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Abstract 

Recent advances in the optimization of fixed time traffic signals have demonstrated a move 

towards the use of genetic algorithm optimization with traffic network performance evaluated via 

stochastic microscopic simulation models. This dissertation examines methods for improved 

optimization. Several modified versions of the genetic algorithm and alternative genetic 

operators were evaluated on test networks. A traffic simulation model was developed for 

assessment purposes. Application of the CHC search algorithm with real crossover and mutation 

operators were found to offer improved optimization efficiency over the standard genetic 

algorithm with binary genetic operators. Computing resources are best utilized by using a single 

replication of the traffic simulation model with common random numbers for fitness evaluations. 

Combining the improvements, delay reductions between 13%-32% were obtained over the 

standard approaches. A coding scheme allowing for complete optimization of signal phasing is 

proposed and a statistical model for comparing genetic algorithm optimization efficiency on 

stochastic functions is also introduced. Alternative delay measurements, amendments to genetic 

operators and modifications to the CHC algorithm are also suggested.
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 y = Value of particular decision variable in the problem space in second individual 

 

( )xD  = Normalized value of decision variable x 

 

l = Number of bits in the binary encoding of decision variable 

 

ix  = Value of i’th bit encoding binary decision variable in first individual 

 

iy  = Value of i’th bit encoding binary decision variable in second individual 

 

bN  = Total length of binary string in the binary encoding 

 

alNRe  = Number of real decision variables 
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BinaryN  = Number of decision variables that utilize a binary encoding. 

 

r = CHC divergence rate 

 

κ  = Constant in the range [ ]1,0  

 

iκ  = Normalized value of the i’th real decision variable in the best individual 

 

Appendix Six – Statistical model for comparing genetic algorithm performance 

 

jiX ,  = Extended network delay on j’th independent replication of the best individual after  

     2000 function evaluations on the i’th replication of the genetic algorithm in  

    Table 22 (seconds/vehicle) 

 

iθ  = Population mean of extended network delay for the best individual after 2000  

     function evaluations on the i’th replication of the genetic algorithm in Table 22  

   (seconds/vehicle) 

 

*

in  = Estimate of the number of replications to perform to ensure that the sample mean of  

                extended network delay is within 2 seconds of iθ  with 95% confidence 

 

( )αα −=−− 11001,1nt  Percentile of the t-distribution with 1−n  degrees of freedom 

 

iX  = Sample mean of { }20
1, =jjiX   

 

2

iS  = Sample variance of { }20
1, =jjiX   
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( )θπ  = Probability density function of Translated Gamma distribution 

 

τµα ,,  = Parameters of the Translated Gamma distribution 

 

ba,  = Parameters of the linear variance model 

 

X, Y = Particular genetic algorithm algorithms 

 

N = Number of independent runs of genetic algorithm 

 

n = Number of independent replications of the best individual 

 

i = Index of independent run of genetic algorithm 

 

j = Index of independent replication of best individual 

 

F = Number of objective function evaluations 

 

jFiX ,,  = Extended network delay on the j’th independent replication of the best individual after  

                F  function evaluations on the i’th independent run of genetic algorithm X 

 

iθ  = Population mean of extended network delay of the best individual after F function  

               evaluations on the i’th independent run of genetic algorithm X 

 

FXFXFX ,,, ,, τµα  = Parameters of the Translated Gamma distribution governing iθ  

 

),,( τµαΓ   = Translated Gamma distribution 

 

jix ,  = Realized or observed values of the jiX ,  
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ix  = Vector formed by { }n
jjix 1, =
 

 

X = Matrix formed by the vectors ix  

 

( )τµα ,,,ii xL  = Likelihood of observing the sample ix  

 

( )τµα ,,,ii xl  = Log-likelihood of sample ix  

 

( )τµα ,,,Xl  = Total log-likelihood of the sample X 

 

( )
ijixf θ,  = Probabilitity density function of jix ,  given iθ  

 

z = Dummy variable in integration 

 

( )dcI ,,,, τµα  = Integral requiring numerical evaluation 

 

2χ  = Test statistic 

 

2

1χ  = Chi-squared distribution with one degree of freedom 

 

m = Number of paired values of sample mean and sample variance of extended network 

     delay, from all genetic algorithms and all output intervals 

 

ix  = Sample mean of extended network delay of the i’th sample based on the n independent  

   replications 

 

iy  = Sample variance of extended network delay of the i’th sample based on the n  

   independent replications 
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iθ  = Population mean of extended network delay of the i’th sample 

 

y  = Vector formed by { }iy  

 

( )bayL ,,  = Likelihood of y  

 

),,( bayl  = Log-likelihood of y  

 

K = Constant independent of a and b 

 

Appendix Seven – Experimental Output 

 

X = Particular genetic algorithm 

 

F = Number of objective function evaluations 

 

FX  = Mean of the sample means of extended network of the best individual after F   

               function evaluations over the independent runs of genetic algorithm X 

 

α  = Blend crossover parameter 

 

PopN  = Population size
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1 Chapter One – Introduction 

1.1 General Introduction 

Vehicular traffic passing through an intersection must to be controlled in order to overcome the 

conflicts arising between different directional flows of traffic. The installation and operation of 

traffic lights provide an effective method of controlling traffic when vehicle flows are relatively 

high 
(1)
. A problem the traffic engineer then faces is to determine the timing of these traffic lights 

so as to optimize the flow of traffic. The latest research into traffic signal optimization 

demonstrates a move towards the use of stochastic simulation models for the evaluation of 

alternative signal timing policies and genetic algorithm optimization procedures
1
. 

 

Stochastic traffic simulation models require a high level of detail to realistically predict the 

impact of a particular signal timing plan. Vehicles are modelled individually and their status and 

behaviour are updated periodically. Consequentially, these models are computationally 

expensive, placing a limit on the number of signal timing policies that can be examined in the 

genetic algorithm search. In this dissertation we examine several untested modifications to the 

genetic algorithm optimization procedure in the search for more effective optimization strategies. 

The amendments tested include alternative search algorithms, genetic operators, problem 

encodings and tunings of the parameters governing the search process. 

 

In this chapter, we first give some background on the different methods of signal operation and 

the commonly used optimization criteria. The limitations to the scope of the study are discussed 

next. We then outline the objectives of the study and finally, we discuss the structure of this 

dissertation.

                                                 
1
 The literature will be discussed in detail in later chapters.  
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1.2 Background 

1.2.1 Traffic signal operation (2, 3) 

A breakdown of the different methods of operating traffic lights is given below: 

 

Off-line    On-Line 

Fixed Time    Traffic Actuated 

Multi-Dial    Centralized Computer Controlled 

 

Off-line operation 

In off-line operation, traffic signals utilize pre-computed timing plans. Fixed time systems run 

continuously with a singe pre-specified timing plan. An improvement over this approach can be 

obtained by using multi-dial systems which allow for separate timing schemes to be employed at 

different times of the day. A common approach with multi-dial systems is to have three separate 

timing plans: one for the morning rush period, one for afternoon rush period and one for average 

conditions. The transition from one dial to another is carried out at fixed times during the day. 

 

On-line operation 

On-line systems can adjust timing plans based on actual traffic flows. Real-time vehicle flow 

measurements are obtained from vehicle detectors. With traffic actuated systems, each 

intersection
2
 is controlled in isolation based on the detector information. Better coordination can 

be obtained by controlling the entire network simultaneously and this is accomplished with the 

centralized computer controlled approach. 

1.2.2 Optimization criteria 

The following measures are typically used as indicators of performance when evaluating signal 

timing schemes 
(4)
: 

• Vehicular delay 

• Number of vehicle stops 

                                                 
2
 In this dissertation, it is assumed that all intersections are controlled by traffic signals. 
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• System throughput 

• Capacity 

• Queue lengths 

• Fuel consumption 

• Vehicle Emissions 

 

Optimal signal settings are obtained by minimizing or maximizing one, or a combination of the 

above measures. The most commonly used criterion is delay. Typically, two different types of 

delay are considered 
(5)
: 

• Stopped delay: This is the total time spent by a vehicle in a stationary queue. 

• Control delay: This is the difference between the actual travel time and the uninterrupted 

travel time. It includes the delay from deceleration, stopped delay, queue move-up time 

and acceleration delay. 

1.3 Study limitations 

This dissertation will be limited to the consideration of off-line traffic signal optimization, in 

terms of both literature review and empirical work. The findings may still be applicable to  

on-line optimization models which utilize genetic algorithms. We will not consider models that 

cater for alterations in demand or changes to routing patterns induced by different signal timing 

policies. 

1.4 Objectives 

Our goals in this study are: 

• Provide an up-to-date literature review on optimization methodologies for fixed time 

traffic signals. 

• Review the literature on genetic algorithms and identify modifications that offer 

potential for improving optimization of traffic signals. 

• Develop a microscopic traffic simulation model for evaluating the quality of individual 

timing plans. 

• Develop a statistical model for the comparing the mean search efficiency of alternative 

optimization policies. 
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• Test the modifications empirically on a test-bed of signal networks, identifying the 

amendments that contribute to improved search efficiency. 

1.5 Organization of material 

Chapters 2, 3 and 4 provide a summary of the analytical and computerized models that have been 

developed to solve the traffic signal timing problem. While not claiming to exhaustively cover 

all the literature, this summary aims at covering the major contributions with an emphasis on 

methods that have been used in practice to obtain signal settings. Chapter 2 details the 

contributions for a single intersection. The more general problem for a network of intersections 

is then discussed in chapter 3. The methods discussed in these two chapters apply to 

undersaturated conditions where
3
: 

• Traffic flow levels are “low” 

• Mean traffic flow levels are constant over time 

 

The case of heavy traffic flows or oversaturated conditions is discussed in chapter 4. 

 

In chapter 5 we give an overview of the genetic algorithm search mechanism. We introduce the 

alternative algorithms, search operators and problem encodings that we will be testing together 

with the unanswered questions surrounding the setting of certain search parameters. We also 

review the ongoing applications of genetic algorithms in traffic signal optimization. In chapter 6 

we discuss the research questions. In chapter 7, we elaborate on the research methodology. The 

results of the empirical work are given in chapter 8. A summary of the findings and ideas for 

further research are given in chapter 9. 

 

This dissertation also contains several appendices. We make reference to these appendices in the 

main chapters. The dissertation also includes a compact disc with the code listings for the 

computer programs that were written for performing the experiments. 

 

                                                 
3
 A formal definition is given in Chapter 2. 
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2 Chapter Two – Undersaturated Conditions,  

Single Isolated Intersection 

2.1 Introduction 

This chapter covers research on methods that produce optimal signal timings for an isolated 

intersection in undersaturated conditions. The intersection is “isolated” in the sense that there are 

no other junctions in close vicinity. We first introduce some terminology and then discuss the 

basic traffic model used by the majority of researchers. Contributions to the derivation of an 

optimal signal plan for a single intersection problem will then be discussed. Additional 

terminology will be introduced as required. 

2.2 Terminology 

2.2.1 Vehicular terminology (2, 6) 

Headway: Time interval between the fronts (or rears) of two successive vehicles measured at a 

fixed point on a road. 

 

Traffic Movement: As a vehicle approaches a signal controlled junction, it selects a lane 

according to the manoeuvre to be performed. If the same manoeuvre can be performed from 

more than one lane, those vehicles will in effect form a single queue. The segment of traffic 

using a set of lanes shared in this way is called a stream or movement. 

 

Arrival Rate or Flow (q): This is the average rate at which vehicles arrive on a particular stream. 

2.2.2 Traffic signal terminology (5, 6) 

Signal Group: Set of traffic streams controlled as a single unit by the controller. 

 

Stage or Phase: Period during which signal indications remain constant for all groups
4
. 

                                                 
4
 Some authors differentiate between stage and phase. For all sections of this dissertation excluding 7.6, we use the 

terms interchangeably. 
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Each stage is characterized by the following two parameters: 

 

 Green Time: The length of time the movements are given right of way is called the  

green time or the display green time 

 

Inter-Green Time: Time from the end of green of a particular phase to the beginning of 

green on the next phase. The inter-green time is made up of the amber and all-red 

periods. 

 

Cycle Time (C): Sum of all phase green and inter-green times. 

 

Green Split: The set of green time allocations for all signal groups. 

 

Phase Sequence: Ordering of stages in a cycle, starting from some arbitrary stage. 

2.3 The Traffic Model 

The model describing vehicle behaviour at a signal is captured by the assumptions of the arrival 

and departure process. The assumptions underlying these processes determine queue evolution 

for each traffic movement.  

2.3.1 Arrival process 

Adams 
(7)
 was the first to demonstrate that the number of vehicles in light traffic passing a point 

in equal intervals of time follows a Poisson distribution. This corresponds to vehicle headways 

that are exponentially distributed. This result has been confirmed in various other studies such as 

(8). The analytical tractability of this model has led to wide adoption of the hypothesis that 

vehicle arrivals on a particular approach at an isolated intersection occur according to a Poisson 

Process with intensity equal to the arrival rate q. 

2.3.2 Departure process (5, 9) 

Studies have demonstrated that after a signal has turned green, allowing a queue of vehicles to 

start from rest, the flow across the stop-line increases rapidly to a maximum rate. The departure 
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rate remains fairly constant at this maximum rate until either the queue has been entirely 

discharged or the green period ends. This maximum departure rate is called the saturation flow 

rate (s). Vehicles arriving at a green signal when no queue is present are not delayed.  

Figure 1 demonstrates this process graphically for a queue that cannot be fully serviced in a 

single cycle. The departure rate is lower during the first few seconds as a result of the reaction 

time of drivers and the time needed for vehicles to accelerate to normal running speeds. When a 

queue is still present at the end of the green period, the departure rate does not immediately drop 

to zero as vehicles may still cross the intersection during the amber and all-red periods. 

 

A simplified approximation can be obtained by replacing the departure flow curve in Figure 1 by 

a rectangle with height s and the same area
5
 as illustrated in Figure 2. The width of the rectangle 

of the rectangle is called the effective green time (g). With the simplified departure process, it is 

assumed that vehicles may only depart during effective green at the saturation flow rate. The 

time difference between the start of display green and effective green is called the starting loss 

and allows for the lower initial departure rate at the onset of display green. The time interval 

between the end of display green and effective green is called the end gain and allows for the 

additional departures during the amber and all red periods. Figure 1 and Figure 2 illustrate the 

relationship between the various quantities graphically.

                                                 
5
 The area under each curve represents the number of vehicle departures. 



 Page 7 

F
lo
w

Red AmberGreen Red

s

 

 

Figure 1: Departure Process 
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Figure 2: Simplified Departure Process 

2.3.3 Opposed-turning movements (2, 10, 11) 

Suppose the traffic streams illustrated in Figure 3 receive green simultaneously. 

End Gain Starting Loss 
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Figure 3: Opposed-turning movement
6
 

 

The vehicles arriving on approach S and turning left must yield to through traffic arriving from 

approach N. The turning vehicles may only proceed when there is a suitable “gap” in the 

oncoming traffic stream. Vehicles that have crossed the stop line may turn during the amber and 

all-red periods. These traffic streams are known as opposed turning movements. The behaviour 

of vehicles in these streams can be described using gap-acceptance logic (see section A1.3.8). As 

an approximation, these movements can be modelled by applying the same assumptions for the 

departure process discussed in 2.3.2 with a reduced value for the saturation flow and an 

extension of the effective green time
7
.  

2.3.4 Queue evolution 

The process of queue formation and dissipation for each stream can be analyzed using queuing 

theory 
(2)
. Queuing theory describes the behaviour of queues of customers as they arrive 

according to some specified statistical arrival distribution at a server (or group of servers) 
(12, 10)

. 

 

For the signal optimization problem, the vehicles arriving at the intersection are the customers 

and the traffic signal is the server. The inter-arrival times of the customers (vehicles) correspond 

to the vehicle headways which are assumed to have an exponential distribution. Vehicles are 

                                                 
6
 The figure is drawn for the right-hand rule of the road. All illustrations and terminology introduced throughout this 

dissertation apply to traffic operating under the right-hand rule of the road. 
7
 Although such an approximation may not be sufficiently realistic, a discussion of the shortcomings in the 

methodology of analytical models for undersaturated isolated intersections is not the intended purpose of this study. 

S 

N 
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serviced during the effective green period. The service times for queued vehicles are assumed to 

be constant, equal to 1−s , the inverse of the saturation flow rate. Vehicles arriving when no 

queue is present are served instantaneously. There is no service during the red period. 

2.4 Webster’s formula 

Now that the commonly used traffic model has been introduced, we can discuss Webster’s 

average delay formula 
(13)

. Some additional terminology is first required. 

2.4.1 Additional terminology (2) 

Degree of saturation (x): The degree of saturation for a particular movement is defined as: 

gs

qC
x =             

(2-1) 

The numerator is the mean number of vehicles arriving per cycle. The denominator is the 

maximum number of vehicles that may pass through the intersection per cycle. 

 

Capacity: The arrival rate that produces 1=x  i.e. 
C

gs
q = . 

 

Undersaturated conditions: Corresponds to traffic conditions where the arrival rate for all 

movements is below capacity. 

 

Oversaturated conditions: If the arrival rate is above capacity for any of the streams, then the 

intersection is said to be oversaturated. 

 

Critical movement: During a particular phase, more than one movement may receive right of 

way. The movement with the largest degree of saturation is called the critical movement for that 

phase. 

 

Critical degree of saturation: The degree of saturation for the critical movement. 
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2.4.2 Computing steady-state delay 

As already mentioned, queuing theory can be used to analyze the system and compute 

performance measures such as delay. Results are generally most easily obtained for steady-state 

quantities 
(12)

. The steady-state vehicle delay (d) is the stopped delay a vehicle would experience 

on average, assuming that the system has been operating for an infinite amount of time. Steady-

state delay may only be considered as a performance measure in undersaturated conditions as 

queues of infinite length would develop for volumes above capacity. When referring to steady-

state delay in undersaturated conditions, we will use the term interchangeably with average 

delay. 

 

Derivation of an exact equation for the average delay is complex. This is due to the non-

homogenous nature of the departure process
8
. An exact expression can be obtained in terms of 

the complex roots of certain transcendental equations 
(2)
.  

 

The difficulty in obtaining a simple, easily computable expression for the average delay 

prompted researchers to look for approximations and bounds 
(2)
. Webster 

(13)
 used simulation to 

calibrate an approximate formula for computing average delay at a movement level which is 

given below
9
: 
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(2-2) 

The expression was not derived entirely empirically. The first term of equation (2-2) is the 

expression for average delay assuming deterministic arrivals and a continuous approximation to 

the arrival and departure process 
(15)

. The second term is the steady state delay for a queuing 

system with random arrivals and departures at constant intervals throughout the cycle 
(12)

. The 

third term is an empirical correction term. A simplified version of the formula can be obtained by 

                                                 
8
 The departure rate is a function of the traffic signal indication which changes over time. 

9
 Other approximate expressions have been obtained. Numerical differences between the various formulae have been 

found to be small 
(14)

. 
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ignoring the third term and multiplying the result by 0.9 
(13)

. This simplified form is often 

referred to as Webster’s two-term delay formula. 

 

The total intersection delay is obtained by multiplying the average delay for each movement by 

the corresponding arrival rate and summing over all movements. 

2.5 Deriving the Optimal Timing Plan 

2.5.1 Two-phase intersection 

Webster 
(13)

 considered a single isolated intersection with no turning movements as illustrated in 

Figure 4. 

 

 

 

Figure 4: Isolated intersection with no turning movements 

 

Assuming two phase control with two groups
10
, he applied his two-term delay formula and 

demonstrated that the optimal green split (in terms of minimizing intersection delay) for any 

given cycle length can be approximated by allocating green time so as to equalize critical 

degrees of saturation. We demonstrate how this result can be used to compute the optimal green 

split via an example: 

                                                 
10
 N and S movements in one group, E and W movements in the other. 

W 

S 

E 

N 
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Let iq  = arrival rate (vehicles/hour) for movement i, 

 SNg /  = effective green time for N and S movements and 

 WEg /  = effective green time for E and W movements. 

 

Suppose that 300,150,400,600 ==== WESN qqqq  and that the saturation flow rate for all 

movements is identical and equal to s. For these inputs, the N movement is the critical movement 

during the SN / green phase and the W movement is the critical movement during the WE /  

green phase. Equate critical degrees of saturation we get: 

sg

Cq

sg

Cq

WE

W

SN

N

//

= . 

            (2-3) 

Manipulating this equation we obtain 2
/

/ ==
W

N

WE

SN

q

q

g

g
. Thus the optimal green split is obtained 

by allocating exactly twice as much effective green time to the SN / green phase than 

the WE / green phase. 

 

We see that Webster’s method 
(13)

 provides a simple procedure for computing the optimal green 

split. He also derived an approximate formula for the optimal cycle time. 

2.5.2 More complicated junction layouts, multiphase sequencing and 

vehicle mix 

Allsop 
(10)

 extended Webster’s work to provide optimal signal settings for any number of 

approaches and stages. Webster’s two-term delay formula is used to compute the average delay 

for each movement in a mathematical programming formulation of the problem. The 

mathematical programming approach accommodates constraints on the cycle length and 

effective green times. The minimum delay cycle length and green splits are obtained using an 

iterative method similar to the method of feasible directions. 
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For movements that receive green in more than one stage, Yagar 
(11)

 extended Allsop’s 

formulation to allow for differing saturation flows during each stage
11
. He suggested an 

alternative solution method via convex programming. 

 

Traffic composition is a mix of passenger cars and heavier vehicles such as buses and trucks. 

The saturation flow for heavy vehicles is usually lower than that of passenger cars. The different 

types of vehicles can be accounted for by using a weighted average of the corresponding 

saturation flows, where the weightings applied are the observed proportions of each vehicle  

type 
(5, 9)

. 

2.5.3 Optimization of stage composition and sequence 

The methods of Webster 
(13)

, Allsop 
(10)

 and Yagar 
(11)

 are called stage based approaches in the 

sense that they require the stage structure and sequence of the controller to be pre-specified 
(6)
. 

For junctions with many approaches and traffic streams, the composition and order of the signal 

stages can significantly impact the best achievable performance. In such cases, optimization of 

these control parameters together with the cycle length and green splits can be beneficial. This is 

called the group-based approach to signal optimization. The optimization problem can be treated 

in two steps 
(16)

: 

• First, an enumeration of all possible “valid” control schemes is obtained
12
. 

• Optimal cycle length and green splits are computed for each of the possible control 

sequences using one of the stage based methods. The optimal sequence is identified from 

the enumeration. 

 

Gallivan and Heydecker 
(17)

 noted several problems with this sequential approach and devised a 

modified optimization method which could be used to evaluate all possible control sequences as 

well as reduce the total number of control sequences to be considered 
(6, 17, 18)

. Improta and 

                                                 
11
 This is needed for opposed-turning movements which receive both a protected phase as well as a phase where 

they have to yield to opposing traffic. The saturation flow rate will be higher in the protected phase. 
12
 A control sequence is “valid” if  

(16)
: 

• Each signal group receives a green signal indication at least once during a cycle 

• As many groups as possible should receive green simultaneous, provided there is no conflict 

• Each group should have a single continuous period of green within a single cycle (i.e. stages which contain 

a common signal group should appear consecutively in the cycle) 

    Reference (16) provides an overview of literature on methods that generate such sequences. 
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Cantarella 
(16)

 devised an alternative approach which simultaneously optimizes the stage 

composition, stage sequence and green timings. Binary integer variables are used to represent the 

order in which groups have right of way. Branch and bound techniques are applied to generate 

the optimal solution. 

2.5.4 Optimization criteria besides delay 

While delay has generally been the most commonly used optimization objective, other measures 

have also been considered, either directly or via constraints. Allsop 
(19)

 and Yagar 
(20)

 have 

devised linear programming formulations to maximize reserve capacity. The reserve capacity is 

the largest factor by which arrival rate for all movements can be increased while still maintaining 

operation below capacity. The methods discussed in 2.5.3 can be applied to either delay 

minimization or reserve capacity maximization. For the case of delay minimization, these 

methods allow for constraints on the maximum allowable degree of saturation for each stream. 

Ohno and Mine 
(21, 22)

 considered minimization of the intersection degree of saturation which is 

the maximum degree of saturation over all approaches.  

 

In addition, there are several computer packages available that consider both average delay and 

average number vehicle stops
13
. Signal settings that minimize delay and stops in combination 

with other criteria listed in section 1.2.2 are obtained using numerical methods 
(23, 24, 25)

. 

                                                 
13
 The steady-state number of vehicle stops are computed using approximate formulae such as those proposed by 

Webster 
(13)

 or Akcelik 
(5)
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3 Chapter Three – Undersaturated Conditions, 

Signalized Networks 

3.1 Introduction 

Considering the difficulty in obtaining an exact expression for the steady-state delay for a single 

intersection, it is not surprising that a tractable analytical model for a network of intersections 

with stochastic inputs has not yet been developed. In this chapter, we discuss the methods that 

have been used in practice to derive timings schemes for networks of traffic signals. The 

approaches can be broken down into three different classes: 

• Bandwidth methods 

• Delay-based methods 

• Hybrid methods 

 

Before we discuss the various approaches, some additional terminology is required to 

supplement that introduced in chapter 2. 

3.2 Network Terminology (9) 

Relative Offset: Together with the decision variables, cycle time, green split and stage structure 

and sequence, a relative offset must be specified for each traffic signal in the network. The 

relative offset determines the starting time for a particular stage of operation for a particular 

traffic signal with reference to some specified point in time in the cycle. Alternatively, the 

reference time point for a particular signal can be the starting time of a particular stage at an 

adjacent signal. The relative offsets are sometimes defined with respect to the mid-point of 

stages rather than the beginning. 

 

It is important that the relative offsets for all signals in the network remain fixed from cycle to 

cycle in order to maintain a fixed synchronization. This can be achieved by assigning a common 
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cycle length to all signals in the network
14
. All network optimization models discussed in this 

dissertation make use of this assumption
15
. 

 

Links and Nodes: Traffic networks are usually represented diagrammatically using links and 

nodes. The links represent streets and the nodes are the intersections. Two-way streets are 

represented by two links, one for each direction of travel. 

 

Upstream and Downstream: For a particular traffic movement, the direction from which the 

traffic originates is called the upstream direction. The direction of travel of the stream is called 

the downstream direction. 

 

Arterial Network: An arterial network is a traffic network consisting of a main street that 

intersects several side streets. Generally, the majority of traffic flows along the main street. 

 

Grid Network: A grid network consists of a group of parallel streets which are orthogonal to and 

intersect another set of parallel streets. The traffic network structure in a city centre is an 

example of a grid network. 

3.3 Bandwidth methods 

3.3.1 Introduction (1, 2, 26) 

This is the oldest network synchronization scheme and is still widely used. The method is 

generally applied to arterial networks such as the one illustrated in Figure 5.

                                                 
14
 Synchronization can also be achieved by the selection of cycle lengths which have a common multiple. 

15
 This requirement is generally always applied in off-line signal control. With responsive traffic control (see section 

1.2.1), synchronization need not remain fixed and a common cycle time is not always imposed.  
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Figure 5: Arterial network 

 

The bandwidth approach aims to take advantage of the following traffic phenomena: 

• The on/off nature of traffic signals tends to create bunches or platoons of vehicles. 

• The platooning effect is accentuated on arterials with predominantly through traffic and 

signalized intersections at frequent intervals. 

 

In such cases, it seems reasonable to set the offsets of the signals in such a way so as to allow 

continuous progression of platoons through successive signals along the arterial without 

stopping. Figure 6 illustrates the problem for the arterial network in Figure 5 via a space-time 

diagram.

 

 

Figure 6: Space-time diagram for main arterial 

West East 1 2 3 4 
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The numbering on the y-axis corresponds to the numbered intersections in Figure 5. The 

diagonal arrow represents a vehicle heading East on the arterial, travelling at a constant design 

speed. This vehicle will not have to stop at any of the intersections. This is true for any vehicle 

passing between the two diagonal lines and travelling at the design speed. The horizontal 

distance between the two diagonal lines is called the bandwidth. The bandwidth or progression 

method seeks to maximize the opportunity for uninterrupted travel along the arterial by 

maximizing the bandwidth in both directions as demonstrated in Figure 7. 

 

 

Figure 7: Bandwidth in both directions 

 

Bandwidth based methods cannot optimize green time allocations
16
. An optimal cycle length can 

be obtained by running the bandwidth maximization algorithm for several cycle lengths and 

choosing the one which maximizes the bandwidth efficiency which is the ratio of the bandwidth 

to the cycle length
17
. 

                                                 
16
 This is because the maximum possible bandwidth can be obtained by allocating the maximum allowable green 

time to the arterial movements, disadvantaging cross-street movements. When utilizing the bandwidth method, 

green splits are obtained by applying Webster’s method 
(13)

 independently at each signal or some other heuristic 

method. 
17
 Alternatively Webster and Cobbe 

(27)
 suggest considering the most heavily loaded intersection as the basis for 

computing the common optimal cycle length for the entire network. 
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3.3.2 Bandwidth maximization algorithms for arterial networks 

Determining the relative offsets that maximize bandwidth is a trivial problem for one-way  

streets
18
. For two-way streets, traffic engineer’s initially used graphical trial-and-error  

procedures 
(9)
. 

 

Morgan and Little 
(28)

 were the first to develop a computational procedure for generating 

maximal equal bandwidths. Their algorithm allows for different design speeds along each link of 

the arterial. For the case of equal design speeds in both directions, they demonstrated that the 

maximal bandwidth solution is achieved in a solution where the relative offsets of adjacent 

signals is either zero or half the cycle time (where the relative offset is measured from the centre 

of red for a particular signal to the closest centre of red of an adjacent signal). This situation is 

illustrated in Figure 7. For the case of arterials with unbalanced directional flows, they provide 

an algorithm to adjust the solution to provide wider bandwidth for the direction with larger flow. 

 

Little 
(29)

 cast the progression design problem in the framework of mixed integer linear 

programming. His formulation was used as the basis for the MAXBAND 
(30)

 computer model 

which provides the following extensions: 

• Design speed on each link can be included as decision variables in the optimization 

process. 

• For multiphase signals, the optimal ordering of stages for through arterial movements can 

be determined
19
. 

• A time advance in the through band can be introduced to permit queues of stationary 

vehicles to clear the intersection before the arrival of a platoon from upstream. 

 

Relative offsets that maximize bandwidth are obtained using a branch and bound solution 

method. 

                                                 
18
 This can be demonstrated by considering Figure 6. The largest that bandwidth can be made is the shortest main 

street green which occurs at intersection 3. We can draw the diagonal lines representing this maximal bandwidth 

through the green interval for intersection 3 (These lines have slope equal to the deisgn speed). We then set the 

offsets of the other signals in such a way that the main street green interval for each signal begins where the left 

diagonal of the maximal through band starts 
(28)

.  
19
 This is incorporated into the formulation via the use of binary integer variables to represent alternate phase 

sequencing. 
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Another widely used bandwidth model is the PASSER-II model developed by Messer et al 
(31)

. 

PASSER-II uses an efficient heuristic optimization technique based on the concept of 

minimizing interference to the progression bands and has capabilities similar to MAXBAND. 

 

As already mentioned, directional bandwidths can be adjusted to account for differences in 

directional volumes. A common practice is to allocate the total bandwidth in proportion to the 

directional volumes, although more detailed weighting schemes do exist 
(32)

. However, with turn-

in and turn-out traffic at each intersection, the volumes along each direction of an arterial are not 

constant. Thus a single directional volume figure may not be appropriate. This problem was 

noted by Gartner et al 
(33)

 who developed the MULTIBAND model, an extension to MAXBAND 

that computes bandwidth separately for each directional link. The total bandwidth can be 

weighted by the flow on each link and maximized. 

3.3.3 Extensions to grid networks 

Chang et al 
(34)

 extended the MAXBAND model for application to a network of arterials
20
. The 

objective function is a weighted average of all the one-way bandwidths. A similar extension to 

the MULTIBAND model has also been developed 
(35)

. 

 

Bandwidth models define relative offsets of signals with respect to adjacent signals. In the case 

of grid networks, this requires the additional constraint that the sum of relative offsets for each 

loop in the network is an integer multiple of the cycle length 
(36)

. This constraint is needed to 

ensure that the synchronization stays fixed. These are called the network closure constraints 
(36)

. 

