REACTIVE PULSED LASER ABLATION DEPOSITION (RPLAD) OF INDIUM TIN OXIDE (ITO), TITANIUM DIOXIDE (TIO$_2$) THIN FILMS AND GOLD (AU) NANOPARTICLES FOR DYE SENSITISED SOLAR CELLS (DSSC) APPLICATIONS

Fernande Fotsa-Ngaffo

A Thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa. In fulfillment of the requirements for the degree of Doctor of Philosophy

November, 2006
DECLARATION

I declare that this thesis is entirely my own unaided work, except for the advice and assistance mentioned in the acknowledgements. This thesis is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg, South Africa. It has not been submitted as an exercise for a degree in any other university.

Signature of Candidate

——— day of ————
ABSTRACT

The focus of this work was the study possible ways to improve the efficiency of solar cells. To this end, the main aim was to investigate the deposition process of Indium Tin Oxide (ITO), Titanium Dioxide (TiO$_2$), multi-layers ITO/TiO$_2$ on quartz SiO$_2$ substrates under different conditions (oxygen pressure, laser fluence and wavelength, and temperature) and later gold nanoparticles by the Reactive Pulsed Laser Ablation Deposition (RPLAD) technique. It was intended to investigate their electrical structural and optical properties under selected conditions for possible application to Dye Sensitised Solar Cells (DSSC).

Under optimised conditions, maximum deposition rates of 12nm/min for ITO and 21nm/min for TiO$_2$ thin films were achieved. Rutherford Backscattering Spectrometry (RBS) with 2MeV He$^+$ ions was used to measure the films thickness. Uniform thicknesses over a large area were found to be about 400nm and 800nm for ITO and TiO$_2$ films, respectively. Crystalline properties were studied via x-ray diffraction and Raman spectroscopy. X-ray Diffraction (XRD) analysis revealed that the ITO films are highly orientated nanocrystals with their a-axis normal to the glass substrate surface. The average particle size of the precipitated nanocrystals was calculated to be 10-15nm.

The structure of the films was characterised via Atomic Force Microscopy (AFM) imaging of the top surface of the film. The films have a rough surface with average roughness of 26-30nm. Pores were observed with a density of 144 and 125 pores/mm2 and average size of 150 and 110nm for ITO films deposited at 200 and 400°C, respectively. TiO$_2$ films deposited on the prepared ITO films were less crystalline. Annealing was performed at 300 and 500°C for 3 consecutive hours and the XRD results show that the transformation of TiO$_2$ film into anatase phase was almost complete with a crystal size of \sim 6-7nm.

Scanning Transmission Electron Microscopy (STEM) of the surfaces was also performed. The TiO$_2$ films deposited onto the prepared ITO films present a
relatively high pore size with an average pore diameter of ~ 40nm and excellent uniformity. It is interesting to note that the pores are randomly arranged. The random arrangement of the pores network may actually be beneficial for producing a uniform electrode. In addition, STEM cross-sectional analysis of the films showed a columnar structure but no evidence of voids in the structure. The large surface area produced suggests applications in DSSC.

The electrical properties of the films were investigated and an estimation of resistivity and Hall mobility was made. Low values of resistivity and high values of mobility were observed for ITO films. The resistivity of the film increases with increasing thickness while it decreases when increasing the deposition temperature. The lowest value was found to be $1.5 \times 10^{-6} \Omega \text{m}$ for ITO films deposited at 400°C. Hall mobility was found to increase with substrate temperature. In this investigation, the highest Hall mobility at room temperature was estimated to be $22.3 \text{cm}^2/\text{Vs}$ under ambient O$_2$ pressure (PO$_2$) of 1Pa and 52.1 and 51.3cm2/Vs for films deposited at 200 and 400°C, respectively. But the best ITO film was deposited at 200°C, since this film combines good resistivity, good Hall mobility and good transmittance.

