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Abstract 

Fetal alcohol syndrome (FAS) is a common cause of mental retardation and is attributable to 

the teratogenic effects of alcohol exposure in utero in individuals with genetic susceptibility. 

The Coloured communities from the Western and Northern Cape regions have some of the 

highest recorded incidence rates (~70 affected children per 1000 live births) in the world.  

 

The candidate genes selected for this study belong to the family of alcohol dehydrogenase 

genes that code for enzymes which metabolise alcohol. The ADH1B and ADH1C genes have 

previously been examined in the Western Cape Coloured community and the enzyme 

encoded by the allele ADH1B*2 was significantly associated with protection against the 

development of FAS. ADH4, a new candidate gene, was selected due to its role in both the 

alcohol and retinol metabolic pathways.  

 

A case-control genetic association study was performed to examine the potential roles of the 

ADH1B, ADH1C and ADH4 genes in the etiology of FAS in two Coloured populations from 

the Northern and Western Cape. Single nucleotide polymorphisms found within the 

candidate genes were typed by PCR-based methods in samples from the FAS children, their 

mothers and controls. 

 

Significant associations were observed in the Western Cape cohort but were not replicated in 

the Northern Cape. Allelic association tests revealed that ADH1B*2 may be a protective 

marker as it occurred more commonly in the controls than the mothers (p= 0.038). The 

alleles of the polymorphic variant, ADH4.8, have been shown to influence the promoter 

activity of ADH4 (the ‘A’ allele has been shown to increase the activity of the promoter 

when compared to the ‘C’ allele as the same position). The alleles of this polymorphic 

marker were significantly associated with the risk for FAS. The ‘A’ allele was shown to 

occur more commonly in the mothers and FAS-affected children (p= 0.002 and 0.035 

respectively) when compared to the controls, suggesting a role in disease susceptibility while 

the ‘C’ allele was shown to occur more commonly in the controls. It was also observed that 

ADH1B and ADH4.8 when examined together in a haplotype demonstrated an association 
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with susceptibility to the disease. While the 2-C haplotype (ADH1B-ADH4.8) was shown to 

be associated with protection against the development of FAS, the 1-A haplotype was 

associated with increased susceptibility. The results suggest that mothers with the common 

ADH1B*1 allele and presumably a normal ADH1B function but an increased level of ADH4 

(allele ‘A’) as a result of the promoter mutation, will, when the blood alcohol concentration 

is high, have an increased risk of having a child with FAS. Conversely when the mothers 

have a faster alcohol metabolising rate due to the allele ADH1B*2 and normal levels of 

ADH4 protein (allele ‘C’), the circulating alcohol in the blood is removed efficiently 

resulting in maternal protection against developing the disease.  

 

This study has also highlighted the genetic diversity within individuals of the South African 

Coloured population. Haplotype analysis and logistic regression revealed that the Western 

and Northern Cape Coloured communities are genetically different and as a result, the 

samples could not be pooled for analysis. Although the two groups of controls were 

genetically diverse, haplotype analysis revealed that the sample of mothers and FAS-affected 

children were not statistically different between the provinces thus possibly suggesting a 

similar genetic etiology for the disease. The results from this study suggest that the ADH 

genes do play a role in the pathogenesis of FAS. 
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1 Introduction 

It is widely accepted that alcohol exposure is the leading cause of preventable mental 

retardation in developed countries (Abel and Sokol, 1986). Since the first reports of fetal 

alcohol syndrome (FAS) by Jones and Smith in 1973, three decades of research has lead to a 

better understanding of the disease etiology. However the incidence of FAS remains 

unchanged in many communities.  

1.1 Historical perspective on FAS 

The first reports of the effects of maternal drinking on the developing fetus were published in 

1892 by Templeman (as cited in Burd et al., 2003). In Dundee, Scotland, Templeman studied 

the deaths of 258 infants born to alcoholic mothers. He noted that 46% of the deaths were a 

result of excessive drinking by the mothers during weekends. In 1899 Sullivan reported on 

the role of maternal alcoholism as the cause of infant deaths. He studied 100 incarcerated 

women and showed that the infant mortality rate was double in the alcoholic mothers. He 

concluded that ‘maternal intoxication’ was the main source of damage to the fetus (Burd et 

al., 2003).   

 

In 1968 Lemoine and colleagues published a report in a French medical journal describing 

the physical and behavioural characteristics of children born to alcoholic women. 

They had observed similar facial characteristics, growth deficiency and psychomotor 

disturbances in the 127 offspring. A diagnosis of maternal alcoholism was made in children 

based on their resemblances to each other (Streissguth et al., 1980). 

 

Later, in 1973 and 1974, Jones and Smith published detailed descriptions of characteristics of 

children born to alcoholic women. In the first article published in 1973, they examined eight 

children who were born to alcoholic mothers and had alerted physicians to the altered facial 

and behavioural characteristics. They presented a detailed case report on each of three Native 

American, three black and two white children. They described the shared anomalies among 

the children including developmental delay, short palpebral fissures, epicanthic folds, small 

jaws, flattened midface, joint anomalies, altered palmar crease patterns and cardiac 

abnormalities. They concluded that the defective fetal development could have been 

attributed to maternal alcoholism. The term FAS was introduced in the second article written 
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by Jones and Smith which was published in The Lancet five months later. They described an 

additional three cases of Native American children and characterised more of the shared 

anomalies (as cited in Armstrong, 1998).    

1.2 Pathogenesis of FAS 

1.2.1 Criteria for diagnosis 

The adverse effects of fetal exposure to alcohol result in a spectrum of disorders that has 

been termed fetal alcohol spectrum disorders (FASD). FAS is at the severe end of this 

spectrum and is characterised by a confirmed history of maternal drinking during pregnancy, 

characteristic facial features, growth deficiency and neurocognitive deficiencies (Hoyme et 

al., 2005).  

 

As the physical characteristics can vary in severity between individuals, researchers have 

narrowed down the key features for diagnosis to three broad categories (Abel,1998; 

Weinberg, 1997) (Table 1.1). 

 

Table 1-1: Three broad categories used for the diagnosis of FAS 

 

Growth retardation 

decreased birth weight for gestational age 

failure to thrive  

disproportionate ratio of weight to height  

Characteristic facial features  

short palpebral fissures 

flat upper lip 

flattened philtrum 

flat midface 

Central nervous system abnormalities 

   small head size 

  structural abnormalities e.g. small brain 

  impairment of fine motor skills 

  neurosensory hearing loss 

  impaired hand-eye coordination 
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The diagnosis of FAS is usually made in infants and young children as the features become 

more subtle with age. Studies have shown that the facial characteristics become less 

distinctive as the child enters adolescence and as the weight approaches the mean for the 

general population. Other characteristics often associated with FAS, such as 

neurodevelopmental and behavioural problems remain unchanged with increasing age 

(Streissguth et al., 1991; Michaelis EK and Michaelis ML, 1994). Although the facial 

features of FAS change during puberty, the symptoms that persist include microcephaly, 

short palpebral fissures and thin upper lip with indistinct philtrum and epicanthal folds 

(Figure 1.1). 

 

 

Figure 1.1: A schematic representation of the facial characteristics of a child with FAS (Larkby and Day, 

1997) 

 

Two sets of published guidelines are now being used that make the characterisation and 

evaluation of children who have been prenatally exposed to alcohol, much easier. The first 

set of criteria published by the Institute of Medicine (IOM) of the National Academy of 

Sciences, developed five diagnostic categories for FAS and alcohol related effects. These 

were: FAS with confirmed maternal alcohol exposure, FAS without confirmed maternal 

alcohol exposure, partial FAS with confirmed maternal alcohol exposure, alcohol related 

birth defects (ARBD) and alcohol-related neurodevelopmental disorder (ARND) (Hoyme et 

al., 2005).  
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Astley and Clarren published an objective set of guidelines in 2000 termed the Washington 

criteria (Astley and Clarren, 2000). These criteria retain the four key features of FAS: growth 

deficiency, facial phenotype, CNS damage and alcohol exposure in utero. Each factor is 

scored on a 4-point Linkert scale with 1 representing the absence of the feature and 4 the 

classical presentation. This system has been shown to be accurate in diagnosing a child but it 

is impractical for routine use in a clinical setting (Hoyme et al., 2005).  

1.3 Epidemiology 

The search for unique maternal characteristics, risk factors and protective factors has been a 

goal for researchers since the identification of FAS as a disease. Identifying these 

characteristics is important for facilitating the effective prevention of the disease and 

understanding its complex etiology.  

 

Epidemiological studies have identified advanced maternal age, smoking, use of harmful 

drugs, low socioeconomic status and ethnicity as some of the traits associated with FAS 

(Sokol et al., 1980). A few of these characteristics will be discussed below.  

1.3.1 Sociobehavioural risk factors 

Alcohol intake pattern. The common pattern of alcohol intake among the mothers of FAS 

children is ‘binge drinking’. This pattern of drinking results in brief exposures to high blood 

alcohol levels and is thought to cause more cellular damage than prolonged exposure to 

lower levels of alcohol (Streissguth et al., 1980).  

  

Socioeconomic status. All epidemiological studies that have been reported in the United 

States have one common factor; mothers at greatest risk for having a child with FAS were 

from low socioeconomic backgrounds. These studies were conducted in inner city hospitals 

where the community was predominantly African American and characterised by poverty 

compared to cases from middle class Caucasian mothers (Streissguth et al., 1980). In the 

original case reports by Jones and Smith in which 11 children were characterised with FAS, 

they all had mothers who were living on welfare even though they were from different ethnic 

groups (Jones and Smith, 1973). It is believed that low socioeconomic status rather than 

biological factors relating to ethnicity is a major factor for FAS. 
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Smoking. Smoking has adverse effects on pregnancy outcome and can result in decreased 

birth weight. Smoking has been correlated with alcohol intake, as studies have shown that 

groups of heavy drinkers have the same number of heavy smokers. Smoking can increase the 

susceptibility to alcohol’s toxic effect by mechanisms such as hypoxia (Streissguth et al., 

1980). 

1.3.2 Maternal Risk factors for women in South Africa 

An epidemiological study examining the risk factors for women from the Western Cape 

showed that risk factors did not differ from those found for women from around the world 

(Viljoen et al., 2002). The mothers of the FAS children had a less formal education and were 

from low socioeconomic backgrounds. The mothers were from families with extensive 

drinking backgrounds and their partners were usually heavy drinkers. These women also 

smoked during their pregnancies but did not abuse other substances other than alcohol and 

tobacco (Viljoen et al., 2002).  

 

Binge drinking over weekends is a common occurrence in some communities throughout 

South Africa and usually occurs at home or in shebeens which are equivalent to informal 

bars. In the Western Cape, alcohol had been consumed daily on many farms due to the ’Dop’ 

system which has now been outlawed. This system was a form of partial payment to farm 

workers and has resulted in heavy and episodic drinking (Crome and Glass, 2000). An 

epidemiological study in the Western Cape revealed that drinking during pregnancy was 

common in parts of the Western Cape. Among pregnant mothers, 34.4% of those who drank 

during pregnancy were from metropolitan areas and 46.1% to 50.8% were from rural areas 

(Croxford and Viljoen, 1999;Viljoen et al., 2002).  

 

Although the results from this study were specific to the Coloured community in the Western 

Cape, it may hold true for other low socioeconomic communities in other parts of South 

Africa.  
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1.3.3 World wide prevalence of FAS 

Estimates of the prevalence of FAS vary between 0.2 and 1 per 1000 live births world wide. 

It must be noted that factors such as ethnicity, cultural backgrounds and varying diagnostic 

criteria could greatly influence the estimates for the prevalence of FAS around the world.  

Two reviews, the first by Abel (1995) and the other by Sampson et al., (1997) have been 

published that criticise population-based studies that published the prevalence of FAS.  

 

In 1995 Abel reported the US incidence of FAS for the period between 1973-1992, to be 

1.95/1000 births; 0.26/1000 when analysing middle/upper class Caucasians and 2.29/1000 

for African/Native American groups. Another important observation from this report was that 

low socioeconomic circumstances rather than ethnic backgrounds played a greater role in the 

determination of prevalence rates (Abel, 1995).  

 

In 1997 Sampson reported the incidence of FAS for different time periods at two US sites 

and one in France. The mothers were from different ethnic groups in the two samples; the US 

mothers were from minority groups and the mothers from France were Caucasian. The 

mothers from both groups suffered from alcoholism and came from low socioeconomic 

backgrounds. The researchers in France used different diagnostic criteria to the Americans.  

The diagnostic criteria used divided FAS into three categories; moderate FAS, full FAS and 

severe FAS. The incidences varied according the diagnostic criteria used; 1.3/1000 for severe 

FAS to 4.8/1000 for all FAS types (moderate, full or severe). When the US diagnostic criteria 

were applied to the French data, the incidence of FAS was 2.3/1000 live births. Estimates 

reported for the US were 2.8/1000 live births (Sampson et al., 1997). This report highlighted 

the influence different diagnostic criteria can have on the incidence rates observed in 

different communities. Both these reports provided evidence for a strong relationship 

between alcohol intake and low socioeconomic circumstances.  

  

Indigenous communities have also been identified as having higher incidences of FAS 

compared to the general population for a country. May reported a study in 1991 looking at 

three Native American groups; Navajo, Peublo and SouthWest plains. The study was 

conducted over two time periods, 1969-1977 and 1978-1982. Results showed variation in the 
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prevalence of FAS between cultural groups (1.0, 1.3 and 17.5/1000 births respectively) and 

also indicated an increase in prevalence over time. The results were indicative of increasing 

drinking behaviour over time (May et al., 2000). The prevalence of FAS was also studied in 

the Alaskan indigenous populations from 1977 to 1992. Strict criteria were used to diagnose 

FAS and Native Alaskan children comprised 83% of the cases. The prevalence reported was 

3.0/1000 among the Alaskan and 0.2/1000 for the non-native population (Egeland et al., 

1998).  

1.3.4 FAS in South Africa 

The Coloured community of the Western Cape has the highest recorded prevalence of FAS in 

the world with the latest incidence levels at approximately 70 per 1000 children (May et al., 

2007). An initial study conducted by May et al., (2000) assessed children of school going age 

from 11 predominantly Coloured and Black schools and one predominantly white school in 

the Western Cape. The prevalence of FAS was shown to be much higher than expected, with 

61% of the cases occurring in rural areas. No cases of fetal alcohol syndrome were observed 

in the white school and the rate in the Black/Coloured schools was 49.3/1000.  The minimum 

prevalence rates were calculated as 39.2-42.0 as the age-specific rate was 39.2 per 1000 for 

children of school going age. This paper provided insights into the social influences on fetal 

alcohol syndrome and has confirmed that low socioeconomic circumstance does increase the 

risk for the disease. Current studies are being conducted to ascertain whether this holds true 

for other low socioeconomic communities throughout South Africa (Viljoen, personal 

communication).  

1.4 Teratogenic effects of alcohol exposure 

As a teratogen, alcohol is able to induce malformations in a developing embryo. The extent 

of the damage is dependant on the time, dose and pattern of alcohol exposure.  

1.4.1 Stages of fetal development 

To understand the teratogenic effects of alcohol we need to understand the different stages of 

fetal development. There are two major periods of fetal development; the embryonic period 

which is up to eight weeks of gestation and the fetal period, from eight weeks till birth. The 

first stage of events of embryo development is cell division and proliferation followed by the 
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second stage of cellular growth and differentiation by which time cells become specialized in 

structure and function. The final stage is migration of maturing cells to their ultimate 

locations in the developing embryo where they will remain. It is during the embryonic period 

of development that malformations are formed due to the exposure of teratogens directly in 

the mother’s bloodstream or through the mother’s diet (Michaelis EK and Michaelis 

ML,1994). During the early stages of pregnancy alcohol exposure results in morphological 

malformations while growth is most affected during the later stages of development. Damage 

to the CNS as a result of alcohol exposure occurs throughout the gestational period (Larkby 

and Day, 1997). 

 

All of the above stages are influenced and directed by nutritional, hormonal and cellular 

factors and alcohol can affect many of these factors, thereby influencing organ formation and 

growth (Michaelis EK and Michaelis ML,1994).  

1.4.2 Mechanisms of alcohol’s effects on the fetus 

Numerous mechanisms have been postulated to explain how alcohol exerts its effects on fetal 

development but the molecular pathway(s) leading to FAS remain a mystery. Due to its small 

molecular size, alcohol is freely able to move through the placenta resulting in nearly equal 

concentrations in the blood of the mother and the fetus (Michaelis and Michaelis,1994). The 

resulting toxic effects on the fetus may be due to the direct exposure to alcohol or via 

secondary effects of the maternal/placental functions. Some of the mechanisms postulated 

include: a) inappropriate induction of apoptosis and the generation of free radicals, b) cell 

adhesion defects, c) growth factors and d) the inhibition of retinoic acid synthesis.  

1.4.2.1 Free radicals, oxidative distress and apoptosis 

Many actions of alcohol on the developing organism result in cell death via a process known 

as apoptosis. Apoptosis affects only individual cells and leaves the adjacent cells intact. A 

balance exists between certain protein factors which can activate or block apoptosis and 

disruption of this balance might be involved in alcohol-induced apoptosis (Olney, 2004).  

 

One such factor is gamma-aminobutyric acid (GABA). This is a major inhibitory substance 

in the brain. Studies have shown that prenatal alcohol exposure increases the activity of 
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GABAnergic neurons resulting in a lesser degree of firing of the neurons compared with 

controls (Chaudhuri, 2000). An important neurotransmitter, glutamate, found in the brain and 

spinal cord is also affected by prenatal alcohol exposure. A decrease in GABAnergic activity 

or increased levels of glutamate result in hyper stimulation of neurons and this may result in 

mitochondrial damage. Growth factors also affected by alcohol include the epidermal growth 

factors and insulin-like growth factors. 

 

Another key factor that can induce apoptosis is oxidative stress. Oxidative stress occurs as a 

result of having excess levels of free radicals in the cells. Free radicals are highly reactive 

molecules that are formed during biochemical reactions in the cell. Many of the free radicals 

also contain oxygen and are known as reactive oxygen species (ROS). The levels of free 

radicals and ROS are controlled by antioxidants which are scavenger molecules. The normal 

antioxidant levels in the cell can be reduced by the presence of alcohol and consequently, 

oxidative stress can occur. This stress causes damage to cellular membranes, DNA and 

protein (Cohen-Kerem and Koren, 2003).  

 

Studies in cell lines and animal models have demonstrated a direct effect of oxidative stress 

by the formation of free radicals on apoptosis. The cellular damage caused by free radicals is 

a consequence of the peroxidation of lipids and alteration of enzymatic activity. Results from 

oxidative stress can be manifested as chromosomal abnormalities, enzymatic malfunction 

and disruption of cellular membranes. Formation of ROS can be induced in the mitochondria 

in hepatocytes exposed to ethanol. This is achieved by the reduction in mitochondria-derived 

components of electron transport. Oxidative stress is induced indirectly by reducing the 

intracellular antioxidant capacity for example, by reducing the levels of glutathione 

peroxidase (Cohen-Kerem and Koren, 2003). 

 

Oxidative stress can also lead to fetal hypoxia. It has been shown that maternal intake of 

alcohol restricts the maternal blood flow resulting in reduced oxygen supply to the fetus. One 

of the proposed mechanisms for fetal hypoxia is the overproduction of prostaglandins. Their 

activity has been shown to be elevated during alcohol exposure and results in the constriction 

of the blood vessels in the uterus, placenta and fetus (Schenker et al., 1990).  
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Diminished blood supply to fetal tissues can result in apoptosis and may also induce the 

formation of free radicals in some embryonic tissues. An organ that is very sensitive to 

hypoxia is the brain and this can result in reduced brain size and weight which is one of the 

characteristics of FAS.  

