DECLARATION

I declare that this dissertation is my own unaided work. It is being submitted for the Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for degree or examination in any other University.

Signed

Manfriedt Muundjua

___________ day of ____________ 2008
While most impact craters are characterised by negative magnetic anomalies over their central regions, aeromagnetic surveys over the Vredefort meteorite impact crater reveal multiple concentric magnetic patterns with no significant anomaly at its centre. In the rim, the patterns reflect the different sedimentary strata of the Witwatersrand Basin and the intense anomalies in the rim are clearly related to iron rich shales. About halfway into the basement there is a prominent negative magnetic anomaly that extends in a broad semicircular belt around most of the basement core. The anomaly in the basement is more pronounced in the northwest part of the basement.

A ground geomagnetic survey was conducted across a portion of the negative magnetic anomaly identified from the aeromagnetic data, which coincides with the amphibolite-granulite facies transition zone. The reasons for choosing the area was two fold, firstly to understand the relationship between the magnetic anomalies and the geology and secondly to compare the ground survey with aeromagnetic data. In addition to the main survey, a more detailed geomagnetic survey was conducted over a small area (9 m x 9 m, this being the total area) of intense magnetic field variation to help constrain magnetization over shorter wavelengths. The latter part also included a palaeomagnetic study and analysis of these and pre-existing data from the crater.

The data were analysed using two geophysical filters (upward-continuation and automatic gain control) which were successful in comparing data from this study with existing aeromagnetic data and in enhancing subtle features for comparison with the geological map. Inverse modelling was conducted on the main magnetic study area as well as on the 9 m x 9 m grid, which was characterized by very variable magnetic field, in an attempt to constrain the magnetization and depth of source bodies.

Magnetic anomalies defined by the data are most often negative and occur over a wide range of wavelengths. The longest wavelength negative anomaly coincides well with the
aeromagnetic data. This feature is centered over the amphibolite to granulite metamorphic facies transition exposed in the basement. The upward continued map coincides very well with the aeromagnetic data in that the amplitude and shape of the long wavelength anomaly obtained in this study is similar to that seen in the aeromagnetic data.

On the basis of the modelling conducted in this study it is concluded that the long wavelength negative anomalies in the basement are due to Archaean basement rocks with coherent vectors, that have been remagnetised as a result of temperature, pressure and phase transitions at amphibolite-granulite transition at the time of the 2.0 Ga impact event. Petrographic evidence shows that there is a marked increase in the intensity of the impact related thermal and shock metamorphism (including the formation of single domain magnetite) across the transition. The author suggests that this and the magnetic anomaly are explained by focusing and defocusing of shock waves at a rheologic interface.

On the other hand, negative anomalies occurring over smaller (20 to 100 m) wavelengths often do not coincide with the surface geology. These features require a body below the surface with very high magnetization intensities and thus cannot be modelled using the same criteria as that for the long wavelength anomaly. Further, the magnetizations determined from inversion over the smaller anomalies are not compatible with conventional thermoremanent magnetism.

The scattered pattern displayed by the natural remanent magnetism data strongly suggests that lightning strikes are the cause. The observed patterns displayed by the anisotropy of magnetic susceptibility data could not have survived the plasma fields, and this is a strong negation that the plasma fields were responsible for the random orientations of natural remanent magnetism as postulated by others.

In this study the principal directions of the anisotropy of magnetic susceptibility were found to coincide with the observed metamorphic fabric which suggests that at least some
of the rocks were not heated that high to attain melting at the time of the impact event. This is also in agreement with Verwey transition measurements in the basement rocks that suggest that the basement rocks were not wholly heated above the Curie temperature during or since the time of impact.
ACKNOWLEDGMENTS

The author would like to express his sincere gratitude to the several persons and organizations that provided assistance during the course of this project: firstly, to Dr. R. Hart of the iThemba Labs and Dr. M. Jones, under whose supervisions the study was conducted, for their continued interests, valuable suggestions and editing of all the drafts; secondly to the following individuals, Dr. S. Gilder of Ludwig Maximilians University, Dr. L. Carporzen and Dr. A. Galdeano of the Institut de Physique du Globe de Paris for their continued help with the scientific formulation of this project, valuable discussions on magnetism of rocks and for the use of the geophysical instruments and the use of laboratories.