UV-VIS-IR transmission spectra were recorded on a Perkin Elmer Lambda 900. From the transmission data, the energy gap as well as the optical constant was estimated. A high transmission for ITO films in the visible (Vis) range was observed which was above 88% for films produced at room temperature and above 95% for those deposited at 200°C. The transmission for the films produced in oxygen was about 90% above 400nm, whereas it lies between 70 and 80% for films produced in rare gases. An increase in the band gap was observed by increasing the oxygen pressure and substrate temperature for ITO films. Increasing the quartz SiO$_2$ substrate temperature from room temperature to 400 °C resulted in an increase of the transmission of TiO$_2$ films, mostly in the Visible Near Infrared (Vis-NIR) from about 70% to 92%. After annealing at 500°C for 3 consecutive hours, the transmission of TiO$_2$ film further sharply decreases toward shorter wavelengths.
Analysis of the transmittance curve of TiO$_2$/Au shows a decrease of about 6% of the transmission in the Ultraviolet Visible (UV-Vis) range.

Optical absorption edge analysis showed that the optical density could be used to detect the film growth conditions and to correlate the film structure and the absorption edge. The TiO$_2$ films deposited present a direct band gap at 3.51eV and 3.37eV for TiO$_2$ as deposited and after annealing, respectively, while the indirect band gap was found to be 3.55eV and 3.26eV for TiO$_2$ films as deposited and after annealing, respectively. There was a shift of about 0.1eV between as deposited ITO monolayer films and ITO/TiO$_2$ bilayers deposited at 200°C. A small shift towards shorter wavelengths has been observed for multilayer ITO/TiO$_2$/Au. In this case, the increase of E_g was ascribed to a reduction of the oxygen vacancies with increasing substrate temperature at which the ITO film was deposited.

The change in the shape of the fundamental absorption edge is considered to reflect the variation of density and the short range structural modifications undetected by structural characterisations. Enlargement of band-gap energies of semiconductors may be advantageous when used in DSSC to suppress the charge recombination between the reduced electrolytes and the photo-excited holes in the valence band of TiO$_2$ substrates and enhance the open-circuit potential of the cell. When ITO/TiO$_2$ bilayers were annealed before depositing Au, the gap energy remained constant.
This thesis is entirely dedicated to my son,

Romar Johann Kenfack-Fotsa

Whose love, patience, and sacrifice have always been an inspiration for me. May this scientific undertaking and the effort required to complete it serve as motivation for his academic future and life endeavours.

And to my husband

Aurelien Kenfack-Jiotsa

For his unconditional love and invaluable support!
ACKNOWLEDGEMENTS

Adversity is often one of our best teachers. Even the people that somehow gripped our meanest imagination, violated us in some way, even those people are due their honour for what they have taught us. I wish to acknowledge all for their role in my life; however, this page is specifically designed to note my appreciation of those people who stand out most notably in my mind as contributing to the content of this thesis.

Foremost, I would like to render my deepest gratitude to the One I owe allegiance to, my Shield, my Strength, and my very Present Help in times of need, the Almighty God, without whom this thesis would not have seen the light of day, to Him be all the glory.

Although I was registered to the University of the Witwatersrand in Johannesburg, South Africa, this work was conducted in the Lecce Laser Laboratory (LLL) in the University of Lecce in Italy. From the formative stages of this thesis, to the final draft, I owe an immense debt of gratitude to my external local advisor, Professor Armando Luches who has been the best supervisor I have ever met. I am highly indebted to him for boosting my confidence at a time it was desperately needed. His seemingly unlimited belief in me, his total availability, sage advice and careful guidance aided the writing of this thesis in innumerable ways.

It is also the occasion for me to thank his entire group members and particularly, Professor Maurizio Martino, Manuel Fernandez, Anna Paola Caricato and Francesco Romano whose steadfast support of RPLAD deposition was greatly needed and deeply appreciated. Numerous fruitful and valuable discussions with them had a tremendous impact on completing this thesis.

I am very grateful to Professor Alessio Perrone, Professor Sergio Fonti and Professor Leonid V. Zhigilei whose general advice, helpful suggestions and kind encouragement made an indirect nonetheless positive impact on this work.
My profound gratitude also goes to Professor John Carter for agreeing to serve as my faculty advisor. His help and advice were indispensable to this work, and will always be deeply appreciated. Here is the occasion to thank Professor B. J. Cole and Professor J.A.P Rodrigues for their administrative help and assistance toward the completion of this thesis.

