
i 

 

 

 

 

 

 

 

AN INVESTIGATION INTO TENSOR BASED 
MAGNETIC FIELD FORWARD MODELLING, 
AND SOURCE DETECTION. 

 

 

 

 

Patrick Cole 

 

 

 

A Thesis submitted to the Faculty of Science, University of the Witwatersrand, 

Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy 

 

 

Johannesburg, 2018 



ii 

 

  

DECLARATION 

 

 

 

I declare that this Theses is my own, unaided work. It is being submitted for the Degree of 

Doctor of Philosophy at the University of the Witwatersrand, Johannesburg. It has not 

been submitted before for any degree or examination at any other University.  

 

 

 

 

 

___________________ 

(Signature of candidate)  

 

 

 

24 day of October, 2018, in Pretoria. 

  



iii 

 

ABSTRACT 

The modelling of potential field data is often both time consuming and ambiguous. With 

the use of tensor datasets becoming more commonplace, efficient techniques to model 

these data are necessary. The two components of modelling, namely forward modelling 

and inversion are addressed. The derivation of tensor forward modelling equations is 

illustrated and it is shown that the forward modelling of voxel data, both in conventional 

and tensor form, is not only viable but also has efficiencies which are as good, if not 

better (when taking editing into account) than non-voxel techniques. The theoretical basis 

for this modelling is presented here. 

Source distance calculations is a form of inversion that provides a good starting model in 

an efficient way. New tensor equations utilising analytic signals were derived for both 

source distance and susceptibility calculations. The tensor forms offer the possibility of 

lower noise in the calculations when dealing with tensor data. The synthesis of results 

from these techniques into a final model is semi-automated and includes using cluster 

analysis methods such as DBSCAN. This allows for automatic determination of relevant 

features from the depth calculations. 

The presence of remanent magnetisation in data often presents problems in forward and 

inverse modelling. By deriving novel equations to directly calculate magnetic field 

direction cosines from the tensor magnetic components, it is possible to get an indication 

of the presence of remanence, direction of the remanent field and the complexity of 

remanence within bodies. Tests on real tensor data over the Tallawang deposit in 

Australia showed both strengths and limitations. In spite of not being a perfect dyke, 

calculations for depth and width produced solutions in the expected range. Direction 

cosine solutions over the body show a degree of complexity in the remanence, possibly 

due to the presence of magnetite in lenses, thereby suggesting a complex composition. 

The low Q-ratio and uncertainty in susceptibility for the area contributed to non-optimal 

solutions for total magnetisation, remanent magnetisation, inclination and declination. 

Synthetic modelling demonstrates that should the total magnetisation and susceptibility 

be accurately known, it is possible to accurately derive remanent magnetisation, 

inclination and declination. 

The use of actual tensor data as well as the derivation of tensor datasets from total 

magnetic intensity data showed that the process derived in this project not only is viable, 

but also achieves good results. The extraction of valid source distance solutions from 

raster data is straightforward and allows fast creation of the 3D starter model for the area, 

from which improvements can be made through further forward modelling.   
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CHAPTER 1 INTRODUCTION 

1.1 General Introduction 

Airborne geophysical surveying has resulted in vast quantities of potential field data that 

are available globally. The ongoing demand to find more resources has meant that the 

efficient modelling and interpretation of this form of data (especially in three dimensions) 

is more critical than ever. The modelling ambiguity of potential field data, coupled with the 

sheer volume collected has created significant delays in an industry that more than ever 

is demanding not only 2D but also 3D models of geology. The modelling of such data has 

made great strides since the work of Bhattacharyya (1964), with his derivation of 

magnetic anomalies from prism shaped bodies, Talwani (1965), who developed magnetic 

anomalies from arbitrary shapes and Nabighian (1972), with his paper on the analytic 

signal of two dimensional bodies which paved the way for future studies on analytic 

signals. More recent examples are Guptasarma and Singh (1999) who derived equations 

for magnetic anomalies of arbitrary shaped polygons and Cooper (1997), who 

demonstrated the forward modelling of data within modern software, have also made 

advances in modelling magnetic and gravity data.  Holstein, FitzGerald and Stefanov, 

(2013) developed optimized formula and code for the gravity and magnetic effect of a 

homogenous prismatic target, by taking advantage of advances made for the general 

polyhedral case. 

However, there is need for an efficient overall modelling strategy needed to model such 

data. In addition to the ambiguity of the data, some techniques introduce noise into the 

modelling process, further exacerbating the inherent modelling difficulties.  

The modelling of potential field data, specifically gravity and magnetic data, is broadly 

subdivided into two subjects, namely forward modelling and inverse modelling. In forward 

modelling, potential field data is calculated by manually postulating geological parameters 

such as density, susceptibility and the geometry of the body, which is being modelled. 

This resultant field is compared with the measured field, and the process is repeated until 

the calculated and measured fields match. Forward modelling is as reliable as the human 

input and needs trial and error. The calculation of this model in three dimensions can be 

time consuming, so this thesis will examine the optimisation of the modelling process. 

In inversion, the measured field is accepted as input, and some or all of the susceptibility, 

density and geometry values are calculated automatically. Due to the inherent ambiguity 

of potential field data, finding the correct solutions for model values is challenging. One 

technique used to overcome some of this problem is semiautomatic source detection. 
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Source detection determines parameters such as the depth to different source types (e.g. 

dykes, contacts etc) in different ways, often using the derivatives or Hilbert transforms of 

the data (Cooper and Whitehead, 2016). 

Despite the excellent work of authors such as Bhattacharyya (1964), Talwani (1965), 

Nabighian (1972), Guptasarma and Singh (1999), Cooper (1997) and Holstein, 

FitzGerald and Stefanov (2013) in examining different aspects of modelling; the holistic 

gathering of techniques such as source distance and forward modelling, while balancing 

each technique’s strengths and weaknesses against each other, is an area where more 

work is needed. 

Without the development of these strategies and the techniques to be used by the 

strategies, the full set of possibilities of potential field data will not be achieved and it will 

remain consigned to the history book of “cheaper datasets to be collected first”. 

This study will address this gap by looking at the modelling process from a practical point 

of view, of not only model creation, but also editing. It will examine each of the broad 

modelling facets – whether forward modelling, inversion or source detection – and 

develop a strategy to maximise the strengths of each form of modelling while minimising 

the weaknesses. It will also look into developing modelling techniques involving the 

newer tensor or gradiometer data. This will take the form of forward modelling and source 

distance estimation techniques. It will assess and develop new techniques in relation to 

various forward models – such as dykes, contacts and dipoles.  

Ultimately, the benefits will include: 

1) More efficient modelling process 

2) Reduced sensitivity to noise by using tensor data where possible and improved 

techniques 

3) Better source location accuracy and model accuracy in general. 
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1.2 Objectives 

Aim: To develop an overall strategy in the modelling of potential field data (but more 

specifically magnetic data) and to examine forward modelling and source detection 

techniques as applied to magnetic tensor data. This will include the following: 

1) The development of a modelling process, which allows for the smooth and efficient 

creation and editing of geological models. 

2) The integration of multiple modelling techniques – whether forward modelling, 

inversion and source detection – into the modelling pipeline 

3) The enhancement of these techniques to use tensor data. 

4) The minimisation of the effects of noise in the modelling process (specifically with 

source detection techniques) 

Hypothesis: The overall development of a strategy to model potential field data will 

improve model accuracy and efficiency. The modelling of magnetic tensor data gives extra 

insight into the nature of potential fields. Therefore, it should improve inversion through 

source detection and forward modelling of potential fields.  

 

Questions:  

1) Can voxel based forward modelling be as efficient as, or more efficient than, 

modelling geometrical bodies? 

2) Can forward modelling and inversion be integrated to improve each technique’s 

strengths while minimising the weaknesses? 

3) Can tensor data overcome some of the ambiguity of forward and/or inverse 

modelling? 

4) Can source detection be improved with tensor data?  

5) What insight can the individual tensor components give to forward modelling and 

source detection? 
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1.3 Data Availability and Methodology 

Magnetic and gravity data is freely available from the Council for Geoscience, for the entire 

South Africa at a regional scale. High-resolution magnetic data is also available for selected 

portions of the country. For the purposes of this study, the study area is not as important 

as a pre-existing knowledge of the area in order to test the validity of any models calculated. 

Theoretical tensor data will be used to test algorithms, with a final demonstration of 

algorithms using a tensor dataset derived from conventional total magnetic intensity data. 

The process is described by Pedersen, Rasmussen and Dyrelius (1990) and Yin et 

al.(2016). The algorithms will also be tested independently against the theoretical tensor 

data published and provided by Dr David Clark (Clark, 2013). 

Ideally measured magnetic tensor data should be used, but at the time of the writing of 

thesis, mining companies such as Anglo and DeBeers had suspended the release of such 

data to students for studies. After an extensive search, it was realised this would not be 

possible. Fortunately, it was possible to obtain measured tensor data from Dr David Clark, 

collected by the GETMAG system over a magnetic skarn deposit at Tallawang, near 

Gulgong, New South Wales, Australia. 

Of critical importance is the methodology. Therefore, each application of tensor data will 

be examined, coded in Python and evaluated. 

The following process will be followed: 

1) Examination and coding of voxel based forward modelling of tensor and non-tensor 

data 

2) Examination and coding of voxel-based source-distance inversion of tensor and 

non-tensor data 

3) Examination and coding of source detection techniques 

4) Synthesis of the above techniques into a modelling strategy 

5) Testing and enhancements to the techniques  

Voxel based modelling has been chosen as an effective strategy to simplify model creation 

and editing. This will also maximise the synergies between forward and inverse modelling. 

With voxel-based modelling, it is also possible to increase voxel dimensions, with an 

increase in depth, lowering the model resolution correspondingly. This is a valid 

consideration since when comparing voxels of equal size, deeper voxels contribute less to 

the magnetic anomaly and can therefore be made bigger. This opens up more possibilities 

for speeding up modelling. 

Source detection and source distance inversion techniques will be examined as a means 

to constrain the model further.  
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The modelling of regular and tensor data will be examined, in particular for source detection 

techniques. This is in part due to the efficiency of such techniques as a viable alternative 

to other, more costly, inversion techniques. 

Source detection and tensors are a key area for new research. Pedersen and Rasmussen 

(1990) discussed the gradient tensor with implications for data collection and processing. 

A considerable amount of work has been done on gravity tensor data, for example Li (2001) 

developed an algorithm for the 3D inversion of gravity gradiometer data, Beiki (2010) 

examined analytic signals of the gravity gradient tensor and their application to estimate 

source location, Cevallos (2016) published the interpretation of the direction of gravity 

gradient eigenvectors and Christensen et al. (2015) investigated the noise and repeatability 

of airborne gravity gradiometry. Less has been published for magnetic tensor data. Schmidt 

and Clark (2006) discussed the properties and uses of the magnetic gradient tensor in 

source characterisation. Heath, (2003); Heath, Heinson and Greenhalgh (2003) reported 

on potential field tensor data with respect to an inversion strategy.  

The modelling of source distances has been extensively developed for total magnetic 

intensity (TMI) data by Cooper (2016, 2015, 2014a, 2014b, 2014c); Cooper and Whitehead 

(2016); Ma and Du (2012). 

This work will focus on magnetic tensors. The forward modelling of rectangular prism data 

will be demonstrated and used for theoretical tests. All source model equations will be 

rederived into new tensor forms, checked and re-derived into alternate tensor forms where 

possible. The modelled tensor data is then tested in the new tensor source distance 

equations.  

Conventional source detection techniques often make use of transforms of the potential 

field, which includes 1st and 2nd order derivatives. The disadvantage of this is the 

amplification of noise in the data (Cooper, 2015). Another disadvantage is that calculated 

derivatives (especially in the case of horizontal derivatives) do not represent the 

instantaneous rate of change of the potential field. Rather, they are an estimate based on 

adjacent field values, which can be tens to hundreds of meters apart. Measured 

gradiometer data does not suffer as much from these problems. Any noise is due to the 

instrument, and not exaggerated from a calculation. The fact that the data is an 

instantaneous rate of change implies that modelling should be more accurate.  

To examine this properly, source-distance equations will be applied to the components of 

the magnetic field for various forward models (for example dykes and steps). This will also 

be applied to the gradients of the components similarly, involving the computation of 

different types of analytic signal. 
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Remanence relating to tensor data will also be examined. Techniques by authors such as 

Clark (2014) will be reviewed and equations will be derived from first principles relating to 

source detection theory.  

The tensor-based source detection techniques should have benefits such as better source 

location accuracy and reduced sensitivity to noise. The increased number of datasets that 

a tensor provides should allow for less ambiguous modelling. 
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1.4 Thesis Organisation and Contributions 

The organisation and contributions of the thesis are presented here. In general, work 

presented in this thesis should be regarded as novel unless it has been referenced. 

1.4.1 Chapter 1 

Chapter 1 gives an overall introduction into the thesis, along with its objectives as well as 

data availability.  

1.4.2 Chapter 2 

Chapter 2 introduces forward modelling methodology applied to total magnetic intensity 

(TMI) data. It advocates an approach to the use of rectangular prisms in forward 

modelling and details novel strategies which can be used to optimise calculations for 

speed, making the results and speed comparable to other methods of forward modelling. 

It also details a novel method of model input which is suited to the use of rectangular 

prisms in modelling. By allowing the user to draw a model in a manner similar to a paint 

program, models can be easily input, and more importantly, easily edited.  

The chapters discusses pros and cons of rectangular prism modelling and tests the 

modelling on an interpretation over the Trompsburg Complex. 

1.4.3 Chapter 3 

Chapter 3 introduces tensor forward modelling. It continues the rectangular prism based 

modelling, since this is a theme of this thesis. It also gives background into tensor 

mathematics applied to potential fields, as well as the processing of tensor data. The 

derivation of tensor modelling equations is demonstrated. The equations are presented 

with a small novel twist – they allow coordinates to be input in ENU convention (i.e x-axis 

is east, y-axis is west and z-axis is up) which is compatible with all major GIS and remote 

sensing software. However, the polarity of results are the same as in END (east north 

down) and (NED) conventions, making them directly comparable with datasets using 

modern potential field standards. 

1.4.4 Chapter 4 

Chapter 4 introduces tensor equations applied to source distance calculations utilising 

analytic signals. All tensor derivations of the equations are new, as well some new 

variants of existing equations in the literature. These variants use component definitions 
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of the analytic signal, which was tested both theoretically and practically to see if the 

depth relations still held. This has been published in Cole and Cooper (2018). The 

chapter also examines the effects of noise on the equations, and tests results 

appropriately.  

1.4.5 Chapter 5 

Chapter 5 examines remanence in tensor data. It gives an appropriate background on 

previous work and proceeds to derive novel equations to directly calculate magnetic field 

direction cosines from the tensor magnetic components. These cosines can easily give 

an indication of remanence and a starting point for the direction of the remanent field. 

They also can give an indication of the complexity of remanence within bodies. Equations 

are also derived to directly calculate remanent inclination, declination and magnetisation, 

as well as a demonstration of the limitations of such equations. 

1.4.6 Chapter 6 

Chapter 6 applies the source distance and remanence equations to real data. Two 

datasets are used – one using tensors derived from TMI data over the 

Lichtenberg/Zeerust area. These tensors are limited in that they do not account for 

remanence properly, and proof of this is given through modelled demonstrations. This 

limitation has not been discussed before in literature, but it emphasizes the advantage of 

measured tensor data over calculated tensor data, in that only measured data captures 

the remanent information properly. The results from this interpretation are a first order, 3D 

interpretation of the dykes over this area using depths and susceptibilities derived from 

the data. 

The second dataset is over the Tallawang magnetite skarn. This tensor data is highly 

magnetic (with susceptibility of up to 4 SI and remanence of up to 40 A/m). The source 

distance and remanence techniques are tested on both a simple model of the skarn and 

the tensor data, and limitations to the processes are demonstrated.  
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CHAPTER 2 CONVENTIONAL FORWARD MODELLING 

2.1 Introduction 

Forward modelling is the process of calculating data from model parameters. In this case, 

a potential field is calculated from parameters such as geometry of source, susceptibility 

and density. Early work focussed on calculating anomalies from different sources 

(Nettleton, 1942; Henderson and Zietz, 1948; Reford, 1964; Hjelt, 1972, 1974; Plouff, 

1976; Barnett, 1976; Coggon, 1976; Andreasen and Zietz, 1969; Kogbetliantz, 1944; Hall, 

1959). Although it was originally calculated along 2D profiles, scientists such as 

Bhattacharyya (1964) and Talwani (1965) pioneered the calculation of potential fields 

using bodies comprised of prisms and polygonal facets. More recently, this has been 

refined by Guptasarma and Singh (1999) and Singh and Guptasarma (2001a; b), who 

used line integrals to calculate the field component due to each polygonal facet. Holstein 

(2003) derived formulas from the gravity potential field and field gradient tensor for a 

polyhedral target body of a spatially linear density medium. 

Broadly speaking, there are two basic strategies. One is to calculate a model made up of 

a matrix of rectangular prisms or rectangular columns (Bhattacharyya, 1964). The other is 

to form bodies from arbitrary polygonal shapes. Intuitively, it makes sense that the 

modelling of arbitrary polygons, whether in 2D or 3D, should be more efficient. This is 

because it may be possible to represent a body with fewer polygons than as a matrix of 

rectangular prisms or voxels. However, the simple intersection of a 3D geometry with 

another 3D geometry (say, a sedimentary layer with a dyke) causes the number of 

polygon facets to increase dramatically and increases the complexity of the modelling 

process (discussed in section 2.3.4). This thesis will show that voxel or rectangular prism-

based modelling can be made efficient, and that such modelling synergises naturally well 

with inversion techniques.  

In addition, the forward modelling equations of a variety of sources – including dykes and 

steps – form the basis for source detection techniques as well as the testing of those 

techniques.  

2.1.1 Implicit and explicit modelling 

Conventional forward modelling where all model parameters and bodies are explicitly 

defined by the interpreter, is an example of explicit modelling. It is obviously time 

consuming, and can be prone to user-error in terms of some of the locations of geological 

bodies as well as model parameters. 
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Implicit modelling, on the other hand, seeks to assemble a geological model implicitly, 

taking into account geological information such as boreholes, contact locations and 

orientations and other information (Lajaunie, Courrioux and Manuel, 1997). Essentially, 

contact locations and orientation data are used to construct an implicit scalar potential 

field through interpolation. This field can be updated with the addition of new data. 

Geological boundaries are then described through isopotential surfaces and the dips of 

such boundaries are represented by the gradients of the potential (McInerney et al., 

2007; Calcagno et al., 2008). Numerous authors have published on this work and made 

refinements to it (McInerney et al., 2007; Calcagno et al., 2008; Fitzgerald and Milligan, 

2013; Husson et al., 2018).  

Implicit modelling is arguably an effective way of managing a model and is a good way of 

defining an initial or ultimate model. It synergizes well with techniques such as forward 

modelling and inversion (Guillen et al., 2008).  

Although this thesis deals with explicit voxel based forward modelling, the nature of both 

philosophies is that they will work well together and should not be thought of as 

incompatible.  
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2.1.2 Axis conventions 

Axis conventions are standardized ways of establishing the location and orientation of 

coordinate axes. They are important as they make it possible to relate different datasets 

which may come from different forms of axes. These conventions often specify the 

directions of positive axes. For example, ENU denotes positive axes in the East, North 

and Up directions. Coordinate systems are said to be left handed or right handed. If the 

thumb is aligned with the z-axis, and the forefinger coincides with the x-axis, then the 

direction of the y-axis is obtained by the second finger of the right hand for right handed 

systems, or the second finger of the left hand for left handed systems. Alternatively, in 

right handed systems the cross product of any two basis vectors in a left to right cyclic 

sequence yields the third. They therefore satisfy 𝑿 × 𝒀 = 𝒁, 𝒀 × 𝒁 = 𝑿, 𝒁 × 𝑿 = 𝒀 where 

𝑿, 𝒀, 𝒁 are the axis vectors. For left handed systems we have 𝑿 × 𝒀 = −𝒁, 𝒀 × 𝒁 =

−𝑿, 𝒁 × 𝑿 = −𝒀. 

Below are a list of commonly used conventions: 

 ENU (East, North, Up) – used in terrain and on land vehicles, right handed 

 NED (North, East, Down) – used on aircraft, magnetics, right handed 

 END (East, North, Down), left handed 

 ESD (East, South, Down) right handed 

 NEU (North, East, Up) left handed 

The two most common conventions in use for potential field data are NED (North, East, 

Down) (Henderson and Zietz, 1948; Tarlowski, 1989; Plouff, 1976; Li and Chouteau, 

1998; Talwani, 1965; Singh and Guptasarma, 2001b) and ESD (East, South, Down) (Hall, 

1959; Hjelt, 1972; Rasmussen and Pedersen, 1979; Kogbetliantz, 1944; Bhattacharyya, 

1964; Coggon, 1976).  

Nevertheless, other conventions are also in use. For example, NEU (North, East, Up) 

(Baykiev et al., 2016) and ENU (East, North, Up) (Zhu, 2007). 

This thesis advocates both NED and ENU conventions for magnetic data. They are both 

right handed systems, and while not as commonly in use for potential field data, when 

modelling, ENU allows for a more intuitive integration between a model and terrain or 

map data (which follows ENU conventions). Where necessary, the convention associated 

with an equation will be stated. 
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2.2 Magnetic Field 

The magnetic field has been described using various terminologies (H field, B field, and 

magnetic potential to name a few) and often these terms are used interchangeably. 

Therefore, it is necessary to revisit the basic concepts to establish context in this study. 

