm3.mmol−1) was added and the mixture was washed with saturated 

ammonium chloride solution made slightly basic with 25% ammonia solution (145 cm3, 1.5 

cm3.mmol−1), dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo. The 

crude product was purified by distillation at 146-148 °C at 2 mm Hg, to yield 3-(2-oxo-1-

pyrrolidinyl)propyl acetate [308] (15.5 g, 75.4 mmol, 87%) as a clear oil; Rf (50% hexane-

acetone) 0.47; vmax (film)/cm−−−−1 2955 (C-H str, m), 1734 (OC=O str, s), 1666 (C=O  ketone 

str, s), 1230 (C-N str, s), 1042 (C-O str, s); 1H 4.08 (2H, t, J 6.43 Hz, H-3’), 3.41 (2H, t, J 7.1 

Hz, H-5), 3.37 (2H, t, J 7.2 Hz, H-1’), 2.38 (2H, t, J 8.1 Hz, H-3), 2.06 (3H, s, OCOCH3), 

2.04 (2H, quintet, J 7.8 Hz, H-4), 1.88 (2H, quintet, J 6.8 Hz, H-2’); 13C 174.8 (C-2), 170.7 

(OCOCH3), 61.7 (C-3’), 47.0 (C-5), 39.3 (C-1’), 30.7 (C-3), 26.2 (C-2’), 20.7 (OCOCH3), 

17.7 (C-4); HRMS m/z (EI) 185.10543 (M+ 19%, C9H15NO3 requires 185.10519), 41 (26), 43 

(35), 70 (71), 98 (100), 112 (21), 125 (51), 126 (22). 

 
11.3 3-(2-Thioxo-1-pyrrolidinyl)propyl acetate [304]110m 
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To a suspension of phosphorus pentasulfide (18.6 g, 83.5 mmol, 3.0 eq.) in tetrahydrofuran 

(200 cm3, 7.2 cm3.mmol−1) was added sodium carbonate (4.42 g, 41.8 mmol, 1.5 eq.). The 

mixture was stirred at rt until the solution became homogeneous. To this solution was added 

3-(2-oxo-1-pyrrolidinyl)propyl acetate [308] (5.15 g, 27.8 mmol) in tetrahydrofuran (50 cm3, 

1.8 cm3.mmol-1). Sodium carbonate (10%, 200 cm3, 7.2 cm3.mmol−1), ethyl acetate (150cm3, 

5.4 cm3.mmol−1) and hexane (50 cm3, 1.8 cm3.mmol−1) were added after 5 h. The aqueous 

phase was extracted with dichloromethane (3 × 100 cm3). The combined organic phases were 

dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo to give a yellow oil. 

The crude product was purified by column chromatography with (25% acetone:hexane) as 

eluent to give 3-(2-thioxo-1-pyrrolidinyl)propyl acetate [304] as a clear oil (5.03 g, 24.94 

mmol, 90%); Rf  (33 % acetone:hexane) 0.42; vmax (film)/cm−−−−1 2955 (C-H str, m), 2878 (C-H 
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str, m), 1733 (C=O str, s), 1510 (s), 1229 (C-N str, s) 1041 (C-O str, s), 969 (s) 1H 4.12 (2H, t, 

J 6.3 Hz, H-3’), 3.85 (2H, t, J 7.3 Hz, H-5), 3.74 (2H, t, J 7.3 Hz, H-1’), 3.04 (2H, t, J 7.9 Hz, 

H-3), 2.08 (2H, m, J 7.9 Hz, H-2’),  2.07 (3H, s, OCOCH3), 2.03 (2H, m, J 6.70, H-4); 13C 

201.4 (C-2), 170.8 (OCOCH3), 61.7 (C-5), 54.8 (C-3’), 44.9 (C-1’), 44.8 (C-3), 25.4 (C-2’), 

20.8 (C-4), 19.6 (OCOCH3); HRMS m/z (EI) 201.08194 (M+ 100%, C9H15NO2S requires 

201.08235), 41 (27), 43 (46), 85 (45), 98 (22), 102 (23), 115 (81), 126 (25), 128 (48), 142 

(61), 168 (29). 

 
11.4 2-Bromo-N-methoxy-N-methylacetamide [271]134 
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To a slurry of N,O-dimethylhydroxylamine hydrochloride (2.03 g, 24.9 mmol) in 

dichloromethane (45 cm3, 1.8 cm3.mmol−1) was added pyridine (3.93 g, 4.00 cm3, 49.7 mmol, 

2.0 eq.). Bromoacetyl bromide [310] (4.52 g, 2.0 cm3, 22.4 mmol, 0.9 eq.) was added 

dropwise to the slurry over 5 minutes. The reaction mixture was stirred at 0 °C for 15 

minutes, warmed to rt and stirred for a further 18 h. The reaction was quenched with saturated 

aqueous sodium bicarbonate solution (35 cm3, 1.4 cm3.mmol−1) and stirred for 40 minutes. 

The organic and aqueous layers were separated. The organic extract was washed with 6 M 

hydrochloric acid (50 cm3) and brine (50cm3). The aqueous extract was extracted using 

dichloromethane (3 × 50 cm3). The organic fractions were combined, dried (anhydrous 

sodium sulfate), filtered and evaporated in vacuo to afford a brown oil. The crude oil was 

purified by distillation to give 2-bromo-N-methoxy-N-methylacetamide [271] as a clear oil 

which solidified on standing (1.54 g, 8.46 mmol, 94%); Rf 0.26 (30% ethyl acetate:hexane); 

vmax (film)/cm−−−−1 3445 (N-H, br, m), 2955 (C-H str, s), 2879 (C-H str, s), 1736 (C=O, s), 1670 

(C=O, s), 1183 (C-O, s); 1H 4.27 (1.4H, s, CH2Br), 4.03 (0.6H, s, CH2Br), 3.80 (0.9H, s, 

OCH3), 3.77 (2.1H, s, OCH3), 3.24 (3H, s, NCH3); 13C 167.3 (C=O), 167.1 (C=O), 61.4 

(OCH3), 40.6 (NCH3), 25.1 (CH2Br). 
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11.5 General procedure for the sulfide contraction of 3-(2-thioxo-1-pyrrolidinyl)propyl 
acetate [304]  
 
The thiolactam [304] and α-bromoketone, ester, amide or nitrile were reacted in dry 

dichloromethane (2 cm3.mmol−1) for 5 h. The solvent was removed under high vacuum and 

the resulting salt was stirred at rt for 18 h to complete the reaction. The salt was dissolved in 

acetonitrile (3 cm3.mmol−1) and in a separate reaction vessel triphenylphosphine (1.05 eq.) 

and dry triethylamine (1.05 eq.) were dissolved in acetonitrile (3 cm3.mmol−1). Once both 

solutions were homogeneous the contents of the two vessels were mixed together and stirred 

at rt for 5 h, during which time a white precipitate was formed. The solution was filtered 

through a pad of celite and evaporated in vacuo. The residue was taken up in ethyl acetate (10 

cm3.mmol−1), triturated for 30 minutes and again filtered through a pad of celite. The filtrate 

was extracted with HCl (2 M, 3 × 10 cm3.mmol−1), the aqueous extracts were basified to pH 

11 with ammonia solution (35%) and back extracted with dichloromethane (3 × 10 

cm3.mmol−1). The organic extracts were combined, dried (anhydrous magnesium sulfate), 

filtered and evaporated in vacuo to yield the crude products. The products were purified by 

column chromatography.  

 

11.5.1 3-[(2E)-2-(2-Oxopropylidene)pyrrolidinyl]propyl acetate [311] 
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3-(2-Thioxo-1-pyrrolidinyl)propyl acetate [304] (1.03 g, 5.09 mmol) and 1-bromoacetone 

(0.733 g, 0.45 cm3, 5.35 mmol, 1.05 eq.) were reacted in dry dichloromethane (10 cm3, 2 

cm3.mmol−1) for 5 h, thereafter the solvent was removed in vacuo and the resulting salt was 

stirred for 18 h. The salt was dissolved in acetonitrile (15.5 cm3, 3 cm3.mmol−1) and a 

homogeneous solution of triphenylphosphine (1.41 g, 5.35 mmol, 1.05 eq.) and triethylamine 

(0.541 g, 0.750 cm3, 5.35 mmol, 1.05 eq.) in acetonitrile (15.5 cm3, 3 cm3.mmol−1) was added 

to the salt. The mixture was stirred for 5 h, after which time the standard work-up yielded the 

crude products as a yellow oil. Purification by column chromatography (2% methanol:di-
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chloromethane) yielded 3-[(2E)-2-(2-oxopropylidene)-pyrrolidinyl]-propyl acetate [311] as a 

light yellow oil (1.09 g, 4.84 mmol, 95%); Rf 0.28 (5% methanol:dichloromethane); vmax 

(film)/cm−−−−1 2955 (C-H str, w), 1736 (C=O, s), 1636 (C=C str, m), 1538 (=C-C=O str, vs), 

1483 (m), 1366 (m), 1296 (m), 1229 (C-N str, s), 1202 (s), 1169 (s), 1042 (C-O str, m), 969 

(m), 933 (m); 1H 5.05 (1H, s, C=CH), 4.10 (2H, t, J 6.2 Hz, H-3’), 3.39 (2H, t, J 7.2 Hz, H-5), 

3.31 (2H, t, J 7.2 Hz, H-1’), 3.23 (2H, t, J 7.8 Hz, H-3), 2.09 (3H, s, C=CHCOCH3), 2.06 

(3H, s, OCOCH3), 1.95 (4H, m, H-4 & H-2’); 13C 194.1 (C=CCOCH3), 170.8 (C-2), 165.1 

(OCOCH3), 89.5 (C=CH), 61.7 (C-5), 52.5 (C-3’), 43.1 (C-1’), 33.3 (C-4), 30.6 

(C=CCOCH3), 25.5 (C-2’), 20.9 (C-3), 20.8 (OCOCH3); HRMS m/z (EI) 225.13555 (M+ 

100%, C12H19NO3 requires 225.13649). 

 

11.5.2 Ethyl (2E)-{1-[3-(acetyloxy)propyl]-2-pyrrolidinylidene}ethanoate [312]110m 
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A solution of 3-(2-thioxo-1-pyrrolidinyl)propyl acetate [304] (3.89 g, 19.3 mmol) and ethyl 

bromoacetate (3.91 g, 2.25 cm3, 20.3 mmol, 1.05 eq.) in dry dichloromethane (40 cm3, 2 

cm3.mmol-1) was allowed to stir for 5 h, after which time the solvent was removed in vacuo, 

and the salt was stirred for 18 h at rt. The salt was redissolved in acetonitrile (61 cm3, 3 

cm3.mmol−1), and a homogeneous solution of triphenylphosphine (5.33 g, 20.3 mmol, 1.05 

eq.) and triethylamine (2.05 g, 2.83 cm3, 20.3 mmol, 1.05 eq.) was added in one portion, after 

5 h the normal work-up afforded the crude product as a yellow oil. Purification by column 

chromatography (30% ethyl acetate:hexane) afforded ethyl (2E)-{1-[3-(acetyloxy)propyl]-2-

pyrrolidinylidene}ethanoate [312] as a light yellow oil (4.18 g, 17.5 mmol, 90%); Rf 0.44 

(50% ethyl acetate:hexane); vmax (film)/cm−−−−1 2972 (C-H str, m), 1736 (OC=O str, s), 1680 

(C=C str,s) 1586 (=CC=O str, s), 1230 (C-N str, s), 1134 (s), 1052 (C-O str, s)  1H 4.53 (1H, 

s, =CH), 4.08 (2H, q, J 7.2 Hz, CO2CH2CH3), 4.07 (2H, t, J 6.5 Hz, H-3’), 3.38 (2H, t, J 7.2 

Hz, H-5), 3.27 (2H, t, J 7.2 Hz, H-1’), 3.16 (2H, t, J 7.8 Hz, H-3), 2.08 (3H, s, OCOCH3), 

1.95 (2H, quintet, J 7.5 Hz, H-2’), 1.92 (2H, quintet, J 6.8 Hz, H-4), 1.25 (3H, t, J 7.1 Hz, 
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CO2CH2CH3); 13C 170.9 (OCOCH3), 169.3 (C-2), 164.7 (CO2Et), 77.9 (=CH), 61.7 (C-5), 

58.2 (CO2CH2CH3), 52.6 (C-3’), 43.0 (C-1’), 32.5 (C-4), 25.3 (C-2’), 21.0 (C-3), 20.8 

(OCOCH3), 14.6 (CO2CH2CH3); HRMS m/z (EI) 255.14773 (M+ 27%, C13H21NO4 requires 

255.14706), 43 (24), 97 (21), 168 (44), 169 (42), 196 (100), 210 (47), 212 (21), 255 (27). 

 

11.5.3 3-[(2E)-2-(Cyanomethylene)pyrrolidinyl]propyl acetate [313] 
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3-(2-Thioxo-1-pyrrolidinyl)propyl acetate [304] (1.01 g, 5.00 mmol) and bromoacetonitrile 

(0.630 g, 0.370 cm3, 5.25 mmol, 1.05 eq.) were stirred in dry dichloromethane (10 cm3, 2 

cm3.mmol−1) for 5 h, and thereafter the solvent was removed in vacuo to yield the desired salt. 

The salt was stirred at rt for 18 h, then it was dissolved in acetonitrile (15 cm3, 3 cm3.mmol−1). 

To this was added a homogeneous solution of triphenylphosphine (1.38 g, 5.25 mmol, 1.05 

eq.) and triethylamine (0.531 g, 5.25 mmol, 1.05 eq.) in acetonitrile (15 cm3, 3 cm3.mmol−1). 

Standard work-up and purification by column chromatography (ethyl acetate) afforded 3-

[(2E)-2-(cyanomethylene)pyrrolidinyl]propyl acetate [313] as a light yellow oil (0.462 g, 2.22 

mmol, 44%); Rf  (ethyl acetate) 0.69; vmax (film)/cm−−−−1 2963 (C-H str, m), 2187 (C≡N str, s), 

1734 (OC=O str, s), 1600 (C=C str, s), 1229 (C-N str, s), 1039 (C-O str, s); 1H 4.07 (2H, t, J 

6.2 Hz, H-3’), 3.67 (1H, s, C=CH), 3.45 (2H, t, J 6.9 Hz, H-5), 3.20 (2H, t, J 7.1 Hz, H-3), 

2.88 (2H, t, J 7.6 Hz, H-1’), 2.08 (3H, s, OCOCH3), 2.00 (2H, quintet, J 7.5 Hz, H-2’), 1.90 

(2H, quintet, J 6.4 Hz, H-4); 13C 170.7 (C-2), 165.4 (OCOCH3), 122.5 (C=CHCN), 61.4 (C-

5), 53.6 (C=CH), 53.5 (C-3’), 42.9 (C-1’), 32.6 (C-4), 25.3 (C-3), 20.8 (C-2’), 20.7 

(OCOCH3); HRMS m/z (EI) 208.12280 (M+ 51%, C11H16N2O2 requires 208.12118), 41 (28), 

42 (10), 43 (50), 94 (11), 96 (11), 97 (13), 107 (10), 108 (27), 109 (13), 121 (97), 122 (100), 

135 (18), 149 (85), 165 (18), 168 (36). 
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11.5.4 3-((2E)-2-{2-[Methoxy(methyl)amino]-2-oxoethylidene}pyrrolidinyl)propylacetate 

[314] 
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3-(2-Thioxo-1-pyrrolidinyl)propyl acetate [304] (6.73 g, 33.5 mmol) and 2-bromo-N-

methoxy-N-methylacetamide [271] (6.39 g, 35.1 mmol, 1.05 eq.) were reacted in dry 

dichloromethane (67 cm3, 2 cm3.mmol−1) for 5 h. The solvent was removed under high 

vacuum and the resulting salt was stirred at rt for 18 h. The salt was dissolved in acetonitrile 

and a homogeneous solution of triphenylphosphine (9.21 g, 35.1 mmol, 1.05 eq.) and 

triethylamine (3.55 g, 4.90 cm3, 35.1 mmol, 1.05 eq.) was added in one portion. After 5 h the 

standard work-up afforded the crude product as a yellow oil. Purification by column 

chromatography (10% methanol:dichloromethane) afforded 3-((2E)-2-{2-[methoxy(methyl)-

amino]-2-oxoethylidene}pyrrolidinyl)propyl acetate [314] as a light yellow oil (7.73 g, 28.6 

mmol, 85%); Rf (20% methanol:ethyl acetate) 0.81; vmax (film)/cm−−−−1 2939 (C-H str, m), 1734 

(OC=O str, s), 1646 (C=ON str, s), 1426 (m), 1367 (m) 1233 (C-N str, s), 1042 (C-O str, s) 1H 

5.01 (1H, s, C=CH), 4.11 (2H, t, J 6.3 Hz, H-3’), 3.67 (3H, s, OCH3), 3.36 (2H, t, J 7.0 Hz, H-

5), 3.31 (2H, t, J 6.8 Hz, H-1’), 3.21 (2H, t, J 7.4 Hz, H-3), 3.15 (3H, s, NCH3), 2.07 (3H, s, 

OCOCH3), 1.94 (4H, m, H-4 & H-2’); 13C 171.8 (OCOCH3), 170.8 (C-2), 164.3 

(CON(OCH3)CH3), 76.7 (=CH), 61.9 (C-5), 60.8 (OCH3), 52.4 (C-3’), 43.0 (C-1’), 33.0 

(NCH3), 32.5 (C-4), 25.4 (C-3), 21.2 (C-2’), 20.8 (OCOCH3); HRMS m/z (EI) 270.15621 

(M+ 1%, C13H22N2O4 requires 270.15796), 43 (12), 74 (22), 148 (12), 168 (13) 210 (100), 211 

(13). 

 

11.6 General procedure for acetate hydrolysis 

 

To a stirred solution of the required enaminone in methanol (3.6 cm3.mmol−1) was added 

potassium carbonate (1.1-2.0 eq.). After 3 h the mixture was filtered through celite. The 

filtrate was evaporate in vacuo, and then taken up in chloroform (10 cm3.mmol−1) and washed 

with a saturated sodium chloride solution (10 cm3.mmol−1). The aqueous phases were back 
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extracted with chloroform (3 x 10 cm3.mmol−1), dried (anhydrous magnesium sulfate), filtered 

and evaporated in vacuo to afford the crude product. The crude mixture was purified by 

column chromatography to yield the desired alcohols. 

 

11.6.1 (1E)-1-[1-(3-Hydroxypropyl)-2-pyrrolidinylidene]-2-propanone [315] 
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To a stirred solution of 3-[(2E)-2-(2-oxopropylidene)pyrrolidinyl]propyl acetate [311] (0.792 

g, 3.51 mmol) in methanol (13 cm3, 3.6 cm3.mmol−1) was added potassium carbonate(0.534 g, 

3.86 mmol, 1.1 eq.), after 3 h the reaction was worked-up. The crude product was purified by 

column chromatography (dichloromethane then 5% methanol:dichloromethane) to yield (1E)-

1-[1-(3-hydroxypropyl)-2-pyrrolidinylidene]-2-propanone [315] (0.527 g, 2.87 mmol, 82%) 

as a yellow oil; Rf 0.22 (5% methanol: dichloromethane); vmax (film)/cm−−−−1 3366 (O-H str, s), 

2927 (C-H str, s), 2872 (C-H str, s), 1732 (s), 1630 (C=C str, s), 1568 (=C-C=O str, s), 1427 

(s), 1367 (s), 1236 (C-N str, s), 1047 (C-O str, s); 1H 5.10 (1H, s, C=CH), 3.68 (2H, t, J 6.0 

Hz, H-3’), 3.42 (2H, t, J 7.3 Hz, H-5), 3.36 (2H, t, J 7.1 Hz, H-1’), 3.22 (2H, t, J 7.8 Hz, H-3), 

2.30 (1H, s broad, OH), 2.06 (3H, s, COCH3), 1.95 (2H, quintet, J 7.5 Hz , H-2’), 1.84 (2H, 

quintet, J 6.6 Hz, H-4); 13C 194.3 (=CCOCH3), 165.7 (C-2), 89.4 (=CH), 59.7 (C-5), 52.6 (C-

3’), 43.2 (C-1’), 33.6 (C-4), 30.5 (=CCOCH3), 29.0 (C-2’), 20.9 (C-3); HRMS m/z (EI) 

183.12533 (M+ 100% C10H17NO2 requires 183.12593)  

 

11.6.2 Ethyl (2E)-[1-(3-hydroxypropyl)-2-pyrrolidinylidene]ethanoate [316]110m 
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A solution of ethyl (2E)-{1-[3-(acetyloxy)propyl]-2-pyrrolidinylidene}ethanoate [312] (4.19 

g, 17.6 mmol) and potassium carbonate (2.68 g, 19.3 mmol, 1.1 eq.) in methanol (63 cm3, 3.6 

cm3.mmol−1) was stirred for 3 h. The standard workup and purification by column 

chromatography (50% ethyl acetate:hexane then ethyl acetate) afforded ethyl (2E)-[1-(3-

hydroxypropyl)-2-pyrrolidinylidene]ethanoate [316] (3.19 g, 15.0 mmol, 85%) as a yellow 

oil; Rf (50% ethyl acetate:hexane) 0.18; vmax (film)/cm−−−−1 3415 (O-H str, s), 2940 (C-H str, s), 

2872 (C-H str, s), 1579 (C=O str, s), 1132 (s), 1052 (C-O str, s); 1H 4.56 (1H, s, C=CH), 4.08 

(2H, q, J 7.1 Hz, CO2CH2CH3), 3.67 (2H, t, J 6.0 Hz, H-3’), 3.39 (2H, t, J 7.1 Hz, H-5), 3.31 

(2H, t, J 7.2 Hz, H-1’), 3.15 (2H, t, J 7.8 Hz, H-3), 1.99 (1H, s broad, OH), 1.94 (2H, quintet, 

J 7.5 Hz, H-2’), 1.82 (2H, quintet, J 6.6 Hz, H-4), 1.25 (3H, t, J 7.1 Hz, CO2CH2CH3); 13C 

169.6 (C-2), 165.0 (CO2CH2CH3), 77.4 (=CH), 60.0 (C-5), 58.3 (CO2CH2CH3), 52.7 (C-3’), 

43.0 (C-1’), 32.7 (C-4), 28.9 (C-2’), 21.0 (C-3), 14.7 (CO2CH2CH3); HRMS m/z (EI) 

213.13665 (M+ 39%, C11H19NO3 requires 213.13649), 41 (26), 96 (69), 97 (68), 98 (33), 108 

(23), 110 (25), 126 (36), 154 (27), 168 (84), 169 (100). 

 

11.6.3 (2E)-[1-(3-Hydroxypropyl)-2-pyrrolidinylidene]ethanenitrile [317] 
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To a stirring solution of 3-[(2E)-2-(cyanomethylene)pyrrolidinyl]propyl acetate [313] (1.37 g, 

6.56 mmol) in methanol (24 cm3, 3.6 cm3.mmol−1) was added potassium carbonate (1.31 g, 

13.1 mmol, 2.0 eq.). The mixture was stirred for 3 h, after which time the standard work-up 

and purification by column chromatography (5% methanol:dichloromethane) yielded (2E)-[1-

(3-hydroxypropyl)-2-pyrrolidinylidene]ethanenitrile [317] (0.972 g, 5.85 mmol, 89%) as a 

yellow oil; Rf 0.41 (5% methanol:dichloromethane); vmax (film)/cm−−−−1 3403 (O-H str, s), 2942 

(C-H str, s), 2873 (C-H str, s), 2178 (C≡N str, s), 1595 (vs), 1289 (s), 1052 (C-O str, s) 1H 

3.73 (1H, s, =CH), 3.64 (2H, t, J 5.6, H-3’), 3.47 (2H, t, J 6.9, H-5), 3.25 (2H, t, J 7.1, H-1’), 

2.86 (2H, t, J 7.8, H-3), 2.47 (1H, s broad, OH), 1.99 (2H, quintet, J 7.3, H-2’), 1.79 (2H, 
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quintet, J 6.5, H-4); 13C 165.8 (C-2), 123.2 (CN), 59.4 (C-5), 53.6 (=CH), 52.7 (C-3’), 43.0 

(C-1’), 32.7 (C-4), 28.9 (C-2’), 20.7 (C-3); HRMS m/z (EI) 166.10937 (M+ 41%, C9H14N2O 

requires 166.11061), 135 (17), 126 (27), 122 (100), 121 (65), 109 (17), 98 (22), 96 (17), 94 

(18), 41 (24). 