I would like to thank Dr. Malik Maaza for initiating me into the ideas and literature of the subject. Thanks to Dr. O. Nemraoui for his fruitful discussions.

I am grateful to the Third World Organisation for Women in Science (TOWWS) as well as the University of the Witwatersrand through the Postgraduate Merit Award for their financial support as PhD student in the University of the Witwatersrand, Johannesburg, South Africa. The generous financial support received enabled me to focus and concentrate on my work.

The experimental work was conducted in the Lecce Laser Laboratory (LLL) in the University of Lecce in Italy. Thanks for the three months support of the Department of Science and Technology (DST) from South Africa and for the rest of the time by the International Centre for Theoretical Physics (ICTP) through the Training and Research in Italian Laboratory (TRIL). None of the work done in the frame work of this thesis would have been possible without them thus this support is acknowledged with deepest and sincerest thanks.

The Raman, STEM and some optical and electrical measurements of the films were performed in the Bologna National Research Centre (CNR) labs. It is the occasion to express my sincere thanks to Professor Rita Rizzoli and Professor Giampiero Ruani for their effort and assistance in making the above mentioned measurements, for their fruitful discussions and priceless suggestions.

Professor Sean R. Agnew is acknowledged for his skilful XRD measurements performed in the University of Virginia. This is the occasion to express my profound gratitude for his helpful suggestions.
In my daily life, I have been blessed with a cheerful family. I would like to express my deepest thanks and profound and warm gratitude to my lovely Father, Mother and to my entire family for their unflinching LOVE, support and endless encouragements since I was born. The sacrifices they made to grow me up have always been a great source of inspiration and motivation. I love you so much.

Invaluable support from my son, who sleeps the whole night and never cries even during the day, from the very day he was born, so that I can work in peace and confidence is greatly acknowledged with much love.

Unconditional love and priceless support from my husband is acknowledged with lots of love. For accepting me the way I am, for the countless ways he ensured that I finished it in one piece, in every aspects of our together life, I will be always indebted to him.

Thanks to my family in law whose moral support is acknowledged with many thanks and deepest affection. I would like to thank particularly my mother in law for her steadfast support in taking care of my son when I could not physically do it, for her encouragement and advice in many aspects of my life, merci Maman

Thanks to all my friends and colleagues, I hesitate to list them because I do not wish to leave anyone out, for our constructive discussions, which in one way or another has made me improved on my best!

Last but not least, I am extremely very grateful to the School of Physics of the University of Witwatersrand and all the staff members for welcoming me and for my years of study as a PhD student. Many thanks to all of them!

Glory be to the LORD!!!
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER 1. INTRODUCTION

1.1 History of the laser | 1 |
1.2 Background of thin films depositions | 3 |
1.3 Why dye sensitised solar cells (DSSC) | 4 |
1.4 Research problems and hypothesis | 6 |
1.5 Methodology | 8 |

CHAPTER 2. PULSED LASER DEPOSITION AND LASER INTERACTION WITH MATERIALS

2.1 Introduction | 11 |
2.2 Pulsed laser deposition process | 11 |
2.2.1 Definitions | 11 |
2.2.2 Equipment | 12 |
2.2.3 Versatility of the technique | 13 |
2.2.4 UHV, gas Atmospheres and small target size | 14 |
2.2.5 Stoichiometry transfer | 15 |
2.3 Mechanisms | 16 |
2.3.1 Laser melting and interaction with material | 17 |
2.3.2 Two temperature model (TTM) | 18 |
2.3.3 Source term description | 20 |
2.3.4 Limitation of the TTM | 20 |
2.3.5 Regime at high laser fluences | 22 |
2.4 Dynamic of the ablation materials | 25 |
2.4.1. Plasma formation and laser-plasma interaction25
2.4.2. Plasma expansion ..29
2.4.3. Hydrodynamic models ...30
2.4.4. Monte Carlo Simulations ...32