1.4.2.2 Cell adhesion and migration 

Glial cells which are non-neuronal cells are needed for normal brain development. Various 

types of glial cells exist with specialized functions. One of their functions is to assist in the 

migration of newly formed neurons to their final locations. This is mediated by the presence 

of radial glia, which are able to direct the neurons to their correct destinations. Once at the 

final destination, they change into star-shaped astrocytes. However, with prenatal alcohol 

exposure, radial cells may become astrocytes prematurely, and as a result, neurons stop 

migrating and result in abnormal positions (Goodlett and Horn, 2001). 

1.4.2.3 Nutrition 

One of the characteristics of FAS is low birth weight where children generally remain small 

for their age. For normal growth and development to occur during gestation the constant 

transfer of amino acids and glucose from the mother to the fetus across the placental barrier 

is required. Several studies have indicated that alcohol directly inhibits the transport of amino 

acids and glucose therefore depriving fetal tissues of the energy sources and materials needed 

for cell proliferation, growth and differentiation (Michaelis EK and Michaelis ML,1994). In 

low socioeconomic status groups, maternal nutrition is thought to play an important role.  

1.4.2.4 Hormonal factors 

The release of hormones from maternal glands, fetal glands and the placenta influence the 

formation and development of tissues. Experimental studies on animals exposed to alcohol in 

utero show a reduction in corticosteroid hormones in the brain and blood. These hormones 

regulate aspects of metabolism and can influence the organism’s response to stress. A 

deficiency in this hormone could affect the fetus’s response to stress. Thyroid hormone 

deficiencies have been identified in babies born to alcoholic mothers and these have a 

deleterious effect on the development of some tissues such as the brain (Michaelis EK and 

Michaelis ML,1994).  
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1.4.2.5 Acetaldehyde 

Ethanol metabolism, either through the alcohol dehydrogenase (ADH) or microsomal 

pathways, results in acetaldehyde. This metabolite has been shown to induce FAS-related 

malformations in vivo (Menegola et al., 2001). The human placenta is capable of transferring 

acetaldehyde from the mother to the fetus and of converting ethanol to acetaldehyde. 

Experimental evidence has shown that high acetaldehyde levels were reversible upon alcohol 

withdrawal but were increased by pregnancy and lactation (Lieber, 2000). There is also 

evidence for the carcinogenicity of acetaldehyde, when it is inhaled it can cause the 

formation of tumors of the respiratory tract in nasal mucosa of rats. It also has the ability to 

induce chromosomal aberrations, micronuclei and sister chromatid exchanges and it can also 

interact with DNA to form DNA adducts which is the initiating step of chemical 

carcinogenesis (Yokoyama and Omori, 2003).  

1.5 The role of genetics in FAS 

1.5.1 Twin studies 

In 1974 Palmer et al., (1974) and colleagues (as cited in Streissguth and Dehaene, 1993), 

described monozygotic twins who were exposed to alcohol in utero. The twins were 

described as being identical at birth and all follow through examinations. They were both 

mildly retarded and their motor development was also restricted. Four pairs of dizygotic 

twins were also described in detail. In three of these, one twin was seen to be more severely 

affected than the other. Only one pair of twins were discordant in diagnosis, one twin had 

FAS and the other had FAE (fetal alcohol effects). A later report by Crain et al., (1983) 

described a dizygotic twin pair in which the twin with the smaller head circumference and 

most growth deficiency also had more severe mental retardation. 

 

In 1993, Streissguth and Dehaene described 16 pairs of twins which included five 

monozygotic and 11 dizygotic twin pairs. All the monozygotic twins were concordant for 

diagnosis e.g., in two pairs of twins, both twins had FAS, in one pair both had FAE and the 

other pair there was no diagnosis. In the dizygotic twins seven of the pairs were concordant 

for diagnosis and the remaining four discordant. Among the twins, there were two pairs of 
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twins where one twin had FAS and the other had FAE, and another two pairs were one twin 

had no diagnosis and the other twin had FAE.  

 

The above studies demonstrated that monozygotic twins show a higher rate of concordant 

alcohol related diagnosis when compared with dizygotic twins. These studies also examined 

IQ and there again the monozygotic twins were concordant more often with IQ when 

compared to the dizygotic twins. These studies confirm that genetic factors can influence the 

developmental effects of in utero alcohol exposure. Maternal response to alcohol and alcohol 

metabolism and the fetal genotype all play a vital role in the outcome of the disease.  

1.5.2 Animal models 

Animal models play a significant role in developing strategies to understand and prevent the 

damage caused by prenatal alcohol exposure. The damage caused results from multiple 

mechanisms that are dependant on dose, pattern and the timing of exposure. By using animal 

models, researchers have been able to replicate human physical characteristics in the rat and 

therefore provide further evidence that alcohol does have a direct toxic effect on the body.  

 

They have also advanced the knowledge on areas such as effects of prenatal alcohol exposure 

on the immune system, hormonal systems, and the CNS.  

1.5.2.1 Rodent models 

The rat is an animal model that has been widely used by researchers. It has been used to 

study the effect of alcohol, particularly on the cerebellum. In one study, alcohol was  

administered postnatally during the period of rapid development of the cerebellum because 

the structures that develop in utero in humans only develop postnatally in the rat (Cudd, 

2005). A review by Ponnappa and Rubin described studies that demonstrated that due to 

alcohol exposure, there was a reduction in the number of synaptic contacts and in the number 

of Purkinje cells which is thought to contribute to impaired motor control (Ponnappa and 

Rubin, 2000). 

 

Mice have also been used as an animal model and have advantages such as short gestation 

periods and a greater potential for genetic manipulation compared to the rat. Mouse embryos 
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were exposed to alcohol at specific times during gestation and it was demonstrated that in 

utero alcohol exposure in mice can produce facial features that are characteristic to FAS in 

humans (Sulik et al., 1981). Studies on mouse embryos have revealed that cell death 

specifically occurs in neural crest cells (Smith, 1997).  

 

The guinea pig, an animal model with a longer gestational period (68 days) allows 

researchers to target a particular developmental period. They also have the feature of prenatal 

brain growth, so researchers can study prenatal alcohol exposure during the third trimester of 

the guinea pig development. Studies have shown that prenatal alcohol exposure has resulted 

in low birth weight and reduced fetal brain weight (Kimura et al., 1999). Deficits in the 

cerebral cortex, hippocampus and cerebellum have also been observed.  

1.5.2.2 Nonmammalian models 

The chick model has been useful in studying the development of the face following prenatal 

alcohol exposure. The zebra fish, round worm and fruit fly (Drosophila) have also been used 

as models and they have the advantages of simple nervous systems and short generation 

times. These systems allow researchers to study questions that involve genetics and 

development. But a concern relating to these systems is the high dose of alcohol needed to 

induce malformations, suggesting that the mechanisms of damage might be different to those 

observed in lower dose alcohol concentration for larger animals (Cudd, 2005).  

1.5.2.3 Large animal models 

The use of large animal models to study prenatal alcohol exposure requires the insertion of 

catheters into the fetus. The intubation results in high fetal loss and is considered a great 

liability. Although nonhuman primates exhibit many of the same behaviour patterns as 

humans, these studies are complicated by the need for anesthetics and the need to restrain 

animals after instrumentation. Investigators have also used the pig as a model to study the 

behavioural effects of prenatal alcohol exposure. There are disadvantages such as the expense 

of maintaining the animals, the large litters and the fetuses that are difficult to intubate. 

Sheep have also been used as a model and studies include investigating the effect of alcohol 

on brain metabolism and the actions of alcohol on brain activity and fetal brain 

neurotransmitter activity (Cudd, 2005). 
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1.6 Identification of genetic factors involved in complex diseases 

Complex diseases result from the interaction of multiple genes and environmental factors, 

with each gene contributing towards the overall phenotype. The identification of causative 

genes involved in complex diseases has posed great challenges for researchers. Two 

strategies are generally used by researchers to identify and characterise genes; linkage 

analysis and case-control association studies.   

1.6.1 Linkage analysis 

This method attempts to identify a region of the genome that is transmitted within families 

along with the disease phenotype (Silverman and Palmer, 2000). The families are studied for 

a higher-than expected number of shared alleles among affected individuals within a family 

(Carlson et al., 2004). One approach involves the use of affected sib-pairs. If the affected sib-

pairs share markers that are identical by descent (IBD) the Mendelian expectations of sharing 

alleles IBD 0,1,2 with frequencies of 0.25, 0.5 and 0.25 will be expected. If there is linkage 

between the disease predisposing locus and a marker then deviations from Mendelian 

expectations will be observed. The transmission disequilibrium test is also used to identify 

markers that are transmitted from parents to the affected offspring (Daly and Day, 2001). A 

limitation to this approach is the need to collect DNA samples from the parents, the affected 

individuals and the siblings, and it may become more difficult to perform when studying late 

onset diseases. 

 

 The use of linkage analysis to study complex diseases has been less successful than its use in 

elucidating single genes in Mendelian inherited diseases. This is due to multiple gene 

interactions and the influence of the environment on disease outcome, heterogeneity due to 

ethnic differences, small sample sizes and inappropriate selection of controls (Risch, 2000). 

It has, however, been used with limited success in identifying regions of the genome that 

contain susceptibility genes for complex diseases. 

1.6.2 Case-control association studies 

The aim of this strategy is to test the association between a genetic polymorphism and a 

phentoype. Alleles are thought to play a role in a disease or act as a marker for a disease 

when the frequencies differ significantly between the cases and controls. It can also be 
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inferred that these alleles may be in linkage disequilibrium with another allele which may 

play a causal role in the disease, at a nearby locus (Schork, 1997). Significant differences in 

allele and genotype frequencies between cases and controls are regarded as support for the 

involvement of an allele in disease susceptibility (Silverman and Palmer, 2000), however 

further studies would need to confirm a causative effect. This strategy is thought to be more 

powerful than linkage analysis for the detection of the more common disease alleles that 

confer modest disease risk. Another advantage of an association analysis is the ability to 

more easily collect larger numbers of unrelated affected individuals than to collect large 

numbers of families (Carlson et al., 2004). 

  

There are a few considerations to take into account when performing a case control study and 

these include: choice of candidate gene and polymorphism for study, patient and control 

recruitment methods, matching of controls and the number of subjects to be studied. 

 

Choice of candidate gene and polymorphism. It is important to choose a candidate gene that 

has relevance to the pathogenesis of the disease. Consideration of the functional effects of the 

polymorphism is also important because studying functionally relevant polymorphisms 

instead of random neutral polymorphisms might lead to the detection of the causal disease 

genes. A gene is selected as candidates depending on a number of variables such as it’s 

expression in the tissues that are affected by the disease, it’s proposed functions, the 

biological pathway in which it occurs or it’s homology to other genes. A disadvantage to this 

approach is the large number of genes that can be considered as candidates for any given 

disease (Schork, 1997).  

 

Statistical aspects of study design. Consideration should be given to correcting for multiple 

testing. Although many methods have been proposed for correcting for multiple testing, the 

appropriate test to use in a given situation remains unclear. Many researchers have suggested 

using the Bonferroni method of correction but this method results in a decrease in power to 

detect any gene affects and may be too severe a correction for multiple testing when 

considering candidate genes that have not been randomly chosen (Daly and Day, 2001).  
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Recruitment of subjects and controls. The careful selection of cases and controls is very 

important as one must ensure that cases do not include a heterogenous collection of 

phenotypes which can reduce the power of the study (Daly and Day, 2001). Only cases 

diagnosed with  FAS were included in this study and those classified with ‘partial’ FAS were 

excluded.  Spurious associations may arise due to population stratification or population 

substructure. This arises as a result of recent population admixture or can result from 

different ethnicities between cases and controls (Daly and Day, 2001). Our study focused on 

two of the Coloured communities of South Africa, which have resulted from population 

admixture. We carefully selected our controls so that they were geographically and ethnically 

matched to the cases.  

 

For this study we have chose candidate gene case-control association study design. We 

selected our candidate genes according to their proposed role in alcohol metabolism, since 

this disease results from the abuse of alcohol during pregnancy. The polymorphisms 

associated with each candidate gene were selected with respect to the published frequency 

data and functional relevance.  

1.7 Alcohol metabolism 

Molecular genetic research on alcoholism has drawn attention to the importance of alcohol 

and acetaldehyde metabolising enzymes. Functional polymorphisms exist for various genes 

involved in alcohol metabolism and they have the ability to alter the rate of metabolism. The 

molecular mechanisms that control the elimination and metabolism of alcohol are important 

in understanding the chemical basis of alcohol toxicity.  

 

Ninety two to 95% of alcohol metabolism occurs in the hepatocytes which are located in the 

liver. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are two enzymes 

involved in the oxidation of alcohol (ethanol) to carbon dioxide and water. Alcohol is 

metabolised first to acetaldehyde by Class I ADH, with NAD
+
 as the coenzyme in a 

reversible reaction. The acetaldehyde then becomes oxidised to acetate by aldehyde 

dehydrogenases, with NAD
+ 
also acting as the coenzyme in a non-reversible reaction. The 

end products of this pathway are carbon dioxide and water, after the oxidation of acetate in 
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the Kreb’s cycle (Norberg et al., 2003). Due to the equilibrium constant favouring the 

direction of a reduction of acetaldehyde to ethanol, acetaldehyde is usually found at lower 

concentrations than ethanol or acetate (Warren and Li, 2005). Secondary ethanol metabolism 

occurs in the microsomal fraction of the liver and this pathway is known as microsomal 

ethanol oxidising system or MEOS. This is the major non-ADH pathway and its activity 

increases after chronic alcohol consumption. The cytochrome P450 family of enzymes, 

namely CYP2E1, is involved in this pathway (Agarwal, 2001). 

1.7.1 Alcohol dehydrogenases  

The alcohol dehydrogenase gene family encodes enzymes that metabolise a wide variety of 

substrates including ethanol and retinol. Human ADH is a dimeric protein consisting of two 

subunits with a molecular weight of 40kD each. Seven different genetic loci code for human 

ADH and the ADH enzymes are derived from the association of different types of subunits. 

The seven genes have been organised into five classes (Table 1.2) based on amino acid 

sequence alignments and similarities, catalytic properties and patterns of tissue-specific 

expression (Ramchandani et al., 2001). Originally the genes were named according to the 

sequence of discovery but a new nomenclature has been adopted and will be used throughout 

this dissertation. The ADH gene family is clustered on chromosome 4q22 spanning 367kb 

(Figure 1.2). Class I genes (ADH1A, ADH1B, ADH1C) are the low Km forms for ethanol 

oxidation and are considered to play a major role in ethanol metabolism while Class II and 

Class III are the high Km forms. Class III which is a glutathione dependant formaldehyde 

dehydrogenase does not favour ethanol as a substrate and the kinetic features of Class V have 

not yet been defined.  

1.7.2 Tissue expression 

The human ADH genes are differentially expressed in different tissues which is a very 

important feature for the physiological consequences of alcohol metabolism in specific cells 

and tissues. A study conducted by Estonius et al., (1996) examined tissue distributions for the 

different ADH enzymes using 23 adult and four fetal tissues. Class I transcripts showed a 

wide range of expression levels among different tissues. It occurred with highest levels in the 

adult liver and varying levels in the stomach, small intestine, colon, adrenal cortex, heart and 

lung. Class I mRNA was mainly expressed in the liver. It was also observed in the small 
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intestine, pancreas and stomach but at low levels. Class III showed a different distribution 

pattern with transcripts occurring in all tissues examined. Class II ADH activity was detected 

mainly in stomach mucosa but also in oesophagus, gingiva and tongue tissues. These results 

indicate that ADH is found in most tissues in the body but with highest levels in the liver.  

 

Table 1-2: New nomenclature for ADH genes and enzymes (www.gene.ucl.ac.uk/nomenclature) 

ADH class new gene nomenclature Enzyme subunit 

I  ADH1A   α 

 

I  ADH1B   β 

 

I   ADH1C   γ 

 

II  ADH4    π 

 

III  ADH5    χ 

 

IV  ADH7    σ 

 

V  ADH6     not identified 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Schematic representation (not to scale) of the ADH cluster spanning ~380kb and the relative 

position of the ADH4 gene. Adapted from Osier et al.,(2002). 

  ADH7    1C 1B 1A   ADH6    ADH4   ADH5 

         Class I                                     Class II 
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1.7.3 ADH1B 

This enzyme is largely responsible for most of the liver ADH activity and remains active in 

the tissue throughout life. Three allelic variants have been identified; ADH1B*1, ADH1B*2 

and ADH1B*3 which encode the subunits β1, β2 and β3 respectively (Chen et al., 1999). The 

isoenzyme encoded by ADH1B*2 has a higher turnover rate for ethanol metabolism than 

ADH1B*1. The product of thisallele differs from the ADH1B*1, the common allele, by a 

single amino acid substitution resulting an arginine to histidine exchange at position 47 

(Chen et al., 1999). For individuals with the ADH1B*3 allele, the rate of ethanol oxidation is 

also greater than for individuals with the ADH1B*1 allele (Warren and Li, 2005). It differs 

from ADH1B*1 by an arginine to cysteine substitution at position 369 (Chen et al., 1999). It 

has been suggested that ADH1B*2 and ADH1B*3 protect against alcohol induced 

teratogenicity due to faster ethanol metabolism at higher ethanol concentrations but not all 

studies support this assertion (Warren and LI, 2005).  

 

ADH1B*1 is the most common allele amongst Caucasians (frequency of 0.85 to 1) and 

African-Americans (frequency of 0.66 to 0.85 ), ADH1B*2 is the most frequent allele in the 

East Asian populations occurring at frequencies between 0.65 to 0.85. ADH1B*3 has been 

identified in African-American populations at frequencies between 0.15 to 0.33 (Burd et al., 

2003). 

 

In the literature, there are many reports regarding the ADH1B polymorphism and alcoholism. 

It has been suggested that ADH1B*2 might protect against alcoholism in Asian persons 

(Muramatsu et al., 1995) and Caucasian populations (Borras et al., 2000), though the 

mechanism remains unclear. It has been suggested that the unpleasant effects such as facial 

flushing following alcohol intake directly affect the amount of alcohol ingested. This was 

supported by studies where this allele was found to occur at a lower frequency in alcoholics. 

However there have been contradicting studies such as the one conducted by Russian 

researchers, where a negative association between ADH1B*2 and alcohol misuse was 

reported (Ogurtsov et al., 2001).  

 

The effect of the ADH1B polymorphism on alcohol-exposed fetuses has been studied in the 

United States. McCarver et al., (1997) noted the presence of maternal ADH1B*3 was 
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associated with a decreased risk for reduced birth weight and birth length. In contrast, 

another study Stoler et al., (2002) reported on 404 women of whom 108 were African-

American. They found that 60% of the African-American infants whom they classified as 

affected with FAS had an ADH1B*3 allele compared with only 29% in the unaffected 

infants. These results differed from those of McCarver et al., (1997) who indicated that the 

absence of ADH1B*3 was protective against adverse fetal outcome whereas other studies 

found that the presence of ADH1B*3 was protective.  

 

The role of ADH1B in FAS etiology has also been examined in other cohorts. Eriksson et al., 

(2001) suggested that ADH1B*2 may be protective against developing the disease by 

preventing the mother from consuming alcohol due to the adverse effects experienced. The 

ADH1B*2 allele was also found to confer protection or to be a marker against the 

development of FAS in the South African Coloured community from the Western Cape. In 

this study the ADH1B locus was examined in 56 FAS children, their mothers and a group of 

controls. The ADH1B*2 allele occurred more commonly in the controls than in the FAS-

affected children or their mothers however no significant associations were observed for 

ADH1B*3 (Viljoen et al., 2002).  

1.7.4 ADH1C 

Two allelic variants have been identified; ADH1C*1 and ADH1C*2 which encode the 

subunits γ1 and γ2 respectively. ADH1C*1 andADH1C*2 differ by an amino acid 

substitution of isoluecine by valine at position 349 in exon 8 (Osier et al., 2002).  