This section is intended to be a literature study to establish background, conventions to 

be used in this thesis, and has been covered in many different sources in literature. For 

convenience, one may refer to Blakely (1995, chaps 4–5). 

2.2.1 Units 

This study will follow the International System of Units (abbreviated as SI) (Blakely, 1995, 

p 67). However, its alternative, the cgs (centimetre-gram-second) system may be referred 

to occasionally in the text. The cgs system is also called the Gaussian unit system or 

Gaussian-cgs units. Formulas exist for both cgs and SI units (Sheriff, 1991, p 183). 

Conversions between these units are well documented in literature (Goldfarb and Fickett, 

1985). 

2.2.2 The 𝑩 Field 

The Lorentz force law describes the combination of electric and magnetic force on a point 

charge due to electromagnetic fields. It is defined as follows: 

 𝑭 = 𝑞(𝑬 + 𝒗 ∙ 𝑩) (2.1) 
 

where 𝑞 is the charge, 𝑬 is the electric field, 𝒗 is the velocity of the charged particle and 𝑩 

is termed the magnetic field. The units of 𝑩 are teslas (T) or gauss (G), depending on 

whether the units are according to SI or cgs conventions. In geophysics, nanotesla (nT) 

or gamma (𝛾) are used and are numerically equivalent. The force due to a magnetic field 

necessary to describe the motion of a charged particle is therefore (Blakely, 1995, p.66): 

 𝑭 = 𝑞(𝒗 ∙ 𝑩) (2.2) 
 

The 𝑩 field is the magnetic field measured by magnetometers on surveys. 
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2.2.3 The 𝑯 Field, 𝑴 and 𝒌 

The measured 𝑩 field is comprised of two main sources (Blakely, 1995, sec.5.3); that 

which comes from external field (𝑯), and that which comes from nearby materials (𝑴). It 

can be stated as follows (Sheriff, 1991, p 185): 

 𝑩 = 𝜇0(𝑯 + 𝑴) = 𝑩𝒂 + 𝑩𝒎 (2.3) 
 

where 𝜇0 is the permeability in a vacuum (units: newtons per ampere squared or N/A2) 

and 𝑴 is referred to as the magnetisation or magnetic polarization. 𝑩𝒂 is the ambient 

magnetic field and 𝑩𝒎 is the field due to the magnetisation. In SI units, both 𝑯 and 𝑴 

have units of ampere per meter (A/m). 

If the field 𝑯 is small, the response of the magnetisation 𝑴 in the material is 

approximately linear: 

 𝑴 = 𝑘𝑯 (2.4) 
 

where 𝑘 is a dimensionless constant of proportionality called the magnetic susceptibility. 

The magnetisation value shows how strongly a region of material is magnetised and is 

therefore the magnetic dipole moment per unit volume. The susceptibility can be rewritten 

as: 

 
𝑘 =

|𝑴|

|𝑯|
 (2.5) 

 

Substituting (2.4) into (2.3) gives: 

 

 𝑩 = 𝜇0(𝑯 + 𝑴)
= 𝜇0(1 + 𝑘)𝑯
= 𝜇0𝜇𝑟𝑯
= 𝜇𝑯 

(2.6) 

 

where 𝜇𝑟 is the relative permeability of the material and 𝜇0is the permeability of free 

space. This then becomes: 

 
𝑯 =

𝑩

𝜇
 (2.7) 
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Alternatively, from (2.3) again: 

 
𝑯 =

𝑩

𝜇0

− 𝑴 (2.8) 

 

The units for the magnetic field strength 𝑯 can be derived from its relationship to the 

magnetic field 𝑩 using equation (2.7). Since the unit of magnetic permeability (μ) is N/A2, 

then the unit for the magnetic field strength is T/(N/A2) = (N/A·m)/(N/A2) = A/m, where T is 

Tesla, N is Newton, A is Ampere and m is metre.  

From all of this it can be seen that the units of 𝑯 and 𝑴 are the same, namely Ampere 

per metre (A/m). 

2.2.4 Remanent Magnetisation 

This section will deal with basic remanent magnetisation theory. An expanded discussion 

on remanence calculations in the case of tensors will be covered in CHAPTER 5 

Magnetisation can be induced into a material (which by itself would otherwise have no 

field) or it can originate from the material itself. Remanence is the magnetisation left 

behind in a ferromagnetic material after an external magnetic field is removed. There are 

various mechanisms by which this can happen (Butler, 2004). Thermoremanent 

magnetisation is acquired through the cooling of igneous rocks below the Curie 

temperature. Chemical remanent magnetisation occurs through magnetic grains 

precipitating from a circulating solution of chemical reaction. Depositional remanent 

magnetisation can occur through magnetic grains aligning with the magnetic field soon 

after deposition. Viscous remanent magnetisation is acquired by ferromagnetic minerals 

by sitting in a magnetic field for some time.  

Remanence is an important concept when modelling magnetic data. It is taken into 

account in magnetic field calculations as the component of the anomaly field that is not in 

the direction of the current magnetic field. It forms part of the magnetisation or magnetic 

polarization parameter.  

If 𝑴 is the total magnetisation of a body, then (Blakely, 1995, p.89; Clark, 1997) 

 𝑴 = 𝑴𝒊 + 𝑴𝒓

= 𝑘𝑯 + 𝑴𝒓 
(2.9) 
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where 𝑴𝒊 and 𝑴𝒓 indicate induced and remanent magnetisation respectively. The relative 

magnitude of remanence is defined as the ratio of 𝑴𝒓 to 𝑴𝒊 and has been named the 

Koenigsberger ratio or the Q-ratio (Blakely, 1995, p.90; Clark, 1997): 

 
𝑄 =

|𝑴𝒓|

|𝑴𝒊|
 (2.10) 

 

A large Q-ratio is an indicator that magnetic material will tend to retain significant 

remanent magnetisation. Strong remanent magnetisation suggests the presence of finely 

crystalline magnetic mineral grains (Grant, 1985). Clark, (1997) provides a good overview 

of the relationship between mineral grain domain structure and magnetisation. He noted 

that small mineral grains (0.05 - 1μm) have a single domain (SD) structure, which means 

that they are uniformly magnetised. Small mineral grains can retain remanent 

magnetisation for a long time and are important carriers of remanent magnetisation in 

many types of rocks. Larger grains are more likely to subdivide into a number of magnetic 

domains (known as multi domain or MD grains) with different magnetic orientations, 

thereby reducing the remanent magnetisation strength. Therefore, although these grains 

can have high magnetic susceptibilities, they do not retain remanent magnetisation as 

well as single domain grains. Pseudo single domain (PSD) grains have properties 

intermediate between SD and MD grains. They are generally in the order of a few 

microns in size (~1 – 20 μm). Clark, (1997) summarised that with increasing grain size, 

the remanence generally decreases whereas susceptibility increases. 

The defining characteristics of magnetic fields and magnetisation are the magnitude and 

the direction of the fields. The direction of the fields are defined in terms of inclinations 

and declinations, translated into direction cosines (Talwani, 1965). Direction cosines are 

a method of translating angular information (inclination and declination) into conventional 

coordinate space. 

If 𝑴𝒓 has inclination and declination 𝑀𝑖𝑛𝑐 and 𝑀𝑑𝑒𝑐, then: 

 𝛼𝑟 = cos(𝑀𝑖𝑛𝑐) ∙ cos(𝑀𝑑𝑒𝑐) (2.11) 

 

 𝛽𝑟 = cos(𝑀𝑖𝑛𝑐) ∙ sin(𝑀𝑑𝑒𝑐) (2.12) 

 

 𝛾𝑟 = sin(𝑀𝑖𝑛𝑐) (2.13) 
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Where 𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟 are the direction cosines of remanent magnetisation 𝑴𝒓.Note that these 

expressions are valid for NED coordinate systems. If the x-axis does not point north, then 

the deviation from north must be subtracted from the declination first. This is of critical 

importance if using the ENU coordinate system where the deviation from north is 90 

degrees.  

Similarly, if 𝑴𝒊 (or 𝑯 since it will be in this direction) has inclination and declination 𝐻𝑖𝑛𝑐 

and 𝐻𝑑𝑒𝑐, then it has the following direction cosines: 

 𝛼𝑖 = cos(𝐻𝑖𝑛𝑐) ∙ cos(𝐻𝑑𝑒𝑐) (2.14) 

 

 𝛽𝑖 = cos(𝐻𝑖𝑛𝑐) ∙ sin(𝐻𝑑𝑒𝑐) (2.15) 

 

 𝛾𝑖 = sin(𝐻𝑖𝑛𝑐) (2.16) 

 

From this the expression for 𝑴𝒓 becomes: 

 𝑴𝒓 = |𝑴𝒓| ∙ [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟] (2.17) 

 

|𝑴𝒓| is the magnitude of 𝑴𝒓. For the case of 𝑴𝒊 we can make use of equation (2.4), 

which relates 𝑴𝒊 to 𝑯 and take advantage of the fact that since we know the ambient 

magnetic field when modelling, equation (2.3) can be used with 𝑴 = 0. We therefore get 

 𝑴𝒊 = |𝑴𝒊| ∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖]
= 𝑘 ∙ |𝑯| ∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖]

=
𝑘 ∙ |𝑩𝒂| ∙ 10−9

𝜇0

∙ [𝛼𝑖, 𝛽𝑖 , 𝛾𝑖] 
(2.18) 

 

|𝑩𝒂| is the ambient magnetic field in nanotesla, necessitating the need to multiply the 

equation by 10−9 to convert it to tesla. 

By substituting (2.17) and (2.18) into (2.9), it follows that:  
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 𝑴 = 𝑴𝒊 + 𝑴𝒓

= 
𝑘 ∙ |𝑩𝒂| ∙ 10−9

𝜇0

∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖] + |𝑴𝒓| ∙ [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟]

=
𝑘 ∙ |𝑩𝒂|

400𝜋
∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖] + |𝑴𝒓| ∙ [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟]

= |𝑴| ∙ [𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡] 

 

(2.19) 

Where 𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 are the new resultant direction cosines.To express 𝑴 in field strength (𝑩 

with units in tesla), (2.19) is multiplied by 𝜇0 4𝜋⁄ . For nanotesla this 

becomes 𝜇0 × 10−9 4𝜋 = 100⁄ . Therefore: 

 
𝑩 = 100 ∙ (

𝑘 ∙ |𝑩𝒂|

400𝜋
∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖] + |𝑴𝒓| ∙ [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟])

=
𝑘 ∙ |𝑩𝒂|

4𝜋
∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖] + 100 ∙ |𝑴𝒓| ∙ [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟]

= |𝑩| ∙ [𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡] 

(2.20) 

 

Importantly, for use in forward modelling, the resultant direction cosines for 𝑴 can be 

obtained by dividing 𝑴 by |𝑴| which can be obtained through the following equation: 

 |𝑴| = √𝑴 ∙ 𝑴 (2.21) 

 

 Where 𝑴 is defined by equation (2.19). 

 

2.2.5 Magnetic Potential 

The magnetic potential (Blakely, 1995, sec.4.3) is the work done by a magnetic particle 

against the field. It is an important concept in derivations for forward modelling. The term 

magnetic potential can be used for either of two quantities: the magnetic vector potential 

(𝑨) and the magnetic scalar potential (φ).  

Both quantities can be useful in calculating the magnetic field. The vector potential is 

related to the 𝑩 field via: 

 𝑩 = ∇ × 𝑨 (2.22) 
 

where the operator “∇ ×” denotes taking the curl of the magnetic vector potential (𝑨) 
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The magnetic scalar potential φ is related to the 𝑯 field (in cases when there are no free 

currents) by: 

 
𝑯 = −∇𝜑 =

𝑩

𝜇0

=  
∇ × 𝑨

𝜇0

 (2.23) 

 

2.2.6 Total Magnetic Intensity 

If 𝐵𝑥 , 𝐵𝑦 and 𝐵𝑧 are defined to be three components of a magnetic field 𝑩, and 𝛼, 𝛽, 𝛾 are 

defined to be the direction cosines relating to the direction of the magnetic field, then the 

total magnetic intensity 𝐵𝑡𝑚𝑖 (often referred to as 𝑓) can be approximately defined as: 

 𝐵𝑡𝑚𝑖 = 𝛼 ∙ 𝐵𝑥 + 𝛽 ∙ 𝐵𝑦 + 𝛾 ∙ 𝐵𝑧 (2.24) 

 

In spite of being an approximation, this expression has useful mathematical properties. It 

obeys Laplace’s equation, and is therefore a true potential field. It can therefore be 

continued between surfaces at differing levels, if accurately known everywhere over one 

surface.  

When anomalies are too strong, then this relationship is no longer accurate and the full 

measured total field anomaly should be used. Schmidt and Clark (2006) point out that the 

difference between the two expressions can be as large as 1,000 nT for a 10,000 nT 

anomaly in a 50,000 nT regional field. The full total magnetic intensity is actually defined 

as: 

 
𝐵𝑡𝑚𝑖 = √(𝐵𝑥 + 𝛼𝐵𝑎)2 + (𝐵𝑦 + 𝛽𝐵𝑎)

2
+ (𝐵𝑧 + 𝛾𝐵𝑎)2 − 𝐵𝑎 (2.25) 

 

where 𝐵𝑎 = |𝑩𝒂| is the ambient magnetic field. This version of 𝐵𝑡𝑚𝑖 is not a potential field, 

since it does not obey Laplace’s equation exactly (Schmidt and Clark, 2006).  
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2.3 Conventional Forward Modelling in 3D 

A voxel-based approach, rather than a polygonal approach, is advocated for potential 

field modelling. This section aims to show that the creation and editing of voxel-based 

models can be faster than the equivalent facet-based models. While the actual 

calculation speeds of voxel-based models may not necessarily be faster, the section also 

aims to demonstrate that they need not be inefficient either, simply by adopting optimised 

calculation strategies. 

2.3.1 Forward Modelling Theory 

Firstly, the magnetic field due to a rectangular prism needs to be calculated. There are 

many techniques which can be considered here. Bhattacharyya (1964) developed the 

equations for a rectangular prism of infinite depth. Guptasarma and Singh (1999) and 

Singh and Guptasarma (2001a; b) used line integrals to calculate the field component 

due to each polygonal facet. Holstein (2003) derived formulas from the gravity potential 

field and field gradient tensor for a polyhedral target body of a spatially linear density 

medium. Parker (1973) showed that Fourier transforms can be used to calculate 

magnetic or gravitational anomalies. More recently, Caratori Tontini, Cocchi and 

Carmisciano, (2009) also applied Fourier transforms for rapid 3-D forward modelling of 

potential fields. 

In this case the technique by Bhattacharyya (1964) was used. The simplicity of the 

technique makes it well suited to rectangular prism calculations. It is described and 

developed into a Fortran routine, named ‘mbox’ by Blakely (1995, pp. 200-201) based on 

the work by Bhattacharyya (1964). The dimensions of the prism are given by 𝑥1 ≤ 𝑥 ≤

𝑥2, 𝑦1 ≤ 𝑦 ≤ 𝑦2, 𝑧1 ≤ 𝑧 <  ∞. The prism is observed in a regional field defined by 

𝑯 = (𝐻𝑥 , 𝐻𝑦 , 𝐻𝑧) and the magnetisation of the rectangular prism is given as 𝑴 =

(𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧). The equations are (in NED convention)  

 
𝐵 =  𝐶𝑚𝑀 [

𝛼23

2
log (

𝑟 − 𝑥′

𝑟 + 𝑥′
) +

𝛼13

2
log (

𝑟 − 𝑦′

𝑟 + 𝑦′
)

− 𝛼12 log(𝑟 + 𝑧1)

− 𝑀𝑥𝐻𝑥 tan−1 (
𝑥′𝑦′

𝑥′2 + 𝑟𝑧1 + 𝑧1
2)  

− 𝑀𝑦𝐻𝑦 tan−1 (
𝑥′𝑦′

𝑟′2 + 𝑟𝑧1 + 𝑥′2
)

+ 𝑀𝑧𝐻𝑧 tan−1 (
𝑥′𝑦′

𝑟𝑧1

)] |
𝑥′ = 𝑥2

𝑥′ = 𝑥1
|
𝑦′ = 𝑦2

𝑦′ = 𝑦1
 

(2.26) 

   
where: 
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 𝛼12 = 𝑀𝑥𝐻𝑦 + 𝑀𝑦𝐻𝑥 (2.27) 

 

 𝛼13 = 𝑀𝑥𝐻𝑧 + 𝑀𝑧𝐻𝑥 (2.28) 
 

 𝛼23 = 𝑀𝑦𝐻𝑧 + 𝑀𝑧𝐻𝑦 (2.29) 

 

 𝑟2 = 𝑥′2 + 𝑦′2 + 𝑧′2 (2.30) 
 

 
𝑀 = √𝑀𝑥

2 + 𝑀𝑦
2 + 𝑀𝑧

2 (2.31) 

 

Cm is a constant that depends on the units of measurement. In cgs units, 𝐶𝑚 = 1  and in 

SI units, 𝐶𝑚 =  𝜇0 4𝜋⁄  . Note that 𝑀 is the total magnetisation of the rectangular prism, as 

described by (2.9) and the equations following. It is not the remanent magnetisation 

exclusively.  

When equation (2.26) is calculated twice, at different depths, the difference between the 

solutions gives the solution for a rectangular prism bounded by the two depths.  

Other techniques for calculating the magnetic field due to a magnetic body have also 

been published. For example, Guptasarma and Singh (1999) published a technique to 

compute the magnetic field resulting from a uniformly magnetised arbitrary polyhedron. It 

is very well suited to polyhedrons and calculates the x, y and z components of the field as 

well as the total field. However, to do this it calculates line integrals for each face of the 

polyhedron. This makes it a more complex calculation than the ‘mbox’ routine described 

above. As such it is not as efficient for voxel based calculations. 

To demonstrate the versatility and applicability of voxel based calculations, the gravity 

case is also presented. For the gravity field calculation Blakely (1995, pp. 186-187) 

developed a FORTRAN routine, based on the work of Plouff (1976), named ‘gbox’. In this 

case, the dimensions of the prism are given by 𝑥1 ≤ 𝑥 ≤ 𝑥2, 𝑦1 ≤ 𝑦 ≤ 𝑦2, 𝑧1 ≤ 𝑧 <  𝑧2. The 

equations for gravity are (in NED convention): 

 
𝑔 = 𝛾𝜌∑ ∑ ∑ 𝜇𝑖𝑗𝑘 [𝑧𝑘 tan−1

𝑥𝑖𝑦𝑖

𝑧𝑘𝑅𝑖𝑗𝑘

− 𝑥𝑖 log(𝑅𝑖𝑗𝑘 + 𝑦𝑗)

2

𝑘=1

2

𝑗=1

2

𝑖=1

− 𝑦𝑖 log(𝑅𝑖𝑗𝑘 + 𝑥𝑗)] 

(2.32) 
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where 𝜌 is uniform density is, 𝛾 is the gravitation constant, 𝑅𝑖𝑗𝑘 = √𝑥𝑖
2 + 𝑦𝑗

2 + 𝑧𝑘
2 and 

𝜇𝑖𝑗𝑘 = (−1)𝑖(−1)𝑗(−1)𝑘. 

Unlike the case with calculating magnetic fields, this equation only has to be calculated 

once per rectangular prism. 

2.3.2 Computational strategy for combined rectangular prism-based calculations 

A strategy is proposed for the computation of voxel based calculations. Voxels can be 

modelled as rectangular prisms. The fundamental shape of the magnetic anomaly due to 

a rectangular prism is dependent on three factors, namely the vertical distance from the 

observation point, the direction of magnetisation (both remanent and induced) and the 

magnetic susceptibility of the rectangular prism. If the terrain is flat, the horizontal location 

of a rectangular prism has no impact on the fundamental shape of the anomaly over a 

few hundred km2, since the inducing field does not change significantly over this size area 

(Pedersen, Rasmussen and Dyrelius, 1990). In addition, susceptibility only affects the 

vertical scale of the anomaly shape. Therefore, the same calculated anomaly can be 

used for two different lithologies that only differ by susceptibility. 

With this in mind, a lithology model comprised of voxels 𝐼𝑖𝑗𝑘 is defined, where 𝑖, 𝑗, 𝑘 

represent rows, columns and layers in the model. For the purposes of programming, the 

lithology model is made up of lithology indices, which are defined as follows: 

 
𝐼𝑖𝑗𝑘 = {

−1 for air 
0 for background lithology

≥ 1 𝑎𝑛𝑑 ≤ 𝑛 for modelled lithology
  

  

(2.33) 

This set of lithology indices represents 𝑛 different magnetic lithologies in the model. The 

value of -1 is used as a marker to account for air above terrain, and 0 is background 

lithology. In this way, all aspects are accounted for, including terrain. For example, 

equation (2.34) shows a slice of the lithology model with a small hill, made up of voxels 

𝐼𝑖𝑗𝑘  where 𝑖 = 1, and 𝑗 and 𝑘 are all columns and layers respectively. For convenience, 

the number of calculations at observation points is equal to the number of rectangular 

prisms, with each calculation located horizontally in the centre of its respective 

rectangular prism. 
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𝑰𝒊=𝟏 =

[
 
 
 
 
−1 −1 −1 −1 −1
−1 −1 0 −1 −1
0 0 0 0 0
0 1 1 1 0
0 1 1 1 0 ]

 
 
 
 

 (2.34) 

 

𝑰𝒊=𝟏 are all the values of 𝐼𝑖𝑗𝑘 where 𝑖 = 1. For each value of 𝐼𝑖𝑗𝑘 > 0, the procedure is as 

follows: 

1) For a single rectangular prism, calculate the anomaly solutions, covering 

twice the area of interest (to facilitate anomaly shifting later). The 

anomaly solution for layer 𝑘 and lithology 𝑛 is defined as 𝑹𝒏𝒌 (Figure 1). 