The large number of additional integer constraints in the mixed integer linear program increase 

the computation time of the branch and bound algorithm to the point where the models can no 

longer be practically applied 
(37)

. Several heuristic algorithms have been proposed to improve 

computational efficiency 
(37, 38, 39)

. 

                                                 
20
 As in the case of single arterials, the green allocations for each signal must be specified. 
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3.4 Delay-based methods 

Unlike bandwidth methods which rely on the assumption that an increase in bandwidth 

corresponds to lower delays and stops, delay-based methods aim to achieve these objectives 

directly
21
. These methods can be classified into one of two types 

(9)
: 

• Local optimization methods 

• Global optimization methods 

 

Before we proceed with a discussion of these two methods, we first discuss the general 

modelling methodology. 

3.4.1 Modelling methodology (40, 41) 

 

Macroscopic Models 

The majority of delay-based models apply a macroscopic approximation to total vehicle flow. 

The flow at any point on a link is represented by a single continuous variable. Vehicles enter the 

network continuously from the boundaries. The entry flow is deterministic and occurs at a 

uniform rate equal to the arrival rate. Figure 8 illustrates flow at the entry point of an internal 

link. 

 

                                                 
21
 Delay-based methods usually incorporate delay in combination with one or more of the other measures listed in 

1.2.2. 
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Figure 8: Flow at entry of an internal link 

 

Traffic entering the link constitutes the vehicles that have departed from upstream links. The 

signal indications given in the figure are for through traffic entering the link
22
. The large 

concentration of queued vehicles that depart together is called a platoon. Due to the different 

speeds of individual vehicles, the platoon disperses as it moves further downstream. Figure 9 

illustrates the effect this may have on the platoon pattern. 

 

                                                 
22
 The amber and all-red periods have not been labelled for the sake of making the illustration more legible. 
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Figure 9: Flow at a point further downstream 

 

This phenomenon is known as platoon dispersion and is essential to the realistic modelling of 

traffic behaviour along links in macroscopic models. 

 

Microscopic models 

Microscopic models model traffic behaviour in larger detail. Vehicles are modelled individually 

and their behaviour is determined by car-following and gap-acceptance logic (Appendix A1 

provides a discussion of these topics). Vehicle flows into the network from the boundaries are 

stochastic and the behaviour of individual vehicles includes stochastic components. 

 

Analytical formulae 

Another alternative is to base delay computations on analytical formulae such as Webster’s delay 

formula 
(13)

. These delay formulae are usually applicable to isolated intersections. However, the 

assumption of random arrivals is not applicable on internal links of the network where 

platooning effects create a more regular arrival pattern. Adjustments to account for the quality of 
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progression of delay are made by revising delay estimates downward in the case of favourable 

progression and increasing the delay assessment when progression is poor. 

3.4.2 Local optimization methods 

 

Introduction 

With local optimization, an attempt is made to simplify the network optimization problem into a 

series of single intersection optimization problems. In order for this reduction to occur, the 

following assumptions are required: 

• The volume of traffic flowing along any link is constant (i.e. independent of signal 

settings) 

• The delay on any link is a function of the settings of the signals at the two ends of the 

link. 

 

Two noteworthy methods are the Combination method developed by Hillier 
(42)

 and the MITROP 

model developed by Gartner, Little and Gabbay 
(43)

. Both methods are limited to the optimization 

of networks with two-phase signal operation. 

 

Combination method (42, 44, 45, 46) 

The combination method is limited to the optimization of relative offsets. A common cycle time 

and green splits at each intersection must be specified. The objective function to be minimized is 

a linear combination of average delay and stops. For each link, the delay and number of stops for 

a single representative cycle are computed either by analytical formulae or via a crude 

macroscopic simulation
23
. The relative offsets that minimize the objective function can be 

obtained by dynamic programming or the branch and bound method. 

 

MITROP model (43) 

MITROP simultaneously optimizes cycle time, green splits and relative offsets using delay 

minimization as the objective. The model uses a macroscopic approximation to vehicle flow with 

                                                 
23
 The analytical formula assumes constant travel time between nodes. The simulation uses platoon dispersion and is 

more realistic. 
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a rectangular platoon dispersion function
24
. The computed delay for the generated deterministic 

flow is adjusted to allow for the fact that arrivals are in fact stochastic. The adjustment made is 

similar to the adjustment to the deterministic delay term in Webster’s formula 
(13)

 (see 2.4.2). The 

model is formulated as a mixed integer convex program. The optimal values of the decision 

variables are obtained by the method of branch and bound. 

 

Shortcomings of the local optimization approach 

The most serious limitation of local optimization models is the assumption that the performance 

measure on any link is a function of the settings of the signals at the two ends of the link. This 

assumption is known to be poor, particularly in conditions of low traffic flow
25
. 

3.4.3 Global optimization models 

 

Introduction 

Global techniques attempt to simultaneously optimize settings at all traffic signals. The impact of 

changes to signal settings are assessed by their impact on the network as a whole by considering 

overall network wide statistics
26
. We discuss SYNCHRO and TRANSYT-7F, two global 

optimization models in widespread use. 

 

SYNCHRO (48) 

Average delay for a specified network signal timing policy in SYNCHRO is obtained via an 

analytical formula. The delay formula is applied separately to each traffic movement on each 

link and assumes deterministic arrivals. An adjustment to account for the quality of progression 

is made by multiplying delay figures by an internally computed progression factors. Variability 

in vehicle arrival patterns is accounted through the use of percentile delay. The traffic volumes 

                                                 
24
 A rectangular platoon dispersion function assumes the platoon to be of uniform density. The length of the platoon 

increases as a function of the distance traveled according to a dispersion equation. 
25
 By ignoring other signals, a traffic flow pattern at the link entry point must be assumed. Under conditions of high 

traffic, we can be fairly sure that a queue of vehicles will be discharged from the upstream link at the onset of the 

green interval of the upstream controller. In less saturated traffic conditions, the discharge pattern at the upstream 

signal is highly dependent on the relationship of that controller with signals further upstream 
(44)

. Local optimization 

methods have been found to produce unreasonable timing schemes in less saturated conditions 
(47)

. 
26
 Unlike the network models discussed so far, global optimization models can define relative offsets of signals with 

reference to a specified point in time in the cycle. Thus the network closure constraints (see 3.3.3) are not required, 

making the optimization procedure a lot more straight forward. 
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entered by the user are taken as the mean of Poisson random variables of the observed traffic 

volumes. Approximating the Poisson distribution with the Normal distribution, 5 flow levels 

based on the 10
th
, 30

th
, 50

th
, 70

th
 and 90

th
 percentiles are obtained. The percentile delay value for 

a particular movement is taken as the average of these 5 scenarios. 

 

SYNCHRO determines optimal signal timings by minimizing percentile delay using a quasi-

exhaustive search. Various cycle lengths, offsets and phase sequences are examined in the search 

process. Green split allocations are determined via Webster’s method. 

 

TRANSYT / TRANSYT-7F 

The TRANSYT model (Traffic Network Study Tool) was originally developed in the late 1960’s 

by Robertson 
(40)

 at the U.K. Road Research Laboratories. The model has subsequently been 

subject to continuous development and improvement. We consider the U.S. version  

TRANSYT-7F 
(49)

, which is considerably more advanced than its U.K counterpart. 

 

TRANSYT-7F employs a more realistic modelling of network traffic flow than other models. A 

simulation model is employed to track flow patterns from external links all the way through the 

network. Through and turning proportions are specified at the end of each link. 

 

The model seeks to minimize an objective called the performance index. The performance index 

used in earlier versions was a linear combination of delay and stops. Newer versions can 

incorporate any of the criteria listed in section 1.2.2. The performance index for a specified 

network timing plan is computed by a macroscopic simulation model with an allowance for 

platoon dispersion via an exponential smoothing function. The simulation process begins with an 

empty system (i.e. no vehicles or queues present). The deterministic flows are introduced on the 

external links and the simulation is run for several cycles until a periodic pattern of queue growth 

and decay is obtained. Delay and stops are computed for this average flow representation and 

adjusted to account for stochastic effects. 

 

Earlier versions required the cycle time and phase sequence to be specified. Optimal green splits 

and relative offsets were obtained using the following hill-climbing procedure: 
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• First, a set of initial timings must be given. 

• The signals in the network are then considered one at a time. 

• The green splits and offsets of a particular signal are adjusted while keeping the settings 

on all other signals fixed. The green splits and offsets are adjusted independently in a 

sequence of large and small steps. Adjustments that improve the performance index are 

retained. 

• Each signal is adjusted in turn using the same procedure until all signals have been 

considered. 

• The entire process is repeated a number of times. 

 

The hill climbing procedure has several drawbacks: 

• The final solution is sensitive to the quality of the initial solution. 

• A globally optimum solution is not guaranteed. 

• Phase sequencing cannot be optimized for multiphase signals. 

 

These deficiencies were resolved by release 10 of TRANSYT-7F, introduced in 2004, which 

features optimization by genetic algorithms, allowing for global optimization and consideration 

for phase sequence optimization
27
. In addition, release 10.2, allows the performance index to be 

computed by CORSIM
 (50)

, a detailed stand-alone microscopic simulation model. 

3.5 Hybrid methods 

3.5.1 Contrast between bandwidth and delay-based approaches 

Bandwidth methods rely on the assumption that control strategies with larger bandwidth produce 

improved performance in terms of delay and stops. However, one cannot conclude that a 

maximal bandwidth strategy corresponds to one with minimal journey time 
(9)
. In addition, 

bandwidth methods require the green splits to be specified. Delay-based methods directly 

optimize the pertinent performance measures. Furthermore, delay-based methods employ traffic 

models which explicitly model vehicle interactions, driver behaviour and queue effects. 

Bandwidth methods ignore these traffic phenomena by assuming constant link travel times. 

                                                 
27
 Genetic algorithms and their applications in traffic signal optimization are discussed in detail in Chapter 5. 
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Thus one would expect the delay-based approach to be the one preferred by traffic engineers. 

However, in practice, consideration is still given to bandwidth as a measure of system 

performance for the following reasons 
(30)

: 

• Bandwidth models rely on relatively little input and the progressive timings that they 

produce are thought to be operationally robust. 

• Space-time diagrams allow the traffic engineer to visualize the quality of results. 

• Drivers expect signal progression and use it as a measure of the quality of signal timing. 

 

This has led to the development of hybrid approaches that incorporate both delay and bandwidth. 

The development of hybrid models has followed two distinct paths: 

• Modifying bandwidth methods to consider delay. 

• Modifying delay-based methods to consider bandwidth. 

3.5.2 Modifying bandwidth methods to consider delay 

Bandwidth maximizing solutions are not unique 
(51)

.  This can be observed in Figure 7 where it is 

possible to modify the relative offset of the signal at intersection 1 in a small range without 

reducing bandwidth in either direction. The limits of these ranges are called slack times 
(51)

. 

Bandwidth programs generally produce relative offsets so that the green bands are centred, with 

an equal amount of slack time on both sides of the two-way bands. The existence of these slack 

times prompted Chang et al 
(51)

 to extend PASSER II so that relative offsets are “fine-tuned” 

within the slack times to minimize delay without reducing bandwidth. Delay for each link is 

computed by an analytical formula, assuming fixed link volumes. 

 

Lan et al 
(4)
 developed the COMBAND model, an extension of the MULTIBAND model which 

incorporates a delay equation based on constant link volumes and deterministic flow. The 

objective function, a combination of bandwidth and delay, is optimized by mixed integer convex 

programming. 

 

The approach that has been found to be more successful is the one discussed next, which is to 

modify a delay based model (namely TRANSYT or TRANSYT-7F) to cater for bandwidth. 
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3.5.3 Modifying delay based methods to consider bandwidth 

Initial efforts involved concurrent use of TRANSYT / TRANSYT-7F with a bandwidth  

model 
(52, 53, 54, 55)

. A timing scheme with good progression is first obtained from a bandwidth 

program such as PASSER II or MAXBAND. This scheme is then used as the initial timing plan 

for the TRANSYT / TRANSYT-7F hill-climbing procedure. The motivation for this approach is 

that the final solution generated by the delay-based model will have small delay while still 

maintaining the good progression inherent in the initial solution. 

 

Cohen and Liu 
(56)

 and Liu 
(57)

 later modified the TRANSYT hill-climbing procedure to preserve 

the bandwidth of the initial solution. This was accomplished by modifying the rectangular 

optimization procedure applied to each signal to only accept those changes that improve the 

performance index without degrading the through bands. 

 

Release 7 of TRANSYT-7F resolved the problem of having to use the model in conjunction with 

a bandwidth program by introducing explicit modelling of progression within the model via the 

Progression Opportunities (PROS) measure 
(58)

. PROS is a generalized bandwidth measure that 

makes allowance for short term progression opportunities along an arterial 
(59)

. PROS can be 

included in the performance index calculation in combination with the usual measures such as 

delay and stops. 
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4 Chapter Four – Oversaturated Conditions 

4.1 Introduction 

The models discussed in the previous two chapters are applicable in undersaturated conditions. 

These are conditions where flow rates are below capacity level (see 2.4.1). During “rush 

periods”, flow rates may exceed capacity 
(2)
, a situation known as oversaturation. Oversaturated 

conditions are typified by the following traffic phenomena 
(60, 61)

: 

 

• Time dependent flow and dynamic control 

Flow conditions are no longer stationary. Because more traffic is demanding service than 

can be accommodated, conditions at any point in time are a function of past flow patterns 

and signal control decisions. This consideration dictates time dependent signal control. 

 

• Reduced saturation flow 

With flow rates exceeding capacity, links may experience excessive queue build-up. This 

causes motorists entering such links from upstream to hesitate, resulting in increased 

departure headways and consequentially a reduction in the saturation flow rate. This 

reduces capacity and may propagate the congestion to upstream links. 

 

• Spillback 

In extreme cases, queue build-up can lead to complete blockage of links, where no traffic 

can discharge from upstream on a green signal. This condition is known as spillback or 

de facto red. 

 

• Intersection Blockage 

Even when links are completely blocked, vehicles may still discharge from the upstream 

signal and queue in the intersection area. If the queue does not move before the end of the 

green period, these vehicles will block cross-street movements. This phenomenon is 

known as intersection blockage or grid-lock. 
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During oversaturated conditions, delay-based methods such as Webster’s method 
(13)

 and 

TRANSYT 
(40)

 are no longer applicable as the idea of a steady state representative cycle, which 

can be optimized and then applied for the entire study period, is no longer applicable. Bandwidth 

methods are also invalid as the queue effects which they ignore are further accentuated in heavy 

traffic 
(62)

. 

 

In this chapter, we review the analytical methods that have been developed to obtain signal 

timings in oversaturated conditions. Optimal control schemes are obtained using techniques from 

Control Theory 
(63)

. Using terminology from control theory, the variables determining signal 

settings, which are to be optimized, are known as control variables. We first discuss the case of a 

single intersection and then the network signal timing problem. All analytical models discussed 

assume a continuous approximation to vehicle flow and a deterministic arrival process. We also 

discuss the modifications to the bandwidth method and the enhancements that have been made to 

the TRANSYT-7F 
(49)

 simulation model to extend their applicability to oversaturated conditions. 

4.2 Single Intersection 

4.2.1 Method of Gazis and Potts 

Gazis and Potts 
(64)

 considered the signal timing problem for an intersection of two one-way 

streets under two-phase control. In addition to the assumptions mentioned in section 4.1, their 

formulation makes the following additional assumptions and simplifications: 

• The arrival rates at the start of the control period are large enough to exceed capacity and 

eventually reduce to levels below capacity, signalling the end of the “rush period”. 

• The cumulative departure curve for each approach can be approximated by a smooth 

curve
28
. 

• The optimal control policy must simultaneously dissolve queues on both approaches
29
. 

The point of elimination of queues designates the end of the control period. 

 

                                                 
28
 The succession of red and green signal indications results in a cumulative departure curve with a “saw-tooth” 

shape. This is approximated by a smooth curve, i.e. departures occur continuously at all times in the cycle. This 

simplification removes the cycle length from the formulation and as a consequence, their approach does not produce 

an optimal cycle length figure. 
29
 This assumption is required to ensure equitable treatment of traffic arriving on each approach. 
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They provided a derivation of the optimal control policy using a graphical approach as well as a 

mathematical derivation using Pontryagin’s maximum principle 
(2, 63, 64)

. They demonstrated that 

that total intersection delay over the control period can be minimized by initially allocating the 

maximum possible green time to the approach with the larger saturation flow rate. At some point 

in time called the switching point, the allocation is reversed, and the approach with the lower 

saturation flow rate is then given the maximum possible green time. The switching point is 

determined so as to ensure that the queues are simultaneously dissolved
 30
. This switching of the 

control variable from one extreme to another is called bang-bang control 
(63)

. 

4.2.2 Extensions to methodology of Gazis and Potts 

The optimization framework of Gazis and Potts 
(64)

 requires that queues are not eliminated before 

the end of the period of oversaturation. Michalopoulos and Stephanopoulos 
(65)

 resolved this 

problem by adding queue length constraints to the formulation
31
. This may result in a control 

policy with more than one switching point. Papageorgiou 
(66)

 extended the model to the case of 

an intersection with more than two traffic streams by removing the constraint that queues be 

eliminated simultaneously. 

4.2.3 Other models 

Chang and Lin 
(67)

 developed a discrete time model. A recursive expression for approach delay 

during each cycle is obtained in terms of approach delay in the previous cycle. The advantage of 

the discrete time approach is that the cycle length enters the formulation and can be optimized
32
. 

Standard optimal control methods are applied to obtain delay minimizing signal timings. As is 

the case with the method of Gazis and Potts 
(64)

, queue lengths must remain positive for the 

period of analysis. De Schutter 
(68)

 developed an alternative formulation that accommodates for 

fully dissipated queues. The control policy which minimizes either total intersection delay or the 

                                                 
30
 They demonstrated that under certain conditions, a control policy that eliminates both queues at the same time 

does not exist. 
31
 The method of Gazis and Potts 

(64)
 assumes a constant departure rate, even when queues are not present. Thus 

departures will occur even when there are no vehicles to be serviced. This can result in the queue length (which is 

the difference of cumulative arrivals and departures) becoming negative. Using constraints on queue length as 

proposed by Michalopoulos and Stephanopoulos 
(65)

, a lower queue length constraint of zero can be used to prevent 

negative queues. The upper constraint can be used to account for limited link storage space. As is the case with the 

work of Gazis and Potts 
(64)

, a solution may not exist. 
32
 Another advantage is that the switch-over point in the bang-bang optimal control policy is guaranteed to occur at 

the end of a cycle. 
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maximum queue length is obtained by transforming the problem into an extended linear 

complementary problem for which specialized heuristic solution algorithms have been 

developed. 

4.3 Signalized networks 

4.3.1 Extensions to the model of Gazis and Potts 

Gazis 
(69)

 extended the formulation of Gazis and Potts 
(64)

 to a system of two oversaturated 

intersections with one-way streets. He ignored turning movements, assumed instantaneous travel 

between intersections and ignored the storage limit of the link between the intersections. 

Michalopoulos and Stephanopoulos 
(70)

 extended on this work, allowing for constant proportions 

of turning traffic, fixed travel time between intersections as well as queue length constraints. 

They demonstrated that the optimal control policy becomes considerably more complex with 

each additional intersection and queue length constraint. 

4.3.2 Other analytical models 

Singh and Tamura 
(71)

 considered a discrete time approach where the state of the system is 

considered at the beginning of each cycle. Their approach requires the cycle time to be specified 

and the link travel times must be some integer multiple of the cycle time. The optimization 

objective is a weighted sum of squares of queue lengths. An optimal control policy is obtained 

using a hierarchical optimization algorithm. Their formulation was later extended and made 

more realistic 
(72, 73)

. A major drawback of their approach is that relative offsets are not 

considered. 

 

Gazis 
(74)

 has suggested an alternative heuristic method which uses linear programming. 

4.3.3 Modification to the bandwidth approach 

Lieberman et al 
(75)

 found that progressively designed offsets can in fact amplify congestion in 

oversaturated conditions. Vehicles travelling in the green band are often required to stop upon 

reaching the tail of a queue of stationary vehicles. Bandwidth programs do allow for a time 

advance of through bands to allow for the clearance of stationary queues (see 3.3.2). The 

problem is that the value of the queue clearance time must be arbitrarily specified by the user.  
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Rathi 
(76)

 as well as Tsay and Lin 
(77)

, have developed bandwidth approaches which incorporate 

crude traffic models for determining the queue clearance time. Arterial signal timings obtained 

by such models may exhibit simultaneous green or even reverse progression (i.e. downstream 

signals turn green before the upstream signals) on account of the queue clearance times. 

4.3.4 Modifications to TRANSYT-7F for oversaturated conditions 

TRANSYT-7F release 8, introduced in 1998 provided the following enhancements to allow for 

realistic modelling of oversaturated conditions 
(49)

: 

• Explicit modelling of queue build-up and spillback 

• Modelling multiple cycles so that time dependent effects can be captured 

• Flow rates are allowed to change over time. This allows the build-up to the rush period to 

be modelled accurately. 

 

These updates, in combination with the enhancements discussed in 3.4.3, have made TRANSYT-

7F the “state of the art” optimization model for determining fixed-time traffic signal timings in 

all traffic conditions. 
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5 Chapter Five – Genetic Algorithms 

5.1 Introduction 

In this chapter, we discuss genetic algorithms which are the global optimization tools found to 

provide effective optimization of traffic signal timings when the impact on network performance 

is evaluated by a simulation model. We first give a broad outline of the genetic algorithm 

optimization process. We then discuss an early implementation called the Simple Genetic 

Algorithm 
(78)

. We then justify why the genetic algorithm produces an effective and robust 

search. This is followed by an account of different methods of structuring the genetic algorithms 

search, alternative genetic operators and problem encodings that have been found to provide 

more efficient optimization. An overview of findings from the literature on the performance of 

genetic algorithms on “Noisy problems” where the objective function is estimated via a 

stochastic result is then given. Finally, we discuss the various implementations of genetic 

algorithms to solve the traffic signal timing problem, highlighting the studies that justify the 

choice of the genetic algorithm as an appropriate optimization tool. 

5.2 What are genetic algorithms and how do they work? (78, 79) 

Genetic algorithms are computational models based on the mechanisms of natural selection and 

evolutionary theory. A primary application of genetic algorithms has been in the field of function 

optimization. Genetic algorithms are capable of handing both continuous and combinatorial 

optimization problems. 

 

Genetic algorithms perform a heuristic global optimization search using a form of guided 

random search. The search is performed using a population of individuals. Each individual 

represents a point in the search space. For the traffic signal timing problem, each individual 

represents a particular network signal timing plan. The set of decision variables is encoded into a 

form of genetic material. Associated with each individual is the computed objective function 

value. For delay minimization in traffic networks, the associated objective function value will be 

the delay produced by the particular signal timings. Optimization is performed by manipulating 

the population of individuals using the following steps: 
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Initialization: The individuals in the initial population are assigned to points in the search 

domain. Typically, each individual is assigned to a random point in the search domain (i.e. each 

point in the search domain has the same probability of being chosen). 

 

Selection: Individuals in the population are selected for reproduction. The selection probability 

for each individual is usually a function of the objective function value. For maximization 

problems, individuals with a larger objective function value have a larger selection probability. 

For minimization problems, individuals with a smaller objective function value are favoured for 

selection. 

 

Recombination/Crossover: Once individuals have been selected for reproduction, these “parents” 

are paired and one or more “children" are created using a crossover operator. Crossover creates 

children by combining or blending the genetic material of the two parents (i.e. the decision 

variable sets of the two parents are combined to form a new set for each child). 

 

Mutation: The mutation operator performs random alterations to the genetic material of an 

individual. Mutation will alter one or more of the individual’s decision variables with small 

probability. Mutation is typically applied to the children created by recombination. 

 

Replacement: Typically, a fixed finite population size is applied and a replacement scheme is 

defined to determine which individuals from the parent and child populations will survive. 

 

Initialization is performed and the remaining steps are repeated until a stopping criterion is met. 

One possible stopping condition is to stop the search after a pre-specified number of objective 

function evaluations have been performed. The individual with the best objective function value 

is taken as the optimal solution produced by the algorithm. 
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5.3 Simple Genetic Algorithm (78) 

5.3.1 Introduction 

A popular basic implementation of a genetic algorithm is given by Goldberg 
(78)

 which he refers 

to as the Simple Genetic Algorithm (SGA). We discuss the algorithm details under the following 

headings: 

• Problem encoding 

• Initialization 

• Selection 

• Crossover 

• Mutation 

• Replacement 

5.3.2 Problem encoding 

A genetic encoding of the decision variables is required for the construction of operators to act 

on the genetic material in an appropriate way. The SGA, along with many earlier genetic 

algorithm implementations, makes use of a binary coding. For the optimization of a problem in a 

single real valued variable [ ]bax ,∈ , a binary string of length l can be used. 

If { } { }lkyyyyyy kll KK ,2,11,0,121 ∈∀∈= − ,  

denotes a particular point in the search space in the binary coding, then the corresponding real 

valued value can be computed by converting the binary value to a decimal value in the range 

{ }12,,2,1,0 −lK  and then converting this into a value in the range ],[ ba using a linear mapping i.e. 

∑
=−

−
+=

l

k

k

kl
y

ab
ax

1

2
12

          

(5-1) 

The resolution of the binary coding can be increased by using a larger value of l. For a multi-

parameter optimization problem, each decision variable jx  may have its own search domain 

],[ jj ba  and binary string jz of length jl . The vector of decision variables ...) ,,( 21 xxx = can be 
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represented by a single binary string of length ∑
=

=
1j

jlL  which is the concatenation of the binary 

strings ,..., 21 zz  

5.3.3 Initialization 

Initialization is performed by independently setting the bit values in the binary string to either 0 

or 1 with equal probability. Thus each point in the search space has equal probability of being 

included in the initial population. The individuals in the initial population constitute the first 

generation. 

5.3.4 Selection 

Selection in the SGA is defined with respect to maximization problems
33
. In addition, the range 

of the objective function must be positive. 

Let PopN   = number of individuals in the population and 

if  = objective function value for the i’th individual (also called the fitness). 

 

Selection probabilities are given by: 

Pr(i’th individual selected) =

∑
=

PopN

j

j

i

f

f

1

         

(5-2) 

That is, selection is proportional to fitness. The selection procedure is repeated PopN  times with 

replacement to form a mating pool of PopN  individuals. 

5.3.5 Crossover 

Individuals in the mating pool are paired at random to produce offspring. Genetic material is 

interchanged to form two children using 1-point crossover. A crossover point is chosen at 

random and the genetic material of the parents on the two sides of the crossover point is swapped 

to form two children i.e.

                                                 
33
 In 5.5.4 we give details on how minimization problems can be treated. 
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Let 121 ccccc LL K−=  and  

121 ddddd LL K−=  denote the binary encodings of the two parents, 

u = discrete uniform random variable { }1,,2,1 −∈ LK  

The binary encodings for the children *c and *d are given by 11

* ...... ddccc uuL −=  

and 11

* ...... ccddd uuL −= . 

 

Crossover is performed with probability cp . If crossover is not performed then the children are 

identical to the parents 

5.3.6 Mutation 

Mutation is performed by flipping each bit in the children independently with probability mp .
 

5.3.7 Replacement 

The individuals in the population constitute a generation. After selection, crossover and 

mutation, a new population or generation of individuals is formed. These individuals completely 

replace the ones in the previous generation. This process is repeated until the stopping criterion is 

met. 

5.4 Why do genetic algorithms work? (78, 79) 

5.4.1 Introduction 

The question naturally arises as to why an algorithm as outlined in 5.2 and 5.3 will result in an 

effective optimization search. We first give qualitative justifications for each component of the 

optimization procedure. This is followed by a more rigorous theory based explanation which 

highlights the intrinsic power of the genetic algorithm search. 

5.4.2 Qualitative justifications of optimization steps 

Selection: By favouring better solutions, the selection procedure guides the search towards high 

performance regions of the search space. 
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Crossover: Crossover performs a structured yet randomized information exchange, leading the 

algorithm towards new points in the search space. Taken in conjunction with selection, the 

algorithm is more likely to search points that are close to the better performing individuals. For 

the SGA, the crossover probability cp  can be used to control the rate of exploration. Setting 

1=cp  and always performing crossover may result in the loss of good genetic material in the 

before it has been sufficiently exploited. With 1<cp , there is the possibility of the genetic 

material passing intact into the next generation. 

 

Mutation: The benefits of mutation are two-fold: 

• Mutation induces random alterations to the genetic material. If the alteration induced is 

desirable in that the objective function value is improved, then the individual will have a 

higher chance of passing on its genetic material thanks to the selection procedure. Thus 

mutation can be thought of as a hill-climbing component of the search. In fact, a search 

algorithm using mutation alone can be effective. 

• Selection, crossover and replacement may result in the loss of potentially useful genetic 

material (e.g. for the binary encoding, a 0 may no longer be present at a particular bit 

position in any of the individuals in the population). Alternatively, the initial population 

may lack this genetic material. Mutation allows for the restoration or introduction of this 

genetic material in a new context where it may be found to improve the objective 

function value. 

5.4.3 Genetic algorithm theory 

Aside from these qualitative justifications, several theories have been proposed to explain the 

success of genetic algorithms. The most widely cited result is the schema theorem which requires 

the notions of schema and hyperplane sampling and leads to the idea of implicit parallelism. 

  

Schema 

Schema are solution templates. A schema is a string of the same length as the binary string, L, 

with either a 0, 1 or “*” at each position, where “*” is a “do not care” symbol. The number of 

positions with either 0 or 1 is the order of the schema. A binary string which matches the schema 

at all positions other than those with “*” is called a schemata.  
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For example, the schema *0*1 is of order 2 and is matched by the 4 binary strings (schemata) 

0001, 0011, 1001 and 1011. A schema represents a subset of “similar” strings. The schemata fall 

on a hyperplane in the search space{ }L1,0 . The objective function value averaged over the 

schemata { }1011,1001,0011,0000  is the fitness of the schema *0*1. We have L3  possible 

schema. 

 

Schema can also be thought of as partial solutions to a problem. For example, suppose you have 

a problem with 2 decision variables where each decision variable is coded with 2 bits. The 

schema **01 corresponds to solutions where one of the decision variables is specified and the 

other is not. High-order schema correspond to detailed partial solutions. The partial solutions are 

also called building blocks. 

 

Hyperplane sampling 

Consider a population made up of the following 3=PopN  individuals: 0000, 0011 and 1111. The 

schema (hyperplane) *0*1 is represented by 2 individuals in this population. However, the 

schema 1*** and 0*** are also represented. In general, each binary string is a member of L2  

schema
34
. Thus, a population of individuals samples numerous hyperplanes. 

 

Implicit parallelism 

Information on many hyperplanes (partial solutions) is obtained when a single individual is 

evaluated. Through the action of genetic operators, the proportional representation of 

hyperplanes is altered. Thus the genetic algorithm search exhibits implicit parallelism in that 

many hyperplane competitions are being solved simultaneously. We expect high fitness 

hyperplanes to receive increasing number of samples as the genetic algorithm search progresses. 

Low-order schema (i.e. vague partial solutions) are sampled more frequently in the initial 

population. As the proportional representation of particular schema dominate, the representation 

of high-order schemata increase and the partial solutions are refined. 

                                                 
34
 For example, the binary string 0000 is a member of any schema with 0 or “*” at each bit position. There are 

1624 =  schema satisfying this criteria. 



 Page 42 

 

Schema Theorem 

The parallel nature of the genetic algorithm search is captured mathematically by the schema 

theorem (see Goldberg 
(78)

). In summary we find that the power of genetic algorithm search, 

according to the schema theorem, lies in its ability to construct optimal solutions through a 

process of discovery by speculating on many combinations of the best partial solutions. 