 

11.6.4 (2E)-2-[1-(3-Hydroxypropyl)-2-pyrrolidinylidene]-N-methoxy-N-methyl-

ethanamide [318] 
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3-((2E)-2-{2-[Methoxy(methyl)amino]-2-oxoethylidene}pyrrolidinyl)propyl acetate [314] 

(7.73 g, 28.6 mmol) and potassium carbonate (7.91 g, 57.2 mmol, 2.0 eq.) were stirred in 

methanol (100 cm3, 3.6 cm3.mmol−1) for 3 h. Thereafter the normal work-up and purification 

by column chromatography (10% methanol:dichloromethane) gave (2E)-2-[1-(3-hydroxypro-

pyl)-2-pyrrolidinylidene]-N-methoxy-N-methylethanamide [318] (5.45 g, 23.9 mmol, 83%) as 

a yellow oil; Rf 0.85 (30 % methanol:dichloromethane); vmax (film)/cm−−−−1 3353 (O-H str, s), 

2938 (C-H str, s), 2874 (C-H str, s) 1646 (C=C str, s), 1613 (C=O str, s), 1438 (s), 1423 (s), 

1360 (s), 1170 (s), 1019 (s); 1H 5.14 (1H, s, C=CH), 3.68 (2H, t, J 6.0 Hz, H-3’), 3.67 (3H, 

OCH3), 3.38 (2H, t, J 7.0 Hz, H-5), 3.36 (2H, t, J 6.9 Hz, H-1’), 3.22 (2H, t, J 7.8 Hz, H-3), 

3.14 (3H, s, NCH3), 2.04 (1H, s, OH), 1.93 (2H, quintet, J 6.8 Hz, H-2’), 1.84 (2H, quintet, J 

6.3 Hz, H-4); 13C 172.1 (C-2), 164.8 (CON(OCH3)CH3), 76.3 (C=CH), 60.9 (OCH3), 59.9 (C-

5), 52.3 (C-3’), 42.9 (C-1’), 33.1 (C-4), 32.6 (NCH3), 29.1 (C-2’), 21.2 (C-3); HRMS m/z 

(EI) 228.14788 (M+ 2%, C11H20N2O3 requires 228.14739), 108 (5), 110(5), 120 (5), 150 (5), 

168 (100), 169 (12). 

 

11.7 General procedure for the alkylative ring closure  

 

A stirring solution of alcohol in acetonitrile:toluene (6.2 cm3.mmol−1:3.1 cm3.mmol−1) was 

charged with triphenylphosphine (2.0-3.0 eq.) and imidazole (2.0-3.0 eq.). Once the solids had 

dissolved iodine (2.0 eq.) was added in one portion. The homogeneous solution was stirred 
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under reflux for 1 h. The reaction was quenched by the addition of a solution of saturated 

sodium hydrogen carbonate (10 cm3.mmol−1), and the aqueous residues were extracted with 

ethyl acetate (3 × 10 cm3.mmol−1). The combined organic fractions were washed with 

saturated aqueous sodium thiosulfate (10 cm3.mmol−1). The organic washings were dried 

(anhydrous magnesium sulfate), filtered and evaporated in vacuo to yield the crude product. 

Purification by column chromatography yielded the desired bicyclic compounds. 

 

11.7.1 1-(1,2,3,5,6,7-Hexahydro-8-indolizinyl)ethanone [319] 
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Triphenylphosphine (10.1 g, 38.5 mmol, 3.0 eq.) and imidazole (2.63 g, 38.5 mmol, 3.0 eq.) 

was added to a stirring solution of (1E)-1-[1-(3-hydroxypropyl)-2-pyrrolidinylidene]-2-

propanone [315] (2.35 g, 12.9 mmol) in acetonitrile:toluene (80 cm3: 40 cm3, 6.2 

cm3.mmol−1:3.1 cm3.mmol−1). Thereafter iodine (6.50 g, 25.7 mmol) was added in one 

portion, and the homogeneous solution was refluxed for 1h. Standard workup and purification 

by column chromatography (5% methanol:dichloromethane) gave 1-(1,2,3,5,6,7-hexahydro-8-

indolizinyl)-ethanone [319] (0.567 g, 3.43 mmol, 27%) as a clear oil; Rf 0.32 (5% 

methanol:dichloromethane); 1H 7.60-7.34 (triphenylphosphine residues), 3.27 (2H, m, H-4)*, 

3.14-3.01 (4H, m, H-5 & H-2)*, 2.33 (2H, m, H-7)*, 2.03 (3H, s, COCH3), 1.84-1.70 (4H, m, 

H-3 & H-6). * These assignments may be interchanged. 

 

11.7.2 Ethyl 1,2,3,5,6,7-hexahydro-8-indolizinecarboxylate [320] 
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Ethyl (2E)-[1-(3-hydroxypropyl)-2-pyrrolidinylidene]ethanoate [3162] (0.865 g, 4.05 mmol) 

in acetonitrile:toluene (26 cm3:13 cm3, 6.2 cm3.mmol−1:3.1 cm3.mmol−1) was charged with 

triphenylphosphine (3.19 g, 12.2 mmol, 3.0 eq.) and imidazole (0.827 g, 12.2 mmol, 3.0 eq.), 

thereafter iodine (2.06 g, 8.10 mmol, 2.0 eq. ) was added in one portion, and the solution was 

refluxed for 1 h. The regular work-up and purification by column chromatography (30% ethyl 

acetate:hexane) afforded ethyl 1,2,3,5,6,7-hexahydro-8-indolizinecarboxylate [320] (0.438 g, 

2.39 mmol, 59%) as a clear oil; Rf (50% ethyl acetate:hexane) 0.61; vmax (film)/cm−−−−1 2943 (C-

H str, m), 2845 (C-H str, m), 1674 (C=O str, s), 1584 (vs), 1425 (m), 1368 (m), 1255 (vs), 

1215 (s), 1181 (s), 1095 (vs), 1041 (s), 763 (s); 1H 4.00 (2H, q, J 7.0, CO2CH2CH3), 3.19 (2H, 

t, J 7.0, H-4)#, 3.06 (2H, t, J 6.0, H-5)#, 2.96 (2H, t, J 8.0, H-7), 2.25 (2H, t, J 6.5, H-2), 1.82 

(2H, quintet, J 7.5, H-3)*, 1.82 (2H, quintet, J 6.0, H-6)*, 1.16 (3H, t, J 7.0, CO2CH2CH3); 13C 

168.1 (CO2CH2CH3), 158.6 (C-8), 86.9 (C-1), 57.8 (C-5), 52.4 (CO2CH2CH3), 44.5 (C-4), 

32.2 (C-6), 21.1 (C-7), 20.9 (C-2), 20.5 (C-3), 14.3 (CO2CH2CH3).* These assignments may 

be interchanged, # These assignments may be interchanged. 

 

11.7.3 1,2,3,5,6,7-Hexahydro-8-indolizinecarbonitrile [321] 
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A stirring solution of (2E)-[1-(3-hydroxypropyl)-2-pyrrolidinylidene]ethanenitrile [317] 

(0.583 g, 0.519 g, 3.51 mmol) in acetonitrile:toluene (21 cm3:11 cm3, 6.2 cm3.mmol−1:3.1 

cm3.mmol−1) was charged with triphenylphosphine (1.84 g, 7.02 mmol, 2.0 eq.) and imidazole 

(0.479 g, 7.02 mmol, 2.0 eq.). Iodine (1.76 g, 7.02 mmol, 2.0 eq.) was then added and the 

solution was refluxed for 1 h. Standard work-up and purification by column chromatography 

(5% methanol:dichloromethane) gave 1,2,3,5,6,7-hexahydro-8-indolizinecarbonitrile [321] as 

a clear oil (0.375 g, 2.53 mmol, 72%); Rf 0.75 (methanol:dichloromethane 5:95); vmax 

(film)/cm−−−−1 2930 (C-H str, s), 2849 (C-H str, s), 2173 (C≡N str, s), 1615 (C=C str, vs), 1289 

(vs); 1H 3.33 (2H, t, J 6.8 Hz , H-4)#, 3.15 (2H, t, J 5.4 Hz, H-5)#, 2.74 (2H, t, J 7.7 Hz, H-7), 

2.23 (2H, t, J 6.1 Hz, H-2), 1.97 (2H, quintet, J 7.3 Hz, H-3)*, 1.84 (2H, quintet, J 5.9 Hz, H-

6)*; 13C 159.2 (C-8), 123.8 (CN), 64.2 (C-1), 53.2 (C-5), 44.0 (C-4), 30.6 (C-6), 22.1 (C-7), 
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21.0 (C-2), 20.7 (C-3); HRMS m/z (EI) 148.09995 (M+ 73%, C9H12N2 requires 148.10005), 

41 (10), 92 (9), 108 (20), 120 (13), 145 (11), 147, (100), 148 (73). * These assignments may 

be interchanged, # These assignments may be interchanged. 

 

11.7.4 N-Methoxy-N-methyl-1,2,3,5,6,7-hexahydro-8-indolizinecarboxamide [322] 
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A solution of (2E)-2-[1-(3-hydroxypropyl)-2-pyrrolidinylidene]-N-methoxy-N-methylethan-

amide [318] (0.776 g, 2.79 mmol) was dissolved in acetonitrile:toluene (17 cm3:8.5 cm3, 6.2 

cm3.mmol−1:3.1 cm3.mmol−1). To this was added triphenylphosphine (1.46 g, 5.58 mmol, 2.0 

eq.) and imidazole (0.380 g, 5.58 mmol, 2.0 eq.) followed by iodine (1.42 g, 5.58 mmol, 2.0 

eq.). The solution was refluxed for 1 h. Normal work-up and purification by flash column 

chromatography (5% ethanol:ethyl acetate) yielded N-methoxy-N-methyl-1,2,3,5,6,7-

hexahydro-8-indolizinecarboxamide [322] (0.375 g, 1.78 mmol, 64%); Rf  (5% 

methanol:dichloromethane) 0.19; 1H 3.62 (3H, s, OCH3), 3.26 (2H, t, J 7.0, H-4)#, 3.18 (2H, t, 

J 5.6, H-5)#, 3.06 (3H, s, NCH3), 3.01 (2H, t, J 7.8, H-7), 2.38 (2H, t, J 6.0, H-2), 1.90 (2H, 

quintet, J 5.8, H-3)*, 1.83 (2H, quintet, J 5.8, H-6)*; 13C 174.4 (C-8 ), 157.7 (CON(OMe)Me), 

90.0 (C-1), 59.7 (OCH3), 52.6 (C-5), 45.0 (C-4), 34.3 (NCH3), 31.7 (C-6), 23.6 (C-7), 21.9 

(C-2), 21.2 (C-3); HRMS m/z (EI) 210.13519 (M+ 38% C11H18N2O2 requires 210.13683). 

* These assignments may be interchanged, # These assignments may be interchanged. 

 
11.8 General procedure for tosylation and mesylation of alcohols 
 
To a solution of toluenesulfonyl chloride (1.4 eq.) or methanesulfonyl chloride (1.4 eq.) in 

dichloromethane (9 cm3.mmol−1) at rt was added triethylamine (9.8 eq.) and DMAP (0.1 eq.). 

After 30 minutes the alcohol was added in one portion. The solution turned brown over time 

and after 18 h the solution was washed with water (10 cm3.mmol−1). The organic layer was 

separated, dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo to yield a 
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brown solid. The crude solid was purified by column chromatography) to yield the desired 

products. 

 

11.8.1 3-[(2E)-2-(Cyanomethylene)pyrrolidinyl]propyl 4-methylbenzenesulfonate [324] 

and (2E)-[1-(3-chloropropyl)-2-pyrrolidinylidene]ethanenitrile [325] 
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Triethylamine (4.14 g, 5.71 cm3, 40.9 mmol, 9.8 eq.) and DMAP (0.0550 g, 0.418 mmol, 0.1 

eq.) were added to a solution of toluenesulfonyl chloride (1.15 g, 5.85 mmol, 1.4 eq.) in 

dichloromethane at rt. After 30 min (2E)-[1-(3-hydroxypropyl)-2-pyrrolidinylidene]ethane-

nitrile [317] (0.694 g, 4.18 mmol) was added in one portion. The standard work-up and 

purification by column chromatography (30% then 50% ethyl acetate hexane) afforded 3-

[(2E)-2-(cyanomethylene)pyrrolidinyl]propyl-4-methylbenzenesulfonate  [320] (0.261 g, 

0.811 mmol, 19%) as a yellow solid and (2E)-[1-(3-chloropropyl)-2-pyrrolidinylidene]ethane-

nitrile [324] (trace) as a brown oil; Rf (50% ethyl acetate:hexane) 0.17; vmax (film)/cm−−−−1 2967 

(C-H str, m), 2178 (C≡N str, s), 1599 (C=C aromatic str, s), 1493 (C=C aromatic str, s) 1359 

(s), 1311 (s), 1293 (s), 1171 (s), 1120 (s), 1054 (C-O str, s), 1019 (s); 1H 7.79 (2H, d, J 8.2 

Hz, H-2’’ & H-6’’), 7.38 (2H, d, J 8.1 Hz, H-3’’ & H-5’’), 4.04 (2H, t, J 5.8 Hz, H-3’), 3.55 

(1H, s, C=CH), 3.38 (2H, t, J 6.9 Hz, H-3), 3.18 (2H, t, J 6.9 Hz, H-5), 2.81 (2H, t, J 7.7 Hz, 

H-1’), 2.47 (3H, s, PhCH3), 1.92-1.91 (4H, m, H-2’ & H-4); 13C 165.4 (C-2), 145.2 (C-1’’), 

132.5 (C-4’’), 129.9 (C-3’’ & C-5’’), 127.8 (C-2’’ & C-6’’), 122.3 (CN), 67.4 (C-3’), 54.0 (C-

5), 53.8 (C=CH), 42.4 (C-1’), 32.6 (C-4), 25.6 (C-3), 21.6 (C-2’), 20.7 (PhCH3). 

 

Spectrosopic data for (2E)-[1-(3-chloropropyl)-2-pyrrolidinylidene]ethanenitrile [325] 

 

Rf (ethyl acetate:hexane 1:1) 0.31; vmax (film)/cm−−−−1 2963 (C-H str, s), 2868 (C-H str, s), 2187 

(C≡N str, s), 1598 (C=C aromatic str, vs), 1428 (s), 1272 (s); 1H 3.73 (1H, s, C=CH), 3.56 
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(2H, t, J 6.1 Hz, H-3’), 3.47 (2H, t, J 6.9 Hz, H-5), 3.30 (2H, t, J 6.9 Hz, H-1’), 2.88 (2H, t, J 

7.8 Hz, H-3), 2.03 (2H, quintet, J 6.2 Hz, H-2’), 2.00 (2H, quintet, J 7.4 Hz, H-4); 13C 165.5 

(C-2), 122.5 (CN), 53.9 (C-5), 53.9 (C-5), 43.3 (C-1’), 42.0 (C-3’), 32.6 (C-4), 28.9 (C-2’), 

20.8 (C-3); HRMS m/z (EI) 184.07618 (M+ 100%, C9H13ClN2 requires 184.076731). 

 

11.8.2  3-((2E)-2-{2-[Methoxy(methyl)amino]-2-oxoethylidene}pyrrolidinyl)propyl 4-

methylbenzenesulfonate [326] and (2E)-2-[1-(3-chloropropyl)-2-pyrrolidinylidene]-N-

methoxy-N-methylethanamide [327] 
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To a solution of toluenesulfonyl chloride (0.245 g, 1.25 mmol, 1.4 eq.) in dichloromethane 

(7.8 cm3, 8.7 cm3.mmol−1) was added triethylamine (0.889 g, 1.2 cm3 8.78 mmol, 9.8 eq.) and 

DMAP (11.0 mg, 9 × 10−2 mmol, 0.1 eq.). The solution was stirred at rt for 30 min after 

which time (2E)-2-[1-(3-hydroxypropyl)-2-pyrrolidinylidene]-N-methoxy-N-methylethan-

amide [318] (0.202 g, 0.896 mmol) was added in one portion. The normal work-up and 

purification by column chromatography (30% ethyl acetate:hexane) yielded 3-((2E)-2-{2-

[methoxy(methyl)amino]-2-oxoethylidene}pyrrolidinyl)propyl-4-methylbenzenesulfonate 

[326] (0.204 g, 0.639 mmol, 71%) as a brown oil containing trace amounts of (2E)-2-[1-(3-

chloropropyl)-2-pyrrolidinylidene]-N-methoxy-N-methylethanamide [327]; Rf (50% ethyl 

acetate:hexane) 0.37; vmax (film)/cm−−−−1 3450 (s), 2942 (C-H str, s), 1652 (C=O str, s), 1493 (s), 

1172 (vs), 1119 (vs), 1032 (C-O str, vs), 1010 (vs); 1H 7.79 (2H, d, J 8.2, H-3’’ & H-5’’), 

7.36 (2H, d, J 8.0, H-2’’ & H-6’’), 5.04 (1H, s, =CH), 4.05 (2H, t, J 5.9, H-3’), 3.65 (3H, s, 

OCH3), 3.29 (2H, t, J 7.0, H-5), 3.28 (2H, t, J 7.0, H-1’), 3.21-3.17 (2H, m, H-3), 3.14 (3H, s, 

NCH3), 2.45 (3H, s, PhCH3), 1.95 (2H, quintet, J 6.6, H-2’), 1.88, (2H, quintet, J 7.5, H-4), 
13C 171.6 (C-2), 164.1 (C=O), 144.9 (C-1’’), 132.7 (C-4’’), 129.9 (C-3’’ & C-5’’), 127.8 (C-

2’’ & C-6’’), 77.1 (=CH), 67.7 (C-3’), 60.9 (OCH3), 52.5 (C-5), 42.4 (C-1’), 32.9 (NCH3), 

32.4 (C-4), 25.6 (C-3), 21.6 (C-2’), 21.2 (PhCH3). 
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Identifiable peaks for (2E)-2-[1-(3-chloropropyl)-2-pyrrolidinylidene]-N-methoxy-N-methyl-

ethanamide [327] 

 
1H 5.16 (1H, s, =CH), 3.68 (3H, s, OCH3), 3.42 (2H, t, J 7.1, H-5), 3.41 (2H, t , J 6.9, H-1’), 

3.38 (2H, t, J 6.5, H-3), 3.17 (3H, s, NCH3), 2.11-2.00 (4H, m, H-4 & H-2’). 

 

11.9 Catalytic reduction of the enaminone system 

 

The required bicyclic enaminone was dissolved in glacial acetic acid (5.5 cm3.mmol−1). To 

this was added Adams’ catalyst (5 × 10−2 g.mmol−1) and the stirring mixture was placed under 

a hydrogen atmosphere (1 atmosphere) and left for 24 h. The mixture was filtered through 

celite and washed copiously with ethanol, wereafter it was evaporated in vacuo to yield the 

crude products. Purification by column chromatography yielded the desired reduced 

compounds. 

 

11.9.1 Attempted synthesis of 1-octahydro-8-indolizinylethanone [300] 
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Bicyclic enaminone [319] (0.300 g, 1.82 mmol) was dissolved in ethanol (24 cm3, 13 

cm3.mmol−1) and subjected to hydrogenation at 5 atmospheres in the presence of Adams’ 

catalyst (0.091 g, 0.05 g.mmol−1), after 24 h the standard workup and purification by column 

chromatography yielded an unidentifiable product. 
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11.9.2 Ethyl (8S,8aR)-octahydro-8-indolizinecarboxylate [301a] and ethyl (8R,8aR)-

octahydro-8-indolizinecarboxylate [301b] 
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1,2,3,5,6,7-Hexahydro-8-indolizinecarboxylate [320] (0.513 g, 2.63 mmol) was dissolved in 

glacial acetic acid (14.5 cm3, 5.5 cm3.mmol−1), Adams’ catalyst (0.132 g, 5 × 10−2 g.mmol−1) 

was added, and the stirred solution was hydrogenated at 1 atmosphere for 24 h. The regular 

workup followed by column chromatography gave Ethyl (8S,8aR)-octahydro-8-indolizine-

carboxylate [301a] and ethyl (8R,8aR)-octahydro-8-indolizinecarboxylate [301b] as a mixture 

of diastereomers in the ratio [301b]:[301a] 85:15 (0.375 g, 0.722 mmol, 72%) as a clear oil. 

The mixture was partially separated by flash column chromatography (5% methanol:dichloro-

methane) affording pure samples of [301a] and [301b] for characterization. 

 

Fraction 1 [301a] 

 

Rf  0.36 (5% methanol:dichloromethane); vmax (film)/cm−−−−1 3420 (s), 2932 (C-H str, m), 2851 

(C-H str, m), 1726 (s), 1665 (s), 1293 (m), 1192 (s), 1173 (s), 1119 (s), 1026 (C-O str, s); 1H 

4.13 (2H, q, J 7.0 Hz, CH2CH3), 3.06 (2H, dt, J 2.0 & 8.8 Hz, H-3eq), 2.26-2.22 (1H, m, H*), 

2.13 (1H, q, J 9.0 Hz, H-8a), 2.06-1.90 (4H, m, H*), 1.86-1.56 (4H, m, H*), 1.55-1.37 (2H, m, 

H*), 1.26 (3H, t, J 7.0 Hz, CH2CH3); 13C 174.3 (C=O), 65.1 (C-8a), 60.1 (OCH2CH3), 54.0 

(C-3), 52.2 (C-5), 48.1 (C-8), 29.1 (C-6), 28.1 (C-7), 24.7 (C-6), 20.5 (C-2), 14.2 (OCH2CH3); 

HRMS m/z (EI) 197.13962 (M+ 7%, C11H19NO2 requires 197.14158), 182 (100), 164, (48), 

154 (16), 136 (57), 111 (11), 108 (21), 83 (20), 70 (12), 55 (17), 41 (28).* Remaining 

hydrogens. 

 

Fraction 2 [301b] 

 
Rf 0.29 (5% methanol:dichloromethane); vmax (film)/cm−−−−1 3402 (s), 2940 (C-H str, s), 1727 

(C=O str, vs), 1660 (s), 1587 (s), 1302 (s), 1182 (s), 1156 (s), 1107 (s), 1022 (s); 1H 4.16-3.99 

(2H, m, OCH2CH3), 3.04-2.96 (2H, m, H-3eq), 2.71-2.70 (1H, m, H*), 2.14-2.07 (1H, m, H-
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3ax), 2.05-1.88 (4H, m, H*), 1.83-1.33 (6H, m, H*), 1.18 (3H, t, J 7.1, OCH2CH3); 13C; 173.0 

(C=O), 64.3 (C-8a), 59.7 (OCH2CH3), 54.7 (C-3), 52.8 (C-5), 41.5 (C-8), 26.4 (C-7)#, 26.1 

(C-1)#, 22.3 (C-6), 20.4 (C-2), 14.1 (OCH2CH3); HRMS m/z (EI) 197.14182 (M+ 43%, 

C11H19NO2 requires 197.14158), 41 (46), 43 (40), 55 (35), 57 (48), 69 (47), 70 (36), 71 (31), 

83 (51), 96 (92), 97 (93), 122 (42), 149 (71), 150 (35), 152 (41), 168 (100), 196 (41).* 

Remaining hydrogens, # These assignments may be interchanged. 

 

11.9.3 (8S,8aR)-octahydro-8-indolizinecarbonitrile [302a] and (8R,8aR)-octahydro-8-

indolizinecarbonitrile [302b] 
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Vinylogous cyanamide [321] (0.472 g, 3.19 mmol) was dissolved in glacial acetic acid (17.5 

cm3, 5.5 cm3.mmol−1) in the presence of Adams’ catalyst (0.160 g, 0.05 g.mmol−1). 

Subsequent hydrogenation at 1 atmosphere over 24 h, followed by the normal workup and 

purification by column chromatography (5% methanol:dichloromethane) gave an inseparable 

diastereomeric mixture of (8S,8aR)-octahydro-8-indolizinecarbonitrile [302a] and (8R,8aR)-

octahydro-8-indolizinecarbonitrile [302b] in a ratio of [302b]:[302a] 92:8 as an orange oil 

(0.629 g, 3.19 mmol, 85%); Rf 0.13 (methanol:dichloromethane 1:19); vmax (film)/cm−−−−1 2923 

(C-H str, s), 2854 (C-H str, s), 2360 (C≡N str, s), 1728, (s), 1658 (s), 1456 (s), 1260 (s), 1092 

(s), 1062 (s), 1029 (s); 1H 3.16-3.02 (2H, m, H-3eq), 2.96-2.95 (1H, m, H*), 2.16-1.58 (12H, 

m, H*), 1.49 (2H, dt, J 4.1 & 13.1, H*); 13C 120.0 (CN), 63.3 (C-8a), 53.8 (C-3), 52.2 (C-5), 

31.9 (C-8), 28.4 (C-1), 27.5 (C-7), 22.0 (C-2), 20.4 (C-6).* Remaining hydrogens. 
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11.9.4 (8S,8aR)-N-methoxy-N-methyloctahydro-8-indolizinecarboxamide [303a] and 

(8R,8aR)-N-methoxy-N-methyloctahydro-8-indolizinecarboxamide [303b] 
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A solution of bicyclic enaminone [322] (0.173 g, 0.823 mmol) in glacial acetic acid (4.5 cm3, 

5.5 cm3.mmol−1), in the presence of Adams’ catalyst (0.041 g, 5 × 10−2 g.mmol−1) was 

hydrogenated for 24 h at 1 atmosphere. The standard workup and purification by column 

chromatography (5% methanol:dichloromethane) afforded (8S,8aR)-N-methoxy-N-

methyloctahydro-8-indolizinecar-boxamide [303a] and (8R,8aR)-N-methoxy-N-methylocta-

hydro-8-indolizinecarboxamide [303b] as inseparable diastereomers in a ratio [303b]:[303a] 

95:5 as a yellow oil (0.0430 g, 0.203 mmol, 25%); vmax (film)/cm−−−−1 2928 (C-H, s), 1663 

(C=O, s), 1441 (m), 1378 (m), 1342 (m), 1160 (m), 1100 (m), 1039 (w), 998 (s), 963 (m); 1H 

3.67 (3H, s, NOCH3), 3.18 (3H, s, NCH3), 3.08-2.94 (2H, m, H-8 & H-8a), 2.38-2.31 (1H, m, 

H*), 2.26-1.98 (3H, m, H*), 1.95-1.43 (8H, m, H*); 13C 174.7 (C=O), 63.5 (C-8a), 61.2 

(NOCH3), 54.4 (C-3), 51.8 (C-5), 37.0 (C-8), 29.6 (NCH3), 26.1 (C-1), 25.2 (C-7), 22.8 (C-2), 

20.4 (C-6); HRMS m/z (EI) 212.15176 (M+ 62%, C11H20N2O2 requires 212.15248).* 

Remaining hydrogens. 