2) Repeat point (1) for each layer or depth of the model. 

 

Figure 1 Diagram showing anomaly solution for layer 1 and lithology 1 calculated 
for a rectangular prism. Solid arrows show which calculations are summed into the 
total field for this rectangular prism. Dashed arrows indicate solutions outside of 
the modelled area, but which will be used when summing anomalies. 

These points are repeated for each of the n lithologies in the model. Then: 

3) Iterate through each row, column and layer of the model 𝐼𝑖𝑗𝑘. For each 

rectangular prism with lithology n at layer k of 𝐼𝑖𝑗𝑘, where 𝑛 > 0, shift 𝑹𝒏𝒌 

to be centred at point 𝑖𝑗 and sum the solutions over the model to the total 

calculated field (Figure 2). 
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Figure 2 Diagram showing anomaly solution for layer 1 and lithology 1 calculated 
in Figure 1, then reused for a different rectangular prism. 

The above strategy holds for perfectly flat terrain. In order to correct for topography, 

rectangular prisms that may lie above the observation point have to be accounted for. An 

example of this is an observation point in a valley that must still take into account 

adjoining peaks that lie above it (Figure 3). 

To account for this, point (2) above must also be done for a range of pseudo layers above 

the model. This range is equal to the (maximum height – minimum height)/(rectangular 

prism height). Then at point (3), 𝑅𝑛𝑘 is replaced with 𝑅𝑛(𝑘−𝑑) where d is an element of a 

surface representing the number of rows below the maximum height.  

 

Figure 3 Diagram showing the anomaly solutions which must be used when the 
topography is not flat. Notice that anomaly solutions are now calculated in the 
reverse direction (on and under the ground), i.e. 𝑹𝟏𝟎, 𝑹𝟏−𝟏 
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All of this is mathematically expressed as follows: assume the calculated magnetic field 𝐵 

is for a grid of observation points of 𝑟 rows and 𝑐 columns. The model that it will be 

calculated from also has 𝑟 rows and 𝑐 columns and has 𝑙 layers. The altitude correction 𝐷 

has 𝑟 rows and 𝑐 columns and contains the integer layer offsets from the maximum 

height. Equation (2.35) describes the final summation operation for each final grid 

point 𝐵𝑝𝑞. 

 

𝐵𝑝𝑞 = ∑ ∑ ∑ ∑ ∑ 𝐵𝑝𝑞𝑖𝑗𝑘

(𝑙+𝐷𝑝𝑞)

𝑘=𝐷𝑝𝑞

(𝑟+𝑞)

𝑗=𝑞

(𝑐+𝑝)

𝑖=𝑝

𝑐

𝑞=1

𝑟

𝑝=1

 (2.35) 

 

where 𝐵𝑝𝑞𝑖𝑗𝑘 is the field contribution from magnetic lithology 𝐼𝑖𝑗𝑘 at location 𝑝, 𝑞, taken 

from  𝑹𝒏𝒌 (shifted to be centred on position 𝑖, 𝑗). 

2.3.3 Forward modelling software test 

The theory outlined in sections 2.3.1 and 2.3.2 were tested against GM-SYS, a major 

commercial package distributed by Geosoft. A dyke was modelled in a regional field of 

30,000 nT, with an inclination of -63 degrees, and a declination of -17 degrees. The 

susceptibility of the dyke was 0.01 SI. The density was 2.8 g/cm3. To test remanence, a 

remanent magnetisation of 0.199 A/m was assigned to the dyke, with an associated 

inclination of 35 degrees, and declination of 80 degrees. 

Figure 4(a) shows the results of the comparison. As can be seen, the voxel based model 

matches the GM-SYS modelled anomaly perfectly, illustrating that all aspects of the 

calculation are working perfectly. Note that the voxel rectangular prisms (cyan colour) are 

also shown in Figure 4(b). Less rectangular prisms could have been used but this was 

necessary to test the computational strategy outlined in section 2.3.2. Although there are 

90 rectangular prisms, only 9 anomalies corresponding to the 9 layers present needed to 

be calculated.  
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Figure 4 Modelled results of a dyke, showing a gravity and magnetic comparison of results 
between calculated voxel responses and GM-SYS. Regional geomagnetic field is 30,000 nT, 
with inclination of -63 degrees and declination of -17 degrees. The susceptibility 0.01 SI. 
Density is 2.8 g/cm3. Remanent magnetisation is 0.199 A/m with inclination of 35 degrees 
and declination of 80 degrees. The anomaly responses are shown in (a) and the body 
modelled is shown in (b). 

 

2.3.4 Model creation and editing 

As mentioned in the introduction, there are two basic strategies for forward modelling in 

3D. The conventional approach is to form bodies from arbitrary polygonal shapes.  

(a) 

(b) 
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The time it takes to construct a 3D model can be prohibitive. Conventional polygonal 

based 3D modelling programs (3DS Max, Maya, Blender) are akin to CAD packages and 

require a steep learning curve, which is not always possible.  

An alternative approach is to use a matrix of rectangular prisms or voxels to form the 

body. Figure 5 shows a body represented by rectangular prisms and by polygons. Since 

there are far more rectangular prisms than polygons, calculating a magnetic field from 

rectangular prisms has fallen out of favour, if only to save calculation time.  

 

 

Figure 5 Comparison between polygonal shape (left) and rectangular prism based shape 
(right) 

The major time-sink is in the editing of the 3D models. This problem is definitely present 

when editing a polygonal style body. Figure 6 shows the increase in complexity from just 

a few edits. This increase in complexity slows calculation times and may necessitate 

polygonal simplification algorithms.  

Model editing is therefore not trivial and can be extremely time consuming. This is 

especially the case when directly editing a full 3D mesh of facets, because of the 

increased geometric complexity of facets versus voxels. An example of this will be 

demonstrated in section 2.3.9, where model creation and editing were reduced by an 

order of magnitude (months to days). 

 

 



27 

 

 

Figure 6 Demonstration of increasing complexity in polygonal modelling. In (a) a simple 
starting polygon is shown. In (b) the starting polygon is intersected by another shape (say, a 
dyke). In (c) the increase in polygonal facets if only one edit has been made to the model is 
shown. 

The ideal would be to simply draw a sketch of the model and make changes in a similar 

manner. The learning curve to do this is low and edits to the model are not as time 

consuming. 

This is possible with rectangular prism (or voxel) based modelling. If a model is defined 

as having a set number of rows, columns and layers, then it is possible to slice that model 

along one of its rows, columns or layers. This slice gives a 2D representation of that point 

in the model. The slice can also be manually drawn on, much like a computer graphics 

application. The pixels making up the “ink” of the line being drawn would each be a 

rectangular prism or voxel (Figure 7). 
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Figure 7 Modelled profile with calculated and observed magnetic data. Each pixel in the 
model represents a voxel with corresponding magnetic lithology. 

Although edits are 2D, they are slices of a 3D model and can be made on both vertical 

slices (much like conventional 2D software) and horizontal layers (Figure 8), thereby 

ensuring model continuity. 

 

Figure 8 Horizontal slice of a 3D model. 
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Edits on both vertical and horizontal slices are trivial. Edges of bodies can be quickly 

redrawn with little to no learning curve required. The copying and pasting of details from 

one profile to multiple other profiles is also simple to program and use. 

In polygonal based modelling packages, each body would get a unique geophysical 

definition. In a voxel-based design, this is simply not practical. Therefore, voxel-based 

modelling in this case is defined to be magnetic lithology centric rather than body centric. 

Each magnetic lithology gets a unique geophysical definition that is applied to all 

rectangular prisms of that magnetic lithology. The advantage of this is that a magnetic 

lithology only has to be changed once for all related bodies in the model. 

With this in mind, a magnetic lithology is defined to mean all bodies (rectangular prisms) 

with the same magnetic parameters – i.e. susceptibility, field direction, remanence.  

2.3.5 Model accuracy 

On the face of it, it makes sense that facets can model certain structures more precisely 

than voxels. For example, a dipping dyke can be simply modelled with fewer points using 

facets than with its voxel alternative, which will require potentially many more voxels to be 

calculated to reach the same level of detail (Figure 9). 

 

Figure 9 Illustration showing the increase in voxel resolution necessary to approximate 
dipping dykes. 

There are a few points to be noticed. The approximation used in Figure 9 uses 160 

rectangular prisms for its calculation as opposed to 1 facet based calculation. However, 

taking into account redundancies in the rectangular prism calculation, as pointed out 

earlier, 160 can be reduced to 19 since we only need to calculate anomalies once per 

layer. If the dyke is more complex, the facet based calculation will slow down (due to 
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increased facets) while the rectangular prism based calculation will remain similar to 

before. 

Figure 10 shows a comparison between voxel anomalies and polygonal anomalies. It 

serves to highlight one of the pitfalls of voxel based modelling. Since each voxel has a 

finite lateral resolution, if the edge of a body does not accurately coincide with the edge of 

a voxel, an anomaly shift can occur. This is easily fixed, by either shifting the voxel 

registration point (Figure 11) or by increasing the resolution of the voxet (data set of 

voxels) (Figure 12) 

 

Figure 10 Model of a dipping dyke with a comparison between polygonal (GM-SYS) versus 
voxel calculations. (a) and (b) show the anomaly and the body respectively. Regional 
geomagnetic field is 30,000 nT, with inclination of -63 degrees and declination of -17 

(a) 

(b) 
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degrees. The susceptibility 0.01 SI. Density is 2.8 g/cm3. Remanent magnetisation is 0.199 
A/m with inclination of 35 degrees and declination of 80 degrees. 

 

 

Figure 11 Model of a dipping dyke with a comparison between polygonal (GM-SYS) versus 
voxel calculations, with the voxels shifted into a slightly more favourable position (half the 
width of a voxel in this case). (a) and (b) show the anomaly and the body respectively. 

 

 

(a) 

(b) 
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Figure 12 Model of a dipping dyke with a comparison between polygonal (GM-SYS) versus 
voxel calculations at a higher voxel resolution (twice the resolution in this case). (a) and (b) 
show the anomaly and the body respectively.  

Therefore, in terms of model accuracy, the resolution of the voxel model should be 

comparable to the resolution of the observed dataset. Increasing the resolution of the 

voxel model (i.e. decreasing each voxel’s dimensions) does allow for enhanced model 

accuracies to be achieved. This is especially true if one takes into account the inherent 

modelling error in terms of locations of bodies as input by interpreters and the fact that a 

simple polygonal dyke is over-simplistic when compared to real geology. 

The bottom line is that voxel models are a viable alternative to facet-based models, even 

with concerns of a model made up essentially of rectangular prisms. 

(a) 

(b) 
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2.3.6 Depth versus resolution and sensitivity 

The dipolar and monopolar nature of magnetic and gravity fields result in magnetic fields 

and gravity fields decaying at a rate of 1 𝑟3⁄  and 1 𝑟2⁄  respectively (Blakely, 1995, pp.43, 

75) . From this, it is clear that the further away geology is from the observation point, the 

lower its contribution is to the respective potential field. This implies that our effective 

model resolution is actually lower the further we are from the observation point. This is 

commonly the case not just in potential field methods, but in all electrical methods.  

A side effect of this is that small features in the field tend to relate to shallow sources (i.e. 

they are close to the observation point) and broad features tend to relate to deeper 

sources. 

As a result of this, optimisations are possible if we take advantage of this property. By 

lowering the resolution of the model as we move away from the source, less calculations 

are necessary and the overall calculation time speeds up. 

This is straightforward to implement on the strategy outlined in section 2.3.2. 

Remembering that a rectangular prism is calculated at each depth in the model, the 

dimensions of the prism can be increased for greater depths. If the horizontal dimension 

of the rectangular prism is still a multiple of the smallest rectangular prism dimension, 

there will not need to be any change in any aspect of the strategy. 

To illustrate this, Figure 13 shows a simulation of decreasing the model resolution with 

depth. The z-extent of the model sections were increased in an r2 manner, with the first 

layered section being 50 m thick (area between surface and model), the next sections 

being 150 m and 250 m thick, respectively, with the last section being 50 m thick since 

the model ends after that point. As is evident, the fit is reasonable, illustrating that depth 

related optimisations can be done to increase calculation speed. However, from an 

aesthetic point of view, an interpreter may still prefer seeing (at the very least for 

conceptual reasons) a fixed voxel resolution throughout the model. The simplification of 

the model for calculation purposes can be either done behind the scenes or at the control 

of the interpreter. 
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Figure 13 Illustration of the relationship between model depth and anomaly accuracy. As 
can be seen, the deviation of the voxel dyke at deeper depths has a minor impact on the 
anomaly. 

A final consequence of the importance of features close to the observation point, versus 

features far away from the observation point, is that the accurate modelling of topography 

is important. It is the closest feature to the observer and thus the variation of (especially 

magnetic) topography must be taken seriously and modelled appropriately.  

2.3.7 Calculation time 

There is no disputing that the calculation time for facets is efficient. Optimisations using 

Fast Fourier transforms have also been developed to produce rapid modelling (Caratori 
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Tontini, Cocchi and Carmisciano, 2009). What is in question is whether a traditional voxet 

based calculation can be optimised so that it is not especially inefficient.  

To examine voxel based modelling, the solution for a rectangular prism (Blakely, 1995) 

was used to calculate the potential field at each observation point. The problem that 

becomes immediately apparent is that the sheer number of rectangular prisms in any 

volume quickly becomes too large for any form of efficient calculation.  

To illustrate this, since a single calculation of a rectangular prism is necessary to obtain 

the field from a single observation point, a grid at the surface of the earth of 100 by 100 

observations implies 10 000 calculations for one rectangular prism. If the model of the 

earth volume has 100 rows, 100 columns and 100 layers, this implies 1 000 000 

rectangular prisms and 10 000 000 000 calculations.  

To optimize this calculation, the components that make up the calculation of a magnetic 

anomaly need to be understood. There are three basic components 

1) A geometric component which is simply due to the distance a magnetic body is 

from the observation point 

2) The field direction which is ultimately comprised of the inducing and remanent 

fields. 

3) The magnetic susceptibility which is in essence a scaling factor to give amplitude 

to the field. 

Point 1 contains no magnetic component. Since this is simply due to distance, the 

consequence is that if a rectangular prism is at a specific depth, the anomaly from the 

rectangular prism will be the same as the anomaly of any other rectangular prism at the 

same depth. 

Point 2 is more complex. The components of the magnetic field are woven into the 

geometric calculation. In spite of this, in the case of two rectangular prisms at the same 

depth but where one is remanent and the other is not, aspects of the geometric 

calculation can be reused, saving time for the second rectangular prism calculation.  

Point 3 is simply a scaling factor, so two rectangular prisms at the same depth differing by 

only susceptibility will have final anomalies differing by the magnitude of the 

susceptibilities only. This is a minor calculation. 

Taking advantage of this and remembering that a magnetic lithology means all bodies 

(rectangular prisms) with the same magnetic parameters – i.e. susceptibility, field 
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direction, remanence, all anomalies for a rectangular prism of a specific defined lithology 

at a specific depth will be identical. The resultant overall field is simply the sum of the 

individual fields from the individual rectangular prisms (Figure 14).  

 

Figure 14 The top image shows the anomaly from a rectangular prism. The bottom image 
illustrates how these are combined to obtain the resultant anomaly. 

In this simplifying case, rectangular prisms are homogenous and there is no topography. 

Since the anomalies for a rectangular prism at a specific depth are identical, we need 

only calculate the field of a rectangular prism once, and shift the anomaly results to reflect 

the locations of other rectangular prisms at the same depth. To account for all possible 

shifts, the grid of the calculated anomaly must be four times bigger (double the rows and 

columns) than the desired modelling extents.  

A separate anomaly grid must therefore also be calculated for each depth (layer) in the 

model. From the above calculation, the number of calculations is reduced by the number 

of rectangular prisms in a layer (10 000) and multiplied by 4 to account for the increased 

calculations. The new calculation total is 4 000 000 which is 0.04% of the original 

calculations (Figure 15). This is significantly faster and enables rectangular prisms to be 

used as a viable alternative for modelling.  
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Figure 15 Performance increase using the algorithm  

Changes to susceptibility or density do not affect the field shape but merely the amplitude 

of the anomaly. Therefore, it is not necessary to recalculate the entire field if one of these 

parameters is changed. 

2.3.8 Link to inversion 

As mentioned before, in forward modelling, potential field data is calculated by manually 

postulating geological parameters such as density, susceptibility and the geometry of the 

body which is being modelled. This resultant field is compared with the measured field, 

and the process is repeated until the calculated and measured fields match.  

In inversion, the measured field is accepted as input, and some or all of the susceptibility, 

density and geometry values are calculated automatically. Figure 16 illustrates the 

relationship between forward modelling and inversion.  

. 
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Figure 16 Relationship between forward modelling and inversion. The model is changed 
(forward modelling) to fit data or the data is used (inversion) to derive a model.  

Although inversion can be used to change polygonal geometry, it is often done on voxet 

models, especially in other techniques such as resistivity and electromagnetic surveys. 

These voxet models can then be used as input into voxet based potential field forward 

modelling. These models are therefore more conveniently compatible with voxel based 

forward modelling. Inversion is discussed in more detail in CHAPTER 4. 

2.3.9 Example: Trompsburg Complex 

This technique was used to create a very simple 3D model of the Trompsburg Complex, 

a circular igneous intrusion located in the centre of South Africa (Figure 17(a)). It was 

forward modelled using both magnetic and gravity data and using the process described 

in section 2.3.2. Thick Karoo Supergroup sediments cover the Complex and it does not 

crop out at all (Figure 17(b)). Its presence was only discovered when gravity and later 

magnetic surveys were conducted over it in the 1940’s (Buchmann, 1960; Ortlepp, 1959). 

Following its discovery seven boreholes were drilled into the north-western part of the 

Complex where the magnetic intensities are the highest, and the main lithologies 

encountered were gabbros, olivine gabbro, mineralised gabbro, troctolite and magnetite. 

The Complex intruded into dolomites at 1915 ± 6 Ma (Maier et al., 2003). A detailed 

description of the geological setting and physical properties of the lithologies can be 

found in Maré and Cole (2005). It must be emphasised that the modelling in this report 

was aimed more at illustrating a new software package, and not to conduct a detailed 

investigation into the structure and geological development of the Trompsburg Complex. 

Forward 
Modelling

Data

Inversion

Model
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Figure 17 (a) Locality of the Trompsburg Complex (enlarged in (b)); (b) Simplified geological 
map of the area around the Complex. 

Regional gravity and magnetic data collected during the 1970s and 1980s cover the 

Complex and digital terrain data were extracted from the SRTM (Shuttle Radar 

Tomography Mission) data set (Farr et al., 2007). The gravity data consists of a 

measurement roughly every 9 km2 and the magnetic data were collected along north-

south directed flight lines spaced 1 km apart. These data sets were gridded using a 

minimum curvature algorithm (Briggs, 1974) and using cell sizes of 1 km and 250 m for 

the gravity and magnetic data respectively. The data sets had extents of 154.7 km in the 

east-west (x) direction and 166.6 km in the north-south (y) direction. For the model, an x 

and y cell size of 1000 m and a z cell size of 200 m were chosen, and the total depth (z) 

extent was specified as 12 km. These settings resulted in a model consisting of 153 

columns (x direction), 165 rows (y direction) and 60 layers (z direction). 

Figure 18(a) and (b) show the observed Bouguer anomaly and magnetic data 

respectively over the Trompsburg Complex. The dense, magnetic igneous rocks are 

responsible for very prominent anomalies in the centre of both data sets. Data were 

extracted for a larger area around the Complex to avoid edge effects. Linear NNE-SSW 

and ENE-WSW striking anomalies, to the west and south of the circular anomaly are 

related to terrain boundaries and were not modelled. A constant regional value of -150 
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mGal was removed from the Bouguer anomaly data to isolate the anomaly due to the 

igneous Complex. 

 

Figure 18 (a) Observed Bouguer anomaly data over the Trompsburg Complex; (b) Observed 
magnetic data over the Trompsburg Complex. An IGRF has been removed from the 
magnetic field. 

Figure 19(a) shows one of the model layers in plan-view, and Figure 19(b) shows a 

profile view running in an east-west direction almost through the centre of the model. This 

profile coincides with two boreholes (positions indicated by black blocks in Figure 19(b)) 

that were used to constrain the model. Above the model the observed and calculated 

gravity and magnetic fields along this profile are shown. The major features of the 

magnetic data are present in the modelled anomaly. The discrepancies can be due to the 

possibility that remanent magnetisation may be present, but this information was not 

available. Figure 20 (a) to (e) show perspective views of the model in three dimensions 

with various lithologies made transparent and opaque. In Figure 20 (a) to (d) the model 

was exaggerated in the vertical direction, but in (e) no exaggeration was applied. This 

shows the Complex to be saucer-shaped. The calculated gravity and magnetic field grids 

are shown in Figure 21 (a) and (b) respectively. For the Complex itself, these grids 

compare well with the observed grids (Figure 22 (a) and (b)). 
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Figure 19 (a) Plan view of layer 11 of the model. The location of profile 11 (shown in (b)) is 
indicated;   (b) Magnetic profile view of profile 98.   (c) Gravity profile view of profile 98. The 
horizontal blue line indicates the layer shown in (a). The vertical exaggeration is roughly 10 
times. Black blocks above the model show the locality of two boreholes.   (d) Model at 
profile. 