5.5 Improvements to the simple genetic algorithm 

5.5.1 Introduction 

Since the pioneering work of Holland 
(81)

 and DeJong 
(82)

 on genetic algorithms, many new 

operators, alternative algorithms and encodings have been, and continue to be introduced. Since 

the genetic algorithm is a heuristic search method, the modifications are usually evaluated 

empirically by comparing the performance of the search algorithm with, and without the 

modification, on a suite of test functions of varying attributes. Several independent replications 

of the algorithm are performed since genetic algorithms are stochastic search algorithms and 

researchers are interested in the mean performance of the algorithm. The performance of the 

algorithm on a particular test function is usually measured using one or more of the following 

criteria: 

• Probability of the algorithm locating the global optimum given a fixed number of 

function evaluations. 

• Mean number of function evaluations required to locate the global optimum. 

• Quality of the best solution for a fixed number of function evaluations. 

 

Other than the best solution, online and offline performance are sometimes considered (see 

Goldberg 
(78)

). 

 

Here, we restrict our attention to algorithm adjustments that: 

• Have been conclusively proven to increase search efficiency, 

• Have been adopted in applications outside the original publications and 

• Have potential for implementation in the traffic signal optimization problem. 
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5.5.2 The elitist method 

The elitist method guarantees a monotonic improvement in the best value of the objective 

function by ensuring that the best individual survives intact into the next generation. This can be 

accomplished by introducing the following mechanism into the SGA 
(78)

: 

 

If the best individual in generation t is not included in generation 1+t , then include it as the 

( )1+PopN ’th member in generation 1+t . 

 

Incorporating the elitist method with a more explorative crossover operator such as uniform 

crossover (see section 5.5.3) has been shown to improve optimization performance 
(83, 84, 85)

. 

5.5.3 Uniform crossover (86, 87) 

Uniform crossover is an alternative crossover operator. Individual bits in the binary strings of the 

two parents are swapped independently with probability 0.5. This process is repeated for all bits 

in the string, forming the two children. Uniform crossover, in practice, is preferred to 1-point 

crossover since: 

• Uniform crossover has more explorative power. 

• With multi-parameter problems, 1-point crossover is sensitive to the order in which 

decision variables are concatenated into a single string (e.g. variables that are far apart on 

the string are more likely to be separated by 1-point crossover). Uniform crossover, on 

the other hand, is indiscriminate to the order of bits in the string. 

• Uniform crossover has been empirically shown to give improved optimization 

performance. 

5.5.4 Ranking and tournament selection 

The SGA selection procedure has several shortcomings 
(78)

: 

• Selection pressure is sensitive to the form of the objective function e.g. for maximization 

of the objective functions 2

1 )( xxf =  and 10

2 )( xxf = , [ ]10,1∈x , the selective pressure in 

favour of better solutions will be much larger for 2f  than 1f  and the genetic algorithm 

will converge faster when maximizing 2f . 
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• A transformation of the objective function value is required to convert a minimization 

problem into a maximization problem to which fitness proportional selection can be 

applied. The performance of the algorithm is sensitive to the form of the transformation
35
. 

• At the start of the genetic algorithm run, it is not uncommon for there to be an individual 

in the initial population with unusually high relative fitness. Using selection proportional 

to fitness may result in the predominant dissemination of genetic material from this super 

individual, leading to premature convergence.  

• Later on in the run, when the population has mostly converged and fitness values are 

more homogenous, the selective pressure induced by the normal selection rule may be too 

small and the search may stagnate. 

 

Several mechanisms to scale fitness values have been proposed to maintain more constant 

selective pressure, solving the last three problems 
(78, 88, 89)

. Two selection schemes that solve all 

four problems are ranking and tournament selection. 

 

Ranking (90, 91) 

Individuals in the population are ranked from best to worst based on the objective function value. 

Selection probabilities are computed based on rank. This is best accomplished by a linear 

function where probability of selection decreases linearly with rank. The selection process is 

parameterized by the bias factor β where: 

 

selected) individual rankedPr(Median 

selected) individual ranking TopPr(
=β  

(5-3) 

A linear function is appropriate for 21 ≤≤ β . 

 

                                                 
35
 In optimization, a common approach for modifying a maximization algorithm to perform minimization is to run 

the maximization algorithm on the negative of the objective function. The transformed objective function has the 

same form as original objective function, just with a negative sign. However this transformation cannot be used for a 

positive objective function as the SGA selection procedure can only be applied to a positive objective function (see 

section 5.3.4). If ( )xf  is the positive objective function to be minimized, one can maximize ( )[ ] 1−
xf  or 

( ) Cxf +−  for an appropriately large value of C . There are many transformations that can be applied but the 

performance of the algorithm then becomes dependent on the choice of transformation. 
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Tournament selection (92, 93) 

Tournament selection operates by selecting m individuals randomly from the population and 

choosing the best of the m individuals for further genetic processing. For 2=m , the selection 

procedure is called binary tournament selection and has been shown to give the same selection 

probabilities as linear ranking with 2=β . The value of β  can be increased by increasing m and 

decreased by selecting the worst individual as the tournament winner with some positive 

probability. 

 

Linear ranking and tournament selection have been shown to induce a more constant selective 

pressure and improve optimization performance over fitness proportional selection or selection 

using other scaling mechanisms 
(84, 90, 91, 94, 95, 96, 97)

. Generally tournament selection is 

recommended as it does not require the additional overhead of sorting the population 
(92, 93)

. 

5.5.5 Alternative algorithms 

Here we discuss two alternative genetic algorithms that have been shown to give improved 

performance over genetic algorithms based on the SGA. We will refer to implementations of the 

SGA with modifications such as those given in sections 5.5.2, 5.5.3 and 5.5.4 as a Generational 

Genetic Algorithm (GGA). 

 

Steady State Genetic Algorithm 

Steady state genetic algorithm (SSGA) is a term coined by Syswerda 
(86)

. GENITOR 
(91, 97)

, the 

first SSGA, searches from a population of points like all genetic algorithms, with the following 

differences: 

• Unlike GGA’s where reproduction creates an entire generation of offspring, reproduction 

in GENITOR involves the generation of a single offspring at a time from two parents. 

• Offspring do not replace parents as is the case with GGA’s. Instead, the offspring will 

replace the least fit member of the population provided the new individual has better 

fitness. 

• Duplicates are not allowed. If any of the children produced are duplicates of any of the 

current members of the population in that the genetic material is identical, the offspring 
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will be rejected. Selection, recombination and mutation will be repeatedly applied until a 

unique individual is created. 

• Since an ordered list of individuals by rank is required for the replacement mechanism, 

selection is performed using ranking. 

 

The advantages of performing the search in this way are 
(91, 97)

: 

• For GGA’s, the elitist method guarantees the survival of the best individual. With the 

SSGA, the replacement mechanism is population elitist in that all good individuals are 

protected from deletion. 

• Crossover is always applied. Thus the search can be more explorative without 

endangering the survival of good members of the population. 

• In the GGA, probabilistic crossover and mutation may allow individuals to survive intact 

into the next generation. Since selection favours high performance individuals, the 

algorithm is more likely to produce duplicates, resulting in a loss of genetic diversity and 

possible premature convergence. By always applying crossover and performing duplicate 

checking, SSGA’s avoid this problem. 

• Since reproduction is performed by introducing a single new offspring at a time, newly 

created high performance genetic material is immediately available for exploitation
36
. 

 

Empirically, SSGA’s have been shown to consistently outperform GGA’s 
(83, 91, 94, 97, 98, 99)

. 

 

CHC 

CHC 
(93, 100)

 stands for cross-generational elitist selection, heterogeneous recombination and 

cataclysmic mutation. CHC operates on a generational basis. Individuals in the population have 

equal selection probability (i.e. there is no selective pressure towards better individuals). The 

replacement mechanism operates by combining the parent and offspring population and selecting 

the N best individuals to form the next generation. CHC also includes several unique 

mechanisms to improve search capabilities: 

• An incest prevention mechanism is implemented to prevent “similar” individuals from 

mating. The “dissimilarly” of two individuals is measured by the Hamming distance of 

                                                 
36
 In the GGA, we must wait an entire generation before new genetic material is available for further processing. 
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the bit strings which is the count of the number of differing bits. Only when the 

Hamming distance is above a certain threshold will individuals be allowed to mate and 

produce offspring. The value of this threshold is decreased as the population converges 

and individuals become more “similar”. 

• Reproduction is via crossover alone. A crossover operator called Half Uniform  

Crossover (HUX) is applied. HUX randomly swaps exactly half of the differing bits of 

the two parents, forming two children. 

• Once the population has converged and no further reproductive opportunities are 

available, a process called cataclysmic mutation is applied. A new population is created 

of which the best individual so far is a member and all remaining individuals are heavily 

mutated copies of this best individual. These mutations are obtained by specifying a 

divergence rate r and flipping each bit in the best individual independently with 

probability r. The Hamming threshold is reset and the algorithm resumes in the usual 

manner. 

 

CHC shares the following advantages with SSGA’s 
(100)

: 

• An elitist type replacement strategy is utilized which protects good individuals from 

deletion. 

• Crossover can always be applied thanks to the elitist mechanism and search can be more 

explorative. 

• The incest prevention mechanism, HUX and cataclysmic mutation results in a very small 

probability of generating duplicate strings. 

 

CHC also has the following advantages over other types of genetic algorithms 
(100, 101)

: 

• Incest prevention prohibits similar individuals from mating, thus delaying convergence. 

This allows for a more sustained search. 

• CHC uses HUX which is a highly explorative crossover operator. 

• The inclusion of incest prevention and HUX crossover prevent premature convergence 

and allow for reproduction to occur without the need for mutation to restore lost genetic 

material. Thus crossover which is the source of the power of genetic algorithm search can 

be applied without the disruptive effect of mutation. 
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• When convergence is achieved, mutation is applied at the outer loop of the algorithm to 

reintroduce diversity while preserving the progress made so far. Micro Genetic  

Algorithms 
(102)

 operate in a similar manner
37
 and thus CHC inherits the advantages of 

Micro Genetic Algorithms in terms of being able to search with a smaller population  

size 
(102)

. 

• CHC requires only two parameters to be specified: The population size PopN , and the 

divergence rate r. 

 

CHC has been found to outperform GGA’s 
(100, 101, 103)

 and GENITOR 
(93)

. In addition, CHC has 

been found to require less parameter tuning than other genetic algorithms 
(93, 100)

. 

5.5.6 Alternative problem encodings 

 

Shortcomings of the binary coding 

According to the schema theorem 
(78)

, genetic algorithms operate on the assumption that 

“similar” strings yield similar performance. In CHC, the “dissimilarity” between strings is 

measured by the Hamming distance. Thus for the ideas of hyperplane sampling and implicit 

parallelism 
(78)

, the identified source of power of the genetic algorithm search, to hold, we require 

“similar” strings to have a small Hamming distance. An extreme case where the binary 

representation fails in this regard is the Hamming cliffs problem 
(104)

 which we illustrate via an 

example: 

Consider a problem a single decision variable problem with search integer domain 

{ }15,,1,0 K∈x  for which a 4 bit binary string is appropriate. The strings 0111 and 1000 

correspond to the integer points 7=x and 8=x  respectively, which are adjacent in the problem 

space. However, these strings are the maximal Hamming distance apart. Suppose that the 

function optimum is at 8=x  and the function is smooth in that 7=x  gives a value close to the 

optimum. It is very unlikely that mutation and crossover acting on the string 0111 (a good 

individual), will be able to change the value of each bit and move to the global optimum. 

                                                 
37
 Micro Genetic Algorithms operate by repeatedly performing standard genetic algorithm optimization with a small 

population. After each iteration of the genetic algorithm search, the genetic algorithm is restarted by generating a 

new population and transferring a specified number of the best individuals of the converged population to the new 

population and generating the remaining individuals randomly 
(102)

. 
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Gray coding 

A method for removing the Hamming cliffs problem is the use of an alternative binary coding 

called Gray coding which guarantees that adjacent points in the integer domain have a Hamming 

distance of one 
(104)

. The standard binary coding and corresponding Gray coding for a 3 bit 

problem is given in Table 1. 

 

Decimal 

value 

Standard 

binary 

coding 

Gray 

coding 

0 000 000 

1 001 001 

2 010 011 

3 011 010 

4 100 110 

5 101 111 

6 110 101 

7 111 100 

 

Table 1: Binary coding and Gray coding
38
 

 

We present algorithms for conversion between the standard binary code and Gray code as given 

by Wright 
(105)

: 

For a particular decision variable coded in using l bits, let bbb

l

b

l yyyy 121K−  denote the standard 

binary representation and ggg

l

g

l yyyy 121K− denote the representation in Gray code. Conversion 

from standard binary to Gray code can be performed using equation (5-4) where ⊕  denotes 

addition mod 2. Conversion from Gray to binary code is performed using equation (5-5). 

Alternative conversion algorithms in terms of binary operators are given by Michalewicz 
(104)

. 

 





⊕
=

+
b

k

b

k

b

lg

k
yy

y
y

1
lkfor

lkfor

<

=
 

           (5-4) 

                                                 
38
 From the table we find that the Hamming distance between adjacent points under the standard binary coding 

ranges from one to three. In Gray code, the Hamming distance of adjacent points is always one. 
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lkkk gggb ⊕⊕⊕= + L1  

           (5-5) 

Genetic algorithms using Gray coding have been empirically shown to perform as well or better 

than those using the standard binary coding 
(106, 107, 108)

. On the other hand, Gray coding has been 

found to marginally retard performance on some test functions 
(107, 108)

. There is no general 

consensus on which type of functions benefit from the use of Gray coding in optimization. 

 

Real coding and operators 

Binary representation is the traditional problem encoding method for genetic algorithms 
(78, 104)

. 

The reasons for preference towards binary representation in the genetic algorithm literature, in 

terms of both theoretical and applied work are 
(78, 104)

: 

• It allows for the construction of simple genetic operators. 

• Theoretical analysis is facilitated. 

• According to the principle of minimal alphabets, the quantity of information  

(i.t.o. number of schema) processed by a population of individuals is maximized by the 

binary representation. 

 

The last point is the primary theoretical result leading towards the predominance of the binary 

representation. Antonisse 
(109)

 and Goldberg 
(110)

 present alternative arguments, highlighting 

methodological shortcomings in the theory and argue in favour of non-binary representations. 

Reeves 
(111)

 gives other arguments in favour of binary alphabets. 

 

Theoretical arguments aside, genetic algorithms using real or integer representations have 

become more popular over time. With these representations, encoding and problem spaces 

correspond 
(104)

. Genetic operators thus manipulate genetic material directly in the problem 

space. Artefacts of the encoding space such as Hamming cliffs 
(104)

 and the impact of number of 

bits used in parameter coding on mutation size 
(108)

 are removed. The implementation of the 

genetic algorithm is also simplified as a binary representation is no longer required. 

 

Genetic operators need to be modified for these representations. Of the many real crossover 

operators that have been developed, we will consider blend crossover (BLX-α ) 
(112)

.
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With BLX-α , crossover is applied separately to each decision variable. For the i’th decision 

variable, let 

 

ix  and iy denote the values of the decision variables in the two parents ( ℜ∈ii yx , ), 

iii yxI −= , 

iiii Iyxl α−= ),min( , 

iiii Iyxu α+= ),max(  and 

=iz  value of the i’th decision variable in an offspring of the two parents. 

 

iz  is computed stochastically by simulation using 

 

),(~ iii ulUz ,  

(5-6) 

where ( )baU ,  denotes the continuous uniform distribution on the interval ( )ba, . That is, the 

value of i’th decision variable in an offspring is chosen randomly from a set of values in a close 

vicinity of the decision variables of the two parents. We illustrate this domain graphically in 

Figure 10. 

 

 

 

Figure 10: Graphical illustration of blend crossover 

 

The upper and lower limits in equation (5-6) can be restricted for a problem with a limited search 

domain. Typical choices forα  are 0=α  and 5.0=α  
(112)

. 

 

Mutation can be achieved by replacing the value of a decision variable with a uniformly 

distributed value in the allowable search domain 
(104)

. 

ix iy

876 iIα 876 iIα44444 844444 76 iI

il iu
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Empirically, mixed results have been observed when comparing empirical performance of binary 

coding with real coding using real genetic operators 
(84, 104, 112, 105, 113)

. 

5.5.7 Optimization in noisy environments 

The majority of empirical work on genetic algorithms has been performed using test suites of 

mostly deterministic functions. The performance of genetic algorithm search on a function 

returning a stochastic result is of importance in this dissertation as the measure of effectiveness 

produced by a stochastic traffic simulation model is exactly such a function. We wish to search 

for the decision variables that maximize or minimize the mean of the objective function. 

 

An estimate of the mean function value can be obtained by evaluating the objective function 

once (i.e. a single replication) 
(114)

. The precision of this estimate can be improved by performing 

repeated replications and using the sample mean 
(114)

. However, if the objective function value is 

obtained via a time consuming computer simulation, then there will be a trade-off: For a fixed 

amount of computing time (number of function evaluations), increasing the number of 

replications per fitness evaluation will decrease the extent of the search.  

 

GGA’s have been found to perform effective optimization using just a single  

replication 
(96, 103, 114, 115, 116)

. Explanations for the robust performance of GGA’s in noisy 

environments using a single replication for fitness evaluations have been given based on schema 

theory and hyperplane sampling 
(103, 114, 115)

. However, for higher noise levels, performing 

additional replications can be beneficial 
(96, 117)

. Aizawa and Wah 
(117)

 note that the optimal 

number of replications to perform increases as the total number of allowable function evaluations 

increases. Thus, there does not appear to be a unified consensus on whether additional 

replications can improve optimization performance. 

 

When applying GGA’s to problems with stochastic elements using a single replication, a 

particular individual may receive an unusually high fitness evaluation when in fact the solution is 

poor (i.e. true mean value of objective function far from optimal). The individual will be 

favoured by selection and may persist in the population for a long time and disseminate bad 
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genetic material. To resolve this problem, it is common practice to re-evaluate all individuals 

which survive unaltered from one generation to the next 
(84, 99, 113)

. 

 

For SSGA’s and CHC, such a re-evaluation mechanism is not feasible and consequently the 

GGA has been favoured for applications to noisy problems 
(84)

. However, the studies 

demonstrating the superiority of these alternative genetic algorithms (see section 5.5.5) have 

included a 10-dimensional unimodal quartic function with normally distributed noise in the test 

function suite. The alternative algorithms have shown improved performance over GGA’s for 

this function. In addition, Rana et al 
(103)

 demonstrated the superiority of CHC over a GGA on 

three noisy test functions. 

 

Thus the superiority of SSGA’s and CHC for optimization in noisy environments has not been 

convincingly demonstrated. 

5.6 Genetic algorithms in traffic signal optimization 

Foy et al 
(118)

 were the first to apply genetic algorithms to the traffic signal timing problem. 

Delay for a hypothetical four signal network under two phase control was minimized using the 

SGA. Delay calculations were performed by a simple microscopic traffic simulation model. The 

problem encoding included cycle length, green splits and offsets
39
.  

 

Memon and Bullen 
(119)

 compared the optimization efficiency Quasi-Newton search and the SGA 

on a five signal network. Delay computations were obtained from a macroscopic simulation 

model. Phase sequence optimization was not considered. They noted superior performance of the 

SGA for more complicated optimization scenarios. 

 

Oda et al 
(120)

 compared the TRANSYT 
(40)

 hill-climber, Random Search as well as a SGA with 

2-Point crossover
40
 and elitist strategy on two large grid networks. Objective function 

evaluations were performed by the TRANSYT simulation model. The genetic algorithm 

outperformed the other two optimization methods on both networks. 

                                                 
39
 The encoding allowed for offset to be adjusted only in a very limited manner. 

40
 In 2-point crossover, two crossover points are randomly chosen and the genetic material between the two 

crossover points is swapped to form offspring. 
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Park 
(121)

 provides a thorough application of genetic algorithms to optimize all timing variables 

besides the number and structure of signal stages. He used a SGA with uniform crossover, 

tournament selection and the elitist method. A variety of optimization criteria were considered 

and measures of effectiveness were computed by a stochastic traffic simulation model. The 

genetic algorithm was found to provide effective optimization for hypothetical two signal and 

four signal networks and outperformed the TRANSYT-7F 
(49)

 hill climbing procedure. For a 

simplified two signal network, the genetic algorithm found a solution with delay only 1% larger 

than that of a full enumerative search. 

 

Lo and Chow 
(122)

 used a SGA with fitness scaling to compare optimal static and dynamic signal 

timing policies on a three signal arterial. Optimization of phasing was not considered. The delay 

of each signal timing policy was evaluated by a cell transmission model which is an alternative 

macroscopic modelling approach for traffic networks. 

 

Rouphail et al 
(123)

 demonstrated the feasibility of optimization with genetic algorithms using 

CORSIM 
(50)

 to evaluate delay. Optimization of phasing was not considered in their study. The 

latest release of TRANSYT-7F, version 10.2 
(49)

, as already mentioned in section 3.4.3, now 

supports optimization of all traffic timing variables besides the number and structure of stages 

using the genetic algorithm given by Park 
(121)

. Measures of effectiveness can be computed using 

the TRANSYT-7F internal macroscopic traffic model or by calling the CORSIM microscopic 

simulation model externally. PASSER V, a traffic signal optimization program with a 

macroscopic traffic model very similar to TRANSYT-7F also allows for genetic algorithm 

optimization 
(124)

. Approaches combining genetic algorithms with the TRANSYT-7F hill 

climbing optimization procedure have also been considered 
(125, 126)

. 

 

Sun et al 
(127)

 applied a multi-objective genetic algorithm for generating the set of Pareto-optimal 

signal timing policies for minimum delay and stops at an isolated intersection. Delay and stops 

were computed via analytical formulae. Park et al 
(128)

 utilized genetic algorithms for determining 

the times to change signal timing plans in multi-dial systems. Genetic algorithms have also been 

applied to models for use with on-line optimization of traffic signals 
(60, 129, 130)

.
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6 Chapter Six – Research Questions 

6.1 Introduction 

In this dissertation, we will be examining several untested modifications to the genetic algorithm 

when applied to traffic signal optimization. The problem will be considered for the case where a 

stochastic traffic simulation model is used to evaluate the quality of solutions in the search 

process. 

 

In this chapter, we first give motivation for such a study. We then discuss the alternative 

operators, parameter values and different algorithms that were tested. 

6.2 Motivation 

6.2.1 Why do we need a better genetic algorithm? 

In section 5.6, an overview of literature demonstrating the effectiveness of genetic algorithms as 

an effective optimization strategy for setting traffic signal timings was given. However, the 

majority of the research has considered small problems with only a few intersections. In certain 

cases, not all decision variables were optimized. 

 

Rouphail et al 
(123)

 using the genetic algorithm given by Park 
(121)

 (see section 5.6) applied a 

genetic algorithm to a nine signal network in Chicago. Cycle length, green times and offsets 

were optimized, resulting in a total of 22 decision variables. Phase structure and sequence were 

pre-specified. The genetic algorithm converged to a very poor solution. A heuristic reduction in 

the size of the parameter space searched by the genetic algorithm was performed and a set of 

signal timings with 53% less delay than the genetic algorithm without the modification was 

obtained. CORSIM
 (50)

 was used for performing the objective function evaluations. The genetic 

algorithms was limited to 625 function evaluations and took over 7 hours to complete the 

optimization using desktop computing technology of the year 2000. 
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Based on this study on a large network, a search for more efficient genetic algorithms 

optimization strategies is in order. 

6.2.2 Why use a stochastic traffic simulation model? 

Stochastic microscopic traffic simulation models, CORSIM
 (50)

 being the most widely used, have 

been found to provide adequate representations of reality (see section A1.4.3). A deterministic 

macroscopic simulation model with faster execution speed such as the TRANSYT-7F 
(49)

 traffic 

simulation model would be preferred as a much more extended optimization search can be 

performed given the same amount of computing time. However, Park et al 
(131)

 performed 

comparisons between TRANSYT-7F and CORSIM under identical traffic situations and noted 

discrepancies between the computed performance measures, especially in oversaturated 

conditions. Similar discrepancies between CORSIM and TRANSYT-7F have been found in 

other studies 
(37, 52, 57, 132)

. Wong 
(133)

 also noted poor agreement between field measurements and 

TRANSYT-7F model predictions. 

 

Thus, a microscopic stochastic traffic simulation model called MSTRANS was developed for the 

purpose of this research. MSTRANS is discussed in section 7.2. 

6.3 Research Questions 

6.3.1 Introduction 

We now detail the various parameter and implementation modifications of the genetic algorithm 

that were tested in this research. We highlight the unanswered questions about the changes to 

give justification for testing them as potential improvements to the optimization process. 

6.3.2 Re-evaluation of fitness in GGA’s 

When GGA’s are applied to functions with noisy evaluations, individuals that enter the next 

generation unaltered are re-evaluated (see section 5.5.7 for the arguments in favour of this 

approach). The disadvantage of this is that when the total number of function evaluations is 

limited, the re-evaluation of existing points will reduce the number of new points that can be 

investigated. Although the logic in favour of re-evaluating individuals may be sound, we have 

not found any empirical research demonstrating its effectiveness. We wish to investigate whether 
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re-evaluation in fact increases search efficiency. If so, we would expect it to be less useful at 

lower noise levels. Performance measures produced by microscopic traffic simulation models 

exhibit larger variability when flow is close to, or exceeds capacity 
(131, 134, 135)

. Thus, lower noise 

levels correspond to undersaturated conditions where the re-evaluation mechanism may be less 

effective. 

6.3.3 Common Random Numbers 

The use of common random number’s (CRN’s) is a well known variance reduction technique for 

stochastic simulation experiments 
(136)

.  

 

Here, we discuss CRN’s briefly. When comparing alternative system configurations (e.g. in 

traffic signal optimization, we compare different signal timing policies) via stochastic 

simulation, differences in computed performance measures arise from two sources: 

• Difference in system design (e.g. alternative signal timing policies have varying degrees 

of effectiveness). 

• The stochastic nature of experiments.  

 

The variability attributable to the second source can be removed by performing experiments 

under identical conditions (e.g. subjecting different signal timing policies to the same pattern of 

traffic flow). This is achieved by using CRN’s where the same random numbers are used for 

generation of stochastic effects in all configurations. CRN’s and their application to traffic signal 

optimization are discussed further in Appendix A2. 

 

Rathi 
(137)

 found CRN’s to provide substantial reductions in the variance of the difference 

between performance measures of alternative traffic signal timing policies. A facility for 

performing CORSIM runs with pre-specified random seeds was subsequently implemented 
(50)

. 

 

When utilized in genetic algorithms for fitness evaluations, the reduction in the variability of the 

difference between individual fitness measurements allow for selection and replacement to 

operate with greater precision. The genetic algorithm implementations in traffic simulation, 

given in section 5.6, which utilize stochastic simulation models for objective function 
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evaluations performed independent replications. When executing genetic algorithms using 

CORSIM
 (50)

 for measuring fitness, TRANSYT-7F uses CRN’s 
(49)

. 

 

In spite of the compelling arguments in favour of utilizing CRN’s in genetic algorithms, we have 

a few reservations: 

• When performing only a single replication for fitness evaluations, a single arrival pattern 

and routing scheme will be applied to all individuals. Will a single set of experimental 

conditions be adequate when searching for a set of signal timings that optimizes mean 

performance? 

• The explanations for the success of genetic algorithms in noisy environments in terms of 

the schema theorem and hyperplane sampling (see section 5.5.7) are no longer applicable 

when CRN’s are used. 

• The re-evaluation mechanism in GGA’s can no longer be used
41
. The benefit of re-

evaluating individuals is no longer available. 

• We are unaware of any genetic algorithms research demonstrating the benefit of applying 

CRN’s. 

 

Thus, we will investigate the effect that CRN’s has on the optimization performance of genetic 

algorithms when applied to the traffic signal timing problem. 

6.3.4 Number of replications 

In section 5.5.7, we noted several studies demonstrating robust performance of genetic 

algorithms on noisy functions, even when performing a single replication for fitness evaluations. 

Other studies found that improved performance could be achieved at higher noise levels, or when 

a large number of total function evaluations are available, by increasing the number of 

replications per fitness evaluation. The studies on traffic signal optimization listed in section 5.6 

have made use of a single replication for fitness evaluations. When performing genetic 

algorithms optimization using CORSIM
 (50)

 as the evaluator, the TRANSYT-7F user manual 
(49)

 

recommends performing additional replications in oversaturated conditions, but does not give 

any information on how many additional replications to perform. 

                                                 
41
 Re-evaluating an individual with the same random seed values will produce the same objective function value. 
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With respect to the application of genetic algorithms to the determination of optimal traffic 

signal timing policies, we will investigate: 

• Whether performing more than one replication is beneficial. 

• If so, are there any guidelines on how many replications to perform such as: 

o In oversaturated scenarios, there is a larger variability in measured performance 

values and the genetic algorithm may benefit from additional replications. 

o How does this vary with respect to the number of total function evaluations that 

are available? 

6.3.5 Alternative problem encodings 

All applications thus far on traffic signal optimization have used the standard binary 

representations with the standard genetic operators. We wish to test whether the following 

alterative problem encodings improve traffic signal optimization efficiency. 

 

Gray coding 

In section 5.5.6, we noted that Gray coding removes the Hamming cliffs problem and has 

potential to improving optimization. 

 

Real coding 

In section 5.5.6 we discussed the potential benefits of using a real parameter coding for genetic 

algorithms. Empirically, results have been inconclusive. We wish to test if the BLX-0.5 

crossover and real mutation operators improve optimization efficiency. 

6.3.6 Algorithm type 

In section 5.5.5, we discuss SSGA’s and CHC which are alternative methods for structuring the 

genetic algorithm search. Although they have demonstrated performance improvements over 

GGA’s, even on noisy problems, they have not been widely applied in these problem domains as 

they lack the re-evaluation mechanism of GGA’s. We wish to test if the alternative genetic 

algorithms offer improvements over the GGA for traffic signal optimization. 
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6.3.7 Optimal parameter tunings 

Each genetic algorithm requires the specification of several parameters, most important being the 

population size and the parameters governing selection pressure. Parameter tuning of GGA’s for 

traffic signal timing optimization have been performed to a limited extent 
(49, 121)

. There are 

several studies into the determination of robust parameters for GGA’s such as that of 

Grefenstette 
(89)

. The alternative algorithms SSGA and CHC have not been as well studied. If 

they are found to be beneficial, we wish to determine the optimal algorithm parameters values 

for traffic signal optimization. 
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7 Chapter Seven – Methodology 

7.1 Introduction 

In this chapter we discuss the methodology employed to answer the research questions. We first 

discuss MSTRANS which is the evaluative tool used for the empirical work in this dissertation. 

We then describe the traffic networks against which the alternative optimization strategies are 

tested. Simulation run length and the choice of objective function to utilize in the optimization is 

then motivated. The coding scheme used for transforming traffic signal timing variables into 

genetic material amenable to manipulation by genetic operators is given next. Modifications to 

the real genetic operators to cope with this coding scheme are needed and these amendments are 

discussed. The implementation of the genetic algorithms is discussed and the methodology for 

comparing the efficiency of alternative search algorithms is given. Finally, the experimental 

design used for testing the genetic algorithm modifications is discussed.  

7.2 MSTRANS 

Evaluation of the effectiveness of signal timing policies was performed using a custom built 

stochastic traffic simulation called MSTRANS (Microscopic Stochastic Traffic Network 

Simulation Model). MSTRANS is written in the Delphi 7 programming language 
(138)

. The 

compact disc accompanying this dissertation contains the entire code listing. Here we present a 

high level overview of the model. A thorough account of the functional details and a review of 

the literature justifying the model logic are given in Appendix A1.  

 

MSTRANS simulates traffic operations on a road network under signalized control. The 

modelling methodology caters for undersaturated and oversaturated conditions. The model 

applies a fixed increment time step to advance the simulation. Vehicle status and kinematic 

properties are updated each second, along with the traffic signal indications. Vehicle entry 

headways, turning movements and certain driver behavioural decisions are generated 

stochastically using a pseudo random number generator. 
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The assumptions for a model run are specified via an Excel spreadsheet. The road network 

configuration is described by nodes and links (see section 3.2). Nodes at the boundary of the 

network denote entry/exit points from which vehicles are generated or removed from the 

network. Internal nodes represent traffic signals. Average hourly flow rates at the entry nodes 

must be specified as well as turning proportions for links with traffic signals at their end. A 

common free flow speed is applied to all links. Each link in the network is assigned the same 

number of lanes. Other assumptions regarding vehicle characteristics and driver behaviour must 

also be supplied. 

