FORMULATION OF AN ANTI-TUBERCULOSIS DRUG DELIVERY SYSTEM

LISA CLAIRE DU TOIT

A dissertation submitted to the Faculty of Health Sciences, University of the Witwatersrand, in fulfillment of the requirements for the degree of Master of Pharmacy

Supervisor:
Professor Michael Paul Danckwerts
Department of Pharmacy and Pharmacology, University of the Witwatersrand, South Africa

Co-Supervisor:
Professor Viness Pillay
Department of Pharmacy and Pharmacology, University of the Witwatersrand, South Africa

Johannesburg, 2007
I, Lisa Claire du Toit, declare that this dissertation is my own work. It has been submitted for the degree of Master of Pharmacy in the Faculty of Health Sciences in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.

This …… day of February 2007
RESEARCH OUTPUTS

1. Research Publications

2. Conference Outputs

g. Lisa Claire du Toit, Viness Pillay, Michael Paul Danckwerts, Craig Cremen, Ismail Ravat, Jayendran Subramoney and Harshen Vassan. Preliminary production of enteronanoparticles based on a salted-out and cross-linked architecture. Poster Presented at the American Association of Pharmaceutical Scientists Annual Meeting and Exposition Conference, October 2006, Texas, USA.

3. Additional Research Outputs

b. Lisa Claire du Toit, Michael Paul Danckwerts and Viness Pillay. Formulation of an Anti-Tuberculosis Site-Specific Drug Delivery System. Podium Presentation at School
of Therapeutic Sciences Research Afternoons, University of the Witwatersrand, 10-11 August 2005.

ABSTRACT

Tuberculosis (TB) is a leading killer of young adults worldwide and the global scourge of multi-drug resistant tuberculosis is reaching epidemic proportions. A number of novel drug delivery systems incorporating the principle anti-tuberculosis (anti-TB) agents have been fabricated that either target the site of TB infection or reduce the dosing frequency with the aim of improving patient outcomes; however, there is a requisite to manufacture an oral system, which directly addresses issues of unacceptable rifampicin (RIF) bioavailability recently reported in a number of fixed-dose combinations (FDCs). There is an urgent need to segregate the delivery of RIF and isoniazid (INH) upon co-administration, such that INH is not released in the stomach owing to the induction of accelerated hydrolysis of RIF in acidic medium to the poorly absorbed insoluble 3-formyl rifamycin SV in the presence of INH. The fabrication of a polymeric once-daily oral multiparticulate fixed-dose combination of the principal anti-TB drugs, which attains segregated delivery of RIF and INH for improved RIF bioavailability, could be a step in the right direction in addressing issues of treatment failure due to administration of poor quality FDCs and patient non-compliance.

Novel approaches were implemented for the fabrication of an oral multiparticulate system for differentiated release of RIF and INH in the gastrointestinal tract. The envisaged system comprised INH-loaded enterosoluble multiparticulate entities for targeted delivery of the INH to the small intestine and reconstitutable multiparticulate entities incorporating the poorly water-soluble RIF and appropriate gel-forming hydrophilic suspending agents, which were required to disintegrate rapidly in tepid water to form a gel network suspending RIF and the INH-loaded enterosoluble multiparticulates. The dry dispersible multiparticulate system may be reconstituted immediately prior to administration to the patient for once-daily dosing as a compliance-promoting tool.

The design of a novel anti-TB drug delivery system hinged on preformulatory investigations and preliminary experimental activities to yield a sufficient database to allow for the selection of the qualitative composition of a prototype formulation. The aforementioned activities initiated the systematic identification of an innovative method for formulating enterosoluble multiparticulates demonstrating the required enteric-release properties. The newly-formed multiparticulates, referred to as ‘enterospheres’, were obtained by inducing separation (‘salting-out’) of a pH-sensitive poly (methacrylic acid-co-ethylacrylate) copolymer as a polymer-rich enteric film and ionotropically cross-linking the internal enterosphere matrix. Rational selection of appropriate suspending agents for design of reconstitutable multiparticulates resolved in the identification of a synergistic hydrophilic sodium starch glycolate-kappa carrageenan combination, duly characterised by physicomechanical analyses. The gel-forming composite system attained ease of dispersal and the formation of a three-dimensional supporting network possessing the essential properties for extemporaneous use.

