LESOTHO HIGH SCHOOL STUDENTS’ CONCEPTIONS OF EARTHQUAKES

‘MALITŠOANELO NTHATI THAMAE

Degree of Master of Science by coursework and research:

A research report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa, in partial fulfilment of the requirements for the degree of Master of Science.

Johannesburg, November 2004
DECLARATION

I declare that, apart from the assistance acknowledged, this research report is my own unaided work. It is being submitted in partial fulfilment for the Degree of Master of Science at the University of the Witwatersrand, Johannesburg, South Africa. It has not been submitted before for any degree or examination in any other university.

'Malitšoanelo Nthati Thamae

18th day of November 2004
ABSTRACT

This study examined conceptions about earthquakes held by the selected high school students in Lesotho. A survey was carried out at one high school with students from three different grades; Form A students who had not yet received formal instruction about earthquakes, and Form C and Form D students who had dealt with the topic in school. Some of the students in the sample had experienced an earthquake. A diagnostic test was used to elicit conceptions from 130 students. Follow-up interviews were conducted with 6 students, with the purpose of probing certain responses from the test. In particular, test responses that were probed included; first, those which showed confusion between earthquakes and volcanoes, and second, those which used indigenous beliefs to explain causes of earthquakes.

The conceptions held by students in the three grades were analysed and compared. From the results the following findings emerged: First, many students appear to be confused in their understanding between earthquakes and volcanoes, particularly those who had received classroom instruction on these concepts. Some of the students could not distinguish between an earthquake and a volcano, while others seem to think that earthquake occurrences are always linked to volcanic activity. Second, several students across the three grades could not differentiate between movements of the earth’s crust which result in earthquakes and the larger scale movements, i.e. the rotation and revolution of the earth. Third, generally students across the three grades appear to have scientifically correct ideas about the causes of earthquakes. Also, the majority of students attributed the causes of earthquakes to water, perhaps because the earthquake in their area was caused by impoundment of the dam. However, students seemed to be uninformed about the mechanisms or processes behind the occurrence of earthquakes. Finally, a few students across the grades used indigenous beliefs to explain earthquakes. With an awareness of the conceptual and cultural difficulties students in Lesotho are likely to encounter in the learning of earthquakes, teachers can prepare in advance to handle such issues, as they are critical in the understanding of the phenomenon of earthquakes.

KEYWORDS: earthquakes, students, conceptions, alternative conceptions.
To my entire family, especially
my mother, 'Mamohale Regina Mohale,
for her legacy of perseverance,
and
my daughters, Litšoanelo and Kholu.
ACKNOWLEDGEMENTS

I would like to acknowledge the assistance of the following:

My supervisor, Ann Cameron, and my co-supervisor, Professor Martie Sanders, for their invaluable support, assistance and professional guidance.

Petkou Chamba Lawrence, a PhD candidate at the University of the Witwatersrand, for his assistance on proof reading drafts of this research report.

The Government of Lesotho through its department of National Manpower Development Secretariat, for providing financial assistance.

I am grateful to the principals, teachers and students of the two schools where the study (the pilot and main study) was conducted.

To my family - my mother-in-law, 'Maboka ng Thamae, my sisters 'Machonela Nthoto Chonela, and 'Mamphotleng Sekoala, for their prayers and unswerving support and encouragement during the course of this study.

I am grateful to all my close friends for their utmost support during this time.

Special thanks to my husband, Bokang, for his undying love and patience, and my daughters Litšoanelo and Kholu, for being an inspiration throughout the course of my study.
TABLE OF CONTENTS

Declaration
Abstract
Dedication
Acknowledgements
Table of contents
List of Figures
List of Tables

CHAPTER ONE – INTRODUCTION TO THE STUDY

1.1 Background to the study
1.2 Statement of the problem
1.3 Aim of the study
1.4 Research questions
1.5 Summary of research methods and sample
1.6 Importance of the study
1.7 An overview of the research report

CHAPTER TWO – LITERATURE REVIEW

2.1 The constructivist view of learning
2.2 Impact of culture on science education
 2.2.1 School science as a foreign culture for Basotho students
 2.2.2 Influence of science as a subculture on the learning
 of school science
 2.2.3 Cultural border crossing in learning
 2.2.4 Multiculturalism in science education
2.3 Description of earthquakes
 2.3.1 Definition of earthquakes
 2.3.2 Causes of earthquakes
 2.3.3 Effects of earthquakes
 2.3.4 The relationship between earthquakes, volcanoes and plate tectonics
2.4 Terms used to describe alternative conceptions in science
2.5 Students’ ideas about earthquakes, as documented in the literature
2.6 Conclusion
CHAPTER THREE – RESEARCH METHODS AND DESIGN