ADH1C*2 which is the lower activity allele, is the common allele in most populations with 

ADH1C*1 being the predominant allele amongst East Asians and Africans occurring in 90% 

of samples. The two alleles, ADH1C*1 and ADH1C*2, are equally distributed with in 

Caucasian populations (Chen et al., 1999). In 1999 Osier et al., demonstrated that ADH1B*2 

and ADH1C*1, which are 21kb apart, were in strong linkage disequilibrium in a sample of 

Taiwanese Chinese alcoholic individuals. Through the use of haplotype analysis, the 

researchers found that the association with alcoholism was caused by ADH1B*2 allele and 

the decreased frequency of ADH1C*1 allele in the Taiwanese Chinese alcoholic individuals 

compared to the controls was due to the strong linkage disequilibrium with ADH1B*2  

(Osier et al., 1999).  
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1.7.5 ADH4 

ADH4 is the sole member of Class II. It was first characterised from stomach mucosa and 

was designated σ-ADH or µ-ADH. It is predominantly expressed in the epithelial tissue of 

the upper digestive tract i.e. esophagus, gingival and tongue (Baraona et al., 1991).  

 

This enzyme has two important functions that makes it an interesting candidate gene for this 

study. Firstly it affects the amount of ingested alcohol that reaches the bloodstream as a result 

of first-pass metabolism. It is the first metabolic barrier as a result of its tissue distribution 

that ingested alcohol comes into contact with. Secondly it functions as a rate-limiting step in 

retinoic acid (RA) synthesis. Alcohol is able to competitively inhibit retinol from binding to 

ADH4 which functions as an efficient retinol dehydrogenase. This leads to the reduced levels 

of retinoic acid which is important during embryogenesis (Yin et al., 1999). 

 

A study by Edenberg et al., (1999) characterised three polymorphisms in the promoter region 

of ADH4 that affected its expression; -192bp (T/A), -159bp (G/A) and -75 (A/C). They 

found that promoter activity increased if the ‘A’ allele was present instead of the ‘C’ allele at 

position -75bp. They hypothesised that the ‘A’ allele may have a protective effect by 

modulating alcohol metabolism thereby reducing the risk of developing alcoholism. A study 

conducted in Brazil examined the association of the promoter polymorphisms in alcoholic 

patients (Guindalini et al., 2005). Their results were in agreement with Edenberg et al., 

(1999) as the ‘C’ allele at -75bp was associated with alcohol dependence (odds ratio of 1.6). 

 

Recently Luo et al., (2005) published their results on the association of polymorphic variants 

in the ADH4 gene with alcohol and drug dependence. They studied seven polymorphic 

variants in the ADH4 gene in European Americans and African Americans and four of the 

seven SNPs they examined were chosen for the present study; rs1800759, rs1126670, 

rs1126671, rs1042363. They found that within the European American controls, the genotype 

distribution frequencies were in HWE but in the alcohol and drug-dependant groups, they 

were not. Two SNPs, rs1042363 and rs1800759, showed the greatest degree of Hardy-

Weinberg disequilibrium in both patient groups. Significant associations were found at the 

genotype level but not with alleles or haplotype frequency distributions. They concluded that 
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ADH4 genotypes were associated with alcohol and drug dependence with rs1042363 and 

rs1800759 being the markers closest to the risk loci.  

 

In 2006 Edenberg and colleagues characterised 110 SNPs encompassed within and around 

the ADH gene cluster on chromosome 4q in an attempt to determine significant associations 

between SNPs in the region and alcohol dependence. The families studied were recruited 

from the COGA study and included individuals of European American and African 

American ethnicity who had been diagnosed with alcoholism. In their study they observed 

strong linkage disequilibrium within the ADH genes but low linkage disequilibrium between 

the ADH genes. Surprisingly they had observed a strong association between alcohol 

dependence and SNPs in the ADH4 gene, low levels of association with the ADH1A and 

ADH1B genes and no significant associations with the ADH1C gene. 

 

The strongest region of association in the ADH4 gene was from intron 1 to 19.5kb 

downstream of exon 9 in which 12 SNPs were identified. Although previous studies have 

demonstrated the association between rs1800759 and alcohol dependence (Iida et al., 

2002;Giundalani et al.,2005), the study by Edenberg et al., (2006) found no significant 

associations. However this gene is located 860bp away from the SNP with the highest 

significant association, rs4148886, and is more than likely in strong linkage disequilibrium 

with it. 

 

No significant associations were found with the coding SNPs of ADH1B in the European 

American families as the alleles occurred at low frequencies. However, significant 

associations were observed with three adjacent SNPs in the ADH1B gene that occurred 

between intron 1 and the promoter region through to 1.5kb upstream of the initiation codon. 

A strong association was observed for ADH1B*3 and alcoholism in the African American 

sample which provided support for a role of ADH1B*3 in alcoholism susceptibility. The 

study by Edenberg et al., (2006) has provided strong evidence for a role of ADH4 in 

alcoholism and a weaker role for ADH1A and ADH1B in alcoholism susceptibility.  

  

This study represents the first molecular genetic analysis of the ADH4 gene in the 

development of FAS.  
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1.7.6 Aldehyde dehydrogenases (ALDH) 

Acetaldehyde is the metabolic product of ethanol metabolism in the liver. The major 

oxidation of acetaldehyde in the liver and other organs is carried out by aldehyde 

dehydrogenase. A number of isoenzymes of ALDH encoded by different gene loci have been 

detected in human organs and tissues which differ in their electrophoretic mobility, kinetic 

properties, and cellular and tissue distribution (Agarwal, 2001).  

1.7.6.1 ALDH2 

This gene encodes a mitochondrial enzyme that is expressed in various tissues but with the 

highest expression levels occurring in the liver. It contributes to acetaldehyde oxidation due 

to its low Km values, this facilitates the rapid clearance of acetaldehyde. Studies have shown 

that individuals who are heterozygous or homozygous for the ALDH2*2 allele, exhibit the 

‘alcohol flushing syndrome’ due to elevated levels of blood acetaldehyde. This is the result 

of a single base mutation in exon 12, resulting in a glutamate to lysine substitution which 

renders the catalytic properties of the enzyme inactive (Ramchandani et al., 2001). 

ALDH2*2 homozygosity alone, regardless of ADH1B and ADH1C protects against 

alcoholism due to the accumulation of acetaldehyde in the blood (Osier et al., 1999). This 

gene also exhibits ethnic differences between Orientals, Caucasians and Africans. The 

ALDH2*2 allele is frequently found among Asian individuals and there is evidence to 

suggest that it protects against alcoholism.  

1.8 Retinol metabolism 

Vitamin A is essential throughout life and its influence is most critical during pregnancy and 

childhood when cells proliferate and differentiate in response to different levels of vitamin A 

or RA. It is obtained from the diet and stored as retinyl esters, they are then hydrolysed to 

retinol and released into the bloodstream and transported bound to retinol-binding protein. 

Cells which require retinoic acid (RA) take up retinol and convert it to RA by the action of 

two types of enzymes. The first, retinol dehydrogenase, converts retinol to retinaldehyde and 

the second enzyme, retinal dehydrogenase, converts retinal to retinoic acid or vitamin A 

(Maden, 2000). Vitamin A exerts its function through the oxidised metabolites of retinol. 

 

Late in the 1930s it was recognised that maternal deficiency of vitamin A during pregnancy 

resulted in fetal death and congenital malformations. Wilson and co workers later 
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documented the congenital abnormalities with the major tissues affected being the heart, 

ocular tissues, urogenital and respiratory systems (Wilson et al., 1953). Embryonic 

malformations also result from excess vitamin A. In 1954 Cohlan identified malformations in 

rats when they were exposed to excess vitamin A. Major target tissues included the heart, 

skull, skeleton, CNS, brain, eyes and cranofacial structures (as cited in Zile, 1998). The 

overlap of tissues being affected by vitamin A deficiency or excess has indicated a critical 

role for vitamin A in the development of many organs (Zile, 1998).   

1.8.1 Inhibition of retinoic acid synthesis by ethanol 

Although alcohol dehydrogenase has traditionally been associated with ethanol metabolism, 

it does however also function in retinol metabolism. Both ADH and ALDH are able to 

oxidise retinol to retinaldehyde to RA. RA regulates gene expression in several biological 

processes by binding to nuclear receptors. ADH acts as a competitive inhibitor of ADH-

catalysed retinol oxidation because it can use either ethanol or retinol as a substrate (Duester, 

2000) (Figure 1.3). During a state of intoxication, class I ADH becomes saturated with 

ethanol. The excess ethanol may start binding to other ADHs such as ADH4. This will 

prevent the retinol from binding to the ADH4 thus blocking retinol oxidation and resulting in 

reduced RA levels during embryogenesis. Studies have also revealed that ADH1C may be 

transcriptionally regulated by RA (Duester, 1991). It is therefore suggested that ethanol 

consumption may reduce RA levels in the fetus, resulting in birth defects (Keir, 1991).   

 

Yelin et al., (2005) tested the hypothesis that the reduction of RA levels as a result of 

increased concentration of ethanol, affected several regulatory factors. They had exposed 

Xenopus embryos to ethanol and RA and examined the expression of known targets of RA 

signalling. These targets included the Hox, chordin, gsc, Cyp26 and Otx2 genes. The data 

revealed that while ethanol induced the up-regulation of gsc, RA had an opposite effect and 

down-regulated the expression of the gene. It was also shown that RA down-regulated the 

Otx2 and chordin genes while ethanol up-regulated these genes. The opposite effects of 

ethanol and RA were also observed in the Hox genes. These observations were consistent 

with the model that ethanol competitively inhibits RA synthesis, resulting in the reduction of 

RA levels in tissues (Yelin et al., 2005).  
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1.8.1.1 ADH4 

ADH4 is the best suited to the role of retinol dehydrogenase due to its high catalytic 

efficiency for retinol oxidation. Molecular modelling studies have shown that the ADH4 

active site is quite large and can easily accommodate retinol, indicating that it is not only 

adapted to accommodate ethanol (Yin et al., 1999). Gene expression studies in the mouse 

have shown that ADH4 is less efficient at ethanol metabolism than it is at retinol metabolism. 

ADH4 mRNA was undetectable at developmental stage E6.5 but was detectable at low levels 

at E7.5 in the primitive streak mesoderm and at higher levels at E8.5. The simultaneous 

expression of ADH4, ALDH1 and RALDH2(ALDH1A2) at stage E7.5 when RA is first 

detected, provides a compelling argument that these enzymes are designed to function in RA 

synthesis. The ability of ethanol to reduce the level of RA in mouse embryos at stage E7.5 

suggests that ethanol prevents the initiation of retinoid signalling needed for neural crest 

survival. This may be the result of ethanol-inhibition of RA synthesis catalysed by ADH4, 

therefore making cells that express ADH4 targets for the destructive effects of ethanol 

intoxication during early embryonic development (Duester, 2001). Along with ADH4, Class 

1 ADH was also found to function in vitro as a retinol dehydrogenase. It is less effective than 

ADH4 because its catalytic efficiency is 10-fold lower and docking studies indicate that 

retinol has a better fit with ADH4 than with ADH1A, ADH1B and ADH1C (Duester, 2001). 
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Figure 1.3: Schematic representation of how ethanol inhibits retinol metabolism via ADH pathway 

(Duester, 1991)
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1.8.1.2 ALDH1A2  

ALDHs are important in detoxification pathways because their isozymes are usually 

associated with altered drug metabolism and disease phenotype (Vasiliou et al., 2000). 

Members of the ALDH family catalyse the irreversible oxidation of retinaldehyde to RA. 

Two ALDH enzymes, cytosolic ALDH1A1 and mitochondrial ALDH1A2 have been studied 

in detail for their involvement in retinol oxidation.  

 

ALDH1A2. This gene is also known as RALDH2, and is the second enzyme that forms 

retinoic acid which is bound to cellular retinol-binding protein (CRBP), as well as unbound 

retinal. cDNAs for ALDH1A2 have been isolated from mouse, rat, human and chicken. 

ALDH1A2 has been well conserved throughout evolution as shown by high amino acid 

sequence similarity.  Studies from mouse and rat reveal that ALDH1A2 is strongly expressed 

in early embryonic trunk, forebrain and testis. It has the ability to oxidise retinaldehyde with 

high specificity. Both ALDH1A1 and ALDH1A2 contribute equally to retinoic acid synthesis 

but there is a difference in their affinity for the substrate retinol. RA affects mRNA levels for 

each differently in different tissues suggesting different physiological roles for each in 

generating RA. Knockout mice for ALDA1A2 have demonstrated the importance of this 

gene in RA synthesis as results showed the disruption of early embryonic development 

(Vasiliou et al., 2000). 

 

Thus for both the ADH and ALDH families, the forms most efficient for retinol metabolism 

differ from those that are most efficient for ethanol metabolism. ALDH1A2 was also 

specifically chosen as a candidate gene for this study due to its role in retinol metabolism. 
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1.9 Study objectives 

The aim of this study was to examine the role of the alcohol dehydrogenase genes in the 

development of FAS. Samples were collected from FAS-affected children, their mothers and 

healthy controls from two Coloured populations located in the Western and Northern Cape 

provinces.  

 

Objectives: 

To select polymorphisms within three ADH genes; ADH1B, ADH1C and ADH4 and within 

the ALDH gene; ALDH1A2.  

 

To design and optimise various PCR-based methods to genotype the individuals.  

 

To asses possible associations by comparing the observed allele, genotype and haplotype 

frequencies in the FAS-affected children, their mothers and controls for each region. 

 

To perform logistic regression analysis to examine the relationships between the variables 

disease status and genetic variation.  

 

To do linkage disequilibrium analysis to examine the extent of linkage disequilibrium 

between the markers studied. 

 

To use the haplotype analysis, linkage disequilibrium analysis and logistic regression 

analysis to examine the genetic diversity between the two populations from the provinces 

sampled.  
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2 Subjects and Methods 

2.1 Subjects 

This study was performed as part of a larger study initiated by Prof Denis Viljoen. Through 

this study I have had access to samples collected from the Western Cape and Northern Cape.  

Following informed consent, blood samples were collected from subjects from the two 

regions; Western Cape (Wellington) and the Northern Cape (De Aar). Blood samples from 

FAS-affected children, their mothers and in some cases fathers and siblings were collected. A 

total of 64 FAS-affected children, 63 mothers and 190 controls were genotyped from 

Wellington. A total of 45 FAS-affected children, 36 mothers and 112 controls were 

genotyped from the Northern Cape. All samples collected were ethnically and geographically 

matched. 

 

Samples were collected from the Coloured community as alcohol abuse has been identified 

as a serious health issue. The Coloured population is unique due to their genetic contributions 

from several populations including groups from Europe, Asia, India, Malay Archipelago, 

Madagascar, West Africa and also from indigenous South African groups (Botha, 1972). 

Individuals who participated as control subjects were asked about their ethnicity to make sure 

that the cases and controls were appropriately matched for ethnicity and geographic origins. 

Samples from individuals who were not from the communities of interest were excluded 

from the analysis.  

 

Children were diagnosed with FAS or ‘partial’ FAS by trained clinicians from the 

Department of Human Genetics at the NHLS. The initial screening involved measurements 

for head circumference, body height and weight. If measurements were below the 10
th
 

percentile for growth, they were examined by two independent physicians. When both 

physicians were in agreement with the diagnosis, a maternal interview was conducted. If a 

maternal history of alcohol abuse during pregnancy had been identified, a 

neurodevelopmental examination of the child was performed. Finally a case conference was 

held to determine the most accurate diagnosis (Viljoen et al., 2001). All samples were 

collected following a protocol approval by Ethics committees for research on human subjects 
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either from University of Cape Town or University of Witwatersrand (Appendix C and 

Appendix D) 

2.1.1 Blood storage 

A venous blood sample of 5-10ml was collected after informed consent was provided. The 

blood was collected in purple top vacutainer tubes which contain the anti coagulant agent 

called ethylenediamine tetra-acetic acid (EDTA). Samples were stored at -20°C after which 

the blood was transferred into 50ml NUNC tubes (Sterilin) until DNA extractions were 

performed.  

2.2 Methods 

2.2.1 DNA extraction and storage 

Samples from the Western Cape had previously been extracted using the ‘salting out method’ 

(Miller et al., 1988) and were available for this study. All the DNA samples were 

resuspended in 1X TE buffer (Appendix A) and stored at 4°C. Samples from the Northern 

Cape were extracted using a commercially available kit, Flexigene (Qiagen). These 

extractions were performed by the FAS research group and I participated in these extractions. 

All DNA samples were resuspended in the buffer provided and stored at 4°C. All working 

stock solutions were diluted to 100ng/µl after being quantified using the Nanodrop® 

spectrophotometer. 

2.2.2 Polymerase chain reaction (PCR) 

PCR allows for the exponential amplification of target specific DNA products. A set of 

primers are used that are complementary to the target sequence and flank the segment of 

DNA that is to be amplified. The template DNA is denatured so that the primers are allowed 

to anneal to the single-stranded target sequence. The annealed primers are then extended with 

a heat stable DNA polymerase such as DNA Taq polymerase. Repeated cycles of 

denaturation, annealing and extension result in the exponential growth of the target DNA 

sequence. Positive controls (DNA templates with known genotypes) and negative controls 

(all reagents but no DNA template) were used as control reactions for all PCR amplification 

experiments. All PCR primers used for this study were synthesised by Inqaba 
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Biotechnologies (Pretoria, South Africa). The general PCR protocol used was as follows; an 

initial denaturation step for 1 minute at 95°C, this was followed by 25 to 30 cycles of: 

denaturation at 95°C for 30 seconds, annealing at a primer set appropriate temperature that 

varied from 30 seconds to 1 minute and an elongation step at 72°C that varied between 30 

seconds and 1 minute. The final step was another elongation period at 72°C for 5 minutes.  

2.2.3 Selection of markers 

The candidate genes selected for this study include ADH1B, ADH1C, ADH4 and 

ALDH1A2. The first three genes function in the first step of the metabolism of alcohol and 

ADLH1A2 functions in the non-reversible second step. 

 

 

Ethanol                                  Acetaldehyde                                        Acetate 

 

Polymorphisms associated with the ADH1B and ADH1C loci had previously been genotyped 

in the samples from the Western Cape and for the purpose of this study will be typed in the 

new cohort of samples collected from the Northern Cape. ADH4 and ALDH1A2 associated 

polymorphisms have not been studied in either the Western Cape or the Northern Cape and 

will be genotyped in both groups. The entire dataset will be analysed together.  

2.2.3.1 ADH1B  

The ADH1B alleles were previously typed in the Western Cape samples as reported in 2001 

by (Viljoen et al., 2001) and in the MSc thesis of (Tshabalala, 2003). Results from the 

previous studies indicated that the ADH1B*2 allele was found to be significantly more 

commonly in the controls than the cases, suggesting that it may confer protection against the 

development of FAS or, be a marker for such protection.   

 

ADH1B is a polymorphic locus characterised by three alleles, these are: ADH1B*1, 

ADH1B*2 and ADH1B*3 which are in fact three ‘haplotypes’. Since there is a large body of 

data referring to the haplotypes as alleles, this terminology will be used in this dissertation. 

The two polymorphisms that characterise the haplotype occur in exons 3 and 9. In exon 3 at 

position 47, a arginine/histidine substitution results in alleles ADH1B*1 (the common allele) 

ADH ALDH  
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and ADH1B*2. In exon 9 at position 369, cysteine is substituted by arginine and results in 

the common allele ADH1B*1 and ADH1B*3. Restriction enzyme digestions were used to 

determine the alleles that were present at each exon. Positive (digested PCR product) and 

negative controls (undigested PCR product) were run on each gel as control reactions for the 

digestions. The alleles were combined into the final ‘haplotype’ which was used to ascribe a 

genotype at the ADH1B locus for each individual (Figure 2.3). 