Statistical experimental design, implementing response surface methodology, was pivotal in the identification of critical formulation and processing variables for the development of the optimum enterosoluble and reconstitutable multiparticulate systems for delivery to the patient as the preferred multiparticulate two-drug FDC. Because there was an unequivocal relationship between the properties of a cross-linked enterosphere and their structure in such a way that both characteristics could not be considered in an isolated way, in-depth analyses on drug-free and drug-loaded enterospheres was systematically undertaken.

Of principle concern in this study was the attainment of segregated gastrointestinal delivery of RIF and INH in order to address issues of unacceptable RIF bioavailability on co-administration with INH. The proposed United States Pharmacopoeial (USP) high performance liquid chromatographic (HPLC) and colorimetric method, and a proposed regresional analysis of ultraviolet (UV) spectrophotometric absorbance data were employed to resolve RIF and INH release from the optimum multiparticulate system at simulated gastric pH for comparison with the release profiles of anti-TB FDCs commercially available in South Africa.

Ultimately, in keeping up to speed with future trends, this dissertation addressed innovations in nanotechnology, with particular reference to anti-TB nanosystems. The newly identified method for enterosphere manufacture was adapted with a view to nanosizing the salted-out and cross-linked architecture, for controlled delivery of anti-TB drugs to the patient, in the bid to promote patient adherence.
ACKNOWLEDGEMENTS

In completing this work, the author would like to express her deepest gratitude to all who have offered their much-needed aid and support towards the completion of this study. The author would like to acknowledge the following people for their great contribution:

- Foremost to my parents, sister and grandparents for their endearing love and support, and for lifting my spirits when times were tough.
- To my supervisor, Prof. Michael Paul Danckwerts, for his knowledge and encouragement.
- To my co-supervisor, Prof. Viness Pillay, for his inspiring commitment to the field; thirst for knowledge, which is permeating; and for his constant support.
- To the students and staff of the Department of Pharmacy and Pharmacology, University of the Witwatersrand: their contributions, great and small, have aided me in numerous ways.
- To Dr. Clem Penny, for his advisory support with the scanning electron microscopy.
- This research would also not have been possible without the financial assistance of the Medical Research Council (MRC) and the National Research Foundation (NRF) of South Africa, their support is greatly appreciated.
- To the Almighty Father, without Whom none of this would be possible.
DEDICATION

This work is dedicated to my nephew, Liam Matthew du Toit, an unexpected, yet most wonderful gift.

This dissertation is also dedicated to my country, South Africa.
TABLE OF CONTENTS

1. **Introduction**
 1.1. Tuberculosis – Delineating the Disease 1
 1.2. Current Anti-tuberculosis Chemotherapy 5
 1.3. Novel Drug Delivery Systems for the Treatment of TB 13
 1.4. Statement of the Problem 19
 1.5. Approach to the Problem 23
 1.6. Aims and Objectives: Description of the Oral Multiparticulate Drug Delivery System 27
 1.7. Overview of the Dissertation 32

2. **Theoretical Considerations for the Design of a Dispersible System Incorporating the Enterosoluble and Dispersible Multiparticulate Entities**
 2.1. Introduction 36
 2.2. Site-Specific Drug Delivery of Multiparticulate Dosage Forms 37
 2.3. Selection of an Appropriate Enteric Polymer 39
 2.4. Gastrointestinal Anatomy and Physiology Relative to Enteric-Coating Functioning and Design Rationale 45
 2.4.1. The Significance of pH 46
 2.4.2. Gastric Motility, Emptying and Residence Time 47
 2.4.3. Considerations for Drug Release Testing and Development of an Isoniazid Assay Method 50
2.5. Theoretical Design of an Enterosoluble Multiparticulate System 51