2.5. Deposition of the ablation materials, nucleation and growth of a thin film on the substrate ..33
2.5.1. Substrate temperature ..34
2.5.2. Energy of the deposition flux36
2.5.3. Deposition rate, vacuum quality and background gas37

2.6. Advantages and drawbacks of the PLAD and RPLAD techniques ..38
2.6.1. Advantages ...38
2.6.2. Drawbacks ...39

2.7. Conclusion ..41

CHAPTER 3. LECCE LASER LABORATORY (LLL) PLAD SYSTEM ..43
3.1. Introduction ..43
3.2. Important parameters of the system44
3.3. Excimer laser ..46
3.4. Beam delivery and optical components49
3.5. Vacuum system ..51
3.5.1. UHV reaction chamber ..51
3.5.2. Target and substrate ...52
3.6. The LLL system target and substrate mechanism54
3.6.1. Pumping system ..59
3.7. Thin films deposition ..60
3.7.1. Target materials ..60
3.7.2. Preparations for depositions60
3.8. Theoretical considerations ..62
3.8.1. The plume length ..62
3.8.2. The ablation threshold ..64
3.9. Characterisations techniques ..65
Chapter 5. Results and Discussions of Electrical and Structural Properties

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Structural Properties of ITO</td>
</tr>
<tr>
<td>5.1.1</td>
<td>XRD measurements</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Morphological measurements</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Thickness and reflectance measurements</td>
</tr>
<tr>
<td>5.1.4</td>
<td>AFM measurements</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Resistivity measurements</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Hall mobility</td>
</tr>
<tr>
<td>5.2</td>
<td>Structural properties of TiO(_2) and multilayers</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Raman measurements</td>
</tr>
<tr>
<td>5.2.2</td>
<td>XRD measurements</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Surface morphology and cross section measurements</td>
</tr>
<tr>
<td>5.3</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Chapter 6. Results and Discussions of the Optical Properties

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>The ITO case</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Optical transmittance</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Optical transmittance dependence on the pulse number</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Optical transmittance dependence on the oxygen pressure and substrate temperature</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Optical constants</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Absorption and energy transition</td>
</tr>
<tr>
<td>6.2</td>
<td>The TiO(_2) case</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Optical transmittance</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Refractive index</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Optical transmittance of multilayers TiO(_2)/Au and ITO/TiO(_2)/Au</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Optical absorption and energy gap</td>
</tr>
<tr>
<td>6.3</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
CHAPTER 7. GENERAL CONCLUSION AND PERSPECTIVES FOR FUTURE WORK

7.1 Theoretical investigations ... 159
7.2 Experimental investigations ... 159
7.3 Thin films deposition .. 160
7.4 Structural and electrical properties .. 161
7.5 Optical properties ... 163
7.6 Perspectives for future work ... 165

REFERENCES .. 166
LIST OF FIGURES

Figure 2.1: Setup of the PLAD system in conventional configuration. MS: mass spectrometer, L: lens; T: target; S: substrate; W: optical window...13

Figure 2.2: Laser ablation mechanism occurring during a pulse duration: 1. Initial absorption of laser radiation (long arrows), melting and evaporation begin (melted area is indicated by the black surface area while motion of the solid-liquid interface is indicated by short arrows). 2. The melt front propagates into the target, the vaporisation and the laser-plume interaction grow continue. 3. Absorption of the incident laser radiation by the plume and plasma formation. 4. The laser pulse ends; plasma expansion. 5. Condensation of species on the substrate...17

Figure 2.3: Different growth modes in thin film deposition, (a) Frank-van der Merwe growth, (b) Volmer-Weber growth and (c) mixed layer plus island growth..34

Figure 3.1: a) Schematic overview of the Lecce Laser Laboratory PLAD system; b) Picture of the deposition chamber and vacuum system...45

Figure 3.2: Present optical setup of the LLL PLAD system..............50

Figure 3.3: Three different large-area PLAD techniques: (a) off-axis PLAD, (b) rotational-translational PLAD, (c) laser-beam rastering [181]..53

Figure 3.4: UHV chamber with target and substrate holders in horizontal configuration: (a) the target holder, (b) the substrate holder. The input of the laser beam is through the window (c) placed in front of the laser..55

Figure 3.5: Spinning and spanning movements of the multi-target holder system: This double rotation avoids the drilling of the target, which could be very detrimental for the morphological and structural properties of the deposited layers.....................55
Figure 3.6: Scheme of the holder for 100mm diameter substrates, with independent x and y motions: (a) substrate holder; (b) heater; (c) thermocouple; (d) x-y movements.