 

(c) 

(b) 

(a) 

(d) 
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Figure 20 Perspective views of the 3D model. (a) All the lithologies are transparent; (b) 
Gabbro made opaque to show the extent of the model; (c) Gabbro made transparent, but 
olivine gabbro, mineralised gabbro and magnetite kept opaque; (d) Gabbro and olivine 
gabbro made transparent, mineralised gabbro and magnetite kept opaque; (e) View from the 
south with no vertical exaggeration applied. 

Maré and Cole (2005) originally created a 3D model using polyhedral modelling 

algorithms of Singh and Guptasarma (2001b; 2001a) and Guptasarma and Singh, (1999). 

They interpreted the Complex as a circular layered intrusion with a feeder in the centre 

reaching a depth of 16 km. Due to the ambiguity inherent in potential field data, the model 

shown here (Figure 20) represents one (but not the only) possibility for the geometry of 

the Trompsburg Complex. A circular layered model was also created, but due to a 

different distribution of lithologies the body only goes down to a depth of 9 km below the 

surface and no distinct feeder is visible. However, the primary benefit of this technique is 

evidenced by the fact that the original model created in 2005 took approximately 3 
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months to produce using conventional polygonal based techniques. In this case, 

modelling was done in less than a day. With more time spent, the model accuracy could 

be improved. 

 

Figure 21 (a) Grid of the calculated gravity field; (b) Grid of the calculated magnetic field. 

 

Figure 22 (a) Difference between the observed and calculated gravity fields; (b) Difference 
between the observed and calculated magnetic fields. The largest differences in the model 
are associated with the contact between the model and surrounding geology, as well as the 
surrounding geology. The model itself has a reasonable fit, excluding some areas in the 
centre which needs additional modelling. 
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The model was exported to a .kmz file that can be viewed in Google Earth. In Figure 

23(a) the model is shown with the lithologies separated. The model is shown above the 

surface of the earth since it is currently impossible to view below the surface of the earth 

in Google Earth. The observed and calculated data set can also be viewed in Google 

Earth, as can be seen in Figure 23 (b) where the observed magnetic data set is shown. 

 

Figure 23 (a) Model imported into Google Earth. The lithologies were separated for better 
visibility; (b) Observed magnetic data set is also shown  
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CHAPTER 3 TENSOR FORWARD MODELLING 

3.1 Introduction 

Forward modelling relations to describe tensor fields due to various sources have been 

described by numerous authors.  

Holstein (2002) found simple relations to express, in tensor form, the gravity and 

magnetic anomaly solutions for a uniform polyhedron, where the gravity and magnetic 

solutions are linked through Poisson’s differential relation. He derived gravity potential, 

gravity field and gravity field gradient tensor formulas for a polyhedral target comprising a 

spatially linear varying density medium as well as the magnetic potential and magnetic 

field in the case of a medium of spatially linear varying magnetisation (Holstein, 2003). 

More recently, Holstein, FitzGerald and Stefanov (2013) presented closed formulae for 

the gravity and magnetic effect due to a homogenous prismatic target. This includes the 

potential, field and field gradient of gravity and magnetic prismatic targets. 

Other work includes forward modelling equations for gravity and magnetic tensors 

derived for a variety of sources, including rectangular prisms (Heath, 2007), and an 

interpretation technique that makes use of forward modelling and inversion to construct a 

realistic 3D model from multiple datasets including geology, physical properties of rocks, 

topology and tensor data (Guillen et al., 2008).  

Tensor measurements hold many advantages over traditional total magnetic intensity 

surveys (Schmidt et al., 2004; Schmidt and Clark, 2006). Tensors have desirable 

mathematical properties; tensor elements are true potential fields, allowing, for example, 

rigorous continuation, RTP (Reduction to the Pole) and magnetization mapping. They 

have independence from skewing caused by the geomagnetic field direction. 

Tensors are measured using superior sensor technology; SQUID sensors have a high 

sampling rate which allows the unaliased detection of high-frequency aircraft noise. This 

can be efficiently removed by filtering. Tensor surveys also have all the benefits of vector 

surveys without the disadvantage of high sensitivity to orientation. It is also possible to 

perform error correction and noise estimates because of the inherent redundancy in 

tensor components. 

Measured tensors allow the calculation of parameters unaffected by aliasing across flight 

lines. For example, the determination on which side of a flight line or a drill hole a source 
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lies. Compact source direction can be defined directly from a single measurement. The 

calculation of compact source magnetic moments is also possible. 

Tensors allow a higher resolution of shallow features and closely spaced sources as well 

as pipe-like bodies and sources subparallel to flight path. There is also better delineation 

of N-S elongated sources at low latitudes. 

A wider range of new processed quantities unaffected by sensor misorientation is 

available, including invariants, directional filters, depth slicing, source moments, and 

dipole locations. These invariant quantities have benefits such as a higher resolving 

power than the conventional analytic signal. 

Tensors allow the direct determination of 3D analytic signal, as well as improved 

accuracy of Euler deconvolution solutions using true measured gradients along and 

across lines. Structures can be emphasised in different orientations, since each tensor 

component represents a directional filter. By rotating the tensor coordinate system, 

structural orientations can be emphasized. Magnetization direction information can also 

be obtained via the combination of tensor components. 
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3.2 Tensors 

Although magnetic data is commonly measured as a single value, gradiometer (or tensor) 

data is becoming more common, especially in airborne gravity surveying. Gradiometer 

data implies that for each location nine gradient magnetic or gravity values are recorded, 

instead of simply one overall magnitude of the relevant field (Fitzgerald, Argast and 

Holstein, 2009). This implies more data is available for modelling, potentially assisting in 

overcoming modelling ambiguity challenges.  

Tensors are an extension to the concepts of scalars, vectors and matrices. A tensor is 

represented as an organized multidimensional array of numerical values. A practical 

example of this is the magnetic gradient tensor (Nelson, 1988) : 

 

𝑩 =  

[
 
 
 
 
 
 
𝑑𝐵𝑥

𝑑𝑥

𝑑𝐵𝑥

𝑑𝑦

𝑑𝐵𝑥

𝑑𝑧
𝑑𝐵𝑦

𝑑𝑥

𝑑𝐵𝑦

𝑑𝑦

𝑑𝐵𝑦

𝑑𝑧
𝑑𝐵𝑧

𝑑𝑥

𝑑𝐵𝑧

𝑑𝑦

𝑑𝐵𝑧

𝑑𝑧 ]
 
 
 
 
 
 

= [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑦𝑥 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑧𝑥 𝐵𝑧𝑦 𝐵𝑧𝑧

] (3.1) 

 

Where 𝐵𝑥, 𝐵𝑦 and 𝐵𝑧 are the 𝑥, 𝑦 and 𝑧 components of the magnetic field. The sheer 

volume increase in measured data presents many opportunities for new input into source 

detection and forward modelling algorithms. 

3.2.1 Tensor Rank 

Tensors may be classified by rank or order (Kolecki, 2002). This classification is reflected 

in the number of components a tensor possesses in 𝑁-dimensional space. Therefore, a 

tensor of order 𝑝 has 𝑁𝑝 components.  

As an example, in a three-dimensional Euclidean space, the number of components of a 

tensor is 3𝑝. From this, for example: 

 A zero order tensor (𝑝 = 0) has one component and is called a scalar. Physical 

quantities possessing magnitude only are represented by scalars. 

 A tensor of order one (𝑝 = 1) has three components and is called a vector. 

Quantities possessing both magnitude and direction are represented by vectors. 

𝐵𝑥 is an example of a first rank tensor component. 

 A tensor of order two (𝑝 = 2) has nine components and is typically represented 

by a matrix. 𝐵𝑥𝑥 =
𝑑𝐵𝑥

𝑑𝑥
 is an example of a second rank tensor component 
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 A tensor of order three (𝑝 = 3) has twenty seven components. 𝐵𝑥𝑥𝑦 =
𝑑2𝐵𝑥

𝑑𝑥𝑑𝑦
 is an 

example of a third rank tensor component. 

3.2.2 Structure Tensor 

A structure tensor is a matrix derived from the gradient of a function. It is a second order 

tensor (has components such as 𝐵𝑥𝑦), and has 2D and 3D forms (can be represented by 

either two or three variables). The 3D form is used in gradiometer surveys. Assume that 

𝑩 is a function of three variables (𝑥, 𝑦, 𝑧). We can recognise that since 𝑯 = −∇𝜑, this 

implies that (in SI units) 𝐵𝑥 = −𝜇0
𝑑𝜑

𝑑𝑥 
, 𝐵𝑦 = −𝜇0

𝑑𝜑

𝑑𝑦 
, 𝐵𝑧 = −𝜇0

𝑑𝜑

𝑑𝑧 
  Therefore, combining 

(3.1) and (2.23), the structure tensor would be (Heath, Heinson and Greenhalgh, 2003): 

 𝑩 = ∇ ⊗ μ0∇𝜑

=

[
 
 
 
 
 
 
𝑑

𝑑𝑥
𝑑

𝑑𝑦
𝑑

𝑑𝑧]
 
 
 
 
 
 

[−𝜇0

𝑑𝜑

𝑑𝑥 
−𝜇0

𝑑𝜑

𝑑𝑦 
−𝜇0

𝑑𝜑

𝑑𝑧 
]

=  −𝜇0

[
 
 
 
 
 
 
𝑑2𝜑

𝑑𝑥2

𝑑2𝜑

𝑑𝑥𝑑𝑦

𝑑2𝜑

𝑑𝑥𝑑𝑧

𝑑2𝜑

𝑑𝑥𝑑𝑦

𝑑2𝜑

𝑑𝑦2

𝑑2𝜑

𝑑𝑦𝑑𝑧

𝑑2𝜑

𝑑𝑥𝑑𝑧

𝑑2𝜑

𝑑𝑦𝑧

𝑑2𝜑

𝑑𝑧2 ]
 
 
 
 
 
 

= [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑦𝑥 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑧𝑥 𝐵𝑧𝑦 𝐵𝑧𝑧

] 

(3.2) 

 

Where ⊗ is the dyadic product. Since the magnetic field is a potential gradient (see 

equation (2.23)), the tensor components of (3.2) are second derivatives of the scalar 

potential (φ). The consequence of this is symmetry of the tensor components. Therefore: 

 𝐵𝑥𝑦 = 𝐵𝑦𝑥 , 𝐵𝑦𝑧 = 𝐵𝑧𝑦 , 𝐵𝑥𝑧 = 𝐵𝑧𝑥 (3.3) 

 

According to Laplace’s equation: 

 ∇2𝜑 = 0 (3.4) 
 

 ∇ × 𝑩 = 0 (3.5) 
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From this it can be seen that: 

 𝐵𝑥𝑥 + 𝐵𝑦𝑦 + 𝐵𝑧𝑧 = 0 (3.6) 

 

Based on (3.3) and (3.6), (3.2) can be re-written as: 

 

𝑩 =  [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑦𝑥 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑧𝑥 𝐵𝑧𝑦 𝐵𝑧𝑧

] = [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑥𝑦 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑥𝑧 𝐵𝑦𝑧 −𝐵𝑥𝑥 − 𝐵𝑦𝑦

] (3.7) 

 

This means that there are only five independent tensor components with magnetic and 

gravity data. For magnetic data these are 𝐵𝑥𝑥 , 𝐵𝑥𝑦 , 𝐵𝑥𝑧 , 𝐵𝑦𝑦 , 𝐵𝑦𝑧. 

3.2.3 Eigenvector and Eigenvalue Tensor Analysis 

An alternative form of tensor representation, based on amplitudes and phases, is 

discussed by Fitzgerald et al., (2007). Eigenvalues and eigenvectors provide a means to 

transform a tensor measurement. Each reading is decomposed into the invariant 

eigenvalue amplitudes and orthogonal rotation matrix with associated eigenvectors local 

to the survey reference frame. The eigenvalue amplitudes and eigenvector rotations 

represent the amplitude and phase of the tensor. The amplitude-phase form allows for 

alternate fast and robust processing of tensor data while respecting the intrinsic physical 

properties of tensors. 

Clark (2012) gives a good overview of eigenvector analysis of the tensor If we define a 

tensor measurement as the matrix 𝑩 with a scalar eigenvalue 𝜆 and eigenvector 𝒗 then 

the relationship between these quantities is: 

 𝑩𝒗 = 𝜆𝒗 (3.8) 
 

The eigenvalues are solved by solving the characteristic equation det(𝑩 − 𝜆𝑰). Expanding 

this, we get: 

 𝜆3 + 𝐼1𝜆 − 𝐼2 = 0 (3.9) 

 

where  
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 𝐼1 = 𝐵𝑦𝑦𝐵𝑧𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑦 + 𝐵𝑧𝑧𝐵𝑥𝑥 − 𝐵𝑥𝑦
2 − 𝐵𝑦𝑦

2

= 𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆2𝜆3

= −(𝜆1
2 + 𝜆2

2 + 𝜆3
2)/2 

(3.10) 

 

 𝐼2 = det(𝑩) = 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑧𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑧
2 + 𝐵𝑧𝑧𝐵𝑥𝑦

2 − 2𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑥𝑦
2

=  𝜆1𝜆2𝜆3 
(3.11) 

 

Where 𝜆1 ≥ 𝜆2 ≥ 𝜆3. Applying eigenvector analysis to our tensor equation, as shown in 

equation (3.7), we obtain 3 eigenvalues and 3 eigenvectors. The rotation matrix 𝑹 which 

has as its columns the eigenvectors [𝒗�̂�, 𝒗�̂�, 𝒗�̂�], diagonalises 𝑩 when applied to it. It is 

straightforward to verify that the following holds: 

 

𝑹𝑻𝑩𝑹 =  𝑹𝑻 [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑦𝑥 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑧𝑥 𝐵𝑧𝑦 𝐵𝑧𝑧

] 𝑹 = [

𝜆1

𝜆2

𝜆3

] (3.12) 

 

The eigenvalues, and any combination thereof, are rotational invariants of the tensor. 

Clark (2012) makes extensive use of one such rotational invariant, namely the normalised 

source strength. It is defined as: 

 
𝜇𝑛𝑠𝑠 = √−𝜆2

2 − 𝜆1𝜆3 (3.13) 

 

Clark (2012) points out that unlike the tensor magnitude (Frobenius norm) |𝑩|, 𝜇 is 

completely isotropic around a dipole source. This makes it ideal for homing applications. 

3.2.4 Axis Conventions – implications for tensor data 

Holstein et al. (2015) discuss at length the differences between different axis convention 

systems, especially when applied to potential field tensor data. They formulated an 

intuitive conversion between different reference systems. They further concluded that all 

these systems give legitimate ways of representing vectors and tensors, but that 

processing software should give the necessary flexibility to handle each of them, or if 

necessary, a mixture. 

In tensor notation, a NED tensor, which is right handed, may be represented as: 

 
𝑻 =  [

𝑇𝑁𝑁 𝑇𝑁𝐸 𝑇𝑁𝐷

𝑇𝑁𝐸 𝑇𝐸𝐸 𝑇𝐸𝐷

𝑇𝑁𝐷 𝑇𝐸𝐷 𝑇𝐷𝐷

] =  [

𝑇11 𝑇12 𝑇13

𝑇21 𝑇22 𝑇23

𝑇31 𝑇32 𝑇33

] (3.14) 
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However, the ENU tensor, which is also right handed, would be represented as: 

 
𝑻 =  [

𝑇𝐸𝐸 𝑇𝑁𝐸 𝑇𝐸𝑈

𝑇𝑁𝐸 𝑇𝑁𝑁 𝑇𝑁𝑈

𝑇𝐸𝑈 𝑇𝑁𝑈 𝑇𝑈𝑈

] =  [

𝑇22 𝑇21 −𝑇23

𝑇12 𝑇11 −𝑇13

−𝑇32 −𝑇31 𝑇33

] (3.15) 

 

The END convention, which is a left handed convention, is: 

 
𝑻 =  [

𝑇𝐸𝐸 𝑇𝑁𝐸 𝑇𝐸𝐷

𝑇𝑁𝐸 𝑇𝑁𝑁 𝑇𝑁𝐷

𝑇𝐸𝐷 𝑇𝑁𝐷 𝑇𝐷𝐷

] =  [

𝑇22 𝑇21 𝑇23

𝑇21 𝑇11 𝑇13

𝑇32 𝑇31 𝑇33

] (3.16) 

 

Note that the numerical subscripts show the relation between the tensors, where 𝑁 =

1, 𝐸 = 2 and 𝑈 or 𝐷 = 3 Notice that signs only swap between Up and Down when 

changing between left and right handed systems. Thus, care should be taken to 

understand the axis convention when examining tensor data. 

Conversion between the two systems (NED and ENU) can be achieved by using the 

following rotation matrix: 

 
𝑹 =  [

0 1 0
1 0 0
0 0 −1

] (3.17) 

 

And applying it in the following way: 

 𝑻′ = 𝑹𝑻𝑻𝑹 (3.18) 
 

where 𝑻′ is a new tensor matrix transformed from the old tensor matrix 𝑻 

The specification of axis convention is also important when reporting eigenvalue and 

eigenvector data derived from tensor data. The eigenvalues represent amplitudes and the 

eigenvector represents rotations or phase. Although eigenvalues will be the same, the 

eigenvectors will differ for different conventions.  

In tensor notation, a NED set of eigenvectors may be represented as: 
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𝒗 =  [

𝑣11 𝑣21 𝑣31

𝑣12 𝑣22 𝑣32

𝑣13 𝑣23 𝑣33

] (3.19) 

 

However, the relation from this to ENU eigenvectors would be represented as: 

 
𝒗 =   [

−𝑣12 𝑣22 𝑣32

−𝑣11 𝑣21 𝑣31

−𝑣13 𝑣23 𝑣33

] 
(3.20) 

 

The relation to the END convention is: 

 
𝒗 =   [

𝑣12 𝑣22 𝑣32

𝑣11 𝑣21 𝑣31

𝑣13 −𝑣23 −𝑣33

] 
(3.21) 
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3.3 Tensor Acquisition 

Although tensor gradiometry is still in its infancy, Stolz et al. (2006) give a good brief 

overview as to its history. They report that the first proposals for an airborne magnetic 

gradiometer system was made by Fromm in 1952. Subsequent to this, Morris and 

Pedersen achieved this in 1961 with two rigidly connected fluxgates. The challenge in this 

method is in keeping the sensor axes parallel as well as eliminating airborne noise. 

Since then, much effort has been made to improve on this original design, culminating in 

improved gradiometers based on superconducting quantum interference devices 

(SQUIDs) cooled with liquid nitrogen (high temperature superconductor, 77 Kelvin) or 

liquid helium (low temperature superconductor, 4.2 Kelvin). These devices have low 

intrinsic noise and are extremely sensitive detectors of magnetic field components 

(Clarke and Braginski, 2004), and gradient tensor components when appropriately 

configured. 

Different configurations of SQUID magnetometers have been developed over the years. 

Schmidt et al., (2004) describe a system developed by the CSIRO called GETMAG. 

Keene, Humphrey and Horton (2005) describe a system using four individual SQUID 

magnetometers. Stolz et al. (2006) report that the development of an airborne Full Tensor 

Magnetic Gradiometry (FTMG) SQUID system by the Institute of Photonic Technology 

(IPHT) began in 1997, and was named JeSSY STAR. It measures both the magnetic field 

vector and the gradient tensor. No scalar magnetometer is assembled to measure the 

TMI directly (Schiffler et al., 2017). Obtaining TMI for JeSSY STAR is described in 

Schiffler et al. (2014). 

3.3.1 Hardware design 

Tensor gradiometer systems typically consist of a series of magnetic gradiometer 

systems arranged in some configuration. Eschner and Ludwig (1995) filed a patent for a 

system using planar gradiometers and this has been referenced by both Stolz et al. 

(2015); and Billings (2012). A more complete description of the hardware design can be 

obtained from Billings (2012), however it is worth describing the tensor sensor 

configuration to better understand processing later. 

A series of six planar gradiometers as well as three orthogonal magnetometers are 

arranged in a pyramidal structure, to enable the determination of the full magnetic tensor 

gradient (Figure 24).  



54 

 

 

Figure 24 The orientation of the SQUID magnetometer sensors, from Billings (2012) 

The configuration of these gradiometers implies that each gradiometer measures a mix of 

the desired tensor components. However, the geometry of the sensors means that these 

components can be unmixed. Therefore, the signals measured by gradiometers are not 

to be confused with the final tensor components. 

This pyramidal sensor configuration is then cooled in a Dewar or vacuum flask, using 

liquid nitrogen. From here, electronics pass the squid signals through to analogue to 

digital convertors, and from there to the control computer. The system by Billings (2012) 

also had an external fluxgate magnetometer to provide magnetic vector information.  

Of equal importance is an IMU (inertial measurement unit) which consists of three 

orthogonally oriented gyroscopes and three accelerometers, and a differential GPS 

receiver. Both the IMU and the GPS are used to correct for the attitude of the instrument. 



55 

 

The GETMAG system is SQUID based system designed by the CSIRO meant for use on 

the ground. Its principle is slightly different in that it is based on the concept of three 

rotating axial gradiometers in an umbrella configuration (Schmidt et al., 2004). The initial 

prototype of this system used one axial gradiometer, which could be manually rotated 

about a z’-axis (an axis oriented at 45 degrees with respect to the horizon) through eight 

discrete fixed positions spaced 45 degrees apart. The system can be moved through 120 

degree increments around the vertical z-axis. (Figure 25) 

 

Figure 25 A single axial gradiometer from the GETMAG system, from Schmidt et al., (2004) 

This system operates in liquid nitrogen at 77 K. The axial gradiometer measures the first 

derivative of the magnetic field and consists of a directly coupled SQUID magnetometer, 

a superconducting flux transformer and a superconducting shield. These components are 

fixed to the base of a radio-frequency shielded Dewar flask. Electronics are connected to 

this for the purpose of collecting and filtering the data.  
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3.3.2 Practical survey issues 

Schiffler et al. (2017) report that SQUID recordings are strongly corrupted by motion 

noise due to the permanent rotation of the sensor during operation while in flight. Noise 

removal from the magnetic field vector (𝐵𝑥, 𝐵𝑦 , 𝐵𝑧) cannot be done simply by geo-

referencing since the attitude data delivered by inertial measurement units (IMUs) is of 

insufficient quality. However, the quality is adequate for the tensor measurements. 