2.5.1. Microencapsulation Technology 51

2.5.2. Fabrication of Enterosoluble Multiparticulates by the Air Suspension Method 52

2.5.3. Fabrication of Enterosoluble Multiparticulates by Solvent Evaporation Emulsification 55

2.5.4. Fabrication of Enterosoluble Multiparticulates Employing the Principles of Phase Separation (‘Salting-Out’) 56

2.6. Delivery of the Enterosoluble Multiparticulates 57

2.6.1. Rationalising Dispersible Multiparticulates as a Dosage Form 57

2.6.2. Ability of a Suspending Agent to Form an Extemporaneous Gel in Tepid Water: Formulation Considerations 58

2.7. Concluding Remarks 62

3. Preliminary Design of an Enterosoluble Multiparticulate System

Incorporating Isoniazid

3.1. Introduction 63

3.2. Development of a Methodology for the Fabrication of Enterogranules by the Air Suspension Method 64

3.2.1. Materials and Methods 64

3.2.1.1. Materials 64

3.2.1.2. Equipment 64

3.2.1.3. Identification of Processing Conditions for Successful Operation 65

3.2.1.3.1. Control of Airflow 65
3.2.1.3.2. Fluid Application Rate 66
3.2.1.3.3. Drying Time and Temperature 66
3.2.1.4. Formulation of Enterogranules 66
3.2.1.5. Enteric-Film Coating of Enterogranules 67
3.2.1.6. Particle Size Analysis 69
3.2.1.7. Construction of Calibration Curves for Spectrophotometric Determination of Isoniazid Release from the Enterosoluble System 70
3.2.1.8. Drug Content of Enterogranules 71
3.2.1.9. In Vitro Release Studies on Enterogranules 71
3.2.2. Results and Discussion 72
3.3. Development of a Methodology for the Fabrication of Microenterospheres by the Polar Organic-in-Oil Emulsification Solvent Evaporation Method
3.3.1. Materials and Methods 77
3.3.1.1. Materials 77
3.3.1.2. Formulation of Microenterospheres 77
3.3.1.3. Microenterosphere Diameter Analysis 78
3.3.1.4. Encapsulation Efficiency of Microenterosphere 79
3.3.1.5. In Vitro Release Studies on Microenterospheres 79
3.3.2. Results and Discussion 80
3.4. Modifications to Overcome Burst Release from Microenterospheres 83
3.4.1. Materials and Methods 84
3.4.1.1. Materials 84
3.4.1.2. Double Entrapment of Methacrylic Acid Ethyl Acrylate Copolymer 85
3.4.1.3. Double Entrapment in Ethylcellulose 85
3.4.1.4. *In Vitro* Release Studies on Reservoir Systems 86
3.4.2. Results and Discussion 86

3.5. Development of a Methodology for the Fabrication of Enterospheres by Novel Salting-Out and Ionotropic Cross-linking of Methacrylic Acid Ethyl Acrylate

3.5.1. Materials and Methods 89
3.5.1.1. Materials 89
3.5.1.2. Formulation of Enterospheres 89
3.5.1.3. Enterosphere Diameter Analysis 93
3.5.1.4. Encapsulation Efficiency of Enterospheres 94
3.5.1.5. *In Vitro* Release Studies on Enterospheres 94
3.5.2. Results and Discussion 95

3.6. Treatment of Dissolution Data for Selection of a Candidate Enterosoluble System

3.6.1. Methodology 101
3.6.2. Results and Discussion 103

3.7. Concluding Remarks 105

4. Fabrication and Statistical Optimisation of Salted-Out and Internally Cross-linked Anti-Tuberculosis Polymeric Enterospheres Employing an Experimental Design Strategy