 

11.10 (±±±±)-Tashiromine [330a] and (±±±±)-5-epitashiromine [330b] 
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A mixture of ethyl (8S,8aR)-octahydro-8-indolizinecarboxylate [301a] and ethyl (8R,8aR)-

octahydro-8-indolizinecarboxylate [301b] (0.675 g, 3.42 mmol) in diethyl ether (13.7 cm3, 4 

cm3.mmol−1) was added dropwise to a slurry of lithium aluminium hydride (0.196 g, 5.13 

mmol, 1.5 eq.) in diethyl ether (6.8 cm3.mmol−1) at 0 °C. The mixture was warmed to rt and 



Chapter 11      Experimental Relating to Chapter 4 
       

 248 

stirred for 16 h. The reaction was quenched by the sequential addition of water (0.8 cm3), 

sodium hydroxide (0.8 cm3, 15% w/v) and finally water (2.4 cm3). The solids were removed 

by passing the mixture through a thin pad of celite. The filtrate was dried (anhydrous sodium 

sulfate), filtered and evaporated in vacuo to yield (±)-tashiromine [330a] and its epimer (±)-5-

epitashiromine [330b] as a mixture of diastereomers in the ratio [330b]:[330a] (13:87, 0.464 

g, 2.99 mmol, 87%). The two of diastereomers were separated by flash column chromato-

graphy using methanol:dichloromethane:ammonium hydroxide (95:4.75:0.25) as eluent.  

 

(±)-Tashiromine [330a] 

 
1H  3.60 (1H, dd, J 10.7 & 4.6 Hz, CH2aOH), 3.43 (1H, dd, J 10.7 & 6.5 Hz, CH2aOH), 3.25 

(1H, s broad, OH), 3.12-3.04 (2H, m, H-4eq & H-5eq), 2.08 (1H, q, J 9.1 Hz), 1.98-1.85 (1H, 

m, H*), 1.94 (2H, ddd, J 16.7, 12.4 & 2.8 Hz, H*), 1.85-1.59 (4H, m, H*), 1.55-1.42 (2H, m, 

H*), 1.04 (2H, ddd, J 24.7, 12.4 & 5.0 Hz, H*); 13C 66.5 (C-8), 65.0 (CH2OH), 54.0 (C-5), 

52.6 (C-4), 44.3 (C-1), 28.8 (C-2)#, 27.5 (C-7)#, 24.9 (C-3)#, 20.6 (C-6); HRMS m/z (EI) 

155.12940 (M+ 93% C9H17NO requires 155.13101).* Remaining hydrogens, # These 

assignments may be interchanged. 

 

(±)-5-Epitashiromine [330b] 

 
1H 4.53 (1H, s broad, OH), 4.12 (1H, dd, J 10.7 & 4.5 Hz, CH2aOH), 3.74 (1H, dd, J 10.7 & 

1.8 Hz, -CH2bOH), 3.11-3.07 (1H, m, H-4eq), 3.01 (1H, ddd, J 9.1, 2.9, 1.8 Hz, H-5eq), 2.29-

2.23 (1H, m, H-8), 2.07-1.95 (3H, m, H*), 1.93-1.87 (2H, m, H*), 1.84-1.65 (4H, m, H*), 1.64-

1.47 (2H, m, H*); 13C 66.5 (C-8), 64.9 (CH2OH), 54.3 (C-5), 53.3 (C-4), 35.4 (C-1), 29.9 (C-

2)#, 25.6 (C-7)#, 22.9 (C-3)#, 20.6 (C-6); HRMS m/z (EI) 155.12955 (M+ 81% C9H17NO 

requires 155.13101). *Remaining hydrogens, # These assignments may be interchanged. 
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CHAPTER 12 

 
EXPERIMENTAL PROCEDURES RELATING TO CHAPTER 5 

ENANTIOSELECTIVE SYNTHESIS OF 5,8-DISUBSTITUTED INDOLIZIDINES 
 

12.1 tert-Butyl diethoxyphosphorylacetate [246]169 
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Triethyl phosphite was treated with sodium metal overnight and then distilled to remove 

traces of water. The distilled triethyl phosphite (16.6 g, 17.3 cm3, 100 mmol, 1.1 eq.) and tert-

butyl bromoacetate [335] (17.6 g, 13.3 cm3, 91.0 mmol) were heated at 110 °C under argon 

for 4 h. The crude mixture was cooled to rt and purified by distillation (oil pump, ca 1 

mmHg). tert-Butyl diethoxyphosphorylacetate [246] (20.6 g, 82.0 mmol, 90%) was obtained 

as a colourless liquid. Bp 115 °C (ca 1 mmHg); Rf 0.10 (5% ethyl acetate:hexane); vmax 

(film)/cm−−−−1 2982 (C-H str, m), 2935 (C-H str, m), 1731 (C=O str, s), 1648 (w), 1549 (w), 

1532 (w), 1514 (w), 1463 (C-H bend, m), 1397 (s), 1372 (C-H bend, s), 1288 (C-O str, s), 

1260 (P=O str, s), 1169 (C-O str, m), 1114 (m), 1028 (P-O str, s), 965 (s); 1H 4.16 (2H, q, J 

7.2 Hz, OCH2CH3), 2.88 (2H, d, J 21.5 Hz, CH2P=O), 1.48 (9H, s, C(CH3)3), 1.35 (6H, t, J 

7.1 Hz, OCH2CH3); 13C 164.9 (d, J 6.4 Hz, C=O), 81.9  (C(CH3)3), 62.4 (d, J 6.2 Hz, 2 × 

OCH2CH3), 35.5 (d, J 133.2 Hz, CH2P=O), 27.8 (C(CH3)3), 16.2 (d, J 6.3 Hz, 2 × OCH2CH3). 

 

12.2 tert-Butyl (2E)-2-hexenoate [267]108h 
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To a stirred suspension of vacuum-dried (140 °C, overnight, ca 1 mmHg) lithium chloride 

(4.05 g, 95.4 mmol, 1.2 eq.) in dry acetonitrile (317 cm3, 2.00 cm3.mmol−1) was added tert-

butyl diethoxyphosphorylacetate [246] (20.0 g, 18.6 cm3, 79.4 mmol), 1,8-diazobicyclo-
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[5.4.0]undec-7-ene (DBU) (13.3 g, 13.1 cm3, 87.2 mmol, 1.1 eq.) and butanal (6.29 g, 7.86 

cm3, 87.2 mmol, 1.1 eq.). The mixture was stirred at rt for 24 h. The reaction was quenched 

with water and the solvent was evaporated in vacuo. The residue was taken up in water (100 

cm3), extracted with dichloromethane (3 × 100 cm3). The combined organic extracts were 

dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo to yield a light yellow 

oil. The crude oil was purified by distillation (oil pump, ca 1 mmHg) to afford tert-butyl (2E)-

2-hexenoate [267] (10.80 g, 63.42 mmol, 80%) as a colourless liquid. Rf 0.37 (5% ethyl 

acetate:hexane); vmax (film)/cm−−−−1 2981 (C-H str, m) , 2934 (C-H str, w), 1726 (C=O str, s), 

1650 (C=C str, w), 1479 (w), 1457 (C-H bend, w), 1394 (s), 1368 (C-H bend, s), 1286 (C-O 

str, s), 1255 (C-H bend, s), 1216 (w), 1164 (C-O str, s), 1114 (s), 1050 (s), 1020 (s), 958 (C-H 

out-of-plane bend, s); 1H 6.86 (1H, dt, J 6.9 and 15.5 Hz, H-3), 5.74 (1H, d, J 15.5 Hz, H-2), 

2.15 (2H, q, J 7.1 Hz, H-4), 1.54-1.42 (2H, m, H-5), 1.48 (9H, s, H-2’’), 0.93 (3H, t, J 7.4 Hz, 

H-6). 

 

12.3 tert-Butyl (3R)-3-{benzyl[(1S)-1-phenylethyl]amino}hexanoate [268]108h 
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A solution of N-benzyl-N-(1R)-1-phenylethylamine [243] (4.67 g, 4.63 cm3, 22.1 mmol, 

1.1eq.), in dry tetrahydrofuran (90.0 cm3, 4.50 cm3.mmol−1) was cooled to −78 °C and treated 

with n-butyllithium (1.40 M, 15.8 cm3, 22.1 mmol, 1.1 eq.). The resulting red solution was 

stirred at −78 °C for 30-45 min before adding a solution of tert-butyl (2E)-2-hexenoate [267] 

(3.42 g, 20.1 mmol) in tetrahydrofuran (20.0 cm3, 1.00 cm3.mmol−1) dropwise. The resulting 

mixture was stirred at −78 °C for 3 h before quenching with a solution of saturated 

ammonium chloride (50 cm3). The mixture was warmed to rt and the solvent was removed in 

vacuo. The residue was diluted with water (50 cm3) and extracted with dichloromethane (3 × 

50 cm3). The combined organic extracts were dried (anhydrous magnesium sulfate), filtered 
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and evaporated in vacuo to afford a yellow oil. The crude oil was purified by column 

chromatography using 5% ethyl acetate:hexane as eluent. The tert-butyl (3R)-3-{benzyl[(1S)-

1-phenylethyl]amino}hexanoate [268] (5.916 g, 15.50 mmol, 77%) was obtained as a light 

yellow oil. Rf 0.54 (50% ethyl acetate:hexane); [�]D
19 +8.00 (c 2.0, chloroform); vmax 

(film)/cm−−−−1
 3084 (Ar C-H str, w), 3062 (Ar C-H str, w), 3027 (Ar C-H str, w), 2961 (C-H str, 

m), 2931 (C-H str, m), 2872 (C-H str, w), 1723 (C=O str, s), 1601 (Ar C=C str, w), 1493 (m), 

1454 (C-H bend, m), 1391 (w), 1367 (C-H bend, m), 1342 (m), 1296 (m), 1256 (C-H bend, 

w), 1144 (C-N str, vs), 1095 (C-N str, m), 1074 (w), 1027 (C-C str, w), 989 (m); 1H 7.43-7.20 

(10H, m, Ar-H’s), 3.81 (1H, q, J 7.2 Hz, H-1’’), 3.81 (1H, d, J 15.3 Hz, H-1’’’a), 3.48 (1H, d, 

J 15.0 Hz, H-1’’’b), 3.33 (1H, quintet, J 4.2 Hz, H-3), 1.99-1.82 (1H, m, H-2), 1.64-1.19 (4H, 

m, H-4 and H-5), 1.39 (9H, s, H-2’), 1.32 (3H, d, J 7.0 Hz, H-2’’), 0.85 (3H, t, J 7.2 Hz, H-6); 
13C 172.2 (C-1), 143.1 (quaternary Ar-C), 142.1 (quaternary Ar-C), 128.2 (Ar-C), 128.1 (Ar-

C), 128.1 (Ar-C), 127.9 (Ar-C), 126.8 (Ar-C), 126.5 (Ar-C), 79.8 (C-1’), 58.3 (C-1’’), 53.7 

(C-1’’’), 50.1 (C-3), 37.8 (C-2), 35.8 (C-4), 28.0 (C-2’), 20.5 (C-2’’), 20.05 (C-5), 14.1 (C-6). 

 

12.4 tert-Butyl (3R)-3-aminohexanoate [336]108h 
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A solution of tert-butyl (3R)-3-{benzyl[(1S)-1-phenylethyl]amino}hexanoate [268] (5.36 g 

14.0 mmol) in glacial acetic acid (60.0 cm3, 4.30 cm3.mmol−1) was treated with 10% 

palladium on activated carbon (2.11 g, 0.150 g.mmol−1). The mixture was stirred for 3 d under 

7 atmospheres of hydrogen gas. The mixture was filtered through celite, followed by several 

washings with water to remove the catalyst. The filtrate was basified with saturated aqueous 

sodium hydrogen carbonate solution. The resulting mixture was extracted with 

dichloromethane (4 × 50 cm3). The combined organic extracts were dried (anhydrous sodium 

sulfate), filtered and evaporated in vacuo to afford a milky oil. The crude oil was purified by 

column chromatography using 10-20% methanol:ethyl acetate as eluent to give tert-butyl 

(3R)-3-aminohexanoate [336] (1.72 g, 9.20 mmol, 65%) as a light yellow oil. Rf 0.25 (10% 

methanol:ethyl acetate); [�]D
21 +1.43 (c 0.70, CHCl3) vmax (film)/cm−−−−1 3291 (N-H str, w br), 
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2960 (C-H str, s), 2932 (C-H str, s), 2873 (C-H str, s), 1726 (C=O str, s), 1651 (N-H bend, s), 

1547 (s), 1457 (C-H bend, s), 1392 (C-H bend, m), 1367 (C-H bend, s), 1308 (s), 1256 (s), 

1153 (C-N str, vs), 1039 (w), 953 (N-H rock, m); 1H 3.19-3.13 (1H, m, H-3), 2.37 (1H, dd, J 

15.5 Hz and 4.0 Hz , H-2a), 2.16 (1H, dd, J 15.4 Hz and 8.9 Hz, H-2b), 1.50 (2H, s, NH2), 

1.46 (9H, s, H-2’), 1.41-1.31 (4H, m, H-4 and H-5), 0.95-0.86 (3H, m, H-6); 13C 172.0 (C-1), 

80.3 (C-1’), 48.1 (C-3), 43.9 (C-2), 39.7 (C-4), 28.1 (C-2’), 19.1 (C-5), 14.0 (C-6). 

 

12.5 tert-Butyl (3R)-3-[(4-chlorobutanoyl)amino]hexanoate [341]108h 
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Distilled 4-chlorobutanoyl chloride (0.905 g, 0.720 cm3, 6.42 mmol, 1.2 eq.) was added 

dropwise to a solution of tert-butyl (3R)-3-aminohexanoate [336] (1.00 g, 5.35 mmol) and 

triethylamine (1.35 g, 1.86 cm3, 13.4 mmol, 2.5 eq.) in dichloromethane (23 cm3, 4.3 

cm3.mmol−1) at 0 °C. The solution effervesced and was stirred at rt for 30 min. The mixture 

was diluted with dichloromethane (30 cm3), and evaporated in vacuo. The residue was 

dissolved in dichloromethane and then washed with water (30 cm3) and brine (30 cm3). The 

aqueous extracts were back extracted with dichloromethane (3 × 30 cm3). The organic 

extracts were combined, dried (anhydrous magnesium sulfate), filtered and evaporated in 

vacuo to yield an orange oil. The crude oil was purified by column chromatography using 

ethyl acetate as the eluent to yield tert-butyl (3R)-3-[(4-chlorobutanoyl)amino]hexanoate 

[341] (1.49 g, 5.11 mmol, 96%) as an orange oil. Rf 0.88 (5% methanol: dichloromethane); 

[�]D
23 −1.75 (c 2.28, absolute ethanol); vmax (film)/cm−−−−1 3283 (N-H str, w br), 2961 (C-H str, 

s), 2933 (C-H str, s), 2874 (C-H str, s), 1722 (C=O ester str, vs), 1639 (C=O amide str, s), 

1544 (N-H bend, s), 1447 (C-H bend, s), 1367 (C-H bend, s), 1298 (m), 1255 (C-H bend, m), 

1229 (m), 1217 (m), 1153 (C-O str, vs), 1037 (w), 990 (w); 1H 6.18 (1H, d, J 8.7 Hz, NH), 

4.29-4.18 (1H, m, H-3), 3.60 (1H, t, J  6.3 Hz, H-4’’), 2.43 (2H, dd, J 6.8 and 5.4 Hz, H-2), 

2.35 (2H, t, J 7.1 Hz, H-2’’), 2.11 (2H, quintet, J 6.8 Hz, H-3’’), 1.55-1.24 (4H, m, H-4 and 

H-5), 1.46 (9H, s, H-2’), 0.92 (3H, t, J 7.2 Hz, H-6); 13C 171.3 (C-1), 170.9 (C-1’’), 81.1 (C-
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1’), 45.9 (C-3), 44.4 (C-4’’), 39.6 (C-2), 36.3 (C-2’’), 33.4 (C-4), 28.2 (C-2’), 28.0 (C-3’’), 

19.4 (C-5), 13.8 (C-6). 

 

12.6 tert-Butyl (3R)-3-(2-oxo-1-pyrrolidinyl)hexanoate [269] 
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Method 1108h 

 

tert-Butyl (3R)-3-[(4-chlorobutanoyl)amino]hexanoate [341] (1.41 g, 4.82 mmol) was treated 

with potassium tert-butoxide (1.08 g, 9.64 mmol, 2.0 eq.) in dry tert-butyl alcohol (28.0 cm3, 

6.50 cm3.mmol−1). The mixture was stirred at rt for 24 h. Glacial acetic acid was added to 

neutralize the mixture. The solvent was evaporated in vacuo to yield a milky yellow residue. 

The residue was taken up in dichloromethane (50 cm3) and washed with water (50 cm3). The 

aqueous extracts were back extracted with dichloromethane (3 × 50 cm3). The combined 

organic extracts were dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo 

to afford an orange oil. The crude oil was purified by column chromatography using 30% 

ethyl acetate:hexane as the eluent to yield tert-butyl (3R)-3-(2-oxo-1-pyrrolidinyl)hexanoate 

[269] (0.489 g, 1.92 mmol, 40%) as a yellow oil. Rf 0.30 (50% ethyl acetate:hexane); [�]D
18 

−5.03 (c 1.59, chloroform); vmax (film)/cm−−−−1 3226 (w), 2962 (C-H str, s), 2933 (C-H str, s), 

2874 (C-H str, s), 1723 (C=O ester str, vs), 1686 (C=O amide str, vs), 1460 (C-H bend, s), 

1423 (s), 1393 (w), 1317 (s), 1285 (m), 1257 (s), 1207 (s), 1150 (C-N str, vs), 1111 (s), 1041 

(w), 972 (m); 1H 4.51-4.41 (1H, m, H-3), 3.38 (1H, dt, J 7.0 and 8.9 Hz, H-5’’a), 3.26 (1H, dt, 

J 7.0 and 9.1 Hz, H-5’’b), 2.42-2.34 (4H, m, H-2 and H-3’’), 1.99 (2H, quintet, J 7.5 Hz, H-

4’’), 1.59-1.36 (2H, m, H-4), 1.42 (9H, s, H-2’), 1.27 (2H, dq, J 7.3 and 14.7 Hz, H-5), 0.92 

(3H, t, J 7.3 Hz, H-6);  13C 174.7 (C-1), 170.2 (C-2’’), 80.7 (C-1’), 48.4 (C-3), 42.4 (C-5’’), 

39.3 (C-2), 34.3 (C-4), 31.4 (C-3’’), 27.8 (C-2’), 19.3 (C-5), 18.2 (C-4’’), 13.7 (C-6). 
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Method 2 

 

tert-Butyl (3R)-3-[(4-chlorobutanoyl)amino]hexanoate [341] (2.01 g, 6.88 mmol) was 

dissolved in dry tert-butyl alcohol (21.0 cm3, 3.00 cm3.mmol−1). To this solution was added 

potassium tert-butoxide (1.16 g, 10.3 mmol, 1.5 eq.) in portions (~0.100 g per addition) over a 

5 h period. After the final addition the mixture was stirred for a further 30 min, and thereafter 

glacial acetic acid was added to neutralize the mixture. The solvent was removed from the 

neutralized mixture by evaporation in vacuo. The resulting residue was dissolved in 

dichloromethane (50 cm3) and washed with water (50 cm3). The aqueous extracts were 

extracted with dichloromethane (3 x 50 cm3), and the combined organic extracts were dried 

(anhydrous sodium sulfate), filtered and evaporated in vacuo to afford an orange oil. 

Purification of the crude oil by column chromatography using 30% ethyl acetate:hexane as 

eluent yielded tert-butyl (3R)-3-(2-oxo-1-pyrrolidinyl)hexanoate [269] (1.28 g,  5.00 mmol, 

73%) as a yellow oil; characterization as described above. 

 

12.7 tert-Butyl (3R)-3-(2-thioxo-1-pyrrolidinyl)hexanoate [270] 
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Method 1108h 

 

tert-Butyl (3R)-3-(2-oxo-1-pyrrolidinyl)hexanoate [269] (0.232 g, 0.910 mmol), was added to 

a stirred solution of Lawessons’ reagent (0.188 g, 0.450 mmol, 0.5 eq.) in toluene (4 cm3, 4 

cm3.mmol−1). The solution was stirred at reflux for 5 h, after which time the solvent was 

removed in vacuo to yield a red oil. The crude red oil was purified by column 

chromatography with dichloromethane followed by 30% ethyl acetate:hexane to yield tert-

butyl (3R)-3-(2-thioxo-1-pyrrolidinyl)hexanoate [270] (0.168 g, 0.0690 mmol, 68%) as a 

yellow oil. Rf 0.35 (20% ethyl acetate:hexane); [�]D
22 +17.9 (c 0.96, absolute ethanol); vmax 

(film)/cm−−−−1 2970 (C-H str, s), 2932 (C-H str, s), 2873 (C-H str, m), 1722 (C=O str, vs), 1598 
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(w), 1572 (w), 1492 (s), 1447 (C-H bend, s), 1426 (w), 1391 (w), 1367 (C-H bend, s), 1315 

(C=S, s), 1284 (s), 1253 (s), 1229 (s), 1150 (C-N str, vs), 1127 (C-O str, s), 1099 (s), 1061 

(w), 1031 (w), 956 (m); 1H 5.43-5.33 (1H, m, H-3), 3.71 (1H, dt, J 7.2 and 10.6 Hz, H-5’’a), 

3.56 (1H, dt, J 7.2 and 10.6 Hz, H-5’’b), 3.00 (2H, dt, J 3.0 and 7.7 Hz, H-3’’), 2.54 (2H, dd, 

J 6.0 and 14.4 Hz, H-2a), 2.45 (2H, dd, J 9.0 and 14.4 Hz, H-2b), 2.03 (2H, quintet, J 7.5 Hz, 

H-4’’), 1.67-1.53 (2H, m, H-4), 1.43 (9H, s, H-2’), 1.40 (2H, m, H-5), 0.94 (3H, t, H-6); 13C 

201.8 (C-2’’), 169.5 (C-1), 81.1 (C-1’), 53.1 (C-3), 49.1 (C-5’’), 45.1, (C-2’’), 38.8 (C-2), 

34.3 (C-4), 27.8 (C-2’), 20.0 (C-4’’), 19.1 (C-5), 13.8 (C-6). 

 

Method 2 

 

To a suspension of phosphorus pentasulfide (1.32 g, 5.88 mmol, 3.0 eq.) in tetrahydrofuran 

(140 cm3, 7.20 cm3.mmol−1) was added sodium carbonate (0.311 g, 2.94 mmol, 1.5 eq.), and 

the mixture was stirred at rt until the solution became homogeneous. To this solution was 

added tert-butyl (3R)-3-(2-oxo-1-pyrrolidinyl)hexanoate [269] (5.00 g, 19.6 mmol) in 

tetrahydrofuran (35.0 cm3, 1.80 cm3.mmol−1). Aqueous sodium carbonate (10%, 140 cm3), 

ethyl acetate (105 cm3) and hexane (35 cm3) were added after 5 h. The aqueous phase was 

extracted with dichloromethane (3 × 80 cm3). The combined organic phases were then dried 

over anhydrous magnesium sulfate, filtered and evaporated in vacuo to give a yellow oil. The 

crude product was purified by column chromatography using 25% acetone:hexane as eluent, 

to give tert-butyl (3R)-3-(2-thioxo-1-pyrrolidinyl)hexanoate [270] (0.369 g, 0.461 mmol, 

80%) as a yellow oil. The compound was characterized as described above. 