 

 

 

Figure 2.1: An agarose gel image showing a restriction enzyme digest with MslI at exon 3 of the ADH1B 

gene. Lane 1 represents the molecular weight ladder, lane 2, 3, 5, 6, 7 are scored as homozygous 1/1 

(ADH1B*1/ ADH1B*1) and lane 4 is scored as heterozygous 1/2 (ADH1B*1/ ADH1B*2) 

 

 

 

 

 

Figure 2.2: An agarose gel image showing a restriction enzyme digest with Alw NI at exon 9 of the 

ADH1B gene. Lane 1 is the molecular weight ladder, lanes 2 to 8 are scored as homozygous 1/1 

(ADH1B*1/ ADH1B*1) and lane 9 is scored as a heterozygous 1/3 (ADH1B*1/ ADH1B*3). 
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Figure 2.3: An illustration of the scoring of alleles in ADH1B and their combined haplotypes which are 

referred to as ADH1B alleles in all publications. The alleles present in exons 3 and 9 are scored using 

PCR with the primers denoted A, B, C, D respectively and the information is combined to determine the 

final genotype for ADH1B. 
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2.2.3.2 ADH1C 

This polymorphic locus has two alleles, which result in the presence of either isoleucine or 

valine at position 349 in exon 8. The common allele is ADH1C*1 (isoleucine), and the rarer 

allele is ADH1C*2 (valine). They are distinguished using a restriction enzyme digestion with 

SspI as the restriction enzyme (NEB) (Figure 2.4).   

 

 

 

Figure 2.4: An agarose gel image showing a restriction enzyme digest with SspI at the ADH1C locus.. 

Lanes 2, 6, 7 are scored as heterozygous 1/2 (ADH1C*1/ ADH1C*2). Lanes 3, 4, 5, 8, 9, 10 are scored as 

homozygous 2/2 (ADH1C*2/ ADH1C*2) and lane 11 is scored as homozygous 1/1 (ADH1C*1/ ADH1C*1) 

2.2.3.3 ADH4 

This gene was selected as the main candidate in the study due to its role in both the ethanol 

and retinol metabolism pathways. The SNPs located in the ADH4 gene were selected from 

dbSNP according to frequency data and their potential functional impact or potential effect 

on the promoter activity (Edenberg et al., 1999; Iida et al., 2002). The SNPs selected from 

dbSNP include rs1042364 which results in an arginine/glysine substitution, rs1126671 which 

results in valine/isoluecine substitution and rs1126670, a synonymous amino acid change of 

proline/proline and two that affect promoter activity, rs1800759 and ADH4-2 (Edenberg et 

al., 1999;  Iida et al., 2002). For the purpose of this study we will refer to rs1800759 as 

ADH4.8 (Figure 2.7) and rs1126670 as ADH4.4 (Figure 2.5). 
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Figure 2.5: An agarose gel image demonstration a restriction enzyme digest with MboI for ADH4.4. Lane 

1 is the molecular weight ladder, lanes 2 to 7 and 9 are individuals who are homozygous T/T. Lane 8 is 

heterozygous G/T. 

 

2.2.3.4 ALDH1A2 

This gene was chosen as a candidate because it functions in the second part of the ethanol 

metabolism pathway. It is involved in the conversion of acetaldehyde to acetate. Two 

polymorphic markers (namely rs1061278 and rs1837855) were selected according to 

frequency data and potential functional impact. 

2.2.4 Primer design 

Published primer sequences were used for two polymorphisms in the ADH4 gene, ADH4.8 

and ADH4.2 (Iida et al., 2002; Edenberg et al., 1999). For the remainder of the 

polymorphisms, primers were designed using a program called Primer Select (DNA Star). 

The resulting primers were subjected to a BLAST search against the entire genome 

(http://genome.ucsc.edu) to make sure that they were 100% specific to the region of interest. 

Primer lengths varied from 25 to 33 bases in length (Table 2.2).  
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2.2.5 Genotyping 

Different PCR-based methods were used to determine the SNP genotypes. All PCR 

products were resolved on agarose gels by gel electrophoresis (Table 2.1). 

2.2.5.1 ARMS 

When performing the amplification refractory mutation system (ARMS) a total of three 

primers are used for each reaction to detect a single base change. Two primers, one each 

corresponding to the ‘normal’ and ‘mutant’ alleles and a third common primer are used in 

a single reaction. Normal and mutant DNA can be distinguished by demonstrating 

differential annealing of either the ‘normal’ or ‘mutant’ primers to the normal or mutant 

DNA sequence respectively. These primers are designed in such a way that a single base 

change occurs at the 3’ end of the primer. As a PCR control measure, a second set of 

primers that anneal elsewhere on the genome (arrows C in figure 2.6) are used as an 

internal control to ensure that the absence of a band is not due to PCR failure. The normal 

allele and mutant allele are amplified in separate PCR reactions (Figure 2.6 and Figure 

2.7). 

 

 

 

Figure 2.6: Illustration of the ARMS PCR technique. C represents the primers that will form the 

internal control band. N is the primer for the normal allele, M is the primer for the mutant allele and 

CR presents the common reverse primer. X marks the position of the polymorphism being detected 

(which is part of the primer). Amplification generates two PCR products, depending on the allele 

present. C/C = control band; N/CR product = band with normal allele; M/CR product= band with 

mutant allele. 

 

When this system was initially designed, it resulted in non-specific binding of both the 

normal and mutant primers to the template DNA. The primers were subsequently 

redesigned by shortening the primer lengths and adding a second mismatch at the 
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penultimate base at the 3’ end of the primer. This resulted in higher specificity for the 

PCR reaction and genotypes (in a subset of the samples confirmed by DNA sequencing).  

 

 

 

Figure 2.7: An agarose gel image showing an ARMS PCR profile for ADH4.8. Amplification is 

carried out separately for the normal and mutant alleles for each individual. The two PCR products 

are run on a gel and analysed together to form a genotype for one individual. Amplification of both 

PCR products indicates a heterozygous genotype while amplification of either the mutant or normal 

alleles indicates a homozygous genotype. 

2.2.5.2 SASA 

The Simultaneous Allele Specific Amplification (SASA) (DelRio-LaFreniere and 

McGlennen, 2001) is an adaptation of the ARMS method. This method uses four primers 

in one PCR reaction thereby allowing for quicker genotyping (Figure 2.8). One set of 

primers amplifies the locus specific product which serves as the internal control band. 

The third and fourth primers are the allele-specific primers, one for the ‘normal’ allele 

and one for the ‘mutant’ allele. A second mismatch was inserted at the penultimate base 

at the 3’end to ensure reduction of non-specific primer binding. The ‘mutant’ primer 

together with the reverse primer of the first set of primers will amplify the locus specific 

product. The wild type or ‘normal’ primer together with the forward primer of the first set 

of locus specific primers will form a PCR product (Figure 2.8). This system is designed 

in such a way that when the primers anneal, different size fragments are generated for 

each of the alleles. All PCR products were resolved on agarose gels using gel 

electrophoresis to determine the amplicon size and corresponding genotype. Although a 

great deal of optimisation was performed, results were not obtained for this system as the 

PCR conditions could not be optimised.  
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Figure 2.8: An illustration of the SASA method. C1 and C2 represent the primers that will form the 

locus specific product. N is the forward primer for the normal allele and M is the reverse primer for 

the mutant allele. X marks the position of the polymorphism being detected. Amplification is 

performed generating two different sized PCR products allowing for simultaneous detection of the 

normal and mutant alleles. C1/C2 product= locus specific product; N/C2 product= band with normal 

allele; M/C1 product=band with mutant allele. 

 

2.2.5.3 RFLP 

Restriction enzyme digestion was used when a single base pair change created or 

abolished a restriction enzyme recognition site. The PCR product was cut by the 

restriction enzyme resulting in different lengths of products depending on the presence or 

absence of the restriction site. The restriction enzyme recognition sites were identified 

using a program called MapDraw (DNA Star) or NEBcutter, v2 (www.neb.com). The 

digestion procedures were performed according to the manufacturer’s recommendations 

and 5 units of enzyme were used per reaction for all digestions of PCR products. All 

digestions were carried out at the recommended temperatures for 3 hours to ensure 

complete digestion. All digested PCR products were resolved on agarose gels to 

determine the genotype (Table 2.1). 
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Table 2-1: Description of restriction enzyme digestions to detect RFLPs 

Marker Restriction enzyme (units) Allele sizes              Reference 

ADH1B*2 MslI (5U)    Allele 1: 679bp          Osier et al.2002 

      Allele 2: 400bp + 279bp 

 

ADH1B*3 AlwNI (5U)   Allele 1: 202bp                    Xu et al.1988 

      Allele 2: 132bp + 70bp 

 

ADH1C*1 SspI (5U)   Allele 1: 377bp          Osier et al.2002  

      Allele 2: 274bp + 103bp 

 

rs1126671 HpyCH4III (5U)  Allele A: 363bp           Present study 

      Allele G: 241bp + 122bp 

 

rs1126670 MboI (5U)                              Allele T: 250bp           Present study  

      Allele G: 182bp + 68bp 

 

rs1061278 BfaI (5U)   Allele A: 366bp                     Present  study 

      Allele G: 166bp + 200bp 

 

rs1837855 Hpy188I (5U)   Allele C: 440bp                      Present study 

      Allele T: 215bp + 225bp  

Key: bp= base pairs 
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2.2.5.4 Agarose gel electrophoresis 

Electrophoresis through agarose gels using 1X TBE buffer, is the standard method used 

to separate, identify and purify DNA products. Between 10–15 µl of PCR product or 

digested PCR product was mixed with Ficoll dye (Appendix A) and then loaded into the 

wells of the agarose gels. The appropriate percentage of agarose for the gel was chosen 

depending on the size of the fragments that needed to be separated, e.g. for fragments that 

are small in size, a high percentage gel is used as the pore sizes are smaller due to the 

higher concentration of agarose used and vice versa for a low percentage gel. A constant 

voltage was applied and a molecular weight ladder was included in every gel, either a 

1Kb or 1Kb+ DNA ladder (NEB, Appendix B). Positive and negative controls were also 

run on every gel for quality control purposes. Once adequate separation occurred, a 

photograph of the gel was taken as a permanent record, using the Vacutec Gel 

Documentation system.   

2.2.5.5 DNA sequencing 

For each new method that was designed, sequencing was performed to confirm (i) the 

correct scoring of genotypes and (ii) that each system was optimised correctly for the 

specific detection of the alleles. Before sequencing was performed on the ABI Prism™ 

377 DNA Sequencer, a number of steps were performed.  

 

The selected PCR product was cleaned using the Nucleospin Extraction II kit. This 

column clean up procedure was performed to remove any unbound primers and dNTPs. 

Products were subsequently resolved on an agarose gel to ensure that sufficient PCR 

products remained after the column clean up procedure.  

 

When it was confirmed that there was sufficient PCR product, cycle sequencing was 

performed to label the PCR products using the BigDye Terminator v3.1 Cycle 

Sequencing kit (Applied Biosystems). Individual dideoxy nucleotides are labelled with 

different terminating fluorophores for each nucleotide. Different sized fragments are 

produced and when run through the sequencer gel or capillary, it provides sequence data 

for the entire length of the PCR product.  
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After cycle sequencing, a final column clean was performed using the DyeEx™2.0 Spin 

(Qiagen) protocol. This removes any unbound components from the cycle sequencing kit.  

 

Prior to loading into the wells of the vertical polyacrylamide gel, samples were denatured 

at 95°C for 2 minutes. The PCR products were resolved in 1X TBE buffer under constant 

voltage and data were analysed using the ABI Prism™ Sequencing Analysis software. 

Sequencing data were compared to a reference sequence to ensure the fidelity of the 

fragment.  

 

  A         B             C   

 

Figure 2.9: Electropherograms depicting the allelic variation at position 183bp at the ADH4.4 locus. 

A: G/G genotype, B: T/T genotype (position 185bp) and C: G/T genotype  

 

 

A     B       C  
 

 

Figure 2.10: Electropherograms depicting the allelic variation at position 99bp for the ADH4.8 locus. 

A: A/A genotype, B: A/C genotype and C: C/C genotype  
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2.2.5.6 Statistical Analysis 

The following analyses were performed by the author using a web-based statistical 

program (http://www.home.clara.net/sisa/); calculation of allele and genotype 

frequencies, HWE and associations using contingency tables. Statistically significant 

deviations from Hardy-Weinberg equilibrium were indicated by χ
2
 p-values less than 

0.05. Contingency tables (using the Fishers exact test) comparing the observed allele and 

genotype frequencies were used to detect possible associations between disease 

susceptibility and the marker of interest. All of the above were checked by a statistician. 

 

Haplotype inference, association studies, LD calculations and regression analysis were 

done by the statistician, Dr Lize van der Merwe, following consultation. The results were 

discussed with the statistician to ensure that they were correctly interpreted. All tests 

were calculated using the program ‘R’ with the ‘Genetics’ package (R development core 

team, 2005; Warnes and Leisch, 2005). The haplotypes were calculated using the package 

‘Haplostats’ (Sinwell and Schaid, 2005).  

 

The groups were examined for compliance to Hardy-Weinberg expectation to determine 

whether the groups sampled for this study were in equilibrium, providing evidence for a 

representative sample of a large randomly mating population. When two alleles, ‘A’ and 

‘a’ occur (with frequencies ‘p’ and ‘q’ respectively), p + q =1. HWE predicts that the 

genotype frequencies of AA, Aa and aa are p
2
, 2pq and q

2
 .This test assesses the potential 

sampling errors in the groups used for this study as well as possible genotyping errors. 

The exact test for HWE, using genotype distribution data for each polymorphic marker 

that was tested within each province and separately for the FAS children, mothers and 

controls was used. This method is preferred to the standard χ
2
 goodness-to-fit model as it 

controls for type I error (Wigginton et al., 2005).  

 

Associations between the polymorphic variants and the disease phenotype were assessed 

by the use of four statistical tests; allelic and genotypic associations, inferred haplotype 

analysis and logistic regression. For the allelic and genotypic tests, the Fisher’s exact test 

was used. The allelic and genotypic frequencies were compared between the FAS-
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affected children and the controls and between the mothers and controls for each province 

and a p-value was calculated. All p-values less than 0.05 were considered to be 

statistically significant.  

 

Four polymorphic markers were analysed together to calculate haplotypes with the 

markers in the following order as they were arranged in the genome: ADH1B-ADH1C-

ADH4.4-ADH4.8. The expectation-maximum (EM) algorithm as described by Schaid et 

al., (2002) was used to estimate the haplotype frequencies. Global tests for associations 

and haplotype-specific tests were calculated. The haplotype-specific scores allow for the 

evaluation of individual haplotypes when the global score indicates a statistically 

significant finding.    

 

Haplotype distribution and frequencies were examined in both provinces. Each haplotype 

was given a score according to the difference in frequencies between the cases (either 

FAS-affected children or mothers) and the controls. A global simulation p-value (Global 

sim p) represents the p-value for the group comparison and ‘p’ represents the p-value for 

each individual haplotype. For each province, the FAS-affected children were compared 

to the controls and the mothers were compared to the controls. In addition, an analysis 

was performed to examine the genetic makeup of the population. Firstly all the samples 

were grouped together (FAS-effected children, mothers and controls) and compared 

between provinces then the FAS-affected children were compared to each other between 

the provinces (FAS-affected children in WC vs FAS-affected children in NC)  and the 

same for the mothers and controls.  

 

Logistic regression analysis was used to determine the odds of being a case or a control 

according to the observed genotype. Two models were derived to compare the FAS-

affected children to the controls and secondly to compare the mothers to the controls. A 

third model was derived to examine genetic make-up by combining the controls from 

both provinces. For each model all the terms or covariates such as ‘province’ and 

‘genotype’ were added, and in a stepwise fashion terms were dropped. The Akaike 

criterion, as implemented in the R package, was used to remove the covariates until the 
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best fit for each model was found (the Akaike criterion is at a minimum) (Venables, 

2002). A global p-value was calculated which represented how best the model fitted the 

data. All p-values less than 0.05 were considered as statistically significant. Individual p-

values were also calculated for each covariate in the model. Results from these analyses 

were used to confirm any associations found in the allelic, genotypic and haplotype 

analyses.  

 

Markers that are in close proximity to disease-causing variants on a chromosome are co-

inherited more often than expected and this is demonstrated by linkage disequilibrium. It 

was therefore important to examine the extent of LD between the markers used in this 

case-control association study. In association studies the polymorphic variants that are 

tested may not necessarily be the causative factors for susceptibility and therefore 

association studies rely on linkage disequilibrium to help identify disease-causing 

markers (Zondervan and Cardon, 2004). LD is influenced by a number of factors such as 

recombination, time, natural selection, mutation, genetic drift, population substructure 

(e.g. admixture), population size and mating patterns. The commonly used measurement 

for LD is the disequilibrium coefficient D;  D = P11 – p1q1 where P11 is the observed 

frequency of 1/1 haplotype, p1 is the frequency of the ‘1’ allele at locus 1 and q1 is the 

population frequency of ‘1’ at locus 2 (Haines and Pericak-Vancem, 1998). The 

disequilibrium coefficient can be difficult to interpret because its maximum value is 

dependant on allele frequencies. Two measures, correlation coefficient (r
2
) and 

Lewontin’s D’ have been standardised to lie between -1 and 1 are often used instead of D 

(Haines and Pericak-Vance, 1998). 

 

Table 2.3: The equations for the measures of LD for two alleles, A and B, at different loci 

Correlation coefficient  r
2
 = D/{(Pr(A)[1-Pr(A)] Pr(B)[1-Pr(B)]} 

 

Lewontin’s D   D’ =    D/min{Pr(A)[1-Pr(B), Pr(B)[1-Pr(A)]} if D> 0 

                                                           D/min {-Pr(A) Pr(B), - [1-Pr(A)][1-Pr(B)]}if D<0 

Key: Pr(A) = frequency of A allele; Pr(B) = frequency of B allele  
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If both r
2
 and D’ are zero then no allelic association exists, and they fall between -1 and 

1, thus their maximum values are not dependant on allele frequencies. 

   

Linkage disequilibrium was used to study the genetic composition of the two Coloured 

populations that were studied by examining the patterns of LD between the two control 

groups in the Western and Northern Cape 

 

Post-test power based on allelic frequencies was to provide insight into the likelihood that 

the observed results would be replicated in another similar sized study.  

 

When studying complex diseases, the chance of detecting false positives exists and 

increases with the number of polymorphisms examined. Therefore consideration should 

be given to correcting for multiple testing. However, using tests such as the Bonferroni 

test which is considered to be very conservative runs the risk of loosing any significant 

associations found. Chance associations may also be detected if the correction methods 

are not stringent enough or with the use of tests that assume independence. It must be 

noted that different polymorphisms within a gene or different genes may not be 

independent. A possible solution to these problems is to use the false discovery rate and 

sequential analysis (Romero et al., 2002). In this study we chose not to correct for 

multiple testing as the SNPs were non-randomly selected.   
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3 Results 

To detect associations numerous statistical analyses were performed, these included allele 

and genotype association tests, calculating haplotypes and studying their distribution 

amongst the groups and between populations. Logistic regression analysis was performed 

to examine the relationship between variables such as disease status, genetic variation, 

geographic origin and linkage disequilibrium. The results are presented and analysed in 

the following sections.  

3.1 Genotype and allele frequencies 

Genotypes determined at polymorphic loci in the ADH1B, ADH1C and ADH4 genes 

were generated as described in the methods section. ADH1B, ADH1C and ADH4 

genotyping was performed in the samples from FAS-affected children referred to as ‘FAS 

children’, in the mothers of the FAS-affected children, referred to as ‘Mothers’ and 

finally in random ethnically and geographically matched controls referred to as 

‘Controls’. The allele frequencies were determined by simple gene counting. A brief 

comment on the observations of each locus follows. Genotype and allele counts and 

frequencies are shown in Tables 3.1 -3.4.  

 

ADH1B (Table 3.1): The common allele in all groups from both regions was ADH1B*1 

occurring at frequencies of over 0.90, with the exception of the control group in the 

Western Cape where it occurred at a frequency of 0.85. Alleles ADH1B*2 and 

ADH1B*3 were relatively rare (11% in the WC controls) but showed some differences 

i.e. (geographic origins and study groups). In the Northern Cape, ADH1B*2 was not 

observed in the FAS-affected children and was only observed once in the mothers. In the 

Western Cape the highest frequency was observed in the controls. The genotypes 

ADH1B(2/2), (2/3) and (3/3) were not observed in any of the groups examined in the 

Northern Cape, however they were observed in the controls from the Western Cape, 

although there were very few individuals with those genotypes. 