4.1. Introduction 107
4.1. Development of an Experimental Design Strategy for Enterosphere Fabrication and Optimisation

4.2. Materials and Methods

4.2.1. Materials

4.2.2. Formulation of Enterospheres

4.2.3. Experimental Design

4.2.4. Surface Morphology and Shape Analysis of Enterospheres

4.2.5. Determination of Molar Amount of Zinc Incorporated within the Cross-linked Matrix

4.2.6. Drug Content and Entrapment Efficiency

4.2.7. *In Vitro* Drug Release Studies

4.2.8. Textural Profile Analysis

4.2.9. Optimisation of Formulation Ingredients

4.3. Results and Discussion

4.3.1. Surface Morphology of the Enterospheres

4.3.2. Measured Responses for the Experimentally-Synthesised Enterospheres

4.3.3. Analysis of the Box-Behnken Response Surface Design

4.3.4. Response Surface Analysis

4.3.4.1. Response Surface Analysis for Molar Amount of Zinc

4.3.4.2. Response Surface Analysis for Drug Entrapment Efficiency

4.3.4.3. Response Surface Analysis for Mean Dissolution Time

4.3.5. Response Optimisation

4.4. Concluding Remarks
5. Evaluation of Innovatively-Formed Enterospheres for Targeted Delivery of Isoniazid

5.1. Introduction 146

5.1.1. Characterisation of Vibrational Transitions by Fourier Transform Infrared Spectroscopy 147

5.1.2. Characterisation of Degree of Crystallinity by X-Ray Powder Diffraction 148

5.1.3. Characterisation of Thermal Transitions by Differential Scanning Calorimetry 148

5.1.4. Characterisation of Cross-link Density by Atomic Absorption Spectroscopy 149

5.1.5. Mechanisms of Polymer Dissolution and Biodegradation 150

5.2. Materials and Methods 155

5.2.1. Materials 155

5.2.2. Enterosphere Formulations 155

5.2.3. Characterisation of Vibrational Transitions by Fourier Transform Infrared Spectroscopic Analysis 156

5.2.4. Characterisation of Degree of Crystallinity by X-Ray Powder Diffraction 156

5.2.5. Characterisation of Thermal Transitions by Differential Scanning Calorimetry 156

5.2.6. Characterisation of Cross-linking Cation: MAEA Stoichiometry by Atomic Absorption Spectroscopy 157
5.2.7. Characterisation of Morphological Transitions by Scanning Electron Microscopy 158

5.2.8. Characterisation of Enterosphere Erosion by Gravimetric Transitions 158

5.2.9. Characterisation of Enterosphere Erosion by Volume Reduction 159

5.2.10. Characterisation of Enterosphere Erosion from Drug Release Data 160

5.3. Results and Discussion 160

5.3.1. Vibrational Transitions 160

5.3.2. Degree of Crystallinity 164

5.3.3. Thermal Transitions 172

5.3.4. Cross-linking Cation: MAEA Stoichiometry 176

5.3.5. Morphological Transitions 177

5.3.6. Gravimetric and Volumetric Transitions 180

5.4. Concluding Remarks 185

6. Preliminary Investigation and Characterisation of a Gel-Forming Suspending Agent for Extemporaneous Dispensing

6.1. Introduction 186

6.2. Preliminary Evaluation of Appropriate Suspending and Gelling Agents for Extemporaneous Dispensing 193

6.2.1. Materials and Methods 193

6.2.1.1. Materials 193

6.2.1.2. Preliminary Suspension Preparation and Evaluation 193

6.2.2. Results and Discussion 194
6.3. Textural Profiling of a Sodium Starch Glycolate-kappa-Carrageenan Combination: Demonstration of the Functional Synergism

6.3.1. Materials and Methods 196
 6.3.1.1. Materials 196
 6.3.1.2. Preparation of Sodium Starch Glycolate-kappa-Carrageenan Sol and Gel Systems 196
 6.3.1.3. Textural Analysis of Sol and Gel Systems 197
 6.3.1.4. Gelation and Viscosity Analysis of Sol and Gel Systems 198
 6.3.1.5. Statistical Analysis 198