 

12.8 tert-Butyl (3R)-3-((2E)-2-{2-[methoxy(methyl)amino]-2-oxoethylidene}pyrrolidinyl)-

hexanoate [272] 
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tert-Butyl (3R)-3-(2-thioxo-1-pyrrolidinyl)hexanoate [270] (0.530 g, 1.95 mmol 1.0 eq.) and 

2-bromo-N-methoxy-N-methylacetamide [271] (0.430 g, 2.34 mmol, 1.2 eq.) were dissolved 

in dry acetonitrile (4.00 cm3, 2.00 cm3.mmol−1). The mixture was stirred for 16 h at rt, after 

which time the solvent was removed in vacuo affording a white salt. The obtained salt was re-

dissolved in dry acetonitrile (4.00 cm3, 2.00 cm3.mmol−1) and to this was added 

triphenylphosphine (0.614 g, 2.34 mmol, 1.2 eq.) followed by triethylamine (0.237 g, 0.330 

cm3, 2.34 mmol, 1.2 eq.). The solution was stirred for 3 h, during which time a white 

precipitate formed. The solution was filtered through a celite pad, the solvent was removed in 

vacuo and the resulting residue was triturated in ethyl acetate for 30 min. The solution was 

again filtered through celite, and the filtrate was then extracted with aqueous hydrochloric 

acid (2.0M, 3 × 50 cm3). The aqueous extracts were basified to ~ pH 10 with an ammonia 

solution, and then extracted with dichloromethane (3 × 50 cm3). The combined organic 

extracts were dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo to yield 

a yellow oil. The crude oil was purified by column chromatography using 5% 

methanol:dichloromethane, to afford tert-butyl (3R)-3-((2E)-2-{2-[methoxy(methyl)amino]-2-

oxoethylidene}pyrrolidinyl)hexanoate [272] as a light yellow oil (0.509 g, 1.50 mmol, 77%). 

vmax (film)/cm−−−−1 3084 (w), 3062 (w), 3027 (C=C-H str, w), 2970 (C-H str, s), 2932 (C-H str, 

s), 2872 (C-H str, w), 1724 (C=O str, vs), 1601 (w), 1493 (m), 1454 (C-H bend, s), 1367 (C-H 

bend, s), 1297 (m), 1256 (w), 1230 (s), 1217 (s), 1205 (s), 1143 (C-N str, vs), 1094 (C-O str, 

m), 1074 (w), 1026 (m), 990 (w); 1H 5.26 (1H, s, C=CH), 4.17-4.07 (1H, m, H-3), 3.68 (3H, 

s, OCH3), 3.32-3.19 (4H, m, H-3’’ and H-5’’), 3.14 (3H, s, NMe),  2.44 (2H, dd, J 6.0 and 7.1 

Hz, H-2), 1.88 (2H, quintet, J 7.3 Hz, H-4’’), 1.67-1.45 (2H, m, H-4), 1.41 (9H, s, H-2’), 

1.36-1.20 (2H, m, H-5), 0.93 (3H, t, J 7.3 Hz, H-6); 13C 172.1 (C-1), 170.1 (C-2’’), 164.7 

CON(O CH3) CH3), 80.8 (C-1’), 77.7 (C=CH), 60.8 (O CH3), 51.3 (C-3), 45.6 (C-5’’), 39.0 

(C-2), 34.3 (C-4), 33.0 (CH3), 32.6 (C-3), 27.8 (C-2’), 21.1 (C-4), 19.3 (C-5), 13.7 (C-6). 
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12.9 (2E)-2-{1-[(1R)-1-(2-Hydroxyethyl)butyl]-2-pyrrolidinylidene}-N-methoxy-N-meth-

ylethanamide [273] from [272] 
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tert-Butyl-(3R)-3-((2E)-2-{2-[methoxy(methyl)amino]-2-oxoethylidene}pyrrolidinyl)hexano-

ate [272] (0.167 g, 0.490 mmol) was added to a slurry of lithium aluminium hydride  (0.0220 

g, 0.590 mmol, 1.2 eq.) in diethyl ether (1.00 cm3, 2.00 cm3.mmol−1) at 0 °C. The slurry was 

warmed to rt and stirred for 16 h. The reaction was quenched by the sequential addition of 

water (0.1 cm3), sodium hydroxide (0.1 cm3, 15% w/v) and finally water (0.2 cm3). The solids 

were filtered off by passing the mixture through a thin pad of celite and washing several times 

with dichloromethane. The filtrate was dried (anhydrous sodium sulfate), filtered and 

evaporated in vacuo to yield a brown-orange oil. Purification of the oil by column 

chromatography using 5% ethanol:dichloromethane as eluent afforded (2E)-2-{1-[(1R)-1-(2-

hydroxyethyl)butyl]-2-pyrrolidinylidene}-N-methoxy-N-methylethanamide [273] as a clear 

oil (0.0150 g, 0.0600 mmol, 11%). Rf 0.59 (10% ethanol:dichloromethane); [αααα]D
20 +3.85 (c 

1.04 absolute ethanol); vmax (film)/cm−−−−1
  3358 (O-H str, m br), 2955 (C-H str, s), 2931 (C-H 

str, s), 2870 (C-H str, s), 2360 (s), 2342 (s), 1617 (C=O str, s), 1553 (vs), 1485 (w), 1460 (C-

H bend, w), 1411 (s), 1199 (C-N str, s); 1H 5.25 (1H, s, C=CH), 3.96-3.86 (2H, m, H-1), 3.66 

(3H, s, OCH3), 3.69-3.42 (1H, m, H-3), 3.26 (2H, t, J 7.9 Hz, H-5’), 3.19 (2H, dt, J 6.6 and 

2.7 Hz, H-3’), 3.14 (3H, s, NCH3), 1.90 (2H, quintet, J 7.3 Hz, H-4’), 1.79-1.65 (2H, m, H*), 

1.60 (2H, ddd, J 15.0, 8.4 and 3.8 Hz, H-2a), 1.49 (2H, ddd, J 13.7, 8.2 and 3.9 Hz, H-2b), 

1.42-1.23 (2H, m, H*), 0.92 (3H, t, J 7.3 Hz, H-6);  13C 172.4 (C-2’), 165.9 

(CON(OCH3)CH3), 76.4 (C=CH), 60.9 (OCH3), 59.4 (C-1), 50.6 (C-5’), 45.3 (C-3), 35.0 (C-

2), 34.8 (C-4), 33.1 (NCH3), 32.9 (C-4’), 21.2 (C-3’), 19.5 (C-5), 13.9 (C-6). 

* Remaining hydrogens 

 

 

 



Chapter 12                Experimental Procedures Relating to Chapter 5 
              

 259 

12.10 (3R)-3-{Benzyl[(1S)-1-phenylethyl]amino}-1-hexanol [343] 
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Lithium aluminium hydride (1.36 g, 35.8 mmol, 1.1 eq.) was added to a stirred solution of 

tert-butyl (3R)-3-((2E)-2-{2-[methoxy(methyl)amino]-2-oxoethylidene}pyrrolidinyl)hexano-

ate [268] (12.4 g, 32.6 mmol) in diethyl ether (65.0 cm3, 2.00 cm3.mmol−1) at 0 °C. The 

mixture was warmed to rt and stirred for 16 h. The reaction was quenched by the sequential 

addition of water (7.2 cm3), sodium hydroxide (7.2 cm3, 15% w/v) and finally water (21.7 

cm3). The solids were removed by passing the mixture through a thin celite pad. The filtrate 

was dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to yield a light yellow 

oil. The solids and celite were recovered and dried in a desiccator, once dry they were ground 

to a fine powder. The powder was stirred in dichloromethane (100 cm3), filtered and 

evaporated in vacuo to afford more of the light yellow oil. The crude oils were combined and 

purified by column chromatography using 20% ethyl acetate:hexane as eluent to give (3R)-3-

{benzyl[(1S)-1-phenylethyl]amino}-1-hexanol [343] (9.84 g, 31.6 mmol, 97%) as a clear oil. 

Rf 0.82 (50% ethyl acetate:hexane); [�]D
19 −32.1 (c 1.09, chloroform); vmax (film)/cm−−−−1 3367 

(O-H, s br), 3084 (ArC-H str, w), 3062 (ArC-H str, w), 3027 (ArC-H str, w), 2956 (C-H str, 

s), 2931 (C-H str, s), 2870 (C-H str, s), 1602 (ArC=C str, w), 1493 (C-H bend, s), 1452 (s), 

1373 (C-H bend, s), 1204 (m), 1140 (C-N str, s), 1052 (C-O str, s), 1027 (s), 905 (s); 1H 7.40-

7.19 (10H, m, Ar-H’s), 3.95 (1H, q, J 6.9 Hz, H-1’), 3.84 (1H, d, 13.7 Hz, H-1’’a), 3.68 (1H, 

d, 13.8 Hz, H-1’’b), 3.52-3.45 (1H, m, H-3), 3.24-3.17 (1H, m, H-1a), 2.83-2.76 (1H, m, H-

1b), 2.64 (1H, s, -OH), 1.74-1.49 (2H, m, H-2), 1.45-1.23 (4H, m, H-4 and H-5), 1.39 (3H, d, 

J 6.9 Hz, H-2’), 0.93 (3H, t, J 7.1 Hz, H-6); 13C 143.9 (quaternary Ar-C), 140.8 (quaternary 

Ar-C), 129.0 (Ar-C), 128.3 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 126.9 (Ar-C), 126.9 (Ar-C), 

61.8 (C-1’), 56.7 (C-1), 54.8 (C-3), 49.9 (C-1’’), 34.9 (C-2), 33.7 (C-4), 20.8 (C-2’), 15.1 (C-

5), 14.4 (C-6); HRMS m/z (EI) 311.22532 (M+ 100%, C21H29NO requires 311.22491) 
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12.11 (3R)-N-Benzyl-1-{[tert-butyl(dimethyl)silyl]oxy}-N-[(1S)-1-phenylethyl]-3-hexan-

amine [344] 
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tert-Butyldimethylsilyl chloride (5.04 g, 33.1 mmol, 1.1 eq.) in dimethylformamide (18.0 

cm3, 0.60 cm3.mmol) was added dropwise to a stirred solution of (3R)-3-{benzyl[(1S)-1-

phenylethyl]amino}-1-hexanol [343] (9.37 g, 30.1 mmol) and imidazole (4.11 g, 60.1 mmol, 

2.0 eq.) in dimethylformamide (36.0 cm3, 1.20 cm3.mmol). The mixture was then stirred for 

24 h. The reaction mixture was washed with ice/water (180 cm3), and the aqueous residues 

were extracted with dichloromethane (5 × 180 cm3). The combined organic residues were 

dried (anhydrous sodium sulfate), filtered and evaporated in vacuo. The residue was re-

dissolved in dichloromethane (180 cm3) and washed with water (4 × 180 cm3). The organic 

extract was dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to yield a 

crude yellow oil. Purification by column chromatography using 10% ethyl acetate:hexane as 

eluent  afforded (3R)-N-benzyl-1-{[tert-butyl-(dimethyl)silyl]oxy}-N-[(1S)-1-phenylethyl]-3-

hexanamine [344] (11.2 g, 26.3 mmol, 88%), as a clear oil. Rf 0.72 (10% ethyl 

acetate:hexane); [�]D
20 +18.9 (c 1.27, chloroform); vmax (film)/cm−−−−1; 3085 (ArC-H str, w), 

3063 (ArC-H str, w), 3028 (ArC-H str, w), 2955 (C-H str, s), 2929 (C-H str, s), 2857 (C-H str, 

s), 1743 (w), 1602 (Ar C=C str, w), 1493 (s), 1454 (s), 1373 (s), 1362 (s), 1253 (s), 1205 (m), 

1144 (C-N str, m), 1089 (C-O str, vs), 1027 (m), 1005 (m), 980 (m), 938 (vs); 1H 7.40-7.16 

(10H, m, Ar-H’s), 3.87 (1H, q, J 6.9 Hz, H-2’), 3.78 (1H, d, J 14.9 Hz, H-1’’a), 3.64 (1H, d, J 

14.8 Hz, H-1’’b), 3.46 (1H, ddd, J  13.6, 8.0 and 6.9 Hz, H-1a), 3.27 (1H, ddd, J 9.8, 8.5 and 

5.5 Hz, H-1b), 2.68 (1H, quintet, J 6.1 Hz, H-3), 1.63-1.41 (2H, m, H-2), 1.38-1.20 (4H, m, 

H-4 and H-5), 1.29 (3H, d, J 6.9 Hz, H-2’), 0.89-0.82 (3H, m, H-6), 0.85 (9H, s, C(CH3)3), 

−0.02 (6H, s, Si(CH3)2); 13C 144.9 (quaternary Ar-C), 142.7 (quaternary Ar-C), 128.3 (Ar-C), 

128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 126.6 (Ar-C), 126.3 (Ar-C), 61.9 (C-1’), 58.1 (C-

1), 53.8 (C-3), 50.2 (C-1’’), 35.3 (C-2), 34.5 (C-4), 26.0 (C(CH3)3), 20.5 (C-2’), 18.9 (C-5), 

18.3 (C(CH3)3), 14.3 (C-6), −5.3 (Si(CH3)2); HRMS m/z (EI) 425.30974 (M+ 100%, 

C27H43NOSi requires 425.31139), 427 (12), 426 (46), 424 (50), 423 (24), 422 (62), 419 (2). 



Chapter 12                Experimental Procedures Relating to Chapter 5 
              

 261 

12.12 (3R)-1-{[tert-Butyl(dimethyl)silyl]oxy}-3-hexanamine [346] 

 
NH2

O Si5 2
3

4
6 1

346  
 

10% Palladium on carbon (3.97 g, 0.150 g.mmol−1), was added to a mixture of (3R)-N-benzyl-

1-{[tert-butyl(dimethyl)silyl]oxy}-N-[(1S)-1-phenylethyl]-3-hexanamine [344] (11.1 g, 26.1 

mmol) in absolute ethanol (104 cm3, 4.00 cm3.mmol−1). The stirred mixture was subjected to 

hydrogenation at 7 atmospheres for 3 d. The mixture was then filtered through celite and 

washed copiously with absolute ethanol. The ethanol was removed in vacuo to yield a grey 

oil. The oil was purified by column chromatography using ethyl acetate as the eluent to afford 

(3R)-1-{[tert-butyl(dimethyl)silyl]oxy}-3-hexanamine [346] (5.11 g, 22.1 mmol, 85%) as a 

clear oil. Rf 0.38 (ethyl acetate); [�]D
21 +1.43 (c 0.70, chloroform); vmax (film)/cm−−−−1 3377 (N-

H str, s br), 2935 (C-H str, s), 2871 (C-H str, s), 1737 (w), 1615 (m), 1550 (N-H bend, vs), 

1460 (C-H bend, m), 1386 (C-H bend, m), 1310 (C-N str, m), 1170 (s), 1099 (s), 1053 (C-O 

str, s), 994 (s); 1H  3.77-3.67 (2H, m, H-1), 2.90-2.84 (1H, m, H-3), 1.67-1.23 (6H, m, H-2, 

H-4 and H-5), 1.50 (2H, s, -NH2), 0.89 (3H, t, J 6.5 Hz, H-6), 0.87 (9H, s, C(CH3)3), 0.03 

(6H, s, -Si(CH3)2); HRMS m/z (EI) Inconsistent results were obtained. 

 

12.13 N-[(1R)-1-(2-{[tert-Butyl(dimethyl)silyl]oxy}ethyl)butyl]-4-chlorobutanamide [348] 
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4-Chlorobutyryl chloride (1.95 g, 1.10 cm3, 13.8 mmol, 1.2 eq.) was added dropwise to a 

solution of (3R)-1-{[tert-butyl(dimethyl)silyl]oxy}-3-hexanamine [346] (2.67 g, 11.5 mmol) 

and triethylamine (2.91 g, 4.00 cm3, 28.8 mmol, 2.5 eq.) in dry dichloromethane (46.0 cm3, 

4.00 cm3.mmol−1), causing a vigorous evolution of hydrogen chloride gas. The mixture was 

stirred for 30 min, after which time the reaction was quenched with dichloromethane (50 cm3) 
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and evaporated in vacuo. The residue was dissolved in dichloromethane (50 cm3) and washed 

with water (50 cm3) and brine (50 cm3). The aqueous extracts were back extracted with 

dichloromethane (3 × 50 cm3). The organic extracts were combined, dried (anhydrous sodium 

sulfate), filtered and evaporated in vacuo to yield an orange oil. The crude oil was purified by 

column chromatography using 50% ethyl acetate:hexane, to yield N-[(1R)-1-(2-{[tert-

butyl(dimethyl)silyl]oxy}ethyl)butyl]-4-chlorobutanamide [348] (3.89 g, 11.6 mmol, 100%) 

as a yellow oil. [�]D
23 −1.75 (c 2.28, absolute ethanol); vmax (film)/cm−−−−1 3281 (N-H str, vs br), 

3075 (w), 2957 (C-H str, s), 2932 (C-H str, s), 2873 (C-H str, s), 1727 (s), 1642 (C=O str, vs), 

1546 (vs), 1464 (C-H bend, s), 1442 (s), 1369 (C-H bend, s), 1306 (w), 1254 (s), 1217 (w), 

1155 (C-N str, s), 1048 (C-O str, s), 955 (w); 1H 6.10 (1H, d, NH), 4.11-3.97 (1H, m, H-3), 

3.81-3.63 (2H, m, H-1), 3.57 (2H, t, J 6.2 Hz, H-4’), 2.28 (2H, t, J 7.2 Hz, H-2’), 2.08 (2H, 

quintet, J 6.44 Hz, H-3’), 1.84-1.53 (2H, m, H-2), 1.51-1.39 (2H, m, H-4), 1.37-1.19 (2H, m, 

H-5), 0.92-0.85 (2H, m, H-6), 0.89 (9H, s, C(CH3)3), 0.05 (6H, s, 2 × Si(CH3)2); HRMS m/z 

(EI) Inconsistent results were obtained. 

 

12.14 1-[(1R)-1-(2-{[tert-Butyl(dimethyl)silyl]oxy}ethyl)butyl]-2-pyrrolidinone [347] 
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Potassium tert-butoxide (1.80 g, 16.1 mmol, 1.5 eq.) was added in portions (~0.100 g per 

addition) to a solution of N-[(1R)-1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)-butyl]-4-

chlorobutanamide [348] (3.60 g, 10.7 mmol) in dry tert-butanol (32.0 cm3, 3.00 cm3.mmol−1) 

over a 5 h period. The mixture was neutralized with glacial acetic acid, and the solvent was 

removed in vacuo. The resulting residue was dissolved in dichloromethane (100 cm3) and 

washed with water (100 cm3). The aqueous extracts were extracted with dichloromethane (3 × 

100 cm3), and the combined organic extracts were dried (anhydrous sodium sulfate), filtered 

and evaporated in vacuo to afford an orange oil. Purification of the crude oil by column 

chromatography using 30% ethyl acetate:hexane as eluent yielded 1-[(1R)-1-(2-{[tert-butyl-

(dimethyl)silyl]oxy}ethyl)butyl]-2-pyrrolidinone [347] (3.00 g,  10.0 mmol, 94%) as a light 
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yellow oil. Rf 0.58 (50% ethyl acetate:hexane); [�]D
19 −9.86 (c 0.71, chloroform); vmax 

(film)/cm−−−−1 3368 (w), 2954 (C-H str, s), 2929 (C-H str, s), 2857 (C-H str, s), 1738 (w), 1668 

(C=O str, s), 1542 (w), 1493 (w), 1463 (C-H bend, s), 1423 (s), 1362 (C-H bend, m), 1315 

(m), 1285 (C-N str, s), 1095 (C-O str, s), 1007 (m), 942 (m); 1H 4.21-4.05 (1H, m, H-3), 3.63-

3.46 (2H, m, H-1), 3.32-3.18 (2H, m, H-5’), 2.36 (2H, t, J 8.1 Hz, H-3’), 1.96 (2H, quintet, J 

7.44 Hz, H-4’), 1.72-1.65 (2H, m, H-2), 1.50-1.39 (2H, m, H-4), 1.28-1.19 (2H, m, H-5), 0.88 

(3H, t, J 7.3 Hz, H-6), 0.86 (9H, s, C(CH3)3), 0.02 (3H, s, Si(CH3)2), 0.01 (3H, s, Si(CH3)2); 
13C 174.3 (C-1’), 60.7 (C-1), 48.5 (C-3), 42.3 (C-5’), 35.6 (C-2), 34.6 (C-4), 31.5 (C-3’), 25.9 

(C(CH3)3), 19.4 (C-5), 18.26 (C-4’) 18.23 (C(CH3)3), 13.8 (C-6), −5.39 (Si(CH3)2), −5.44 

(Si(CH3)2); HRMS m/z (EI) 299.22292 (M+ 74%, C16H33NO2Si requires 299.22806), 298 

(100), 297 (6), 296, (2), 295 (4), 293 (1). 

 

12.15 1-[(1R)-1-(2-Hydroxyethyl)butyl]-2-pyrrolidinone [350] 
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1-[(1R)-1-(2-{[tert-Butyl(dimethyl)silyl]oxy}ethyl)butyl]-2-pyrrolidinone [347] (0.100 g, 

0.330 mmol) was dissolved in dry tetrahydrofuran (12.0 cm3, 4.00 cm3.mmol−1) and cooled to 

0 °C. To this was added tetrabutylammonium fluoride (1.0 M in THF, 0.700 cm3, 2.0 eq.) in 

one portion. The reaction mixture was stirred for 100 min at rt. The reaction was quenched 

with water (20 cm3), and extracted with ethyl acetate (3 × 20 cm3), thereafter the combined 

organic fractions were dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to 

yield a clear oil. Purification by column chromatography using ethyl acetate as eluent 

afforded 1-[(1R)-1-(2-hydroxyethyl)butyl]-2-pyrrolidinone [350] (0.0461 g, 0.248 mmol, 

74%) as a clear oil. Rf 0.30 (ethyl acetate); [�]D
23 −0.61 (c 11.5, absolute ethanol); vmax 

(film)/cm−−−−1 3395 (O-H str, s br), 2954 (C-H str, s), 2872 (C-H str, s), 1738 (s), 1655 (C=O str, 

vs), 1542 (w), 1494 (m), 1463 (O-H bend, s), 1424 (C-H str, s), 1367 (O-H bend, s), 1316 (w), 

1289 (s), 1264 (s), 1229 (s), 1217 (s), 1112 (w), 1048 (C-O str, s), 1011 (w), 935 (w); 1H 
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4.23-4.14 (1H, m, H-3), 3.52 (1H, ddd, J 3.2, 5.3 and 11.8 Hz, H-1a), 3.33 (1H, dd, J 3.5 and 

10.7 Hz, H-1b), 3.28-3.11 (2H, m, H-5’), 3.11 (1H, s, OH), 2.41 (2H, dt, J 12.3 and 7.8 Hz, 

H-3’), 1.99 (2H, quintet,  J 7.5 Hz, H-4’), 1.76-1.64 (2H, m, H-2), 1.56-1.35 (2H, m, H-4), 

1.32-1.17 (2H, m, H-5), 0.87 (3H, t, J 7.3 Hz, H-6) 13C 176.4 (C-2’), 58.4 (C-1), 47.3 (C-3), 

41.9 (C-5’), 34.6 (C-4), 34.4 (C-2), 31.1 (C-3’), 19.5 (C-5), 18.1 (C-4’), 13.7 (C-6); HRMS 

m/z (EI) 185.14044 (M+ 100%, C10H19NO2 requires 185.14158) 186 (16), 185 (100), 184 (2), 

183 (10), 181 (1). 

 

Method 2 

 

Aqueous hydrofluoric acid (40%, 10.1 cm3, 1.6 cm3.mmol−1) was added slowly to a solution 

of 1-[(1R)-1-(2-{[tert-Butyl(dimethyl)silyl]oxy}ethyl)butyl]-2-pyrrolidinone [347] (1.89 g, 

6.32 mmol) in methanol (240 cm3, 38 cm3.mmol). The reaction mixture was stirred at rt for 2 

h, before the careful addition of saturated aqueous sodium hydrogen carbonate (380 cm3), 

whereupon effervescence was observed. The reaction mixture was then extracted with ethyl 

acetate (3 × 200 cm3) and the combined organic extracts were dried (anhydrous sodium 

sulfate), filtered and evaporated in vacuo to yield a light yellow oil. The crude oil was purified 

by column chromatography using ethyl acetate as eluent to give 1-[(1R)-1-(2-

hydroxyethyl)butyl]-2-pyrrolidinone [350] (1.06 g, 5.69 mmol, 90%) as a clear oil; 

characterized as described above. 

 

12.16 (3R)-3-(2-Oxo-1-pyrrolidinyl)hexyl acetate [349] 
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A solution of acetic anhydride (1.37 g, 1.30 cm3, 13.5 mmol, 1.5 eq.) in dry pyridine (0.710 g, 

0.800 cm3, 8.97 mmol, 1.0 eq.) was added dropwise to a stirred solution of 1-[(1R)-1-(2-

hydroxyethyl)butyl]-2-pyrrolidinone [350] (1.66 g, 8.97 mmol) in pyridine (1.06 g, 1.10 cm3, 

13.5 mmol, 1.5 eq.). The mixture was stirred at rt for 16 h, after which time the reaction was 

quenched with ethyl acetate (45 cm3) and washed with saturated aqueous ammonium chloride 
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(3 × 55 cm3), which was then made basic to pH 10 with ammonia solution. The combined 

aqueous extracts were extracted further with dichloromethane (3 × 55 cm3). The combined 

organic extracts were dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to 

yield a crude yellow oil. The crude oil was purified by column chromatography 40% ethyl 

acetate:hexane as eluent, to yield (3R)-3-(2-oxo-1-pyrrolidinyl)hexyl acetate [349] (1.72 g, 

7.57 mmol, 84%) as a clear oil. Rf 0.33 (50% ethyl acetate:hexane); [�]D
23 +1.89 (c 11.1, 

chloroform); vmax (film)/cm−−−−1 2957 (C-H str, s), 2934 (C-H str, s), 2873 (C-H str, m), 1736 

(C=O ester str, vs), 1678 (C=O amide str, vs), 1542 (w), 1493 (m), 1462 (C-H bend, s), 1423 

(s), 1367 (C-H bend, s), 1315 (w), 1284 (w), 1232 (C-O str, vs), 1167 (w), 1114 (w), 1093 

(w), 1036 (C-O str, s) 979 (w); 1H 4.26-4.16 (1H, m, H-3), 4.01 (2H, t, J 6.7 Hz, H-1), 3.33-

3.20 (2H, m, H-5’), 2.40 (2H, t, J 8.0 Hz, H-3’), 2.06-1.97 (2H, quintet, J 7.46 Hz, H-4’), 2.04 

(3H, s, H-2’’), 1.88-1.76 (2H, m, H-2), 1.57-1.37 (2H, m, H-4), 1.34-1.20 (2H, m, H-5), 0.91 

(3H, t, J 7.2 Hz, H-6);  13C 175.1 (C-2’), 171.0 (C-1’’), 61.5 (C-1), 47.9 (C-3), 41.9 (C-5’), 

34.5 (C-4), 31.3 (C-3’), 31.2 (C-2), 20.9 (C-2’’), 19.3 (C-5), 18.2 (C-4’), 13.8 (C-6); HRMS 

m/z (EI) 227.14413 (M+ 32%, C12H21NO3 requires 227.15214), 226 (100). 