The author is very grateful to PETROFUND, iThemba LABS (Gauteng), and the National Research Foundation (NRF) for financial support through out the duration of this project. The author is also thankful to G. Cooper and S. Webb for their valuable inputs into the project and constructive criticisms.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background to the Project</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives of the project</td>
<td>5</td>
</tr>
<tr>
<td>1.3 General geological setting of the Vredefort crater</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1 Impact related shock metamorphic and deformation features</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2 Detailed geology of the study area</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Previous geomagnetic studies</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER 2: INSTRUMENTATION AND DATA COLLECTION</td>
<td>12</td>
</tr>
<tr>
<td>2.1 Paleomagnetism</td>
<td>12</td>
</tr>
<tr>
<td>2.1.1 Field procedures</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2 Laboratory procedures</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3 Natural remanent magnetization (NRM)</td>
<td>14</td>
</tr>
<tr>
<td>2.1.4 Anisotropy of magnetic susceptibility</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Geomagnetism</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1 Instrumentation</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Field procedures</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1 Setting up the survey grid</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2 Base station</td>
<td>18</td>
</tr>
<tr>
<td>2.3.3 Downloading of data</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Viewing the geomagnetic data</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1 Choice of gridding space</td>
<td>20</td>
</tr>
<tr>
<td>2.4.2 Gridding</td>
<td>20</td>
</tr>
<tr>
<td>CHAPTER 3: IMAGE PROCESSING AND DEPTH ESTIMATION</td>
<td>21</td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
</tr>
<tr>
<td>3.1 Upward continuation</td>
<td>21</td>
</tr>
<tr>
<td>3.1.1 Application of upward-continuation on synthetic data</td>
<td>23</td>
</tr>
<tr>
<td>3.2 Automatic gain control (AGC) of map data</td>
<td>25</td>
</tr>
<tr>
<td>3.2.1 Pitfalls in using automatic gain control for the processing of magnetic data</td>
<td>27</td>
</tr>
<tr>
<td>3.2.2 Application of automatic gain control on synthetic data</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Quantitative interpretation of depth sources of potential fields</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1 Local wavenumber</td>
<td>33</td>
</tr>
</tbody>
</table>
3.3.2 Euler deconvolution ... 35
3.3.3 The significance of the Euler structural indices 37
3.3.4 Euler deconvolution and wavenumber method applied to synthetic data (gridded data) ... 38
3.3.5 Euler deconvolution and wavenumber method applied to synthetic data (profile data) ... 46
3.4 Summary .. 50

CHAPTER 4: NEW HIGH RESOLUTION GROUND MAGNETIC SURVEYS IN THE VREDEFORT DOME .. 51

4.1 Detailed survey over the transition zone 51
 4.1.1 Correlation of magnetic anomalies with the geology 55
 4.1.2 Upward continuation of field data ... 59
 4.1.3 Automatic gain control of field data 63
 4.1.4 Depth estimate of selected profiles over the south end of NE-trending lineament ... 67
4.2 Very detailed magnetic surveys over the Banded Ironstone Formation (BIF) and the 9 m x 9 m grid ... 70
 4.2.1 Results of survey over the Banded Ironstone Formation (BIF) 70
 4.2.2 Magnetic survey of the 9 m x 9 m grid 72
4.3 Interpretation and discussion of magnetic data 80

CHAPTER 5: PALAEOMAGNETISM ... 82

5.1 Magnetism in Rocks ... 82
 5.1.1 Types of Magnetization ... 82
 5.1.2 Natural Remanent Magnetism .. 83
5.2 Previous palaeomagnetic studies in the Vredefort structure 85
5.3 Palaeomagnetic results of the samples over the 9 m x 9 m grid 88
 5.3.1 Anisotropy of magnetic susceptibility 89
5.4 Interpretation of palaeomagnetic data (current study) 92

CHAPTER 6: MAGNETIC MODELING AND DISCUSSIONS 94

6.1 Modelling of magnetic data: Introduction 94
6.2 Two dimensional modeling of the detailed magnetic data over the transition zone ... 95
6.3 Three-dimensional modeling of the 9 m x 9 m grid 105
 6.3.1 Modelling procedure .. 105
 6.3.2 Interpretation of the three dimensional magnetic modelling results 110
6.4 Discussion and implications ... 111