Therefore, the vector can be either calculated from the tensor, or the TMI.  

One problem of this instrument is the superposition of the components of the magnetic 

field over the measured gradient components. This effect has been regarded as a 

parasitic effect (Schiffler et al., 2017) that arises due to fabrication limitations of the 

sensors. To discriminate these parasitic signals from the desired gradient component, the 

components of the magnetic field is also measured by three highly sensitive reference 

magnetometers. The purpose of these magnetometers is only to compensate for the 

parasitic field, and Schiffler et al. (2017) report that for their system they have an intrinsic 

noise of 7 pT/Hz1/2 with a dynamic range of ± 100 μT. The digitized magnetic field has an 

accuracy of ± 12 pT.  

In reality the main part of the noise is due to the imperfect rotation of the magnetic field 

vector and the magnetic gradient tensor quantities into a local coordinate frame (Schiffler 

et al., 2017). Correction of this noise is achieved via the IMU and a differential GPS 

receiver. This IMU and GPS data is used for geo-referencing, spatial orientation and 

rotation of the body-frame data.  

The attitude is represented by means of Euler angles. Schiffler et al. (2017) mention that 

their IMU provided an accuracy of ±1°𝑅𝑀𝑆 for the roll and pitch angles and ±10°𝑅𝑀𝑆 for 

the heading angle (yaw). Roll, pitch and yaw will be discussed in section 3.4.4 

3.4 Tensor Processing 

Tensor processing is described by Argast et al. (2010), Schiffler et al. (2014) and Schiffler 

et al. (2017), as applied to the JeSSY STAR system. The steps to be followed will be 

described in sequence in this section. 

3.4.1 Balancing of gradiometers 

Argast et al. (2010) and later Schiffler et al. (2014) describe a calibration technique 

(balancing) used to remove the parasitic leakage of the “B” field into the measured mixed 

gradients.  
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Balancing of the gradiometers is the process whereby the parasitic magnetic influences 

are compensated for. It consists of the measured gradient component, the parasitic 

influence and a frequency dependent term originated by eddy currents. The eddy 

currents can be ignored in the JeSSY STAR system due to electronic design and attitude 

changes at frequencies below 10 Hz.  The measured (corrupted) signal 𝑔𝑘 is given by 

(Schiffler et al., 2017): 

 

𝑔𝑘 = ∆𝐺𝑘 + ( �̃�𝑘 + ∑ 𝛼𝑖𝑘𝐵𝑖

𝑖=𝑥,𝑦,𝑧

) (3.22) 

 

where ∆𝐺𝑘 is the uncorrupted gradiometer signal,  �̃�𝑘 is the gradiometer offset, 𝐵𝑖 is the 

field component in the direction 𝑖 = (𝑥, 𝑦, 𝑧) and 𝛼𝑖𝑘 represents the size of the three 

orthogonal parasitic areas, with 𝑘 = {1, … , 6}.The  𝛼𝑖𝑘 (balancing coefficients) are 

estimated by minimising the variance of ∆𝐺𝑘 using points where the magnetic gradient 

are zero and no regional long wavelength gradient components are present.  Argast et al. 

(2010) state that the balancing coefficients are then averaged over all lines flown in the 

same direction and are used to remove the parasitic B field from the measured mixed 

gradients. 

The remaining noise in the magnetic gradient tensor is due to the estimates being flawed 

with standard errors in the least squares sense.  

3.4.2 Calibration of reference magnetometers 

Reference magnetometer calibration converts raw readings into magnetic field values. It 

uses three misalignments, three sensitivities and three arbitrary offsets, described by 

(Schiffler et al., 2017): 

 𝑭 = 𝑺𝑫𝒅𝒊𝒔𝒕𝑩 + 𝑶 (3.23) 
 

where 𝑭 = (𝐹𝑥, 𝐹𝑦 , 𝐹𝑧)
𝑇
 is the raw measurement data, 𝑩 = (𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧)

𝑇
 is the magnetic 

field, 𝑺 is the sensitivity matrix, 𝑫𝒅𝒊𝒔𝒕 is the distortion matrix and 𝑶 = (𝑂𝑥 , 𝑂𝑦 , 𝑂𝑧)
𝑇
 is the 

vector of the three offsets (SQUID magnetometers generally have unknown offsets). The 

distortion matrix is the transformation matrix between the ideal coordinate systems and 

the non-orthogonal sensor system and contains the misalignments. A minimisation 

routine is used to solve for all this in order to achieve calibration. 
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3.4.3 Decomposition of signals 

Signals are decomposed into balanced gradiometer signals using the sensor head and 

gradiometer mounting geometry. Billings (2012) describe this process applied to the 

pyramidal tensor sensor design. The six gradiometer outputs corresponding to the six 

pyramid faces are linear combinations of the gradient tensor in the instrument frame. 

Therefore, from each face, the calibrated gradiometer outputs 𝐵𝑥𝑘
′ 𝑧𝑘

′  are obtained, with the 

faces designated by 𝑘 = 1,… ,6. This can be described by: 

 𝑮′ = [𝐵𝑥1
′𝑧1

′ , … , 𝐵𝑥6
′𝑧6

′ ] = 𝑴[𝐵𝑥𝑥 , 𝐵𝑥𝑦 , 𝐵𝑥𝑧 , 𝐵𝑦𝑦 , 𝐵𝑧𝑧] (3.24) 

 

The equation for 𝐵𝑥𝑘
′ 𝑧𝑘

′  is given by (Billings, 2012): 

 
𝐵𝑥𝑘

′ 𝑧𝑘
′ =

1

2
(𝐵𝑥𝑥(1 + cos2 𝜓𝑘) + 𝐵𝑦𝑦(1 + sin2 𝜓𝑘)) sin 2𝜑

+
1

2
sin 2𝜑 sin 2𝜓𝑘 𝐵𝑥𝑦

+ cos 2𝜑 cos𝜓𝑘𝐵𝑥𝑧 + cos 2𝜑 sin 𝜓𝑘 𝐵𝑦𝑧 

(3.25) 

 

where 𝜓𝑘 denotes the horizontal orientation of the gradiometer on the hexagonal sensor 

frame (see Figure 24) and 𝜑 denotes the slope of the hexagonal pyramid side on which 

the sensor is mounted. The six equations resulting from equation (3.25) are then inverted 

to obtain a least squares best fit. This process assumes that the applied gradient is 

uniform. The challenge with this process is that the rank of the matrix being inverted must 

be high enough for the inversion to succeed.  

3.4.4 Rotation and Euler Angles 

Euler angles (Rossberg, 1983, pp.228–230; Diebel, 2006) are three angles used to 

describe the orientation of a rigid body (sensor or aircraft in this case) with respect to a 

fixed coordinate system. Any orientation can be achieved by three rotations about the 

axis of a coordinate system. As an example, assume that the axes of the original frame is 

defined as (𝑥, 𝑦, 𝑧) and the rotated frame as (𝑥′, 𝑦′, 𝑧′).  The rotations work as follows 

(Figure 26): 

1) The first rotation is by an angle 𝜓 about the 𝑧 axis, creating a new axis 

(𝑥′′′, 𝑦′′′, 𝑧′′′). 

2) The second rotation is by an angle 𝜃 about the 𝑥′′′ axis, creating a new axis 

(𝑥′′, 𝑦′′, 𝑧′′) . 
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3) The third rotation is by an angle 𝜙 around the 𝑧′′ getting to final axis (𝑥′, 𝑦′, 𝑧′). 

This particular Euler convention is known as the z-x-z convention, since the rotations take 

place around those axes. In reality there are six possible conventions for proper Euler 

angles.  

 

Figure 26 Proper Euler angles where (𝒙, 𝒚, 𝒛) is shown in blue and (𝒙′′′ , 𝒚′′′, 𝒛′′′) is shown in 

red. (𝒙′′, 𝒚′′, 𝒛′′) is shown in green and the final position (𝒙′, 𝒚′, 𝒛′) is shown in black. (Diebel, 
2006) 

Euler angles are used to define, and correct for, the attitude of the sensor. The three 

angles relate to various combinations (depending on which Euler scheme is being 

applied) of the roll, pitch and yaw of an aircraft. Roll is the rotation about an axis running 

from nose to tail of the aircraft. Pitch is nose up or down about an axis running from wing 

to wing (picture climbing or descending). Yaw, nose left or right about an axis running up 

and down and in the plane defined by the aircraft body and its wings. 
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Tait-Bryan angles are another form of Euler angle. They are the convention normally 

used in aerospace applications, which the main difference between them and proper 

Euler angles being that the Tait-Bryan angles represent rotations about three distinct 

axes (i.e. x-y-z as opposed to z-x-z). As a consequence, in this case Roll, Pitch and Yaw 

will represent the three angles. There are also 6 conventions for this type of angle. 

The attitude of the instrument as measured by the IMU is represented by Euler angles 

These angles are necessary to take the five independent magnetic tensor components 

from the body frame (aircraft) to the local frame (map). Schiffler et al. (2017) use the NED 

reference frame and give the equation as: 

 𝑮𝑁𝐸𝐷 = (𝑫𝑁𝐸𝐷
𝑏 )𝑇𝑮𝑏𝑫𝑁𝐸𝐷

𝑏  (3.26) 

 

where 𝑫𝑁𝐸𝐷
𝑏  is a rotation matrix which represents the attitude of the system during mobile 

operation, and takes into account roll, pitch and yaw, as defined by Euler angles. 𝑮𝑁𝐸𝐷 

and 𝑮𝑏 are the gradient components in the local frame and body frame respectively. If 

𝛼, 𝛽, 𝛾 are the roll, pitch and yaw angles, then 𝑫𝑁𝐸𝐷
𝑏  is defined as (Cai, Chen and Lee, 

2011, p.33): 

 𝑫𝑁𝐸𝐷
𝑏

= (

cos 𝛽 cos 𝛾 cos 𝛽 sin 𝛾 − sin 𝛽
sin 𝛼 sin 𝛽 cos 𝛾 − cos 𝛼 sin 𝛾 sin 𝛼 sin 𝛽 sin 𝛾 + cos𝛼 cos 𝛾 sin 𝛼 cos 𝛽
cos 𝛼 sin 𝛽 cos 𝛾 + sin 𝛼 sin 𝛾 cos 𝛼 sin 𝛽 sin 𝛾 − sin 𝛼 cos 𝛾 cos 𝛼 cos 𝛽

) 
(3.27) 

 

3.4.5 Levelling and the Tensor Mean 

The concept of a tensor mean is used in the levelling of airborne acquired tensor data 

and is achieved by means of a variation of a heading correction (FitzGerald et al., 2009). 

The calculation of the tensor mean must be discussed since it is not a simple averaging 

of tensor components. Rather, it must take into account both the amplitude and phase 

aspects of the tensor (FitzGerald et al., 2009) in order to preserve the intrinsic properties 

of the tensor (for example the Laplace condition). One way to do so is to convert the raw 

tensor to its amplitude and phase formulation first. The arithmetic mean can be used for 

the eigenvalues, but finding the mean of the eigenvector component requires the use of 

Fisher statistics (Fisher, 1953). To do so, the average rotational (eigenvector) part is 

determined by gathering the associated directional cosine terms. The following is the 

process followed: 

1) Each rotation matrix is represented in terms of its associated direction cosines 
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2) Each of the direction cosine terms are squared and added, to give the square of 

the resultant vector. The resultant direction cosines are calculated from this.  

3) The average inclination, declination and angular dispersion are then estimated 

from the resultant direction cosines. 

Once the average tensor is calculated along flight lines and tie lines, this heading 

correction can be applied. Further levelling can be achieved using the standard loop 

closure technique (Green, 1983), minimising the Frobenius Norm of the delta misclosure 

tensor at each crossover point. The Frobenius Norm is a matrix norm defined as the 

square root of the sum of the absolute squares of its (in this case delta misclosure tensor) 

elements. FitzGerald et al. (2009) reported good results using this approach.  

Noise on the tensor magnetometers, which includes so-called ‘flux jumps’ needs to be 

detected and removed during the processing (FitzGerald et al., 2009). 

3.4.6 Gridding 

The processing of data has also been well described by FitzGerald et al. (2009). The full 

tensor gradients are decomposed into a structural and a rotational part. Each Full Tensor 

Gradiometry (FTG) reading is decomposed using principal component analysis into the 

invariant eigenvalue amplitudes and orthogonal rotation matrix with associated 

eigenvectors local to the survey reference frame. This rotation represents the “phase” of 

the signal. FitzGerald et al. (2009) use quaternions (Hamilton, 1853) to handle rotations 

consistently.  

Gridding of tensor data must be done in such a way as to ensure that the Laplace 

condition (see section 3.2.2) is preserved. This condition defines how tensor components 

derived from scalar potentials relate to each other. Conventional gridding would grid each 

tensor component separately, causing a possible breakdown of this condition. To 

maintain this condition, FitzGerald et al. (2009) and Fitzgerald and Holstein (2006) 

propose the use of spherical linear interpolation (SLERP) and quaternions as a basis for 

interpolation of the rotational component of the tensor. Conventional minimum curvature 

gridding can then safely be used on the amplitude component of the tensor. There is a 

patent granted in most jurisdictions in 2008 on this development. (Ref: Australian Patent 

Application No. 2006900346 in the name of Desmond FitzGerald & Associates Pty Ltd 

“An improved method of interpolation between a plurality of observed tensors”). 
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3.4.7 Errors and Noise 

Noise is a problem for any system design and can come from many sources. One source 

is from the instrument itself. A larger source of noise which needs to be corrected, is from 

external forms of noise such as the rotation of the sensor while in flight. As an overview, a 

number of SQUID sensors published in the literature, and their noise levels, are 

discussed. 

Errors can be potentially estimated from the high sampling rate of the gradiometer 

magnetometers. If the assumption can be made that sources are over sampled, then 

there exist redundant measurements from which error estimates can be derived.  

A high temperature SQUID tensor gradiometer developed by QinetiQ is aimed at 

magnetic anomaly detection (MAD) from a moving platform (Humphrey, Horton and 

Keene, 2005; Keene, Humphrey and Horton, 2005). Gradients are calculated by 

subtraction of the output of two magnetometers. They reported sensitivities of 80 

pT/m/Hz1/2  at 1 Hz and 1 pT/m/Hz1/2  in the white noise region, while undergoing 

rotational motions (pitch, roll and yaw) of ±5º. They detected gradient anomalies of ≥

1 nT/m with a 12 dB signal-to noise ratio and measurement bandwidth of 1 kHz. 

Billings (2012) reports noise levels for the system developed through SERDP (Strategic 

Environmental Research and Development Program) of 2 pT/m/Hz1/2  at 10 Hz, under 

laboratory conditions.  

The JeSSY STAR gradiometers have a noise level of 70 fT/mHz1/2, and the digitized 

signal has a noise level of 200 fT/mHz1/2 (Schiffler et al., 2017). These noise levels are 

also under laboratory conditions. 

Schiffler et al. (2014) report that Euler angles generated by the IMU used with the JeSSY 

STAR system have inaccuracies in the order of 0.1 degrees. This in turn is responsible 

for motion noise in the order of 100 nT superimposed on the magnetic vector reference 

magnetometers. The noise is primarily due to roll, pitch and yaw. 

Schiffler et al. (2017) later report an IMU system which had accuracy levels of ± 1°𝑅𝑀𝑆 for 

roll and pitch, and ± 10°𝑅𝑀𝑆 for yaw (RMS is short for root mean square, which is a 

measure of signal standard deviation). This shows the challenge in IMU systems 

maintaining high accuracy levels.  

To demonstrate the impact that these accuracy levels have on the data, equation (3.27) 

is used and is applied to the following equation (Schiffler et al., 2014): 
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 𝑩𝑟𝑒𝑓,𝑏 = 𝑫𝑁𝐸𝐷
𝑏 ∙ 𝑩𝑟𝑒𝑓 (3.28) 

 

Here, 𝑫𝑁𝐸𝐷
𝑏  is equation (3.27), 𝑩𝑟𝑒𝑓 is the reference field vector and 𝑩𝑟𝑒𝑓,𝑏 are the values 

rotated into the body frame. To investigate this, we can define various IMU resolutions 

between 0 and 2 degrees. This can be simulated by calculating a corresponding rotation 

of the field vector. The difference between the rotated field and the original field would be 

an estimate of instrument error due to rotation (since a resolution of 1 degree does not 

imply an error of 1 degree, only that the maximum error could be up to 1 degree). The 

error is therefore defined as Error =  Bref,b − Bref. 

In this case, the field components over a body with susceptibility 0.1 SI were calculated. 

The magnetic inclination was -62 degrees, the magnetic declination was -16 degrees and 

the body was 20 metres below the surface of the earth. The ambient field was set to 

28,000 nT. As a result, the magnetic field vector was calculated to be 𝑩𝑟𝑒𝑓 = (93.6, 264.8,

−921.1). Roll, pitch and yaw values are varied between 0 degrees and 2 degrees to see 

the effect on the data. The results are shown in Figure 27. 
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Figure 27 Estimated errors due to changes in roll, pitch and yaw, with 𝑩𝒙, 𝑩𝒚, 𝑩𝒛 errors show 

in red, green and blue respectively. (a) shows the change in field when only roll is varied. (b) 
shows the change when only pitch is varied. (c) shows the changed when yaw is varied. (d) 
is the combination of all the changes. 

As can be seen, errors can be as high as 40 nT for a roll, pitch and yaw equalling 2 

degrees. It must be noted as well that this simulation is for a susceptibility of 0.1 SI. The 

errors will scale linearly with increases and decreases in susceptibility. Therefore, over a 

highly magnetic terrain, it is possible to have errors an order of magnitude or higher. 

Noise of this form is especially devastating if not corrected appropriately. It creates 

severe corrugations on the data, making the data very difficult to interpret. Schiffler et al. 

(2017) have gone further in trying to deal with this, where they propose using Hilbert-like 

transforms on raw measurement data in order to obtain high quality gradient tensor and 

field vector quantities.  

  

(a) 

(c) (d) 

(b) 
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3.4.8 Grid denoising 

Grid de-noising of tensor components can be obtained by making use of a smoothing 

convolution kernel based on the work by Pajot et al. (2008). The process takes 

advantage of third order tensor relationships such as 𝜕𝑦𝐵𝑥𝑥 = 𝜕𝑥𝐵𝑥𝑦 in a finite-difference 

sense, and using this to calculate tensor filters based on minimizing tensor residuals in a 

least square sense. FitzGerald et al. (2009) term this process MITRE (Minimising Tensor 

Residual Errors).  

The tensor noise residual can be measured in a grid with the following function 

(Fitzgerald and Paterson, 2013): 

 
𝑁𝑜𝑖𝑠𝑒 = [(

𝜕𝐵𝑥𝑥

𝜕𝑦
−

𝜕𝐵𝑥𝑦

𝜕𝑥
)

2

+ (
𝜕𝐵𝑥𝑦

𝜕𝑦
−

𝜕𝐵𝑦𝑦

𝜕𝑥
)

2

+ (
𝜕𝐵𝑥𝑧

𝜕𝑦
−

𝜕𝐵𝑦𝑧

𝜕𝑥
)

2

] 4∆𝑥∆𝑦 

(3.29) 

 

Where ∆𝑥, ∆𝑦 are grid spacing intervals. In central finite differences, this becomes: 

 𝑁𝑜𝑖𝑠𝑒 = [(𝐵𝑥𝑥(𝑖, 𝑗 + 1) − 𝐵𝑥𝑥(𝑖, 𝑗 − 1) − 𝐵𝑥𝑦(𝑖 + 1, 𝑗)

− 𝐵𝑥𝑥(𝑖 − 1, 𝑗))
2

+ ⋯] 
(3.30) 

 

This can be applied to a smoothing kernel, and FitzGerald et al. (2009) illustrate the 

smoothing process with the equation below: 

 
𝐵𝑥𝑥𝑠𝑚𝑜𝑜𝑡ℎ

[3][3] =
1

16
(10𝐵𝑥𝑥[3][3] + 3(𝐵𝑥𝑥[3][1] + 𝐵𝑥𝑥[3][5])

+ 2(𝐵𝑥𝑦[2][4] − 𝐵𝑥𝑦[2][2] + 𝐵𝑥𝑦[4][2]

− 𝐵𝑥𝑦[4][4]) + 2𝐵𝑦𝑦[3][3] − 𝐵𝑦𝑦[5][3]

− 𝐵𝑦𝑦[1][3]) 

(3.31) 

 

Equation (3.31) is illustrative of a 5x5 smoothing kernel used to calculate𝐵𝑥𝑥𝑠𝑚𝑜𝑜𝑡ℎ
[3][3], 

with 𝐵 values being measured values. Values in square brackets denote the relative 

position within the kernel. Therefore, [3][3] denotes the centre of the kernel.   
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3.5 Tensor Reduction to the Pole 

Reduction to the Pole (RTP) is generally done to create a standard anomaly response set 

for magnetic measurements. This has the defining characteristic that the RTP anomalies 

delineate bodies well, making for easier interpretation. 

Fitzgerald et al. (2009) point out that magnetic tensor data should be reduced to the pole 

in order to obtain the best spatial registration for known geological bodies. They mention 

that a candidate means of doing RTP on tensor data is available but is largely untested.  