 

12.17 (3R)-3-(2-Thioxo-1-pyrrolidinyl)hexyl acetate [351] 
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Phosphorus pentasulfide (4.87 g, 21.9 mmol, 3.0eq.) and sodium carbonate (1.17 g, 11.0 

mmol, 1.5 eq.) were dissolved in dry tetrahydrofuran (55.0 cm3, 7.20 cm3.mmol−1), the 

reaction was exothermic and effervescence was observed. Once a homogeneous solution had 

formed, (3R)-3-(2-oxo-1-pyrrolidinyl)hexyl acetate [349] (1.66 g, 7.31 mmol) was slowly 

added. The solution was stirred at rt for 3 h, after which the reaction was quenched by the 

addition of aqueous sodium carbonate (10%, 55 cm3), and vigorous effervescence was 

observed. The solution was stirred for a further 10 min before adding ethyl acetate (40 cm3) 

and hexane (13 cm3). The organic phase was separated and the aqueous phase was further 

extracted with dichloromethane (3 × 30 cm3). The combined organic phases were dried 

(anhydrous sodium sulfate), filtered and evaporated in vacuo to yield a yellow oil. The crude 
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oil was purified by column chromatography using 30% ethyl acetate:hexane as eluent to give 

(3R)-3-(2-thioxo-1-pyrrolidinyl)hexyl acetate [351] (1.61 g, 6.63 mmol, 91%) as a yellow oil. 

Rf 0.25 (30% ethyl acetate:hexane); [�]D
17 +23.7 (c 1.69, chloroform); 1H 5.19-5.10 (1H, m, 

H-3), 4.03 (2H, t, J 6.6 Hz, H-5’), 3.62-3.47 (2H, m, H-1), 3.03 (2H, t, J 7.8 Hz, H-3’), 2.08-

1.98 (2H, m, H-4’), 2.02 (3H, s, H-2’’), 1.93-1.79 (2H, m, H-2), 1.62-1.50 (2H, m, H-4), 1.39-

1.15 (2H, m H-5), 0.91 (3H, t, J 7.2 Hz, H-6); 13C 202.3 (C=S), 171.0 (C=O), 61.2 (C-1), 53.1 

(C-3’), 48.6 (C-3), 45.1 (C-5’), 34.7 (C-4), 31.5 (C-2), 21.0 (C-2’’), 20.0 (C-4’), 19.2 (C-5), 

13.9 (C-6); HRMS m/z (EI) 243.12852 (M+ 100% C12H21NO2S requires 243.12930). 

 

12.18 (3R)-3-((2E)-2-{2-[Methoxy(methyl)amino]-2-oxoethylidene}pyrrolidinyl)hexyl 

acetate [352] 
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(3R)-3-(2-Thioxo-1-pyrrolidinyl)hexyl acetate [351] (1.58 g, 6.51 mmol) and 2-bromo-N-

methoxy-N-methylacetamide [271] (2.13 g, 11.7 mmol, 1.8 eq.) were dissolved in dry 

acetonitrile (26.0 cm3, 4.00 cm3.mmol−1) and stirred at rt for 16 h. The solvent and excess 

bromoacetamide were removed in vacuo, and the residue was re-dissolved in acetonitrile 

(26.0 cm3, 4.00 cm3.mmol−1), to this was added triphenyl phosphine (2.57 g, 9.77 mmol, 1.5 

eq.), followed by triethylamine (0.988 g, 1.36 cm3, 9.77 mmol, 1.5 eq.). The mixture was 

stirred at rt for 3 h, during which time a white precipitate formed. The reaction mixture was 

filtered through a thin pad of celite, and washed with ethyl acetate (100 cm3), thereafter the 

solvent was removed in vacuo. The residue was taken up in ethyl acetate (150 cm3), and 

triturated for 30 min, and again filtered through a thin pad of celite. The filtrate was extracted 

with aqueous hydrochloric acid (2 M, 3 × 50 cm3) and the aqueous extracts were basified to 

pH 10 using ammonia solution. The basified extracts were then extracted with 

dichloromethane (3 × 100 cm3), and the combined organic extracts were dried (anhydrous 

sodium sulfate), filtered and evaporated in vacuo to afford a crude orange oil. Spectroscopic 

analysis showed a mixture of (3R)-3-((2E)-2-{2-[methoxy(methyl)amino]-2-
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oxoethylidene}pyrrolidinyl)hexyl acetate [352] and triphenylphosphine residues which were 

inseparable by column chromatography, and as such the mixture was carried forward crude (~ 

2g); 1H 7.70-7.43 (PPh3 contaminant), 5.19 (1H, s, C=CH), 4.11-3.90 (2H, m, H-1), 3.85-3.75 

(1H, m, H-3), 3.66 (3H, s, OCH3), 3.28-3.19 (4H, m, H-3’ and H-5’), 3.14 (3H, s, NCH3), 

2.04 (3H, s, H-2’’), 1.95-1.83 (4H, m, H-4’ and H-2), 1.67-1.39 (2H, m, H-4), 1.34-1.22 (2H, 

m, H-5), 0.92 (3H, t, J 7.3 Hz, H-6); 13C 172.1 (C-1’’), 170.8 (C-2’), 165.4 

(CON(OCH3)CH3), 133.1-128.3 (PPh3 contaminant), 76.9 (C=CH), 61.4 (C-5’), 60.7 (OCH3), 

50.8 (C-1), 45.3 (C-3), 34.4 (C-4), 33.0 (NCH3), 32.8 (C-4’), 31.2 (C-3’), 21.1 (C-2), 20.8 (C-

2’’), 19.4 (C-5), 13.8 (C-6). 

 

12.19 (2E)-2-{1-[(1R)-1-(2-Hydroxyethyl)butyl]-2-pyrrolidinylidene}-N-methoxy-N-me-

thylethanamide [273] 
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Potassium carbonate (1.35 g, 9.77 mmol, 1.5 eq.) was added to a stirred solution of crude 

(3R)-3-((2E)-2-{2-[methoxy(methyl)amino]-2-oxoethylidene}pyrrolidinyl)hexyl acetate [352] 

(~ 2g, ~6.5 mmol) in dry methanol (10.4 cm3, 1.60 cm3.mmol−1). The mixture was stirred at rt 

for 3 h, after which time the mixture was filtered through a thin pad of celite and the solvent 

was removed in vacuo to afford an orange oil. The crude orange oil was purified by column 

chromatography using 5% methanol:dichloromethane as eluent to afford (2E)-2-{1-[(1R)-1-

(2-hydroxyethyl)butyl]-2-pyrrolidinylidene}-N-methoxy-N-methylethanamide [273] (1.05 g, 

4.16 mmol, 64%, 3 steps from [351]) as a clear oil; The product was characterized as 

previously shown in Section 12.9. 

 

 

 

 

 



Chapter 12                Experimental Procedures Relating to Chapter 5 
              

 268 

12.20 (5R)-N-Methoxy-N-methyl-5-propyl-1,2,3,5,6,7-hexahydro-8-indolizinecarboxam-

ide [274] 
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Imidazole (0.0790 g, 1.14 mmol, 3.0 eq.) and triphenylphosphine (0.301 g, 1.14 mmol, 3.0 

eq.) were added to a stirred solution of (2E)-2-{1-[(1R)-1-(2-hydroxyethyl)butyl]-2-

pyrrolidinylidene}-N-methoxy-N-methylethanamide [273] (0.103 g, 0.379 mmol) in 

acetonitrile:toluene (2.30 cm3:1.10 cm3). The solution was stirred for 30 min, after which time 

iodine (0.192 g, 0.758 mmol, 2.0 eq.) was added in one portion. The resulting homogenous 

solution was refluxed for 1 h. The reaction was quenched with saturated sodium hydrogen 

carbonate solution (4 cm3), and extracted with ethyl acetate (3 × 20 cm3). The combined 

organic fractions where washed with saturated aqueous sodium thiosulfate (20 cm3), 

separated, dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to give a yellow 

solid. The crude solid was purified by column chromatography initially eluting the unreacted 

triphenylphosphine with dichloromethane, then eluting the product using 5% 

methanol:dichloromethane. (5R)-N-Methoxy-N-methyl-5-propyl-1,2,3,5,6,7-hexahydro-8-in-

dolizinecarboxamide [274] was obtained as a light yellow oil (0.0450 g, 17.8 mmol, 47%); 

vmax (film)/cm−−−−1 2928 (C-H str, s), 2857 (C-H str, s), 1630 (C=C str, s), 1555 (C=O str, vs), 

1438 (C-H bend, m), 1401 (m), 1361 (m), 1281 (C-O str, vs), 1194 (C-N str, m), 1154 (m), 

1118 (m), 1024 (C-O str, s), 1003 (s), 937 (s);   
1H 3.63 (3H, s, OCH3), 3.48 (1H, ddd, J 9.0, 

8.1 and 5.2 Hz, H-5), 3.24-2.91 (2H, m, H-3), 3.07 (3H, s, NCH3), 2.34 (2H, t broad, J 6.1 Hz, 

H-7)*, 1.98-1.82 (2H, m, H-1)*, 1.80-1.52 (4H, m, H-2 and H-6), 1.45-1.21 (4H, m, H-1’ and 

H-2’), 0.95 (3H, t, J 6.9 Hz, H-3’); 13C 174.4 (C-8), 157.4 (CON(OCH3)CH3), 90.1 (C-8a), 

59.7 (OCH3), 53.8 (C-3), 51.0 (C-5), 35.1 (C-2), 34.4 (C-1’), 32.1 (NCH3), 25.3 (C-1), 21.5 

(C-6), 20.6 (C-7), 19.0 (C-2’), 14.1 (C-3’); HRMS m/z (EI) 252.18281 (M+ 100% 

C14H24N2O2 requires 252.18378), 253 (16), 251 (11), 250 (5), 248 (12), 246 (6), 244 (3). 
*These signals are interchangeable. 
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12.21 (5R,8S,8aS)-N-Methoxy-N-methyl-5-propyloctahydro-8-indolizinecarboxamide 

[275] 
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Adams catalyst (0.0340 g, 5 × 10−2 g.mmol−1) was added to a solution of (5R)-N-methoxy-N-

methyl-5-propyl-1,2,3,5,6,7-hexahydro-8-indolizinecarboxamide [274] (0.169 g, 0.670 mmol) 

in glacial acetic acid (3.70 cm3, 5.50 cm3.mmol−1). This was stirred at rt at 1 atmosphere 

hydrogen for 24 h. The solution was filtered through a pad of celite, washed several times 

with ethanol, and evaporated in vacuo affording a grey oil. The crude oil was taken up in 

water (50 cm3) and neutralized with saturated aqueous sodium hydrogen carbonate solution. 

The neutralized aqueous fraction was extracted into dichloromethane (3 × 50 cm3), the 

combined organic extracts where then dried (anhydrous sodium sulfate), filtered and 

evaporated in vacuo to afford a grey oil. The crude oil was purified by column 

chromatography using 5% methanol:dichloromethane as eluent, to yield (5R,8S,8aS)-N-

methoxy-N-methyl-5-propyloctahydro-8-indolizinecarboxamide [275] as a clear oil (0.136 g, 

0.533 mmol, 80%); [αααα]D
21 −57.3 (3.07, absolute ethanol); vmax (film)/cm−−−−1 2955 (C-H str, s), 

1668 (C=O str, vs), 1459 (C-H bend, s), 1372 (C-H bend, s), 1097 (C-O str, s), 996 (s);  
1H 

3.65 (3H, s, OCH3), 3.33 (1H, dt, J 8.1 and 1.9 Hz, H-3eq), 3.17 (3H, s, NCH3), 2.14-2.07 (1H, 

m, H*), 2.04-1.91 (2H, m, H*), 1.86-1.76 (3H, m, H*), 1.74-1.50 (5H, m, H*), 1.48-1.33 (4H, 

m, H*), 0.90 (3H, t, J 7.0 Hz H-3’); 13C 174.9 (CON(OCH3)CH3), 65.7 (C-8a), 64.2 (C-5), 

61.0 (OCH3), 51.6 (C-3), 43.9 (C-8), 36.7 (C-1’), 35.8 (NCH3), 28.1 (C-1)#, 27.3 (C-6)#, 27.1 

(C-7)$, 19.9 (C-2)$, 18.9 (C-2’), 14.5 (C-3’); HRMS m/z (EI) Inconsistent results were 

obtained.* Remaining hydrogens, # These signals are interchangeable, $ These signals are 

interchangeable. 
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12.22 1-[(5R,8S,8aS)-5-Propyloctahydro-8-indolizinyl]-1-propanone [353] 
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Ethylmagnesium bromide in tetrahydrofuran (1.24 M, 1.20 cm3, 1.49 mmol, 5.0 eq.) was 

added slowly to a solution of (5R,8S,8aS)-N-methoxy-N-methyl-5-propyloctahydro-8-

indolizinecarboxamide [275] (0.0760 g, 0.300 mmol) in tetrahydrofuran (3.00 cm3, 10.0 

cm3.mmol−1) at 0 °C. The reaction was allowed to warm to rt, and was stirred for a further 24 

h. The reaction was then quenched with 6 N hydrochloric acid solution and evaporated in 

vacuo. The residue was taken up in water (50 cm3), basified with ammonia solution, and 

extracted with diethyl ether (3 × 50 cm3). The combined organic extracts were dried 

(anhydrous sodium sulfate), filtered and evaporated in vacuo to afford a light yellow oil. The 

crude oil was purified by passing it through a short plug of silica, using 5% 

methanol:dichloromethane as the eluent.  1-[(5R,8S,8aS)-5-Propyloctahydro-8-indolizinyl]-1-

propanone [353] was obtained as a clear oil (0.0560 g, 0.250 mmol, 83%). Rf 0.50 (10% 

methanol:dichloromethane); [αααα]D
19 +48.3 (c 0.95, CHCl3); 1H 3.28 (1H, dt, J 8.7 and 2.1 Hz, 

H-3eq), 2.81 (1H, m, H-8), 2.63 (1H, dq, J  17.7 and 7.2 Hz, H-2’’a), 2.52-2.39 (1H, m, H-

2’’b), 2.15-2.02 (2H, m, H-3ax, H-5), 1.96-1.14 (13H, m, H*), 1.01 (3H, t, J 7.5 Hz, H-3’’), 

0.91 (3H, t, J 7.0 Hz, H-3’); 13C 213.6 (C-1’’), 65.2 (C-8a), 63.9 (C-5), 51.7 (C-3), 48.5 (C-8), 

37.6 (C-2’’), 36.9 (C-1’), 27.9 (C-1), 27.4 (C-6), 26.9 (C-7), 20.4 (C-2), 18.6 (C-2’), 14.6 (C-

3’), 7.7 (C-3’’); HRMS m/z (EI) 223.19358 (M+ 94% C14H25NO requires 223.19361), 222 

(100), 221 (55), 220 (6), 219 (8).* Remaining hydrogens. 
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12.23 1-[(5R,8S,8aS)-5-Propyloctahydro-8-indolizinyl]-1-butanone [354] 
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To a stirred solution of (5R,8S,8aS)-N-methoxy-N-methyl-5-propyloctahydro-8-indolizine-

carboxamide [275] (0.050 g, 0.197 mmol) in tetrahydrofuran (2.00 cm3, 10.0 cm3.mmol−1) at 

0 °C was added propylmagnesium chloride (1.53 M, 1.00 cm3, 0.985 mmol,  5.0 eq.) in 

diethyl ether in one portion. The reaction mixture was warmed to rt, and stirred for 24 h. The 

reaction was quenched with 6 N hydrochloric acid solution and the solvent was removed in 

vacuo. The residue was diluted with water (50 cm3), basified with ammonia solution, and 

extracted with diethyl ether (3 × 50 cm3). The combined organic extracts were dried 

(anhydrous sodium sulfate), filtered and evaporated in vacuo affording an orange oil. The 

crude oil was purified by column chromatography using 5% methanol:dichloromethane as the 

eluent yielding  1-[(5R,8S,8aS)-5-propyloctahydro-8-indolizinyl]-1-butanone [354] was ob-

tained as a clear oil (0.012 g, 0.050 mmol, 26%). Rf  0.35 (5% methanol:dichloromethane); 

[αααα]D
18 +7.60 (c 0.92 CHCl3); vmax (film)/cm−−−−1; 

1H 3.29 (1H, dt, J 8.3 and 2.2 Hz, H-3eq), 2.83-

2.77 (1H, m, H-8), 2.58 (1H, dt, J 17.1 and 7.4 Hz, H-2’’), 2.41 (1H, dt, J 17.1 and 7.1 Hz, H-

2’’), 2.25-2.08 (2H, m, H-3ax and H-5), 2.04-1.22 (15H, m, H*), 0.91 (3H, t, J 6.9 Hz, H-3’), 

0.90 (3H, t, J 7.4 Hz, H-4’’); 13C 212.9 (C=O), 65.1 (C-8a), 63.9 (C-5), 51.6 (C-3), 48.3 (C-

8), 46.3 (C-2’’), 38.8 (C-1’), 36.7 (C-1), 29.7 (C-6), 27.7 (C-7), 20.4 (C-2), 18.6 (C-2’), 17.0 

(C-3’’), 14.5 (C-3’), 13.8 (C-4’’). * Remaining hydrogens 
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12.24 1-[(5R,8R,8aS)-5-Propyloctahydro-8-indolizinyl]-1-propanone [191] 
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A mixture of sodium (0.010 g, 0.042 mmol, 1.0 eq.) in dry methanol (5.0 cm3) was stirred 

until a homogenous solution of sodium methoxide had formed.  To this solution was added 1-

[(5R,8S,8aS)-5-propyloctahydro-8-indolizinyl]-1-propanone [353] (0.0094 g, 0.042 mmol) in 

one portion. The reaction mixture was refluxed for 3 h and then cooled to rt. The solvent was 

removed in vacuo, and the resulting residue was re-dissolved in water (10 cm3) and extracted 

with diethyl ether (3 × 20 cm3). The combined organic extracts were dried (anhydrous sodium 

sulfate), filtered and evaporated in vacuo giving a yellow oil. The crude oil was purified by 

column chromatography using 5% methanol:dichloromethane and a few drops of propylamine 

as eluent. 1-[(5R,8R,8aS)-5-Propyloctahydro-8-indolizinyl]-1-propanone [191] was obtained 

as a clear oil (0.0075 g, 0.034 mmol, 80%). Rf 0.50 (10% methanol:dichloromethane); [αααα]D
17 

−74.3 (c 0.35, chloroform); vmax (film)/cm−−−−1 2958 (C-H str, s), 2930 (C-H str, s), 2873 (C-H 

str, s), 2783 (C-H str, m), 2360 (w), 1715 (C=O str, s), 1693 (s), 1458 (C-H bend, s), 1373 (C-

H bend, m), 1262 (m), 1192 (m), 1120 (s), 1019 (m), 800 (m);   
1H 3.27 (1H, dt, 8.3 and 1.9 

Hz, H-3eq), 2.59-2.35 (3H, m, H-2’’ and H-5), 2.15-1.16 (15H, m, H*), 1.04 (3H, t, J 7.3 Hz, 

H-3’’), 0.91 (3H, t, J 7.1 Hz, H-3’); 13C 213.4 (C=O), 65.5 (C-8a), 62.8 (C-5), 54.4 (C-8), 

50.9 (C-3), 36.6 (C-2’’), 36.0 (C-1’), 30.3 (C-1), 28.9 (C-6), 28.4 (C-7), 20.4 (C-2), 18.9 (C-

2’), 14.4 (C-3’), 7.6 (C-3’’); HRMS m/z (EI) 223.19248 (M+ 84% C14H25NO requires 

223.19361), 222 (100), 221 (46), 220 (5), 219 (6). * Remaining hydrogens. 
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12.25 1-[(5R,8R,8aS)-5-Propyloctahydro-8-indolizinyl]-1-butanone [354] 
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A mixture of sodium (0.0080 g, 0.035 mmol, 1.0 eq.) in dry methanol (4.2 cm3) was stirred 

until a homogenous solution of sodium methoxide had formed. (5R,8S,8aS)-N-methoxy-N-

methyl-5-propyloctahydro-8-indolizinecarboxamide [354] (0.0084 g, 0.035 mmol) was added 

to the solution of sodium methoxide. The solution was refluxed for 3 h, after which time it 

was cooled to rt.  The solvent was removed in vacuo, the residue was redissolved in water (10 

cm3) and extracted with diethyl ether (3 × 20 cm3). The combined organic extracts were dried 

(anhydrous sodium sulfate), filtered and evaporated in vacuo giving a yellow oil. The crude 

oil was purified by column chromatography using 5% methanol:dichloromethane and a few 

drops of propylamine as eluent. 1-[(5R,8R,8aS)-5-Propyloctahydro-8-indolizinyl]-1-butanone 

[355] was obtained as a clear oil (4.0 mg, 0.017 mmol, 48%). Rf 0.30 (1:19 methanol:di-

chloromethane); [αααα]D
21 −35.7 (0.56, chloroform); 1H 3.25 (1H, t broad, J 6.9 Hz, H-3eq), 2.48-

2.35 (3H, m, H-2’’ and H-5), 2.14-1.04 (16H, m, H*), 0.93-0.86 (6H, m, H-3’ and H-4’’). * 

Remaining hydrogens 
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CHAPTER 13 
 

EXPERIMENTAL PROCEDURES RELATING TO CHAPTER 6 
EXPERIMENTAL PROCEDURES RELATING PROGESS TOWARDS THE 

SYNTHESIS OF A LATE STAGE COMMON INTERMEDIATE [259] FOR THE 
PREPARATION OF 5,8-DISUBSTITUTED INDOLIZIDINES 

 
13.1 (4Z)-1,1,8,8-Tetramethoxy-4-octene [281]194 
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Initially the time required to afford the partial ozonolysis of 1,5-cyclooctadiene [280] was 

determined by observing the amount of time required for the complete ozonolysis of the 1,5-

cyclooctadiene [280]. 

 

Initially 1,5-cyclooctadiene [280] (1.00 g, 1.10 cm3, 9.25 mmol) was dissolved in methanol 

(10.0 cm3, 1.10 cm3.mmol−1) and dichloromethane (10.0 cm3, 1.10 cm3.mmol−1) and cooled to 

−60 °C. The mixture was treated with ozone at a flow rate of 160 L O2/h, and the reaction was 

stopped when the solution started turning blue, indicating the presence of unreacted ozone. 

The reaction was repeated a dozen times, and the complete ozonolysis of 1,5-cyclooctadiene 

took an average of 54 seconds/mmol of 1,5-cyclooctadiene [280] at a flow rate of 160 L O2/h. 

The time require for the partial ozonolysis of 1,5-cyclooctadiene [280] would therefore 

require a reaction time of 26 seconds/mmol of 1,5-cyclooctadiene [280] at a flow rate of 160 

L O2/h. 

 

1,5-Cyclooctadiene [280] (32.0 g, 36.3 cm3, 296 mmol) was dissolved in methanol (320 cm3, 

1.1 cm3.mmol−1) and dichloromethane (320 cm3, 1.10 cm3.mmol−1). The mixture was cooled 

to −60 °C and treated with ozone for 128 min at a flow rate of 160 L O2/h. The reaction 

mixture was purged with oxygen for 5 min, after which time p-toluenesulfonic acid (4.34 g, 

22.8 mmol, 0.1 eq.) was added in one portion. The reaction mixture was warmed to rt and 

stirred for 1 hour, at which time dimethyl sulfide (27.1 g, 32.0 cm3, 436 mmol, 1.5 eq.) was 

added. The mixture was stirred at rt for 24 h. The reaction mixture was quenched with 

saturated aqueous sodium bicarbonate solution (320 cm3, 1.10 cm3.mmol−1), and extracted 
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with chloroform (3 × 200 cm3). The organic extracts were combined, dried (anhydrous 

sodium sulfate) and evaporated in vacuo to give chromatographically pure (4Z)-1,1,8,8-

tetramethoxy-4-octene [281] as a clear liquid (44.7 g, 192 mmol, 65%); vmax (film)/cm−−−−1 2946 

(C-H str, m), 2830 (C-H str, m), 1728 (m), 1446 (C-H bend, m), 1384 (C-H bend, m), 1365 

(m), 1191 (m), 1124 (C-O str, vs), 1055 (C-O str, vs), 994 (w); 1H 5.38 (2H, t, J 4.9 Hz, H-4), 

4.36 (2H, t, J 5.7 Hz, H-1), 3.32 (12H, s, OCH3), 2.10-2.08 (4H, m, H-3), 1.66-1.64 (4H, m, 

H-2); 13C 129.3 (C-4), 104.0 (C-1), 52.6 (OCH3), 32.3 (C-2), 22.3 (C-3); HRMS  m/z (EI) 

Inconsistent results were obtained. 

