ABSTRACT – Comparison between pareiasaurid materials from Aceguá, originally assigned to *Pareiasaurus americanus*, and a new cranium from Posto Queimado indicates that they belong to the same taxon. Despite their size difference, the skulls from these localities show similarities in the maxillary dentition and dermal bone ornamentation. Dental and cranial characters confirm the difference between the Brazilian pareiasaurid and the South African *Pareiasaurus*, supporting the proposed allocation of the Brazilian form in the genus *Provelosaurus*. The Brazilian pareiasaurid has autapomorphies in the shape of the squamosal and the morphology and placement of the quadratojugal bosses. The presence of the same pareiasaurid in Posto Queimado and Aceguá strongly indicates that these faunas are contemporaneous. The record of dinocephalians and pareiasaurids in Posto Queimado suggests a correlation of the Posto Queimado-Aceguá assemblage with the Guadalupian *Tapinocephalus* Assemblage Zone of South Africa and Isheevo Assemblage of Eastern Europe. The presence of amphibians tentatively assigned to archegosaurids at Aceguá fauna however, represents a conflict because the last global record of this family is known from the Ocher fauna from Eastern Europe, which is regarded older than the South African *Tapinocephalus* Assemblage Zone. Finally, the identity of fragmentary remains from the Brazilian Early Triassic assigned to pareiasaurids, is questioned.

Key Words: pareiasaurids, Permian, Guadalupian, Lopingian, Rio do Rasto Formation, Brazil
INTRODUCTION

The Rio do Rasto Formation, in the Paraná Basin, has produced three local faunas containing vertebrates: Aceguá and Posto Queimado, both in the state of Rio Grande do Sul, southern Brazil; and Serra do Cadeado in the state of Paraná. The latter includes the dicynodont Endothiodon (Barberena & Araújo, 1975), an unnamed Rhinesuchus-like amphibian and the long-snouted amphibian Australerpeton cosgriffi (Barberena, 1998; Barberena & Dias, 1998; Schoch & Milner, 2000; Dias & Schultz, 2003). The Aceguá fauna presents the probable archegosaurid amphibian Bagheherpeton longignathus (Dias & Barberena, 2001), the pareiasaur Provelosaurus americanus (Araújo, 1985a) and paleoniscoid fishes (Richter, 2000). The recently discovered fauna of Posto Queimado (Figure 1) bears dinocephalians (Langer, 2000), dipnoan and paleoniscoid fishes (Richter & Langer, 1998), pareiasaurids, temnospondyl amphibians and hybodontiform sharks (Malabarba et al., 2003).

Pareiasaurids and dinocephalians were the earliest tall, massive herbivorous vertebrates in terrestrial ecosystems. The former group shows a wide distribution, with representatives in Scotland, Germany, Russia, China, Niger, South Africa and Brazil (Kuhn, 1969; Araújo, 1984; Sidor et al., 2003), being abundant in the South African Karoo (approximately 11 species from a total of 18; Lee, 1997a). This group was used for correlating Permian faunas of Brazil and South Africa (Barberena et al., 1985a,b) due to the alleged presence of Pareiasaurus in these regions. In addition, the phylegetic significance of pareiasaurids achieved attention recently when the old hypothesis of its close relationship to turtles (Gregory, 1946) gained support in a cladistic framework (Lee, 1997a, b; but see Laurin & Reisz, 1995; deBraga & Rieppel, 1997 and Rieppel & Reisz, 1999).