Because tensor data obeys Laplace’s equation, it is a true potential field and allows for 

continuation and RTP (Schmidt and Clark, 2006). Heath (2007) calculated RTP directly 

on tensor components using the standard FFT equation. The process involves 

transforming the field data to the Fourier domain and multiplying this new dataset by the 

term (𝜃𝑚𝜃𝑓)
−1, where: 

 
𝜃𝑚 = �̂�𝑧 + 𝑖

�̂�𝑥𝑘𝑥 + �̂�𝑦𝑘𝑦

𝑘
    and 𝜃𝑓  = �̂�𝑧 + 𝑖

�̂�𝑥𝑘𝑥 + �̂�𝑦𝑘𝑦

𝑘
 (3.32) 

 

In this case, (�̂�𝑥 , �̂�𝑦 , �̂�𝑧) is a unit vector in the direction of the magnetisation and 

(�̂�𝑥, �̂�𝑦 , �̂�𝑧)  is a unit vector in the direction of the ambient magnetic field, 𝑖 denotes an 

imaginary number, 𝑘 is the wavenumber and (𝑘𝑥 , 𝑘𝑦) are spatial frequencies in the 

horizontal direction with 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2
.  

RTP cannot be done at low latitudes due to the RTP operator becoming unbounded 

along the direction of the magnetic declination. This amplifies noise in this direction 

resulting in linear features aligned with the declination dominating the RTP field (Li and 

Oldenburg, 2001). However, Clark (2012) points out that gradient tensor measurements 

have an advantage over TMI measurements at low latitudes. This is because TMI 

measurements are insensitive to vertical and easterly components of the anomalous field. 

On a related note, the ZZ component of the magnetic tensor corresponds to the ZZ 

component of the RTP version of the magnetic tensor (Munschy and Fleury, 2011; Clark, 

2013). Note that with negative inclinations, the ZZ component needs to be multiplied by 

negative one for this equivalency to a pole in the northern hemisphere to occur. Similar to 

standard RTP, this relationship breaks down the closer the field is to the equator. Figure 

28 demonstrates this. 
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Figure 28 Effect of inclination and declination on an anomaly. A rectangular prism was 
modelled, with susceptibility 0.1 SI and ambient field of 28,000 nT. Inclinations and 
declinations are indicated on the graphs.  (a) shows the profile intersecting the body 
perpendicular to the declination, and west to east.  (b) shows the same anomaly, but now in 
the direction of the declination, and therefore north to south Notice the lack of symmetry, 

indicating that from this direction, 𝑩𝒛𝒛 is no longer a good approximation for RTP. 

Tensor reduction to the pole is potentially a large topic by itself and this section just 

touches on some aspects of it. Modelling in this thesis does not make use of it, relying on 

the ambient field instead. 
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3.6 Derivation of Tensor Magnetic Field Equations 

Equations for use in tensors have been derived by other authors and the methodology is 

well understood. Talwani (1965) and Plouff (1976) both make use of volume integrals 

which are essentially the gravity tensor equations (3.37) to (3.42) below. Heath (2007) 

also derived and studied tensor equations. Holstein (2002) found simple relations, in 

tensor form, for the gravity and magnetic anomaly solutions for a uniform polyhedron. 

Holstein (2003) derived gravity potential, field and field gradient tensor formulas for a 

polyhedral target. 

Assume both the model and the observation point reside in a Cartesian coordinate 

system. In keeping with geographic conventions, the x-axis is defined to be west to east, 

the y-axis to be south to north and the z-axis to be upwards positive (ENU). This was 

done in order to easily incorporate terrain data, which follows an ENU convention. 

However, to be most compatible with the NED convention for potential fields, the polarity 

of the resulting fields will be the same as for NED or END. This allows flexibility in 

coordinates while remaining comparable to existing standards.  

In the case of a rectangular prism, the source of the potential field extends from x1 to x2, 

y1 to y2, z1 to z2 and thus all equations have the following form: 

 𝐵 =  𝐵(𝑥, 𝑦, 𝑧)|𝑥1
𝑥2|𝑦1

𝑦2
|
𝑧1

𝑧2

= 𝐵(𝑥2, 𝑦2 , 𝑧2) − 𝐵(𝑥1, 𝑦2 , 𝑧2) − 𝐵(𝑥2, 𝑦1 , 𝑧2) + 𝐵(𝑥1, 𝑦1, 𝑧2)
− 𝐵(𝑥2, 𝑦2 , 𝑧1) + 𝐵(𝑥1, 𝑦2 , 𝑧1) + 𝐵(𝑥2, 𝑦1, 𝑧1)
− 𝐵(𝑥1, 𝑦1, 𝑧1) 

(3.33) 

 

To simplify the notation, only the 𝐵(𝑥, 𝑦, 𝑧) term is given below for 𝐵 (magnetic field) and 

𝑔 (gravity field), with the entirety of (3.33) being implied. 

Since magnetic relations can be derived through Poisson’s relationship with the gravity 

equations, the gravity equations derived by Talwani (1965) and Plouff (1976) are 

presented first. Note equation derivations are normally presented in NED convention, but 

in this case all derivations have been corrected for standard coordinate systems for 3D 

models in the ENU convention– i.e. x positive eastwards, y positive northwards and z 

negative downwards. This is for convenience in modelling and to give an alternate 

derivation (although the differences truly are minor). 

 𝑔𝑥 =  𝐺𝜌 [−𝑥 tan−1 (
𝑦𝑧

𝑥𝑟
) −  𝑦 log(𝑟 − 𝑧) −  𝑧 log(𝑟 − 𝑦)] (3.34) 
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 𝑔𝑦 =  𝐺𝜌 [𝑦 tan−1 (
𝑥𝑧

𝑦𝑟
) +  𝑥 log(𝑟 − 𝑧) −  𝑧 log(𝑥 + 𝑟)] (3.35) 

 

 𝑔𝑧 =  𝐺𝜌 [𝑧 ∗ tan−1 (
𝑦𝑥

𝑧𝑟
) +  𝑥 log(𝑟 − 𝑦) −  𝑦 log(𝑥 + 𝑟)] (3.36) 

 

 𝑔𝑥𝑥  =  𝐺𝜌 [− tan−1 (
𝑦𝑧

𝑥𝑟
)] (3.37) 

 

 𝑔𝑦𝑦  =  𝐺𝜌 [− tan−1 (
𝑥𝑧

𝑦𝑟
)] (3.38) 

 

 𝑔𝑧𝑧  =  𝐺𝜌 [− tan−1 (
𝑦𝑥

𝑧𝑟
)] (3.39) 

 

 𝑔𝑥𝑦  =   𝐺𝜌[log(𝑟 − 𝑧)] (3.40) 

 

 𝑔𝑦𝑧  =   𝐺𝜌[log(𝑥 + 𝑟)] (3.41) 

 

 𝑔𝑥𝑧  =   𝐺𝜌[log(𝑟 − 𝑦)] (3.42) 

 

where 𝜌 is the density, and 𝐺 = 6.67 ∗ 10−11𝑁𝑚2𝑘𝑔−2  is the gravitational constant. The 

distance between the observation point and the source is described by 𝑟.These volume 

equations or rank two gravity tensor components are then used in Poisson’s relation to 

calculate corresponding magnetic components. Blakely (1995, pp. 91-93) defines it as 

follows: 

 
𝐵𝑚 = −

𝐶𝑚

𝐺𝜌
𝑴 ∙ ∇ 𝑼

= −
1

𝜇0𝐺𝜌
 𝑴 ∙ ∇ 𝑼 

(3.43) 

 

where 𝑼 is the gravitational potential, 𝑴 is the uniform magnetisation,  𝐶𝑚 = 1/𝜇0, 𝐺 =

6.67 ∗ 10−11 𝑁𝑚2 𝑘𝑔2⁄ , 𝜌 is density in 𝑘𝑔 𝑚3⁄  and 𝜇0 = 4𝜋 ∗ 10−7  𝐻𝑒𝑛𝑟𝑦 𝑚⁄ . Equation 

(3.43) can then be written as: 
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𝐵𝑚 = −

𝑘𝐻

𝜇0𝐺𝜌
(𝛼

𝜕

𝜕𝑥
+ 𝛽

𝜕

𝜕𝑦
+ 𝛾

𝜕

𝜕𝑧
) 𝑔𝑚

= −
𝑘𝐻

𝜇0𝐺𝜌
[𝛼𝑔𝑚𝑥 + 𝛽𝑔𝑚𝑦 + 𝛾𝑔𝑚𝑧] 

(3.44) 

 

where 𝛼, 𝛽 and 𝛾 are the direction cosines of the induced magnetic field, 𝑘 is 

susceptibility, 𝐻 is the magnetic field, measured in A/m and 𝑔𝑚 is the component of 

gravity in the direction of magnetisation. 

Substituting equations (3.37) to (3.42) into (3.44): 

 
𝐵𝑥  =

𝑘𝐻

𝜇0

[−𝛼 tan−1 (
𝑦𝑧

𝑥𝑟
) + 𝛽 log(𝑟 − 𝑧) + 𝛾 log(𝑟 − 𝑦)] (3.45) 

 

 
𝐵𝑦  =

𝑘𝐻

𝜇0

[𝛼 log(𝑟 − 𝑧) − 𝛽 tan−1 (
𝑥𝑧

𝑦𝑟
) + 𝛾 log(𝑥 + 𝑟)] (3.46) 

 

 
𝐵𝑧  =

𝑘𝐻

𝜇0

[𝛼 log(𝑟 − 𝑦) + 𝛾 log(𝑥 + 𝑟) − 𝛾 tan−1 (
𝑦𝑥

𝑧𝑟
)] (3.47) 

 

The final tensor equations are obtained by taking derivatives, with respect to x, y and z, of 

(3.45) to (3.47). These are: 

 

 
𝐵𝑥𝑥  =

𝑘𝐻

𝜇0𝑟
[𝛼

𝑦𝑧(𝑟2  +  𝑥2)

𝑟2𝑥2  +  𝑦2𝑧2
+ 𝛽

𝑥

𝑟 −  𝑧
+ 𝛾

𝑥

𝑟 − 𝑦
] (3.48) 

 

 
𝐵𝑦𝑦  =

𝑘𝐻

𝜇0𝑟
[−𝛼

𝑦

𝑟 − 𝑧
− 𝛾

𝑦

𝑟 +  𝑥
− 𝛽

𝑥𝑧(𝑟2  +  𝑦2)

𝑟2𝑦2 + 𝑥2𝑧2
] (3.49) 

 

 
𝐵𝑧𝑧  =

𝑘𝐻

𝜇0𝑟
[−𝛼

𝑧

𝑟 − 𝑦
− 𝛽

𝑧

𝑟 +  𝑥
− 𝛾

𝑥𝑦(𝑟2  +  𝑧2)

𝑟2𝑧2 + 𝑥2𝑦2
] (3.50) 

 

 
𝐵𝑥𝑦  =

𝑘𝐻

𝜇0𝑟
[𝛼

𝑥𝑧

𝑥2  +  𝑦2
− 𝛽

𝑦

𝑟 −  𝑧
+ 𝛾] (3.51) 
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𝐵𝑦𝑧  =

𝑘𝐻

𝜇0𝑟
[𝛼 + 𝛽

𝑥𝑦

𝑦2  +  𝑧2
− 𝛾

𝑧

𝑟 +  𝑥
] (3.52) 

 

 
𝐵𝑥𝑧  =

𝑘𝐻

𝜇0𝑟
[𝛼

𝑥𝑦

𝑥2  +  𝑧2
+ 𝛽 − 𝛾

𝑧

𝑟 − 𝑦
] (3.53) 

 

Synthetic tensor data, calculated for a rectangular prism, is shown in Figure 29 and 

Figure 30. The magnetic field intensity is 28,000 nT, susceptibility is 0.1 SI, inclination is 

45 degrees, declination is 30 degrees. The rectangular prism has a width of 200 m and 

height of 280 meters, situated between 20 meters and 300 meters. In this case, 𝐵𝑡𝑚𝑖 is 

the total magnetic intensity. 
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Figure 29 Synthetic magnetic tensor calculations for a rectangular prism at inclination 45 
degrees, declination 30 degrees. (a) to (c) are the primary components of the field. (d) to (h), 
(j) are the tensor components. (i) is the total magnetic intensity. 
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Figure 30 Cross section profiles going west-east through the centre of the rectangular prism 
at inclination 45 degrees, declination 30 degrees.   (a) to (c) are the primary components of 
the field.   (d) to (h), (j) are the tensor components.   (i) is the total magnetic intensity. 

Another synthetic tensor data set, calculated for the same rectangular prism at the pole, 

is shown in Figure 31 and Figure 32. The magnetic field intensity is 28,000 nT, 

susceptibility is 0.1 SI, inclination is 90 degrees, declination is 0 degrees.  
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Figure 31 Synthetic magnetic tensor calculations for a rectangular prism at inclination 90 
degrees, declination 0 degrees.   (a) to (c) are the primary components of the field.   (d) to 
(h), (j) are the tensor components.   (i) is the total magnetic intensity. 
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Figure 32 Cross section profiles through the centre of the rectangular prism at inclination 90 
degrees, declination 0 degrees.   (a) to (c) are the primary components of the field.   (d) to 
(h), (j) are the tensor components.   (i) is the total magnetic intensity. 

The symmetry of the TMI anomaly is reflected throughout the new tensor components, 

and is especially obvious when comparing 𝐵𝑥𝑥 and 𝐵𝑧𝑧 in Figure 30 to the versions at the 

pole in Figure 32. 
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3.6.1 Verifying the equations 

Equation verification is an important process when deriving equations. The tensor 

equations can be verified by understanding the relationships between these equations. 

The Poisson relation can be used to compare datasets between gravity and magnetic 

equations and the total magnetic intensity equation can be used to confirm the 

component data with regularly calculated data. 

The full total magnetic intensity is defined as: 

 
𝐵𝑡𝑚𝑖 = √(𝐵𝑥 + 𝛼𝐵)2 + (𝐵𝑦 + 𝛽𝐵)

2
+ (𝐵𝑧 + 𝛾𝐵)2 − 𝐵 (3.54) 

 

where 𝐵 is the ambient magnetic field, and 𝛼, 𝛽, 𝛾 are the direction cosines. The process 

is as follows: 

1) Check equations (3.45), (3.46), (3.47) by comparing them with results with 

alternate calculations for 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 (for example, as demonstrated by Guptasarma 

and Singh, 1999). Figure 33 to Figure 36 show the results of this. 

2) Check equations (3.45), (3.46), (3.47) by substituting them into equation (3.50). 

The results of this can be compared using results calculated with equation (2.26). 

3) Check equations (3.48) to (3.53) by calculating the gradients of (3.45), (3.46), 

(3.47) either in the space domain or the frequency domain. Figure 37 to Figure 41 

show the results of this. Minor discrepancies will occur because of the 

inaccuracies inherent in gradient calculations. 

One possible source for error is the calculation of results over nodes or edges of the 

rectangular prism (i.e. the line connecting two nodes). In such instances, the tensor 

equations will generate division by zero errors. This problem is especially bad when the 

observation is also on the surface of the rectangular prism. However, it is easily dealt 

with. By ensuring that values are calculated away from the edges of the rectangular 

prism, this error is prevented, even if the observation is on the surface of the rectangular 

prism. The simplest way to achieve this is to calculate one value per rectangular prism, 

with the x and y coordinate of that value being in the centre of the rectangular prism. The 

z coordinate will either be 0 (resting on the top of the rectangular prism) or at the 

observation height above the rectangular prism. Naturally for this strategy to work, the 

number of rectangular prisms must equal the number of observations (assuming equal 

spaced observations, which is the case for a grid). Otherwise there will be too few values 

calculated to be useful when comparing to observed values.  



77 

 

All results confirm the validity of the tensor equations and the accuracy of the 

calculations. In the case of point 3 above, it is never necessary to calculate a vertical 

derivative. This is because of tensor symmetry. Therefore 
𝑑𝐵𝑥

𝑑𝑧
= 

𝑑𝐵𝑧

𝑑𝑥
, 

𝑑𝐵𝑦

𝑑𝑧
= 

𝑑𝐵𝑧

𝑑𝑦
 and 

𝑑𝐵𝑧

𝑑𝑧
=

 −
𝑑𝐵𝑥

𝑑𝑥
−

𝑑𝐵𝑦

𝑑𝑦
. This simplifies the tests by confining them to horizontal derivatives. 

 

Figure 33 Comparison between tensor and conventional calculations for 𝑩𝒕𝒎𝒊. The source is 
a rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface. 
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and 
declination is 30 degrees.  
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Figure 34 Comparison between tensor and conventional calculations for 𝑩𝒙. The source is a 
rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface. 
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and 
declination is 30 degrees.  

 

Figure 35 Comparison between tensor and conventional calculations for 𝑩𝒚. The source is a 

rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface. 
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and 
declination is 30 degrees.  
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Figure 36 Comparison between tensor and conventional calculations for 𝑩𝒛. The source is a 
rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface. 
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and 
declination is 30 degrees.  

 

Figure 37 Comparison between tensor and conventional calculations for 𝑩𝒙𝒙. The source is a 
rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface. 
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and 
declination is 30 degrees.  
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Figure 38 Comparison between tensor and conventional calculations for 𝑩𝒙𝒚. The source is a 

rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface. 
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and 
declination is 30 degrees.  

 

Figure 39 Comparison between tensor and conventional calculations for 𝑩𝒚𝒚. The source is a 

rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface. 
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and 
declination is 30 degrees.  
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Figure 40 Comparison between tensor and conventional calculations for 𝑩𝒚𝒛. The source is a 

rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface. 
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and 
declination is 30 degrees.  

 

Figure 41 Comparison between tensor and conventional calculations for 𝑩𝒙𝒛. The source is a 
rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface. 
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and 
declination is 30 degrees.   
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3.7 Tensor Interpretation overview 

The interpretation of tensor components has more potential than conventional total 

magnetic field interpretation, due to the variety of information which is presented through 

the tensor measurements. It can, of course, be modelled using forward modelling and 

inversion. Schmidt and Clark (2006) give an overview of the characteristics of the tensor 

gradient components and derived quantities.  

Table 1 Interpretation of tensor components and invariants, from Schmidt and Clark (2006) 

Quantity Interpretation Comments 

𝐵𝑥𝑥 E-W boundary delineation  symmetric anomaly for vertical 
magnetization, antisymmetric for 
horizontal magnetization 

𝐵𝑦𝑦 N-S boundary delineation  symmetric anomaly for vertical 
magnetization, antisymmetric for 
horizontal magnetization 

𝐵𝑥𝑦 Body corner delineation anomaly signs depend on 
magnetization direction 

𝐵𝑧𝑧 Delineates steep boundaries 
preferentially 

symmetric anomaly for vertical 
magnetization; antisymmetric for 
horizontal magnetization 

𝐵𝑥𝑧 E-W boundary delineation  antisymmetric anomaly for 
vertical magnetization; symmetric 
for N-S horizontal magnetization 

𝐵𝑦𝑧 N-S boundary delineation  antisymmetric anomaly for 
vertical magnetization; symmetric 
for E-W horizontal magnetization 

𝐼1 Resolves source boundaries  better resolving power than 
analytic signal 

𝐼2 Preferentially resolves shallower 
features of complex sources. 

Due to faster falloff with distance. 

 

𝐼1 and 𝐼2 are invariants as described in equations (3.10) and (3.11) in section 3.2.3. The 

normalised source strength (NSS) (Clark, 2012; Beiki et al., 2012) shown in equation 

(3.13) is another tensor invariant which demonstrates the potential of tensor 

interpretation. It is proportional to the magnitude of the dipole moment, while being 

independent of the magnetisation direction. The 2D version of this is equal to the total 

gradient, or the analytic signal amplitude of either the vertical field component 𝐵𝑧 or the 

strike perpendicular horizontal component 𝐵𝑥. The 2D version is also independent of 

magnetization direction. Clark (2014) made use of the normalised source strength in 

conjunction with Helbig analysis (a method to estimate the vector components of the total 

magnetisation) to determine locations of sources, their depths and magnitudes of 

magnetic moments.  
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Both the NSS and tensor components have been used to determine source location 

through Euler deconvolution (Beiki et al., 2012; Schmidt et al., 2004). Tensor and NSS 

versions of Euler deconvolution give better estimates than standard Euler deconvolution 

when anomalies from causative bodies are distorted by horizontally neighbouring 

sources. Since the tensor Euler deconvolution is applied to all the measured tensor 

components, it effectively takes advantage of the curvature information inherent in the 

measurement, thereby improving source detection. If the conventional Euler equation for 

TMI data is: 

 
𝑥

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
+ 𝑦

𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
+ 𝑧

𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
= −𝑛𝐵𝑡𝑚𝑖 (3.55) 

 

where 𝐵𝑡𝑚𝑖 is the anomalous field, then the tensor version is expressed as: 

 

[

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑦𝑥 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑧𝑥 𝐵𝑧𝑦 𝐵𝑧𝑧

] [

𝑥 − 𝑥0

𝑦 − 𝑦0

𝑧 − 𝑧0

] = −𝑛 [

𝐵𝑥

𝐵𝑦

𝐵𝑧

] (3.56) 

 

Where 𝑥0, 𝑦0 , 𝑧0 is an arbitrary origin and 𝑛 is the structural index or attenuation rate, 

which varies typically between 1 and 4 depending on the source type (but can be higher).  
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3.8 Application to voxel forward modelling 

The tensor equations are directly applicable to the voxel based modelling developed in 

section 2.3.2. To demonstrate the effectiveness of this, a simple model of a dyke and a 

step has been created. The magnetic field is 28,000 nT, with inclination -62 degrees and 

declination -16 degrees. The height of observation is 0 metres, and the susceptibility is 

0.1 (SI units). 