 
13.2 4,4-Dimethoxybutanal [282]194 
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(4Z)-1,1,8,8-Tetramethoxy-4-octene [281] (21.2 g, 91.3 mmol) was dissolved in 

dichloromethane (183 cm3, 2.00 cm3.mmol−1) and cooled to −60 °C. The mixture was treated 

with ozone until the solution turned blue. The system was purged with oxygen for 5 min, and 

warmed to rt. Triphenylphosphine (23.9 g, 91.3 mmol, 1.0 eq.) was added to the solution, 

which was stirred at rt for 24 h. The solvents were removed in vacuo in a fume hood. The 

residue was redissolved in diethyl ether (180 cm3, 2.00 cm3.mmol−1) and washed with water 

(2 × 90 cm3, 1 cm3.mmol−1). The combined organic extracts were dried (anhydrous sodium 

sulfate), filtered and evaporated in vacuo to afford a white crystalline solid. The crude product 

was purified initially by column chromatography using dichloromethane followed by ethyl 

acetate. The columned residue was then purified by vacuum distillation (45-49 °C, 2 mmHg) 

to afford 4,4-dimethoxybutanal [282] as a clear liquid (11.5 g, 86.4 mmol, 47%); vmax 

(film)/cm−−−−1 3431 (s), 2946 (C-H str, s), 1729 (C=O str, s), 1550 (m), 1447 (C-H bend, m), 

1125 (C-O str, s), 1065 (C-O str, s); 1H 9.72 (1H, t, J 1.6 Hz, H-1), 4.36 (1H, t, J 5.6, H-4), 

3.31 (6H, s, 2 × OCH3), 2.46 (2H, dt, J 1.6 & 7.2 Hz, H-2), 1.90 (2H, dt, J 5.5 & 7.2 Hz, H-3); 
13C 202.3 (C-1), 104.1 (C-4), 53.5 (2 × OCH3), 39.5 (C-2), 25.8 (C-3); HRMS  m/z (EI) 

132.07753 (M+ 100% C6H12O3 requires 132.07864). 
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13.3 tert-Butyl (2E)-6,6-dimethoxy-2-hexenoate [283] 
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To a stirred suspension of vacuum-dried (140 °C, overnight, ca 1 mm Hg) lithium chloride 

(0.238 g, 5.55 mmol, 1.2 eq.) in dry acetonitrile (10.0 cm3, 2.00 cm3.mmol−1) was added tert-

butyl diethoxyphosphorylacetate [282] (1.17 g, 1.10 cm3, 4.63 mmol), 1,8-

diazobicyclo[5.4.0]undec-7-ene (DBU) (0.775 g, 0.760 cm3, 5.10 mmol, 1.1 eq.) and 4,4-

dimethoxybutanal (0.673 g, 5.10 mmol, 1.1 eq.). The mixture was stirred at rt for 24 h. The 

reaction was quenched with water and the solvent was evaporated in vacuo. The residue was 

extracted with dichloromethane (3 × 50 cm3). The combined organic extracts were dried 

(anhydrous sodium sulfate), filtered and evaporated in vacuo to yield a light yellow oil. The 

crude oil was purified by column chromatography to afford tert-butyl (2E)-6,6-dimethoxy-2-

hexenoate [283] (0.691 g, 3.01 mmol, 59%) as a colourless liquid; vmax (film)/cm−−−−1 2979 (C-

H str, w), 2938 (C-H str, w), 1717 (C=O str, vs), 1655 (C=C str, w), 1369 (C-H bend, m), 

1252 (w), 1229 (w), 1217 (w), 1148 (C-O str, vs), 979 (w); 1H 6.86 (1H, dt, J 6.9 & 15.6 Hz, 

H-3), 5.76 (1H, dt, J 1.6 & 15.6 Hz, H-2), 4.37 (1H, t, J 5.7 Hz, H-6), 3.32 (6H, s, 2 × OCH3), 

2.24 (2H, ddd, J 1.5, 7.1 & 15.2 Hz, H-4), 1.75 (2H, ddd, J 5.8, 7.8 & 8.9 Hz, H-5), 1.48 (9H, 

s, C(CH3)3); 13C 165.9 (C-1), 146.8 (C-3), 123.4 (C-2), 103.7 (C-6), 80.1 (C(CH3)3), 52.8 (2 × 

O CH3), 30.9 (C-5), 28.1 (C(CH3)3), 28.0 (C(CH3)3), 27.1 (C-4). 

 
13.4 tert-Butyl 3-(dibenzylamino)-6,6-dimethoxyhexanoate [357] 
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A solution of freshly distilled dibenzylamine (10.0 g, 9.75 cm3, 50.7 mmol, 1.2 eq.) in dry 

tetrahydrofuran (167 cm3, 4.00 cm3.mmol−1) at −78 °C was treated with n-butyllithium (1.4 

M, 33.2 cm3, 46.5 mmol, 1.1 eq.). The resulting dark red solution was stirred  for 30 min, after 

which time tert-butyl (2E)-6,6-dimethoxy-2-hexenoate [283] (10.3 g, 42.3 mmol) in 

tetrahydrofuran (48 cm3, 1 cm3.mmol−1) was added dropwise over 10 min. The mixture was 

stirred at −78 °C for 3 h. The reaction was quenched with an aqueous solution of saturated 

ammonium chloride (105 cm3, 2.50 cm3.mmol−1) and the mixture was warmed to rt. The 

solvent was removed in vacuo, and the residue was diluted with water (105 cm3, 2.50 

cm3.mmol−1). The residue was extracted with dichloromethane (3 × 100 cm3, 2.50 

cm3.mmol−1) and the combined organic extracts were dried (anhydrous magnesium sulfate), 

filtered and evaporated in vacuo to afford a yellow oil. The crude oil was purified by column 

chromatography using 5% ethyl acetate:hexane as eluent. tert-Butyl 3-(dibenzylamino)-6,6-

dimethoxyhexanoate [357] (0.685 g, 1.60 mmol, 69%) was obtained as a light yellow oil; vmax 

(film)/cm−−−−1 3063 (ArC-H str, w), 3028 (ArC-H str, w), 2976 (C-H str, w), 2934 (C-H str, w), 

2829 (C-H str, w), 1722 (C=O str, s), 1495 (w), 1454 (C-H bend, m), 1390 (w), 1366 (C-H 

bend, s), 1292 (w), 1253 (w), 1150 (s), 1123 (C-O str, s), 1071 (C-O str, s), 1028 (w), 953 (s); 
1H 7.36-7.18 (10H, m, ArH’s), 4.13-4.08 (1H, m, H-6), 3.71 (2H, d, J 13.5 Hz, CH2Ph), 3.36 

(2H, d, J 13.9 Hz, CH2Ph), 3.22 (3H, s, OCH3), 3.21 (3H, s, OCH3), 3.10-3.01 (1H, m, H-3), 

2.67 (1H, dd, J 4.5 & 13.7 Hz, H-2a), 2.10 (1H, dd, J 8.9 & 13.7 Hz, H-2b), 1.84-1.33 (4H, m, 

H-4 & H-5), 1.43 (9H, s, C(CH3)3); 13C 172.2 (C-1), 139.7 (C-1’), 129.0 (C-2’ & C-6’), 128.1 

(C-3’ & C-5’), 126.9 (C-4’), 104.1 (C-6), 80.2 [C(CH3)3], 55.0 (2 × CH2Ph), 53.4 (C-3), 52.8 

(OCH3), 52.5 (OCH3), 35.8 (C-2), 29.3 (C-5), 28.0 [C(CH3)3], 26.2 (C-4); HRMS  m/z (EI) 

427.27214 (M+ 2%, C26H37NO4 requires 427.27226), 91 (66), 132 (10), 132 (11), 268 (54), 

269 (10), 280 (18), 280 (13), 312 (97), 312 (100), 313 (21), 313 (23), 324 (79), 324 (81), 325 

(19), 336 (11), 340 (10), 396 (15), 396 (15), 412 (17), 412 (19). 

 

13.5 tert-Butyl 3-amino-6,6-dimethoxyhexanoate [356] 
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Method 1 
 

A solution of tert-butyl 3-(dibenzylamino)-6,6-dimethoxyhexanoate [357] (1.03 g, 2.34 

mmol) in absolute ethanol (21.0 cm3, 9.00 cm3.mmol−1) was treated with 10% palladium on 

carbon (0.351 g, 0.150 g.mmol−1). The mixture was placed in an autoclave and stirred for 3 d 

at 7 atmospheres of hydrogen gas. The reaction mixture was filtered through celite, and 

washed several times with ethanol. The solvent was removed in vacuo to afford a grey oil. 

The crude oil was purified by column chromatography 5% methanol:ethyl acetate as eluent to 

yield tert-butyl 3-amino-6,6-dimethoxyhexanoate [356] (0.543 g, 2.20 mmol, 94%) as a clear 

oil; characterized as described below. 

 

Method 2 
 

A solution of tert-butyl 3-(dibenzylamino)-6,6-dimethoxyhexanoate [357] (5.71 g, 13.3 

mmol) in absolute ethanol (120 cm3, 9.00 cm3.mmol−1) was treated with 20% palladium 

hydroxide on carbon (2.00 g, 0.150 g.mmol−1). The mixture was placed in an autoclave and 

stirred for 3 d under 7 atmospheres of hydrogen gas. The reaction mixture was filtered 

through celite, and washed several times with ethanol. The solvent was removed in vacuo to 

afford a grey oil. The crude oil was purified by column chromatography with 5% 

methanol:ethyl acetate as eluent to yield tert-butyl 3-amino-6,6-dimethoxyhexanoate [356] 

(3.30 g, 13.3 mmol, 100%) as a clear oil; vmax (film)/cm−−−−1 3377 (N-H str, w), 2971 (C-H str, 

m), 2936 (C-H str, m), 2831 (C-H str, m), 1724 (C=O str, s), 1679 (w), 1454 (C-H bend, m), 

1367 (C-H bend, s), 1296 (w), 1252 (w), 1230 (w), 1217 (w), 1149 (s), 1125 (C-O str, s), 

1053 (C-O str, s), 952 (m); 1H 4.37 (1H, t, J 5.5 Hz, H-6), 3.32 (6H, s, 2 × OCH3), 3.19-3.10 

(1H, m, H-3), 2.38 (1H, dd, J 4.0 & 15.5 Hz, H-2a), 2.10 (1H, dd, J 8.8 & 15.5 Hz, H-2b), 

1.78-1.57 (2H, m, H-5), 1.56-1.32 (4H, m, H-4 & NH2), 1.46 (9H, s, C(CH3)3); HRMS  m/z 

(EI) Inconsistent results were obtained. 
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13.6 tert-Butyl 3-[(4-chlorobutanoyl)amino]-6,6-dimethoxyhexanoate [358]  
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tert-Butyl 3-amino-6,6-dimethoxyhexanoate [356] (0.501 g, 2.02 mmol) and triethylamine 

(0.430 g, 0.59 cm3, 4.25 mmol, 2.1 eq.) in dichloromethane (8.70 cm3, 4.30 cm3.mmol−1) were 

cooled to 0 °C. 4-Chlorobuyryl chloride (0.343 g, 0.270 cm3, 2.42 mmol, 1.2 eq.) was added 

slowly to the reaction mixture, and was accompanied by vigourous effervescence. The 

mixture was stirred for 30 min at rt, after which it was diluted with dichloromethane (10 cm3, 

5 cm3.mmol−1). The solvent was removed in vacuo and the resulting residue was re-dissolved 

in dichloromethane (20 cm3, 10 cm3.mmol−1). The organic fraction was washed with water 

(20 cm3, 10 cm3.mmol−1), followed by brine (20 cm3, 10 cm3.mmol−1). The organic fraction 

was dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to afford a crude 

orange oil. The crude oil was purified by column chromatography 5% 

methanol:dichloromethane as eluent to yield tert-butyl 3-[(4-chlorobutanoyl)amino]-6,6-

dimethoxyhexanoate [358] (0.701 g, 1.99 mmol, 99%) as an orange oil; vmax (film)/cm−1 3330 

(N-H str, s br), 2918 (C-H str, s), 1729 (C=O ester str, s), 1654, (C=O amide str, s), 1419 (C-

H bend, s), 1376 (C-H bend, s), 1297 (w), 1172 (C-N str, s), 1146 (C-O, str, s), 1054 (C-O str, 

s), 869 (w); 1H 6.26 (1H, d, J 8.9 Hz, NH), 4.36 (1H, t, J 5.0 Hz, H-6), 4.27-4.19 (1H, m, H-

3), 3.60 (2H, t, J 6.3 Hz, H-4’), 3.32 (3H, s, OCH3), 3.31 (3H, s, OCH3), 2.44 (2H, dd, J  3.5 

& 5.2 Hz, H-2), 2.35 (2H, t, J 7.2 Hz, H-2’), 2.11 (2H, quintet, J 6.6 Hz, H-3’), 1.68-1.54 (4H, 

m, H-4 & H-5), 1.45 (9H, s, C(CH3)3); 13C 171.1 (C-1’), 171.0 (C-1), 104.0 (C-6), 81.2 

[C(CH3)3], 53.0 (OCH3), 52.9 (OCH3), 46.0 (C-3), 45.9 (C-4), 44.4 (C-4’), 39.7 (C-2), 33.4 

(C-2’), 29.2 (C-5), 28.9 (C-3’), 28.0 (C(CH3)3); HRMS  m/z (EI) Inconsistent results were 

obtained. 
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13.7 tert-Butyl 6,6-dimethoxy-3-(2-oxo-1-pyrrolidinyl)hexanoate [359] 
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tert-Butyl 3-[(4-chlorobutanoyl)amino]-6,6-dimethoxyhexanoate [358] (0.619 g, 1.76 mmol) 

was treated with potassium tert-butoxide (0.392 g, 3.52 mmol, 2.0 eq.) in dry tert-butanol 

(11.0 cm3, 6.50 cm3.mmol−1). The mixture was stirred at rt for 24 h. The mixture was 

neutralized with glacial acetic acid and the solvent was evaporated in vacuo to yield a milky 

residue. The residue was taken up in dichloromethane (20 cm3, 10 cm3.mmol−1) and washed 

with water (20 cm3, 10 cm3.mmol−1). The aqueous extracts were back-extracted with 

dichloromethane (3 × 50 cm3, 25 cm3.mmol−1). The combined organic extracts were 

combined, dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to afford an 

orange oil. The crude oil was purified by column chromatography using 30% ethyl 

acetate:hexane as eluent to yield tert-butyl tert-butyl 6,6-dimethoxy-3-(2-oxo-1-

pyrrolidinyl)hexanoate [359] (0.292 g, 0.926 mmol, 53%) as a yellow oil; vmax (film)/cm−−−−1 

2976 (C-H str, m), 2935 (C-H str, m), 2831 (C-H str, m), 1724 (C=O str, s), 1688 (C=O str, s), 

1457 (C-H bend, m), 1423 (m), 1391 (w), 1367 (C-H bend, s), 1284 (m), 1252 (m), 1148 (C-

N str, s), 1125 (C-O str, s), 1056 (C-O str, s), 954 (m); 1H 4.49-4.39 (1H, m, H-3), 4.35 (1H, t, 

J 5.0 Hz, H-6), 3.41-3.23 (2H, m, H-5’), 3.32 (3H, s, OCH3), 3.31 (3H, s, OCH3), 2.40 (2H, 

dd, J  13.6 & 14.2 Hz, H-2), 2.36 (2H, dt, J  1.8 & 7.7 Hz, H-3’), 2.11 (2H, quintet, H-4’), 

1.63-1.54 (4H, m, H-4 & H-5), 1.42 (9H, s, C(CH3)3); 13C 174.9 (C-1), 170.0 (C-2’), 104.1 

(C-6), 80.9 [C(CH3)3], 53.14 (OCH3), 53.12 (OCH3), 48.5 (C-3), 42.4 (C-5’), 39.4 (C-2), 31.4 

(C-3’), 29.3 (C-5), 27.9 [C(CH3)3], 27.0 (C-4), 18.3 (C-4’). 

 
13.8 tert-Butyl 6,6-dimethoxy-3-(2-thioxo-1-pyrrolidinyl)hexanoate [439] 
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Attempt 1 
 

To a suspension of phosphorus pentasulfide (0.115 g, 0.508 mmol, 3.0 eq.) in tetrahydrofuran 

(1.40 cm3, 8.00 cm3.mmol−1) was added sodium carbonate (0.0271 g, 0.254 mmol, 1.5 eq.), 

the mixture was stirred at rt until the solution became homogeneous. To this solution was tert-

butyl 6,6-dimethoxy-3-(2-oxo-1-pyrrolidinyl)hexanoate [359] (0.0530 g, 0.169 mmol) in 

tetrahydrofuran (0.3 cm3, 2 cm3.mmol−1). Sodium carbonate (10%, 1.4 cm3, 8 cm3.mmol−1), 

ethyl acetate (0.4 cm3, 6 cm3.mmol−1) and hexane (0.13 cm3, 2 cm3.mmol−1) were added after 

5 h. The aqueous phase was extracted with dichloromethane (3 × 10 cm3). The combined 

organic phases were dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to 

give a yellow oil. The crude product was purified by column chromatography using 30% ethyl 

acetate:hexane as elutent to give an unidentifiable mixture of products as a yellow oil. 

 
Attempt 2 
 
tert-Butyl 6,6-dimethoxy-3-(2-oxo-1-pyrrolidinyl)hexanoate [359] (0.105 g, 0.330 mmol), 

was added to a stirred solution of Lawesson’s reagent (0.0810 g, 0.199 mmol, 0.6 eq.) in 

toluene (1.3 cm3, 4cm3.mmol−1). The solution was stirred at reflux for 5 h, after which time 

the solvent was removed in vacuo to yield a red oil. The crude red oil was purified by column 

chromatography using 30% ethyl acetate:hexane as eluent to yield an unidentifiable product 

as a yellow oil. 

 
Attempt 3 
 

tert-Butyl 6,6-dimethoxy-3-(2-oxo-1-pyrrolidinyl)hexanoate [359] (0.0950 g, 0.300 mmol) 

and Lawesson’s reagent (0.0860 g, 0.210 mmol, 0.7 eq.) were placed in a pressure vessel and 

treated with microwaves at 100 Watts and 120 °C for 90 seconds. The mixture turned black 

and column chromatography afforded only an unidentifiable product as a dark red oil. 
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13.9 tert-Butyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}-6,6-dimethoxyhexanoate [284] 

 

6
5

4
(R)

3
2MeO

OMe

N
1'1''

(R)Ph Ph

1

O O

2''

284  
 
A solution of freshly distilled N-benzyl-N-(1R)-1-phenylethylamine [243] (2.80 g, 2.78 cm3, 

13.3 mmol, 1.1 eq.) in dry tetrahydrofuran (54.0 cm3, 4.50 cm3.mmol-1) was cooled to −78 °C 

and treated with n-butyllithium (1.4 M, 9.48 cm3, 13.3 mmol, 1.1 eq.). The resulting dark red 

solution was stirred for 45 min, after which time tert-butyl (2E)-6,6-dimethoxy-2-hexenoate 

[283] (2.05 g, 12.1 mmol) in tetrahydrofuran (12.0 cm3, 1.00 cm3.mmol−1) was added 

dropwise over 10 min. The mixture was stirred at −−−−78 °C for 3 h. The reaction was quenched 

with a solution of saturated aqueous ammonium chloride (30 cm3). The mixture was warmed 

to rt. The solvent was removed in vacuo, and the residue was diluted with water (30 cm3). The 

residue was extracted with dichloromethane (3 × 30 cm3). The combined organic extracts 

were dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to afford a yellow oil. 

The crude oil was purified by column chromatography using 10% ethyl acetate:hexane as 

eluent, and tert-butyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}-6,6-dimethoxyhexanoate 

[284] (2.48 g, 5.61 mmol, 47%) was obtained as a yellow oil; vmax (film)/cm−−−−1 3083 (ArC-H 

str, w), 3062 (ArC-H str, w), 3026 (ArC-H str, w), 2969 (C-H str, w), 2925 (C-H str, w), 2830 

(C-H str, w), 1736 (C=O str, m), 1603 (w), 1493 (s), 1451 (C-H bend, s), 1368 (C-H bend, m), 

1303 (w), 1201 (m), 1124 (C-N str, s), 1071 (m), 1057 (m), 1027 (C-O str, s), 988 (m); 1H 

7.44-7.21 (10H, m, Ar-H’s), 4.26 (1H, t, J 5.8 Hz, H-6), 3.82 (1H, q, J 6.9 Hz, H-1’’), 3.79 

(1H, d, J 8.5 Hz, H-1’a), 3.48 (1H, d, J 14.9 Hz, H-1’b), 3.33-3.27 (1H, m, H-3), 3.29 (3H, s, 

OCH3), 3.27 (3H, s, OCH3), 2.04-1.82 (4H, m, H-2), 1.60-1.23 (4H, m, H-4 & H-5), 1.39 (9H, 

s, C(CH3)3), 1.34 (3H, d, J 7.0 Hz, H-2’’). 
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13.10 (3R)-3-{Benzyl[(1R)-1-phenylethyl]amino}-6,6-dimethoxy-1-hexanol [360] 
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tert-Butyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}-6,6-dimethoxyhexanoate [284] (1.12 g, 

2.54 mmol) was slowly added to a slurry of lithium aluminium hydride (0.106 g, 2.80 mmol, 

1.1 eq.) in diethyl ether (5.1 cm3, 2 cm3.mmol−1) at 0 °C. The solution was warmed to rt and 

stirred for 24 h. The reaction was quenched by the sequential addition of water (0.5 cm3, 0.2 

cm3.mmol−1), sodium hydroxide (0.5 cm3, 15% w/v, 0.2 cm3.mmol−1) and finally water (1.5 

cm3, 0.6 cm3.mmol−1). The solids were removed by passing the mixture through a thin pad of 

celite. The filtrate was dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to 

yield a clear oil. The crude oil was purified by column chromatography 50% ethyl 

acetate:hexane to yield (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}-6,6-dimethoxy-1-hexanol 

[360] as a clear oil (0.925 g, 2.49 mmol, 98%); vmax (film)/cm−−−−1 3380 (O-H str, m br), 3084 

(ArC-H str, w), 3061 (ArC-H str, w), 3027 (ArC-H str, w), 2956 (C-H str, s), 2931 (C-H str, 

s), 2870 (C-H str, m), 1739 (w), 1602 (w), 1542 (s), 1493 (s), 1452 (C-H bend, s), 1373 (C-H 

bend, s), 1277 (w), 1257 (w), 1204 (C-N str, s), 1140 (w), 1109 (w), 1052 (C-O str, s), 1027 

(s), 906 (m); 1H 7.41-7.20 (10H, m, Ar-H’s), 4.31 (1H, t, J 5.4 Hz, H-6), 3.94 (1H, q, J 6.8 

Hz, H-1’’), 3.82 (1H, d, J 13.9 Hz, H-1’a), 3.72 (1H, d, J 13.9 Hz, H-1’b), 3.55-3.48 (1H, m, 

H-1a), 3.31 (6H, s, 2 × OCH3), 3.27-3.18 (2H, m, H-1b), 2.82-2.73 (1H, m, H-3), 2.31 (1H, s 

broad, OH), 1.79-1.50 (6H, m, H-2, H-4 and H-5), 1.39 (3H, d, J 6.9 Hz, H-2’’); 13C 143.8 

(ArC), 140.9 (ArC), 128.9 (ArC), 128.4 (ArC), 128.1 (ArC), 127.0 (ArC), 126.9 (ArC), 104.4 

(C-6), 61.6 (C-1’’), 56.9 (C-1), 54.5 (C-3), 52.8 (OCH3), 52.6 (OCH3), 49.9 (C-1’), 33.6 (C-

2), 30.4 (C-5), 27.3 (C-4), 15.7 (C-2’’); HRMS  m/z (EI) 371.24536 (M+ 100%, C23H33NO3 

requires 371.24604), 372 (54), 370 (40). 
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13.11 (3R)-N-Benzyl-1-{[tert-butyl(dimethyl)silyl]oxy}-6,6-dimethoxy-N-[(1R)-1-phenyl-

ethyl]-3-hexanamine [361] 
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tert-Butyldimethylsilyl chloride (0.557 g, 3.70 mmol, 1.1 eq.) in dimethylformamide (2.20 

cm3, 0.600 cm3.mmol) was added dropwise to a stirred solution of (3R)-3-{benzyl[(1R)-1-

phenylethyl]amino}-6,6-dimethoxy-1-hexanol [360] (1.25 g, 3.36 mmol) and imidazole 

(0.461 g, 6.73 mmol, 2.0 eq.) in dimethylformamide (4.40 cm3, 1.20 cm3.mmol). The mixture 

was stirred for 24 h. The reaction mixture was washed with ice/water (22 cm3, 6 cm3.mmol−1), 

and the aqueous residues were extracted with dichloromethane (5 x 22 cm3, 6 cm3.mmol−1). 

The combined organic residues were dried (anhydrous sodium sulfate), filtered and 

evaporated in vacuo. The residue was re-dissolved in dichloromethane (22 cm3, 6 

cm3.mmol−1) and washed with water (4 x 22 cm3, 6 cm3.mmol−1). The organic extract was 

dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to yield a crude yellow oil. 