The first record of pareiasaurids in South America included three individuals, collected in two small outcrops located at 58 km and 58.6 km from the city of Bagé along the Bagé-Aceguá Highway (BR 153), in the municipality of Aceguá, state of Rio Grande do Sul, southern Brazil. These specimens were originally ascribed to the South African genus Pareiasaurus and placed in the new species P. americanus by Araújo (1985a,b). This author published several reports describing the cranial and postcranial anatomy of the mentioned species (Araújo, 1985a,b, 1986a,b; Araújo-Barberena, 1987, 1989a,b). Subsequently, Lee (1997a,b) questioned the assignment of the Brazilian species to Pareiasaurus, and transferred it to the new genus, Provelosaurus, providing an amended diagnosis for the taxon. This consisted of a “unique combination of primitive and derived features” with no autapomorphies (Lee, 1997a). In addition, a close interrelationship between this taxon, the South African dwarf-pareiasaurids (Anthodon, Nanoparia and Pumiliopareia) and turtles was proposed (Lee, 1997a, b).

In this contribution we describe a pareiasaurid specimen (Figures 2 and 3) recently reported from the locality of Posto Queimado (Malabarba et al., 2003). The associated humerus previously referred to this pareiasaurid is here regarded as belonging to an aquatic amphibian. The new specimen from Posto Queimado is compared with the pareiasaurids from Aceguá and assigned to Provelosaurus. In addition, a revised diagnosis for the Brazilian taxon is provided. Biostratigraphic implications on the basis of the composition of each tetrapod assemblage of the Rio do Rasto Formation are addressed, and the identity of presumed pareiasaurid remains recently reported from the Lower Triassic Sanga do Cabral Formation (Schultz & Dias-da-Silva, 1999; Lucas, 2002), is also evaluated.

SYSTEMATIC PALAEONTOLOGY

REPTILIA Laurenti, 1768
PARAREPTILIA Olson, 1947
(sensu deBraga & Reisz, 1996)
PAREIASAURIDAE Seeley, 1888

Provelosaurus americanus (Araújo, 1985)

Referred material. MCP 4263PV, left partial cranium including portion of the snout with maxillary teeth, orbit, most of the temporal region and the quadrate (Figures 2 and 3).

Horizon and locality. Morro Pelado Member, Rio do Rasto Formation, Guadalupian. Locality of Posto Queimado (30° 01’ S, 54° 09’ W), São Gabriel Municipality (Malabarba et al., 2003).
Figure 2. Provelosaurus americanus MCP 4263PV partial cranium. A, lateral view; B, medial view; C, first, second and third maxillary teeth in lateral view; D, E, ninth and tenth teeth in lateral view and medial view. Scale bar is 3 cm for A and B, and 1 cm for C-E.
Diagnosis. Pareiasaurid characterized by the following autapomorphies: quadratojugal with a long smooth ventrolateral surface with two prominent cylindrical bosses located distally; and squamosal dorsoventrally expanded.

Remarks on diagnosis. This study refers to the cranium and dentition of the Brazilian pareiasaurid, and the diagnosis presented here is, in consequence, limited to cranial features. This allows the discussion of the previous diagnosis of Provelosaurus (Araújo, 1985a), which was also restricted to cranial characters. Further study of the skeleton of Provelosaurus may demonstrate additional diagnostic characters. The morphology of the anterior maxillary teeth of Provelosaurus seems to differentiate this taxon from the remaining Gondwanan pareiasaurids (see discussion below), but this character is also present in Laurasian forms.

Examined Material
Holotypes. Pareiasaurus americanus Araújo 1985, UFRGS 0231P, cranium lacking lower jaw (Figure 4), scapulocoracoid and humerus. Anthodon serrarius Owen 1876, BMNH R47337.