 

At the start of a simulation run, the road network is empty. As the run progresses, new vehicles 

are introduced at the entry nodes. An initialization period is first completed before results are 

recorded. Once the required run length has been completed the run ends and performance 

statistics are output to a text file. 

 

Modelling logic was based on findings from the literature on driver behaviour. In certain cases 

pragmatic rules were used instead. Traffic flow is assumed to be comprised entirely of passenger 

cars for which the vehicle and driver assumptions given in Appendix A1 are valid. 

The logic encompasses items such as: 

• Acceleration and deceleration characteristics of leading vehicles 

• Behavioural regime of following vehicles based on microscopic car following models 

• Lane changing 

• Gap acceptance response model for left-turning vehicles receiving unprotected green 

• Response delays 

• Response to amber signals 

 

A validation exercise was performed and the model has been found to give comparable results to 

CORSIM
 (50)

 (see section A1.4.3). 

7.3 Test networks 

The genetic algorithms were tested on a 9 signal arterial network and a 14 signal grid network. 

The network specifications are given in Appendix A3 and are based on real world data. These 
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networks were chosen as they are large networks and are representative of tough signal 

optimization problems. Improved optimization techniques are more easily identified on these 

difficult problems.  

 

Undersaturated and oversaturated scenarios were considered. The flow rates given in Appendix 

A3 were used for the undersaturated scenarios. The flow rates for the arterial network and grid 

network were increased by 50% and 60% respectively for the oversaturated scenarios.  

 

Thus, the genetic algorithms were tested in four scenarios: 

• Arterial Undersaturated 

• Arterial Oversaturated 

• Grid Undersaturated 

• Grid Oversaturated 

 

In oversaturated scenarios, small alterations of the decision variables (i.e. the signal timing 

policy) can lead to substantial changes in network performance. Thus optimization is generally 

more difficult in oversaturated conditions as one must be relatively precise to move close to an 

optimal solution. The grid network problem is the more challenging network as we have a larger 

number of decision variables to optimize. 

7.4 Simulation run length 

A 3 minute initialization period was utilized followed by a 15 minute analysis period. For an 

undersaturated scenario, the initialization period serves as the transient phase of the simulation. 

We are interested in the steady state properties of the system and we assume that this has been 

attained approximately after the initialization period
42
. In oversaturated scenarios, there is 

typically a build-up of flow prior to the period of oversaturation. The initialization period allows 

for this build-up, as vehicles will be present in the system when the analysis period begins. A 15 

minute analysis period was used based on the recommendations in the U.S. Highway Capacity 

Manual 
(139)

. 

                                                 
42
 A steady state may not exist if the system is pseudo-congested (see section 7.5). 
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7.5 Optimization objective 

A delay minimization strategy was selected as it has been shown to achieve a satisfactory 

compromise in terms of minimizing delay and at the same time reducing stops, fuel 

consumption, emissions and increasing throughput in both undersaturated and oversaturated 

conditions 
(140, 141, 142)

. 

 

We used control delay (see section 1.2.2) which is the difference between the actual and the 

uninterrupted travel time. The control delay for all vehicles completing their journey through the 

network after the initialization time is averaged to obtain a measure we will refer to as network 

delay. 

 

A problem with this approach for computing delay is that the delay for vehicles still present on 

the network at the end of the simulation run will not be considered. This becomes a problem in 

oversaturated conditions where there may be many queued vehicles that have not completed their 

journey through the network and will not make any contribution to the network delay figure. 

This is also a problem in undersaturated conditions where the ability to provide the capacity to 

satisfy demand exists, but sufficient capacity is unavailable due to non-optimal signal timings. 

These are known as pseudo-congested conditions 
(124)

. 

 

Park et al 
(61)

 recommend the use of queue delay which is the total time accumulated by vehicles 

waiting in queues 
(50)

 as a surrogate for delay as it includes the delay experienced by vehicles that 

have not exited the network. However this measure is still unsatisfactory as the delay still to be 

experienced by the residual queues is not taken into account. 

 

To resolve this difference an automatic feature to extend the simulation period to allow sufficient 

time for all vehicles to clear the network was implemented in MSTRANS. No new vehicles are 

allowed to enter the network during this period
43
. The simulation is stopped once all vehicles 

have exited the network. We will refer to the delay computed by this extension of the simulation 

period as extended network delay.  

 

                                                 
43
 Aside from those waiting at the first-in-first-out queues at the source nodes (see section A1.3.7). 
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The genetic algorithms were applied to the minimization of mean extended network delay. This 

modified version of delay relieves certain shortcomings of the traditional delay measures as 

we’ve discussed at the cost of an increased run-time of the traffic simulation model. 

7.6 Genetic algorithm problem encoding 

7.6.1 Introduction 

In this section, we provide description of the different phasing possibilities and the coding 

scheme used for transforming genetic material into traffic signal timing decision variables. This 

genetic encoding is similar to the fraction-based coding scheme given by Park 
(121)

. The proposed 

encoding is an enhancement over those used thus far as it allows for the number and structure of 

the phases to be optimized.  

7.6.2 Phasing 

All signals in the test networks control conflicting flow from two perpendicular two-way streets. 

Since signals are identical in this respect, we need only consider a single intersection for the 

derivation of the phasing schemes. In Figure 11 below, we illustrate the traffic movements from 

the four approaches, N, E, S and W at a signalized intersection. 

 

 

 

Figure 11: Traffic movements at a single intersection. 

 

W 

S 

E 

N 
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We assume that green indications are given to vehicles on the N and S approaches ( SN /  green 

phase), followed by green indications for vehicles on the E and W approaches ( WE /  green 

phase). This completes the cycle and the sequence of signal indications is repeated. 

 

For the W approach, we can display green indications for all movements for the entire duration 

of the WE /  green phase. Alternatively, we can have green indications for only part of the WE /  

green phase. If this is the case, then the remainder of the phase can be used to allow for protected 

left turn movements from the E approach.  

Let ρ  = duration of WE / green phase (s), 

1

Wg  = duration of stage with green indications for all traffic movements on approach  

    W (s) and 

2

Wg  = duration of stage allowing for protected left turn movements for left turning      

    vehicles on approach E (s). 

 

We can visualize the staging possibilities diagrammatically in Figure 12 below: 

 

 

 

Figure 12: Staging of green for traffic movements on approach W. 

 

Let =Wδ  sequence of green stages for traffic movements on approach W. 
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The three possible stage sequences are: 

• 0=Wδ , i.e. no protected stage for opposing left turning movements 

• 1=Wδ , i.e. protected stage for opposing left turning movements at end of green stage 

(lagging stage).  

• 2=Eδ , i.e. protected stage for opposing left turning movements at beginning of green 

stage (leading stage). 

 

Similarly, for the E approach, let 

1

Eg  = duration of stage with green indications for all traffic movements on approach  

   E (s), 

2

Eg  = duration of stage allowing for protected left turn movements for left turning      

   vehicles on approach W (s) and 

Eδ   = sequence of green stages for traffic movements on approach E. 

 

We have similar staging possibilities for the E approach as illustrated in Figure 13. 

 

 

 

Figure 13: Staging of green sequences for traffic movements on approach E. 

 

Taking the cross product of the stage sequences on each E and W approaches, we obtain 9 

phasing possibilities for the WE / green phase. These are illustrated diagrammatically in  

Figure 14. 

all red 
amber 

Time 

all red 

amber 

amber 

ρ
1

Eg

1

Eg

2

Eg

amber 

amber 

1

Eg

2

Eg

all red 

0=Eδ 1=Eδ 2=Eδ



 Page 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0=Eδ1=Wδ

0=Eδ0=Wδ

1=Eδ0=Wδ

2=Eδ0=Wδ

1=Wδ 2=Eδ or or 

1=Eδ1=Wδ or or 

2=Wδ 0=Eδ



 Page 69 

 

 

 

 

 

 

 

 

 

 

Figure 14: Nine phasing possibilities during WE / green phase44. 

 

In the figure above, we see that when two stages are applied to each approach and the lengths of 

the first stages is not equal for both approaches, then we have a middle phase called the overlap 

phase. 

 

Similarly, the sequence of green indications applied in the SN /  green phase can also be allotted 

in 9 possible ways. Taking the cross-product, we obtain 81 phasing possibilities at each traffic 

signal. 

7.6.3 Genetic encoding 

Let 

sN    = number of traffic signals in the network under study, 

i     = particular traffic signal { }SN,,2,1 K∈ , 

j    = green phase { }WESN /,/∈ , 

k    = approach at signal { }WSEN ,,,∈ ,

                                                 
44
 The amber and all-red are ignored in the Figure. The straight arrows denote green indications for both through and 

turning movements (right turning movements and unprotected left turning movements). The left curving arrows 

denote protected turn movements for left turning vehicles 

2=Wδ 1=Eδ or or 

2=Wδ 2=Eδ or or 
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( )kG    = green phase corresponding to a particular approach 

   =
{ }
{ }








∈

∈

WEkforWE

SNkforSN

,/

,/
, 

(7-1) 

A    = duration of amber interval (s), 

R    = duration of all-red interval (s), 

minC    = minimum cycle length to search (s), 

maxC    = maximum cycle length to search (s), 

stagegmin,  = minimum duration of any green stage (s) and 

phasegmin, = minimum duration of green phase including signal change period (s) 

   = ( ) RAg stage ++min,2  (See footnote
45
) 

(7-2) 

Now, for a particular individual in the genetic search, let 

C    = cycle length (s), 

iφ    = offset of traffic signal i with respect to beginning of the SN /  green phase relative to 

                  the start of the simulation (s), 

ji,ρ     = duration of green phase j at traffic signal i including amber and all-red transition  

      period (s), 

ki ,δ    = sequence of green stages for approach k at traffic signal i, { }( )2,1,0, ∈kiδ , 

1

,kig    = duration of stage with green indications for all traffic movements on approach k at  

      traffic signal i (s) and 

2

,kig    = duration of stage allowing for protected left turn movements on approach opposing  

       approach k at traffic signal i (s). 

                                                 
45
 We have to allow for the possibility of two green stages during each green phase. 



 Page 71 

For a particular decision variable, let 

x     = value of decision variable in the problem space, 

l   = number of bits in the binary encoding for representing x and 

11 yyyy ll K−=  = binary value mapping to x. 

( )xD    = decoded value of x expressed as a fraction in the range [ ]1,0  

   = ∑
=−

l

m

m

ml
y

0

2
12

1
 (See equation (5-1)). 

(7-3) 

We call ( )xD  the normalized value of the decision variable x. 

We use two bits for the encoding of each ki ,δ . Let 1,,kiy and 2,,kiy denote the values of these two 

bits. 

 

The binary genetic material of a particular individual is decoded into a set of traffic signal timing 

policies using the following formulae: 

 

( ) ( ) CDCCCC minmaxmin −+=  (See equation (5-1)) 

(7-4) 

( )  { }Si

i
Ni

i

for

for

CD ,,3,2

10

K∈

=





=
φ

φ  (See footnote
46
) 

(7-5) 

( ) ( ) SNiphasephaseSNi DgCg /,min,min,/, 2 ρρ −+=  (See footnote
47
) 

(7-6) 

SNiWEi C /,/, ρρ −=  (See footnote
48
) 

(7-7) 

                                                 
46
 The offset of the first signal is arbitrarily set to 0. The offsets of all other signals are fractions of the cycle length 

and are relative to the start of the SN /  green phase of the first signal. 
47
 The SN / green phase time is a fraction of the cycle time, taking into account the minimum phase duration. 

48
 The remainder of the cycle time is allotted to the WE / green phase 
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(7-10) 

 

Using this problem encoding, we have 90 decision variables and a binary string of 315 bits for 

the arterial problems (see the formulae in Appendix A4). For the grid network problems, the 

corresponding values are 140 and 490.  

 

Cycle lengths at integer values between 50 and 120 seconds were searched (i.e. 50min =C  and 

120max =C ). A minimum green stage time of 5 seconds was implemented (i.e. 5min, =stageg ). 

An amber period of 3 seconds and all-red interval of 2 seconds was assumed for all phase 

transitions (i.e. 3=A  and 2=R ) 

7.7 Modifications to real genetic operators 

7.7.1 Introduction 

Modifications to the blend crossover operator and real mutation operator given in section 5.5.6 

were required in order for them to be utilized with the proposed encoding scheme for traffic 

signal timing policies. 

                                                 
49
 One bit denotes whether one or two stages are used for the green indications for the approach. If there are two 

stages, then the other bit denotes the order of these stages. This encoding for signal staging is in-line with the 

principle of meaningful building blocks 
(78)

. 
50
 The duration of the green stage for all traffic movements on the approach is a fraction of the green phase time 

subject to the minimum green stage duration. 
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7.7.2 Blend crossover 

The blend crossover operator discussed in 5.5.6 can be applied to decision variables with 

unlimited search domain or where the search domain is restricted to an interval of the form 

[ ]ba, . For the fraction-based encoding scheme proposed in section 7.6.3, the search domains for 

the decision variables{ }iφ , { }SNi /,ρ  and { }1

,kig  may differ for each individual e.g. the maximum 

allowable values of the{ }iφ  is C and the value of C may differ in two individuals selected for 

recombination. When the allowable search domain differs for each individual, then blend 

crossover will not allow for a meaningful blending of the decision variables. In certain situations, 

it may be impossible to generate and a valid offspring e.g. consider Figure 10 in section 5.5.6 

and suppose that the upper limit on the search domain for the i’th decision variable in the 

offspring is less than il . 

 

To resolve this problem, we first converted the real valued decision variable to a fractional value 

in the range [ ]1,0  in each parent. We can then apply blend crossover to these fractional values and 

obtain the fractional value of the decision variable in the offspring. We then convert the 

fractional value of the decision variable in the offspring to the corresponding value in the search 

domain. That is, the blend crossover is applied to the normalized values, ( ){ }ixD  (see section 

7.6.3). 

 

We cannot apply blend crossover to{ }ki,δ , the decision variables specifying the number, structure 

and sequence of stages. We applied the standard binary crossover operators to these decision 

variables. Thus when we state that real crossover is applied in a genetic algorithm, we mean that 

blend crossover is applied to all decision variables besides the variables specific to phasing. 

7.7.3 Real mutation 

For real mutation, the mutation operator discussed in 5.5.6 is applied to the each decision 

variable C, { }iφ , { }SNi /,ρ  and { }1

,kig  with probability mp . Since the allowable domain of certain 

decision variables depend on the value of other decision variables, we must be careful about the 

order in which the decision variables are mutated. We removed this complication by applying 
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mutation to the normalized values of the decision variables, ( ){ }ixD  i.e. for each real decision 

variable ix , replace ( )ixD  with a realization from a ( )1,0U  random-variate with probability mp . 

This same procedure can be used for initializing the initial population, where we set ( ) =ixD  

realization from a ( )1,0U  random-variate for each real decision variable ix . 

 

The bits coding the phasing decision variables undergo standard bit-flip mutation with mp . Thus 

the real mutation applied is a combination of real mutation with the standard binary mutation. 

 

When both real crossover and real mutation are applied, we no longer require a binary encoding 

for the real decision variables. 

7.8 Genetic algorithms and parameter values 

Three different genetic algorithms were applied: GGA, SSGA and CHC. 

 

The GGA is a SGA with binary tournament selection, elitist method and uniform crossover. 

These modifications were used in the GGA by Park 
(121)

 and are generally acknowledged 

methods for improving search efficiency (see sections 5.5.2, 5.5.3 and 5.5.4). The SSGA is based 

on GENITOR 
(91, 97)

 and uses uniform crossover. The CHC algorithm was implemented 

according to the pseudo code given by Eshelman 
(100)

 and uses HUX crossover. The algorithms 

were implemented using Delphi 7 
(138)

 and the complete code listing is given on the compact disc 

provided with this dissertation. The stochastic elements of the genetic algorithm search were 

simulated using the ISAAC pseudo-random number generator 
(143)

 (see section A1.3.13). 

 

The performance of a genetic algorithm is known to be sensitive to the algorithm parameters. In 

order for us to meaningfully test modifications to the algorithm and for useful comparisons 

between the algorithms to be made, we require the genetic algorithms to be executed with 

parameter values appropriate for the particular problem. Parameter values for each algorithm 

were carefully chosen using one or more of the following methods: 

• Performing simple test runs to find appropriate parameter values. 
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• Selecting parameter values based on studies into robust genetic algorithm parameter 

values, such as the study by Grefenstette 
(89)

. 

• Recommendations by Park 
(121)

 and the TRANSYT-7F user manual 
(49)

 on optimal 

parameter values specifically for traffic signal optimization problems. 

 

The following parameter values were used, unless specified otherwise: 

 

GGA 

01.0

6.0

30

=

=

=

m

c

Pop

p

p

N

 

 

SSGA 

01.0

4.1

50

=

=

=

m

Pop

p

N

β  

 

CHC 

35.0

50

=

=

r

N Pop  

7.9 Comparisons of genetic algorithms 

7.9.1 Introduction 

We discuss the methodology for comparing the different genetic algorithms under the following 

headings: 

• Multiple runs 

• Number of function evaluations 

• Obtaining an unbiased measure of solution quality 

• Constructing sample statistics 

• Statistical tests 
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7.9.2 Multiple runs 

Genetic algorithms are stochastic search algorithms. A comparison of the optimization 

performance of two algorithms on the same function using a single run of each would thus be 

inappropriate. The studies into genetic algorithms optimization of traffic signals discussed in 

sections 5.6 and 6.2.1 have based findings on a single optimization run owing to computational 

resource limitations. Due to the run-time efficiency of the MSTRANS model and increases in 

modern computing power, it was possible for us to perform a total of 20 independent executions 

of each search algorithm and compare mean performance. Averaging the results of several 

optimization results produces more stable results and allows for statistical comparisons to be 

made. 

 

When CRN’s and a single replication were utilized in fitness evaluations, the same set of 

common random number seeds was applied to all individuals in a particular run of a particular 

genetic algorithm. When CRN’s and more than one replication were performed, different sets of 

random number seeds were used in each replication of the objective function, but for each 

replication, the same set of random number seeds was applied to all individuals. Between runs of 

the genetic algorithm, totally different random number seeds were used for implementing the 

CRN’s variance reduction to ensure that the runs were independent. Runs of different genetic 

algorithms were also independent. 

7.9.3 Number of function evaluations 

Trial runs were performed with the GGA on the test networks and the convergence after 10000 

function evaluations was thought to be adequate given the computational resource limitations
51
. 

Thus, it was decided to execute each search algorithm for a total of 10000 objective function 

evaluations. Results were output at intervals of 1000 function evaluations so that comparisons at 

different computational resource levels could be made. 

                                                 
51
 This number of function evaluations is much larger than that used in the study by Rouphail et al 

(123)
 (see section 

6.2.1) due to the larger complexity of the test networks and the consideration of additional signal timing variables in 

the optimization. 
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7.9.4 Obtaining an unbiased measure of solution quality 

When independent replications are performed, the extended network delay value produced for 

the best performing individual is biased, since selection and replacement in the genetic algorithm 

favour solutions with “lucky evaluations” (see section 5.5.7). When CRN’s are utilized, the 

extended network delay of the best individual is computed using the arrival patterns, routing 

schemes and driver decisions induced by the particular random seeds. The decision variables of 

the best individual will be tuned to work well for this particular realization and the sample 

measure of extended network delay will underestimate mean extended network delay. 

 

Thus, to obtain an unbiased measure, independent replications of the signal timing policy of the 

best individual are performed to obtain a true measure of the quality of the solution. MSTRANS 

was executed 20 and 40 times to obtain independent samples of extended network delay of the 

best solution for the undersaturated and oversaturated scenarios respectively
52
. These replications 

were not included when computing the total number of function evaluations as they were 

performed for evaluative purposes. 

7.9.5 Construction of sample statistics 

For a particular genetic algorithm, X, applied to a particular scenario, let 

FX ,µ  = population mean of extended network delay of best individual produced by the genetic  

    algorithm on average after F function evaluations, 

N = number of independent runs of the genetic algorithm 

 = 20, 

n = number of independent replications of the best individual 

 =




scenariostedoversaturathefor

scenariosatedundersaturthefor

40

20
, 

jFiX ,, =extended network delay on the j’th independent replication of the best individual after F 

            function evaluations on the i’th independent run of the genetic algorithm, where 

 

{ }Ni ,,2,1 K∈ , { }10000,,2000,1000,0 K∈F  and { }nj ,,2,1 K∈  

                                                 
52
 In oversaturated conditions, extended network delay will have a larger variance than in undersaturated conditions, 

so it was decided to perform more replications in the oversaturated scenarios. 
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Then ∑
=

=
n

j

jFiFi X
n

X
1

,,,

1
 is an unbiased estimate of the mean extended network delay of the best 

solution after F function evaluations on the i’th run of the genetic algorithm. 

 

Finally, ∑
=

=
N

i

FiF X
N

X
1

,

1
 gives an unbiased estimate of FX ,µ . 

 

Genetic algorithms X and Y are compared at F function evaluations using the samples values 

of FX  and FY . To make the comparisons more meaningful, we quote the relative 

improvement/degradation of genetic algorithm Y over genetic algorithm X after F function 

evaluations, 
F

FF

X

YX −
. Positive values indicate an improvement and negative values signify a 

reduction in performance. 

7.9.6 Statistical tests 

In experiments with genetic algorithms on noisy functions, there are two sources of variability in 

the sample performance measures: 

• Genetic algorithms are stochastic search algorithms and exhibit different search 

trajectories on each independent execution of the search process. 

• The objective function is noisy and a different value is obtained for each independent 

replication of the same individual. 

 

When performing comparisons of genetic algorithms, we wish to test whether the mean objective 

function value of the best individual of alternative genetic algorithms differ on average over all 

possible search paths. That is, for two alternative algorithms genetic algorithms X and Y we wish 

to compare FX ,µ  and FY ,µ . 

 

When performing empirical comparisons of genetic algorithms on noisy functions, researchers 

construct a noisy test function by adding a normally distributed noise term to a deterministic test 

function. When comparisons of the performance of different genetic algorithms are made, the 
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noise in the objective function evaluations can be explicitly removed by evaluating the objective 

function without the noise term. This removes the second source of variability and simplifies the 

analysis. Repeated independent runs of the genetic algorithms are performed and conventional 

two sample tests can be used to test whether differences in the sample performance measures are 

statistically significant. 

 

For the consideration of a problem such as the traffic signal timing problem where objective 

function evaluations are via time consuming computer simulation, such a luxury is not available. 

Thus, for the purpose of this research, a statistical model addressing both sources of variability 

was developed. Experiments were performed so that appropriate statistical distributions that 

describe the variability could be determined. A translated gamma distribution was found to 

describe the variation in the quality of the best solution over repeated executions of the same 

search algorithm. For a specified signal timing policy, extended network delay was found to be 

normally distributed with variance a linear function of the mean where the linear function has a 

positive slope. Thus, signal timing policies with a larger mean extended network delay have a 

larger variance in extended network delay. This auxiliary finding is useful as it demonstrates that 

delay minimization strategies produce the most reliable timing policies in that the variability of 

delay is simultaneously minimized. The likelihood ratio test 
(144)

 was then used to construct a 

statistical test. A detailed account of the experiments performed and the formulation of this 

statistical model is given Appendix A6 

 

A test of the null hypothesis, FYFXH ,,0 : µµ =  versus the alternative hypothesis, FYFXH ,,1 : µµ ≠  

is performed separately at F = 5000 and F = 10000 function evaluations. We note that the tests 

are not independent since they are based on sample data from the same set of N independent 

replications of each genetic algorithm. Unless specified otherwise, the statistical comparisons 

were made at the 5% significance level. We compare multiple algorithms on 4 traffic network 

scenarios and utilize the same output in multiple comparisons in some cases. Thus the overall 

significance level will be greater than 5% and the hypothesis tests are not always independent. 
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7.10 Experimental design 

In this research, we are hoping to more obtain improved optimization of traffic signals by 

varying the following parameters (which we call factors in this section) of the genetic algorithm 

search procedure: 

• Re-evaluation of fitness in GGA’s 

• The use of CRN’s 

• Number of replications for fitness evaluation 

• Standard binary code versus Gray code 

• Binary operators versus real operators 

• Algorithm type (GGA/SSGA/CHC) 

• Other search parameters (e.g. Population size) 

 

The modifications are evaluated using a sequential procedure. An alteration that is found to 

improve optimization is retained when evaluating the effectiveness of other factors. Pairwise 

comparisons are made against the best algorithm found at each stage. This can lead to misleading 

results if there is strong interaction between the factors. A factorial design 
(145)

 where factors are 

simultaneously varied would be more appropriate but is beyond the scope of this research. 

However in many cases we did vary more than one factor at a time (e.g. Algorithm type is 

included as a factor in most comparisons). Also the base value of the factors we call “Other 

search parameters” were carefully set (see section 7.8). When comparing binary and real 

operators or coding, we will show preference to the real operators/codings even when there is no 

evidence of any difference in optimization performance as the real number versions provide 

other benefits (see section 5.5.6).
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8 Chapter Eight – Results 

8.1 Introduction 

In this chapter, we present the results of the empirical experiments with alternative genetic 

algorithms, genetic operators and search parameter values. The experiments conducted to answer 

each of the research questions in section 6.3 are presented separately along with the results. In 

order to reduce on the amount of output displayed, we present results at only F = 5000 and 

F = 10000 function evaluations in most situations. More detailed output is given in Appendix 

A7. 

8.2 Re-evaluation of fitness in GGA’s 

The effectiveness of the re-evaluation mechanism in GGA’s was assessed by applying the GGA 

with and without the re-evaluation mechanism. Experiments were performed using 1, 2, 4 and 8 

independent replications of each individual for fitness evaluations to evaluate whether the re-

evaluation mechanism still provides benefits when additional replications are performed and the 

noise level is reduced. Comparisons were made by contrasting the GGA with and without re-

evaluation separately for the same number of independent replications for fitness evaluations. 

The results given in Table 2 are for the relative improvement/degradation in extended network 

delay of the runs with the re-evaluation mechanism relative to those without the re-evaluation 

mechanism.
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Relative Improvement/Degradation Significant Difference Test - p value 

Number of Replications Number of Replications 
Function 

Evaluations 
1 2 4 8 1 2 4 8 

Arterial Undersaturated 
5000 -3.2% 4.2% -2.1% -9.8% 0.46009 0.23299 0.64621 0.19096 

10000 0.3% 3.9% -3.8% -4.5% 0.73374 0.09763 0.22934 0.31708 

Grid Undersaturated 
5000 3.0% 0.8% -5.4% -3.7% 0.20407 0.81553 0.09149 0.57261 

10000 1.6% 1.5% -2.5% -4.1% 0.48429 0.64488 0.23426 0.34885 

Arterial Oversaturated 
5000 -1.2% 1.9% 4.8% -7.6% 0.75613 0.47125 0.17272 0.10112 

10000 5.1% -0.3% 3.9% -7.8% 0.07868 0.88855 0.21889 0.04469 

Grid Oversaturated 
5000 3.4% 3.2% -2.2% -6.7% 0.29408 0.22788 0.59575 0.30324 

10000 6.9% 2.6% 1.9% -6.8% 0.04234 0.37544 0.51398 0.20545 

 

Table 2: Assessment of re-evaluation mechanism in GGA 

 

We find that the re-evaluation mechanism offers no significant improvement in the 

undersaturated scenarios. In the oversaturated grid network scenario, an observed 6.9% reduction 

in delay at F = 10000 is just significant when a single replication is performed. For this same 

value of F, a 5.1% reduction in delay for the oversaturated arterial scenario with a single 

replication is close to significant. We find performance degradations with the re-evaluation 

mechanisms when fitness evaluations are performed using 8 replications. However the 

degradation is only just significant in the oversaturated arterial scenario and insignificant in the 

other scenarios.  

 

Thus, considering the larger number of tests performed and borderline significant results, we do 

not find convincing evidence in favour of the re-evaluation mechanism based on the experiments 

performed. Further investigation is required to test whether re-evaluations are: 

• Beneficial in oversaturated networks when performing a single replication for fitness 

evaluation 

• Disadvantageous when performing multiple replications for fitness evaluation.  

 

We do not pursue these points further and perform the comparisons in the next section using 

GGA’s without re-evaluation. 
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8.3 Common Random Numbers 

The efficacy of CRN’s in improving optimization performance was evaluated by comparing the 

results of genetic algorithms runs with independent replications versus those with CRN’s for 

fitness evaluation. The GGA, SSGA and CHC were executed using 1, 2, 4 and 8 replications of 

each individual for fitness evaluations. The results from 8.2 were utilized for the GGA with 

independent replications
53
. In each case the same type of algorithm with the same number of 

replications was compared with and without the use of CRN’s. The results for the GGA, SSGA 

and CHC are presented in Table 3, Table 4 and Table 5 respectively. The results are quoted in 

terms of improvement/degradation of CRN’s relative to independent replications. 

 

% Improvement/Degradation Significant Difference Test - p value 

Number of Replications Number of Replications 
Function 

Evaluations 
1 2 4 8 1 2 4 8 

Arterial Undersaturated 
5000 11.2% 10.9% 0.6% -6.9% 0.00003 0.00045 0.89404 0.28625 

10000 6.1% 10.2% 0.6% 1.0% 0.01177 0.00250 0.92373 0.80931 

Grid Undersaturated 
5000 9.0% 4.4% 0.0% 7.1% 0.00204 0.17541 0.98588 0.25980 

10000 9.0% 9.0% 1.9% 4.3% 0.00082 0.00038 0.31477 0.22666 

Arterial Oversaturated 
5000 10.1% 4.2% 6.2% 0.2% 0.00490 0.13526 0.03824 0.95131 

10000 8.8% 4.9% 8.1% -2.7% 0.01443 0.05265 0.00139 0.39180 

Grid Oversaturated 
5000 11.7% 10.7% 0.2% -1.9% 0.00012 0.00141 0.96338 0.77222 

10000 15.0% 12.4% 6.8% 2.2% 0.00031 0.00062 0.02991 0.67077 

 

Table 3: Effectiveness of CRN’s in GGA 

                                                 
53
 The results for the GGA without re-evaluation were taken in all cases. 
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Relative Improvement/Degradation Significant Difference Test - p value 

Number of Replications Number of Replications 
Function 

Evaluations 
1 2 4 8 1 2 4 8 

Arterial Undersaturated 
5000 5.8% 3.6% 5.6% 2.3% 0.06125 0.10044 0.12769 0.67232 

10000 1.8% 3.3% 8.5% 6.1% 0.66837 0.12404 0.00029 0.13376 

Grid Undersaturated 
5000 7.5% 3.6% 1.3% 0.6% 0.00323 0.05849 0.68549 0.90140 

10000 4.6% 3.2% 3.7% 3.5% 0.05431 0.05713 0.04194 0.08403 

Arterial Oversaturated 
5000 5.6% 4.2% 3.7% 2.9% 0.04584 0.11465 0.13780 0.42154 

10000 2.1% 4.4% 2.7% 0.8% 0.43804 0.04186 0.24092 0.69978 

Grid Oversaturated 
5000 10.4% 8.8% 2.0% 1.7% 0.00154 0.00446 0.57604 0.73357 

10000 7.9% 9.7% 6.3% -1.3% 0.00996 0.00330 0.01456 0.74770 

 

Table 4: Effectiveness of CRN’s in SGGA 

 

Relative Improvement/Degradation Significant Difference Test - p value 

Number of Replications Number of Replications 
Function 

Evaluations 
1 2 4 8 1 2 4 8 

Arterial Undersaturated 
5000 7.1% 10.3% 7.1% -3.7% 0.01251 0.00031 0.04211 0.42026 

10000 3.8% 6.0% 5.7% 1.3% 0.13381 0.01274 0.00006 0.62771 

Grid Undersaturated 
5000 6.0% 3.9% -3.1% 0.9% 0.00043 0.02179 0.32756 0.80072 

10000 2.1% 6.2% 2.2% 7.0% 0.16559 0.00067 0.17252 0.01038 

Arterial Oversaturated 
5000 8.8% 6.2% 3.8% -6.6% 0.00973 0.00470 0.04895 0.12802 

10000 6.5% 5.2% 4.6% 0.9% 0.02189 0.03613 0.02786 0.74747 

Grid Oversaturated 
5000 10.0% 4.6% -1.4% 7.1% 0.00188 0.10995 0.61680 0.18565 

10000 7.1% 8.9% -0.8% 3.0% 0.01774 0.00128 0.73583 0.36467 

 

Table 5: Effectiveness of CRN’s in CHC 

 

For the case of a single replication for fitness evaluations, the genetic algorithms with CRN’s 

exhibit improved sample performance measures. These improvements are statistically significant 

in most cases. The improvements at 10000 function evaluations are generally smaller than those 

at 5000 function evaluations. Thus we see that although the genetic algorithms with CRN’s 

initially outperform the genetic algorithms with independent replications, the genetic algorithms 
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with independent replications do appear to “catch-up” as additional function evaluations are 

allowed. For the case of 2 replications for fitness evaluations, the genetic algorithm with CRN’s 

also, in most cases, demonstrate improved performance. For 4 and 8 replications per fitness 

evaluation, we see degradations in performance in some cases although none of these observed 

reductions in performance are significant. Thus, for fitness evaluation using 1 or 2 replications, 

the use of CRN’s for fitness evaluations benefits all algorithm types. There is less evidence of 

improvement when performing more than 2 replications for fitness evaluation. 