6.3.2. Results and Discussion 199
 6.3.2.1. Selection of Processing Conditions for Gel Systems 199
 6.3.2.2. Formation of a Three-Dimensional Network in Sol and Gel Systems 199
 6.3.2.3. Textural Analysis of Sol and Gel Systems 202
 6.3.2.4. Viscosity Analysis of Sol and Gel Systems 206

6.4. Concluding Remarks 208

7. A Face-Centred Central Composite Design to Optimise the Extemporaneous Use Properties of the Suspension System Delivered as Reconstitutable Multiparticulates

7.1. Introduction 210

7.2. Materials and Methods 212
 7.2.1. Materials 212
 7.2.2. Experimental Design 213
 7.2.3. Evaluation of Granule Flow Properties 214
7.2.3.1. Angle of Repose 214
7.2.3.2. Compressibility Index 215
7.2.4. Evaluation of Extemporaneous Granule Formulations 215
7.2.4.1. Measurement of Sedimentation Volume 215
7.2.4.2. Viscosity Analysis 216
7.2.4.3. Theoretical Sedimentation Rate 217
7.2.4.4. Importance of the Hydrocolloid Stoichiometric Coefficient in Predicting Gel-Formation Time of the Extemporaneous Granules 218
7.3. Results and Discussion 219
7.3.1. Evaluation of Granule Flow Properties 219
7.3.2. Evaluation of Suspensions 219
7.3.3. Response Surface Analysis for Sedimentation Volume Ratio 223
7.3.4. Response Surface Analysis for Final Viscosity 224
7.3.5. Response Surface Analysis for Gelation Rate 225
7.3.6. Response Surface Analysis for Sedimentation Rate 226
7.3.7. Correlation of the Hydrocolloid Stoichiometric Coefficient with Measured Responses for Reconstitutable Granule Formulations 227
7.3.8. Identification of the Optimum Reconstitutable Granule Formulation 228
7.4. Concluding Remarks 229

8. Methodological Approaches for the Simultaneous In Vitro Analysis of Rifampicin and Isoniazid
8.1. Introduction 230
8.1.1. Spectrophotometric Analysis of Rifampicin and Isoniazid 232
8.1.2. High Performance Liquid Chromatographic Analysis of Rifampicin and Isoniazid 233

8.2. Materials and Methods 236
8.2.1. Materials – Commercially Available Fixed-Dose Combinations 236
8.2.2. In Vitro Drug Release Testing 236
8.2.3. Quantitative Analytical Determination of Rifampicin and Isoniazid by Regressional Analysis of Spectrophotometric Data 237
8.2.4. Quantitative Analytical Determination of Rifampicin and Isoniazid by Colorimetry and High Performance Liquid Chromatography 238

8.3. Results and Discussion 240
8.3.1. Spectrophotometric Analysis 240
8.3.2. Colorimetric and High Performance Liquid Chromatographic Analysis 248
8.4. Concluding Remarks 251

9. Approaches to Formulating Anti-Tuberculosis Nanosystems

 EmbodiIng A Salted-Out and Cross-linked Architecture

9.1. Introduction 252
9.2. Materials and Methods 262
9.2.1. Materials 262
9.2.2. Formulation of Nanosystems by Emulsion-Based Salting-Out 263
9.2.3. Formulation of Nanosystems by Aqueous-Based Salting-Out 264
9.2.4. Vibrational Transitions in Nanosystems 266
9.2.5. Elucidation of Particulate Architecture 266
9.2.6. Plackett-Burman Experimental Design for Critical Factor Identification in Nanosystem Manufacture 266