Figure 3. Provelosaurus americanus, MCP 4263PV partial cranium. A, lateral view, slightly rotated outwards to show marginal dentition. B, medial view. Abbreviations: F, unnamed foramen; J, jugal; MX, maxillar; L, lacrimal; MF, maxillary foramen; Q, quadrate; QF, quadrate foramen; QJ, quadrato-jugal; SQ, squamosal; UF, unidentified fragment of bone. Roman numbers indicate maxillary teeth. Scale bar = 3 cm.
partial cranium and lower jaw. *Pareiasaurus bombidens* Owen 1876, BMNH R1714, partial snout and mandible in occlusion. *Pareiasaurus serridens* Owen 1876, BMNH R4063, cast of the cranium and original lower jaw, vertebrae, scapula and osteoderms. *Nanoparia pricei* Broom and Robinson 1948, BP/1/6, cranium and articulated postcranial remains, including presacral vertebrae and ribs, shoulder girdle and osteoderms. *Sclerosaurus armatus* Meyer 1859, AM 2481, cranium; AM 2482, complete skeleton in ventral view; AM 2483, complete skeleton in dorsal view. Casts of the holotype housed at Naturhistorisches Museum, Basel. *Pareiasaurus americanus* Araújo 1985, UFRGS PV0232P (hypodigm) small pelvic girdle; UFRGS PV0233P (paratype) partially articulated postcranium, including humerus, vertebrae, ribs, pelvis, femur, tibia, fibula and osteoderms.

Non-type material. *Bradydinosaur seeleyi* Haughton and Boonstra 1929, SAM PK5624. *Deltavjatia vjatkensis* (Hartmann-Weinberg 1937), UMZC T1321.

DESCRIPTION

Cranium

The new specimen (MCP 4263-PV; Figure 2) is mostly well preserved, without major distortions, and is represented by two fragments of the left side of the skull, including the quadrate. The preserved cranial length is 172 mm, and the
estimated total length (from the posterior boss of the squamosal to the tip of the snout) would be 190 mm. The facial portion of the cranium is represented by the maxilla bearing ten marginal teeth (two of them represented by broken roots), the lacrimal, and small portions of the jugal and prefrontal. Both the posterior margin of the external naris and the anteroventral margin of the orbit are outlined. The quadratojugal, an almost entire jugal, ventral portion of the squamosal and postorbital, and medially, the quadrate, are also present.

The external surface of the maxilla lacks major ornamentation. The maxilla is slightly convex, and its anterodorsal end contributes to the posterior border of the external naris. The premaxilla/maxilla contact is not preserved, and the missing anteriormost end of the maxilla might have borne an additional marginal tooth. The only clear suture in the snout is the contact between maxilla and lacrimal. The anterior dorsal extension of the maxilla is weak, not exceeding the middle level of the orbit height. Part of the maxillary contribution to the palate is also preserved, including several rounded pits at the base of the teeth.

A web of pits and bosses ornaments the temporal region where the contact of the jugal with the quadratojugal is the only visible suture. The ventral border of the quadratojugal is slightly convex, without ornamentation. There are two subequal major cylindrical bosses in the distal part of the quadratojugal, and two less prominent but wider ones on the posterior border of the temporal region (Figures 2 and 3). These four bosses are located close to each other, and the dorsalmost is that located at the ventral portion of the squamosal. The posteromedial region of the quadratojugal and squamosal constitutes a continuous and smooth surface. However, small ventromedially directed projections are present on the quadratojugal. In medial view it is possible to distinguish the contact between the quadratojugal and the squamosal which ends in the quadrate foramen. From this foramen, the suture between quadratojugal and quadrate projects laterally. A second smaller foramen is located in the lateral edge of the quadrate and is limited posteriorly by the quadratojugal (Figure 3B). We found no reference to this foramen in the literature. This negative evidence may be caused by insufficient preparation in studied specimens and poor illustration in the literature. The massive quadrate is anteromedially directed and a portion of the pterygoid is probably attached anterodorsally, but the suture between these elements is not clear.