8.4 Number of replications 

The optimization runs discussed in section 8.3 allow us to evaluate the benefit of performing 

additional replications. Fitness evaluation using more than one replication reduces the noise level 

of the objective function at the expense of decreasing the extent of the genetic algorithm 

search
54
. We evaluated the relative improvement/degradation in performance of 2, 4 and 8 

replications for fitness evaluations over that of performing a single replication. We considered 

the results where CRN’s were used in the fitness evaluations
55
. Results are presented separately 

for each algorithm type in Table 6, Table 7 and Table 8.

                                                 
54
 The computational resource level which is the total number of function evaluations remains fixed. 

55
 We did not compare the impact of additional replication on performance when independent replications are 

performed since CRN’s were shown to do no worse than independent evaluations in 8.3. 
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Relative 
Improvement/Degradation 

Significant Difference Test 
p value 

Number of Replications Number of Replications 

Function 
Evaluations 

2 4 8 2 4 8 

Arterial Undersaturated 
5000 -3.9% -24.9% -65.5% 0.29211 0.00001 0.00000 

10000 2.7% -8.7% -20.8% 0.17593 0.01496 0.00001 

Grid Undersaturated 
5000 -9.5% -31.2% -71.7% 0.00364 0.00000 0.00000 

10000 -2.2% -13.6% -36.1% 0.23407 0.00006 0.00000 

Arterial Oversaturated 
5000 -7.4% -21.9% -50.1% 0.02470 0.00003 0.00000 

10000 -0.5% -7.9% -22.0% 0.90199 0.02291 0.00004 

Grid Oversaturated 
5000 -5.5% -30.9% -92.6% 0.03586 0.00000 0.00000 

10000 -1.9% -9.8% -38.1% 0.51744 0.00670 0.00000 

 

Table 6: Impact of additional replications on GGA (Using CRN’s) 

 

Relative 
Improvement/Degradation 

Significant Difference Test 
p value 

Number of Replications Number of Replications 

Function 
Evaluations 

2 4 8 2 4 8 

Arterial Undersaturated 
5000 -3.9% -17.1% -68.7% 0.19571 0.00056 0.00000 

10000 1.0% 1.6% -18.4% 0.63858 0.39160 0.00167 

Grid Undersaturated 
5000 -10.0% -33.9% -77.8% 0.00107 0.00000 0.00000 

10000 -1.7% -10.9% -32.6% 0.40202 0.00109 0.00000 

Arterial Oversaturated 
5000 -2.1% -14.9% -42.5% 0.49219 0.00040 0.00000 

10000 3.4% -1.0% -11.5% 0.17589 0.73972 0.00197 

Grid Oversaturated 
5000 -6.7% -35.2% -104.2% 0.01978 0.00000 0.00000 

10000 1.6% -9.1% -35.9% 0.51112 0.00819 0.00000 

 

Table 7: Impact of additional replications on SSGA 
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Relative 
Improvement/Degradation 

Significant Difference Test 
p value 

Number of Replications Number of Replications 

Function 
Evaluations 

2 4 8 2 4 8 

Arterial Undersaturated 
5000 -5.4% -41.8% -137.6% 0.12770 0.00000 0.00000 

10000 2.8% -6.6% -46.9% 0.11462 0.01400 0.00000 

Grid Undersaturated 
5000 -18.9% -62.3% -146.6% 0.00000 0.00000 0.00000 

10000 -1.4% -23.8% -56.7% 0.38041 0.00000 0.00000 

Arterial Oversaturated 
5000 -9.9% -33.2% -110.1% 0.00764 0.00001 0.00000 

10000 -1.3% -12.6% -47.8% 0.63697 0.00106 0.00000 

Grid Oversaturated 
5000 -15.7% -67.8% -152.1% 0.00025 0.00000 0.00000 

10000 -0.8% -25.4% -68.0% 0.78911 0.00003 0.00000 

 

Table 8: Impact of additional replications on CHC 

 

When performing 2 replications we note statistically insignificant differences in performance for 

F = 10000. For 2 replications, degradations in performance are observed at F = 5000 (i.e. when 

there is a small amount of computing resources available) and the degradations are significant in 

most cases. The performance declines are larger for 4 replications and largest for 8 replications. 

In most cases, the degradations, especially with 8 replications, are statistically highly significant. 

Thus a single replication with CRN’s for fitness evaluations is optimal, even in oversaturated 

conditions. In all executions of the genetic algorithms that follow, we make use of a single 

replication with CRN’s. 

8.5 Alternative problem encodings 

8.5.1 Gray coding 

To evaluate the benefit of the use of Gray code over the standard binary code, the performance of 

GGA, SSGA and CHC were compared using the different codings. The results from section 8.3 

for the case of a single replication with CRN’s for fitness evaluations were utilized for the 

standard binary code. The relative improvements/degradations of Gray code over the standard 

binary code are given in Table 9. 



 Page 88 

 

Relative 
Improvement/Degradation 

Significant Difference Test 
p value 

Algorithm Type Algorithm Type 

Function 
Evaluations 

GGA SSGA CHC GGA SSGA CHC 

Arterial Undersaturated 
5000 1.4% -0.2% -1.2% 0.55610 0.83361 0.89737 

10000 2.1% 0.7% -0.8% 0.46306 0.81333 0.91851 

Grid Undersaturated 
5000 6.2% -0.8% 2.5% 0.00257 0.73437 0.16527 

10000 4.9% 1.1% -1.0% 0.01730 0.48421 0.58197 

Arterial Oversaturated 
5000 2.5% 0.0% -0.8% 0.32089 0.96491 0.76926 

10000 3.5% 0.2% -2.4% 0.22737 0.91831 0.32477 

Grid Oversaturated 
5000 10.5% 6.9% 6.1% 0.00134 0.00911 0.02602 

10000 9.9% 8.2% 2.6% 0.00057 0.00054 0.27011 

 

Table 9: Impact of Gray code on genetic algorithms 

 

Gray coding significantly improves optimization performance of all algorithms on the difficult 

oversaturated grid network problem (except at 10000 function evaluations using CHC where the 

performance improvement is statistically insignificant). The enhancement of the GGA on the 

undersaturated grid network using Gray code is also statistically significant. Generally, the 

sample performance measures exhibited the largest improvements for the GGA. Small, but 

statistically insignificant degradations in performance are observed in certain instances when 

applying Gray coding on the SSGA and CHC. Thus, Gray coding does appear to improve 

optimization performance in certain problems while offering equivalent performance on others. 

8.5.2 Real Crossover 

The effectiveness of the blend crossover operator over the standard binary crossover operator 

was evaluated by comparing the optimization performance of the genetic algorithms with each 

recombination operator. Even though real crossover is applied, mutation is via the standard 

binary mutation operator. The mutation operator is retained so that any observed performance 

differentials can be attributed to the difference in crossover operator. Mutation was performed on 

the Gray coded variables. The bases for comparison were the results from section 8.5.1 where the 
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standard binary crossover operators were applied to the Gray coded variables
56
. The results for 

the three algorithm types are given in Table 10. 

 

Relative 
Improvement/Degradation 

Significant Difference Test – p 
value 

Algorithm Type Algorithm Type 

Function 
Evaluations 

GGA SSGA CHC GGA SSGA CHC 

Arterial Undersaturated 
5000 1.1% 2.2% 5.5% 0.57051 0.25777 0.02003 

10000 1.5% 2.4% 4.0% 0.48732 0.16396 0.08470 

Grid Undersaturated 
5000 -4.7% 3.6% 3.7% 0.01131 0.01402 0.01035 

10000 -2.6% 4.2% 5.0% 0.16537 0.00150 0.00006 

Arterial Oversaturated 
5000 -0.2% 3.0% 3.7% 0.94080 0.15410 0.07349 

10000 -2.0% 3.2% 3.9% 0.40657 0.17093 0.03179 

Grid Oversaturated 
5000 4.8% 8.3% 10.7% 0.01215 0.00004 0.00000 

10000 3.7% 9.3% 12.5% 0.02745 0.00015 0.00000 

 

Table 10: Impact of real crossover on genetic algorithm performance 

 

Highly significant improvements using real crossover are obtained for the oversaturated grid 

network. CHC benefits the most from real crossover. For this algorithm, significant 

improvements in performance in all instances except two are observed. The performance of the 

SSGA is enhanced in all cases with statistically significant improvements in performance on the 

grid network problems. The impact of real crossover on the GGA is mixed. Statistically 

significant improvements are noted for the oversaturated grid scenario and a statistically 

significant decline is observed at F = 5000 on the undersaturated grid scenario. On the whole, 

blend crossover does appear to improve the optimization. 

8.5.3 Real mutation 

We also tested the effectiveness of real mutation as opposed to binary mutation. The results from 

section 8.5.2 with real crossover and binary mutation were compared with those from 

optimization runs with both real crossover and real mutation. The exception was the GGA on the 

                                                 
56
 The Gray coding is used as the basis of comparison as it has been shown to be superior to the standard binary 

coding in section 8.5.1. 
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undersaturated grid scenario where we used the GGA with Gray coding and the standard binary 

operators from section 8.5.1 as the base for comparison
57
. We do not require Gray coding for the 

runs with both real crossover and real mutation as they do not require a binary encoding (except 

for the decision variables determining phasing – see section 7.6). We did not evaluate real 

mutation in the CHC genetic algorithm. Mutation in CHC occurs in the outer loop of the 

algorithm when a restart of the algorithm is performed via cataclysmic mutation. From the 

executions of the CHC algorithm in section 8.5.2, the restart mechanism was never invoked in 

any of the N = 20 replications of the algorithm on the grid scenarios. For the arterial scenarios, 

the restart mechanism was initiated once in 20 replications of each scenario at the very end of the 

run. Thus, with a limit of a total of 10000 function evaluations, we cannot measure the impact of 

real mutation on CHC. The results for the GGA and SSGA are given in Table 11. 

 

Relative 
Improvement/Degradation 

Significant Difference Test - 
p value 

Algorithm Type Algorithm Type 

Function 
Evaluations 

GGA SSGA GGA SSGA 

Arterial Undersaturated 
5000 0.5% -0.5% 0.90831 0.96191 

10000 0.8% -2.4% 0.71792 0.21470 

Grid Undersaturated 
5000 0.2% 0.6% 0.90921 0.43949 

10000 0.5% -1.7% 0.77031 0.15983 

Arterial Oversaturated 
5000 -1.4% 0.9% 0.55425 0.65327 

10000 1.7% 1.3% 0.45783 0.53365 

Grid Oversaturated 
5000 0.0% -0.6% 0.96712 0.62173 

10000 0.6% -2.3% 0.69562 0.20144 

 

Table 11: Evaluation of real mutation on performance of GGA and SSGA 

 

We find no significant differences in performance. The binary mutation rate was chosen based 

on prior research and calibration runs (see section 7.8) whereas the real mutation rate was set 

equal to the binary mutation rate. Thus we can conclude that real mutation does no worse than 

binary mutation and has potential for improving performance. Combining real crossover and real 

                                                 
57
 This GGA has demonstrated the best performance on this problem so far relative to all GGA alternatives. 



 Page 91 

mutation, we now find equivalent performance for the GGA on the undersaturated grid scenario 

to that with binary operators and Gray codes. Based on the findings in this section and section 

8.5.2, we note improved performance with removing the binary encoding and using a real 

parameter encoding for all variables except those determining phasing decisions (see Appendix 

A4). An additional benefit is that the optimization performance is no longer dependent on the 

number of bits used for representing the decision variables (see section 5.5.6). 

8.5.4 Real CHC 

With real encodings we no longer require a binary representation of the decision variables for the 

GGA and SSGA. However, with CHC, the incest prevention mechanisms permits recombination 

based on the Hamming distance between parent strings. Thus the binary representation is still 

required. With the success observed with real crossover and mutation, a modified version of 

CHC which we call Real CHC was evaluated. The distance metric for incest prevention in Real 

CHC is in terms of the distance between parameters in the real parameters space (In fact the 

distance measure requires the combination of real and binary distances as binary variables are 

still needed for coding signal phasing). Details on the distance metric and the modifications to 

the formulae for computing the mating thresholds are given in Appendix A5. The proposed 

benefits of Real CHC are: 

• Binary representation no longer required for real parameter decision variables 

• Improved search efficiency as incest prevention algorithm operates in the real parameter 

space 

 

A Real CHC algorithm with real crossover and mutation was compared to the Standard CHC 

algorithm in section 8.5.2 with real crossover and binary mutation
58
. The results are presented in 

Table 12.

                                                 
58
 The differences in mutation operators are unlikely to affect the results as mutation was rarely applied in the 

standard CHC as discussed in section 8.5.3. 
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Function 
Evaluations 

Relative 
Improvement/Degradation 

Significant Difference Test - 
p value 

Arterial Undersaturated   
5000 -0.2% 0.97321 

10000 1.3% 0.49886 

Grid Undersaturated   
5000 0.2% 0.96881 

10000 0.5% 0.74755 

Arterial Oversaturated   
5000 0.4% 0.85413 

10000 2.5% 0.17442 

Grid Oversaturated   
5000 0.4% 0.61517 

10000 1.0% 0.38208 

 

Table 12: Evaluation of Real CHC 

 

Statistically insignificant improvements in performance are observed in most cases. From these 

results, we conclude that the Real CHC allows for the corresponding binary representation of 

real decision variables to be discarded without any measurable reductions in performance. 

8.6 Algorithm Type 

A comparison of the three alternative methods of structuring genetic algorithm search was 

performed. The performance of GGA and SSGA were evaluated relative to the Real CHC. In all 

cases real crossover and real mutation were applied as they have been shown to improve all three 

algorithms in section 8.5. The results are given in Table 13.
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Improvement/Degradation 
Relative to Real CHC 

Significant Difference Test - 
p value 

Algorithm Type Algorithm Type 

Function 
Evaluations 

GGA SSGA GGA SSGA 

Arterial Undersaturated 
5000 -8.0% -2.5% 0.00018 0.07838 

10000 -6.9% -4.7% 0.00077 0.01341 

Grid Undersaturated 
5000 -12.1% -1.2% 0.00000 0.54663 

10000 -10.1% -2.7% 0.00000 0.03694 

Arterial Oversaturated 
5000 -10.9% -3.9% 0.00062 0.12497 

10000 -10.5% -6.9% 0.00065 0.00727 

Grid Oversaturated 
5000 -14.2% -3.3% 0.00000 0.01189 

10000 -12.4% -4.4% 0.00000 0.00545 

 

Table 13: Comparison of GGA and SSGA with Real CHC 

 

We find that Real CHC outperforms the GGA in all situations. The differences are statistically 

highly significant in all cases. The observed degradations in performance with GGA are between 

6.9% and 14.2%. The performance of SSGA and Real CHC are closer. Real CHC outperforms 

the SSGA at 10000 function evaluations in all cases. The observed deteriorations in performance 

with SSGA are between 2.7% and 6.9% at 10000 function evaluations. Statistically insignificant 

degradations in performance are observed with the SSGA at 5000 function evaluations except for 

the oversaturated grid scenario where the degradation is significant. Thus Real CHC appears to 

be the unanimous winner from the three algorithms tested. 

8.7 Optimal parameter tunings 

Different genetic algorithm parameter values were tested for the Real CHC search algorithm. 

The parameterα  of the blend crossover operator and the population size N were investigated. In 

section 8.5.2, we found that the blend crossover offers considerable improvements over the 

standard binary crossover operators. The performance may be further improved by tuning the 

value of α . Genetic algorithms are also known to be sensitive to the choice of the population 

size. The divergence rate r was not considered as the restart mechanism was rarely applied. 

 



 Page 94 

A factorial experiment 
(145)

 where both parameters are simultaneously varied is beyond the scope 

of this study and was not performed. Instead a sensitivy analysis was conducted where different 

values of a single parameter were tested while keeping the value of the other at the base 

condition. 

8.7.1 Blend crossover parameter 

The search performances with 75.0,25.0,0 === ααα  and 1=α  were compared against the 

runs with 5.0=α  in section 8.5.4. The results are given in Table 14. 

 

% Improvement/Degradation Significant Difference Test - p value 

BLX-α BLX-α 
Function 

Evaluations 
0 0.25 0.75 1 0 0.25 0.75 1 

Arterial Undersaturated 
5000 -38.0% -11.3% -6.7% -18.6% 0.00000 0.00001 0.00025 0.00000 

10000 -29.3% -11.0% -2.1% -6.8% 0.00000 0.00002 0.24509 0.00169 

Grid Undersaturated 
5000 -36.1% -14.7% -17.5% -28.6% 0.00000 0.00000 0.00000 0.00000 

10000 -26.5% -10.8% -5.8% -16.6% 0.00000 0.00000 0.00011 0.00000 

Arterial Oversaturated 
5000 -32.8% -6.9% -10.5% -18.8% 0.00000 0.00734 0.00050 0.00001 

10000 -30.5% -10.0% -4.6% -14.7% 0.00000 0.00077 0.03104 0.00006 

Grid Oversaturated 
5000 -47.9% -15.1% -16.2% -31.9% 0.00000 0.00000 0.00000 0.00000 

10000 -39.0% -14.6% -4.9% -19.1% 0.00000 0.00000 0.00023 0.00000 

 

Table 14: Impact of blend crossover parameter on performance of Real CHC (relative to 

)5.0=α  

 

From the table we see that the search performance is highly sensitive to the choice of α . A more 

exploitive search ( 0=α  or 25.0=α )  significantly retards search performance in all instances. 

The search may be converging too quickly and the neighbourhood of good solutions are not 

investigated sufficiently. An excessively explorative search ( 75.0=α  or 1=α ) is not 

advantageous either. A plausible explanation of this outcome is that good solutions are not being 

effectively capitalized upon. We find that 5.0=α  produces an effective balance between 

exploration and exploitation. Larger degradations in performance are obtained as we move 

further away from the optimal choice of 5.0=α . 
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8.7.2 Population size 

Optimization runs were performed using larger and smaller population sizes. Optimization 

performance using population sizes of 30=PopN  and 70=PopN  are compared to that with 

50=PopN  in the base scenario in 8.5.4. The results are given in Table 15. 

 

Relative 
Improvement/Degradation 

Significant Difference Test - 
p value 

Population Size Population Size 

Function 
Evaluations 

30 70 30 70 

Arterial Undersaturated 
5000 -0.9% -5.1% 0.62597 0.00352 

10000 -1.3% -1.0% 0.58109 0.56426 

Grid Undersaturated 
5000 -1.7% -5.2% 0.15575 0.00057 

10000 -0.6% 0.4% 0.68466 0.44424 

Arterial Oversaturated 
5000 -0.8% -4.2% 0.70061 0.07046 

10000 -1.9% -0.8% 0.35594 0.67882 

Grid Oversaturated 
5000 -2.7% -4.8% 0.05312 0.00007 

10000 -1.2% -0.2% 0.40356 0.85287 

 

Table 15: Impact of population size of performance of Real CHC 

 

We find that the search performance is less sensitive to the choice of the population size. A 

smaller population ( )30=PopN  produces statistically insignificant reductions in performance. 

For the oversaturated grid scenario performance degradation at 5000=F  is almost significant. 

A larger population ( )70=PopN  results in significant reductions in performance early on in the 

search for three of the four scenarios. However, at 10000 function evaluations, the performance 

is not significantly any worse. Thus the Real CHC algorithm is robust to the choice of population 

size, although a population size of 50=PopN  is the marginally better choice.  

 

We find no improvement over the base parameter values for both the blend crossover parameter 

and the population size. 
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8.8 Overall improvement 

We now evaluate the total improvement in performance when the modifications are combined. 

The base genetic algorithm that we started with is the GGA with standard binary encoding, 

binary crossover and binary mutation operators with independent replications for fitness 

evaluations with the re-evaluation mechanism and a single replication for fitness evaluation. This 

corresponds to the genetic algorithm used by Park 
(121)

 (see section 5.6). After investigating 

several alternatives, the best performing algorithm is the Real CHC algorithm with BLX-0.5 

crossover, real mutation and the use of CRN’s in fitness evaluations and a single replication. 

 

The relative improvement of this algorithm over the standard one is given for all scenarios and 

number of function evaluations in Table 16. 

 

Scenario 
Function 

Evaluations 
Arterial 

Undersaturated 
Grid 

Undersaturated 
Arterial 

Oversaturated 
Grid 

Oversaturated 

1000 9% 2% 5% 20% 

2000 16% 14% 11% 29% 

3000 21% 17% 17% 29% 

4000 23% 21% 20% 32% 

5000 20% 22% 21% 32% 

6000 19% 20% 19% 32% 

7000 19% 19% 19% 31% 

8000 17% 20% 17% 31% 

9000 13% 19% 16% 32% 

10000 13% 21% 16% 30% 

 

Table 16: Relative improvement of enhanced genetic algorithm over the standard genetic 

algorithm 

 

We find that the improved algorithm offers delay reductions between 20% and 32% at 5000 

function evaluations. The delay reductions at 10000 function evaluations are slightly smaller, 

lying between 13% and 30%. The largest improvements are obtained for the difficult 

oversaturated grid network problem. Plots of the mean best extended network delay figures (i.e. 

FX  using the notation in section 7.9) are given for each network scenario in Figures 15 to 18. 

The performance of the standard algorithm is given by the solid line and the improved algorithm 
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is depicted with the broken line. From these figures we see that in all scenarios, the improved 

algorithm within 2000-3000 function evaluations matches the performance of the standard 

algorithm with 10000 function evaluations. 
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Figure 15: Comparison of algorithm performance – Arterial Undersaturated scenario 
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Figure 16: Comparison of algorithm performance – Grid Undersaturated scenario 
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Figure 17: Comparison of algorithm performance – Arterial Oversaturated scenario 
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Figure 18: Comparison of algorithm performance – Grid Oversaturated scenario 
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9 Chapter Nine – Conclusions and Recommendations 

This dissertation has explored improvements in the optimization of fixed time traffic signals via 

genetic algorithms. 

 

We have proposed an alternative measurement of delay which we call extended network delay 

that is applicable to both undersaturated and oversaturated conditions. The disadvantage of this 

delay measure is that it requires an extension of the simulation process and thus requires 

additional computation time to evaluate any signal timing plan. We also suggest an enhanced 

problem encoding that allows the number, structure and sequence of signal stages to be 

optimized. The genetic algorithm approaches previously require the number and structure of 

stages to be pre-specified. 

 

A review of the optimization literature was performed to identify potential improvements to the 

genetic algorithm. Based on this we identified and considered several modifications to the 

genetic algorithm search, encompassing alternative algorithms, genetic operators, problem 

encodings as well as tunings of the parameters governing the search process. A high fidelity 

microscopic traffic simulation model was developed for the evaluation of alternative signal 

timing. The model has been found to produce results very similar to a well validated simulation 

model in commercial use. The model summarizes the assessment into a single objective function 

value, extended network delay, which is used as the minimization objective of the genetic 

algorithm search. This same model was used for generating statistics on which the evaluation of 

alternative search policies was based. The algorithm modifications were thoroughly tested on a 

test bed of four traffic networks covering arterial and grid network structures in both 

undersaturated and oversaturated conditions. The efficiency of search was measured by the 

quality of the best solution produced after a pre-specified number of objective function 

evaluations. The stochastic nature of both the search and evaluation processes was addressed 

using a rigorously validated statistical model. This allowed for testing of whether observed 

sample statistics indicated statistically significant differences in mean search performance, 

allowing us to reach definitive conclusions. 
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Our investigations into various genetic search algorithms on the test networks revealed the 

following: 

• The GGA re-evaluation mechanism does not provide any statistically significant benefit 

in undersaturated or oversaturated scenarios. 

• Comparing solution quality of individuals in a genetic population with the use of CRN’s 

considerably improves the optimization over that with independent replications. The 

benefits with CRN’s make the re-evaluation mechanism in GGA’s redundant. 

• Although the measures of solution quality from the microscopic traffic simulator are 

stochastic, the greatest optimization efficiency is achieved by basing selection and 

replacement on a single replication of the objective function value of each individual. 

This is true in both undersaturated and oversaturated scenarios, in contrast to the 

suggestions in the TRANSYT-7F user manual 
(49)

. 

• Optimization is more effective when the binary genetic operators operate on the Gray 

coded variables. 

• Even better than the Gray coding is the use of real crossover and mutation operators that 

operate on the decision variables in the problem space. Specifically blend crossover and 

real mutation outperform their binary counterparts. The standard binary operators are still 

required for operating on the decision variables regarding the number, structure and 

sequence of stages as these are encoded using binary genetic material. 

• We propose a modification to the CHC algorithm we call Real CHC which extends the 

idea of searching in the real parameter space. 

• Optimization is most effective with the Real CHC, followed by the SSGA and then the 

GGA. 

• The Real CHC algorithm is robust to the choice of population size. Optimization 

performance is quite sensitive to the blend crossover parameter α  and a value of 5.0=α  

was found to be optimal. 

• Combining these search enhancements, we see substantial improvements in optimization 

efficiency. 

 

Several of the findings are applicable to genetic algorithm function optimization in general: 
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• The re-evaluation mechanism in GGA’s is not found to aid optimization of noisy 

functions. 

• The use of CRN’s for fitness evaluations is recommended as it considerably improves 

optimization over the use of independent replications. 

• The robustness of genetic algorithms in noisy environments with a single replication for 

fitness evaluation corroborates the findings by other researchers. 

• Gray codes improve search, supporting the general consensus on their efficacy over the 

standard binary coding. 

• Real genetic operators outperform their binary counterparts. 

• We demonstrate that binary and real genetic coding and operators can be successfully 

combined. 

• We introduce Real CHC which is a modification of CHC where the incest prevention 

mechanism is based on distance measurements in the problem space. 

• The superiority of the SSGA over the GGA and CHC over the SSGA are once again 

demonstrated, endorsing the findings in the literature. 

• The superiority of CHC and the SSGA over the GGA on a noisy problem is verified. 

• Blend crossover is most effective with crossover parameter 5.0=α . 

• The robustness of CHC to choice of population size is confirmed. 

• We propose a statistical model which may be applied to the comparison of genetic 

algorithms on other noisy problems. Certain assumptions may need to be modified for the 

particular application, but the general framework can be retained. 

 

Some auxiliary findings and developments arising from this study are: 

• Generalizations of blend crossover and real mutation for application to the fraction-based 

signal timing encoding scheme are introduced. These generalizations allow for the real 

genetic operators to be applied to optimization problems where the search domains of 

decision variables vary from individual to individual or the domains of certain decision 

variables are a function of other decision variables. 

• The experiments used to set the assumption of the statistical model for comparing 

genetic algorithm performance has revealed that mean and variance of delay are 

positively correlated. Thus traffic signal timing policies that minimize mean extended 
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delay are also the most reliable signal timing schemes in that variance of extended delay 

is also minimized. 

• The source code for the traffic simulation model MSTRANS used for the empirical 

dissertation is provided and is open to modification and application on other road traffic 

research. 

 

Our recommendations to the developers of commercial traffic signal optimization software are: 

• Utilize extended network delay as the performance measure when delay minimization is 

the intended. 

• Adoption of the proposed problem encoding scheme to allow the number of structure of 

stages to be optimized. 

• To implement the Real CHC algorithm for optimization with blend crossover parameter 

5.0=α , population size 50=PopN and divergence rate 35.0=r . 

• Apply a single replication with CRN’s for fitness evaluation in both undersaturated and 

oversaturated traffic network scenarios. 

• To incorporate the optimization algorithm and traffic simulation model in a single 

program. Currently, TRANSYT-7F 
(49)

 performs the genetic algorithm optimization, 

calling the CORSIM
 (50)

 traffic simulation routine externally to evaluate candidate 

solutions. This involves considerable overhead for evaluating each individual. 

TRANSYT-7F must first produce an input file for CORSIM specifying the signal timing 

policy along with all other network specific information. CORSIM is executed as a DLL 

and the network is read in and the required initializations are performed, followed by the 

execution of the simulation model. CORSIM then produces an output file from which the 

required performance measure is extracted by TRANSYT-7F. The MSTRANS model 

that we have developed performs the optimization and evaluation processes within a 

single application. A comparison of the execution times was made by optimizing the 

undersaturated arterial network scenario using both TRANSYT-7F and MSTRANS. The 

GGA with the parameter values in section 7.8, standard binary crossover and mutation 

operators with CRN’s for fitness evaluations was executed for 900 function evaluations 

in both programs. We used network delay and not extended network delay as the 

optimization objective to ensure that the network simulation periods were identical in 
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both models. The required run-times on a 2.8GHz hyper-thread Pentium 4 PC were 35 

minutes for TRANSYT-7F and 4 minutes for MSTRANS. Thus execution of MSTRANS 

was over 8 times faster. Part of the increased execution speed may be attributable to the 

fact that the MSTRANS simulation model is less detailed than that of CORSIM. 

Nevertheless, incorporating the optimization and simulation processes into a single 

application may substantially speed up the execution and allow for a more extended 

search given identical computational resources. 

 

Suggestions for further research into improved genetic algorithm optimization of traffic signals 

are: 

• Given the success observed with real genetic operators, other real genetic algorithms may 

offer further benefits. Leung and Wang 
(146)

 have developed a genetic algorithm that uses 

ideas from orthogonal design for the generation of the initial population and the crossover 

operator. Their genetic algorithm has demonstrated improved performance to a standard 

genetic algorithm as well as to other heuristic optimization algorithms such as 

evolutionary strategies, simulated annealing and particle swarms. This algorithm may 

further enhance traffic signal optimization. 

• Testing the improved optimization strategies in a multi-objective optimization approach. 

Genetic algorithms have been found to be effective multi-objective optimization  

tools 
(147)

. In section 5.6, we mention a study by Sun et al 
(127)

 where a multi-objective 

genetic algorithm was used to generate the set of Pareto-optimal signal timing policies for 

minimum delay and stops at an isolated intersection. The approach can be extended to 

handle a network of intersections by using a stochastic traffic simulation like  

CORSIM
 (50)

 or MSTRANS as the evaluator. Multi-objective optimization is more 

difficult than univariate optimization and a larger number of function evaluations are 

required for a successful optimization. The modifications to improve univariate genetic 

algorithm optimization may also be beneficial if utilized in their multi-objective 

counterparts. 

• Extending the enhanced problem encoding to allow for optimization of phasing for more 

complicated junctions layouts. 
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• Investigation of the feasibility of applying genetic algorithms for determining whether 

low volume intersections in the network can be operated using half cycle lengths. 

 

Suggestions for further genetic algorithm research include: 

• Further evaluation of Real CHC which we have not convincingly demonstrated as an 

enhancement over the standard CHC algorithm. 

• Extensions to the statistical model. The model is applicable to the comparison of 

performance of genetic algorithms after a fixed number of function evaluations. If we 

assume a parametric form for the evolution of mean best performance in terms of 

number of function evaluations and estimate the parameters of this curve, this would 

allow for more powerful inferences to be made. 