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK ... 115
LIST OF FIGURES

Figure 1.1. Geological map of the Vredefort structure and northwest-southeast section across it..3
Figure 1.2. Aeromagnetic anomaly map of the Vredefort dome..........................4
Figure 1.3. Detailed geological anomaly map of the amphibolite-granulite transition..9
Figure 2.1. The gasoline-powered portable drilling apparatus, water pump and drill bit used to collect palaeomagnetic samples..13
Figure 2.2. Cesium vapour magnetometer, showing the GPS, and sensor................16
Figure 2.3. The three axes fluxgate magnetometer used in the study....................17
Figure 2.4. Typical diurnal variation for a day..19
Figure 3.1. Synthetic magnetic data for testing upward-continuation..................25
Figure 3.2. The total magnetic anomaly due to the synthetic model given in Table 3.2...31
Figure 3.3. AGC applied to profile A-A’...32
Figure 3.4. AGC applied to profile B-B’...32
Figure 3.5. The total magnetic anomaly, vertical derivative, and the x and y horizontal derivatives due to the synthetic models..39
Figure 3.6. Depth estimate using a 55 m window size and tolerance of 0.75 for different structural indexes ...41
Figure 3.7. Depth estimate using a structural index SI = 0.25 and tolerance of 0.75 for different window sizes...43
Figure 3.8. Depth estimates using the local wavenumber method.......................45
Figure 3.9. Local wavenumber depth estimates for the synthetic profile extracted from Fig. 3.5...47
Figure 3.10. Standard Euler deconvolution depth solutions for the two bodies using a 7x7 window size...48
Figure 3.11. Standard Euler deconvolution depth solutions for the two bodies using an 11x11 window size...49
Figure 4.1. Line spacing and magnetic intensity for the detailed ground magnetic survey across the amphibolite-granulite transition.................................52
Figure 4.2. Detailed IGRF-corrected ground magnetic anomaly map over the amphibolite-granulite transition..54
Figure 4.3. Geology of the region superimposed on the IGRF magnetic anomaly map...57
Figure 4.4. Magnetic profiles for traverses shown in Fig. 4.3 and their corresponding upward continued profiles compared with cross-sections through the underlying geology..58
Figure 4.5. Upward continued data ..61
Figure 4.6. Comparison of the upward continued profiles from Fig. 4.3
and their corresponding aeromagnetic profiles…………………………………62

Figure 4.7. Calculated variance of the magnetic data…………………………..63

Figure 4.8. Detailed IGRF-corrected ground magnetic anomaly map
over the amphibolite-granulite transition………………………………………65

Figure 4.9. Sequence of images illustrating the automatic gain control
method for highlighting subtle features…………………………………………66

Figure 4.10. Detailed IGRF-corrected ground magnetic anomaly map
over the amphibolite-granulite transition showing the 5 profiles across
the NE trending lineament that were selected for depth estimation…………..68

Figure 4.11. Depth estimate for profile 1 across the south end of the NE-SW
lineament using the Euler deconvolution with SI = 1 and local
wavenumber methods…………………………………………………………69

Figure 4.12. Magnetic survey over the BIF …………………………………..…71

Figure 4.13. IGRF corrected magnetic anomaly map over the BIF……………72

Figure 4.14. Metamorphic foliation across the 9 m x 9 m grid.………………73

Figure 4.15. Magnetic survey over the 9 x 9 m grid used for the
palaeomagnetic study in the granulites…………………………………………74

Figure 4.16. Magnetic images of the 9 m x 9 m grid in the granulites at a
height of 0.55 m………………………………………………………………76

Figure 4.17. Magnetic images of the 9 x 9 m grid in the granulites at a
height of 1.20 m………………………………………………………………77

Figure 4.18. Magnetic images of the 9 x 9 m grid in the granulites at a
height of 2.55 m………………………………………………………………78

Figure 4.19. Extended survey over the 9 m x 9 m grid………………………79

Figure 5.1. NRM directions for the 100 samples collected over the
9 x 9 m grid……………………………………………………………………89

Figure 5.2. Results of the anisotropy of magnetic susceptibility of the
100 samples……………………………………………………………………92

Figure 6.1. Detailed IGRF-corrected ground magnetic anomaly map
over the amphibolite-granulite transition……………………………………97

Figure 6.2. Magnetic anomaly of profile 1 and schematic
representation of the source body………………………………………………98

Figure 6.3. An inversion model of the data taken at 10 m intervals and at
40 m upward continued altitude, along profile 1……………………………102

Figure 6.4. Magnetic inversion of profile 2……………………………………103

Figure 6.5. Magnetic inversion of profile 3……………………………………104

Figure 6.6. Magnetic modeling over the 9 x 9 m grid at 0.55 m height………107

Figures 6.7. Comparison between measured palaeomagnetic
magnetization and magnetization determined for the model using the
directions of the NRMs…………………………………………………………108

Figure 6.8. Magnetization recovered from modelling using the coherent
direction from the pseudotachylites……………………………………………109
LIST OF TABLES

Table 3.1. Geometrical and magnetic parameters of the synthetic sources generating the total-field magnetic anomaly of Fig. 3.1..........................24
Table 3.2. Geometrical and magnetic parameters of the synthetic sources generating the total-field magnetic anomaly of Fig. 3.2..........................29
Table 3.3 Summary of depth estimates using the local wavenumber and Euler deconvolution methods for the synthetic profile data.........................49
Table 4.1. Depth determination to top of the south end of the NE-SW linear feature using Euler deconvolution and the local wavenumber method...70
Table 6.1. Two-dimensional modelling results for profiles 1-3.........................100