Dentition

Six partial and two complete crowns are preserved in MCP 4263PV (Figures 2 and 3). In addition, roots of two more teeth can be seen in the broken margins of the separated cranial portions. The missing anteriormost portion of the maxilla might have carried an additional tooth, in which case the total maxillary tooth count would be 11. The total number of marginal teeth in the upper jaw, including premaxillary elements, would be 12 to 13. They are mesodistally flattened and serrated. The last maxillary teeth are medially inclined, whereas the anteriormost teeth are more vertically positioned. The most anterior elements are not completely preserved, but their bases are remarkably more elongated than in the posterior teeth. The fourth preserved tooth emerges through a concave margin that delimits its alveolus. The ninth tooth has the only fully preserved crown, featuring nine cusps (Figure 2d, e). The crown is semicircular, slightly convex labially, flattened lingually, and its anteroposterior length is approximately 80% of the height of the tooth. A large interdental space, of nearly the size of the neck of the tooth, is present between adjacent anterior teeth. The rounded openings in the medial surface of the maxilla, close to the base of the third, fifth and sixth teeth, are interpreted as resorption pits. These are larger in the third and sixth elements, and the root of the third tooth is visible through the opening.

A longitudinal section of a fragment of the fourth maxillary tooth was prepared (Figure 5), in order to explore the enamel ultrastructure. The enamel layer is thin, measuring about 50 μm, and has a simple structure. It is mostly made up of parallel crystallites dominated by incremental lines. These lines increase in thickness towards the outer enamel surface. Close to the enamel-dentine junction there is a thin layer (approx. 10 μm) in which the incremental lines cannot be discerned. We interpret this as the basal unit layer. The enamel pattern in *Provelosaurus* is fairly similar to that in an unidentified pareiasaurid tooth from the South African *Tapinocephalus* Assemblage Zone (Sander, 1999). In
both cases, the structure is fairly simple, with incremental lines and a thin basal unit layer. In the pareiasaurid from the *Tapinocephalus* Assemblage Zone, however, these incremental lines increase slightly in thickness (2 μm-3 μm) towards the inner region and the enamel is considerably thicker (100 μm – 200 μm; Sander, 1999).

DISCUSSION

The original description of *Provelosaurus americanus* was based on three specimens collected in outcrops of the Rio do Rasto Formation in Aceguá (Araújo, 1985a,b; Araújo-Barberena, 1987, 1989a,b). The holotype UFRGS PV0231P (Figure 4) and the paratype UFRGS PV0232P come from an outcrop located at 58 km from the city of Bagé (tentatively 31° 50’ 20’’ S, 54° 09’ 54’’ W), along the Bagé-Aceguá Highway (National Road BR 153; Araújo, 1985a), Aceguá Municipality. The paratype UFRGS PV0233P was collected in an outcrop located at 58.6 km from Bagé along the same highway (Araújo, 1985a).

The pareiasaurid cranium from Posto Queimado exhibits notable similarities with UFRGS PV0231P: (i) anterior marginal teeth with elongated crown bases and wide interdental spaces; (ii) a smooth ventral margin of the quadratojugal; and (iii) presence of two sub-equal major cylindrical bosses in the distal margin of the quadratojugal (see Figures 2, 3 and 4). In addition, the ventrolateral surface of the maxilla of both skulls lacks ornamentation, and their temporal regions show well- differentiated pits and bosses. The most significant differences between the two skulls are their size (MCP 4263PV is approximately 40% smaller than UFRGS PV0231P and 150° in MCP 4263PV, but a similar value is found in *Elginia*, and wider angles occur in *Bradyaursaurus baini* and *Deltraviatia* (Lee, 1997a, fig. 6). Examination of the figure of *P. americanus* in Araújo (1985b, fig. 1) shows that the sutures between parietal/postorbital and prefrontal/ frontal/postfrontal (character iii) seem to be at the same level. In addition, the apparent larger area of the parietal, visible in lateral view, is explained by the extreme degree of compression in UFRGS PV0231P. Considering the relative sizes of the prefrontal, postfrontal and postorbital (character iv), it is clear that in almost all pareiasaurids the last element is always the largest, while the postfrontal appears to be the smallest (Boonstra, 1932, plates 1 and 2; Lee, 1997b, fig. 4 and 6; and pers. obs.). The anteroposterior extension of the jugal (character v) does not seem to differ from that present in most pareiasaurids (Boonstra, 1932, plate 1; Lee, 1997b, fig. 6; and pers. obs.). Regarding the sizes of the postorbital and squamosal (character vi), the first element is not distinctively larger than in other taxa, while the squamosal appears to be remarkably larger dorsoventrally, remaining diagnostic. The next character, quadratojugal smaller than squamosal, is a relative measurement linked to the size of the squamosal, and may represent a repetition of character “ix” (i.e., large size of the squamosal). The last two characters (viii, ix) are the result of the strong lateral compression, noteworthy in the occipital view, that pushed the paroccipital process, occipital bones, and the quadrate towards the left internal surface of the dermal cranium (Figure 4C). In another form of statement of character “ix” (distinct shape of the posttemporal fenestra), Lee (1997a, p. 278) considers the “paroccipital process straight in posterior view, upturned distally” as a valid feature for *P. americanus*. The deformation bias mentioned above, however, prevents safe assertions about morphology and placement of most of the basicranial bones.

