LIST OF SYMBOLS

A depth of effective compression zone of concrete

a_1,a_2 dimension parameters of channel members

A_p nominal cross sectional area of the sheeting (reinforcing)

A_s area of channel member

A_{sv} area of shear reinforcing

b breadth of slab or beam

b_1,b_2 dimension parameters of channel members

b_v breadth of contact area

b_{lip} breadth of contact area of lip of channel member

δA infinitesimal element of area A

δM increase in bending moment over section of beam

d effective depth

d_p effective depth of slab

n_{cs} modular ratio

E_c modulus of elasticity of concrete

E_{concrete} modulus of elasticity of concrete member
F point load on beam

f', ν horizontal, shear stresses in beam

f_b flexural strength of concrete

f_c' cylinder strength of concrete

f_r modulus of rupture of concrete beam

f_{s1}, f_{s2}, f_{s3} horizontal stresses in channel section of transformed composite section

f_y yield strength of steel

f_{yv} yield strength of shear reinforcing steel

γ_{VS} partial safety factor

h beam depth

I_c moment of inertia of transformed uncracked section

I_{cr} moment of inertia of transformed cracked section

I_e effective moment of inertia

I_g moment of inertia of gross transformed section

I_x sectional moment of inertia about x axis

k empirical factor from slab tests for the m-k method
I length of member

L total length of beam

L' shear length

L_s shear span

m empirical factor from slab tests for the m-k method

μ coefficient of friction between steel and concrete

M maximum bending moment

M_{cr} cracking moment of concrete beam

M_n nominal flexural resistance of composite beam

M_u ultimate bending moment at beam failure

P point load on beam member

P_c load at first slip

P_u ultimate load

ρ reinforcing ratio

Q_c statical moment of the transformed steel section about the neutral axis of transformed composite section

σ longitudinal bending stresses

T tensile force in the steel channel member
t
thickness of channel

u_{ub}
ultimate shear bond stress between concrete and channel member

U_b
bond strength in kN/m

v_h
horizontal shear stresses in composite member at concrete/channel interface

$v_{h,\text{conc}}$
horizontal shear stresses in composite member at concrete/channel interface

V
shear force

$V_{1,Rd}$
design shear resistance for slab

V_c
nominal shear resistance of composite beam

V_{cr}
calculated shear resistance of composite beam

V_{Ed}
maximum design vertical shear

V_b
longitudinal shear force per unit length

V_n
external applied shear force

V_{nh}
nominal horizontal shear strength

V_u
ultimate transverse shear-bond capacity or ultimate applied shear force

x,y,z
x,y or z distance along co-ordinate axis
y, y_1, y_2, y_3 distances between the horizontal interface surfaces and the centroid axis of composite section

\bar{y} distance of area A from the centroid of the section

y_s distance to centroid of steel channel

Z elastic section modulus of beam