9.2.7. Nanosystem Recovery 268

9.2.8. Determination of Drug Incorporation Efficiency of Nanosystems 268

9.2.9. In Vitro Release Behaviour of Nanosystems 268

9.3. Results and Discussion 269

9.4. Concluding Remarks 279

10. Conclusions and Recommendations

10.1. Conclusions 280

10.2. Recommendations for Further Development and Implementation of the Anti-Tuberculosis Drug Delivery System 282

References 287
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Estimated TB incidence and mortality</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Pathogenesis of TB</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Action of anti-TB drugs</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Novel anti-TB drug delivery systems</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>Proposed mechanisms for interaction between RIF and INH</td>
<td>22</td>
</tr>
<tr>
<td>1.6</td>
<td>Diagrammatic representation of: (a) the formulation strategy to attain</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>differentiated gastrointestinal delivery in a single dose and (b) the final</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anti-TB drug delivery system</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>Organogram of a rational approach to the design of an anti-TB drug delivery</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>system</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Candidate enteric polymer</td>
<td>44</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic depicting proposed mechanism for targeted delivery of INH from</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>enterosoluble matrices</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic of the film-coating process</td>
<td>54</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental set-up for the air-suspension coating process</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>Feret’s diameters (d_f)</td>
<td>69</td>
</tr>
<tr>
<td>3.3</td>
<td>INH calibration curve at 265nm in 0.1M HCl (pH 1.2)</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>INH calibration curve at 263nm in PBS (pH 6.8)</td>
<td>73</td>
</tr>
<tr>
<td>3.5</td>
<td>Stereomicrographs of enterogranules</td>
<td>75</td>
</tr>
<tr>
<td>3.6</td>
<td>Feret’s diameter of the preliminary enterogranule formulations</td>
<td>75</td>
</tr>
<tr>
<td>3.7</td>
<td>Drug release profiles of preliminary enterogranules in acidic media (0.1M</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>HCl, pH 1.2)</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Stereomicrographs of representative samples of microenterospheres</td>
<td>81</td>
</tr>
<tr>
<td>3.9</td>
<td>Drug release profiles of preliminary microenterosphere formulations in</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>acidic media (0.1M HCl, pH 1.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>82</td>
</tr>
</tbody>
</table>
3.10. Schematic of reservoir and multireservoir enterosphere representing double entrapment of INH

3.11. Representative stereomicrographs of representative reservoir enterospheres

3.12. Drug release profiles of reservoir systems in acidic media (0.1M HCl, pH 1.2)

3.13. Schematic of salting-out process for enterosphere fabrication

3.14. Stereomicrographs of representative enterospheres

3.15. Drug release profiles of preliminary enterosphere formulations in acidic media (0.1M HCl, pH 1.2)

3.16. Composite drug release profiles for A7, B8 and R1 representative of the degree of similarity between R1, and the candidate formulation, B8

4.1. Hydration shell of sulphate anions

4.2. Two-dimensional schematic of proposed non-stereo-specific (a) inter- and (b) intra-molecular ionic interactions (‘salt-bridges’) between the anionic poly(methacrylic acid-co-ethylacrylate) copolymer and cationic agent

4.3. Typical textural profiles for the measurement of (a) deformation energy (upward gradient) and matrix hardness (AUC) and (b) resilience

4.4. Stereomicrographs of enterosphere formulations

4.5. Composite release profiles of the enterosphere formulations in acidic (0.1M HCl, pH 1.2) and phosphate buffered media (pH 6.8)

4.6. Variable resilience of enterosphere formulations in the dry and hydrated state

4.7. Relationship between fractional drug release and acid-hydrated resilience

4.8. 3-D scatter plot of matrix hardness vs. molar amount of Zn (n_{Zn}) vs. formulation

4.9. Residual plots

4.10. Interaction plots

4.11. Main effects plots

4.12. Response surface plots
4.13. Stereomicrographs and corresponding scanning electron micrographs of enterosphere formulation 22