• The statistical model can also be improved by using an extreme value distribution 
(148)

 to 

describe the variability in search trajectories. The objective function value of the best 

individual in a randomized population must, according to statistical theory, follow an 

extreme value distribution
59
. Thus an extreme value distribution should be appropriate 

for describing the variability in the initial population and may still be appropriate in 

describing the variability in search trajectory after the application of genetic operators. 

                                                 
59
 Approximately, for large population sizes 

(148)
. 
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A1 Appendix One – Microscopic Stochastic Traffic 

Network Simulator 

A1.1 Introduction 

In this appendix, we discuss the implementation and operational characteristics of the computer 

simulation model MSTRANS (Microscopic Stochastic Traffic Network Simulation Model) used 

for performing the empirical work in this dissertation. An overview of the model is given in 

section 7.2.  

 

We first describe the algorithmic structure of the model. Next, we discuss each modelling aspects 

in detail. Finally, we present the experiments performed to test the validity of the model. The 

entire code listing for MSTRANS is contained on the compact disc accompanying this 

dissertation. 

A1.2 Algorithmic structure 

Execution of the MSTRANS model occurs sequentially and can be separated into three 

components: 

• Initialization 

• Simulation 

• Finalization 

A1.2.1 Initialization 

Initialization involves performing the following tasks: 

• Read model assumptions and road network structure from the assumption spreadsheet 

into memory. Certain checks are performed along the way to ensure data validity. 

• Pre-processing is performed to compute the value of other items required for the 

simulation run. Additional data checks are also performed. 

• Seed random number generator. 

• Create output files. 
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• Set simulation clock set to zero. 

• Set network is set to an empty state. 

• Clear the value of output variables. 

A1.2.2 Simulation 

Simulation is performed by repeating the steps below sequentially until the simulation clock 

exceeds the sum of the initialization and run times
60
: 

• Update the indications of all traffic signals. 

• Generate new vehicles at the entry nodes. 

• Insert new vehicles into the network. 

• Update acceleration decision and vehicle status or all vehicles in the network (1
st
 pass). 

• Update position and velocity of all vehicles in the network using equations of motion for 

constant acceleration (2
nd
 pass). 

• Perform additional processing for vehicles that have changed links (3
rd
 pass). Remove 

vehicles that have exited the network. Accumulate output statistics for the vehicles that 

have exited the network if the simulation clock exceeds the initialization time. 

• Accumulate additional output statistics if the simulation clock exceeds the initialization 

time. 

• Advance the simulation clock. 

A1.2.3 Finalization 

At the end of the run, the performance measures are output to a text file. 

A1.3 MSTRANS components 

Here we comprehensively discuss the individual components of the MSTRANS model 

formulation. Wherever possible, we make reference to findings from the research to justify the 

modelling logic employed. Formulae relating to the motion of vehicles will be presented and we 

will assume that the reader is familiar with the equations of motion for objects undergoing 

constant acceleration. The items are discussed under the following headings: 

• Simulation time step 

                                                 
60
 The run may be extended for the computation of extended delay (see section 7.5). 
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• Free flow acceleration 

• Stopping 

• Car following 

• Lane changing 

• Routing 

• Vehicle generation 

• Turning movements 

• Start-up delay 

• Response to amber 

• Behaviour in oversaturated conditions 

• Computation of measures of effectiveness 

• Random number generation 

A1.3.1 Simulation time step 

A larger time step reduces the execution time of the model at the cost of increasing the 

coarseness of the modelling. The CORSIM simulation model which has been extensively 

validated uses a one second time step 
(50)

. Thus, it was decided to use the same step size for the 

runs in MSTRANS. 

A1.3.2 Free flow acceleration 

 

Leading vehicles 

Free flow behaviour applies to lead vehicles. These are vehicles that are first in their lane and not 

constrained by the movements of other vehicles. 

 

Linear acceleration model 

The simplest acceleration model is the constant acceleration model where acceleration is 

constant and independent of speed 
(9, 149)

. However this model does not accurately match 

observed behaviour 
(149, 150)

. The most commonly used acceleration model is one where 

acceleration decreases linearly with speed 
(9)
:  
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








>

≤−
==

β
α
β
α

βα

Vfor

VforV

dt

dV
A

        0    

   

, 

(A1-1)  

where A= acceleration (ft/s
2
) 

 V = speed (ft/s) 

 t   = time (s) 

 α (ft/s
2
) and β  (s

-1
) are the parameters of the model ( )0, ≥βα  

 

This is called the linear acceleration model 
(9)
. Solving the first order differential equation 

(A1-1), we obtain the speed of a vehicle that is initially at rest at 0=t  as a function of time 
(9)
: 

)1( teV β

β
α −−=            

(A1-2) 

Letting ∞→t , we find that the maximum speed 
β
α
 is attained asymptotically. Differentiating 

equation (A1-2) with respect to time, we obtain the acceleration of a vehicle starting from rest as 

a function of time: 

teA βα −=  

(A1-3) 

Integrating equation (A1-2), we obtain an equation for distance travelled, X, as a function of 

time: 

)
1

(
ββ

α βte
tX

−−
−=  

(A1-4) 

The acceleration, velocity and distance curves produced by the linear acceleration model are 

illustrated in Figure 19. 
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Figure 19: Vehicle kinematics according to the linear acceleration model 

 

The linear acceleration model has been found to accurately describe observed maximum vehicle 

acceleration rates as well as driver preferred acceleration rates 
(151, 152)

. It satisfies the common 

sense notion that motorists apply high level of power initially to overcome inertia when at rest 

and reduce acceleration gradually so as to make a smooth transition to zero acceleration at the 

desired speed of travel. The smoothness of the acceleration profile can be measured by jerk 

which is the slope of the acceleration versus time curve 
(152)

. 

 

Polynomial acceleration model 

Despite the wide acceptance of the linear acceleration model, two criticisms remain: 

• Maximum velocity is attained asymptotically (see equation (A1-2) and Figure 19), a 

situation which is thought to be unrealistic 
(149)

. 
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• The jerk at the start of acceleration (see Figure 19), is conceptually incorrect 
(153)

. In 

reality, drivers increase acceleration gradually up to the maximum acceleration rate. This 

has been confirmed by the observation of S-shaped speed versus time curves 
(153)

. 

 

These shortcomings are resolved by the polynomial acceleration model developed by Akcelik 

and Biggs 
(153)

, which describes acceleration as a polynomial function of time. The general shape 

of the curve is illustrated in Figure 20. 
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Figure 20: Polynomial acceleration model 

 

The polynomial acceleration model requires considerable overhead when implemented in a 

computer simulation model. Furthermore, the superiority of the model fit to real data over the 

linear acceleration model has not been demonstrated
61
. The polynomial acceleration model has 

been empirically compared to the constant acceleration model and only when site specific data is 

available has the polynomial acceleration model demonstrated closer replications of real world 

observations. As a consequence, the linear acceleration model was adopted for modelling free 

flow acceleration in MSTRANS, despite the shortcomings mentioned.

                                                 
61
 In the paper by Akcelik and Biggs 

(153)
, the polynomial model is compared to a linear acceleration model. 

However, the “linear acceleration model” considered in their paper is one where accerlation decreases linearly with 

time. This is not the same as one where acceleration decreases linearly with speed. A linear decrease in acceleration 

with speed corresponds to an exponential decrease in speed with time (see equation (A1-3) and Figure 19). This 

point has been overlooked by some researcher’s who have acknowledged the superiority of the polynomial 

acceleration model. 
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Implementation on linear acceleration model in MSTRANS 

For modelling of free-flow acceleration in MSTRANS we refer to parameter calibrations of the 

linear acceleration model for driver preferred acceleration rates. From now on, our references to 

acceleration apply to preferred acceleration rates. The most comprehensive study by  

Bonneson 
(151)

 found that α = 6.63 ft/s
2
 (2.02 m/s

2
) described average acceleration characteristics 

at several sights. This value is close to the findings in other studies 
(9, 152)

. Since the maximum 

velocity is given by 
β
α
, we can solve for β  using: 

f

α
β = , 

(A1-5) 

where =f desired free flow speed (ft/s). 

 

A free flow speed of f = 54 ft/s (59.25 km/h) was assumed for all test networks resulting in 

β  = 0.1228 s
-1
. 

 

A discrete approximation of this model is used in that the instantaneous acceleration rate as 

computed by equation (A1-1) is applied for the full length of the time step. The speed and 

distance profiles resulting from this approximation were computed for a vehicle accelerating 

from rest and were found to closely follow the continuous curves in Figure 19. 

A1.3.3 Stopping 

 

Constant deceleration 

A lead vehicle approaching a red signal must decelerate to a stop. Empirical evidence indicates 

that drivers tend to decelerate to a stop at an approximately constant rate 
(154, 155)

. The absolute 

value of the constant deceleration rate applied has been found to be larger for higher initial 

speeds.
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Implementation in MSTRANS 

The constant deceleration rates used are given in the table below. The values are the mean 

constant deceleration rates obtained in a study by Haas et al 
(155)

: 

 

Initial 

Speed (ft/s) 

Initial 

Speed 

(km/h) 

Constant 

Deceleration 

Rate (ft/s
2
) 

Constant 

Deceleration 

Rate (m/s
2
) 

29-36 32-39 3.22 0.98 

37-43 40-47 3.81 1.16 

44-50 48-55 5.05 1.54 

>50 >55 5.74 1.75 

 

Table 17: Constant deceleration rates 

 

The deceleration rate for vehicles travelling slower than 29 ft/s (32 km/h) was taken to be  

3.22 ft/s
2
 (0.98 m/s

2
). We now present the algorithm used for stopping a vehicle: 

 

From kinematics, it can be shown that the required constant deceleration rate d (>0) required for 

a vehicle travelling at velocity V to come to rest in a distance X can be computed as: 

X

V
d

2

2

=  

(A1-6) 

The deceleration rate required for the vehicle to come to rest at the stop line is computed for a 

leading vehicle facing a red signal using the equation above. Only when d equals or exceeds the 

desired constant deceleration rate in Table 17 will the vehicle begin decelerating at rate d. 

A1.3.4 Car-following 

The free flow behaviour discussed in sections A1.3.2 and A1.3.3 can be used to describe the 

motion of the lead vehicle in a particular lane. The acceleration behaviour of vehicles following 

the leader can be modelled using car-following theory 
(156)

. Car-following theory assumes that 

the behaviour of the following vehicle is based entirely on its relationship with the vehicle 

immediately ahead of it (the leading vehicle) 
(156)

. For the purpose of introducing the car 

following models, we need some notation. 
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Let ( )tX L  = position of lead vehicle at time t in terms of distance from the upstream node
62
  

   (ft) 

( )tX F  = position of following vehicle at time t in terms of distance from the upstream  

   node (ft) 

 ( )tX∆  = distance between leader and follower at time t (ft) 

  = )()( tXtX FL −  

 ( )tVL  = speed of leader at time t (ft/s) 

 ( )tVF  = speed of follower at time t (ft/s) 

 ( )tV∆  = relative speed difference between leader and follower at time t (ft/s) 

  = )()( tVtV FL −  

 ( )taF  = acceleration of follower at time t (ft/s
2
) 

 τ  = driver reaction time 

 

In car-following, we wish to determine )(taF , the acceleration rate of the follower. 

 

Stimulus response model 

The earliest and most well known car-following model is the stimulus response model 
(156, 157)

 

which has the following general form: 

( )[ ] ( )
( )[ ]

( )

( )[ ] ( )
( )[ ]

( )









<−∆
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−∆

≥−∆
−∆

−∆

=
−

−

+

+

−

+

0     

0     
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τ

τ
α
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τ

τ
α

tVif
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tV
tV
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tX

tV
tV

ta

l

m

F

l

m

F

F , 

(A1-7) 

where −−+++ lml ,,,, αα and −m are the model parameters (usually non-negative) 

According to equation (A1-7), the follower will accelerate if the leader is travelling faster than 

the follower and decelerate if the leader is travelling slower than the follower, allowing for a 

reaction time for the follower to perceive this difference. The extent of the 

                                                 
62
 See section 3.2 for the definitions of upstream and downstream 
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acceleration/deceleration depends on the distance between the two vehicles and the speed of the 

follower. 

 

The stimulus response model has been implemented in several traffic simulation models (e.g. 

TRANS 
(154)

, TEXAS 
(150)

 and MITSIM 
(158)

).  

 

Despite being so well established, the stimulus response model has become less popular recently 

due to contradictory findings as to appropriate parameter values 
(156, 157)

. The calibrated 

parameter values vary drastically for different data sets, even on repeated runs with the same 

driver 
(159)

, casting doubt as to the general applicability of the model. Thus it was decided not to 

implement this car following model in MSTRANS. 

 

Collision avoidance models 

Another family of car-following models are the collision avoidance models 
(156, 157)

. These 

models make the assumption that the following driver selects his acceleration such that he can 

bring his vehicle to a safe stop should the leader undergo emergency braking. One such model is 

the Gipps car-following model 
(160)

. This model was implemented in MSTRANS for the 

following reasons: 

• The Gipps model has been used in some of the newly developed traffic simulation 

programs 
(156, 157)

. 

• The model has been calibrated with test track data in recent studies by Ranjitkar et al 
(157)

 

and Brockfeld et al 
(161)

. In these studies, the parameter values for several other car 

following models were also calibrated using the same data sets. The collision constraint 

models provided the best overall fit to the observed speed and headway 

• In the studies mentioned above, the parameters of each model were calibrated separately 

for several data sets. It was found that the collision constraint models required the 

smallest adjustments to the parameter values between data sets. Thus the collision 

constraint models are the most robust in terms of general applicability.
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Gipps model formulation (160) 

We know provide the formulation of the Gipps model
63
. We require the following additional 

notation: 

Let ( )tX
S

L = stopped position of the leader should the leader undergo emergency braking at  

    time t (ft) 

( )tX
S

F = stopped position of the follower allowing for a reaction time before braking in  

    response to the leader’s deceleration (ft) 

 dl  = emergency deceleration rate of the leader > 0 (ft/s
2
) 

 df  = emergency deceleration rate of the follower > 0 (ft/s
2
) 

 L  = effective length of leading vehicle (ft). This includes a buffer into which the  

    following vehicle is not willing to intrude, even at rest. 

 

Now, from kinematics, it can be shown that the distance travelled by a vehicle, X, travelling at 

speed V and decelerating at a constant rate of d (>0) before coming to a stop is given by: 

d

V
X

2

2

=  

(A1-8) 

Thus, ( ) ( ) ( )
( )dl
tV

tXtX L
L

S

L
2

2

+=  

The follow will not react until time τ+t  at which point the velocity of the follower will be 

( ) ( )τtatV FF + . The distance travelled by the follower during the reaction time is 

( ) ( ) 2

2

1
ττ tatV FF + . 

We assume that the follower will require an additional 
2

τ
 seconds before decelerating, during 

which time the vehicle will be travelling at velocity ( ) ( )τtatV FF + . The distance travelled during 

this additional time is ( ) ( )[ ]
2

τ
τtatV FF + . 

                                                 
63
 We use slightly different notation from that used by Gipps 

(160)
 and a formulation that is easier to program in a 

computer simulation model. 
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Thus ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]
( )df

tatV
tatVtatVtXtX FF

FFFFF

S

F
222

1
2

2 ττ
τττ

+
+++++=  

In order for a collision not to occur, we require ( ) ( ) LtXtX
S

F

S

L ≥−  

 

Substituting the expressions for )(tX
S

L and )(tX
S

F  into the inequality above, we obtain the 

following inequality: 

[ ] [ ] 0)()(
2 ≥++ ctabta FF , 

 

where 
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(A1-9) 

From the quadratic formula, we can conclude that the largest acceleration the follower can apply 

while satisfying the collision constraint is given by: 

( )
2

42 cbb
taF

−+−
=  

(A1-10) 

According to the Gipps model, the actual acceleration rate applied by the follower is the smaller 

of: 

• The acceleration rate as computed by (A1-10) 

• The free flow acceleration rate 

 

That is, the follower will never accelerate so rapidly so as to exceed free flow acceleration. The 

shape of the free flow acceleration equation proposed by Gipps is illustrated in Figure 21.
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Figure 21: Gipps model free flow acceleration curve 

 

Implementation in MSTRANS 

The Gipps car-following model 
(160) 

was implemented in MSTRANS with a slight modification. 

It was decided to use the free flow acceleration constraint as computed by the linear acceleration 

model (see section A1.3.2) instead of that given by Gipps 
(160)

 (see Figure 21) for the following 

reasons: 

• No details on the data and methods used to construct the curve in Figure 21 are given in 

the paper by Gipps 
(160)

. 

• Using a free flow acceleration constraint for following vehicles that differed from the free 

flow acceleration applied to lead vehicles would be inconsistent. 

 

The parameter values obtained in the calibration study by Ranjitkar et al 
(157)

 were used
64
: 

 τ  = 1.13 s 

 dl  = 11.65 ft/s
2
 (3.55 m/s

2
) 

 df  = 13.02 ft/s
2
 (3.97 m/s

2
) 

 L = 24.61 ft (7.50m)
65
 

 

The Gipps car-following acceleration rate is re-computed for each following vehicle at each time 

step. The computed rate is applied uniformly for the duration of the simulation time step.

                                                 
64
 Similar parameter values have been obtained in other calibration study by Ranjitkar et al 

(162)
. 

65
 This value is confirmed in an independent study on the distance between queued vehicles by Bonneson 

(151)
. 
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In certain cases, 042 <− cb  and the Gipps model will not produce a follower acceleration rate 

(see equation (A1-10)). This is indicative of a situation in which the follower cannot safely stop 

behind the leader. In this case, the deceleration rate applied is taken to be 
( )
t

tVF

∆
 where t∆  is the 

simulation step size. This deceleration rate will result in the follower reaching a complete stop at 

the end of the simulation time step. 

A1.3.5 Lane Changing 

Detailed lane changing behaviour was not implemented in MSTRANS. Pragmatic rules are used 

to govern lane channelization and lane changing. 

 

Lane channelization 

The rightmost lane is reserved exclusively for right turns. Similarly, the leftmost lane is allows 

only left turns. The lanes between are reserved for through vehicles. Thus a minimum of three 

lanes must be specified. Using this approach, a through vehicle will never be restricted by a 

vehicle ahead that wishes to turn. For the test networks considered in this dissertation (see 

Appendix A3), two through lanes were assumed for each link resulting in a total of four lanes for 

each direction of travel. 

 

Lane changing logic 

As a consequence of the lane channelization above, we need to ensure that a vehicle is in the 

appropriate lane. Lane changes occur instantaneously when required. We now enumerate the 

various lane changing possibilities: 

 

• Consider a vehicle that is currently on link A in one of the through lanes and will be 

travelling through to link B. Let us consider the possibilities: 

o The driver wishes to execute a through movement at the end of link B: 

In this case, the driver does not need to change lanes. He will remain in the same lane  

as he moves to link B.
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o The driver wishes to execute a right or left turn at the end of link B: 

In this case, the driver will instantaneously move to either the rightmost or leftmost 

lane when he enters link B depending on whether he wishes to execute a right or left 

turn. The driver may cross several lanes instantaneously. 

 

• Consider a vehicle that is currently on link A in the rightmost lane and will be turning 

right into link B. In MSTRANS, right turners turn from the rightmost link on the 

approach link to the right most lane on the receiving link (Turning movements are 

discussed in more detail in A1.3.8). Let us consider the possibilities: 

o The driver wishes to execute a right turn at the end of link B: 

In this case, the driver does not need to change lanes. He will turn from the rightmost 

lane on link A into the rightmost lane on link B where he needs to be in order to 

execute the next right turn
66
. 

o The driver wishes to execute a through movement at the end of link B: 

In this case, the driver will instantaneously move to the through lane with the most 

unoccupied space once the right turn is completed. The driver may cross more than 

one lane instantaneously. 

o The driver wishes to execute a left turn at the end of link B: 

Once the right turn is completed, the driver will move to the leftmost lane, crossing 

the through lanes in between instantaneously. 

 

• The situation for a vehicle travelling on link A, making a left turn into link B is 

analogous to the case of a right turn into link B. 

 

The potential lane changer will only perform the lane change if there is no vehicle present in the 

zone parallel to him in the target lane. If this is not the case, the driver will come to a stop and 

will instantaneously change lanes only when a space becomes available. 

                                                 
66
 Although the model caters for such situations, the routing scheme employed does not allow for two consecutive 

right turns (see section A1.3.6). 
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A1.3.6 Routing 

The route taken by a vehicle is assigned stochastically based on the specified through and turning 

probabilities. The sequence of through or turning movements the vehicle makes along the 

network constitute the route through the network. There is the possibility of the vehicle making a 

series of unrealistic turning movements e.g. a vehicle may make four consecutive left turns and 

“go around the block”. To prevent these situations from occurring, the following rules are used 

to determine a valid route through the network: 

 

• A vehicle that has at any point travelled north bound may not perform any turn 

movement that results in the vehicle travelling south
67
. 

• A vehicle that has at any point travelled south bound may not perform any turn 

movement that results in the vehicle travelling north. 

 

Similar rules apply for the eastern and western directions of travelled. Constraining routes to 

satisfy these rules will prevent any nonsensical travel paths
68
. A list of valid routes is generated 

for each source node during the model initialization phase. A consequence of this procedure is 

that the expected proportion of through, left and right turning vehicles at the end of each link 

will differ from those specified in the network assumptions. 

A1.3.7 Vehicle generation 

In section 2.3.1 we noted that vehicle headways at the entry nodes in light traffic can be 

described by an exponential distribution. At higher flow levels, Luttinen 
(163)

 and Al-Ghamdi 
(164)

 

have found the Gamma distribution to give a better fit to observed headways. In both studies, the 

parameter governing the shape of the distribution has been found to depend on flow. Luttinen’s 

study 
(163)

 is based on more comprehensive data, but estimated parameter values for the Gamma 

distribution are not given. He does provide information regarding the location and density at the 

mode of the empirical distribution as well as the sample coefficient of variation. Each of these 

items is given for different flow levels. We computed estimates of the Gamma distribution 

                                                 
67
 Vehicles may only travel in one of the four perpendicular directions: north, south, east and west. All street are 

two-way. 
68
 CORSIM uses an alternative approach where turning proportions at the end of a link can differ based on the entry 

movement 
(50)

. However the procedure in approach outlines in A1.3.6 was preferred as it requires no additional 

inputs. 
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parameters separately for each data item and our findings were not consistent. Al-Ghamdi’s 
(164)

 

was conducted in Saudi Arabia where driver behaviour has been shown to be drastically different 

from other countries 
(164)

. Since we were unable to parameterize the Gamma headway 

distribution for higher flow levels, we decided to use the exponential distribution for generating 

headways at all flow levels.  

 

The lane assigned to a vehicle entering the network is determined based on the movement 

performed at the end of the first link it is to be introduced on. A right turning vehicle is assigned 

to rightmost lane. A left turning vehicle is assigned to the leftmost lane. A through vehicle is 

assigned to the through lane with the fewest number of vehicles. 

  

The new vehicle will be introduced travelling at the free flow speed. If the lane which the vehicle 

has been assigned to is full, then it will not be possible to introduce the vehicle. If the last vehicle 

in the lane is stationary and very close to the source node, then it would be unrealistic to 

introduce the new vehicle travelling at the free flow speed. 

 

To solve this problem, a new vehicle is only introduced if it’s computed deceleration in response 

to the last vehicle in the lane, as obtained by the car following equation (see section A1.3.4) is 

smaller in absolute value than 
2

df
. If this is not the case, then the vehicle will be stored in a first-

in-first-out queue at the entry node and an attempt to introduce the new vehicle will be made in 

each of the subsequent time steps. 

A1.3.8 Turning movements 

 

Turning arcs 

In MSTRANS, right turning vehicles turn from the centre of the rightmost lane on the approach 

link to the centre of the rightmost lane on the receiving link. The vehicle is assumed to follow a 

circular turning arc. A similar situation is assumed for left turning vehicles. The left and right 

turning arcs for northbound traffic are illustrated in Figure 22. 
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Figure 22: Turning arc’s for right hand rule of the road 

 

The start and end points of the turn corresponds to the extremes of the illustrated quarter circular 

arcs. 

The right and left turns have radii 
2

l
 and lm 







 +
2

1
 respectively where 

l   = lane width (ft) and 

m = number of lanes. 

 

The length of the right and left turn arc’s can be computed as 
4

 lπ
and 

( )
4

 12 lm π+
 respectively.  

A standard lane width of 12 ft (3.66 m) was assumed in all runs 
(139, 151)

.
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Turning speeds 

Vehicles cannot perform turn movements at the free flow speed. Maximum turning speeds are 

related to the turning radius and side friction by the equation 
(154)

 

FgrVT = , 

(A1-11) 

where TV  = maximum turning speed (ft/s) 

 F  = coefficient of friction 

 r  = turning radius (ft) 

 g  = acceleration of gravity (= 32.2 ft/s
2
 = 9.8 m/s

2
) 

 

However, rather than computing the maximum turning speeds from the equation above, the 

maximum turning speeds were computed by performing a calibration for saturation flow (see 

section A1.4.2). Based on the calibration, maximum turning speeds of 24 ft/s (26.33 km/h) and 

31 ft/s (34.02 km/h) were assumed for right and left-turn movements respectively. 

 

Slowing down for turns 

A leading vehicle in free flow will need to slow down to the required maximum turning speed. 

From kinematics, we find that the constant deceleration rate d required by a vehicle a distance X 

from the stop line travelling at velocity V, to slow down to speed TV  )( TVV > is given by: 

X

VV
d T

2

22 −
=   

(A1-12) 

For a turning vehicle approaching the stop line travelling faster than the maximum turning speed, 

the required deceleration rate is computed at each time step using the equation above. Only when 

the required deceleration rate exceeds the desired deceleration rate in Table 17
69
, will the vehicle 

begin to slow down using the required deceleration rate d.

                                                 
69
 Although there is some evidence that indicates that drivers apply smaller deceleration rates for slowdowns than 

for complete stops, it was decided to use the same deceleration rates for stopping and slowing down in MSTRANS. 
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Left turn gap acceptance 

For the right hand rule of the road, vehicles turning left at a signalized intersection must cross 

over the path of through vehicles arriving from the opposing direction. If both streams receive 

green simultaneously, then the through movements from the opposing direction receive 

preference. The left turning vehicles may only proceed when a “gap” is available in the opposing 

traffic stream 
(9)
. A left turner must decide whether to complete his turn based on the size of the 

“gap”. 

 

The most common model for gap acceptance is based on the time hypothesis where it is assumed 

that drivers evaluate gaps based on the expected time of arrival of the next opposing through 

vehicle at the conflict point (i.e. the time gap) 
(9)
. However, studies have demonstrated that 

drivers have difficulty in perceiving the actual time to arrival 
(165)

. In a study by Davis and 

Swenson 
(165)

, the distance of the opposing vehicle from the conflict point was found to be the 

only significant variable in predicting the gap acceptance probability. The logistic model that 

they fit to observed behaviour to distance gaps acceptance is presented below: 

x

x

e

e
10

10

1
ββ

ββ

π
+

+

+
=  , 

(A1-13) 

Where  π  = probability of accepting a gap, 

x  = size of the gap (ft), 

0β  = -8.28 and  

1β   = 0.055 are the estimated model parameters. 

 

A left turner starts searching for a gap once it crosses the stop line and enters the intersection. If a 

gap is rejected, the vehicle will stop at the conflict point illustrated in Figure 22 and evaluate 

subsequent gaps. Left turner’s that have entered the intersection and are still waiting at the end of 

the unprotected green interval will complete their turns during the amber and all-red interval. 

A1.3.9 Start-up delay 

On the onset of green, the lead vehicle in a stopped queue will experience a delay before moving 

(see section 2.3.2). A start-up delay of 2 seconds was implemented in MSTRANS, a value 
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confirmed in several studies 
(27, 151, 166, 167)

. Queued drivers after the first also incur a starting 

response time. The average response time of these drivers has been estimated to be 1 

second 
(151, 167)

 and this value was implemented in MSTRANS
70
. 

A1.3.10 Response to amber 

A driver that is close to the stop line must decide whether to stop or rush through an amber 

signal. The decision to stop or not has been found to be independent of the length of the amber 

interval 
(9)
. One would expect vehicles that are close to the stop line or travelling at a high speed 

to pass through the intersection on amber. These two factors can be combined by modelling the 

probability of stopping as a function of the deceleration rate required to stop at the stop line 
(9)
. 

Table 18 presents stopping probabilities obtained in a study by Williams 
(168)

.

                                                 
70
 The shorter response time of the second and subsequent drivers has been attributed to their ability to anticipate 

time to initiate motion by seeing the signal change as well as perceiving the movement of vehicles ahead 
(151)

. 
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Required 

Deceleration 

Rate (ft/s
2
) 

Required 

Deceleration 

Rate (m/s
2
) 

Probability 

of Stopping 

0 0.00 1.00 

1 0.30 1.00 

2 0.61 1.00 

3 0.91 1.00 

4 1.22 0.97 

5 1.52 0.94 

6 1.83 0.89 

7 2.13 0.81 

8 2.44 0.71 

9 2.74 0.58 

10 3.05 0.45 

11 3.35 0.34 

12 3.66 0.25 

13 3.96 0.18 

14 4.27 0.13 

15 4.57 0.10 

16 4.88 0.07 

17 5.18 0.06 

18 5.49 0.05 

19 5.79 0.04 

20 6.10 0.03 

21 6.40 0.03 

22 6.71 0.03 

23 7.01 0.02 

24 7.32 0.02 

>24 >7.32 0 

 

Table 18: Amber stopping probabilities
71
 

A1.3.11 Behaviour in oversaturated conditions 

Spillback, intersection blockage and reduced saturation flow may occur in oversaturated 

conditions (see section 4.1). Here we discuss the program logic utilized to simulate these 

phenomena. 

 

                                                 
71
 Williams 

(168)
 does not provide details on the model that he fit to his data. He does however provide a graph 

plotting the probability of stopping as a function of the required deceleration rate. Selected values were read from 

the graph and a logistic model was fit, yielding the figures in Table 18. 
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Vehicles modelled in MSTRANS may not enter an intersection if there is insufficient storage 

space in the desired lane on the target link. The space available must equal or exceed the 

effective vehicle length L. Thus spillback is modelled and intersection blockage will never occur. 

 

The lead vehicle in a particular lane will treat the last vehicle on the next link in the lane it will 

enter the next link on as its leader and will apply an acceleration rate that is the smaller of the 

car-following acceleration rate and the free flow acceleration rate. This will allow for a reduction 

of the saturation flow rate in oversaturated conditions.  

A1.3.12 Computation of measures of effectiveness 

Average values for delay, stops, speed and occupancy are computed. The averages are 

determined based on all vehicles that complete their journey through the network after the 

initialization time. These measures are computed separately for each link as well as at a network-

wide level. Average delay is used for the empirical work and we will discuss the calculation of 

this performance measure only. 

 

Delay is defined as control delay (see section 1.2.2) which is the difference between the actual 

and the uninterrupted travel time. The uninterrupted travel time for a particular vehicle can be 

computed as: 

f

D
TU = , 

(A1-14) 

where UT  = uninterrupted travel time (s) 

 D = distance traversed on path through the network (ft) 

 f = free flow speed (ft/s) 

 

However, to account for the fact that vehicles are required to slow down in order to perform 

turning movements, UT  is computed in the pre-processing stage of MSTRANS by repeating the 

algorithm below for each possible route through the network: 

• Set indications of all signals in all directions and for all movements to green 

• Generate single vehicle to travel on route 
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• Set UT = actual travel time for this vehicle 

 

The delay for all vehicles can be averaged to compute network delay or extended delay (see 

section 7.5). 

A1.3.13 Random number generation 

Stochastic components of the model were simulated using the ISAAC pseudo-random number 

generator 
(143)

. This particular generator was chosen as it has been ranked 1
st
 in a comparison 

with 11 other pseudo-random number generators via empirical tests of pseudo-random number 

generator quality 
(95)

. A facility for performing replications of the traffic simulation model using 

pre-specified seed values for the random number generator was implemented. This was required 

for performing evaluations using the Common Random Numbers variance reduction technique 

for comparison of alternative signal timing policies (see section 6.3.3 as well as Appendix A2). 