Figure 3.7: UHV chamber in the vertical configuration: (a) the cylindrical substrate; (b) the 3-dimensional substrate holder; (c) rotation and translation engines.

Figure 3.8: Plume lengths versus the gas pressure for five different laser fluences.

Figure 3.9: Sketch explaining the mechanism of Bragg’s law.

Figure 4.1: Normalised thickness profiles of 50mm diameter ITO films deposited by the LLL system at room temperature in the vertical configuration.

Figure 4.2: RBS spectrum of the TiO$_2$ film deposited on a quartz substrate. The Solid line represents the experimental result, while the dot line is the corresponding computer simulation. The high peak (channels around 520 - 570) refers to the ITO metallic components (In, Sn), while the signal at channels inferior to 300 is related to oxygen and to the silica substrate.

Figure 4.3: Typical pictures of different ITO films deposited at room temperature (fluence = 4J/cm2) under a) 1Pa O$_2$ pressure, b) 5Pa O$_2$ pressure c) 10Pa O$_2$ pressure.

Figure 4.4: Crystal structure of different TiO$_2$: a) anatase b) rutile c) brookite.

Figure 4.5: Typical picture of the plume generated during laser ablation of an ITO target after 500 pulses (fluence = 4J/cm2) a) in the vacuum and b) under 1Pa oxygen pressure.

Figure 4.6: Typical picture of the plume generated during laser ablation of an ITO target after 200 pulses (fluence = 4J/cm2) a) in the vacuum and b) under 1Pa oxygen pressure.

Figure 4.7: Typical picture of the plume generated during laser ablation of an ITO target (fluence = 4J/cm2) under 1Pa oxygen pressure.
pressure, a) after 50 pulses b) after 200 pulses c) after 600 pulses d) after 1200 pulses e) after 2000 pulses and f) after 5000 pulses ...94

Figure 4.8: Typical picture of the plume generated during laser ablation of a TiO$_2$ target at 4J/cm2 and 1Pa...95

Figure 4.9: TiO$_2$ thin films deposited at room temperature, 200 and 400°C on quartz SiO$_2$ glass substrate, the films are visually transparent...97

Figure 4.10: ITO (a) and TiO$_2$ (b) thin films deposited at 200°C on quartz SiO$_2$ glass substrate in UHV without reactive gas. No investigation is required as the films are visually non stoichiometric and thus not useful..97

Figure 4.11: TiO$_2$ thin films (square surface) deposited at 400°C on ITO/SiO$_2$, the films are visually transparent..97

Figure 5.1: XRD patterns of ITO films deposited on quartz SiO$_2$ substrates at room temperature, 200°C and 400°C.........................101

Figure 5.2: Thickness profile of an ITO film showing the thickness uniformity..105

Figure 5.3: Reflectance spectra of ITO films deposited at room temperature, 200 and 400°C, as indicated in the graphs. The behaviour of the oscillations demonstrates the thickness uniformity of the films...105

Figure 5.4: 2D in top view AFM image of the quartz SiO$_2$ substrate..108

Figure 5.5: 2D in top view AFM image of an ITO film deposited at room temperature...108

Figure 5.6: 3D in top view AFM image of an ITO film deposited at room temperature...109

Figure 5.7: 2D in top view AFM image of an ITO film deposited at 200°C..109

Figure 5.8: 3D in top view AFM image of an ITO film deposited at 200°C..110
Figure 5.9: 2D in top view AFM image of an ITO film deposited at 400°C

Figure 5.10: Roughness profile of ITO films deposited at room temperature

Figure 5.11: Porosity profile of ITO films deposited at 200°C

Figure 5.12: Porosity profile of ITO films deposited at 400°C

Figure 5.13: Raman spectra of an amorphous TiO$_2$ film deposited at room temperature, 200 and 400°C. At 400°C the TiO$_2$ film begins to crystallise into the anatase phase.