 

ADH1C (Table 3.2): The common allele at this locus was ADH1C*1, occurring at high 

frequencies in all groups, ranging from 0.77 in the Northern Cape controls to 0.86 in the 
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mothers in the Northern Cape. The most common genotype was ADH1C(1/1) with the 

least frequent being ADH1C(2/2). The latter was not observed in the mothers from the 

Northern Cape and was only observed once in the Western Cape. 

 

ADH4 (Table 3.3): Genotyping was performed with two polymorphic variants associated 

within the ADH4 locus; ADH4.4 (rs1126670) and ADH4.8 (rs1800759). The third 

marker, rs1226710, proved to be uninformative with all the individuals homozygous for 

the common allele.  The most common genotype at ADH4.4 was T/T, occurring at high 

frequencies in all three groups examined from both the provinces. The rarest genotype in 

all three groups was G/G. The two alleles of the ADH4.8 polymorphism occurred at 

frequencies of ~0.50 and as a result, the common genotype was A/C in all groups from 

both regions. In the Western Cape, the A/A genotype was more common in the FAS-

affected children and their mothers than the controls while in the Northern Cape, the A/A 

genotype was more common in the controls than the FAS-affected children or mothers.  

 

ALDH1A2: Both polymorphic markers tested proved to be uninformative and were not 

included in the analyses. 
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Table 3-1: Allele and genotype frequencies for ADH1B in the study groups from the Western and 

Northern Cape provinces. The frequency of genotypes and alleles are represented by f and the 

observed number of individuals is shown by n. 

Province    FAS children  Mothers Controls  

Western Cape  Genotype  f   n      f   n  f     n 

   1/1  0.83 48  0.84 49 0.74 132  

1/2  0.09   5  0.07       4 0.18   32 

1/3  0.09   5  0.09   5 0.05         9 

2/2  0   0  0.01     2 

2/3  0   0  0.02     3 

3/3  0   0  0.01     1 

Total  58   58  179 

 

Allele 

1  0.91 106  0.92 107 0.85 305 

2  0.04     5  0.03     4 0.11   39 

3  0.04     5  0.04     5 0.04   14 

Total  116   116  358 

________________________________________________________________________ 

Northern Cape  Genotype  

   1/1  0.91 41  0.89 32 0.92 102 

   1/2  0   0.03   1 0.05     5  

   1/3  0.09  4  0.08   3 0.04     4  

   2/2  0   0  0   

   2/3  0   0  0 

   3/3  0   0  0 

   Total  45   36  111 

 

   Allele 

1  0.96 86  0.94 68 0.96 213 

2  0   0.01   1 0.02     5 

3  0.04   4  0.04   3 0.02    4 

Total  90   72  222 
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Table 3-2: Allele and genotype frequencies for ADH1C in the study groups from the Western and 

Northern Cape provinces. The frequency of genotypes and alleles are represented by f and the 

observed number of individuals is shown by n. 

Province    FAS children  Mothers Controls  

Western Cape  Genotype f n  f n f n 

1/1  0.67 39  0.60 34 0.57 102 

   1/2  0.29 17  0.39 22 0.41   73 

   2/2  0.03     2  0.01   1 0.02     3 

   Total   58   57  178 

 

   Allele 
   1  0.82 95  0.79 90 0.78 277 

   2  0.18 21  0.21 24 0.22 79 

   Total   116   114  356 

________________________________________________________________________ 

Northern Cape  Genotype f   n  f   n f    n 

   1/1  0.70 31  0.72 26 0.59  66 

   1/2  0.25 11  0.28 10 0.37  41 

   2/2  0.05   2  0   0 0.04    5 

   Total   44   36  112 

 

   Allele 
   1  0.83 73  0.86 62 0.77 173 

   2  0.17 15  0.14 10 0.23 51 

   Total   88   72  224 
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Table 3-3: Allele and genotype frequencies for rs1126670 (ADH4.4) in the study groups from the 

Western and Northern Cape provinces. The frequency of genotypes and alleles are represented by f 

and the observed number of individuals is shown by n. 

Province    FAS children  Mothers Controls  

Western Cape  Genotype f   n  f   n f    n 

G/G  0.02   1  0.04   2 0.01    1 

       T/G  0.27 14  0.31 15 0.25    41 

   T/T  0.71 37  0.65 32 0.75 124 

   Total   52   49  166 

 

   Allele   
   G  0.15 16  0.19 19 0.13   43 

   T  0.85 88  0.81 79 0.87 289 

   Total   104   98  332 

________________________________________________________________________ 

Northern Cape  Genotype f   n  f   n f    n 

G/G  0.02   1  0.03   1 0.02   2 

   T/G  0.19     8  0.21   7 0.26 28 

   T/T  0.79 33  0.76 25 0.72 77 

   Total   42   33  107 

 

   Allele 
   G  0.12 10  0.14   9 0.15   32 

   T  0.88 74  0.86 57 0.85 182 

   Total   84   66  214 
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Table 3-4: Allele and genotype frequencies for ADH4.8 (rs1800759) in the study groups from the 

Western and Northern Cape. The frequency of genotypes and alleles are represented by f and the 

observed number of individuals is shown by n. 

Province    FAS children  Mothers Controls 

Western Cape  Genotype f   n  f   n f   n 

A/A  0.26   8  0.38 12 0.16 25 

   A/C  0.58 18  0.47 15 0.48 74 

   C/C  0.16   5  0.16   5 0.36 56 

   Total   31   32  155 

 

   Allele 
   A  0.55 34  0.61 39 0.40 124 

   C  0.45 28  0.39 25 0.60 186 

Total   62   64  310 

________________________________________________________________________ 

Northern Cape  Genotype f   n  f   n f   n 

A/A  0.16   7  0.14   5 0.26 29 

   A/C  0.64 28  0.65 22 0.50 56 

   C/C  0.20   9  0.21     7  0.24 27 

   Total   44   34  112 

 

   Allele 
   A  0.48 42  0.47 32 0.51 114 

   C  0.52 46  0.53 36 0.49 110 

   Total   88   68  224 
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3.2 Hardy-Weinberg equilibrium (HWE) 

At loci ADH1B, ADH4.4 and ADH4.8, all genotype frequencies were found to be in 

HWE. The genotypes at ADH1C in the Western Cape controls (p= 0.0153) were found to 

deviate from HWE. No p-value could be generated using the ‘R’ program for the FAS 

affected children samples from the Northern Cape group since only two of the possible 

six genotypes were observed. 

 

 If a sample is not in HWE, it may suggest one of the following: (a) genotyping error, (b) 

a sample which poorly represents the populations or (c) a chance finding. To address the 

first issue, all data were re-examined for genotyping errors (and were subsequently shown 

to be correct when analysed independently by another researcher). Since only genotypes 

at the ADH1C locus deviated from HWE, it does not suggest that the samples collected is 

not representative of the population in the Western Cape.  

 

Table 3-5: Hardy-Weinberg equilibrium analysis p-values shown for all the polymorphisms tested in 

the Western and Northern Cape for each group (FAS children, Mothers and Controls) 

Marker  FAS children  Mothers Controls  

Western Cape 

ADH1B  1   1  0.4367   

ADH1C  1   0.4243  0.0153   

ADH4.4  1   1  0.3156  

ADH4.8  0.4764   1  1   

________________________________________________________________________ 

Northern Cape 

ADH1B  N/A   1  1 

ADH1C  0.5845   1  0.7926   

ADH4.4  0.4543   0.4665  1   

ADH4.8  0.1285   0.1655  1 

Key: bold = p < 0.05
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3.3 Tests for associations with susceptibility for FAS 

Allele and genotype frequencies of the FAS-affected children and their mothers were 

used to test for association between FAS and the alcohol metabolism gene loci (Table 

3.6).  

3.3.1 Allele and genotype associations 

 

The polymorphisms for ADH1B and ADH1C had previously been studied in the Western 

Cape region and these results were published in 2001 (Viljoen et al., 2001). An additional 

fourteen FAS-affected children and 13 mothers were added to the Western Cape cohort 

and the data were re-analysed.  

 

The allele frequencies observed at ADH1B confirmed a significant association (p=0.038) 

in the mothers of the Western Cape but did not reach significance (p=0.089) when the 

FAS-affected children were compared to the controls. The post-test power for detecting a 

significant difference, given the sample size, was only 57%. Allele 1 (ADH1B*1) 

occurred in 92% of the mothers compared to 85% in the controls. Allele 2 (ADH1B*2) 

occurred in 4% of the mothers and in 11% of the controls and allele 3 (ADH1B*3) 

occurred at the same frequency (4%) in both groups. It was inferred that allele 2 was 

likely to be a marker for protection as it was significantly more common in the control 

than the mothers. The allele comparison at ADH1B between the FAS-affected children 

and the controls in the Western Cape almost reached significance (p= 0.089). The lack of 

significance, compared to the published results, may be attributed to the single additional 

allele 2 observed in the FAS children. 

 

ADH1B genotype comparisons did not reveal significant associations. The ADH1B(1/1) 

genotype was the most common genotype amongst all the groups in both provinces with 

the 1/2, 2/2 and 2/3 genotypes being less common (Table 3.2). 

 

No significant associations were found for ADH1C when analysing the genotypes or the 

alleles. The common genotype for ADH1C was ADH1C(1/1) occurring at high 
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frequencies in the FAS-affected children, their mothers and controls in both the Western 

and Northern Cape regions. The least common genotype was ADH1C(2/2) in all three 

groups, however it was not observed in the mothers from the Northern Cape region.  

 

Two polymorphic markers (ADH4.4 and ADH4.8) were genotyped at the ADH4 locus. 

Allelic association studies were significant for the second locus, ADH4.8, in the Western 

Cape for both the FAS children (p= 0.035) and their mothers (p= 0.002) when compared 

to the controls. The allele responsible for the association was the ‘A’ allele as it was 

significantly more common in the FAS-affected children and their mothers than the 

controls (55%, 61% and 40%, respectively). Interestingly, when genotypes were 

compared a significant association was only found in the mothers (p=0.010 for the 

genotype C/C), although the FAS children did show borderline significance (p= 0.061). It 

is worth noting that in the Western Cape the A/A genotype was more common in the FAS 

children and mothers compared to the controls (26%, 38% and 16%, respectively) while 

the C/C genotype was more common in the controls than in the FAS children and 

mothers (36%, 16% and 16% respectively). These trends were not observed in the 

Northern Cape. The post-test power for detecting associations with the ADH4.8 locus 

was higher in the Western Cape (44% and 75%) when compared to the Northern Cape 

(6% and 6%).

3.3.2 Haplotype analysis 

When comparing the mothers to the controls in the Western Cape (Table 3.7), the global 

simulation p-value almost reached significance (p= 0.065) indicating that there might be a 

significant difference between the mothers and the controls. The most common haplotype 

was 11TC occurring in 39% of the controls and 30% in the mothers. Individuals with a 

21TC haplotype were more likely to be controls (p = 0.010) and individuals with a 11TA 

or 11GA haplotype were more likely to be cases (p = 0.043 and p = 0.035, respectively). 

In the Northern Cape, the mothers were not significantly different from the controls (as 

indicated by the non-significant global simulation p-value, p=0.788)). No haplotypes 

showed significant differences in this group. When the mothers were compared to each 

other between the two provinces the global simulation p-value was 0.398 indicating that 

the mothers’ genotypes were similar in each of the provinces (Table 3.9). 
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The results for the comparison of FAS-affected children and controls within each 

province showed no significant difference in either the Northern or Western Cape regions 

(p = 0.806 and p = 0.450) (Table 3.8). The most common haplotype was 11TC occurring 

with a frequency of 38% in the FAS-affected children in Northern Cape and 33% in the 

Western Cape FAS-affected children. In the Western Cape individuals with 21TC 

haplotype were more likely to be controls (p = 0.033) and individuals with 11TA were 

more likely to be a FAS-affected individual (p= 0.015) occurring with a frequency of 

31% compared to 19% in the controls.  

3.3.2.1 WC vs NC 

Interesting differences were observed when comparing the three study groups within the 

provinces (Table 3.9). The results show that the controls were significantly different to 

each other (p= 0.0019). The FAS-affected children and the mothers in the different 

provinces were not significantly different to each other (p= 0.339 and p = 0.398 

respectively). The comparison of controls between the provinces resulted in a highly 

significant result (p= 0.0019) suggesting that there are significant genetic differences 

between the Coloured populations in the two provinces. To elucidate the genetic makeup 

of the two populations sampled, all three sample groups were combined and compared 

between the provinces. The results show that the two Coloured populations seem to be 

genetically different (p=0.0067). These results guided us not to pool the samples of the 

two provinces as they appeared to have significantly different histories and structures. 

The results of the haplotype analysis however, showed that even though the Coloured 

populations in the provinces appeared to differ from each other, the genotypes of the 

FAS-affected children and mothers were similar in the Western and Northern Cape 

regions. 
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Table 3-7: Haplotype analysis showing the estimated haplotype frequencies (f) in the controls and 

cases (FAS children or mothers) and the likelihood of association (p) in the Western Cape Coloured 

population     

Haplotype  Global sim p Hap score control ƒ case ƒ  p   

FAS vs Controls 0.450  

21TC     -2.135  0.088  0.033  0.033 

12TC     -1.314  0.111  0.040  0.098 

11TC     -0.117  0.376  0.332  0.899 

12TA      0.095  0.045  0.084  0.919 

12GA      0.098  0.052  0.007  0.929 

21TA      0.135  0.010  0.000  0.908 

31TA      0.417  0.033  0.044  0.687 

11GC      0.573  0.009  NA  0.632 

11GA      0.905  0.065  0.093  0.376 

11TA      2.302  0.193  0.311  0.015 

________________________________________________________________________ 

Mothers vs Controls 0.065 

21TC     -2.586  0.088  0.000  0.010 

11TC     -1.073  0.376  0.298  0.303 

12TC     -0.929  0.111  0.086  0.354 

12GA          0.296  0.052  0.048  0.785 

31TA      0.537  0.033  0.045  0.617 

12TA      0.612  0.045  0.063  0.558 

11TA      2.153  0.193  0.284  0.043 

11GA      2.185  0.065  0.140  0.035 

 Key: Hap score = haplotype score, f = frequency, NA = not available, bold = p<0.05
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Table 3-8: Haplotype analysis showing the estimated haplotype frequencies (f) in the controls and 

cases (FAS children or mothers) and the likelihood of association (p) in the Northern Cape Coloured 

population.     

Haplotype  Global sim p Hap score control ƒ case ƒ  p   

FAS vs Controls 0.806 

12GA     -1.428  0.040  0.003  0.141 

11GA     -0.667  0.085  0.063  0.491 

12TA     -0.245  0.069  0.079  0.825 

12TC     -0.243  0.096  0.089  0.816 

11TA      0.085  0.297  0.287  0.930 

11TC      0.969  0.352  0.389  0.323 

31TA      1.097  0.016  0.038  0.223 

________________________________________________________________________ 

Mothers vs Controls 0.788 

12TC     -1.060  0.096  0.038  0.288 

12TA      0.894  0.069  0.100  0.392 

12GA     -0.830  0.040  NA  0.376 

11TA     -0.601  0.297  0.196  0.559 

21TC     -0.446  0.022  NA  0.931 

11GA      0.346  0.085  0.111  0.726 

31TA      1.186  0.016  0.041  0.279 

11TC      1.374  0.352  0.479  0.152 

Key: Hap score = haplotype score, f = frequency, NA = not available, bold = p<0.05
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Table 3-9: Haplotypes analysis between the provinces for the FAS-affected children, mothers and 

controls 

Haplotype  Global sim p Hap score WC ƒ  NC ƒ  p   

All samples  0.0067 
21TC     -3.768  0.062  0.016  0.000 

21TA     -2.087  0.011  0.000  0.033 

12GA     -0.844  0.051  0.031  0.399 

31TA     -0.829  0.036  0.025  0.412 

12TC     -0.518  0.101  0.086  0.602 

11GA     -0.085  0.081  0.079  0.933 

11GC      0.550  0.013  0.016  0.420 

12GC      0.855  NA  0.011  0.420 

11TC      0.923  0.357  0.378  0.357 

12TA      0.954  0.047  0.070  0.346 

11TA      2.170  0.226  0.285  0.032 

________________________________________________________________________ 

Controls  0.0019 
21TC     -3.431  0.088  0.022  0.000 

31TA     -1.046  0.033  0.016  0.284 

12TC     -0.649  0.111  0.096  0.516 

11TC     -0.316  0.376  0.352  0.756 

12GA       0.087  0.052  0.040  0.933 

11GA      0.799  0.065  0.085  0.420 

12TA      1.236  0.045  0.069  0.218 

12GC      1.689    0.020  0.056 

11TA      2.772  0.193  0.297  0.005 

________________________________________________________________________ 

FAS   0.339 

12GA     -1.545  0.007  0.003  0.131 

11GA     -0.372  0.093  0.093  0.063  

11TA     -0.150  0.311  0.287  0.894 

31TA     -0.015  0.044  0.038  1.000 

12TA      0.273  0.084  0.079  0.789 

12TC      0.654  0.040  0.089  0.529 

11TC      0.876  0.332  0.389  0.392 

11GC      0.890  NA  0.046  0.375 

________________________________________________________________________ 

Mothers  0.398   

12GA     -1.073  0.048  NA  0.301 

12TC     -0.791  0.086  0.038  0.446 

11GA     -0.756  0.140  0.111  0.434 

12TA     -0.502  0.063  0.100  0.621 

11TA     -0.425  0.284  0.196  0.677 

31TA     -0.105  0.045  0.041  0.840 

11TC      2.305  0.298  0.470  0.022 

Key: Hap score = haplotype score, f = frequency, NA = not available, WC = Western Cape, NC = Northern 

Cape, bold = p<0.05
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3.3.3 Logistic regression 

Three logistic regression models were generated; two to assess significant associations 

between the polymorphisms studied, geographic region and disease outcome and a third 

model to examine the genetic differences between the samples from the two geographic 

regions (Table 3.10).  

 

In the first model, the genotype data for the provinces were pooled and the FAS-affected 

children were compared to the controls. This model contained the covariates of province 

and the marker ADH4.8. The baseline genotype for this model was ADH4.8(A/A) and 

the baseline province Northern Cape and all the individual p-values were based on the 

baselines. This model demonstrates that an individual from the Western Cape has reduced 

probability of being a case (p= 0.018). The results also indicated that an individual with 

either genotype A/C or C/C has an increased probability of being a control or a reduced 

chance of being affected, compared with the A/A genotype.  

 

The second model compared the mothers to the controls and highlighted the difference in 

patterns observed in the Western and Northern Cape regions. This model also highlighted 

the interaction of ADH4.8 in each province. Individuals in the Northern Cape with a 

ADH4.8(A/C) or ADH4.8(C/C) genotype have an increased probability of being a mother 

of a FAS child. However in the Western Cape individuals with the A/C and C/C 

genotypes have a reduced chance of being a case and those with the A/A genotype have 

an increased probability of being a case.  

 

To assess whether the two populations groups were similar to each other, in order to pool 

the data to increase the power, a third model was generated using only the controls from 

both provinces. When comparing the controls between the two regions, the model 

revealed that individuals with ADH1B(2/2), ADH1B(2/3) and ADH1B(3/3) genotypes 

were more likely to occur in the Western Cape. This model suggested a significant 

genetic difference between the Coloured populations of the Northern and Western Cape 

regions. This was also observed in the haplotype analysis and as a result of the genetic 
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diversity between the two regions, the samples could not be combined to create a larger 

sample size. 