Separate random number streams for generating arrival patterns and routing schemes, and driver 

stochastic decisions were required for the implementation of this facility. Thus two seeds are 

required for performing each run of the model. 

A1.4 Validation of MSTRANS 

The validity of the MSTRANS model as a realistic and bug-free computer model for evaluating 

traffic signal timing plans was evaluated using: 

• Animation 

• Examination of queue discharge 

• Comparisons with CORSIM 

A1.4.1 Animation 

The CORSIM model includes an animation facility called TRAFVU which allows for all 

features of a single network simulation run to be animated 
(50)

. For the purpose of producing 

these animations, the CORSIM model produces several output files containing information 

regarding the state of all vehicles and signals at each second of the simulation. The CORSIM 

manual includes a document describing the format of these output files. MSTRANS was 

programmed to produce these same output files and this it was possible to animate and visualize 
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the MSTRANS model behaviour in TRAFVU. Programming errors could be easily identified by 

implementing and animating simple test networks. 

 

In addition, TRAFVU allows for two networks to be animated simultaneously on a single screen. 

With this feature, we could compare identical networks where the results of one were generated 

by CORSIM and the others by MSTRANS and inconsistencies between the models could be 

identified and resolved. 

A1.4.2 Examination of queue discharge 

The queue discharge process was considered to be a critically important component of the 

model. Delay at an intersection is strongly dependent on the number of vehicles which can be 

discharged during the green period. The queue discharge process for through movements is a 

function of the free flow acceleration and car-following model (see sections A1.3.2 and A1.3.4). 

For turning movements, it is also dependent on the maximum turning speed. 

 

Through movements 

The discharge headway which is the time headway between vehicles as they cross the stop line 

was recorded for a queue of vehicles travelling through to the next link, producing Table 19.
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Vehicle 

Time of 
crossing the 
stop line after 
onset of green 
(seconds) 

Discharge 
Headway 
(seconds) 

1 2.1   

2 6.3 4.2 

3 9.1 2.8 

4 11.5 2.4 

5 13.9 2.4 

6 16.2 2.3 

7 18.4 2.2 

8 20.6 2.2 

9 22.7 2.1 

10 24.9 2.2 

11 27 2.1 

12 29.1 2.1 

13 31.1 2 

14 33.2 2.1 

15 35.2 2 

16 37.3 2.1 

 

Table 19: Discharge headways for a standing queue
72
 

 

The discharge headways remain relatively constant after the discharge of the 8
th
 queued vehicle. 

This is consistent with empirical findings 
(151, 166)

. The average discharge headway of the 9
th 
- 16

th
 

queued vehicles is 2.1 seconds. The implied saturation flow rate is 1714
1.2

3600
= vehicles/hr. A 

saturation flow rate of 1800 vehicles/hour is recommended for “ideal” conditions 
(139, 151, 166)

. It 

would be possible to reproduce a saturation flow rate of 1800 vehicles/hr by changing the 

parameters of the car following and free flow acceleration models but the parameters were not 

altered. It was felt that a slight mismatch between the implied and “ideal” saturation flow would 

not impact the research findings.

                                                 
72
 MSTRANS uses a one second time step and events may only be calculated to a minimum resolution of one 

second. To obtain more accurate headway estimates, the headways were computed using linear interpolation i.e. By 

assuming that distance is traversed linearly over any simulation time step. From the equations of motion, we know 

that this assumption is only approximately correct for a constant acceleration rate during each time step. 
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Turning movements 

The saturation flow for turning movements will be lower than that of through movements due to 

the restriction on turning speeds. The Highway Capacity Manual 
(139)

 recommends a 15% 

reduction in saturation flow for right turning movements. This reduction was obtained by 

limiting the right-turning speed to 24 ft/s (26.33 km/h). A reduction of 5% is recommended for 

protected left-turning movements, but empirical studies have found the reduction to be between 

7% and 18%. Several maximum left-turning speeds were tested and it was decided to use a 

maximum left-turning speed of 31 ft/s (34.02 km/h). This produced a saturation flow of 1511 

vehicles/hr for the case of four lanes for each direction of travel. This corresponds to a 12% 

reduction compared to the through the saturation flow. The turning speeds assumed are in line 

with observed turning speeds 
(171)

. 

A1.4.3 Comparisons with CORSIM 

The CORSIM model is widely used and has been extensively tested and validated 
(172, 173, 174)

. It 

was thus decided to complete the validation exercise by comparing the performance measures 

produced by MSTRANS and CORSIM under identical conditions. Since the models were 

developed independently we would inevitably find statistically significant differences between 

the model outputs given a sufficiently large number of independent replications. Rather than 

testing for these differences, we instead attempt to quantify the magnitude of the difference. 

Delay is considered as it is the only performance measure used for the empirical work in this 

dissertation. An undersaturated and an oversaturated scenario were considered 

 

Undersaturated conditions 

The nine signal arterial network described in Appendix A3 was coded in both MSTRANS and 

CORSIM. A cycle time of 70 seconds was used and the offset of all signals was set to zero. Each 

signal was coded with 2 phases and 35 seconds of green time was given to arterial movements 

(North/South) and 25 seconds for cross street movements (East/West). Vehicle flow levels were 

reduced by 50 % to ensure that all movements were undersaturated (i.e. no pseudo-congestion). 

An amber time of 3 seconds and all-red time of 2 seconds was assumed for the end of each 

phase. A free flow speed of 54 ft/s (59.25 km/h) and identical lane channelization was coded in 

both models. 
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The parameters values given in section A1.3 of this Appendix were used in MSTRANS. The 

default parameters in CORSIM were retained with the exception of the discharge headway. The 

mean discharge headway
73
 in CORSIM was changed from the default value of 1.8 seconds to 2.1 

seconds to match MSTRANS. The exponential distribution was used for entry headway 

generation in both programs. An initialization time of 3 minutes followed by 15 minutes of 

simulation time was assumed. 100 Independent replications of the network were performed in 

each program. The results for network delay are summarized in Table 20. 

 

  MSTRANS CORSIM 

Sample Mean (sec/veh) 33.58 36.54 

Sample Standard Deviation 
(sec/veh) 

0.90 1.03 

95 % Confidence interval 
for mean of network delay 
(sec/veh) 

(33.41, 33.76) (36.33, 36.74) 

95 % Confidence interval 
for standard deviation of 
network delay (sec/veh) 

(0.79, 1.05) (0.82, 1.44) 

 

Table 20: MSTRANS and CORSIM network delay in undersaturated conditions
74
. 

 

Table 20 demonstrates a reasonable agreement between the models in terms of mean and 

variance of network delay. It was possible to obtain greater conformity between the models by 

using the same assumptions (e.g. the effective vehicle length L assumed is quite different), but 

we retained the MSTRANS parameters as the assumptions have been determined based on 

objective research. 

 

The models were further compared by examining output at a link level. The sample mean and 

sample standard deviation of delay for the 56 links in the network are illustrated via scatter plots 

                                                 
73
 Discharge headways are generated stochastically in CORSIM 

(50)
. 

74
 The confidence interval for the mean is constructed by appealing to the central limit theorem. The confidence 

interval for the variance is obtained under the assumption that network delay has a normal distribution. This was 

verified by an examination of the histogram of the network delay figures. 



 Page 133 

in Figure 23 and Figure 24. The 45° lines correspond to points where the two models are in 

perfect agreement. Again we find satisfactory agreement between the two models. 
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Figure 23: Comparison of CORSIM and MSTRANS – sample mean of link delay 
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Figure 24: Comparison of CORSIM and MSTRANS – sample standard deviation of link delay 

 

Oversaturated conditions 

A second test was performed to validate MSTRANS for oversaturated conditions using the same 

test network. Vehicle flows were restored back to there full level and the East/West and 

North/South green splits were reversed to produce pseudo-congestion on the arterial. Based on 

100 replications, MSTRANS and CORSIM produced substantially different estimates of network 

delay (the sample means were 71.71 sec/veh and 95.54 sec/veh respectively). The large 

difference was found to be due to different methodologies for computing delay for vehicles still 

present on the network at the end of the simulation run. The facility to compute extended 

network delay was enabled in MSTRANS (see section 7.5). From considerations of the length of 

the extension period from the 100 MSTRANS replications, it was determined that an extension 

period of 20 minutes was sufficient to allow all vehicles to exit the network in all circumstances. 

This extension period was implemented in CORSIM and allowed for the computation of 

extended network delay in CORSIM (no new vehicle arrivals occur during the extension period). 

The results for extended network delay are given in Table 21.
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  MSTRANS CORSIM 

Sample Mean (sec/veh) 119.32 115.27 

Sample Standard Deviation 
(sec/veh) 

16.97 7.37 

95 % Confidence interval 
for mean of network delay 
(sec/veh) 

(115.95, 122.69) (113.80, 116.73) 

95 % Confidence interval 
for standard deviation of 
network delay (sec/veh) 

(14.90, 19.71) (6.47, 8.56) 

 

Table 21: MSTRANS and CORSIM extended network delay in oversaturated conditions. 

 

From Table 21, we find reasonable agreement between the models with respect to the mean of 

extended network delay. MSTRANS produces a much larger variance of extended network 

delay. The following causes for the differences were identified: 

 

• Examinations of the animations of the network produced by each program identified 

more frequent spillback in MSTRANS than CORSIM. When spillback occurs, delay for 

the affected link is considerably increased. Thus the opportunity for spillback will 

increase the variability of delay. The causes for the increased likelihood for spillback in 

MSTRANS were identified: 

o CORSIM uses more sophisticated lane changing logic. Thus vehicles make better 

use of the storage space on oversaturated links and consequently spillback is less 

likely to occur. 

o The default effective vehicle lengths in CORSIM are much smaller that that used 

in MSTRANS (17 ft and 19 ft for the two different passenger car types in 

CORSIM as compared with 24.61 ft in MSTRANS). Thus links in CORSIM can 

store more vehicles. 

• When the option for exponential headway generation is selected in CORSIM, the entry 

headways distribution is conditional in that the actual number of vehicles generated at 

each source node is exactly equal to the expected number based on the flow 
(50)

. The 

entry headway distribution in MSTRANS allows for fluctuations in total flow between 
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replications whereas CORSIM does not. This contributed to the smaller variance of 

network delay produced by CORSIM. 

 

Summary of comparisons 

The MSTRANS model produces reasonable estimates of network delay when compared with 

CORSIM in both undersaturated and oversaturated conditions. Where differences exist, these 

differences can be explained in terms of differences in assumption values or methodology. 

MSTRANS produces larger variability in network delay than CORSIM in oversaturated 

conditions.
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A2 Appendix Two – Common Random Numbers 
(136)

 

A2.1 Introduction 

In this appendix, we briefly discuss Common Random Numbers (CRN’s), in the context of the 

traffic signal optimization problem. 

A2.2 Variability in stochastic experiment output 

The performance measures produced by stochastic traffic simulation models like CORSIM or 

MSTRANS vary due to the stochastic nature of the models. Arrival patterns, route allocations 

and certain driver decisions are generated stochastically. The realized values are generated based 

on the assumed statistical distributions and differ between replications. 

A2.3 CRN’s for comparing alternatives 

When comparisons between two or more alternative signal timing configurations are made, 

differences between the observed performance values are a consequence of the different signal 

timings as well as the fluctuations in experimental conditions (e.g. each timing plan may have 

been subjected to drastically different arrival patterns). 

 

If we apply similar experimental conditions for all system configurations (i.e. identical arrival 

pattern and routing schemes), then we can attribute the computed differences in measured 

performances to the difference in the signal timing policies
75
. 

A2.4 Variance reduction 

We can express this variance reduction mathematically for the case of comparing two alternative 

signal timing plans. 

 

Let iX and iY be the performance measures for the first and second signal timing policies on the 

i’th replication. 

                                                 
75
 Experimental conditions will not be perfectly identical as the driver’s stochastic decisions are a function of the 

signal settings (see sections A1.3.8 and A1.3.10). 
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Let us assume that n replications are performed where: 

{ }n
iiX 1= are independently and identically distributed with mean Xµ , 

{ }n
iiY 1= are also independently and identically distributed with mean Yµ  and  

the tuples ( ){ }n
iii YX
1

, = are independent. 

 

Let ∑
=

=
n

i

iX
n

X
1

1
and 

 ∑
=

=
n

i

iY
n

Y
1

1
. 

 

We can measure the mean difference between the timing plans, yxz µµµ −=  using the unbiased 

estimate YXZ −=  

    ( )∑
=

−=
n

i

ii YX
n 1

1
 

    ∑
=

=
n

i

iZ
n 1

1
, 

 

where iii YXZ −= . 

 

Now ( ) ( )ZVar
n

ZVar
1

=  

        ( ) ( ) ( )[ ]YXCovYVarXVar
n

,2
1

−+=  

(A2-1) 

Using the same arrival patterns and routing schemes on the i’th replication for both signal timing 

policies will induce a positive correlation between the random variables iX and iY . We do so for 

each replication and this will result in 0),( >YXCov , reducing the variance of Z according to 

equation (A2-1). 
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Identical experimental conditions can be obtained by using the same random number seeds in the 

pseudo-random number generators for generating these outcomes. The sequence of random 

numbers produced by the generators will be identical for the same seed values. Provided that we 

ensure that the numbers are used for generating exactly the same items for each signal timing 

scenario, seeding the generators with identical seeds is sufficient.
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A3 Appendix Three – Test Networks 

A3.1 Introduction 

In this appendix, we give the full specifications of the two test networks used for the empirical 

work in this dissertation.  

 

The 9 signal arterial network was constructed by combing two US data sets. The signal spacing 

was taken from a New Orleans arterial network 
(33)

 and the traffic flows were from an arterial 

network in Iowa 
(175)

.  

 

The 14 signal grid network was also based on a US data set 
(35)

. Six of the one-way streets in the 

original data were converted into two-way streets as the MSTRANS model logic was not general 

enough to handle one-way streets. Distances on the East-West axis were not given, so reasonable 

values were assumed.  

 

For each network, we provide the following descriptive items: 

• A network diagram illustrating the positions of the links and numbered nodes. 

• Average flow rates at the source nodes 

• Average turning proportions at the end of each link. 

A3.2 Arterial Network 
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A3.2.1 Network diagram 
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A3.2.2 Flow rates 

 
Source Node 
Number 

Vehicles Per Hour 

10 483 

11 178 

12 499 

13 351 

14 271 

15 789 

16 230 

17 642 

18 151 

19 479 

20 1197 

21 712 

22 117 

23 687 

24 590 

25 1082 

26 163 

27 352 

28 508 

29 297 
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A3.2.3 Turning proportions 

 

Upstream 
Node 
Number 

Downstream 
Node 
Number 

Percentage 
of Left 
Turning 
Traffic 

Percentage 
of Through 
Traffic 

Percentage 
of Right 
Turning 
Traffic 

10 1 4% 87% 9% 

11 1 45% 25% 30% 

12 2 18% 49% 33% 

13 3 47% 42% 11% 

14 4 57% 22% 21% 

15 5 29% 53% 18% 

16 6 18% 29% 53% 

17 7 25% 31% 44% 

18 8 30% 23% 47% 

19 9 25% 57% 18% 

20 9 13% 82% 5% 

21 9 35% 46% 19% 

22 8 34% 38% 28% 

23 7 24% 60% 16% 

24 6 45% 8% 47% 

25 5 26% 47% 27% 

26 4 29% 39% 32% 

27 3 23% 52% 25% 

28 2 21% 51% 28% 

29 1 20% 15% 65% 

1 2 22% 71% 7% 

2 3 6% 88% 6% 

3 4 5% 92% 3% 

4 5 14% 59% 27% 

5 6 4% 84% 12% 

6 7 22% 67% 11% 

7 8 3% 95% 2% 

8 9 10% 89% 1% 

9 8 2% 96% 2% 

8 7 12% 81% 7% 

7 6 19% 80% 1% 

6 5 16% 67% 17% 

5 4 5% 84% 11% 

4 3 12% 73% 15% 

3 2 20% 68% 12% 

2 1 18% 72% 10% 
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A3.3 Grid Network 

A3.3.1 Network diagram 
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A3.3.2 Flow rates 

 

Source Node 
Number 

Vehicles Per Hour 

15 304 

16 94 

17 297 

18 207 

19 952 

20 780 

21 108 

22 861 

23 1153 

24 148 

25 219 

26 163 

27 769 

28 131 

29 180 

30 180 

 

A3.3.3 Turning proportions 

 

Upstream 
Node 
Number 

Downstream 
Node 
Number 

Percentage 
of Left 
Turning 
Traffic 

Percentage 
of Through 
Traffic 

Percentage 
of Right 
Turning 
Traffic 

17 15 0% 100% 0% 

18 16 17% 68% 15% 

19 17 18% 64% 18% 

20 18 26% 49% 25% 

21 19 14% 72% 14% 

22 20 0% 100% 0% 

23 21 0% 95% 5% 

24 22 17% 80% 3% 

25 23 6% 89% 5% 

26 24 22% 67% 11% 

27 25 16% 81% 3% 

28 26 0% 21% 79% 

29 28 17% 72% 11% 

30 27 0% 97% 3% 

31 29 0% 82% 18% 
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32 30 0% 82% 18% 

33 6 25% 20% 55% 

34 7 10% 28% 62% 

35 8 17% 83% 0% 

36 9 17% 53% 30% 

37 1 25% 20% 55% 

38 2 10% 28% 62% 

39 3 17% 83% 0% 

40 4 17% 53% 30% 

41 11 6% 80% 14% 

42 12 18% 70% 12% 

43 13 0% 86% 14% 

44 5 0% 89% 11% 

45 4 0% 93% 7% 

46 3 0% 74% 26% 

47 2 0% 100% 0% 

48 10 18% 67% 15% 

49 9 19% 81% 0% 

50 8 0% 31% 69% 

51 7 0% 93% 7% 

52 14 10% 90% 0% 

53 13 13% 87% 0% 

54 12 25% 75% 0% 

55 6 0% 100% 0% 

56 11 4% 93% 3% 

57 7 0% 100% 0% 

58 12 11% 43% 46% 

59 8 0% 97% 3% 

60 13 10% 78% 12% 

61 9 0% 97% 3% 

62 14 5% 86% 9% 

63 10 0% 100% 0% 

64 1 0% 91% 9% 

65 2 23% 6% 71% 

66 7 27% 54% 19% 

67 3 11% 70% 19% 

68 8 17% 79% 4% 

69 4 16% 84% 0% 

70 9 22% 59% 19% 

71 5 1% 99% 0% 

72 10 0% 100% 0% 
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A4 Appendix Four – Formulae for evaluating 

magnitude of optimization problem 

A4.1 Introduction 

In this appendix, we provide derivation of formulae for computing the number of decision 

variables as well as the number of bits in binary coding when applying the genetic encoding 

given in section 7.6 for traffic signal optimization. 

A4.2 Number of decision variables 

A signal timing policy must specify the common cycle time for the entire network, C. For each 

of the SN  traffic signals besides the first, we specify an offset iφ . For each signal we also 

specify the duration of the SN /  green phase SNi /,ρ . For each approach at each signal, we must 

specify the sequence of stages, ki ,δ  and the duration of the stage with green indications for all 

traffic movements 1

,kig . The other variables determining the characteristics of the traffic signal 

timing policy can be determined from these decision variables (see section 7.6.3). Thus the total 

number of decision variables dN  is given by: 

dN  = ( ) 124111 −×+++ sN  

 = sN10  

(A4-1) 

A4.3 Bit string length 

Let Cl  = number of bits for encoding the cycle time, 

 φl  = number of bits for encoding an offset, 

 ρl  = number of bits for encoding length of SN /  green phase, 

 δl  = number of bits for encoding a stage sequence, 

 gl  = number of bits for encoding duration of stage with green indications for all  

   traffic movements. 
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From sections 7.6.2 and 7.6.3 we have 2=δl . For the other decision variables, the number of bits 

used for representing each type are: 

6=Cl  

6=φl  

5=ρl  

4=gl  

 

The total length of binary string in the binary encoding bN  is given by: 

bN  = ( )[ ] φδρφ lllllNl gsC −++++ 4  

 = sN35  

(A4-2) 
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A5 Appendix Five – Real CHC 

A5.1 Introduction 

In section 8.5.4 we consider a modified version of the CHC algorithm that we call Real CHC. In 

this appendix we discuss the amendments that were made to the standard CHC algorithm to 

arrive at Real CHC.  

 

With real genetic operators, we no longer require a binary representation of the decision 

variables for the GGA and SSGA. However, with CHC, the incest prevention mechanisms 

permits recombination based on the Hamming distance between parent strings. Thus the binary 

representation is still required. We can omit the binary representation if we can obtain a distance 

measure between individuals using the real valued decision variables. With Real CHC, we 

overlook the binary representations for the real decision variables and measure distances using 

the 1L  norm. We need to account for distance between real valued decision variables as well as 

the variables specifying phasing which use a binary encoding. We first elaborate the calculation 

of distance between two individuals in the population. We then describe how the mating distance 

threshold is set initially. We then explain how decrements to the threshold are performed and 

finally, we give the formula for resetting the distance threshold after cataclysmic mutation. We 

describe the method in which these quantities are dealt with in the standard CHC algorithm as 

given by Eshelman 
(100)

 in order to make the extension to a real parameter distance intuitive. 

A5.1.1 Distance calculation 

In the standard CHC algorithm, distance between individuals is measured by the Hamming 

distance of the binary string encodings. Thus each bit is given an equal weighting. With a 

representation that combines real and binary parameters, we modify the distance metric by 

requiring that each decision variable be given an equal weighting. We compute the distance 

separately for each decision variable and standardize the distance to a value in the interval [ ]1,0 , 

where 0 and 1 corresponding to the minimum and maximum distances. The distance between the 

individuals is the sum of the distances on each parameter. 
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For a real decision variable, let x and y denote the values of the decision variable in the problem 

space in the first and second individual. Let ( )xD  and ( )yD  denote the respective normalized 

values of these decision variables (see section 7.6.3). The distance is given by: 

( ) ( )yDxD −  

(A5-1) 

The use of the normalized values of the decision variables ensures that: 

• Distances in the range [ ]1,0  are attainable even when x and y have different domains (see 

section  7.7.2) 

• Distance calculation will be consistent with the manner in which real crossover operates 

as real crossover operates on the normalized values (see section 7.7.2) e.g. 

( ) ( ) ( ) ( )yDxDyDxD =⇒=− 0  and blend crossover will not be able to perform any 

exploration on this decision variable. There will be no contribution to the total distance 

from this decision variable and thus the two individuals will be less likely to reproduce 

according to the incest prevention mechanism. 

 

For an l  bit binary encoded decision variable, let 11 ,, xxx ll L−  and 11 ,, yyy ll L−  denote the binary 

coded values of the decision variable in the two individuals. The distance is given by: 

∑
=

−
l

i

ii yx
l 1

1
 

(A5-2) 

That is, the distance is taken as the Hamming distance expresses as a fraction of the number of 

bits used for representing that parameter. This ensures that the distance will be in the range [ ]1,0 . 

A5.1.2 Initial value of mating threshold 

In the standard CHC algorithm, the distance mating threshold is initially set to
2

bN  where bN  is 

the length of the binary string encoding all decision variables. This is equal to the expected 

Hamming distance between two individuals in the initial population. We use this same criteria 

for setting the initial threshold in Real CHC i.e. we set the initial threshold to the expected 

distance between two individuals in the initial population. 
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For real decision variables, the expected distance for a single decision variable is 

( ) ( )[ ]tlyindependenUYandUXYXE 1,0~1,0~−  

∫ ∫ −=
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0
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( ) ( ) dxdyxydyyx

x

x

∫ ∫ ∫ 







−+−=

1

0 0

1

 

dxxy
yy

xy

y

xy

xy

y

∫ 





















−+








−=

=

=

=

=

1

0

1
2

0

2

22
 

dxxx∫ 






 +−=
1

0

2

2

1
 

2

1

2

1

3

1
+−=  

3

1
=  

(A5-3) 

Thus the threshold is initially set to: 

23

Re Binaryal
NN

+ , 

(A5-4) 

where 

alNRe  = the number of real decision variables and 

BinaryN  = the number of decision variables that utilize a binary encoding. 

A5.1.3 Decrements to mating threshold 

In the standard CHC algorithm, the mating distance threshold is decreased by one whenever no 

individuals can be paired for mating or all offspring are discarded by the replacement 

mechanism. This is the minimum decrement that can be performed since Hamming distance is a 

non-negative integer value. With the distance measurement we have proposed for Real CHC, the 

distance threshold decrement can be set arbitrarily. To ensure consistent comparisons between 
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the standard CHC and Real CHC in section 8.5.4, we set the threshold decrement in the Real 

CHC so as to ensure that the same number of steps are required to reduce the threshold to 0 in 

both algorithms. 

A5.1.4 Value of mating threshold after cataclysmic mutation 

CHC reintroduces diversity into the population by performing cataclysmic mutation. A new 

population is created using the best individual. The best individual is retained and all remaining 

individuals are constructed by flipping bits in the best individual with probability r, the 

divergence rate. The mating distance threshold is then reset to ( ) bNrr −12 .  

 

Now for two individuals obtained via cataclysmic mutation,  

Pr(Any bit differs) = Pr(Bit mutated in one individual and not the other) 

   = )1(2 rr − . 

 

Thus, the mating distance threshold is reset to the average Hamming distance between two 

individuals (where neither of which is the best individual) immediately after cataclysmic 

mutation. The same logic will be applied to the Real CHC i.e. we set the threshold to the 

expected distance between two mutated individuals. 

 

We first derive the following results for )1,0(~UX  and a constant [ ]1,0∈κ : 

[ ]κ−XE  = ∫ −
1

0

dxx κ  

  = ( ) ( )∫ ∫ −+−
κ

κ

κκ
0

1

dxxdxx  

  =

1
2
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(A5-5) 
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Now when performing cataclysmic mutation with Real CHC, the real decision variables undergo 

real mutation with probability r. Bit values encoding binary genes are flipped with  

probability r.  

 

Let iκ  denote the normalized value of the i’th real decision variable in the best individual. The 

expected distance contribution from the i’th real decision for two mutated individuals is: 

 

Pr(Decision variable mutated in both individuals) ( ) ( )[ ] +−× 1,0~,1,0~ UYUXYXE   

Pr(Decision variable mutated in one individual but not the other) ( )[ ]1,0~UXXE iκ−×  

( ) 






 +−−+=
2

1
12

3

2
2

iirr
r

κκ  (See equations (A5-3) and (A5-5)) 

 

Summing the expected distances over all real and binary encoded decision variables, the distance 

threshold is reset to: 


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(A5-6) 
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A6 Appendix Six – Statistical model for comparing 

genetic algorithm performance 

A6.1 Introduction 

In this appendix, we provide the derivation and formulation of the statistical model for testing for 

significant differences in mean search performance of different genetic algorithms. The need for 

this model is motivated and the sources of variability to be addressed are given in section 7.9.6. 

We first elaborate on the experiments used to determining the assumptions of the model. We 

then present the model and discuss how it can be applied. 

A6.2 Setting assumptions of statistical model 

A6.2.1 Variability in search trajectories 

In order to assess the manner in which the performance of the best individual varies between 

runs of a genetic algorithm, 100 independent runs of a particular genetic algorithm were 

performed. The specifications of the algorithm are given in Table 22. 

 

Algorithm Type SSGA 

Population size, selection bias factor and 
probability of mutation 

See section 7.8 

Number of replications of objective 
function for fitness evaluations 

1 

Use CRN's Yes 

Representation Standard binary 

Crossover and mutation operators Standard binary operators  

 

Table 22: Specifications of genetic algorithm for evaluating variability in search trajectories 

 

This genetic algorithm was applied to the undersaturated arterial test network scenario and the 

signal timing policy of the best individual after 2000 function evaluations was saved in each 

case.
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Let 

jiX ,  = extended network delay on j’th independent replication of the best individual after  

     2000 function evaluations on the i’th replication of the genetic algorithm in  

    Table 22 (seconds/vehicle) and 

iθ  = population mean of extended network delay for the best individual after 2000  

     function evaluations on the i’th replication of the genetic algorithm in Table 22  

   (seconds/vehicle). 

 

For each i, we would like to obtain a precise measure of iθ  so that we can assess the distribution 

of the{ }iθ . 20 Independent replications of MSTRANS were performed using the signal timing 

plans of the best solution for each i. The number of additional replications to perform to ensure 

that the sample mean of extended network delay was within 2 seconds of iθ  with 95% 

confidence was estimates as 20* −in , where 

*

in  = 












≤≥ − 120min
2

975.0,1
j

S
tj i
n , 

(A6-1) 

( )αα −=−− 11001,1nt  Percentile of the t-distribution with 1−n  degrees of freedom, 

iX  = ∑
=

20

1

,
20

1

j

jiX and 

2

iS  = ( )∑
=

−
20

1

2

,
19

1

j

iji XX  (See Law and Kelton 
(136)

). 

 

The additional replications were performed and the sample mean and sample variance of 

extended network delay based on a total of *

in  replications are given for each i in Table 23.
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i Sample mean Sample variance  i Sample mean Sample variance 

1 53.61 22.83  51 51.78 21.84 

2 57.50 13.23  52 57.74 91.68 

3 58.19 46.35  53 61.54 48.67 

4 67.10 104.56  54 51.62 24.83 

5 55.28 48.96  55 58.70 102.72 

6 57.18 63.25  56 56.51 54.66 

7 54.89 38.57  57 51.04 19.31 

8 63.17 50.79  58 70.22 145.56 

9 66.55 42.61  59 55.42 24.28 

10 54.01 51.70  60 54.21 12.16 

11 58.88 45.82  61 53.79 38.33 

12 60.58 152.62  62 59.24 76.39 

13 70.99 118.57  63 54.64 30.78 

14 59.63 13.59  64 56.02 62.10 

15 52.72 29.00  65 52.04 12.65 

16 56.87 59.68  66 55.80 50.59 

17 55.33 41.31  67 51.95 25.67 

18 57.81 23.21  68 55.50 19.57 

19 51.75 31.62  69 62.03 76.89 

20 66.53 102.30  70 62.14 14.54 

21 53.65 18.86  71 66.81 146.31 

22 53.05 13.92  72 52.97 17.50 

23 57.18 80.21  73 53.32 44.66 

24 54.61 36.14  74 55.64 23.19 

25 49.44 43.01  75 61.72 76.09 

26 55.72 24.45  76 54.21 3.62 

27 53.15 33.89  77 59.77 70.05 

28 51.76 4.53  78 57.30 50.37 

29 57.46 80.77  79 54.40 18.88 

30 78.75 146.76  80 50.73 21.87 

31 51.37 37.15  81 50.68 16.99 

32 60.61 81.29  82 63.53 29.10 

33 62.00 104.36  83 50.72 36.34 

34 53.41 38.73  84 64.67 60.88 

35 56.62 87.37  85 53.51 48.23 
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36 59.90 22.20  86 50.97 35.38 

37 55.83 17.69  87 60.35 17.87 

38 54.59 60.94  88 49.61 27.19 

39 57.89 57.75  89 52.40 55.14 

40 56.15 57.16  90 53.78 17.93 

41 55.77 32.41  91 58.11 42.40 

42 55.18 25.78  92 52.75 9.59 

43 53.65 68.03  93 55.37 42.57 

44 64.51 81.32  94 52.68 18.87 

45 60.11 62.74  95 52.03 18.84 

46 50.31 10.00  96 54.18 58.58 

47 57.71 51.57  97 49.31 10.77 

48 59.83 70.25  98 57.46 43.15 

49 55.80 65.89  99 53.01 44.65 

50 52.84 22.41  100 60.04 39.91 

 

Table 23: Sample mean and variance of extended network delay over 100 independent 

replications of genetic algorithm 

 

The sample means can be taken as accurate approximations of the iθ . A histogram of these 

sample means is given in Figure 25.
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Figure 25: Histogram of iθ  

 

Several standard continuous distributions including the Normal, Log-Normal and Gamma were 

applied and none gave an adequate description to the iθ . Based on the findings in A6.2.2, it was 

discovered that a translated distribution was required. The Translated Gamma distribution which 

has probability density function 

 ( )
( )

( ) τµατθτθ
α
τµ

α

θπ
τθ

τµ
α

α >>>−
Γ









−

=
−

−
−

−
,0,,

)(
1

2

e , 

(A6-2) 

was found to give a satisfactory fit to the iθ  when evaluated via a chi-squared goodness of fit test.  