Figure 5.14: Raman spectra of TiO$_2$ films deposited at 400°C and then annealed at 300°C and 500°C (as indicated on the graphs) for 3 consecutive hours. The transformation of TiO$_2$ structure into anatase phase is almost complete.

Figure 5.15: XRD patterns of ITO/TiO$_2$ thin films deposited on quartz SiO$_2$. The ITO is the previously deposited ITO film at 200°C, while the TiO$_2$ films are deposited at room temperature, 200°C and 400°C.

Figure 5.16: XRD patterns of ITO/TiO$_2$ thin films deposited on quartz SiO$_2$. The ITO is the previously deposited ITO film at 200°C, while the TiO$_2$ is deposited at 400°C and annealed at 500°C as indicated on the graphs.

Figure 5.17: Cross section of ITO film deposited on quartz SiO$_2$.

Figure 5.18: STEM surface of TiO$_2$ films deposited on quartz SiO$_2$ at room temperature (a), 200°C (b) and 400°C (c). In (d) the surface of the ITO/TiO$_2$ film deposited on SiO$_2$ at 200°C before the post annealing treatments is shown.

Figure 5.19: (a) Surface of a TiO$_2$ film deposited on ITO after post annealing treatments; (b) Cross section of an ITO/TiO$_2$ bilayer.

Figure 6.1: Transmission of Si (red curve) and quartz SiO$_2$ (black curve) substrates.

Figure 6.2: Transmittance spectra of ITO films deposited at room
temperature with different laser pulse numbers. The transmission is higher where the pulse number is lower…….. 130

Figure 6.3: Transmittance measurement taken on ITO film deposited at room temperature. The measurement was performed at 2 different points of the sample. 1-at the centre, 2- at the corner………………………………………………………………… 130

Figure 6.4: Transmission of the ITO films deposited at room temperature and at different oxygen pressure………………. 131

Figure 6.5: Transmission of the ITO films deposited at 200°C and at different oxygen pressure…………………………………… 131

Figure 6.6: Transmission of the ITO films deposited at 200°C and at 5 and 1Pa, a decrease of about 30% transmission is observed… 134

Figure 6.7: Schematic representation of a thin film for calculation of the transmittance T………………………………………… 135

Figure 6.8: Measured and calculated transmittance spectra. The fit between the 2 spectra is regular. The upper (line passing by the maxima) and lower (line passing by the minima) envelopes are really tangent to the extrema. The line at the top shows the transmittance of the substrate…….………………. 136

Figure 6.9: Evaluated refractive index and extinction coefficient of ITO films deposited a) at PO₂ = 10Pa. b) at PO₂ = 1Pa. The values are consistent with bulk…………………………………… 137

Figure 6.10: Plots of (αhv)² versus hv for ITO films deposited at room temperature with different pulse numbers………………….. 139

Figure 6.11: Plots of (αhv)² vs (hv) of ITO films deposited at different oxygen pressure; the extrapolation of the straight line of the curve gives the value of the transition energy E_g………………. 139

Figure 6.12: Plots of (αhv)² vs (hv) spectra of ITO films deposited at room temperature and at 200°C…………………………. 140

Figure 6.13: Transmission of TiO₂ films deposited on Si at room temperature (black curve), at 200°C (red curve) and at 400°C (blue curve)………………………………………………………… 142
Figure 6.14: Transmission of TiO$_2$ films deposited on quartz SiO$_2$ substrates at room temperature, 200°C and at 400°C142

Figure 6.15: Transmission of TiO$_2$ films, as deposited on quartz SiO$_2$ at 400°C and annealed after deposition at 300°C and 400°C for 3 consecutive hours ...144