Figure 42 and Figure 43 show 2D and 3D views of the synthetic model, while Figure 44 

and Figure 45 show the responses of the profile shown in Figure 42, both for the 

conventional magnetic components and the tensor components. The 2D profile shown 

runs from west to east. Since both the dyke and the step are north-south in orientation, it 

is expected that the largest anomalies with come in the x direction (for ENU convention) 

and z direction or combinations thereof. This is indeed the case, with the dominant 

anomalies being 𝐵𝑥 , 𝐵𝑧 , 𝐵𝑥𝑥 , 𝐵𝑥𝑧 in Figure 44 and Figure 45. The anomaly shape is sharper 

over the dyke than over the step, as is to be expected. The amplitude is also smaller, 

which is expected since they share the same susceptibility. 

The test therefore shows that the voxel based modelling can be successfully applied to 

tensors.  

 

Figure 42 Profile of 𝑩𝒕𝒎𝒊 of demonstration model, running from west to east. 
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Figure 43 3D view of demonstration model. All coordinates are in metres 
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Figure 44 Field Component results for model. (a) to (d) are Btmi, Bx, By and Bz respectively. 
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Figure 45 Tensor component results for model. 
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CHAPTER 4 SOURCE DISTANCE CALCULATIONS 

4.1 Introduction 

Calculating the distance to a buried source of a magnetic or gravity anomaly has been 

examined throughout the last century. Of particular interest is the work of Nabighian 

(1972), who realised that potential fields were analytic in nature and could be described in 

terms of a so called analytic signal amplitude, and Thompson (1982) who used Euler 

deconvolution to solve source distances for a variety of sources. Hsu, Coppens and Shyu 

(1998) calculated depths to magnetic sources using the analytic signal. More recently 

(Ma and Du, 2012; Cooper, 2014a, 2014b, 2015; Cooper and Whitehead, 2016) utilized 

various orders of the analytic signal to calculate source distance parameters. Although 

there has been work with tensor data (Zhang et al., 2000), the application of tensor data 

to improving source distance techniques has yet to be fully explored and is therefore an 

important focus of this thesis. The direct application of tensor data to source distance 

techniques is not the only objective, but also the development of analogous versions of 

source distance equations using tensor components only.  

Although gravity and magnetic data is commonly measured as a single value, 

gradiometer (or tensor) data is becoming more common, especially in airborne gravity 

surveying. This implies more data is available for modelling. 

Tensor datasets are a possible way of overcoming the modelling ambiguity challenges. 

Although not as prevalent as the measurement of scalar magnetic and gravity fields, the 

measurement of gradiometer data means that for each location nine gradient magnetic or 

gravity values are recorded, instead of simply one overall magnitude of the relevant field. 

This influx of data presents opportunities for optimizing modelling of data and forms part 

of the basis for the new work in this field described in this section. Beiki (2010) used 

analytic signals of the gravity tensor to estimate source location. Cevallos (2014) has 

used curvatures derived from airborne gravity gradient data to produce 3D models. 

Fitzgerald and Holstein (2016) used gravity gradiometry inversion to optimise the surface 

mapping of elongated geological features. In the case of magnetic tensors, the 

normalised source strength and its vector gradient has been used to determine source 

locations for compact sources, thin sheets, contacts and other models such as vertical 

pipes (Clark, 2012, 2013; Beiki et al., 2012). Schmidt et al., (2004) have used tensor 

Euler deconvolution applied to the SQUID based GETMAG system. 

This section will examine source distance techniques relating to the analytic signal and 

the application of tensor data to this. The original versions of these techniques used TMI 
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(Total Magnetic Intensity) data and the analytic signal from TMI data only, but new work 

developed includes the derivation and testing of analogous versions of these source 

distance methods using tensor components and tensor versions of the analytic signal. 

This has been published in Cole and Cooper (2018). 

At this point it is worth discussing homogeneity versus heterogeneity with respect to 

modelling. Homogeneity assumes that a model, or body, is uniform in composition with 

respect to a characteristic of that body, such as susceptibility. In reality, this is not an 

accurate assumption to make since the earth is seldom homogenous. Heterogeneity 

implies non-uniformity in this characteristic. Traditional forward modelling is an example 

of homogeneity since each body being modelled has constant physical properties. This is 

not always the case, and Holstein (2003) derived gravity and magnetic formulas for 

media where, for example, density and magnetisation are varying linearly. Inversion 

applied to voxels (as described in the next section) is also an example of heterogeneity 

since each voxel can have a slightly different value for the characteristic it describes.  

Source distance techniques are interesting in this respect in that for a single value, 

homogeneity is assumed (i.e. if we are calculating the distance to a dyke, the dyke is 

assumed to have constant susceptibility). However, when applied over observations 

covering an area, the variety of depths and susceptibilities determined by the source 

distance technique (as will be seen in CHAPTER 6) shows a more heterogeneous set of 

solutions and hints at perhaps a hybrid between homogenous techniques and 

heterogeneous techniques.  
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4.2 Inverse Modelling 

As mentioned in section 2.3.8, inverse modelling can be thought of as the inverse of the 

forward problem, in that instead of postulating model parameters to calculate data, data is 

used to calculate the model parameters directly. A solution to an inverse problem is 

obtained by estimating some model, and testing predicted data against observed data 

using misfit and mathematical acceptability criteria. If these two criteria are unacceptable, 

the model is adjusted until the two criteria are satisfied. Predicted data can be calculated 

using forward modelling applied to the model. Upon final generation of the model, it must 

still be examined to see whether it makes geological sense. If not, the method for 

generating the model may have to be changed. There are several approaches to 

inversion, including stochastic (for example, Monte Carlo, Genetic Algorithms) 

deterministic (for example steepest descent, conjugate gradients) and analytical (Bilayer 

in DC resistivity). Many of the different types of inversion applicable to magnetic data can 

be found in Nabighian et al. (2005) 

In the case of potential fields, the solutions are non-unique. This means that a single 

measured anomaly can be described by a shallow, broad anomaly, as well as a deeper 

compact anomaly (Johnson and van Klinken, 1979). This implies that some strategy is 

required to improve the calculation of the model parameters.  

The complexity of the inversion process means that there are two challenges to 

overcome: 

1) The non-uniqueness of the solution 

2) The complexity of the model means that calculations can be prohibitively time 

consuming.  

There are many different approaches to inversion. Polygonal inversion (where the 

modelling body is defined by a series of polygons or polygonal facets) inverts the nodes 

of the polygons to adjust for the location of the body, as well the body parameters (such 

as susceptibility or density). The one constraint is that the body is generally regarded as 

homogenous. 

Voxel based inversion does not seek to define a body via nodes, but rather in terms of 

the distribution of some physical property (such as density or susceptibility). The resulting 

solutions are therefore heterogeneous, since each voxel can have a different solution. 

The manner in which the inversion is optimised is defined by some inversion strategy. For 

example Barbosa (1994) describes a means to model gravity data using body 

compactness as the key model for the inversion.  
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The non-uniqueness of the solution is dealt with in a number of different ways. Firstly, it 

can be restricted based on prior information. This can take the form of geological 

information (knowing which areas may host magnetic rocks based on geology), 

geophysical information (restrictions to ranges of physical properties such as density and 

susceptibility) and can also include some logical hypothesis on the nature of the model 

(i.e. compactness as mentioned above). The University of British Columbia (UBC) codes 

(MAG3D, 2017) use compactness as well as depth weighting for their inversion of 

magnetic data. Depth weighting is a method used to counteract the natural decay in 

magnetic data (Li and Oldenburg, 1996). Without this, most solutions will be concentrated 

close to the observations. Accurate knowledge of the topography is also vital to obtaining 

meaningful solutions.  

Adjusting model constraints can be an effective method to overcome point 1. However, 

for point 2, the time consuming nature of inversion means that in three dimensions, 

iteratively correcting mistakes is not always a realistic solution. To illustrate this, assume 

we have a grid at the surface of the earth of 100 by 100 observations. If our model has 

100 layers, without some suitable optimisation strategy, the forward modelling alone 

would imply that the 1 000 000 voxels equates to 10 000 000 000 calculations. One way 

to deal with this is by increasing the layer thickness with increasing depth, thereby 

reducing the number of layers necessary. 

Source detection techniques fall into a sub category of inverse techniques known as 

depth to source estimation techniques (Nabighian et al., 2005). This category includes 

Werner deconvolution, the Naudy method, Euler deconvolution and the analytic signal, to 

name a few. It seeks to overcome the non-uniqueness and time efficiency challenges by 

simplifying the problem and avoiding the need to iteratively change a model in order to 

generate an optimal solution. This is generally achieved by limiting the number of model 

geometries, or sources, and by targeting simpler parameters, such as depth to source 

instead of the full geometrical description of the model.  
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4.3 Total Magnetic Intensity Derivative Calculations 

The total magnetic intensity and its derivatives are used in source distance and tensor 

calculations. Since there is more than one version of calculating the total magnetic 

intensity and its derivatives, both are covered here. 

4.3.1 Approximate Total Magnetic Intensity 

As mentioned in section 2.2.6, the approximate total magnetic intensity is defined as:  

 𝐵𝑡𝑚𝑖 = 𝛼 ∙ 𝐵𝑥 + 𝛽 ∙ 𝐵𝑦 + 𝛾 ∙ 𝐵𝑧 (4.1) 

 

where 𝐵𝑥 , 𝐵𝑦 and 𝐵𝑧 are defined to be three components of a magnetic field 𝑩, and 𝛼, 𝛽, 𝛾 

are defined to be the direction cosines relating to the direction of the magnetic field. 

The tensor for a magnetic field is given by: 

 

𝑩 =  

[
 
 
 
 
 
 
𝜕𝐵𝑥

𝜕𝑥

𝜕𝐵𝑥

𝜕𝑦

𝜕𝐵𝑥

𝜕𝑧
𝜕𝐵𝑦

𝜕𝑥

𝜕𝐵𝑦

𝜕𝑦

𝜕𝐵𝑦

𝜕𝑧
𝜕𝐵𝑧

𝜕𝑥

𝜕𝐵𝑧

𝜕𝑦

𝜕𝐵𝑧

𝜕𝑧 ]
 
 
 
 
 
 

= [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑥𝑦 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑥𝑧 𝐵𝑦𝑧 𝐵𝑧𝑧

] (4.2) 

 

In tensor notation therefore, the x, y and z derivatives of 𝐵𝑡𝑚𝑖 are: 

 

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
= 𝛼 ∙ 𝐵𝑥𝑥 + 𝛽 ∙ 𝐵𝑦𝑥 + 𝛾 ∙ 𝐵𝑧𝑥 (4.3) 

 

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
= 𝛼 ∙ 𝐵𝑥𝑦 + 𝛽 ∙ 𝐵𝑦𝑦 + 𝛾 ∙ 𝐵𝑧𝑦 (4.4) 

 

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
= 𝛼 ∙ 𝐵𝑥𝑧 + 𝛽 ∙ 𝐵𝑦𝑧 + 𝛾 ∙ 𝐵𝑧𝑧 (4.5) 
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The advantage of these expressions is not only convenience, but also the fact that they 

do not require knowledge of either the total magnetic intensity, or the three components 

of the magnetic field.  

Second derivatives can be easily defined as follows: 

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥2
= 𝛼 ∙

𝜕𝐵𝑥𝑥

𝜕𝑥
+ 𝛽 ∙

𝜕𝐵𝑦𝑥

𝜕𝑥
+ 𝛾 ∙

𝜕𝐵𝑧𝑥

𝜕𝑥
 (4.6) 

 

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑥
= 𝛼 ∙

𝜕𝐵𝑥𝑦

𝜕𝑥
+ 𝛽 ∙

𝜕𝐵𝑦𝑦

𝜕𝑥
+ 𝛾 ∙

𝜕𝐵𝑧𝑦

𝜕𝑥
 (4.7) 

 

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑥
= 𝛼 ∙

𝜕𝐵𝑥𝑧

𝜕𝑥
+ 𝛽 ∙

𝜕𝐵𝑦𝑧

𝜕𝑥
+ 𝛾 ∙

𝜕𝐵𝑧𝑧

𝜕𝑥
 

(4.8) 

 

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦2
= 𝛼 ∙

𝜕𝐵𝑥𝑦

𝜕𝑦
+ 𝛽 ∙

𝜕𝐵𝑦𝑦

𝜕𝑦
+ 𝛾 ∙

𝜕𝐵𝑧𝑦

𝜕𝑦
 (4.9) 

 

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧2
= 𝛼 ∙

𝜕𝐵𝑥𝑧

𝜕𝑧
+ 𝛽 ∙

𝜕𝐵𝑦𝑧

𝜕𝑧
+ 𝛾 ∙

𝜕𝐵𝑧𝑧

𝜕𝑧
 (4.10) 

 

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑦
= 𝛼 ∙

𝜕𝐵𝑥𝑧

𝜕𝑦
+ 𝛽 ∙

𝜕𝐵𝑦𝑧

𝜕𝑦
+ 𝛾 ∙

𝜕𝐵𝑧𝑧

𝜕𝑦
 (4.11) 

 

And remembering that 
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑦⁄ =  
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑧⁄  , 
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑥⁄ =  
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥𝜕𝑦⁄  and 

𝜕2𝐵𝑡𝑚𝑖
𝜕𝑧𝜕𝑥

⁄ =  
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥𝜕𝑧
⁄ . 

4.3.2 Total Magnetic Intensity  

As mentioned in section 2.2.6, when anomalies are too strong, then the approximation in 

equation (4.1) is no longer accurate and the full measured total field anomaly should be 

used. The full total magnetic intensity is defined as: 

 
𝐵𝑡𝑚𝑖 = √(𝐵𝑥 + 𝛼𝐵𝑎)2 + (𝐵𝑦 + 𝛽𝐵𝑎)

2
+ (𝐵𝑧 + 𝛾𝐵𝑎)2 − 𝐵𝑎 (4.12) 
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where 𝐵𝑎 is the ambient magnetic field. The derivatives are: 

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
=

𝐵𝑥𝑥(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑥(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑥(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (4.13) 

 

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
=

𝐵𝑥𝑦(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑦(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑦(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (4.14) 

 

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
=

𝐵𝑥𝑧(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑧(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑧(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (4.15) 

 

The second derivatives are expressed as: 

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥2
=

𝐵𝑥𝑥𝑥𝐷 + 𝐵𝑥𝑦𝑥𝐸 + 𝐵𝑧𝑥𝑥𝐹 + 𝐵𝑥𝑥
2 + 𝐵𝑥𝑦

2 + 𝐵𝑧𝑥
2

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑥𝑥𝐷 + 𝐵𝑥𝑦𝐸 + 𝐵𝑧𝑥𝐹)

2

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)3
 

(4.16) 

 

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑥

=
𝐵𝑥𝑥𝑦𝐷 + 𝐵𝑥𝑦𝑦𝐸 + 𝐵𝑧𝑥𝑦𝐹 + 𝐵𝑥𝑦𝐵𝑥𝑥 + 𝐵𝑦𝑦𝐵𝑥𝑦 + 𝐵𝑧𝑦𝐵𝑧𝑥

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑥𝑦𝐷 + 𝐵𝑦𝑦𝐸 + 𝐵𝑧𝑦𝐹)(𝐵𝑥𝑥𝐷 + 𝐵𝑥𝑦𝐸 + 𝐵𝑧𝑥𝐹)

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)3
 

(4.17) 

 

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑥

=
𝐵𝑧𝑥𝑥𝐷 + 𝐵𝑥𝑦𝑧𝐸 + 𝐵𝑧𝑧𝑥𝐹 + 𝐵𝑧𝑥𝐵𝑥𝑥 + 𝐵𝑧𝑦𝐵𝑥𝑦 + 𝐵𝑧𝑧𝐵𝑧𝑥

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑧𝑥𝐷 + 𝐵𝑧𝑦𝐸 + 𝐵𝑧𝑧𝐹)(𝐵𝑥𝑥𝐷 + 𝐵𝑥𝑦𝐸 + 𝐵𝑧𝑥𝐹)

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)3
 

(4.18) 

 

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦2
=

𝐵𝑥𝑦𝑦𝐷 + 𝐵𝑦𝑦𝑦𝐸 + 𝐵𝑧𝑦𝑦𝐹 + 𝐵𝑥𝑦
2 + 𝐵𝑦𝑦

2 + 𝐵𝑧𝑦
2

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑥𝑦𝐷 + 𝐵𝑦𝑦𝐸 + 𝐵𝑧𝑦𝐹)

2

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)
3

 

(4.19) 
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 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧2
=

𝐵𝑧𝑥𝑧𝐷 + 𝐵𝑧𝑧𝑦𝐸 + 𝐵𝑧𝑧𝑧𝐹 + 𝐵𝑧𝑥
2 + 𝐵𝑧𝑦

2 + 𝐵𝑧𝑧
2

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑧𝑥𝐷 + 𝐵𝑧𝑦𝐸 + 𝐵𝑧𝑧𝐹)

2

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)3
 

(4.20) 

 

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑦

=
𝐵𝑥𝑦𝑧𝐷 + 𝐵𝑧𝑦𝑦𝐸 + 𝐵𝑧𝑧𝑦𝐹 + 𝐵𝑧𝑥𝐵𝑥𝑦 + 𝐵𝑧𝑦𝐵𝑦𝑦 + 𝐵𝑧𝑧𝐵𝑧𝑦

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑧𝑥𝐷 + 𝐵𝑧𝑦𝐸 + 𝐵𝑧𝑧𝐹)(𝐵𝑥𝑦𝐷 + 𝐵𝑦𝑦𝐸 + 𝐵𝑧𝑦𝐹)

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)
3

 

(4.21) 

 

where 𝐷 = 𝐵𝑥 + 𝛼𝐵𝑎, 𝐸 = 𝐵𝑦 + 𝛽𝐵𝑎 and 𝐹 = 𝐵𝑧 + 𝛾𝐵𝑎. 

Since derivatives of the tensor components are calculated numerically, second x and y 

derivatives of 𝐵𝑡𝑚𝑖 can be calculated by numerical differentiation of the results of 

equations (4.13) and (4.14), as there is no advantage to using derived equations. 

Therefore only equation (4.20) is necessary if avoiding calculating vertical derivatives (i.e. 

the z derivative). 

4.3.3 Numerical calculation of rank 3 tensor components and higher order 

analytic signals 

The numerical calculation of the rank 3 tensors used in equations (4.6) to (4.11) or the 

derivatives of equations (4.3) to (4.5)  and (4.13) to (4.15) can be done using numerical 

differentiation. This can be achieved using, for example, central differences and the 

gradient function in a mathematical language such as MATLAB or Python. Central 

differences and finite difference schemes are well documented in literature (for example 

Numerical recipes by Press et al., 2007). A disadvantage of finite difference schemes is 

that they are an approximation to the exact analytical solution. They are affected by 

round-off error, which is the loss of precision due to computer rounding of decimal 

numbers. Since they are related to a truncated form of a Taylor series, a truncation error 

also exists (error due to approximating and infinite sum with a finite sum). As a simple 

example, we can define the forward Euler scheme as follows: 

 𝜕𝑢(𝑥𝑗)

𝜕𝑥
=

𝑢(𝑥𝑗 + ∆𝑥) − 𝑢(𝑥𝑗)

∆𝑥
 (4.22) 

 

where ∆𝑥 is the grid spacing, 𝑥𝑖 is the grid coordinate, and 𝑢 is the grid data from which 

we want a derivative calculated. This scheme compares the current data point with the 
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next data point. The backward Euler scheme compares the current data point with the 

previous data point, and is defined as: 

 𝜕𝑢(𝑥𝑗)

𝜕𝑥
=

𝑢(𝑥𝑗) −  𝑢(𝑥𝑗 − ∆𝑥)

∆𝑥
 (4.23) 

 

And for the central differences, which take advantage of data points on both sides of the 

current data point, we have: 

 𝜕𝑢(𝑥𝑗)

𝜕𝑥
=

𝑢(𝑥𝑗 + ∆𝑥) − 𝑢(𝑥𝑗 − ∆𝑥)

2∆𝑥
 (4.24) 

 

To understand the error, we need to look at the Taylor series. Using the above variables, 

we have: 

 
𝑢(𝑥𝑗 + ∆𝑥) = 𝑢(𝑥𝑗) + ∆𝑥𝑗

𝜕𝑢

𝜕𝑥
|
𝑥𝑗

+
∆𝑥𝑗

2

2!

𝜕2𝑢

𝜕𝑥2
|
𝑥𝑗

 +
∆𝑥𝑗

3

3!

𝜕3𝑢

𝜕3𝑥
|
𝑥𝑗

+ ⋯ 

(4.25) 

 

Rearranging this, we see the following: 

 𝑢(𝑥𝑗 + ∆𝑥) − 𝑢(𝑥𝑗)

∆𝑥𝑗

−
𝜕𝑢

𝜕𝑥
|
𝑥𝑗

=
∆𝑥𝑗

2!

𝜕2𝑢

𝜕𝑥2
|
𝑥𝑗

 +
∆𝑥𝑗

2

3!

𝜕3𝑢

𝜕3𝑥
|
𝑥𝑗

+ ⋯ (4.26) 

 

The terms on the left side are clearly the forward Euler formula subtracting the desired 

answer, while the terms on the right are the truncation error terms. If 𝑢 is sufficiently 

smooth (i.e. possesses higher order derivatives), the first truncation error term is used to 

define the order of magnitude of the error. Typically, forward and reverse Euler schemes 

have first order errors, while central difference schemes have second order errors. There 

do exist higher order variations of these finite difference schemes.  