4.14. Optimisation plots delineating factor settings and desirability values for optimal formulations

4.15. Composite release profile of INH from optimum formulation

5.1. Relationship between structural variables and properties for the cross-linked enterosphere

5.2. Controlled release of drug molecules from a matrix diffusion-controlled diffusion-type drug delivery device in which solid drug is homogenously dispersed in the polymer matrix

5.3. Proposed interaction between MAEA and INH

5.4. FTIR spectra

5.5. XRPD patterns

5.6. DSC thermograms

5.7. Scanning electron micrographs of DL2% enterospheres

5.8. Scanning electron micrographs of DL8% enterospheres

5.9. Relationship between drug release and erosional transitions (weight and volume)

5.10. Erosional behaviour of representative enterosphere formulations

6.1. Gel formation in carrageenan

6.2. Conical probe configuration illustrating the compression and decompression phases

6.3. (a) Structural formulae of SSG and κC repeating units and (b) schematic of proposed effect of SSG on κC due to (A) exclusion effect (B) Coulombic interactions

6.4. Stereomicrographs of SSG-κC sol systems

6.5. Representative textural profiles depicting the AUC

6.6. Effect of increasing κC concentrations on compressibility
6.7. Effect of κC levels on the change in viscosity following the sol-gel transition

7.1. Residual plots
7.2. Agreement between experimental and predicted values
7.3. Response surface plot for sedimentation ratio (V/V_0) versus SSG, κC
7.4. Response surface plot for final viscosity versus SSG, κC
7.5. Response surface plot for gelation rate $(\Delta V/\Delta t)$ versus SSG, κC
7.6. Response surface plot for sedimentation rate (V) vs SSG, κC

8.1. UV spectra
8.2. PLS analysis of spectrophotometric absorbance data for Rifa nah 150
8.3. PLS analysis of spectrophotometric absorbance data for Rifa nah 300
8.4. PLS analysis of spectrophotometric absorbance data for optimum RIF-INH dispersible multiparticulate system
8.5. Drug release from FDCs following regressional analysis of UV spectrophotometric absorbance data
8.6. Drug release from FDCs following chromatographic determination of INH and colorimetric determination of RIF

9.1. Comparison of complexity as a function of molecular architecture, strategy, quantised building block and technological age highlighting the intricate role of polymers in supramolecular chemistry
9.2. The array of nanosystems encompassed by nanopharmaceuticals
9.3. Fabrication of nanosystems by the emulsion-based salting-out method
9.4. Experimental system set-up for aqueous salting-out by spray atomisation
9.5. SEMs of nanosystems generated by the emulsion-based salting-out approach
9.6. SEMs of nanosystems generated by the aqueous-based salting-out approach
9.7. FTIR spectra of nanosystems
9.8. (a) Schematic of zinc oxide crystal formation and (b) Stereomicrographs depicting tubular morphological transition in NS fabricated by aqueous-based salting-out