Lee (1997a) transferred *Pareiasaurus americanus* to a new genus, *Provelosaurus*, arguing that it was not closely related to the South African *Pareiasaurus serridens*. No exclusive characters for the Brazilian species were provided and the diagnosis of this taxon was based in a “unique
combination of primitive and derived features” (Lee, 1997a, p. 277). Here, we recognize two diagnostic characters for Provelosaurus americanus. Considering our first diagnostic character (quadratojugal with a long smooth ventrolateral surface possessing two prominent cylindrical bosses located distally), a quadratojugal with a long and smooth ventrolateral surface is also observed in Deltavjatia and Elginia, but these taxa lack two distal cylindrical bosses. On the other hand, the quadratojugal of Pumiliopareia pricei is quite similar to that of P. americanus concerning the two distally located bosses, but shows additional smaller bosses located on the ventrolateral surface of this bone. The second character, squamosal dorsoventrally expanded, is clearly distinctive from the remaining pareiasaurids, in which this bone is either subquadrate or antero-posteriorly enlarged. Another putative diagnostic character for the Brazilian taxon is the presence of anterior maxillary teeth with thin crown bases, and a generally wide interdental space that comprises at least 50% of the base width. However, most teeth in the European pareiasaurids (i.e., Elginia, Deltavjatia, Scutosaurus) posses thin crown bases. The anterior upper teeth in BM R1714, a South African pareiasaurid originally described by Owen (1876) as Pareiasaurus bombidens, and considered pareiasaurid indet. by Lee (1997a), also feature thin crown bases. In addition, the lower teeth of Shansisaurus, a Chinese pareiasaurid, feature elongated and thin tooth bases (Gao, 1983, plate 1, fig. 1). Among these taxa, only Scutosaurus seems to possess interdental spaces between the anterior maxillary teeth as wide as in the Brazilian species. Therefore, this character allows for the differentiation of Provelosaurus from the remaining Gondwanan forms.

Dental replacement

The new specimen of Provelosaurus americanus exhibits resorption pits on the lingual surface of the maxilla, at the base of all the preserved teeth, with the exception of the recently erupted last one. The concave ventral margin of the maxilla, around the fourth tooth, indicates that this is not fully erupted and not anchored in its alveolus. Resorption pits have been documented in the lower jaw of the South African Pareiasaurus ‘bombidens’ BM R1970 (Owen, 1876, plate 8; also quoted in Edmund, 1960), and in the Chinese Shansisaurus (Gao, 1983, text fig. 1; plate 1, fig. 1). Marginal teeth in eruption are also known in the premaxilla of the South African specimen BP/1/4105 of Pareiasuchus peringueyi and in the lower jaw of the Zambian specimen BP/1/3656 of Pareiasuchus nasicornis (Lee et al., 1997), in the latter case without resorption pits. Replacement pits in the maxilla of pareiasaurids, however, have not been previously documented, but are present, with different degrees of development, in practically the entire marginal dentition of the cranium and lower jaw of Bradysaurus seeleyi (SAM-PK 5624).