 

Table 3-10: Logistic regression analysis on genotype probabilities in FAS-affected children vs 

Controls, mothers of children with FAS vs Contols and NC vs WC (Controls only) 

Model   Covariate  estimate std error p value             

FAS-affected children vs Controls  

 

Global sim p         0.011 

Intercept  -1.005  0.312  0.0010 

WC   -0.636  0.268  0.0180 

   ADH4.8(A/C)  -0.636  0.342  0.0180  

   ADH4.8(C/C)  -0.409  0.415  0.3250 

________________________________________________________________________ 

Mothers vs Controls 

 

Global sim p         0.016 

   Intercept  -1.758  0.484  0.0000 

   ADH4.8(A/C)   0.824  0.546  0.1310 

   ADH4.8(C/C)   0.408  0.644  0.5260 

ADH4.8(A/A)WC  1.024  0.598  0.0870  

   ADH4.8(A/C)WC -0.662  0.379  0.0810 

   ADH4.8(C/C)WC -1.066  0.631  0.0910 

________________________________________________________________________ 

NC vs WC(controls) 

 

Global sim p         0.001 

   Intercept  0.2580  0.132  0.0505 

   ADH1B(1/2)  1.5980  0.499  0.0013 

   ADH1B(1/3)  0.5530  0.615  0.3680 

   ADH1B(2/2)  15.308       1029.121  0.9880  

   ADH1B(2/3)  15.308         840.274  0.9850 

   ADH1B(3/3)  15.308       1455.398  0.9910 

Key: bold= p<0.05



 66 

3.4 Linkage disequilibrium (LD)  

In this study, LD was examined in the controls independently for each province and then 

combined. This resulted in the observation of interesting patterns of LD. When referring 

to the figures, all red blocks indicate high linkage disequilibrium (as indicated by the 

corresponding p-value), orange indicates moderate linkage disequilibrium and light 

brown indicates low or no linkage disequilibrium. The measures of LD (as calculated in 

the R package); D and D’ and r are shown in each block respectively. 

 

When all the controls were combined, ADH1B had the strongest LD with ADH4.4 and a 

high LD with ADH1C (Figure 3.1). ADH4.4 and ADH4.8 were also in very strong LD 

with each other. In the Western Cape cohort, LD patterns were similar to those observed 

when all the control samples were combined (Figure 3.2). It was shown that ADH1B was 

in strong LD with ADH4.4, and in moderate to high LD with ADH1C, and ADH4.4 and 

ADH4.8 were in strong LD. However, the patterns of LD observed in the Northern Cape 

cohort differed slightly from that in the Western Cape cohort (Figure 3.3). ADH1B was 

in high LD with ADH1C but ADH4.4 and ADH4.8 were in strong LD with each other. 

 

Generally, LD between ADH1B and ADH1C and between ADH4.4 and ADH4.8 is 

higher than the LD between ADH1C and ADH4.4.  This was expected since a greater 

physical distance occurs between ADH1C and ADH4.4.The observed differences in 

patterns of LD between the provinces suggest that there might be differences in 

population histories for the two groups. These differences contribute to the LD patterns 

observed when the two groups are combined This is supported by haplotype and logistic 

regression analysis.  
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Figure 3.1: LD estimates for all the controls. 

 

  

Figure 3.2: LD estimates for the controls from the Western Cape 
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Figure 3.3: LD estimates for controls from the Northern Cape
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4 Discussion 

In this study we adopted the candidate gene case-control study design approach and 

focused our attention on the alcohol dehydrogenase genes since they play a vital role in 

first pass metabolism of alcohol. Several polymorphic variants of the ADH1B, ADH1C 

and ADH4 genes have been examined in two Coloured populations from the Western and 

Northern Cape regions. These two population groups were chosen as the incidence of 

FAS has been found to be the highest in the world.  

 

It is known that FAS is a result of fetal exposure to alcohol. Although no individual 

mechanism has been identified as the main cause for the resulting damage, studies have 

shown that alcohol is able to affect the fetus by three possible routes. It can affect the 

fetus directly or through the exposure to metabolites such as acetaldehyde or alcohol can 

inhibit retinoic acid (RA) synthesis. By examining the ADH genes in the two Coloured 

communities, this project sought out to determine whether they play an important role in 

the disease pathogenesis. 

4.1 The ADH1B and ADH1C genes and their role in the susceptibility to FAS 

4.1.1 ADH1B 

In the South African Western Cape Coloured population the ADH1B*2 allele has been 

associated with a protective effect against the development of FAS i.e. it occurred at a 

significantly higher frequency in the control population than the sample group of mothers 

(Viljoen et al., 2001). However, in the present study (representing an extension thereof), 

no significant associations were observed in the FAS-affected children samples from the 

Western Cape, perhaps due to the inclusion of the additional FAS-affected children. This 

observation could be due to the small sample size and low power. The analysis of the 

ADH1B genotypes (in the present study) resulted in a weakly significant association. The 

group of mothers from the Western Cape had a significant association between 

ADH1B*2 and the protection against the development of FAS, which was consistent with 

the observations from the previous study by Viljoen et al., (2001). Interestingly, no 
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significant associations were observed for allelic or genotypic association analysis in the 

Northern Cape Coloured sample. 

 

Haplotype analysis performed to examine the interaction of the polymorphisms described 

in this study revealed that the alleles of ADH1B and ADH4 played a role in disease 

susceptibility. Individuals with both the ADH1B*2 allele and the ‘C’ allele of ADH4.8 

have a greater probability of being in the control group in the Western Cape region (Table 

3.7). This suggests that the presence of these two alleles in a haplotype confers some 

protection against the development of FAS. The presence of the ADH1B*1 allele and the 

‘A’ allele of ADH4.8 in a haplotype showed an increased risk of being a case as it had a 

high haplotype score of 2.772 (p= 0.005). This is an interesting finding as it suggests that 

the interaction between these two loci or variants in strong LD with them, may increase 

the risk of being affected with the disease or being a mother of a FAS-affected child.  

4.1.2 ADH1C 

The ADH1C gene has been found to be associated with an effect that is protective against 

alcoholism only because of its strong disequilibrium with ADH1B*2. This was 

demonstrated in a haplotype based analysis between Taiwanese Chinese alcoholic and 

non-alcoholic individuals. The association with alcoholism was due to an allelic variation 

at the ADH1B*2 site. The observation that the ADH1C*1 allele was decreased in the 

alcoholic Taiwanese Chinese individuals relative to the control individuals was thought to 

be a result of the strong linkage disequilibrium with the ADH1B*2 allele(Osier et al., 

1999).  

 

The ADH1C*1 allele which encodes an enzyme with a high Vmax results in efficient 

alcohol metabolism. An individual with an efficient alcohol metabolising enzyme may be 

likely to consume more alcohol and accumulate more metabolites thereby increasing the 

risk of FAS. It was therefore surprising not to find any significant associations with this 

locus and FAS in our study cohort. LD analysis revealed that there was stronger LD 

between ADH4.4 and ADH1C than ADH1B and ADH1C in the Western and Northern 

Cape regions.  
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The only significant finding was that the control frequencies did not meet with HWE 

expectation in the Western Cape region. This could be due to population stratification, 

selection bias, skewed or non-representative sampling and chance. All the results were 

independently scored for genotype assignment and duplicate sample testing suggests that 

genotyping errors are an unlikely explanation. It is probably a chance observation given 

that with a 5% significance level, one would expect deviation from HW proportions in 

one out of every 20 markers tested. From these studies it seems unlikely that ADH1C 

plays a significant role in FAS susceptibility in the Western and Northern Cape 

provinces.  

4.2 The role of ADH4 in the pathogenesis of FAS  

ADH4 plays a role in two important physiological processes; alcohol metabolism and RA 

synthesis. A model proposed by Duester (1991) hypothesises that alcohol interferes with 

RA synthesis via the ADH pathway. The resulting RA deficiency may contribute to the 

development of FAS since the symptoms of RA deficiency overlap with those of FAS. 

Supporting evidence for this comes from kinetic studies which show that when 

concentrations of alcohol in the bloodstream are high, alcohol competitively inhibits 

retinol from binding to ADH4 and reduces the levels of local retinoic acid. RA is critical 

for embryogenesis and organogenesis (Yin et al., 2003).  

 

The allelic association tests identified the ‘A’ allele at ADH4.8 (rs1800759) as a 

susceptibility factor as it occurred more commonly in the FAS-affected children samples 

and the mother’s samples than in the control samples (p= 0.035 and p= 0.002 

respectively). At the genotypic level, the A/A genotype was more common in the mothers 

and the C/C genotype was more common in the controls (p = 0.010). This genotype 

difference was only marginally significant in the FAS-affected children (p= 0.061). The 

implications of these results in the mothers compared to the FAS-affected children will be 

discussed in section 4.3. 
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Logistic regression analysis revealed that ADH4.8 was a possible susceptibility marker 

but that its effect was population specific. The C/C genotype was more common in the 

mothers and the FAS-affected children (Table 3.4) from the Western Cape only. However 

this was not a statistically significant finding. Further support for ADH4.8 as a possible 

susceptibility marker was provided by haplotype analysis (section 4.11). The haplotype 

analysis suggested that the ‘C’ allele may confer a possible protective effect while the ‘A’ 

allele was more common in the FAS children and their mothers, possibly playing a role in 

increasing the risk of developing FAS.  

 

Previous studies examining the alleles of ADH4.8 have shown that the frequencies vary 

between different populations. The frequency distribution observed in our study of the 

Western Cape population was most similar to that described by (Luo et al., 2005) in the 

European American population they sampled. The allele frequencies in the African 

American population were quite different to those in the European Americans with the 

‘A’ allele being the most common. The study by (Guindalini et al., 2005) showed allele 

distributions similar to those observed in the African Americans with the most common 

allele being the ‘A’ allele (Table 4.1). Both studies by (Guindalini et al., 2005) and (Luo 

et al., 2005) found that the ‘A’ allele was associated with an increased risk of developing 

alcoholism. 

 

Previous studies have identified the allelic variants of ADH4.8 as being responsible for 

the change in the ADH4 promoter activity. The presence of the ‘C’ allele has been shown 

to decrease the promoter activity while the presence of the ‘A’ allele increases the 

promoter activity (Edenberg et al., 1999). An interesting observation can be made from 

the haplotype analysis. The ADH1B*1 allele together with the ‘A’ allele from ADH4.8 

was found to increase the probability of being a FAS-affected child or a mother of a FAS-

affected child while the ADH1B*2 allele together with the ‘C’ allele was shown to confer 

protection against developing the disease.  

 

A hypothesis can be proposed from these observations that may provide support for the 

model proposed by Duester (1999). This model proposes that a diversion of fetal ADH 
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activity away from retinol metabolism may lead to the lowering of retinoic acid levels in 

tissues. This is due to the ADH enzymes being involved in alcohol metabolism during 

alcohol intoxication because of their high km for alcohol rather than retinol. As a result 

these enzymes will not be available for retinol metabolism. Thus a high maternal dose of 

alcohol in an individual who has a relatively low rate of alcohol metabolism may lead to 

prolonged inhibitory effect on RA synthesised by the fetus for normal development 

 

 The ADH1B*1 allele which results in a slower alcohol clearance rate (Takeshita et al., 

1996) and therefore results in an increased amount of alcohol in the bloodstream, was 

found to be associated with the ‘A’ allele of ADH4.8 which causes increased promoter 

activity. Due to the increased promoter activity, the level of ADH4 protein increases and 

may bind to some of the excess alcohol circulating in the bloodstream. This may 

competitively inhibit retinol from binding to the ADH4 protein as proposed by the 

Duester (1991). If the excess alcohol levels are of such a magnitude that even in the 

presence of increased levels of ADH4 they block retinol binding, the local retinoic acid 

levels may decrease and this may increase susceptibility to FAS as retinoic acid is 

required for normal embryogenesis and it is thought that decreased levels of RA may 

contribute to the development of FAS. This may explain why these two alleles were 

associated with an increased risk of being a FAS-affected child or being a mother of a 

FAS-affected child. 

 

The ADH1B*2 allele has a faster alcohol clearance rate (Takeshita et al., 1996) and has 

been associated with the ‘C’ allele of ADH4.8. The ‘C’ allele results in decreased 

promoter activity. Due to the faster alcohol metabolism rate at ADH1B, the excess 

alcohol is metabolised rapidly thus allowing retinol synthesis to occur optimally as the 

excess alcohol will not inhibit it from binding to ADH4. This is suggestive of a maternal 

protective effect. 

 

The result of fast alcohol metabolism is the rapid accumulation of acetaldehyde. This 

metabolite is able to pass through the placenta into the fetus and may have a toxic effect 

on the fetus (Chaudhuri, 2000). The build up of acetaldehyde also results in adverse 
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symptoms that should prevent further drinking but its effects go unnoticed due to the 

extreme binge drinking patterns occurring in these communities. The results from this 

study indicate that acetaldehyde may not play a significant role as one would expect. The 

data suggested that having a faster alcohol clearance rate due to the interaction between 

ADH1B and ADH4 may have a protective effect against FAS.  
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4.3 The impact of the maternal and fetal genotypes on disease outcome 

Prenatal alcohol exposure results in a spectrum of disorders of which, FAS is at the 

extreme end. Studies have shown that not all children born to mothers who drink during 

their pregnancies are born with FAS. Some children are unharmed while others may have 

partial characteristics of FAS. This raises the question as to whether the maternal or fetal 

genotypes or a combination of both, play a role in the disease outcome. In this study we 

examined the FAS-affected children and their mothers to determine whether their 

genotypes do play a role in disease pathogenesis. 

 

The marker ADH4.8(rs1800759) best demonstrated the impact of the maternal and fetal 

genotypes on the disease outcome. The mothers had a higher frequency of the ‘A’ allele 

compared to the FAS-affected children (61% vs 55%). The ‘A’ allele has been shown to 

increase the activity of the ADH4 promoter activity. The FAS-affected children had a 

higher frequency of the ‘C’ allele compared to the mothers (45% vs 39%) and this allele 

has a lower promoter activity. Genotypic association tests revealed that the A/A genotype 

was significantly different between the mothers and the controls (p= 0.010). This 

suggests that mothers with a faster alcohol metabolism rate are at an increased risk of 

having a child with FAS. This could be due to factors such as the exposure to 

acetaldehyde as a result of the fast alcohol metabolism or the competitive inhibition 

between alcohol and retinol, preventing retinol from binding to ADH4 and resulting in 

reduced retinoic acid synthesis. Evidence to support this hypothesis can be drawn from a 

study conducted by (Bhalla et al., 2005). ADH activity was measured in the liver and 

intestines in rats that were prenatally exposed to alcohol. The study found that the ADH 

activities were low in the pups which accounted for the high concentration of alcohol in 

the tissues. Since no ADH activity has been detected in the placenta and ADH activity 

seems to be low in the fetus, it suggests that the maternal metabolic pathway is largely 

responsible for the removal of circulating alcohol from the blood (Bhalla et al., 2005).  

 

However, when examining the ADH1B locus, we found that ADH1B*2 was protective in 

the mothers from the Western Cape. This allele is known to metabolise alcohol faster 
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(Takeshita et al., 1996) and this faster clearance rate would prevent the fetus from being 

exposed to too much alcohol.  

 

This finding contradicts the observations made for ADH4.8 which showed that faster 

alcohol metabolism increased the risk of having a child with FAS. Although these results 

seem to contradict each other, the effect of ADH4.8 on disease outcome appears to be 

greater than ADH1B due to the power at which the associations were detected. The post-

test power revealed that the results for ADH4.8 had a 75% chance of being replicated in 

another study indicating that these findings were more than likely to be real findings and 

not a spurious association.  

4.4 Genetic diversity of the Western and Northern Coloured populations 

One of the biggest confounding factors in studying complex diseases is population 

stratification. Association studies are usually performed in samples of unrelated 

individuals to identify susceptibility loci. Spurious associations may arise due to the 

differences in allele frequencies if the cases and controls are not appropriately matched 

by ethnicity (Risch, 2000). To overcome this problem in the current study, the cases and 

controls were ethnically and geographically matched. It is thought by some researchers 

that the use of admixed populations would allow for the easier detection of disease-

causing variants. However, in the present study this is complicated by the fact that 

admixture is an ongoing process. The South African Coloured population falls within the 

continuous gene flow (CGF) model of admixture (Halder and Shriver, 2003). This model 

states that admixture is occurring in each generation at a steady rate. As a result linkage 

disequilibrium is increased between markers on the same chromosome and it is thought 

that the linkage disequilibrium may be helpful in identifying possible disease markers. 

 

To examine the genetic make-up in the two regions, haplotype analysis, logistic 

regression and linkage disequilibrium analysis were performed. A very important and 

perhaps not entirely surprising finding from this study was the genetic diversity observed 

between the two South African Coloured populations resident in the Northern and 
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Western Cape regions. Due to the genetic diversity observed between the two regions, 

each dataset generated was analysed separately.  

 

Through haplotype analysis, we found that the Western and Northern Cape controls were 

significantly different to each other (p = 0.0019). Further support was provided by 

logistic regression which revealed that the presence or absence of three ADH1B 

genotypes; ADH1B(2/2), ADH1B(2/3) and ADH1B(3/3) distinguished the two province 

cohorts from each other (these genotypes were only observed in the Western Cape 

controls). Finally linkage disequilibrium testing revealed different patterns between the 

two populations. Published studies on alcoholic and non-alcoholic individuals from three 

Taiwanese populations (n = 61 and n =87 for alcoholic samples and controls respectively) 

and Taiwanese Chinese populations (n = 128 and n=135 for alcoholic samples and 

controls respectively) have shown that ADH1B is in strong LD with ADH1C however 

there was low LD between ADH4 and the ADH1 gene cluster (Osier et al., 1999). In 

1987, Murray et al. showed that LD existed between two polymorphic sites (StuI and 

XbaI) on the ADH1C gene in a sample of European Americans. LD has also been 

examined between ADH1B, ADH1C, ADH4 and ADH5 in samples of mixed European 

Americans and Swedes (Edman and Maret, 1992). The researchers found strong LD 

between ADH1B and ADH1C and between ADH4 and ADH5. Low LD was observed 

between the Class I genes and either the ADH4 or ADH5 genes. More recently Osier et 

al., (1999) examined LD in ADH1B, ADH1C and ADH7 genes in 40 populations. Six 

polymorphic sites were examined in the Class I gene family and one in the ADH7 gene. 

In all the populations studied, significant LD occurred within the Class I genes sites. 

Pairwise LD also occurred between ADH7 and some sites in the ADH1 gene cluster.  

However in the South African Coloured population it was found that ADH1B was in 

stronger LD with ADH4.4 than ADH1C. This finding shows that the South African 

Coloured community is genetically different to other populations throughout the world. 

In the Western Cape, LD showed that ADH1B had highest LD with ADH4.4 and in the 

Northern Cape, ADH1C was in high LD with ADH4.4. This demonstrates the contrasting 

results obtained for the two provinces.  
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The finding that the Western Cape and Northern Cape Coloured people are different to 

each other was not surprising as a previous study examining Y chromosome variation 

also showed significant genetic diversity between groups of South African Coloureds 

(Motlidile,2004). Individuals from three different Coloured communities within South 

Africa were studied; Cape Malay, Cape Coloured from the Western Cape and a Coloured 

community from Johannesburg. The study showed that the Cape Coloured community 

was most similar to the Johannesburg Coloured community and both these differed from 

the Cape Malay group. The Cape Malay community was shown to have a higher Y 

chromosome contribution from Asia (46%) compared to the higher African paternal 

contributions in the Cape Coloured and Johannesburg Coloured groups (Motlidile,2004). 

These findings support historical data on the movement of people into the Western Cape.  

 

Settlement in the Western Cape dates as far back as 1652 when some of the first 

European settlers arrived to form a supply base for travellers. As a consequence of this 

colonisation and the need for cheap labour, slaves were brought in from Asia, India, East 

and West Africa (Botha, 1972). The Coloured populations each have a unique genetic 

background due to differing genetic contributions from the Europeans, Asians, Africans 

and local indigenous groups that settled in the Western Cape. 