Purification by column chromatography using 10% ethyl acetate:hexane as eluent afforded 

(3R)-N-benzyl-1-{[tert-butyl(dimethyl)silyl]oxy}-6,6-dimethoxy-N-[(1R)-1-phenylethyl]-3-

hexanamine [361] (1.25 g, 2.56 mmol, 76%), as a clear oil; vmax (film)/cm−−−−1 3062 (ArC-H str, 

w), 3028 (ArC-H str, w), 2952 (C-H str, s), 2930 (C-H, str, s), 2885 (C-H str, w), 2856 (C-H 

str, m), 2829 (C-H str, m), 1738 (w), 1602 (w), 1493 (m), 1471 (s), 1453 (C-H bend, s) 1362 

(C-H bend, s), 1253 (C-N str, s), 1194 (m), 1124 (vs), 1082 (C-O str, vs), 1006 (w), 939 (w); 
1H 7.37-7.14 (10H, m, aromatic protons), 4.17 (1H, t, J 5.4 Hz, H-6), 3.82 (1H, q, J 7.2 Hz, 

H-1’’), 3.75 (1H, d, J 15.2 Hz, H-1’a), 3.58 (1H, d, J 15.0 Hz, H-1’b), 3.44-3.36 (1H, m, H-

1a), 3.30-3.22 (1H, m, H-1b), 3.23 (3H, s, OCH3), 3.22 (3H, s, OCH3), 2.68-2.62 (1H, m, H-

3), 1.84-1.76 (1H, m, H-2a), 1.58-1.38 (3H, m, H-2b & H-5), 1.34-1.18 (2H, m, H-4), 1.25 

(3H, d, J 6.9 Hz, H-2’’), 0.80 (9H, s, C(CH3)3), -0.07 (6H, s, Si(CH3)2); 13C 144.6 (ArC), 

142.4 (ArC), 128.2 (ArC), 128.1 (ArC), 128.0 (ArC), 127.9 (ArC), 126.7 (ArC), 126.4 (ArC), 

104.6 (C-6), 61.7 (C-1’’), 58.3 (C-1), 53.9 (C-3), 52.8 (OCH3), 52.4 (OCH3), 50.1 (C-1’), 

34.2 (C-2), 30.3 (C-5), 27.6 (C-4), 26.0 (C(CH3)3), 19.4 (C-2’’), 18.3 (C(CH3)3), -5.3 

(Si(CH3)2); HRMS  m/z (EI) 485.32116 (M+ 50%, C29H47NO3Si requires 485.33252), 484 

(100), 483 (17), 482 (38). 
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13.12 (3R)-1-{[tert-Butyl(dimethyl)silyl]oxy}-6,6-dimethoxy-3-hexanamine [362] 
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A solution of (3R)-N-benzyl-1-{[tert-butyl(dimethyl)silyl]oxy}-6,6-dimethoxy-N-[(1R)-1-

phenylethyl]-3-hexanamine [361] (1.19 g, 2.44 mmol) in absolute ethanol (10.0 cm3, 4.00 

cm3.mmol−1) was placed in an autoclave and hydrogenated under a hydrogen atmosphere in 

the presence of 10% palladium on carbon (0.366 g, 0.150 g.mmol−1). The mixture was stirred 

at 7 atmospheres for 3 d, then filtered through a pad of celite and washed several times with 

ethanol. The solvent was removed in vacuo affording a crude grey oil. The crude oil was 

purified by column chromatography to yield (3R)-1-{[tert-butyl(dimethyl)silyl]oxy}-6,6-

dimethoxy-3-hexanamine [362] (0.639 g, 2.19 mmol, 98%) as a clear oil; vmax (film)/cm−−−−1 

3356 (N-H str, m br), 2951 (C-H str, s), 2929 (C-H str, s), 2856 (C-H str, s), 2832 (C-H str, s), 

1738 (w), 1592 (w), 1471 (s), 1463 (C-H bend, s), 1385 (C-H bend, s), 1362 (s), 1253 (s), 

1217 (w), 1193 (w), 1125 (C-N str, vs), 1054 (C-O str, vs), 1007 (w), 955 (w); 1H 4.35 (1H, t, 

J 5.5 Hz, H-6), 3.81-3.67 (2H, m, H-1), 3.31 (6H, s, 2 × OCH3), 2.96-2.88 (1H, m, H-3), 2.12 

(2H, s, NH2), 1.77-1.58 (2H, m, H-2), 1.55-1.31 (4H, m, H-4 & H-5), 0.87 (9H, s, C(CH3)3), 

0.04 (6H, s, Si(CH3)2); 13C 104.6 (C-6), 61.1 (C-1), 52.9 (OCH3), 52.7 (OCH3), 49.2 (C-3), 

39.9 (C-2), 32.7 (C-5), 29.1 (C-4), 25.9 [C(CH3)3], 18.2 [C(CH3)3], -5.4 [Si(CH3)2]; HRMS  

m/z (EI) Inconsistent results were obtained 

 

13.13 N-[(1R)-1-(2-{[tert-Butyl(dimethyl)silyl]oxy}ethyl)-4,4-dimethoxybutyl]-4-chlo-

robutanamide [364] 

6
5

4
(R)

3

2

MeO

OMe

HN
1

O Si

1'

O

2'
3'

4'

Cl

364  
 

A solution of (3R)-1-{[tert-butyl(dimethyl)silyl]oxy}-6,6-dimethoxy-3-hexanamine [362] 

(0.586 g, 2.01 mmol) and triethylamine (2.03 g, 2.80 cm3, 20.1 mmol, 10.0 eq.) in 
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dichloromethane (8.00 cm3, 4.00 cm3.mmol−1) was cooled to 0 °C. 5-Chlorobutyryl chloride 

(0.340 g, 0.200 cm3, 2.41 mmol, 1.2 eq.) was added slowly to the reaction mixture upon 

which vigorous effervescence of hydrogen chloride gas was observed. The reaction mixture 

was warmed to rt and stirred for 30 min after which it was diluted with dichloromethane (10 

cm3, 5 cm3.mmol−1). The solvent was removed in vacuo and the resulting residue was re-

dissolved in dichloromethane (20 cm3, 10 cm3.mmol−1). The organic fraction was washed 

with water (20 cm3, 10 cm3.mmol−1), followed by brine (7 cm3, 10 cm3.mmol−1). The organic 

fraction was dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to afford a 

crude red oil. The crude oil was purified by column chromatography to give N-[(1R)-1-(2-

{[tert-butyl(dimethyl)silyl]oxy}ethyl)-4,4-dimethoxybutyl]-4-chlorobutanamide [364] as an 

orange oil (0.790 g, 1.99 mmol, 99%); vmax (film)/cm−−−−1 3339 (N-H str, s br), 2918 (C-H str, 

s), 2850 (C-H str, m), 1726 (C=O str, s), 1648 (C=O str, s), 1542 (w), 1509 (w), 1442 (C-H 

bend, s), 1380 (C-H bend, s), 1311 (w), 1256 (C-N str, m), 1217 (m), 1199 (m), 1060 (C-O 

str, vs), 876 (w); 1H 6.16 (1H, s broad, J 8.3 Hz, NH), 4.34 (1H, t, J 5.0 Hz, H-6), 4.09-3.98 

(1H, m, H-3), 3.78 (1H, ddd, J 4.7, 8.7 & 10.9 Hz, H-1a), 3.68 (1H, dt, J 5.3 & 10.5 Hz, H-

1b), 3.58 (2H, t, J 6.2 Hz, H-4’), 3.31 (6H, s, 2 × OCH3), 2.29 (2H, t, J 7.1 Hz, H-2’), 2.09 

(2H, quintet, J 6.7 Hz, H-3’), 1.85-1.70 (2H, m, H-2), 1.68-1.52 (4H, m, H-4 & H-5), 0.90 

(9H, s, C(CH3)3), 0.062 (3H, s, SiCH3), 0.056 (3H, s, SiCH3); 13C 170.9 (C-1’), 104.5 (C-6), 

60.3 (C-1), 53.1 (OCH3), 53.0 (OCH3), 47.6 (C-3), 44.5 (C-4’), 36.0 (C-2), 33.5 (C-2’), 29.2 

(C-5), 29.0 (C-4), 28.2 (C-3’), 25.9 (C(CH3)3), 18.2 (C(CH3)3) -5.47 (SiCH3), -5.49 (SiCH3); 

HRMS m/z (EI) Inconsistent results were obtained. 

 

13.14 1-[(1R)-1-(2-{[tert-Butyl(dimethyl)silyl]oxy}ethyl)-4,4-dimethoxybutyl]-2-pyrr-

olidinone [363] from [364] 
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N

O Si

O

363  
 

N-[(1R)-1-(2-{[tert-Butyl(dimethyl)silyl]oxy}ethyl)-4,4-dimethoxybutyl]-4-chlorobutanamide 

[364] (0.316 g, 0.800 mmol) was dissolved in dry tert-butanol (2.40 cm3, 3.00 cm3.mmol−1). 
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To this was added potassium tert-butoxide (0.135 g, 1.20 mmol, 1.5 eq.) in portions (~0.020 g 

per addition) over a 5 h period. After the final addition the mixture was stirred for a further 30 

min, and thereafter glacial acetic acid was added to neutralize the mixture. The solvent was 

removed from the neutralized mixture by evaporation in vacuo, the resulting residue was 

dissolved in dichloromethane (20 cm3) and wash with water (20 cm3). The aqueous extracts 

were extracted with dichloromethane (3 × 20 cm3), and the combined organic extracts were 

dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to afforded a brown oil. 

Purification of the crude oil by column chromatography afforded only decomposed material. 

 

13.15 5-Bromobutanoic acid [367] 
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2
1 OH

O

367  
 

γ-Butyrolactone [366] (10.0 g, 9.05 cm3, 99.9 mmol) was dissolved in hydrobromic acid 

solution (48%, 60.0 cm3) containing concentrated sulfuric acid (98%, 3.00 cm3). The solution 

was refluxed for 2 h, and then stirred at rt for a further 24 h. The solution was washed with 

chilled water (20 cm3, 0.2 cm3.mmol−1) and saturated aqueous sodium hydrogen carbonate 

solution (10 cm3, 0.1 cm3.mmol−1) and extracted with diethyl ether (4 × 100 cm3, 1 

cm3.mmol−1). The organic fractions were dried (anhydrous sodium sulfate), filtered and 

evaporated in vacuo to afford an orange solid. The crude solid was purified by 

recrystallisation from dichloromethane and hexane to give 5-bromobutanoic acid [367] as a 

beige solid (11.4 g, 68.4 mmol, 68%). mp 35-38 °C (literature 36-38.5 °C); vmax (film)/cm−−−−1 

2970 (C-H str, s br), 2254 (s), 1711 (C=O str, vs), 1437 (C-H bend, s), 1289 (s), 1236 (s), 

1134 (w), 912 (vs); 1H 11.1 (1H, s broad, OH), 3.49 (2H, dt, J 0.9 & 6.6 Hz, H-4), 2.58 (2H, t, 

J 7.0. Hz, H-2), 2.19 (2H, quintet, J 6.7 Hz, H-3); 13C 179.1 (C-1), 32.3 (C-2), 32.2 (C-4), 

27.3 (C-3). 

 

13.16 5-Bromobutanoyl chloride [365] 
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4

3

2
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Cl

365  
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A stirred solution of 5-bromobutanoic acid [367] (15.0 g, 89.7 mmol) in dichloromethane 

(63.0 cm3, 0.700 cm3.mmol−1) was cooled to 0 °C. Oxalyl chloride in dichloromethane (2 M, 

49.0 cm3, 98.7 mmol, 1.1 eq.) was added slowly by syringe. A drop of triethylamine was 

added to the mixture upon which a slight effervescence was observed. The mixture was stirred 

at 0 °C for 3 h, before being warmed to rt and left to stir for 16 h. The solvent was removed in 

vacuo to give a crude orange oil. The crude oil was purified by distillation (55 °C, 1,5 mmHg) 

to afford 5-bromobutanoyl chloride [365] as a clear oil (15.7 g, 78.9 mmol, 88%). 

 

13.17 N-[1-(2-{[tert-Butyl(dimethyl)silyl]oxy}ethyl)-4,4-dimethoxybutyl]-4-chlorobutan-

amide [368] 
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A solution of 1-{[tert-butyl(dimethyl)silyl]oxy}-6,6-dimethoxy-3-hexanamine [362] (0.203 g, 

0.699 mmol) and triethylamine (0.156 g, 0.210 cm3, 1.54 mmol, 2.2 eq.) in dichloromethane 

(3.00 cm3, 4.30 cm3.mmol−1) was cooled to 0 °C. 5-Bromobutanoyl chloride [365] (0.169 g, 

0.110 cm3, 0.909 mmol, 1.3 eq.) was added slowly to the reaction mixture upon which 

vigorous effervescence of hydrogen chloride gas was observed. The reaction mixture was 

warmed to rt and stirred for 30 min after which it was diluted with dichloromethane (3.5 cm3). 

The solvent was removed in vacuo and the resulting residue was re-dissolved in 

dichloromethane (7 cm3). The organic fraction was washed with water (7 cm3), followed by 

brine (7 cm3). The organic fraction was dried (anhydrous sodium sulfate), filtered and 

evaporated in vacuo to afford N-[1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)-4,4-dimethoxy-

butyl]-4-chlorobutanamide [368] as a crude red oil. The crude oil rapidly turned black and as 

such was not purified and was used immediately. 
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13.18 Attempted preparation of 1-[1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)-4,4-dimeth-

oxybutyl]-2-pyrrolidinone [363] from [368] 
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1
2

N

Si

O

363  
 
 
Attempt 1 
 
N-[1-(2-{[tert-Butyl(dimethyl)silyl]oxy}ethyl)-4,4-dimethoxybutyl]-4-chlorobutanamide 

[368] (0.854 g, 5.44 mmol) in dry tert-butanol (35.0 cm3, 6.50 cm3.mmol−1) was treated with 

potassium tert-butoxide (1.21 g, 10.9 mmol, 2.0 eq.). The mixture was stirred at rt for 24 h. 

Glacial acetic acid was used to neutralize the reaction mixture. The solvent was evaporated in 

vacuo to yield a milky residue. The residue was taken up in dichloromethane (55 cm3, 10 

cm3.mmol−1) and washed with water (55 cm3, 10 cm3.mmol−1). The aqueous extracts were 

back extracted with dichloromethane (3 × 140 cm3, 25 cm3.mmol−1). The combined organic 

extracts were dried (anhydrous sodium sulfate), filtered and evaporated in vacuo to afford an 

orange oil. Column chromatography yielded an unidentifiable product. 
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CHAPTER 14 
 

EXPERIMENTAL PROCEDURES RELATING TO CHAPTER 7 
  

EXPERIMENTAL PROCEDURES RELATING TO THE APPLICABILITY OF THE 
METHODOLOGY TO THE SYNTHESIS OF 1,4-DI-SUBSTITUTED 

QUINOLIZIDINES  
 
14.1 Ethyl 7-chloro-3-oxoheptanoate [286]197 
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A slurry of sodium hydride (60% in oil, 1.78 g, 44.0 mmol, 1.1 eq.) in dry tetrahydrofuran 

(100 cm3, 2.30 cm3.mmol−1) was cooled to 0 °C. To this was added ethyl acetoacetate [285] 

(5.21 g, 5.10 cm3, 40.0 mmol) dropwise. The solution was stirred for 10 min at 0 °C, after 

which n-butyllithium in hexane (1.4 M, 2.681 g, 30.0 cm3, 40 mmol, 1.05 eq.) was added 

dropwise. The solution turned orange and was stirred at 0 °C for 10 min. The resulting 

dianion was cooled to −50 °C, and 1-bromo-3-chloropropane (6.30 g, 4.00 cm3, 40.0 mmol) 

was added slowly by syringe. The temperature was allowed to rise to −15 °C, and stirred for 

24 h. The reaction was quenched by the addition of saturated aqueous ammonium chloride 

solution (100 cm3) cooled to 0 °C, and the reaction mixture was allowed to warm to rt. The 

solvents were remove in vacuo, the residue was re-dissolved in water (100 cm3) and extracted 

with diethyl ether (3 × 100cm3). The ether extracts were washed with brine (100 cm3), dried 

(anhydrous magnesium sulfate), filtered and evaporated in vacuo to give a crude yellow oil. 

The crude oil was purified by column chromatography using 20% ethyl acetate:hexane as 

eluent yielding ethyl 7-chloro-3-oxoheptanoate [286] as a yellow oil (6.64 g, 32.1 mmol, 

80%); 1H 12.11 (1H, s, OH)*, 4.99 (1H, s, =CH)*, 4.20 (2H, q, J 7.1 Hz, OCH2CH3), 3.71 

(2H, q, J 7.0 Hz, OCH2CH3)*, 3.54 (2H, t, J 6.1 Hz, H-7), 3.44 (2H, s, H-2), 2.76 (2H, t, J 6.9 

Hz, H-7)*, 2.61 (2H, t, J 5.4 Hz, H-4), 2.48 (2H, t, J 6.8 Hz, H-4)*, 2.08 (2H, quintet, J 6.0 

Hz, H-6)*, 1.85-1.70 (4H, m, H-5 and H-6), 1.28 (3H, t, J 7.1 Hz, OCH2CH3), 1.24 (3H, t, J 

7.0 Hz, OCH2CH3)*; 13C 206.5 (C-3), 200.1 (C-3)*, 167.1 (C-1), 166.9 (C-1)*, 89.4 (C-2)*, 

61.4 (OCH2CH3), 61.3 (OCH2CH3)*, 49.2 (C-2), 44.5 (C-7), 44.0 (C-7)*, 41.9 (C-4), 39.5 (C-

4)*, 34.1 (C-6)*, 31.7 (C-6), 21.0 (C-5)*, 20.6 (C-5), 14.2 (OCH2CH3)*, 14.0 (OCH2CH3); 

HRMS m/z (EI) 206.07067 (M+ 100%, C9H15O3Cl requires 206.07097).  
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* Indicates the peaks for the stabilized enol form of the ketone, and all intergrations are given 

relative to each other and not relative to the ketone.  

 

14.2 Ethyl [2-(4-chlorobutyl)-1,3-dioxolan-2-yl]acetate [371] 
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Ethyl 7-chloro-3-oxoheptanoate [286] (1.39 g, 6.72 mmol) was dissolved in dry benzene (40.0 

cm3, 6.00 cm3.mmol�1) in a 100 cm3 round bottom flask fitted with a Dean and Stark 

apparatus. Ethanediol (1.28 g, 1.12 cm3, 20.2 mmol, 3.0 eq.) was added in one portion. A 

catalytic amount of toluenesulfonic acid (0.019 g, 0.1 mmol, 0.01 eq.) was added and the 

mixture was refluxed for 24 h. The mixture was cooled to rt, washed with saturated aqueous 

sodium hydrogen carbonate solution (100 cm3) and brine (100 cm3). The organic layers were 

separated, dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo to afford an 

orange oil. The crude orange oil was purified by column chromatography using 30% ethyl 

acetate:hexane as eluent affording ethyl [2-(4-chlorobutyl)-1,3-dioxolan-2-yl]acetate [371] as 

a yellow oil (1.40 g, 5.56 mmol, 83%); vmax (film)/cm-1
 2984 (C-H str, s), 2965 (C-H str, s), 

2893 (C-H str, s), 1733 (C=O str, vs), 1446 (C-H bend, m), 1372 (C-H bend, m), 1308 (m), 

1215, (m), 1101 (m), 1037 (C-O str, s), 911 (vs), 734 (C-Cl str, vs); 1H 4.08 (2H, q, J 7.1 Hz, 

OCH2CH3), 3.97-3.86 (4H, m, H-4’’ and H-5’’), 3.46 (2H, t, J 6.7 Hz, H-4), 2.57 (2H, s, H-

2’), 1.95-1.68 (4H, m, H-1 and H-3), 1.54-1.43 (2H, m, H-2), 1.19 (3H, t, J 7.1 Hz, 

OCH2CH3); 13C 169.3 (C-1’), 109.0 (C-2’’), 65.0 (C-4’’ and C-5’’), 60.4 (OCH2CH3) 44.7 

(C-4), 42.5 (C-2’), 36.7 (C-1), 32.4 (C-3), 20.8 (C-2), 14.0 (OCH2CH3). 

 

14.3 Ethyl [2-(4-iodobutyl)-1,3-dioxolan-2-yl]acetate [375] 
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Sodium iodide (0.363 g, 2.42 mmol, 1.2 eq.) was dissolved in a minimum volume of 

acetonitrile (10.0 cm3, 5.00 cm3.mmol−1). To this was added ethyl [2-(4-chlorobutyl)-1,3-

dioxolan-2-yl]acetate [371] (0.500 g, 2.00 mmol) in one portion. The reaction mixture was 

refluxed in the dark for 3 h, during which time sodium chloride precipitated. The mixture was 

cooled to rt, washed with water (50 cm3) and extracted with ethyl acetate (3 × 30 cm3). The 

organic extracts were dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo 

to give ethyl [2-(4-iodobutyl)-1,3-dioxolan-2-yl]acetate [375] as a brown oil (~0.4 g). The 

crude product was used without further purification. 1H 4.16 (2H, q, J 7.1 Hz, OCH2CH3), 

4.05-3.96 (4H, m, H-4’’ and H-5’’), 3.19 (2H, t, J 6.9 Hz, H-4), 2.64 (2H, s, H-2’), 1.95-1.78 

(4H, m, H-1 and H-3), 1.55-1.52 (2H, m, H-2), 1.27 (3H, t, J 7.1 Hz, OCH2CH3). 

 

14.4 Ethyl {2-[4-(cyclohexylamino)butyl]-1,3-dioxolan-2-yl}acetate [376] 
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Cyclohexanamine (2.00 mmol, 1.0 eq.) and ethyl [2-(4-chlorobutyl)-1,3-dioxolan-2-yl]acetate 

[371] (0.501 g, 2.00 mmol) were dissolved in acetonitrile (30.0 cm3, 15.0 cm3.mmol−1). To 

this solution was added crushed 4 Å molecular sieves (~ 1 g) and potassium carbonate (0.406 

g, 3.0 mmol, 1.5 eq.). The reaction mixture was refluxed in the dark for 18 h. The mixture was 

cooled to rt, and washed with water (50 cm3) and brine (50 cm3). The aqueous fractions were 

extracted with ethyl acetate (3 × 30 cm3), and the combined organic fractions were dried 

(anhydrous magnesium sulfate), filtered and evaporate in vacuo to afford a crude orange oil. 

The crude oil was purified by column chromatography to afford ethyl {2-[4-

(cyclohexylamino)butyl]-1,3-dioxolan-2-yl}acetate [376] as a yellow oil (0.470 g, 1.50 mmol, 

75%). 1H 4.17-4.07 (3H, m, OCH2CH3 and H-1*), 4.00-3.93 (4H, m, H-3’’ and H-4’’), 3.53 

(2H, t, J 6.8 Hz, H-4), 3.36-3.28 (1H, m, NH), 2.64 (2H, s, H-2’), 2.24 (4H, dt, J 6.2 and 17.4 

Hz, H-2* and H-6*), 1.88-1.51 (8H, m, H-3*, H-4*, H-5* and H-1), 1.32-1.23 (7H, m, H-2, H-3 

and OCH2CH3). 
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14.5 Ethyl (2E)-(1-cyclohexyl-2-piperidinylidene)ethanoate [377] 
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Method 1 

 

Crude ethyl {2-[4-(cyclohexylamino)butyl]-1,3-dioxolan-2-yl}acetate [376] (2.00 mmol) was 

dissolved in acetonitrile (20.0 cm3, 10.0 cm3.mmol−1). To the reaction mixture was added 

sodium iodide (0.046 g, 15 mol%) and cerium trichloride heptahydrate (1.12 g, 3.00 mmol). 

The reaction mixture was refluxed for 3 h, and then quenched with 0.5 M hydrochloric acid 

(10 cm3, 5 cm3.mmol−1). The aqueous fractions were extracted with diethyl ether (3 × 30 cm3, 

15cm3.mmol−1). The combined organic fractions were washed with saturated aqueous sodium 

hydrogen carbonate (30 cm3, 15 cm3.mmol−1) and brine (30 cm3, 15 cm3.mmol−1), dried 

(anhydrous magnesium sulfate), filtered and evaporated in vacuo to give an orange oil. The 

crude orange oil was purified by column chromatography to yield ethyl (2E)-(1-cyclohexyl-2-

piperidinylidene)ethanoate [377] as a yellow oil (0.0500 g, 0.200 mmol, 10%). vmax 

(film)/cm-1 3020 (s), 2937 (C-H str, m), 2859 (C-H str, m), 2400 (m), 2360 (m), 2342 (m), 

1720 (w), 1663 (C=O str, s), 1578 (s), 1450 (w), 1424 (w), 1216 (C-O str, vs), 1150 (w), 1134 

(w), 1058 (w); 1H 4.86 (1H, s, C =CH), 4.21 (2H, q, J 4.5 and 9.9 Hz, OCH2CH3), 3.99 (1H, 

dt, J 5.2 and 11.3 Hz, H-1), 3.67-3.61 (2H, m, H-6’), 2.58-2.50 (2H, m, H-3’), 1.95-1.30 

(14H, m, H*), 1.28 (3H, t, J 7.2 Hz, OCH2CH3); 13C 169.3 (C-2’), 109.0 (C=CH), 65.0 (C-1 

and C-6’), 60.4 (OCH2CH3), 44.7 (C-6’), 42.5 (C-2 and C-6), 36.7 (C-3’), 32.4 (C-4), 20.8 

(C-3 and C-5), 14.0 (OCH2CH3); HRMS m/z (EI) 251.1887 (M+ 100%, C15H25NO2 requires 

251.18853) 252 (68), 206 (52), 169 (62), 164 (54), 156 (68), 97 (56), 55 (43). 
* Remaining hydrogens 

 

Method 2 

 

Ethyl {2-[4-(cyclohexylamino)butyl]-1,3-dioxolan-2-yl}acetate [376] (0.424 g, 1.35 mmol) in 

dichloromethane (20.0 cm3, 15.0 cm3.mmol−1) was cooled to 0 °C and treated with freshly 
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distilled boron trifluoride etherate (1.92 g, 1.70 cm3, 13.5 mmol, 10.0 eq.). The reaction 

mixture was stirred at 0 °C for 24 h, and then quenched with saturated aqueous sodium 

hydrogen carbonate (54 cm3). The mixture was warmed to rt and extracted with 

dichloromethane (3 × 30 cm3). The combined organic fractions were dried (anhydrous 

magnesium sulfate), filtered and evaporated in vacuo to give a yellow oil. The crude yellow 

oil was purified by column chromatography to yield ethyl (2E)-(1-cyclohexyl-2-

piperidinylidene)ethanoate [377] as a yellow oil (0.165 g, 0.659 mmol, 49%); characterized as 

described above. 