The presence of resorption pits in bone and teeth roots during dental replacement is known in a number of reptilian lineages (Edmund, 1960). Even though numerous specimens represent pareiasaurids across Pangaea, their pattern of tooth replacement is poorly documented in the
literature. The mention of alternate replacement by Edmund (1969) in *Pareiasaurus ‘bombidens’* remains the only reference of this phenomenon in the group. Sizes of the resorption pits have been shown to be proportional to the size of the replacement tooth at least in pleurodont reptiles, in which the nature of the replacement makes more prominent the pits at the base of the old tooth (Edmund, 1969). The different sizes of the resorption pits at the base of successive teeth in the new specimen of *Provelosaurus americanus* seems to indicate that alternate replacement was also present in the Brazilian species. Recent studies have shown that this kind of tooth replacement also occurs in other members of the Parareptilia, such as leptopleuronine procolophonids, in which resorption pits in the lower jaw have also been documented (Small, 1997; Sues et al., 2000).

Biostratigraphic implications

Based on the discovery of dinocephalians at Posto Queimado, Langer (2000) correlated this Brazilian fauna with the *Eodicynodon* and *Tapinocephalus* Assemblage Zones (AZ) of South Africa. In addition, the author proposed a younger age for the Aceguá fauna based on the sister group relationship of the Brazilian pareiasaurid with the South African “dwarf-pareiasaurs” as proposed by Lee (1997a). The subsequent discovery of *Provelosaurus americanus* at Posto Queimado allowed for direct correlation with Aceguá (Malabarba et al., 2003). This pareiasaurid is, thus far, the only element in common to the Aceguá and Posto Queimado faunas. The presence of pareiasaurids in conjunction with dinocephalians at Posto Queimado was used by Malabarba et al. (2003) to correlate these Brazilian faunas with the *Tapinocephalus* AZ of South Africa, the only known global fauna in which these groups are recorded together.

The occurrence of an archegosaurid amphibian at Aceguá (Dias & Barberena, 2001) is in conflict with this correlation, since the stratigraphically youngest record of these temnospondyls is from the Ocher Assemblage of Eastern Europe (base of the Early Tatarian; Golubev, 2000). If *P. longignathus* was an archegosaurid, it could represent the youngest member of the Archegosauridae, extending only slightly the temporal record of the group. Considering the stratigraphic and taxonomic uncertainty of *B. longignathus*, and the phylogenetic relationships of *Provelosaurus* sensu Lee (1997a,b), we regard the correlation of the Posto Queimado/Aceguá fauna with the *Tapinocephalus*/Isheevo Assemblages as more plausible (Figure 6).

Provelosaurus forms a monophyletic group with the “dwarf-pareiasaurs” *Anthodon, Nanoparia* and *Pumiliopareia*, and chelonians (Lee, 1997a,b). The aforementioned South African pareiasaurids are restricted to the Lopingian (*Cistecephalus* and *Dicynodon AZ*; Lee 1997a), whereas the earliest record of turtles is in the Late Triassic (Rougier et al., 1995). On the contrary, the Guadalupian South African pareiasaurids from the *Tapinocephalus AZ* (*Bradysaurus, Embrithosaurus, Nochelesaurus*) have a basal position among pareiasaurids, and are not closely related to *Provelosaurus*. The biostratigraphic correlation proposed here for the Brazilian faunas with *Provelosaurus* implies an earlier origin (minimally Guadalupian) for the monophyletic group including dwarf-pareiasaurids and chelonians (Lee, 1997a,b).