3.1 Survey

3.1.1 Organisation of the survey
3.1.2 Advantages of using a survey with these features
3.1.3 Limitations of surveys

3.2 Research sample

3.2.1 Selecting the school for the survey
3.2.2 Selecting respondents for the test
3.2.3 Selecting interviewees
3.2.4 General characteristics of respondents for the main study
 Gender composition of students
 Frequency of students who had heard of the word earthquake
 Personal experience of an earthquake

3.3 Research instruments

3.3.1 Diagnostic test
 Advantages of using a diagnostic test
 Limitations of a diagnostic test
 Attempts made to minimise limitations of the diagnostic test
 Constructing the test
 Face validating the test
 Piloting the test
 Administering the test

3.3.2 Interviews
 Advantages of the interview method
 Limitations of interviews
 Piloting interviews
 Conducting interviews

3.4 Analysis of data

3.5 Conclusion

CHAPTER FOUR – RESULTS AND ANALYSIS

4.1 Section One: Presentation of test results

4.1.1 Test results for content questions
 Results for Question 1 (what is an earthquake)
 Results for Question 2 (the causes of earthquakes)
 Results for Question 3 (the effects of earthquakes on the ground)
 Results for Question 4 (the effects of earthquakes underground)
Results for Question 5 (On how they would know if an earthquake is happening)

4.1.2 Results for the questions assessing personal experience
Results for Question 6 (On what happened during the earthquake)
Results for Question 7 (the cause of the earthquake in their area)

4.2 Section Two: Analysis of results
4.2.1 Conceptions of what an earthquake is
Responses relating to the shaking of the crust
Answers related to large-scale movements of the earth
Answers defining a volcano

4.2.2 Students’ conceptions about the causes of earthquakes
Answers describing water as a causal factor
Answers describing volcanism as a causal factor
Answers describing plate tectonics as the causal factor
Answers describing human activities as causal factors
Causal factors based on cultural beliefs

4.2.3 Students’ ideas about earthquake effects on the ground
Answers describing destructive effects
Answers describing effects related to volcanic activity
Answers explaining changes in water levels

4.2.4 Students’ ideas about underground happenings during an earthquake

5.1 Limitations of the study
Bias in selecting interviewees
Lack of expertise in interviewing

5.1.2 Problems related to students’ answers
Difficulty in establishing the scientific “correctness” of answers
Answers shaped by language difficulties

5.2 Discussion of the findings

5.2.1 Conceptions of what an earthquake is
The effect of rote-learned knowledge about earthquakes 81
Confusion between earthquakes and volcanoes 81
Lack of differentiation between small-scale and large-scale
movements of the earth 82
5.2.2 Conceptions about the causes of earthquakes 83
Ideas based on scientific explanations 83
Ideas based on traditional beliefs 85
Ideas from students with a personal experience of an earthquake 86
5.2.3 Understanding of the effects of earthquakes 86
5.3 Recommendations of the study 87
5.3.1 Recommendations for teachers 87
5.3.2 Recommendations for further research 88
5.4 Conclusion 89

REFERENCES 91

LIST OF APPENDICES:
Appendix A: Interview transcripts
Appendix B: The pilot instrument
Appendix C: The final research instrument
LIST OF FIGURES

Figure 2.1: Map showing the major plates on earth 15

Figure 2.2: Map showing the location of most earthquakes 18

Figure 2.3: Map showing the distribution of volcanoes worldwide 18

Figure 4.1: Categories of students’ responses on how water causes earthquakes 52

Figure 5.1: A summary of students’ definitions of an earthquake 80

Figure 5.2: A summary of categories of the causes of earthquakes named by students 83
LIST OF TABLES

Table 2.1: A summary of studies on people’s ideas about earthquakes and other concepts related to tectonic plates 21

Table 3.1: Gender composition of students 32

Table 3.2: Frequency of students who had previously heard the word ‘earthquake’ and who had been taught about earthquakes 33

Table 3.3: Frequency of students who had experienced an earthquake 34

Table 4.1: Categories of students’ responses to Question 1 49

Table 4.2: Categories of students’ answers on the causes of earthquakes 51

Table 4.3: Students’ answers on the effects of earthquakes on the ground 54

Table 4.4: Students’ answers on the effects of earthquakes underground 56

Table 4.5: Students’ responses on the general effects of earthquakes 58

Table 4.6: Categories of students’ explanations of the occurrences in their area during the earthquake 60

Table 4.7: Categories of students’ responses about the cause of the earthquake in their area 61