The parameterization given in equation (A6-2) elicits the mean of the distribution as an explicit 

parameter. 

A6.2.2 Variability in the objective function 

Examining the sample variance of the different solutions in Table 23, we see that the variance of 

extended network delay differs for different signal timing policies. A scatter plot of the sample 

mean and sample variance values is given in Figure 26. 
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Figure 26: Scatter plot of sample mean and sample variance values in Table 23 

 

We note an approximate linear trend with sample variance increasing linearly with the sample 

mean. A linear trend was also noted in the same mean and same variance of extended network 

delay in the combined data generated for comparing the genetic algorithms in all four test 

network scenarios. Thus, a linear model for variance was proposed i.e. 

( ) baXVar iji += θ, . 

(A6-3) 

To ensure variance to always be non-negative, we require
a

b
i −≥θ . Clearly, from Figure 26, we 

have 0>a  and 0<b . Thus, the distribution describing iθ  as described in section A6.2.1 must 

have support on the positive real numbers, with minimum value 0>−
a

b
. Thus a translated 

distribution such as the Translated Gamma is appropriate. 

A6.2.3 Normally distributed objective function 

To assess whether extended network delay follows a normal distribution, the signal timing policy 

of the best individual after 2000 function evaluations on the first iteration of the genetic 

algorithm in A6.2.1 was selected. 100 Independent observations of extended network delay were 
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made for this set of signal timings. A histogram of these observations is given in Figure 27. A 

normal distribution was found to give an adequate description of extended network delay based 

on the chi-squared goodness of fit test. 
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Figure 27: Histogram of extended network delay 

A6.3 Statistical model 

A6.3.1 Model describing distribution of observed performance 

measures 

For each genetic algorithm applied, we perform repeated independent runs of the genetic 

algorithm. We also record the best individual generated at intervals of 1000 function evaluations 

and perform independent replications of MSTRANS for evaluating the quality of this individual. 

For the purpose of defining the statistical model, we use the notation introduced in section 7.9.5.
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Based on the findings in section A6.2, the following underlying statistical model is proposed for 

describing the observed performance measure of the best individual after F objective function 

evaluations of genetic algorithm X on a particular network scenario: 

 

Genetic algorithm run Replication of best individual 
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Figure 28: Statistical model describing distribution of observed performance measures 

 

For the sake of clarity, we now omit the F subscript in all derivations that follow, keeping in 

mind that we are concerned with the output of the best individual after F generations. 

A6.3.2 Estimation of model parameters 

Assuming that estimates of a and b are available, the parameters of the translated gamma 

distribution in Figure 28 can be estimated via maximum likelihood. We omit the X subscript 

from the parameters of the translated gamma distribution. Let  

jix ,   = realized or observed values of the jiX , , 

ix   = ( )Tniii xxx ,2,1, ,,, L , 

X  = ( )Nxxx ,,, 21 L  and 

( )τµα ,,,ii xL  = likelihood of observing the sample ix  

  = ( ) ( ) θθπθ
θ

dxf
n

j

ji∫ ∏
∀ =










1

, , 

                                                 
76
 ),,( τµαΓ denotes the Translated Gamma distribution as defined in equation (A6-2). 
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( )τµα ,,,ii xl  = log-likelihood of sample ix  

  = ( )τµα ,,,log ii xL  and 

( )τµα ,,,Xl  = total log-likelihood of the sample X 

  = ( )∑
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i

ii xl
1

,,, τµα  
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Using the change of variable τθ −=z  in the integral, we get 
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The integral ( )dcI ,,,, τµα can be evaluated numerically. 
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(A6-4) 

The parameters of the model in Figure 28 can be estimated by maximizing the log likelihood in 

equation (A6-4) numerically. 

A6.3.3 Testing for significant differences in performance 

The proposed model can be used for testing for significant differences in mean performance of 

the best individual after F function evaluations of two alternative genetic algorithms. We assume 

that the alternative genetic algorithms, X and Y follow the model Figure 28. The mean 

performance of the two genetic algorithms can be tested for statistically significant difference 

after F function evaluations by testing the null hypotheses µµµ == YXH :0  versus the 

alternative hypothesis YXH µµ ≠:1 . 

 

We construct a test using the theory of the likelihood ratio test 
(144)

. Let 

( ) ( ) ( ) ( )[ ]






 +−+= YYXXYYYXXX YlXlYlXl

YXYXYYYXXX

τµατµατµατµαχ
ττµαατµατµα

,,,,,,max,,,max,,,max2
,,,,,,,,

2

 

(A6-5) 

Under 0H , the test statistic 2χ  will approximately follow a 2

1χ  distribution. Large values of 2χ  

indicate a deviation from 0H . We use the tail probability of the 2

1χ  distribution for evaluating the 

p-value. 

A6.4 Estimation of a and b 

In section A6.2.2, we noted that the sample variance of extended network delay of different 

signal timing policies varies approximately as a linear function of the sample mean of extended 

network delay. The model in equation (A6-3) and Figure 28 describing the population variance 

of extended network delay as a linear function of the population mean of extended network delay 
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with slope a and intercept b was thus proposed. We require estimates of these parameters for 

applying the statistical model in section A6.3
77
. 

 

Many runs of alternative genetic algorithms were performed in the empirical work  

(see chapter 8) and the sample mean and sample variance of extended network delay of the best 

individuals at different number of function evaluations were computed. We can use this output to 

estimate a and b for each test network scenario. 

 

The model in section A6.3 can be used to estimate a and b via maximum likelihood by including 

the parameters a and b as unknowns in the likelihood equation (A6-4) and maximizing the 

combined likelihood of the entire sample of alternative genetic algorithms with output at 

differing total function evaluations. However, this would be a huge optimization task. Three 

separate parameters (the parameters of the Translated Gamma distribution) would be required for 

each genetic algorithm. Separate sets of parameters are also required at each interval of output 

(output is given at 1000, 2000, …, 9000 and 10000 function evaluations). All these parameters in 

conjunction with a and b would need to be simultaneously optimized. 

 

We employed a simpler approach for the estimation. Let 

m = number of paired values of sample mean and sample variance of extended network 

     delay, from all genetic algorithms and all output intervals 

n = number of independent replications of best individual performed at each output interval  

   for each genetic algorithm, 

ix  = sample mean of extended network delay of the i’th sample based on the n independent  

   replications, 

iy  = sample variance of extended network delay of the i’th sample based on the n  

   independent replications, 

iθ  = population mean of extended network delay of the i’th sample and 

y  = ( )myyy ,,, 21 L  

 

                                                 
77
 The linear variance model applies to a particular traffic network scenario. Since we have four test network 

scenarios, a separate estimation is required for each network setup.  
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A simple linear regression of { }iy on { }ix  would offer a straightforward approach for estimating 

a and b. However, we need to account for differing levels of variability in the response variable 

i.e. ( )iyVar  is not constant. We demonstrate this below: 

 

Since extended network delay has a normal distribution, we have: 
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  (see footnote

78
). 

(A6-6) 

For n large, we can approximate the Chi-Squared distribution in equation (A6-6) with a normal 

distribution with the same moment’s i.e. 

( )











−

+
+

1

2
,~

2

n

ba
baNy i

ii

θ
θ . 

(A6-7) 

Thus, sample values with larger iθ  will exhibit larger variability in the response iy . These 

observations should have less influence in the estimation of a and b. Approximating iθ  with ix , 

we have 
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The likelihood of the entire sample is given by  
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The log-likelihood is thus 
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(A6-10) 

where k denotes a constant independent of a and b. We can maximize the log-likelihood in 

equation (A6-10) numerically to obtain maximum likelihood estimates of a and b for each test 

network 

 

Since tests for statistically significant differences in performance were only performed at 5000 

and 10000 total function evaluations, the sample output of the best individual at 5000, 6000, 

7000, 8000, 9000 and 10000 total function evaluations of each algorithm was used in the 

estimation of a and b. Furthermore, we only used the output from the runs detailed in section 8.2 

and 8.3 for the estimation. The estimated values of a and b for each test network are given in 

Table 24. In Figures 29-32, we plot the sample values used in the estimation along with the 

estimated linear variance model for each test network. 

 

Test network a b 

Arterial Undersaturated 2.49865 -88.88926 

Arterial Oversaturated 1.98873 -115.96436 

Grid Undersaturated 1.04285 -35.65330 

Grid Oversaturated 1.38381 -60.51166 

 

Table 24: Estimated values of a and b for each test network 
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Figure 29: Fit of linear variance model – Arterial Undersaturated scenario 
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Arterial Oversaturated
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Figure 30: Fit of linear variance model – Arterial Oversaturated scenario 
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Figure 31: Fit of linear variance model – Grid Undersaturated scenario 
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Figure 32: Fit of linear variance model – Grid Oversaturated scenario 
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A7 Appendix Seven – Experimental Output 

A7.1 Introduction 

In this appendix, we present more detailed output for the various genetic algorithms runs 

discussed in chapter 8. For each genetic algorithm X, the sample values of FX  are given for 

}10000,,2000,1000,0{ K∈F . The same section headings as those in chapter 8 are applied so 

that the output can be easily identified. 

A7.2 Re-evaluation of fitness in GGA’s 

Arterial Undersaturated       

Without re-evaluation With re-evaluation 

Num Replications Num Replications 
Function 

Evaluations 
1 2 4 8 1 2 4 8 

0 447.44 400.51 431.66 396.78 413.45 400.61 429.46 407.13 

1000 77.22 119.78 165.28 253.02 96.44 120.30 172.07 242.76 

2000 66.32 80.33 102.36 172.90 72.39 83.60 116.80 181.66 

3000 63.70 71.17 85.73 126.99 66.47 70.93 97.40 142.78 

4000 59.75 67.39 76.47 105.21 65.38 63.74 82.13 112.12 

5000 59.34 64.12 70.48 89.32 61.25 61.43 71.95 98.11 

6000 58.87 62.29 65.01 81.41 59.95 60.17 69.41 89.59 

7000 58.45 60.43 61.65 76.51 59.46 57.08 66.93 84.86 

8000 57.34 59.92 60.66 72.89 57.92 57.20 65.47 79.19 

9000 55.88 58.78 59.82 69.67 55.79 55.90 61.12 74.14 

10000 55.59 59.10 58.75 68.46 55.43 56.79 61.01 71.55 

 

Grid Undersaturated       

Without re-evaluation With re-evaluation 

Num Replications Num Replications 
Function 

Evaluations 
1 2 4 8 1 2 4 8 

0 355.95 354.85 349.80 388.16 394.83 390.25 415.92 386.16 

1000 66.32 94.42 149.89 229.54 65.37 93.80 158.45 229.17 

2000 53.79 65.74 89.38 162.28 52.76 68.70 100.07 152.22 

3000 50.00 57.24 71.41 123.39 48.64 56.43 78.33 123.89 

4000 49.26 52.43 63.08 93.04 47.63 52.19 66.74 100.61 

5000 48.33 50.36 57.68 81.27 46.88 49.95 60.78 84.24 

6000 46.88 48.66 54.59 73.47 44.91 48.32 57.27 75.09 

7000 46.05 47.71 51.68 69.04 44.27 48.27 55.18 71.36 

8000 45.80 46.99 50.04 65.72 45.01 45.85 52.24 67.63 

9000 45.75 46.56 48.88 62.13 44.05 45.56 50.94 63.26 

10000 45.48 46.47 47.91 58.86 44.73 45.78 49.11 61.28 
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Arterial Oversaturated      

Without re-evaluation With re-evaluation 

Num Replications Num Replications 
Function 

Evaluations 
1 2 4 8 1 2 4 8 

0 841.21 793.88 790.77 853.52 753.25 826.88 847.31 814.80 

1000 211.94 268.05 381.96 533.43 228.59 274.81 409.06 509.36 

2000 186.48 209.54 261.71 413.19 184.99 211.86 276.82 388.91 

3000 182.21 188.61 227.55 313.63 180.04 186.90 231.92 321.25 

4000 175.22 181.08 211.50 262.91 178.79 175.68 205.82 284.07 

5000 172.36 173.71 201.56 233.20 174.44 170.42 191.97 250.95 

6000 171.24 171.17 194.03 213.23 166.90 168.01 184.15 231.44 

7000 170.09 165.38 188.96 202.74 165.33 168.72 176.93 221.56 

8000 168.41 163.54 184.47 194.50 159.98 162.80 174.30 208.58 

9000 166.97 162.70 181.02 187.36 158.64 160.60 170.06 200.56 

10000 166.40 160.34 178.22 180.23 157.94 160.83 171.19 194.25 

 

Grid Oversaturated       

Without re-evaluation With re-evaluation 

Num Replications Num Replications 
Function 

Evaluations 
1 2 4 8 1 2 4 8 

0 784.14 703.22 764.53 797.65 704.36 720.05 779.98 714.87 

1000 174.48 238.05 351.96 497.38 180.17 231.84 346.44 468.05 

2000 141.93 171.20 223.70 359.18 137.48 158.54 235.30 347.59 

3000 130.85 141.99 180.69 282.84 121.29 136.97 184.91 282.61 

4000 123.41 126.95 153.71 237.69 117.70 125.38 159.65 243.48 

5000 117.92 123.00 136.69 197.01 113.85 119.08 139.76 210.26 

6000 116.40 119.28 126.46 177.23 111.00 116.92 132.01 187.98 

7000 116.58 118.08 123.03 161.79 109.44 112.94 123.87 169.41 

8000 115.66 116.82 119.79 152.71 109.76 114.82 118.55 161.31 

9000 114.74 115.34 115.27 144.63 110.45 111.92 115.95 152.98 

10000 114.37 113.10 114.55 137.37 106.46 110.12 112.33 146.66 

A7.3 Common Random Numbers 

The results presented in this section are for the execution of the genetic algorithm with CRN’s 

for fitness evaluations. The results with independent replications for fitness evaluations are given 

in section A7.2.
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A7.3.1 GGA 

Arterial Undersaturated   Grid Undersaturated  

Num Replications Num Replications Function 
Evaluations 

1 2 4 8 1 2 4 8 

0 403.26 432.99 469.00 455.08 366.80 364.33 378.62 370.74 

1000 77.45 112.52 186.26 266.05 63.98 99.58 157.91 223.76 

2000 61.01 75.77 119.24 204.56 52.14 64.38 93.04 143.01 

3000 56.66 65.30 92.01 139.62 47.05 55.45 74.47 109.00 

4000 54.43 59.91 77.06 111.94 44.69 51.00 63.03 86.22 

5000 52.70 57.16 70.04 95.51 43.96 48.14 57.69 75.48 

6000 52.26 55.05 65.65 87.49 42.90 45.59 54.13 69.25 

7000 52.32 53.52 63.26 80.07 42.17 45.22 51.32 64.11 

8000 53.02 53.83 61.48 74.93 41.77 43.59 49.72 59.83 

9000 51.91 53.45 59.51 70.98 41.64 42.62 47.79 58.56 

10000 52.22 53.05 58.41 67.78 41.39 42.29 47.00 56.33 

 

Arterial Oversaturated   Grid Oversaturated  

Num Replications Num Replications Function 
Evaluations 

1 2 4 8 1 2 4 8 

0 867.08 928.18 764.42 814.71 753.70 815.08 763.99 779.38 

1000 207.71 257.59 387.53 535.34 158.33 236.77 376.73 481.75 

2000 175.29 201.43 275.47 381.82 118.65 149.10 254.40 377.45 

3000 164.54 184.29 226.79 298.06 110.03 126.46 191.83 281.49 

4000 159.96 174.70 202.15 261.23 105.95 115.71 157.07 232.34 

5000 155.02 166.47 188.97 232.65 104.17 109.85 136.40 200.68 

6000 154.27 162.98 179.84 218.46 101.96 106.66 124.03 180.17 

7000 153.38 157.09 175.68 207.39 99.58 103.92 118.08 165.42 

8000 152.97 154.46 169.21 198.80 98.71 102.76 110.98 152.71 

9000 153.50 153.37 164.82 190.58 97.58 100.80 108.96 141.78 

10000 151.71 152.45 163.76 185.07 97.26 99.11 106.78 134.30 
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A7.3.2 SSGA 

Arterial Undersaturated   Grid Undersaturated  

Num Replications Num Replications Function 
Evaluations 

1 2 4 8 1 2 4 8 

0 370.98 397.01 350.92 387.07 342.80 303.76 322.82 333.78 

1000 68.63 110.09 159.02 287.13 54.68 81.48 126.69 220.85 

2000 55.75 68.50 101.99 189.47 44.60 56.02 78.92 133.70 

3000 52.59 58.58 77.29 129.37 40.69 48.52 62.22 98.86 

4000 51.25 55.57 64.94 99.01 39.17 44.42 55.42 80.02 

5000 51.14 53.11 59.88 86.29 38.45 42.29 51.47 68.38 

6000 51.73 51.12 56.20 77.50 38.12 41.00 48.42 61.57 

7000 50.63 51.23 54.69 70.91 38.01 39.95 46.11 57.54 

8000 51.09 50.69 52.48 65.52 37.75 39.33 44.37 54.94 

9000 50.36 50.31 50.84 63.26 37.91 38.68 43.46 52.58 

10000 50.68 50.14 49.88 60.02 37.88 38.53 42.02 50.23 

 

Arterial Oversaturated   Grid Oversaturated  

Num Replications Num Replications Function 
Evaluations 

1 2 4 8 1 2 4 8 

0 803.00 811.36 754.83 698.50 674.14 722.24 675.84 679.27 

1000 188.07 253.94 393.70 535.03 145.23 207.26 322.90 503.04 

2000 163.24 185.89 245.62 372.41 110.82 133.29 208.18 371.03 

3000 157.29 168.26 203.20 287.27 99.97 115.74 160.88 273.49 

4000 151.20 160.26 181.72 250.29 95.32 104.87 138.62 226.85 

5000 149.80 152.88 172.04 213.43 93.42 99.69 126.31 190.74 

6000 150.33 149.26 161.51 196.30 92.77 97.13 118.50 169.86 

7000 149.27 146.74 158.55 183.78 91.99 94.26 111.75 153.28 

8000 150.20 145.20 154.50 178.00 90.99 92.88 106.04 138.65 

9000 148.81 142.67 152.38 172.22 90.94 91.09 102.95 130.93 

10000 148.71 143.60 150.23 165.86 91.37 89.94 99.69 124.15 
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A7.3.3 CHC 

Arterial Undersaturated   Grid Undersaturated  

Num Replications Num Replications Function 
Evaluations 

1 2 4 8 1 2 4 8 

0 368.13 384.46 382.03 378.58 353.73 314.80 358.04 340.41 

1000 89.88 142.44 197.34 290.68 73.05 122.50 172.02 257.94 

2000 60.90 85.24 137.53 210.89 51.04 72.67 106.69 178.01 

3000 55.59 66.59 102.50 173.05 44.22 57.30 84.17 131.76 

4000 53.15 59.55 86.51 146.84 40.91 51.06 71.66 110.09 

5000 51.26 54.01 72.70 121.82 39.16 46.56 63.54 96.58 

6000 50.35 52.53 65.34 109.24 37.74 44.24 57.05 87.76 

7000 50.15 51.08 61.00 96.93 37.40 41.62 54.17 72.85 

8000 49.16 50.07 56.45 86.63 37.45 39.89 51.05 67.90 

9000 49.37 49.38 54.70 77.33 37.24 38.69 47.72 64.65 

10000 50.28 48.89 53.60 73.88 37.24 37.76 46.08 58.36 

 

Arterial Oversaturated   Grid Oversaturated  

Num Replications Num Replications Function 
Evaluations 

1 2 4 8 1 2 4 8 

0 774.02 792.16 742.64 784.23 725.23 693.31 746.56 620.85 

1000 226.65 314.36 447.04 580.21 188.65 278.77 419.62 511.41 

2000 169.37 230.25 314.57 476.67 123.37 173.21 292.11 388.47 

3000 152.92 189.24 255.15 392.27 106.37 137.73 228.33 333.08 

4000 147.58 169.93 218.20 326.13 98.87 117.67 186.20 273.92 

5000 143.39 157.59 190.96 301.29 92.96 107.53 156.03 234.31 

6000 140.96 152.30 182.67 278.51 90.18 100.62 141.90 202.48 

7000 139.94 147.92 173.17 251.02 89.04 97.14 132.59 184.37 

8000 139.20 144.33 165.01 230.03 89.24 92.40 123.24 168.69 

9000 138.94 143.09 162.00 218.02 88.46 90.38 117.38 163.34 

10000 138.27 140.10 155.76 204.29 88.35 89.05 110.77 148.39 

A7.4 Number of replications 

See output in section A7.3.
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A7.5 Alternative problem encodings 

A7.5.1 Gray coding 

The results given in this section are for the genetic algorithms with Gray coding. The results 

using the standard binary encoding are given in section A7.3. 

 

Arterial Undersaturated   Grid Undersaturated  

Algorithm Type  Algorithm Type Function 
Evaluations GGA SSGA CHC  

Function 
Evaluations GGA SSGA CHC 

0 387.54 334.30 346.47  0 328.75 346.11 332.85 

1000 77.37 69.87 97.47  1000 65.30 55.80 71.55 

2000 59.68 56.58 64.93  2000 50.83 44.90 48.42 

3000 57.69 52.72 56.68  3000 46.03 41.15 42.11 

4000 54.69 51.46 52.37  4000 42.93 39.67 39.17 

5000 53.90 51.22 51.87  5000 41.25 38.77 38.17 

6000 52.51 50.52 51.37  6000 40.80 38.08 37.81 

7000 53.15 50.12 50.74  7000 40.40 37.90 37.60 

8000 53.06 50.95 51.09  8000 40.01 37.87 37.74 

9000 53.09 49.70 51.25  9000 39.79 37.83 37.85 

10000 52.56 50.30 50.70  10000 39.35 37.46 37.59 

  

Arterial Oversaturated   Grid Oversaturated  

Algorithm Type  Algorithm Type Function 
Evaluations GGA SSGA CHC  

Function 
Evaluations GGA SSGA CHC 

0 894.93 790.34 698.23  0 787.32 712.36 695.38 

1000 200.98 192.23 229.31  1000 160.41 138.04 170.81 

2000 169.61 162.22 170.48  2000 112.03 104.76 113.57 

3000 159.28 156.02 155.67  3000 99.54 94.54 95.04 

4000 153.58 152.56 150.50  4000 95.23 89.99 90.01 

5000 151.21 149.74 144.48  5000 93.20 86.96 87.31 

6000 148.12 150.87 143.34  6000 91.68 86.77 87.21 

7000 147.54 148.87 143.89  7000 90.19 85.32 86.23 

8000 147.14 149.45 142.56  8000 89.10 84.91 86.01 

9000 146.08 148.84 142.73  9000 88.41 84.58 86.63 

10000 146.32 148.40 141.65  10000 87.63 83.89 86.06 
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A7.5.2 Real Crossover 

The results given in this section are for the genetic algorithms with real crossover and binary 

mutation on the Gray coded variables. The results for the standard binary crossover on Gray 

coded variables are given in section A7.5.1. 

 

Arterial Undersaturated   Grid Undersaturated  

Algorithm Type  Algorithm Type Function 
Evaluations GGA SSGA CHC  

Function 
Evaluations GGA SSGA CHC 

0 434.72 362.80 429.81  0 387.41 313.34 336.09 

1000 79.37 69.63 78.87  1000 60.74 54.88 62.45 

2000 61.56 55.71 56.44  2000 51.07 43.43 45.77 

3000 56.53 50.43 51.38  3000 46.47 39.88 39.89 

4000 54.80 50.80 49.35  4000 44.22 38.01 37.39 

5000 53.30 50.08 49.01  5000 43.19 37.36 36.75 

6000 53.48 49.86 48.98  6000 42.39 36.61 36.20 

7000 52.44 49.80 48.60  7000 41.73 36.33 36.19 

8000 52.24 49.53 48.34  8000 41.58 36.23 36.02 

9000 51.66 49.12 48.72  9000 40.81 35.94 36.16 

10000 51.79 49.11 48.67  10000 40.39 35.89 35.72 

 

Arterial Oversaturated   Grid Oversaturated  

Algorithm Type  Algorithm Type Function 
Evaluations GGA SSGA CHC  

Function 
Evaluations GGA SSGA CHC 

0 817.81 690.82 779.78  0 738.02 733.60 668.16 

1000 194.28 183.67 195.72  1000 148.25 121.07 139.04 

2000 167.74 157.33 160.02  2000 111.26 92.68 94.62 

3000 158.20 149.37 144.36  3000 97.11 85.86 83.83 

4000 154.72 146.26 140.79  4000 91.25 82.10 79.34 

5000 151.51 145.18 139.07  5000 88.70 79.78 78.01 

6000 151.09 144.65 137.86  6000 87.24 79.39 76.53 

7000 151.53 143.90 138.76  7000 86.01 77.39 76.11 

8000 150.42 145.03 136.94  8000 85.30 77.67 76.17 

9000 149.80 143.97 136.93  9000 85.11 76.67 75.92 

10000 149.23 143.70 136.10  10000 84.35 76.09 75.33 
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A7.5.3 Real mutation 

Here we give the results from the genetic algorithms runs with both real crossover and real 

mutation. The performance results without real mutation are given in A7.5.1 and A7.5.2. 

 

Arterial Undersaturated  Grid Undersaturated  
Algorithm Type  Algorithm Type Function 

Evaluations GGA SSGA  

Function 
Evaluations GGA SSGA 

0 382.03 335.68  0 336.31 312.55 

1000 68.92 65.68  1000 60.69 53.66 

2000 58.18 53.84  2000 48.55 42.43 

3000 55.85 51.41  3000 44.45 39.08 

4000 54.05 50.27  4000 42.31 37.66 

5000 53.01 50.30  5000 41.15 37.12 

6000 53.08 50.35  6000 40.24 37.11 

7000 51.58 50.31  7000 39.88 36.85 

8000 51.90 50.53  8000 39.51 36.61 

9000 51.40 49.81  9000 39.35 36.60 

10000 51.37 50.29  10000 39.13 36.50 

 

Arterial Oversaturated   Grid Oversaturated  
Algorithm Type  Algorithm Type Function 

Evaluations GGA SSGA  

Function 
Evaluations GGA SSGA 

0 744.77 780.99  0 689.61 644.98 

1000 199.87 179.17  1000 134.41 115.52 

2000 168.52 156.48  2000 107.44 91.79 

3000 160.77 150.09  3000 95.65 84.26 

4000 155.27 145.81  4000 90.74 81.20 

5000 153.61 143.86  5000 88.70 80.23 

6000 152.09 142.65  6000 87.82 79.46 

7000 148.17 142.87  7000 85.48 78.74 

8000 148.18 143.03  8000 84.50 78.53 

9000 148.00 141.99  9000 84.03 77.90 

10000 146.63 141.77  10000 83.85 77.87 
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A7.5.4 Real CHC 

The results given in this section are for the Real CHC with real crossover and real mutation. The 

results for the standard CHC with real crossover and binary mutation are given in section A7.5.2. 

 

Arterial Undersaturated  Grid Undersaturated 
 Function 

Evaluations    

Function 
Evaluations   

0 353.67  0 333.49 

1000 88.18  1000 63.78 

2000 60.61  2000 45.47 

3000 52.29  3000 40.15 

4000 50.50  4000 37.75 

5000 49.08  5000 36.69 

6000 48.85  6000 35.96 

7000 48.07  7000 35.69 

8000 47.85  8000 35.88 

9000 48.37  9000 35.74 

10000 48.04  10000 35.55 

 

Arterial Oversaturated  Grid Oversaturated 
 Function 

Evaluations    

Function 
Evaluations   

0 675.84  0 613.90 

1000 216.34  1000 144.48 

2000 165.55  2000 98.00 

3000 148.88  3000 85.82 

4000 142.17  4000 80.01 

5000 138.48  5000 77.68 

6000 135.56  6000 75.62 

7000 133.57  7000 75.61 

8000 133.08  8000 75.65 

9000 133.19  9000 74.77 

10000 132.65  10000 74.58 

A7.6 Algorithm Type 

See output in sections A7.5.3 and A7.5.4.
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A7.7 Optimal parameter tunings 

A7.7.1 Blend crossover parameter 

The results for 5.0=α  are given in section A7.5.4. 

 

Arterial Undersaturated   Grid Undersaturated  

BLX-α BLX-α Function 
Evaluations 

0 0.25 0.75 1 0 0.25 0.75 1 

0 344.70 347.29 383.30 361.48 288.37 299.62 289.55 309.26 

1000 73.02 72.10 99.22 105.87 55.38 57.61 75.01 76.55 

2000 69.03 58.57 72.12 79.77 50.52 44.66 53.97 59.42 

3000 68.14 55.59 61.77 65.05 50.18 42.60 47.52 51.93 

4000 68.19 54.57 56.72 60.24 50.26 42.04 44.56 48.54 

5000 67.75 54.63 52.38 58.21 49.95 42.07 43.10 47.20 

6000 65.32 54.55 50.98 55.36 47.89 42.06 40.89 45.47 

7000 63.90 54.71 51.00 54.16 46.69 41.62 39.64 44.13 

8000 62.92 54.32 50.57 51.77 46.38 40.46 38.77 44.22 

9000 63.03 53.35 50.28 51.97 46.22 39.76 38.03 42.09 

10000 62.12 53.33 49.06 51.33 44.99 39.41 37.61 41.46 

 
        

Arterial Oversaturated   Grid Oversaturated  

BLX-α BLX-α Function 
Evaluations 

0 0.25 0.75 1 0 0.25 0.75 1 

0 788.15 667.17 700.72 673.14 617.38 625.08 635.02 600.03 

1000 193.09 183.56 247.05 258.89 122.71 115.93 182.59 209.64 

2000 186.53 155.68 186.65 197.86 117.27 94.32 124.82 142.15 

3000 186.07 151.79 173.29 179.57 116.00 91.48 106.91 119.11 

4000 185.46 151.17 158.69 167.98 116.39 89.79 95.39 109.61 

5000 183.84 148.06 153.02 164.52 114.86 89.39 90.24 102.44 

6000 181.71 148.32 147.69 160.76 114.63 89.85 84.42 99.41 

7000 177.34 148.08 146.76 159.31 113.34 89.37 82.51 95.50 

8000 175.49 147.04 144.19 157.57 109.49 89.34 81.05 92.47 

9000 174.07 146.63 140.64 154.08 105.85 87.45 79.56 90.08 

10000 173.13 145.96 138.80 152.16 103.67 85.46 78.22 88.79 
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A7.7.2 Population size 

The results for a population size of 50=PopN  are given in section A7.5.4. 

 

Arterial Undersaturated  Grid Undersaturated 
Population Size  Population Size Function 

Evaluations 30 70  

Function 
Evaluations 30 70 

0 440.69 294.74  0 357.32 276.93 

1000 65.58 102.67  1000 52.86 76.61 

2000 53.04 71.92  2000 40.59 55.05 

3000 50.34 60.23  3000 38.01 45.98 

4000 49.83 54.39  4000 37.76 41.28 

5000 49.53 51.56  5000 37.30 38.58 

6000 49.72 50.25  6000 37.38 37.19 

7000 48.93 49.80  7000 37.06 36.40 

8000 48.47 49.10  8000 36.12 35.91 

9000 49.02 48.82  9000 35.83 35.63 

10000 48.67 48.54  10000 35.78 35.43 

  

Arterial Oversaturated  Grid Oversaturated 
Population Size  Population Size Function 

Evaluations 30 70  

Function 
Evaluations 30 70 

0 765.91 665.82  0 688.40 607.74 

1000 173.88 244.12  1000 111.29 182.20 

2000 151.43 187.03  2000 86.72 115.00 

3000 144.53 163.76  3000 81.45 95.85 

4000 141.14 150.17  4000 81.27 86.22 

5000 139.60 144.29  5000 79.81 81.42 

6000 139.22 139.52  6000 79.32 78.41 

7000 137.50 138.45  7000 78.68 77.31 

8000 136.29 135.29  8000 77.99 75.81 

9000 135.01 136.07  9000 75.96 75.24 

10000 135.19 133.77  10000 75.43 74.75 
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