 

The Coloured communities were chosen for this study because they have the highest rates 

in FAS in the world. We had hoped to combine the two datasets generated from the two 

provinces sampled to create a larger sample size. Due to the diverse genetic contributions 

from the various parental populations, the datasets could not be pooled. An important 

criterion in evaluating a case-control study is the ability to replicate the results. Although 

we failed to replicate some significant results in the Northern Cape province, all the 

appropriate measures were taken to attempt to control for population stratification. Even 

though the populations were found to have different genetic backgrounds, when the 

mothers and the FAS-affected children were compared to each other between the two 

provinces, haplotype analysis revealed that there were no significant differences between 

these two groups. This in itself is a very important finding as it suggests a similar genetic 
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background within these two groups that may reflect a common role in disease 

susceptibility. 

4.5 ADH and brain development  

The most severe symptom of FAS is poor neurological development. Alcohol can affect 

the developing brain either directly or indirectly, causing regions of the brain that deal 

with cognitive skills, motor skills, memory, learning and decision making to be severely 

affected.  

 

Direct alcohol exposure causes abnormalities in the serotonin/glutamate neurotransmitter 

system, the premature conversion of glial cells into astrocytes and cell death via apoptosis 

and necrosis. Free radicals, which are produced as a result of alcohol metabolism cause 

oxidative stress. The occurrence of excess free radicals increases the toxicity levels in the 

cell which can induce apoptosis (Goodlett and Horn, 2001). The CNS is also vulnerable 

to damage by alcohol because the cells located there have a very low threshold for 

alcohol (Welch-Carre, 2005). 

 

Could the ADH genes regulate the amount of alcohol exposure to the brain? The 

distribution of ADH has been studied in the brain and neither ADH1 nor ADH4, the 

enzymes largely responsible for alcohol metabolism, have been found to be expressed in 

human brain tissue. However ADH3 has been found in the regions of the brain that are 

severely affected by alcohol exposure such as the hippocampus, cerebellum and corpus 

callosum. It has been proposed that ADH3 might play a role in alcohol metabolism in 

these tissues (Galter et al., 2003). In recent years, an alternative pathway has been 

proposed for brain ethanol-oxidising properties that involves the enzyme catalase. It is 

thought that brain catalase oxidises ethanol through its peroxidatic activity (Quertemont 

et al., 2005). 

 

The ADH genes involved in retinoid signalling via the ADH pathway have not been 

detected in the brain implying that retinoic acid synthesis occurs via other secondary 

pathways. There is increasing evidence that retinoid signalling plays an important role in 



 82 

the function of the adult brain. Detection of retinoid components in the brain suggest that 

retinoic acid can by synthesised in certain regions of the brain (Lane and Bailey, 2005). 

Animal models have also been used to demonstrate that the retinoic acid present in brain 

tissue can activate gene expression in these same areas. 

 

As none of the ADH loci we studied appear to be present in the brain it would appear that 

any susceptible or protective effect in brain development would be a result of lowering 

levels of blood alcohol that reach the brain during development.  

4.6 Limitations of the study 

A major limitation of this study is the small sample size. This study demonstrated that the 

samples from the Western and Northern Cape regions could not be pooled and therefore 

larger numbers of samples need to be collected from each particular region. Numerous 

factors contribute to the difficulties in collecting samples, these include; access to the 

rural areas, children left in the care of guardians due to early mortality of mothers, lack of 

telephones, high mobility within and out of the regions in search of employment. It is also 

difficult to collect information and blood samples or cheek swabs due to the sensitive 

nature of the disease. There is a risk of families being ostracised from their communities 

because of the stigma associated with FAS.  

 

The controls were randomly selected individuals collected from the two Coloured 

communities and their unknown FAS status could be considered a confounding factor in 

this study.  

 

Many of the statistically significant associations found in the Western Cape were not 

detected in the Northern Cape. The sample size needs to be increased in each region to 

determine if these differences are due to low power in detecting associations or are real 

differences.   

 

The extent of admixture needs to be studied in great detail to detect to which extent 

different parental populations have contributed to the populations. A possible future 
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direction for this project is to use family-based association study designs such as the 

transmission disequilibrium test (TDT). These strategies have become common in the 

study of complex diseases as they avoid spurious associations related to population 

stratification. Another strategy being used to assess population stratification is the use of 

polymorphic markers that are not linked to the candidate genes associated with the 

disease. An absence of an association will provide evidence that any association found in 

the cases and controls is not spurious (Silverman and Palmer, 2000). Family studies pose 

certain disadvantages such as the need to genotype more individuals (affected sibling and 

two parents), locate all the members of the family and in particular to locate the fathers. 

In the instances where fathers are absent, the siblings will be used. This study design will 

be used in future studies to support the results from the current association study. Great 

effort is being made to collect the large numbers of samples that are required from these 

communities.  

 

In this study, we did not correct for multiple testing. The chances of finding spurious 

associations when studying complex diseases is always high when examining large 

numbers of polymorphisms in a complex disease. To overcome this problem stringent 

tests such as the Bonferroni correction have been used. However, the use of such 

corrections often means the loss of genuine associations. It is thought by some 

researchers that finding spurious associations when studying a polymorphism that has 

functional significance to the disease in question, is greatly reduced (Daly and Day, 

2001). Our most significant finding in this study involved the ADH4.8 (rs1800759) 

polymorphism which has been shown to affect promoter activity. 
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4.7 Future directions 

The ADH4 gene locus has been identified as a possible susceptibility locus involved in 

the pathogenesis of FAS. With the completion of Phase I of the HapMap project 

(Altshuler et al., 2005) it is now possible to select other informative SNPs in the ADH4 

gene that might be associated with the development of FAS. HapMap aims to create a 

database containing common human sequence variation. The database will contain 

information on common SNPs and information on LD throughout the genome. One 

advantage of this is the ability to select tag SNPs for association studies. The use of such 

informative markers reduces redundancy and minimises the loss of information. However 

it needs to be established whether the populations we study exhibit similar LD and 

haplotype blocks to those used to generate the data for HapMap. 

 

The SASA method developed to detect SNP rs1042363 from the ADH4 gene, needs to be 

optimised to test whether it plays a role in the disease as it was shown previously to be 

associated with alcohol and drug dependence. Due to the lack of robustness of technique 

in our hands, this method could not be optimised. It has been shown to be very specific 

method for detecting genotypes and will minimise the time taken generating results as 

compared to the ARMS method.  

 

As mentioned previously, family based association studies may help to overcome the 

effect of population stratification. Samples are currently being collected for this part of 

the study.  

 

Significant associations have been found with ADH4 and other genes involved in the 

retinal pathway that may play a role in FAS etiology. One such gene is ALDH1A2 (also 

known as RALDH2), needs to be genotyped in the current cohort of samples.   
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4.8 Conclusion 

South Africa has the highest incidence of FAS in the world (40 per 1000 affected children 

in the Coloured community of the Western (Viljoen et al.,2001) and it poses a major 

health risk. The identification of the genetic factors that place a fetus at risk of the 

harmful effects of prenatal alcohol exposure and the elucidation of the mechanism by 

which alcohol causes its toxic effects may give researchers a better understanding of the 

disease.  

 

The data from this study has led to the proposal of a model involving ADH1B and ADH4 

in the development of FAS. When the ADH1B*2 allele occurs with the ‘C’ allele of 

ADH4.8, it results in a protective effect or acts as a marker of decreased risk. This 

suggests that individuals with a faster alcohol metabolism via the ADH1B gene may be 

protected from developing FAS. When ADH1B*1 occurred with the ‘A’ allele of 

ADH4.8, this increased the risk of being affected with FAS. In this instance, the excess 

alcohol due to the slower alcohol clearance rate may competitively inhibit retinol from 

binding to ADH4, thus resulting in reduced levels of retinoic acid synthesis. These results 

provide support for a model proposed by Duester (1991) suggesting that the etiology of 

FAS is due to the competition of alcohol and retinol for ADH4 leading to increased or 

decreased levels of RA.  

 

Our results indicate that mothers with a faster alcohol metabolism were at an increased 

risk of having a child with FAS. In the fetus, it was shown that a slower metabolism 

protected the fetus from developing FAS. There is some contradiction between the roles 

of ADH1B and ADH4, where one functions differently the other is quantitatively 

increased, it is difficult to tell which gene plays a more important role. However one can 

assume that the interaction between ADH1B and ADH4 plays an important role in 

disease etiology.  

 

An interesting outcome of this study was the observed diverse genetic backgrounds of the 

two Coloured groups sampled. Significant associations were not always replicated 
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between the groups possibly as a result of this diversity, indicating that susceptibility or 

protective factors may vary in these genetically distinct populations. 

  

This study has provided evidence that ADH4 is likely to play an important role in the 

pathogenesis of FAS due to the highly significant associations that were found in the 

Coloured group of samples from the Western Cape province.  
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6 Appendix A: Solutions 

 

1% Alconox solution 

1g Alconox per 100ml dH2O 

 

0.5M EDTA (pH 8.0) 

93.6g  EDTA into 400ml dH2O 

pH to 8.0 with NaOH pellets 

Make to 500ml with dH2O 

Autoclave 

 

10X dNTPs 

125µl  dATP(10mM stock) 

125µl   dCTP(10mM stock) 

125µl  dGTP(10mM stock) 

125µl  dTTP(10mM stock) 

500µl ddH2O 

 

Ficoll loading dye 

50g  sucrose 

10ml  0.5M EDTA 

0.1g  0.1% bromophenol blue 

10g  10% Ficoll 

make up to a final volume of 100ml with dH20 

 

Saturated NaCl 

100ml  autoclaved dH2O 

Slowly add 40g NaCl until saturated. 

Let NaCl precipitate out before using by gently agitating 
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Sucrose-Triton X lysing buffer 

20ml  1M Tris HCL 

10ml  1m Mgcl2 

20ml  Triton-X 100 

Make up to 2l with dH2O 

Autoclave 

Add 109.5g sucrose per litre just before use and keep chilled 

 

0.1M Spermidine 

0.5g  Spermidine 

20ml  dH2O 

Aliquot into 1ml Eppendorf tubes 

Store at -20°C 

 

T20E5 

10ml  1M Tris-HCL (pH 8.0) 

5ml  0.5M EDTA (pH 8.0) 

Make up to final volume of 500ml with dH2O 

Autoclave 

 

1M Tris-HCL(pH 8.0) 

60.55g  Tris in 400ml dH2O 

pH using concentrated HCL 

Make up to final volume of 500ml with dH2O 

 

Molecular weight marker  

10.9µl   1kb ladder 

5µl  ficoll dye 

84µl  1X TE buffer 
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Polyacrylamide gel master mix for sequencing 

36g  Urea 

10ml  10X TBE buffer 

10.6ml  40% BIS-acrylamide 

50ml  ddH2O 

Filter and store in the dark at 4°C 

 

Polyacrylamide gel mix 

30ml  Gel master mix 

150µl  10% APS solution 

18µl  TEMED 

 

10X TBE buffer 

108g  Tris 

55g  Boric Acid 

7.44g  EDTA 

Make up to final volume of 1l with dH2O 

Autoclave 
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7 Appendix B: Molecular weight markers 
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8 Appendix C: Ethics approval for the Western Cape study 
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9 Appendix D: Ethics approval for the Northern Cape study 
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10 Appendix E: Complete genotype dataset for the Western and Northern Cape  

ID Status ADH1B ADH1C ADH4.4 ADH4.8 prov 

NPF 001 FAS 1/1 1/2 T/T A/C NC 

NPF 002 M 1/1 1/2 T/T C/C NC 

NPF 009 M 1/1 1/1 T/T C/C NC 

NPF 010 FAS 1/1 1/1 T/T A/C NC 

NPF 012 M 1/1 1/1 T/T   NC 

NPF 013 FAS 1/1       NC 

NPF 015 M 1/1 1/2 T/T A/C NC 

NPF 017 FAS 1/1 1/1 T/T A/C NC 

NPF 018 FAS 1/1 1/2 T/T A/C NC 

NPF 019 M 1/1 1/1 T/T C/C NC 

NPF 020 M 1/1 1/2 G/T A/A NC 

NPF 022 FAS 1/1 1/1 G/T A/C NC 

NPF 024 FAS 1/1 1/1 T/T A/C NC 

NPF 025 M 1/1 1/1 T/T A/C NC 

NPF 026 FAS 1/1 1/1 T/T A/C NC 

NPF 027 M 1/1 1/1 T/T A/A NC 

NPF 028 FAS 1/3 1/1 T/T A/C NC 

NPF 029 M 1/3 1/2   A/A NC 

NPF 031 FAS 1/1 1/1 T/T A/C NC 

NPF 032 M 1/1 1/1 T/T A/C NC 

NPF 033 M 1/1 1/1 T/T A/C NC 

NPF 034 FAS 1/1 1/1 T/T A/C NC 

NPF 035 M 1/1 1/1 G/T A/C NC 

NPF 036 FAS 1/1 1/1 G/T C/C NC 

NPF 038 FAS 1/1 1/1 G/T A/C NC 

NPF 039 M 1/1 1/1 T/T A/A NC 

NPF 040 M 1/1 1/1 T/T C/C NC 

NPF 042 FAS 1/1 1/1 T/T C/C NC 

NPF 043 M 1/1 1/1     NC 

NPF 044 FAS 1/1 1/1 G/T A/A NC 

NPF 045 FAS 1/1 2/2   C/C NC 

NPF 046 M 1/1 1/2   A/C NC 

NPF 047 FAS 1/1 1/2 T/T C/C NC 

NPF 048 M 1/1 1/1 T/T C/C NC 

NPF 049 FAS 1/3 1/1 T/T A/C NC 

NPF 050 M 1/3 1/1 T/T A/C NC 

NPF 052 M 1/1 1/1 T/T A/C NC 

NPF 053 FAS 1/1 1/1 T/T A/A NC 

NPF 054 FAS 1/3 1/1 G/T A/C NC 

NPF 055 M 1/1 1/1 G/G A/C NC 

NPF 057 M 1/1 1/1 G/T A/C NC 

NPF 059 FAS 1/1 1/1 G/G A/C NC 

NPF 060 FAS 1/3 1/1 T/T A/C NC 

NPF 061 M 1/3 1/1 T/T A/C NC 

NPF 062 FAS 1/1 1/1 T/T C/C NC 
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NPF 063 M 1/1 1/1 G/T A/C NC 

NPF 064 M 1/1 1/1 G/T A/C NC 

NPF 065 FAS 1/1 2/2 T/T C/C NC 

NPF 066 FAS 1/1 1/1 T/T A/C NC 

NPF 067 M 1/1 1/2 T/T A/C NC 

NPF 069 FAS 1/1 1/1 T/T A/C NC 

NPF 070 M 1/1 1/1 T/T A/C NC 

NPF 071 M 1/1 1/1 T/T C/C NC 

NPF 072 FAS 1/1 1/1 T/T A/C NC 

NPF 074 M 1/1 1/1 T/T A/C NC 

NPF 078 FAS 1/1 1/1 T/T A/C NC 

NPF 080 M 1/2 1/1 T/T A/C NC 

NPF 082 FAS 1/1 1/1 T/T A/C NC 

NPF 083 FAS 1/1 1/1 T/T C/C NC 

NPF 085 FAS 1/1 1/2 G/T A/C NC 

NPF 086 FAS 1/1 1/1 T/T A/A NC 

NPF 089 FAS 1/1 1/1 T/T A/C NC 

NPF 090 M 1/1 1/2 T/T A/C NC 

NPF 091 FAS 1/1 1/2 T/T C/C NC 

NPF 092 M 1/1 1/2 T/T C/C NC 

NPF 093 FAS 1/1 1/1 T/T C/C NC 

NPF 094 FAS 1/1 1/1 G/T A/C NC 

NPF 095 FAS 1/1 2/2 T/T A/A NC 

NPF 096 M 1/1 1/2 T/T A/C NC 

NPF 098 FAS 1/1 1/2 T/T A/C NC 

NPF 099 FAS 1/1 1/2 T/T A/C NC 

NPF 102 FAS 1/1 1/1 T/T A/A NC 

NPF 104 FAS 1/1 1/1   A/C NC 

NPF 105 M 1/1 1/1 T/T A/C NC 

NPF 106 FAS 1/1 1/2 T/T A/A NC 

NPF 107 M 1/1 1/2 T/T A/C NC 

NPF 108 FAS 1/1 1/2 T/T A/C NC 

NPF 109 M 1/1 1/2 G/T A/A NC 

NPF 110 FAS 1/1 1/2 G/T A/A NC 

NPF 111 M 1/1 1/1 G/T A/C NC 

NPF 112 FAS 1/1 1/1 T/T A/C NC 

NPC 001 control 1/1 1/2 T/T C/C NC 

NPC 003 control 1/1 2/2 G/T A/A NC 

NPC 004 control 1/2 1/1 G/T A/C NC 

NPC 005 control 1/1 1/1   C/C NC 

NPC 006 control 1/1 1/2 G/T A/C NC 

NPC 007 control 1/1 1/1 G/T A/C NC 

NPC 008 control 1/1 1/1 T/T C/C NC 

NPC 009 control 1/1 1/2 T/T A/C NC 

NPC 010 control 1/1 1/2 T/T C/C NC 

NPC 011 control 1/1 1/2   A/C NC 

NPC 012 control 1/3 1/1   A/C NC 

NPC 013 control 1/1 1/2 T/T A/C NC 
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NPC 014 control 1/1 1/2 T/T C/C NC 

NPC 015 control 1/1 1/2 T/T A/A NC 

NPC 017 control 1/2 1/1 T/T C/C NC 

NPC 018 control 1/1 1/1 T/T A/A NC 

NPC 019 control 1/1 1/2 T/T A/C NC 

NPC 021 control 1/1 1/1 T/T C/C NC 

NPC 022 control 1/1 1/1 G/T A/A NC 

NPC 023 control 1/1 1/2 T/T C/C NC 

NPC 024 control 1/1 1/1 G/T A/A NC 

NPC 025 control 1/1 1/2 G/T A/C NC 

NPC 026 control 1/1 1/1 T/T C/C NC 

NPC 027 control 1/1 1/1 T/T A/C NC 

NPC 028 control 1/1 1/1 T/T A/C NC 

NPC 029 control 1/1 1/2 T/T C/C NC 

NPC 030 control 1/1 1/2 T/T C/C NC 

NPC 031 control 1/2 1/1 T/T A/C NC 

NPC 032 control 1/1 1/1 T/T A/C NC 

NPC 033 control 1/1 1/1 T/T A/C NC 

NPC 034 control 1/1 1/1 T/T C/C NC 

NPC 035 control 1/1 1/1 T/T C/C NC 

NPC 036 control 1/1 1/2 T/T A/C NC 

NPC 037 control 1/1 2/2 G/G A/C NC 

NPC 038 control 1/1 1/1 T/T A/C NC 

NPC 039 control 1/1 1/2 T/T A/C NC 

NPC 040 control 1/1 1/1 T/T A/C NC 

NPC 041 control 1/2 1/2 T/T C/C NC 

NPC 042 control 1/1 1/2 T/T A/C NC 

NPC 043 control   1/2 T/T A/A NC 

NPC 044 control 1/1 1/2 G/T A/C NC 

NPC 045 control 1/1 2/2 T/T A/A NC 

NPC 046 control 1/1 1/2 T/T A/A NC 

NPC 048 control 1/1 1/1 T/T C/C NC 

NPC 049 control 1/1 1/1 T/T A/A NC 

NPC 050 control 1/1 1/2 T/T A/C NC 

NPC 051 control 1/1 1/1 G/T A/A NC 

NPC 052 control 1/1 1/1 T/T A/C NC 

NPC 053 control 1/1 1/1 T/T A/A NC 

NPC 054 control 1/1 1/2 G/T A/C NC 

NPC 055 control 1/1 1/2 T/T A/C NC 

NPC 056 control 1/1 1/2 T/T A/C NC 

NPC 057 control 1/1 1/1 T/T C/C NC 

NPC 058 control 1/1 1/2 T/T C/C NC 

NPC 059 control 1/1 1/2 G/T A/C NC 

NPC 060 control 1/1 1/1 T/T A/C NC 

NPC 061 control 1/1 1/1 G/T A/C NC 

NPC 062 control 1/1 2/2 G/T C/C NC 

NPC 063 control 1/2 1/1 T/T A/C NC 

NPC 064 control 1/1 1/1 T/T C/C NC 
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NPC 065 control 1/1 1/1 T/T C/C NC 