9.9. Selected drug release profiles from emulsion-based salted-out nanosystems in PBS (pH 7.0)

9.10. Drug release profiles from aqueous-based salted-out nanosystems in PBS (pH 7.0)

9.11. Surface plots derived from P-B design for emulsion-based nanosystems and aqueous-based nanosystems

9.12. Proposed mechanism for targeted pulmonary delivery of nanosystems via the inhalation route

10.1. Spray-dryer configuration and process staging for enterosphere manufacture
LIST OF TABLES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Regimen 1 – for treatment of new smear positive adult patients</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Classes of anti-TB drugs</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Synopsis of novel anti-TB drug delivery systems</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Commercially available enteric polymers</td>
<td>40</td>
</tr>
<tr>
<td>2.2</td>
<td>Microencapsulation methods for the formulation of enterosoluble multiparticulates</td>
<td>52</td>
</tr>
<tr>
<td>2.3</td>
<td>Parameters and process variables affecting solvent evaporation</td>
<td>56</td>
</tr>
<tr>
<td>2.4</td>
<td>Common suspending and gelling agents</td>
<td>61</td>
</tr>
<tr>
<td>3.1</td>
<td>Identified processing conditions</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>Formulae for Eudragit S® 100 and Eudragit L® 100 dispersions</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>Preliminary enterogranule formulations</td>
<td>69</td>
</tr>
<tr>
<td>3.4</td>
<td>Accuracy determination for INH assay method in 0.1M HCl</td>
<td>73</td>
</tr>
<tr>
<td>3.5</td>
<td>Precision determination for INH assay method in 0.1M HCl</td>
<td>73</td>
</tr>
<tr>
<td>3.6</td>
<td>Accuracy determination for INH assay method in 0.2M PBS pH 6.8</td>
<td>74</td>
</tr>
<tr>
<td>3.7</td>
<td>Precision determination for INH assay method in 0.2M PBS pH 6.8</td>
<td>74</td>
</tr>
<tr>
<td>3.8</td>
<td>Preliminary microenterosphere formulations</td>
<td>78</td>
</tr>
<tr>
<td>3.9</td>
<td>Particle size, entrapment and release characteristics of preliminary microenterosphere formulations</td>
<td>81</td>
</tr>
<tr>
<td>3.10</td>
<td>Solubility and key hydrational properties of electrolytes tested</td>
<td>93</td>
</tr>
<tr>
<td>3.11</td>
<td>Preliminary enterosphere formulations</td>
<td>93</td>
</tr>
<tr>
<td>3.12</td>
<td>Particle size, entrapment and release characteristics of preliminary enterosphere formulations</td>
<td>96</td>
</tr>
<tr>
<td>3.13</td>
<td>Similarity and difference factors of the preliminary enterosoluble formulations</td>
<td>104</td>
</tr>
</tbody>
</table>
4.1. Factors and levels of independent variables generated by the 3rd Box-Behnken Design

4.2. Textural parameters for determination of matrix hardness, deformation energy and matrix resilience

4.3. Measured responses for the enterosphere formulations

4.4. Measured textural properties of the experimentally synthesised variants

4.5. Correlation between experimental and predicted values for n_{Zn}, DEE, and MDT

4.6. Estimated p-values for the measured responses

4.7. Constrained settings for response optimisation

4.8. Experimental and predicted response values for the optimised formulations

5.1. Band assignments for MAEA-INH physical mixture

5.2. Intensity counts of representative samples at the main interplanar distances

5.3. Thermodynamically-derived data for enterosphere formulations with relation to cross-linking cation: MAEA stoichiometry

6.1. Characteristics of hydrophilic suspending agents for extemporaneous dispensing

6.2. TA-XT.plus settings for sol and gel analysis.

6.3. Textural properties and viscosity of SSG-κC Systems

7.1. Suspending Agents and Levels Derived from the Central Composite Design

7.2. Results from analysis of suspension formulations

7.3. Estimated regression coefficients and p-values for sedimentation ratio (V/V_o), final viscosity, gelation rate ($\Delta V/\Delta t$) and sedimentation rate (V)

7.4. Constraints for optimal suspension formulation

7.5. Experimental and predicted response values for the optimised gelling suspension
8.1. Specifications for HPLC methodologies 235
8.2. Gradient program prescribed in the USP method 235
8.3. Drug content validation in FDC tablet formulations 245
8.4. Model selection and validation and regression coefficients for RIF release prediction 245
8.5. Model selection and validation and regression coefficients for INH release prediction 245

9.1. Compositions of preliminary formulations for production of nanosystems by the emulsion-based salting-out approach 263
9.2. Compositions of preliminary formulations for production of nanosystems by novel aqueous-based salting-out approach 265
9.3. Plackett-Burman design for emulsion-based salted-out nanosystems 267
9.4. Plackett-Burman design for aqueous-based salted-out nanosystems 267
9.5. Measured yield and DIE responses for Plackett-Burman generated formulations 274