The Serra do Cadeado local fauna consists of the dicynodont *Endothiodon* (Barberena & Araújo, 1975; Barberena et al., 1985a,b) and two temnospondyl amphibians: an unnamed rhinesuchid (Barberena & Dias, 1998) and *Australerpeton cosgriffi*. The taxonomic placement of both forms is disputed between the Rhinesuchidae and Archegosauridae (Schoch & Milner, 2000; Dias & Schultz, 2003). The combined presence of *Endothiodon* and archegosaurids is anomalous, as the former is restricted to the upper levels of the *Pristerognathus AZ*, the *Tropidostoma AZ* and the lower part of the *Cistecephalus AZ* in South Africa. These faunal assemblages are considered younger than the Ocher Assemblage of eastern Europe (Smith & Keyser, 1995b,c,d) where the last archegosaurids have been recorded. The identity of *Australerpeton* as a rhinesuchid, on the other hand, fits better the biostratigraphic data, given that rhinesuchids and *Endothiodon* coexisted in the Karoo Basin (Rubidge et al., 1995). Consequently, the Serra do Cadeado fauna can be loosely correlated with *Pristerognathus, Tropidostoma* and *Cistecephalus AZs* (Figure 6).

The fossil record of pareiasaurids is widely believed to be restricted to the Guadalupian-Lopingian (Boonstra, 1932; Araújo, 1984; Barberena et al., 1985a; Laurin & Reisz, 1995; Lee, 1997a). However, pareiasaurid-like material has recently been reported in the Early Triassic Sanga do Cabral Formation, in Rio Grande do Sul State, Brazil (Schultz & Dias-da-Silva, 1999; Lucas, 2002). This record is based on
two non-associated fragments, interpreted as an ulnar olecranon process and a fragment of the posteroventral margin of the cranium, including part of the quadratojugal with the two distal bosses. The first specimen has been recently re-identified as a posterior portion of an amphibian lower jaw (Cesar Schultz, pers. comm.). The second fragment (Figure 7) depicts sutures that allow the recognition of at least three different bones, being clearly a skull fragment. However, the presence of these sutures contrast with its interpretation as a posteroventral margin of a pareiasaurid cranium, which is only formed by the quadratojugal. In addition, the two protuberances identified as quadratojugal bosses (Schultz & Dias-da-Silva, 1999) do not match with the morphology of the bosses in the two known craniums of Provelosaurus americanus or any other pareiasaur. At this stage, it is not possible to provide a reliable taxonomic identification for this fragmentary material.

Lucas (2002, p. 138) also extended the pareiasaurid record into the Triassic based on the poorly known specimen of Sclerosaurus armatus. Lee (1995, 1997a,b) proposed this enigmatic species as the sister taxon to the Pareiasauria, being the only Triassic taxon, besides chelonians, included in his Pareiasauroidea. DeBraga (2003) considered the holotype and only specimen of Sclerosaurus to be a leptopleuronine procolophonid, conclusion also endorsed by JCC after observation of a cast of the specimen. This evidence altogether does not seem to provide a real basis yet to suggest the temporal extension of non-chelonian pareiasaurids or pareiasauroids (sensu Lee, 1995, 1997a,b) into the Triassic.

ACKNOWLEDGMENTS

We thank to C. Schultz (UFRGS), M. A. Raath and B. Rubidge (BP), S. Kaal and R. Smith (Iziko Museums; SAM), H. Fourie (TM), B. de Klerk (AM), R. Symonds and J. Clack (UMZC), and S. Chapman (BMNH) for access to specimens under their care. Thanks are due to M. C. Langer, M. A. Raath, R. R. Reisz and B. S. Rubidge for comments on the manuscript, and E.V. Dias for discussion on Permian biostratigraphy. We specially recognize the help and kindness of the Modesto family, owners of the property at Posto Queimado were the field work was done. Financial support was provided by the Pontificia Universidade Catolica de Rio Grande do Sul and the University of the Witwatersrand Research Council through Postdoctoral Research Fellowships bestowed on FA; and PAST (Palaeo-Anthropological Scientific Trust, Johannesburg) through a study grant provided to JCC. The Royal Society and PAST provided grants that made possible a research visit (FA) to palaeontological collections in the United Kingdom.

REFERENCES

Received September, 2004; accepted February, 2005.