NPC 066 control 1/3 1/1 T/T A/A NC 

NPC 067 control 1/1 1/1 G/T A/C NC 

NPC 068 control 1/1 1/2   A/C NC 

NPC 069 control 1/1 1/2 T/T C/C NC 

NPC 070 control 1/1 1/1 T/T A/C NC 

NPC 071 control 1/1 1/2 T/T A/C NC 

NPC 072 control 1/1 1/1 T/T A/A NC 

NPC 073 control 1/1 1/1 T/T A/C NC 

NPC 074 control 1/1 1/2   A/A NC 

NPC 075 control 1/1 1/2 T/T C/C NC 

NPC 077 control 1/1 1/1 T/T A/A NC 

NPC 079 control 1/1 1/1 G/T A/A NC 

NPC 080 control 1/1 1/1 T/T A/C NC 

NPC 081 control 1/3 1/2 G/T A/A NC 

NPC 082 control 1/1 1/1 T/T C/C NC 

NPC 083 control 1/1 1/1 T/T C/C NC 

NPC 084 control 1/1 1/1   A/C NC 

NPC 085 control 1/1 1/1 T/T A/C NC 

NPC 086 control 1/1 1/2 G/T A/C NC 

NPC 087 control 1/3 1/1 T/T A/C NC 

NPC 088 control 1/1 1/2 G/T A/A NC 

NPC 089 control 1/1 1/1 T/T A/C NC 

NPC 090 control 1/1 1/1 T/T A/C NC 

NPC 091 control 1/1 1/2 G/T A/A NC 

NPC 092 control 1/1 1/1 T/T A/C NC 

NPC 093 control 1/1 1/1 T/T A/C NC 

NPC 094 control 1/1 1/2 G/T C/C NC 

NPC 095 control 1/1 1/1 G/T A/A NC 

NPC 096 control 1/1 1/2 T/T A/C NC 

NPC 097 control 1/1 1/1 T/T A/C NC 

NPC 098 control 1/1 1/1 T/T C/C NC 

NPC 099 control 1/1 1/1 G/T A/C NC 

NPC 100 control 1/1 1/1 T/T A/A NC 

NPC 101 control 1/1 1/1 G/T A/A NC 

NPC 102 control 1/1 1/1 G/T A/C NC 

NPC 103 control 1/1 1/1 G/T A/C NC 

NPC 104 control 1/1 1/1 T/T A/C NC 

NPC 105 control 1/1 1/2 T/T A/C NC 

NPC 106 control 1/1 1/1 T/T A/A NC 

NPC 107 control 1/1 1/1 T/T A/C NC 

NPC 108 control 1/1 2/2 G/T A/C NC 

NPC 110 control 1/1 1/2 G/G A/A NC 

NPC 111 control 1/1 1/2   A/C NC 

NPC 112 control 1/1 1/1 T/T A/C NC 

NPC 113 control 1/1 1/1 T/T C/C NC 

NPC 114 control 1/1 1/1 T/T A/A NC 

NPC 115 control 1/1 1/1 G/T A/A NC 
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NPC 116 control 1/1 2/2 G/T A/A NC 

NPC 117 control 1/1 1/1 T/T A/C NC 

NPC 118 control 1/1 1/1 G/T A/A NC 

NPC 119 control 1/1 1/2 T/T A/A NC 

1.1 M 1/1 1/2     WC 

1.2 FAS 1/3 1/1     WC 

2.1 M 1/1 1/2     WC 

2.2 FAS 1/2 1/1     WC 

3.1 M 1/1 1/1     WC 

3.2 FAS 1/1 1/1     WC 

4.1 M 1/1 1/1     WC 

4.2 FAS 1/1 1/1     WC 

5.1 M 1/1 1/1     WC 

5.2 FAS 1/1 1/2     WC 

6.1 M 1/1 1/1     WC 

6.2 FAS 1/1 1/1     WC 

7M M 1/1 1/2   A/A WC 

7.2C FAS 1/1 1/1 G/T A/A WC 

8.1M M 1/1 1/1   C/C WC 

8C FAS 1/3 1/1   A/C WC 

9.1 M 1/1 1/2     WC 

9.2 FAS 1/1 1/2     WC 

10M M 1/3 1/1 T/T A/A WC 

1OC FAS 1/3 1/1     WC 

12.1 M 1/1 1/1     WC 

12.2 FAS 1/1 1/1     WC 

13.1M M 1/1 1/1 G/T A/C WC 

13.2C FAS     T/T   WC 

14.1M M 1/1 1/1 G/T A/A WC 

14C FAS 1/1 1/1 T/T   WC 

15M M 1/1 1/2 T/T A/A WC 

15.2C FAS 1/1 1/1   A/C WC 

16.1M M 1/1 1/1 G/T   WC 

16.2C FAS 1/1 1/2 T/T A/A WC 

17M M 1/1 1/1 T/T   WC 

17C FAS 1/1 1/1 T/T   WC 

18M M     T/T A/A WC 

18C FAS 1/3 1/2 T/T A/A WC 

19M M 1/1 1/2   C/C WC 

19C FAS 1/1 1/2 T/T A/C WC 

20M M 1/1 1/1 T/T A/C WC 

20C FAS 1/1 1/1 T/T   WC 

23M M 1/1 1/2 G/T   WC 

23C FAS 1/1 2/2 G/T A/C WC 

24M M 1/1 1/1 G/T   WC 

24C FAS 1/1 1/2 G/T A/A WC 

25M M 1/1 1/2   A/A WC 

25C FAS 1/1 1/1 G/T A/A WC 
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26M M 1/1 1/1 T/T   WC 

26C FAS 1/1 1/1 T/T   WC 

31M M 1/1 1/2 G/G   WC 

31.2C FAS 1/1 1/2 G/G A/C WC 

32.1M M     T/T   WC 

32.2 FAS 1/2 1/2 T/T A/C WC 

34M M 1/1 1/1 T/T A/C WC 

34C FAS 1/1 1/1 T/T A/C WC 

35M M 1/1 1/1 T/T A/C WC 

35C FAS 1/1 1/1 T/T C/C WC 

36M M 1/1 1/2 T/T A/C WC 

36C FAS 1/1 1/2 G/T A/C WC 

37M M 1/1 1/2 T/T   WC 

37C FAS 1/1 1/1 T/T A/A WC 

38M M 1/1 1/1   A/A WC 

38C FAS 1/1 1/1     WC 

39.1 M 1/1 1/1 T/T   WC 

39C FAS 1/1 1/2 G/T   WC 

40M M 1/1 1/1 T/T A/A WC 

40C FAS 1/1 1/1     WC 

41M M 1/2 1/2     WC 

41C FAS 1/1 1/2     WC 

42M M 1/1 1/1 T/T A/C WC 

42C FAS 1/1 1/1 T/T A/C WC 

43M M 1/1 1/1 T/T   WC 

43C FAS 1/1 1/1 G/T   WC 

44.1 M 1/1 1/2   C/C WC 

44.2c FAS 1/1 1/2 T/T A/C WC 

45.1 M 1/1 1/1     WC 

45C FAS 1/1 1/1     WC 

46M M 1/1 1/2     WC 

46C FAS 1/1 1/1 T/T   WC 

47M M 1/1 1/1 T/T   WC 

47C FAS 1/3 1/1 T/T   WC 

48.1 M 1/2 1/2 T/T   WC 

48C FAS 1/1 1/1 G/T A/A WC 

49.1M M 1/2 1/1 T/T   WC 

49.2 FAS 1/2 1/1 G/T A/A WC 

50M M 1/1 1/2 T/T C/C WC 

50C FAS 1/1 1/1 T/T A/C WC 

51M M 1/3 1/1   A/C WC 

51C FAS 1/1 1/1 T/T A/C WC 

53.1 M         WC 

53.2 FAS     T/T A/C WC 

55.1 M 1/1   T/T   WC 

55.4 FAS     T/T A/C WC 

57.1 M     T/T   WC 

57.3 FAS     T/T   WC 
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58.1 M     T/T A/C WC 

58.3 FAS     T/T   WC 

59.1 M 1/2 1/1 T/T A/C WC 

59.4 FAS 1/2 1/1 T/T A/C WC 

60.1 M 1/1 1/2 T/T A/C WC 

60.3 FAS 1/2 1/1 T/T C/C WC 

61.1 M 1/1 1/2   C/C WC 

61.2 FAS 1/1 1/2 T/T C/C WC 

63.3 M 1/1 1/1     WC 

63.4 FAS 1/1 1/1 T/T A/C WC 

64.1 M 1/1 1/1 G/T   WC 

64.4 FAS 1/1 1/1 G/T   WC 

66.1 M 1/1 1/2 T/T   WC 

66.2 FAS 1/1 1/2 G/T   WC 

67.1 M 1/1 1/2 G/T   WC 

67.4 FAS 1/1 1/1 G/T   WC 

68.1 M 1/3 1/1 T/T A/C WC 

68.2 FAS 1/1 1/1 T/T A/C WC 

69.1 M 1/3 1/1 G/T   WC 

69.3 FAS 1/1 1/1 G/T A/C WC 

70.1 M 1/1 1/1 T/T A/A WC 

70.3 FAS 1/1 1/1   A/C WC 

71.1 M 1/1 1/1 G/T   WC 

71.2 FAS 1/1 1/1     WC 

72.1 M 1/3 1/1 T/T   WC 

72.3 FAS 1/1 1/2   C/C WC 

73.1 M 1/1 1/2 G/T   WC 

73.2 FAS 1/1 2/2     WC 

74.1 M 1/1 1/2 T/T A/A WC 

74.3 FAS 1/1 1/1 T/T   WC 

75.1 M 1/1 2/2 T/T A/C WC 

75.2 FAS 1/1 1/2 T/T   WC 

76.1 M 1/1 1/1 T/T A/C WC 

76.2 FAS 1/1 1/2 G/T   WC 

76.3 FAS     T/T   WC 

100 control 1/2 1/2 T/T C/C WC 

101 control 1/1 1/2 G/T   WC 

102 control 1/2 1/1     WC 

103 control 1/1 1/2     WC 

104 control 1/1 1/2     WC 

105 control 1/1 1/1     WC 

106 control 1/1 1/1     WC 

107 control 1/1 1/1     WC 

108 control 1/1 1/1     WC 

109 control 1/1 1/1     WC 

110 control 1/2 1/2     WC 

111 control 1/1 1/2 T/T C/C WC 

112 control 1/2 1/1 T/T   WC 
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113 control 1/1       WC 

114 control 1/1 1/1     WC 

115 control 1/1 1/1     WC 

116 control 1/3 1/1 T/T   WC 

117 control 1/1 1/2 G/T   WC 

118 control 1/1 1/1 G/T   WC 

119 control 1/1 1/1     WC 

120 control 1/2 1/2 T/T   WC 

121 control 1/1 1/1 T/T A/C WC 

122 control 1/2 1/2 T/T   WC 

123 control 1/1 1/1 G/T   WC 

124 control 1/1 1/1 T/T A/A WC 

125 control 1/1 1/1 T/T A/C WC 

126 control 1/1 1/1     WC 

127 control 1/1 2/2 T/T A/C WC 

128 control 1/1 1/2 T/T C/C WC 

129 control 1/1 1/1 T/T   WC 

130 control 1/2 1/1 T/T A/C WC 

131 control 1/1 1/1 T/T A/A WC 

132 control 1/1 1/2 G/T A/A WC 

133 control 1/1 1/1 T/T   WC 

134 control 1/1 1/1 T/T A/C WC 

135 control 1/1 1/1 G/T C/C WC 

136 control 1/1 1/2 G/T A/C WC 

137 control 1/1 1/2 T/T A/C WC 

138 control 1/2 1/1 T/T A/C WC 

139 control 1/1 1/2 T/T C/C WC 

140 control 1/1 1/1 T/T A/C WC 

141 control 1/1 1/1 G/T A/C WC 

142 control 1/3 1/1 T/T A/C WC 

143 control 1/1 1/1 T/T A/C WC 

144 control 1/1 1/1 T/T A/A WC 

145 control 1/1 1/1 T/T C/C WC 

146 control 1/1 1/2 T/T C/C WC 

147 control 1/1 1/2 G/T A/C WC 

148 control 1/1 1/2 T/T A/A WC 

149 control 1/1 1/1 G/T A/C WC 

150 control 1/3 1/1 T/T A/A WC 

151 control 1/1 1/2 T/T   WC 

152 control 1/1 1/1 T/T A/C WC 

153 control 1/1 1/1 T/T A/A WC 

154 control 1/2 1/1 T/T C/C WC 

155 control 1/1 1/1 T/T C/C WC 

156 control 1/1 1/1 T/T A/C WC 

157 control 1/1 1/2 T/T A/A WC 

158 control 1/2 1/1 G/T A/C WC 

159 control 1/1 1/2 G/T A/C WC 

160 control 1/1 1/2 G/T A/C WC 
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161 control 1/1 1/2 G/T A/C WC 

162 control 1/1 1/2 T/T A/C WC 

163 control 1/1 1/1 T/T C/C WC 

164 control 1/1 1/1 T/T C/C WC 

165 control     G/T A/C WC 

167 control     T/T A/C WC 

168 control     T/T A/C WC 

169 control     T/T C/C WC 

200 control 1/2 1/1     WC 

201 control 1/1 1/1     WC 

202 control 1/1 1/1     WC 

203 control 1/1 1/2 T/T C/C WC 

204 control 1/2 1/2   C/C WC 

205 control 1/1 2/2 T/T C/C WC 

206 control 1/1 1/1 T/T C/C WC 

207 control 1/1 1/1 T/T A/A WC 

208 control 1/2 1/1 T/T C/C WC 

209 control 1/1 1/2 T/T A/C WC 

210 control 1/2 1/2 T/T A/C WC 

211 control 1/1 1/2 G/T A/A WC 

212 control 1/1 1/2 T/T C/C WC 

213 control 1/1 1/2 T/T A/C WC 

214 control 1/1 1/2 T/T A/C WC 

215 control 1/1 1/2 G/T A/C WC 

216 control 1/1 1/1 T/T C/C WC 

217 control 1/1 1/2 T/T A/C WC 

218 control 1/1 1/1     WC 

219 control 1/3 1/1     WC 

220 control 1/1 1/2 G/T A/C WC 

221 control 1/1 1/1 T/T C/C WC 

222 control 1/2 1/1 T/T A/C WC 

223 control 1/1 1/1 G/T A/C WC 

224 control 1/1 1/2 T/T A/A WC 

225 control 1/2 1/2 T/T C/C WC 

226 control 1/1 1/1 T/T C/C WC 

227 control 1/2 1/2 T/T C/C WC 

228 control 2/3 1/1 T/T A/C WC 

229 control 1/3 1/1 T/T A/C WC 

230 control 1/1 1/1 T/T A/C WC 

231 control 1/3 1/1 T/T A/C WC 

232 control 1/1 1/1     WC 

233 control 1/1 1/2 T/T C/C WC 

234 control 3/3 1/1 T/T A/A WC 

235 control 1/1 1/2 G/T A/C WC 

236 control 1/1 1/2     WC 

237 control 1/2 1/1 G/T C/C WC 

238 control 1/1 1/1 T/T C/C WC 

239 control 1/1 1/2 G/T A/C WC 
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240 control 1/1 1/2 G/T A/C WC 

241 control 1/1 1/2 G/T A/C WC 

242 control 1/1 1/1 G/T A/A WC 

243 control 2/2 1/1 T/T C/C WC 

244 control 1/1 1/1 T/T C/C WC 

245 control 1/1 1/1 G/T A/C WC 

246 control 1/1 1/1 G/T A/C WC 

247 control 1/1 1/1 T/T C/C WC 

248 control 1/1 1/2 T/T C/C WC 

249 control 1/2 1/2 T/T A/C WC 

250 control 1/1 1/1 T/T A/C WC 

251 control 1/1 1/1 T/T C/C WC 

252 control 1/1 1/2 T/T C/C WC 

253 control 1/1 1/2 G/T A/C WC 

254 control 1/1 1/2 T/T C/C WC 

255 control 1/1 1/2 T/T A/C WC 

256 control 1/1 1/2 T/T C/C WC 

257 control 1/1 1/2 T/T C/C WC 

258 control 1/2 1/2     WC 

259 control 1/1 1/2 T/T C/C WC 

260 control 1/1 1/1 T/T C/C WC 

261 control 1/1 1/1 T/T C/C WC 

262 control 1/1 1/2 G/T A/C WC 

263 control 1/2 1/2 T/T C/C WC 

264 control 2/2 1/1 T/T C/C WC 

265 control 1/3 1/1 T/T A/C WC 

266 control 1/1 1/1 T/T A/C WC 

267 control 1/2 1/1 T/T   WC 

268 control 1/2 1/1 T/T C/C WC 

269 control 1/1 1/1 G/T   WC 

270 control 2/3 1/2 T/T C/C WC 

271 control 1/1 1/2 T/T C/C WC 

272 control 1/1 1/1 G/T A/C WC 

273 control 1/1 1/1 G/T A/C WC 

274 control 1/2 1/2 T/T A/A WC 

275 control 1/1 1/1 T/T A/C WC 

276 control 1/1 1/1 T/T A/C WC 

277 control 1/3 1/1 T/T A/A WC 

278 control 1/1 1/1 T/T C/C WC 

279 control 1/2 1/1 T/T A/C WC 

280 control 1/1 1/2 T/T C/C WC 

281 control 1/1 1/2 G/T A/C WC 

282 control 1/1 1/1 T/T A/A WC 

283 control 1/1 1/2 T/T A/C WC 

284 control 1/1 1/1   A/C WC 

285 control 1/1 1/1 T/T C/C WC 

286 control 1/2 1/1 T/T A/C WC 

287 control 1/1 1/1 T/T C/C WC 
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288 control 1/1 1/1 T/T A/C WC 

289 control 1/2 1/1 T/T C/C WC 

290 control 1/1 1/1 G/T A/C WC 

291 control 1/1 1/2 G/T A/A WC 

292 control 1/1 1/2 T/T A/C WC 

293 control 1/2 1/1 T/T A/C WC 

294 control 1/1 1/1 G/T A/A WC 

295 control 1/1 1/2 T/T A/A WC 

296 control 1/1 1/2 G/T A/A WC 

297 control 1/1 1/2 G/T A/C WC 

298 control 1/1 1/2 T/T A/A WC 

299 control 1/1 2/2 T/T C/C WC 

300 control 1/2 1/2 T/T C/C WC 

301 control 1/1 1/2 G/G A/A WC 

302 control 1/1 1/2 G/T A/C WC 

303 control 1/2 1/1 T/T C/C WC 

304 control 1/1 1/1 T/T A/C WC 

305 control 1/2 1/1 T/T C/C WC 

306 control 1/2 1/1 T/T A/A WC 

307 control 1/3 1/2 T/T A/A WC 

308 control 2/3 1/1 T/T C/C WC 

309 control 1/1 1/2 T/T A/C WC 

310 control 1/1 1/1 T/T C/C WC 

311 control 1/1 1/1 T/T A/C WC 

312 control 1/1 1/2 G/T A/C WC 

313 control 1/1 1/1 T/T C/C WC 

315 control     T/T A/C WC 

316 control     T/T C/C WC 

317 control     G/T A/C WC 

318 control     T/T A/C WC 

319 control     T/T A/A WC 

320 control     T/T A/C WC 

321 control     T/T A/C WC 

Key : C = child; M = mother; WC =Western Cape; NC = Northern  Cape 