Figure 6.16: Wavelength dependence of the refractive index for a TiO$_2$ films deposited on Si and quartz SiO$_2$ at 400°C145

Figure 6.17: Wavelength dependence of the refractive index for a TiO$_2$ films deposited on quartz SiO$_2$ at 400°C, and annealed at 300°C and 500°C for 3 consecutive hours145

Figure 6.18: Transmission of TiO$_2$/Au films. TiO$_2$ was deposited on quartz SiO$_2$ at 400°C and annealed at 300°C and 500°C for 3 consecutive hours, while a few pulses of Au were deposited at room temperature ...147

Figure 6.19: Transmission spectra of multilayer ITO/TiO$_2$/Au (500 pulses). The ITO thin film is deposited on SiO$_2$ at 200°C and the TiO$_2$ thin film is deposited on the ITO at the same temperature ...148

Figure 6.20: Transmission of multilayer ITO/TiO$_2$/Au (500 pulses). The ITO thin film is deposited on SiO$_2$ at 200°C, while the TiO$_2$ thin film is deposited on the ITO at 400°C ...149

Figure 6.21: Absorption curves of ITO/TiO$_2$/Au multilayers deposited on SiO$_2$. Au was deposited with 100, 200 and 400 laser pulses......149

Figure 6.22: Transmission of ITO/TiO$_2$/Au multilayers deposited on SiO$_2$. Au was deposited with 100, 200 and 400 laser pulses......150

Figure 6.23: Transmission of ITO/TiO$_2$/Au multilayers deposited on quartz SiO$_2$. ITO/TiO$_2$ films were annealed at 500°C for 3 hours. Au was deposited with 100, 200 and 400 laser pulses at room temperature ...150

Figure 6.24: Plots of $(\alpha h \nu)^{1/2}$ vs $h \nu$ (a) and $(\alpha h \nu)^2$ vs $h \nu$ for TiO$_2$ deposited on quartz SiO$_2$ at 400°C and annealed at 500°C for 3 hours ..153
Figure 6.25: Plots of $(\alpha h\nu)^2$ vs $h\nu$ for ITO, ITO/TiO$_2$ and ITO/TiO$_2$/Au films. The ITO has been deposited at 200°C; TiO$_2$ was deposited at 200°C (a) and 400°C (b). Au was deposited on top of TiO$_2$ at room temperature using 500 laser pulses.

Figure 6.26: Plots of $(\alpha h\nu)^2$ vs $h\nu$ for ITO/TiO$_2$/Au multilayers. TiO$_2$ was deposited at 400°C and 100, 200 and 400 laser pulses were used to deposit Au on top of TiO$_2$ at room temperature. (a) as deposited and (b) after annealing at 500°C for 3 hours.
LIST OF TABLES

Table 2.1: List of some materials deposited by PLAD using reactive atmosphere and references...14

Table 3.1: Different excimer lasing systems with their corresponding wavelengths..47

Table 4.1: Thickness dependence on the laser wavelength (depositions are performed at room temperature).............................77

Table 4.2: Thickness dependence on the deposition temperature for 2 different laser wavelengths...77

Table 4.3: Thickness dependence on the laser fluence..............................78

Table 4.4: Thickness variation of 50mm diameter ITO films deposited by LLL system in the vertical configuration. (The films were deposited at different pulse numbers).....................................79

Table 4.5: Film thickness dependence on the oxygen pressure and pulse numbers...83

Table 4.6: TiO₂ crystal structure data..87

Table 5.1: Characteristics of ITO films obtained under different deposition temperatures...106

Table 5.2: Resistivity and hall mobility of the ITO films deposited at different oxygen pressure and substrate temperature.........115

Table 5.3: Peak positions and FWHM’s of the different modes of anatase TiO₂ films annealed at 300 and 500°C for 3 consecutive hours...118

Table 6.1: Percentage transmission versus pulse number..................129

Table 6.2: Percentage transmission versus oxygen pressure of ITO thin films deposited with 40000 pulse number...............124

Table 6.3: Percentage transmission of ITO and multilayer thin films......148