 

14.6 tert-Butyl (2E)-2-octenoate [380]108k 
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To a stirred suspension of vacuum-dried (140 °C, overnight, ca 1 mm Hg) lithium chloride 

(1.63 g, 38.4 mmol, 1.2 eq.) in dry acetonitrile (65.0 cm3, 2.00 cm3.mmol−1) was added tert-

butyl (diethoxyphosphoryl)acetate [246] (8.07 g, 7.50 cm3, 31.2 mmol), 1,8-diazobicyclo-

[5.4.0]undec-7-ene (DBU) (5.36 g, 5.30 cm3, 35.2 mmol, 1.1 eq.) and hexanal [245] (3.52 g, 

35.2 mmol, 1.1 eq.). The mixture was stirred at rt for 24 h. The reaction was quenched with 

water. The solvent was evaporated in vacuo, and the residue was extracted with 

dichloromethane (3 × 50 cm3). The combined organic extracts were dried (anhydrous 

magnesium sulfate), filtered and evaporated in vacuo to yield a light yellow oil. The crude oil 

was purified by column chromatography using 5% ethyl acetate:hexane as eluent to afford 

tert-butyl (2E)-2-octenoate [380] (5.66 g, 28.5 mmol, 89%) as a colourless liquid. Rf 0.60 

(1:19 ethyl acetate:hexane); vmax (film)/cm-1 2968 (C-H str, s), 2929 (C-H str, s), 2865 (C-H 

str, s), 1715 (C=O, vs), 1652 (s), 1463 (C-H bend, s), 1294 (C-H bend, s), 1260 (s), 1160 (s), 

1040 (w), 983 (m); 1H 6.86 (1H, dt, J 7.0 and 15.5 Hz, H-3), 5.73 (1H, dt, J 1.4 and 14.9 Hz, 

H-2), 2.16 (2H, ddt, 1.3, 6.8 and 7.5 Hz, H-4), 1.48 (9H, s, C(CH3)3), 1.31 (6H, m, H-5, H-6 

and H-7), 0.89 (3H, t, J 6.8 Hz, H-8); 13C 166.2 (C-1), 148.1 (C-3), 122.9 (C-2), 79.9 

(C(CH3)3), 32.0 (C-4), 31.4 (C-6), 28.2 (C(CH3)3), 27.7 (C-5), 22.4 (C-7), 13.9 (C-8). 
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14.7 tert-Butyl 3-(dibenzylamino)octanoate [379] 
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A stirring solution of dibenzylamine (5.74 g, 5.60 cm3, 29.1 mmol, 1.1 eq.) in dry 

tetrahydrofuran (120 cm3, 5.30 cm3.mmol−1) was cooled to –78 °C. To this solution was 

added 1.4 M n-butyllithium in hexane (1.86 g, 20.3 cm3, 29.1 mmol, 1.1 eq.) by syringe. The 

solution rapidly turned dark red in colour and was stirred at −78 °C for a further 30 min. tert-

Butyl (2E)-2-octenoate [380] (4.46 g, 22.5 mmol) in tetrahydrofuran (30.0 cm3, 1.00 

cm3.mmol−1) was then added dropwise over 10 min. The solution turned yellow, and was 

stirred for a further 3 h at −78 °C. The reaction was quenched with saturated aqueous sodium 

hydrogen carbonate (75 cm3). The mixture was warmed to rt. The solvent was removed in 

vacuo, and the residue was diluted with water (75 cm3). The residue was extracted with 

dichloromethane (3 × 75 cm3). The combined organic extracts were dried (anhydrous 

magnesium sulfate), filtered and evaporated in vacuo to afford a yellow oil. The crude oil was 

purified by column chromatography using 5% ethyl acetate:hexane as eluent, and tert-butyl 3-

(dibenzylamino)octanoate [379] (6.92 g, 17.5 mmol, 78%) was obtained as a light yellow oil. 

Rf 0.38 (1:19 ethyl acetate:hexane); vmax (film)/cm-1 3062 (ArC-H str, w), 2928 (C-H str, s), 

2862 (C-H str, s), 2730 (w), 1726 (C=O, vs), 1461 (s), 1368 (S), 1289 (w), 1253 (w), 1153 (s), 

1028 (w), 963 (m); 1H 7.35-7.20 (10H, m, Ar-H’s), 3.68 (2H, d, J 13.6 Hz, 2 × CH2aPh), 3.39 

(2H, d, J 13.6 Hz, 2 × CH2bPh), 3.06 (1H, m, H-3), 2.62 (1H, dd, J 5.0 and 13.7 Hz, H-2a), 

2.11 (1H, dd, J 8.5 and 13.7 Hz, H-2b), 1.44-0.88 (8H, m, H-4, H-5, H-6 and H-7), 1.42 (9H, 

s, C(CH3)3), 0.82 (3H, t, J 7.2 Hz, H-8); 13C 172.4 (C-1), 140.0 (C-1’), 129.0 (C-2’ and C-6’), 

128.0 (C-3’ and C-5’), 126.8 (C-4’), 80.0 (C(CH3)3), 55.3 (2 × CH2Ph), 53.5 (C-3), 36.2 (C-

2), 31.5 (C-4), 31.1 (C-6), 28.1 (C(CH3)3), 26.1 (C-5), 22.6 (C-7), 14.0 (C-8); HRMS m/z 

(EI) 395.28300 (M+ 10%, C26H37NO2 requires 395.28243), 325 (72), 324 (51), 304 (52), 281 

(100), 269 (70), 133 (67), 132 (76), 92 (90), 65 (76), 56 (68), 43 (82), 39 (87), 29 (65).  
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14.8 3-(Dibenzylamino)-1-octanol [381] 
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tert-Butyl 3-(dibenzylamino)octanoate [379] (1.51 g, 3.82 mmol) in diethyl ether (8.00 cm3, 

2.00 cm3.mmol−1) was added dropwise to a slurry of lithium aluminium hydride (0.290 g, 7.65 

mmol, 2.0 eq.) in diethyl ether (16.0 cm3, 4.00 cm3.mmol−1) at 0 °C. The reaction mixture was 

stirred for 3 h. The solution was allowed to warm to rt and was quenched by the sequential 

addition of water (0.8 cm3, 0.2 cm3.mmol−1), aqueous sodium hydroxide (0.8 cm3, 15% w/v, 

0.2 cm3.mmol−1) and finally water (2.4 cm3, 0.6 cm3.mmol−1). The solids were removed by 

filtering the mixture through a thin celite pad. The filtrate was dried (anhydrous magnesium 

sulfate), filtered and evaporated in vacuo to yield a light yellow oil. The crude oil was purified 

by column chromatography using 15% ethyl acetate:hexane as eluent to yield 3-

(dibenzylamino)-1-octanol [381] as a yellow oil (0.873 g, 2.32 mmol, 70%). vmax (film)/cm-1
 

3065 (ArC-H str, w), 3029 (ArC-H str, w), 2930 (C-H str, m), 2862 (C-H str, m), 1726 (s), 

1506 (s), 1460 (C-H bend, s), 1368 (C-H bend, s), 1294 (s), 1250 (s), 1158 (vs); 1H 7.57-7.21 

(10H, m, ArH’s), 4.60 (1H, s broad, OH), 3.87 (2H, d, J 13.6 Hz, 2 × CH2aPh), 3.76-3.72 (1H, 

m, H-1a), 3.53-3.46 (1H, m, H-1b), 3.34 (2H, d, J 13.6 Hz, 2 × CH2bPh), 2.74  (1H, m, H-3), 

1.84-1.78 (2H, m, H-2), 1.53-1.47 (1H, m, H*), 1.32-1.16 (7H, m, H*), 0.90 (3H, t, J 7.2 Hz, 

H-8); 13C 139.1 (C-1’), 129.2 (C-2’ and C-6’), 128.4 (C-3’ and C-5’), 127.2 (C-4’), 63.2 (C-

3), 58.5 (C-1), 53.3 (2 × CH2Ph), 32.0 (C-4), 31.5 (C-6), 27.1 (C-2 and C-5), 22.6 (C-7), 14.0 

(C-8); HRMS m/z (EI) 325.24060 (M+ 52%, C22H31NO requires 325.24056) 282 (81), 280 

(77), 256 (81), 254 (100), 181 (37), 91 (94), 65 (41), 41 (31). 
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14.9 N,N-Dibenzyl-1-{[tert-butyl(dimethyl)silyl]oxy}-3-octanamine [382] 

 

N

O

38 7 6 5 4
2

1

5'

4'

3'

2'

1'

6'
5'

4'

3'

2'
1'

6'

Si
382  

 

3-(Dibenzylamino)-1-octanol [381] (2.78 g, 8.53 mmol) and imidazole (1.16 g, 17.1 mmol, 

2.0 eq.) were stirred in dimethylformamide (10.0 cm3, 1.20 cm3.mmol−1). To this was mixture 

was added tert-butyldimethylsilyl chloride (1.41 g, 9.38 mmol, 1.1 eq.) in dimethylformamide 

(5 cm3, 0.6 cm3.mmol−1) dropwise over 10 min. The mixture was stirred for 24 h. Thereafter 

reaction mixture was washed with ice/water (100 cm3), and the aqueous residues were 

extracted with dichloromethane (5 × 100 cm3). The combined organic residues were dried 

(anhydrous magnesium sulfate), filtered and evaporated in vacuo. The residue was re-

dissolved in dichloromethane (100 cm3) and washed with water (4 × 100 cm3). The organic 

extract was dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo to yield a 

crude yellow oil. Purification by column chromatography using 10% ethyl acetate:hexane as 

eluent afforded N,N-dibenzyl-1-{[tert-butyl(dimethyl)silyl]oxy}-3-octanamine [382] (2.6746 

g, 6.08 mmol, 71%) as a clear oil. vmax (film)/cm-1 2930 (C-H str, s), 2860 (C-H str, s), 1644 

(w), 1568 (s) 1464 (C-H bend, s), 1386 (C-H bend, s), 1308 (w), 1254 (s), 1096 (C-O str, vs), 

1010 (w); 1H 7.33-7.18 (10H, m, ArH’s), 3.72-3.49 (2H, m, H-1), 3.54 (2H, s, CH2Ph), 3.53 

(2H, s, CH2Ph), 2.56 (1H, quintet, H-3), 1.88 (1H, m, H-2a), 1.60-1.11 (9H, m, H-2b, H-4, H-

5, H-6 and H-7), 0.86 (3H, t, J 7.3, H-8), 0.85 [6H, s, Si(CH3)2], 0.08 [C(CH3)3]; 13C 140.7 

(C-1’), 128.9 (C-2’ and C-6’), 128.0 (C-3’ and C-5’), 126.2 (C-4’), 61.9 (C-3), 54.3 (C-1), 

53.4 (2 × CH2Ph), 33.0 (C-2), 31.9 (C-4), 29.8 (C-6), 26.6 (C-5), 26.0 [C(CH3)3], 22.7 (C-7), 

18.3 [C(CH3)3], 14.1 (C-8), −5.3 [Si(CH3)2]; HRMS m/z (EI) 439.3268 (M+ 12%, 

C28H45NOSi requires 439.32704) 369 (100), 368 (53), 281 (77), 280 (51), 220 (43), 91 (53), 

73 (53), 57 (55), 41 (56). 
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14.10 1-{[tert-Butyl(dimethyl)silyl]oxy}-3-octanamine [378] 

 

NH2

O38 7 6 5 4 2 Si1

378   
 

N,N-Dibenzyl-1-{[tert-butyl(dimethyl)silyl]oxy}-3-octanamine [382] (2.67 g, 6.08 mmol) and 

10% palladium on carbon (0.912 g, 0.150 g.mmol−1) were dissolved in absolute ethanol (55.0 

cm3, 9.00 cm3.mmol−1) and placed in an autoclave. The reaction mixture was subjected to 7 

atmospheres of hydrogen gas at rt for 24 h. The reaction mixture was filtered through celite, 

washed several times with ethanol and evaporated in vacuo to afford a crude grey oil. The 

crude oil was purified by column chromatography using 10% ethyl acetate:hexane as eluent to 

afford 1-{[tert-Butyl(dimethyl)silyl]oxy}-3-octanamine [378] as a yellow oil (1.48 g, 5.71 

mmol, 94%). Rf 0.15 (10% methanol:ethyl acetate); vmax (film)/cm-1 3155 (N-H str, w), 2930 

(C-H str, s), 2858 (C-H str, s), 2359 (w), 2253 (s), 1794 (w), 1714 (m), 1649 (m), 1469 (s), 

1380 (s), 1256 (s), 1216 (w), 1095 (s), 1006 (w), 910 (s); 1H 3.68 (2H, t, J 7.3 Hz, H-1), 2.85-

2.78 (1H, m, H-3), 1.62-1.56 (1H, m, H-2a), 1.45-1.34 (5H, m, H-2b, H-5 and NH2), 1.33-

1.20 (6H, m, H-4, H-6 and H-7), 0.90-0.81 (3H, m, H-8) 0.83 (9H, s, C(CH3)3), 0.01 (6H, s, 

Si(CH3)2); 13C 61.1 (C-1), 48.9 (C-3), 40.5 (C-2), 38.4 (C-4), 31.7 (C-5), 25.8 (C(CH3)3), 22.3 

(C-7), 18.2 (C(CH3)3), 14.1 (C-8), 0.0 (Si(CH3)2); HRMS m/z (EI) Inconsistent results were 

obtained. 

 

14.11 Ethyl [2-(4-{[1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)hexyl]amino}butyl)-1,3-

dioxolan-2-yl]acetate [379] 

 

HN

O16 5 4 3 2 1' Si2'

OEt

OOO
4'' 3''

2''
1'' 1'''' 1''''

5*4*

379  
 

To a stirred solution of ethyl [2-(4-chlorobutyl)-1,3-dioxolan-2-yl]acetate [371] (0.103 g, 

0.411 mmol, 1.1 eq.) in acetonitrile (10.0 cm3, 24.0 cm3.mmol−1) was added sodium iodide 

(0.065 g, 0.411 mmol, 1.1 eq.), potassium carbonate (0.0700 g, 0.411 mmol, 1.1 eq.) and 1-
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{[tert-butyl(dimethyl)silyl]oxy}-3-octanamine [378] (0.0970 g, 0.374 mmol). The reaction 

mixture was refluxed for 12 h, cooled to rt and the solvent was removed in vacuo. The residue 

was taken up in water (20 cm3) and extracted with diethyl ether (3 × 20 cm3). The combined 

organic fractions were dried (anhydrous magnesium sulfate), filtered and evaporated in vacuo 

to give ethyl [2-(4-{[1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)hexyl]-amino}butyl)-1,3-

dioxolan-2-yl]acetate [379] as a pure yellow oil (0.129 g, 0.272 mmol, 73%). vmax (film)/cm-1
 

3427 (N-H str, m), 2930 (C-H str, s), 2859 (C-H str, s), 1731 (C=O, s), 1469, (C-H bend, m), 

1372 (C-H bend, m), 1256 (m), 1216 (m), 1096 (C-O str, m), 910 (s); 1H 4.11 (2H, q, J 7.1 

Hz, OCH2CH3), 3.94-3.90 (4H, m, H-4* and H-5*), 3.73-3.68 (2H, m, H-4’’), 3.50 (2H, t, J 

6.7 Hz, H-2’), 2.86 (1H, m, H-1), 2.61 (2H, s, H-1’’’), 1.84-1.72 (4H, m, H-1’ and H-1’’), 

1.63-1.20 (12H, m, H$), 1.23 (3H, t, J 7.2 Hz, OCH2CH3), 0.86 (12H, s broad, C(CH3)3 and H-

6), 0.03 (Si(CH3)2); 13C 169.4 (C=O), 109.0 (C-2*), 65.0 (C-4* and C-5*), 61.1 (OCH2CH3), 

60.4 (C-2’), 49.2 (C-1), 44.9 (C-4’’), 42.6 (C-1’’’), 40.1 (C-1’), 38.1 (C-2), 36.7 (C-1’’), 32.5 

(C-4), 31.9 (C-3’’), 25.9 (C(CH3)3), 25.7 (C-3), 22.6 (C-5), 20.8 (C-2’’), 18.1 (C(CH3)3), 14.1 

(OCH2CH3)#, 14.0 (C-6)#, −5.5 (Si(CH3)2), HRMS m/z (EI) Inconsistent results were 

obtained. $ Remaining hydrogens, # These signals are interchangeable. 

 

14.12 Ethyl (2E)-{1-[1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)hexyl]-2-piperidinylide-

ne}ethanoate [287] 

 

N

16 5 4 3 2 1'

2'

O
Si

OEt

O
6*

5*

4*

3*

2*

283
  

 

Attempt 1 

 

Ethyl [2-(4-{[1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)hexyl]amino}butyl)-1,3-dioxolan-2-

yl]acetate [379] (0.389 g, 0.945 mmol) in dichloromethane (20.0 cm3, 2.00 cm3.mmol−1) was 

cooled to 0 °C and treated with freshly distilled boron trifluoride etherate (1.34 g, 1.20 cm3, 

9.45 mmol, 10.0 eq.). The reaction mixture was stirred at 0 °C for 24 h, and then quenched 
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with saturated aqueous sodium hydrogen carbonate (38 cm3). The mixture was warmed to rt 

and extracted with dichloromethane (3 × 21 cm3). The combined organic fractions were dried 

(anhydrous magnesium sulfate), filtered and evaporated in vacuo to give a yellow oil. The 

crude yellow oil was purified by column chromatography to yield an unidentified product 

which showed the loss of the silyl group. 

 

Attempt 2 

 

Ethyl [2-(4-{[1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)hexyl]amino}butyl)-1,3-dioxolan-2-

yl]acetate [379] (0.100 g, 0.211 mmol) was dissolved in acetonitrile (5.00 cm3, 24.0 

cm3.mmol−1). To the reaction mixture was added sodium iodide (5 × 10-3 g, 15 mol%) and 

cerium trichloride heptahydrate (0.118 g, 0.317 mmol). The reaction mixture was refluxed for 

3 h, and then quenched with 0.5 M hydrochloric acid (1 cm3). The aqueous fractions were 

extracted with diethyl ether (3 × 10 cm3). The combined organic fractions were washed with 

saturated aqueous sodium hydrogen carbonate (10 cm3) and brine (10 cm 3), dried (anhydrous 

magnesium sulfate), filtered and evaporated in vacuo to give an orange oil. The crude orange 

oil was purified by column chromatography to yield recovered ethyl [2-(4-{[1-(2-{[tert-

butyl(dimethyl)silyl]oxy}ethyl)-hexyl]amino}butyl)-1,3-dioxolan-2-yl]acetate [379] as a 

yellow oil (0.0910 g, 91% recovery of starting material). 

 

Attempt 3 

 

To a stirred solution of ethyl [2-(4-{[1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)he-

xyl]amino}butyl)-1,3-dioxolan-2-yl]acetate [379] (0.100 g, 0.211 mmol) in water:acetone 

(0.500 cm3:4.50 cm3, 2.40 cm3.mmol−1:21.0 cm3.mmol−1) was added a catalytic amount of 

para-pyridinyl toluene sulfonic acid. The reaction mixture was stirred at rt for 24 h, and then 

refluxed for a further 24 h. The reaction mixture was cooled to rt and quenched with saturated 

aqueous sodium hydrogen carbonate (20 cm3). The mixture was extracted with 

dichloromethane (3 × 20 cm3). The combined organic fractions were dried (anhydrous 

magnesium sulfate), filtered and evaporated in vacuo to give an unidentifiable yellow oil. 
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Attempt 4 

 

Ethyl [2-(4-{[1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)hexyl]amino}butyl)-1,3-dioxolan-2-

yl]acetate [379] (0.107 g, 0.211 mmol) was dissolved in acetic acid:tetrahydrofuran:water 

(0.600 cm3:0.150 cm3:0.250 cm3, 3.00 cm3.mmol−1:0.700 cm3.mmol−1:1.20 cm3.mmol−1) and 

stirred for 48 h at 40-45 °C. The solvent was removed in vacuo, and the reside was re-

dissolved in water (10 cm3) and extracted with dichlromethane (3 × 10 cm3)  The organic 

fractions were combined, dried (anhydrous magnesium sulfate), filtered and concentrated in 

vacuo to give a yellow oil. Purification by column chromatography afforded unreacted ethyl 

[2-(4-{[1-(2-{[tert-butyl(dimethyl)silyl]-oxy}-ethyl)hexyl]amino}butyl)-1,3-dioxolan-2-

yl]acetate [379] as a yellow oil (0.0750 g, 0.183 mmol, 75% recovery of starting material). 

 

Attempt 5 

 

To a solution of ethyl [2-(4-{[1-(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)hexyl]amino}butyl)-

1,3-dioxolan-2-yl]acetate [379] (0.102 g, 0.211 mmol) in dry acetone (2.1 cm3, 10 cm3) was 

added palladium chloride (0.002 g, 0.0106 mmol, 5 mol%). The mixture was stirred at rt for 

24 h. The solvent was removed in vacuo, the residue was re-dissolved in water (10 cm3) and 

extracted with ethyl acetate (3 × 10 cm3). The organic fractions were combined, dried 

(anhydrous magnesium sulfate), filtered and evaporated in vacuo to give a crude yellow oil. 

Purification by column chromatography yielded recovered ethyl [2-(4-{[1-(2-{[tert-butyl(di-

methyl)silyl]oxy}ethyl)hexyl]amino}butyl)-1,3-dioxolan-2-yl]acetate (0.0691 g, 0.168 mmol, 

68% recovery of starting material). 
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APPENDIX A: SELECTED 1H AND 13C NMR SPECTRA 

 

The 1H and 13C nuclear magnetic resonance spectra of selected compounds synthesized during 

the course of this project are given below in. 

 

Compound Name and Number Page 

Ethyl (8S,8aR)-octahydro-8-indolizinecarboxylate [301a] 320 

Ethyl (8R,8aR)-octahydro-8-indolizinecarboxylate [301b] 321 

(±)-Tashiromine [330a] 322 

(±)-5-Epitashiromine [330b] 323 

tert-Butyl (3R)-3-{benzyl[(1S)-1-phenylethyl]amino}hexanoate [268] 324 

tert-Butyl (3R)-3-aminohexanoate [336] 325 

tert-Butyl (3R)-3-[(4-chlorobutanoyl)amino]hexanoate [341] 326 

tert-Butyl (3R)-3-(2-oxo-1-pyrrolidinyl)hexanoate [269] 327 

tert-Butyl (3R)-3-(2-thioxo-1-pyrrolidinyl)hexanoate [270] 328 

tert-Butyl (3R)-3-((2E)-2-{2-[methoxy(methyl)amino]-2-oxoethylidene}pyrrolid-

inyl)hexanoate [272] 

329 

(2E)-2-{1-[(1R)-1-(2-Hydroxyethyl)butyl]-2-pyrrolidinylidene}-N-methoxy-N-

methylethanamide [273] 

330 

(3R)-3-{Benzyl[(1S)-1-phenylethyl]amino}-1-hexanol [343] 331 

(3R)-N-Benzyl-1-{[tert-butyl(dimethyl)silyl]oxy}-N-[(1S)-1-phenylethyl]-3-hex-

anamine [344] 

332 

(3R)-1-{[tert-Butyl(dimethyl)silyl]oxy}-3-hexanamine [346] 333 

N-[(1R)-1-(2-{[tert-Butyl(dimethyl)silyl]oxy}ethyl)butyl]-4-chlorobutanamide 

[348] 

333 

1-[(1R)-1-(2-{[tert-Butyl(dimethyl)silyl]oxy}ethyl)butyl]-2-pyrrolidinone [347] 334 

1-[(1R)-1-(2-Hydroxyethyl)butyl]-2-pyrrolidinone [350] 335 

(3R)-3-(2-Oxo-1-pyrrolidinyl)hexyl acetate [349] 336 

(3R)-3-(2-Thioxo-1-pyrrolidinyl)hexyl acetate [351] 337 

(3R)-3-((2E)-2-{2-[Methoxy(methyl)amino]-2-oxoethylidene}pyrrolidinyl)hexyl 

acetate [352] 

 

338 

(5R)-N-Methoxy-N-methyl-5-propyl-1,2,3,5,6,7-hexahydro-8-indolizinecarbox-  
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 319 

amide [274] 339 

(5R,8S,8aS)-N-Methoxy-N-methyl-5-propyloctahydro-8-indolizinecarboxamide 

[275] 

 

340 

1-[(5R,8S,8aS)-5-Propyloctahydro-8-indolizinyl]-1-propanone [353] 341 

1-[(5R,8R,8aS)-5-Propyloctahydro-8-indolizinyl]-1-propanone [191] 342 
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