This error is quoted using Big O notation. A second order error is therefore quoted as 

𝑂(∆𝑥2). Note that it does not mean that the error is a big as ∆𝑥2 since there are other 

terms in the Taylor expansion coupled with the ∆𝑥2 term, but rather that the error (or 

reduction thereof) is proportional to ∆𝑥2. The interpretation of this is that for a second 

order error, if, for example, we decrease the spacing by half, we can expect a reduction in 

error of 22. Higher order finite difference schemes are therefore desirable. As long as 

higher order derivatives for the data exist, higher order versions of finite difference 
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schemes can produce viable solutions. In the case of numerical differentiation used in 

this thesis, a fourth order scheme was applied and was found to be optimal. 

An alternative to using finite differences is to use Fourier spectral methods, where 

differentiation is a simple multiplication. This can be significantly more accurate, but data 

must be periodic, which may not be the case. Care must be taken here, to avoid 

phenomena such as ringing, otherwise the accuracy will deteriorate severely. Equation 

(4.27) shows relationship to calculate the x-derivative in the Fourier domain. 

 

 
ℱ [

𝜕𝑢(𝑥)

𝜕𝑥
] = 𝑖 ∙ 𝑘𝑥ℱ[𝑢(𝑥)] (4.27) 

 

where 𝑘𝑥 is the spatial frequencies in x-direction direction and should not be confused 

with susceptibility. ℱ[ ] expresses the Fourier transform. 

To see how the forward difference, central difference and Fourier relationships relate to 

each other, take the Fourier transform of the Taylor series. We then have: 

 

ℱ[𝑢(𝑥𝑗 + ∆𝑥)] = ℱ[𝑢(𝑥𝑗)] + ℱ [∆𝑥𝑗

𝜕𝑢

𝜕𝑥
|
𝑥𝑗

] + ℱ [
∆𝑥𝑗

2

2!

𝜕2𝑢

𝜕𝑥2
|
𝑥𝑗

] + ⋯

=  ℱ[𝑢(𝑥𝑖)] + (𝑖 ∙ 𝑘𝑥)∆𝑥𝑗ℱ[𝑢(𝑥𝑗)] +
(𝑖 ∙ 𝑘𝑥)

2∆𝑥𝑗
2

2!
ℱ[𝑢(𝑥𝑗)] + ⋯ 

(4.28) 

 

This is the expansion for an exponential function, i.e. 𝑒𝑥 = 1 + 𝑥 + 𝑥2/2!. Therefore we 

get: 

 ℱ[𝑢(𝑥𝑗 + ∆𝑥)] = ℱ[𝑢(𝑥𝑗)] ∙ 𝑒𝑖𝑘𝑥∆𝑥𝑗 (4.29) 

 

Equation (4.29) can now be used to compare the different schemes. If we now take the 

Fourier transform of the forward difference scheme, we get: 

 
ℱ [

𝜕𝑢(𝑥𝑗)

𝜕𝑥
] = ℱ [

𝑢(𝑥𝑗 + ∆𝑥) − 𝑢(𝑥𝑗)

∆𝑥
]

=  ℱ[𝑢(𝑥𝑗)] ∙
𝑒𝑖𝑘𝑥∆𝑥𝑗 − 1

∆𝑥
= ℱ[𝑢(𝑥𝑗)] ∙ (−1 + 1 + 𝑖 ∙ 𝑘𝑥∆𝑥 + ⋯)/∆𝑥 

= 𝑖 ∙ 𝑘𝑥  ℱ[𝑢(𝑥𝑗)] + ⋯ 

(4.30) 
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The final simplification is achieved taking the Taylor expansion of the exponential term. 

Equation (4.30) implies that the frequency domain operator is an approximation to the 

forward difference. Taking note of the identity sin 𝜃 =
1

2𝑖
(𝑒𝑖𝜃 − 𝑒−𝑖𝜃), we can do the same 

with the central difference: 

 
ℱ [

𝜕𝑢(𝑥𝑗)

𝜕𝑥
] = ℱ [

𝑢(𝑥𝑗 + ∆𝑥) − 𝑢(𝑥𝑗 − ∆𝑥)

2∆𝑥
]

=  ℱ[𝑢(𝑥𝑗)] ∙
𝑒𝑖𝑘𝑥∆𝑥𝑗 − 𝑒−𝑖𝑘𝑥∆𝑥𝑗

2∆𝑥

=
𝑖 ∙ sin(𝑘𝑥∆𝑥)

∆𝑥
 ℱ[𝑢(𝑥𝑗)]

≈ 𝑖 ∙ 𝑘𝑥  ℱ[𝑢(𝑥𝑗)] 

(4.31) 

 

The last line is the first term of the Taylor expansion for a sine function. This result also 

implies that the frequency domain operator is an approximation to the central difference, 

and that in the frequency domain the central difference corresponds to a sine function. 

Both methods have been used in geophysics. For example, Daudt et al. (1989) compares 

both techniques when applied to seismograms. They came to the conclusion that for their 

application, all techniques tested had comparable accuracy.  

Pajot et al. (2008) describe a third option, involving computing a low-degree polynomial fit 

of the data using a sample of neighbouring points. The analytical derivative of this 

polynomial function is then used to approximate the derivative of the component. This 

method is necessary when data are sampled more densely in one direction than in the 

other, but if the data are distributed evenly, according to Pajot, the method offers no 

advantage over the finite difference method. 

Only horizontal gradients are calculated using one of these techniques. Vertical gradients 

use continuation as an integral part of the calculation. Horizontal gradients are always 

preferred to vertical gradients due to simplicity in calculations and reduction in possible 

noise. Fortunately, a rank 3 tensor can always be rewritten so that only horizontal 

gradients are calculated. For example: 

 

 𝐵𝑥𝑦𝑧 = 𝐵𝑧𝑥𝑦 = 𝐵𝑧𝑦𝑥 = 𝐵𝑥𝑧𝑦 = 𝐵𝑦𝑧𝑥 (4.32) 

 

 𝐵𝑥𝑥𝑧 = 𝐵𝑧𝑥𝑥 = 𝐵𝑥𝑧𝑥 (4.33) 
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 𝐵𝑦𝑦𝑧 = 𝐵𝑧𝑦𝑦 = 𝐵𝑦𝑧𝑦 (4.34) 

 

 𝐵𝑧𝑧𝑧 = −𝐵𝑥𝑥𝑧 − 𝐵𝑦𝑦𝑧  =  −𝐵𝑧𝑥𝑥 − 𝐵𝑧𝑦𝑦 (4.35) 

 

Therefore, by using the relationships in equations (4.32) to (4.35), the calculation of 

vertical gradients directly can be avoided. The appropriate horizontal gradient calculation 

can be chosen to minimise on calculation errors. 
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4.4 Analytic Signal 

Source detection techniques quite often utilise properties of the analytic signal, so this will 

be described as well.  

An analytic signal is a complex signal which has no negative-frequency components. 

Real and imaginary parts of an analytic signal are related to each other by the Hilbert 

transform (Gabor, 1946). Thus we have: 

 𝑨 = 𝐹 + 𝑖ℋ (4.36) 
 

where 𝑨 is the analytic signal, 𝐹 is the original signal and ℋ is the Hilbert transform of 

that signal. 

The construction of the analytic signal can also be understood as suppressing the 

negative frequency components. 

The analytic signal plays an important role in one-dimensional signal processing. One of 

the main reasons for this fact is that the instantaneous amplitude and the instantaneous 

phase of a real signal 𝐹 at a certain position x can be defined as the magnitude and the 

angular argument of the complex-valued analytic signal 𝑨 at the position x.  

The analytic signal is a global concept, i.e. the analytic signal at a position x depends on 

the entire original signal and not only on values at positions near x. 

Nabighian (1972) noticed that 𝜕𝐵𝑡𝑚𝑖 𝜕𝑥⁄  is the negative Hilbert transform of 𝜕𝐵𝑡𝑚𝑖 𝜕𝑧⁄ , 

where 𝐵𝑡𝑚𝑖 is the total magnetic intensity. Thus in 2D: 

 
𝑨𝒔𝟏 =

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
+ 𝑖ℋ (

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
)

=
𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
−

𝑖𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
 

(4.37) 

 

𝑨𝒔𝟏 is the first order analytic signal. Essentially, vertical and horizontal derivatives of 

potential field data are the Hilbert transforms of each other. The amplitude of the 2D 

analytic signal is then: 

 

𝐴𝑠1 = √(
𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
)

2

+ (
𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
)

2

 (4.38) 
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In 3D it follows that the analytic signal vector is defined as: 

 
𝑨𝒔𝟏 = (

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
,
𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
,−

𝑖𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
) (4.39) 

 

The amplitude of this is: 

 

𝐴𝑠1 = √(
𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
)

2

+ (
𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
)

2

+ (
𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
)

2

 (4.40) 

 

Three versions of analytic signals exist for tensor data (Beiki, 2010) as well. They are: 

 

𝐴𝑠𝑥1 = √(
𝜕𝐵𝑥

𝜕𝑥
)

2

+ (
𝜕𝐵𝑥

𝜕𝑦
)

2

+ (
𝜕𝐵𝑥

𝜕𝑧
)

2

= √𝐵𝑥𝑥
2 + 𝐵𝑥𝑦

2 + 𝐵𝑥𝑧
2  

(4.41) 

 

 

𝐴𝑠𝑦1 = √(
𝜕𝐵𝑦

𝜕𝑥
)

2

+ (
𝜕𝐵𝑦

𝜕𝑦
)

2

+ (
𝜕𝐵𝑦

𝜕𝑧
)

2

= √𝐵𝑥𝑦
2 + 𝐵𝑦𝑦

2 + 𝐵𝑦𝑧
2  

(4.42) 

 

 

𝐴𝑠𝑧1 = √(
𝜕𝐵𝑧

𝜕𝑥
)

2

+ (
𝜕𝐵𝑧

𝜕𝑦
)

2

+ (
𝜕𝐵𝑧

𝜕𝑧
)

2

= √𝐵𝑥𝑧
2 + 𝐵𝑦𝑧

2 + 𝐵𝑧𝑧
2  

(4.43) 

 

where 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 are components of the field, and 𝐵𝑥𝑥 , 𝐵𝑥𝑦 , 𝐵𝑥𝑧 , 𝐵𝑦𝑦 , 𝐵𝑦𝑧 , 𝐵𝑧𝑧 are tensor 

components. 

Tensor analytic signals are useful for source distance calculations. However, in some 

cases the directional bias of each tensor analytic signal might not be desired. To deal 

with this, a tensor analytic signal magnitude is defined as follows: 

 
𝐴𝑠𝑥𝑦𝑧 = √𝐴𝑠𝑥

2 + 𝐴𝑠𝑦
2 + 𝐴𝑠𝑧

2 

 

(4.44) 

For first order analytic signals, this simplifies to: 
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𝐴𝑠𝑥𝑦𝑧1 = √𝐵𝑥𝑥

2 + 2𝐵𝑥𝑦
2 + 2𝐵𝑥𝑧

2 + 𝐵𝑦𝑦
2 + 2𝐵𝑦𝑧

2 + 𝐵𝑧𝑧
2  

 

(4.45) 

 

Other orders of analytic signal exist, although there is more than one definition of these 

orders. The first variant presented here is the variant in use by the source detection 

calculations (Cooper and Whitehead, 2016). In this case the second order analytic signal 

is defined as: 

 

 

𝐴𝑠2 = √(
𝜕𝐴𝑠1

𝜕𝑥
)

2

+ (
𝜕𝐴𝑠1

𝜕𝑦
)

2

+ (
𝜕𝐴𝑠1

𝜕𝑧
)

2

 (4.46) 

 

The zero order analytic signal is defined as  

 
𝐴𝑠0 = √𝐵𝑡𝑚𝑖

2 + ℋ𝑥(𝐵𝑡𝑚𝑖)
2 + ℋ𝑦(𝐵𝑡𝑚𝑖)

2  (4.47) 

 

where ℋ𝑥 ,ℋ𝑦 are the Hilbert transforms in the x and y directions. 

Building on this, higher orders of analytic signal for tensors are derived as follows: 

 

 

𝐴𝑠𝑥2 = √(
𝜕𝐴𝑠𝑥1

𝜕𝑥
)

2

+ (
𝜕𝐴𝑠𝑥1

𝜕𝑦
)

2

+ (
𝜕𝐴𝑠𝑥1

𝜕𝑧
)

2

 (4.48) 

 

 

𝐴𝑠𝑦2 = √(
𝜕𝐴𝑠𝑦1

𝜕𝑥
)

2

+ (
𝜕𝐴𝑠𝑦1

𝜕𝑦
)

2

+ (
𝜕𝐴𝑠𝑦1

𝜕𝑧
)

2

 (4.49) 

 

 

𝐴𝑠𝑧2 = √(
𝜕𝐴𝑠𝑧1

𝜕𝑥
)

2

+ (
𝜕𝐴𝑠𝑧1

𝜕𝑦
)

2

+ (
𝜕𝐴𝑠𝑧1

𝜕𝑧
)

2

 (4.50) 

 

Similarly, the zero order tensor analytic signal is defined as: 
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𝐴𝑠𝑥0 = √𝐵𝑥

2 + ℋ𝑥(𝐵𝑥)
2 + ℋ𝑦(𝐵𝑥)

2  (4.51) 

 

 
𝐴𝑠𝑦0 = √𝐵𝑦

2 + ℋ𝑥(𝐵𝑦)
2
+ ℋ𝑦(𝐵𝑦)

2
  (4.52) 

 

 
𝐴𝑠𝑧0 = √𝐵𝑧

2 + ℋ𝑥(𝐵𝑧)
2 + ℋ𝑦(𝐵𝑧)

2  (4.53) 

 

The second variant of analytic signal orders by Hsu, Coppens and Shyu, (1998) is 

defined differently, namely as: 

 

|𝐴𝑛| = √[
𝜕

𝜕𝑥
(∇𝑛𝐵𝑡𝑚𝑖)]

2

+ [
𝜕

𝜕𝑦
(∇𝑛𝐵𝑡𝑚𝑖)]

2

+ [
𝜕

𝜕𝑧
(∇𝑛𝐵𝑡𝑚𝑖)]

2

 (4.54) 

 

Where ∇𝑛=
𝜕𝑛

𝜕𝑧𝑛 and ∇0= 1. In this case, 𝐴0 is the equivalent of the conventional analytic 

signal 𝐴𝑠1. 

4.4.1 Calculation of First and Second Order Analytic Signals 

Numerical calculation of first and second order analytic signals is straight forward. This 

procedure is generic, so input is defined as 𝑑𝑥, 𝑑𝑦, 𝑑𝑧. These can be any relevant 𝑥, 𝑦 or 𝑧 

component of the field respectively. For example, 𝑑𝑥 can be 𝐵𝑥𝑥 , 𝐵𝑥𝑦 , 𝐵𝑦𝑥 , 𝐵𝑥𝑧 or 𝐵𝑧𝑥. 

 𝐴𝑠1 = √𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 (4.55) 

 

Using central differences, the following horizontal gradients are calculated: 

 𝑑𝑦𝑧 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑧 𝑤. 𝑟. 𝑡. 𝑦 

𝑑𝑥𝑧 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑧 𝑤. 𝑟. 𝑡. 𝑥 

𝑑𝑦𝑦 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑦 𝑤. 𝑟. 𝑡. 𝑦 

𝑑𝑥𝑦 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑥 𝑤. 𝑟. 𝑡. 𝑦 

𝑑𝑥𝑥 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑥 𝑤. 𝑟. 𝑡. 𝑥 

𝑑𝑧𝑧 = −𝑑𝑥𝑥 − 𝑑𝑦𝑦 

(4.56) 
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Using this, the following can then be calculated: 

 𝜕𝐴𝑠1

𝜕𝑥
=

𝑑𝑥 ∙ 𝑑𝑥𝑥 + 𝑑𝑦 ∙ 𝑑𝑥𝑦 + 𝑑𝑧 ∙ 𝑑𝑥𝑧

𝐴𝑠
  (4.57) 

 

 𝜕𝐴𝑠1

𝜕𝑦
=

𝑑𝑥 ∙ 𝑑𝑥𝑦 + 𝑑𝑦 ∙ 𝑑𝑦𝑦 + 𝑑𝑧 ∙ 𝑑𝑦𝑧

𝐴𝑠
 (4.58) 

 

 𝜕𝐴𝑠1

𝜕𝑧
=

𝑑𝑥 ∙ 𝑑𝑥𝑧 + 𝑑𝑦 ∙ 𝑑𝑧𝑦 + 𝑑𝑧 ∙ 𝑑𝑧𝑧

𝐴𝑠
 

(4.59) 

 

 

𝐴𝑠2 = √
𝜕𝐴𝑠1

2

𝜕𝑥
+

𝜕𝐴𝑠1
2

𝜕𝑦
+

𝜕𝐴𝑠1
2

𝜕𝑧
  (4.60) 
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4.5 Source Distance 

The following sections detail an application of tensors to source distance calculations, 

especially the work of Ma and Du (2012), Cooper (2014a, 2014b, 2015) and Cooper and 

Whitehead (2016). All tensor derivations are new and have been published (as an output 

of this thesis) in Cole and Cooper (2018). 

4.5.1 Conventional method and results 

Source detection techniques seek to calculate the distance from the surface to a source 

of some type, whether it is a dyke, a contact or other body. They are typically based on 

some form of manipulation of the analytic signal. Since the analytic signal finds the edges 

of bodies, or thin features such as dykes, these techniques are generally limited to this as 

well. 

Cooper (2014c) showed that: 

 
𝑟 =

(𝑁 + 1)𝐴𝑠1

A𝑠2

 (4.61) 

 

where r is the distance to the source, As is the analytic signal amplitude of the magnetic 

field 𝐵𝑡𝑚𝑖 and As2 is the 2nd order analytic signal. N is an index denoting the source type 

(Table 2). 

𝐴𝑠1 and 𝐴𝑠2 are defined as: 

 

𝐴𝑠1 = √(
𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
)

2

+ (
𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
)

2

+ (
𝜕𝐵𝑡𝑚𝑖  

𝜕𝑧
)

2

 (4.62) 

 

 

𝐴𝑠2 = √(
𝜕𝐴𝑠1

𝜕𝑥
)

2

+ (
𝜕𝐴𝑠1

𝜕𝑦
)

2

+ (
𝜕𝐴𝑠1

𝜕𝑧
)

2

 (4.63) 

 

Table 2 Values of N versus magnetic source types (Ma and Li, 2013) 

N Magnetic Source Type 

0 Contact or step 

1 Vertical Dyke 

2 Horizontal Cylinder 

3 Dipole 
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The values in Table 2 represent indexes for the nature of a source and are not to be 

confused with the structural index as defined by Euler deconvolution. In Euler 

deconvolution, separate indices are defined for both magnetic and gravity cases (Reid 

and Thurston, 2014). However, the indices in Table 2 are related directly to different 

source types as modelled through the analytic signal. MacLeod, Jones and Dai (1993) 

give these equations for contacts, sheets (or dykes) and horizontal cylinders. This was 

generalized by Salem et al. (2004) and is expressed as: 

 
𝐴𝑠1 =

𝐾

(𝑥2 + 𝑧2)
(𝑁+1)

2

 (4.64) 

 

Where K is a constant. We can substitute expression for 𝐵𝑡𝑚𝑖 and its derivatives (section 

4.3) into equation (4.62) to obtain the tensor version of the analytic signal amplitude 𝐴𝑠1. 

Similarly (Cooper, 2014c):  

 

 𝜕𝐴𝑠1

𝜕𝑥
= (

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥2
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑥
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑥
)/𝐴𝑠1 (4.65) 

 

 𝜕𝐴𝑠1

𝜕𝑦
= (

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥𝜕𝑦
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦2
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑦
)/𝐴𝑠1 (4.66) 

 

 𝜕𝐴𝑠1

𝜕𝑧
= (

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥𝜕𝑧
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑧
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧2
)/𝐴𝑠1 (4.67) 

 

where derivative terms can be calculated using the equations and processes in section 

4.3. 

Equations (4.65), (4.66) and (4.67) are then substituted into (4.63) to obtain 𝐴𝑠2. The 

tensor versions of 𝐴𝑠 and 𝐴𝑠2 can then be substituted into (4.61) to calculate r. 

Synthetic tensor data, calculated for a cubic body, is shown in Figure 46. This data is 

used to test the tensor derivations for the source equations. The magnetic field intensity 

is 28,000 nT, susceptibility is 0.1 SI, inclination is -60 degrees, declination is -15 degrees. 

The rectangular prism has a width of 200 m and height of 280 meters, situated between 

20 meters and 300 meters.  
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Figure 46 Synthetic magnetic tensor calculations for a rectangular prism.  a) to c) show the 

three components of the magnetic field - 𝑩𝒙, 𝑩𝒚, 𝑩𝒛. d), e), f), g), h) and j) show the tensor 

components 𝑩𝒙𝒙, 𝑩𝒙𝒚, 𝑩𝒙𝒛, 𝑩𝒚𝒚, 𝑩𝒚𝒛, 𝑩𝒛𝒛 respectively. i) Total magnetic intensity of the study 

area. Note that 𝑩𝒙𝒚 = 𝑩𝒚𝒙, 𝑩𝒙𝒛 = 𝑩𝒛𝒙, 𝑩𝒚𝒛 = 𝑩𝒛𝒚, so they are not shown. The magnetic field 

intensity used was 28000 nT, the susceptibility was 0.1 SI, the inclination was -60º, the 
declination was -15º. The depth of the rectangular prism was 20 m. The horizontal extent of 
the rectangular prism is 200 m by 200 m and it goes down to a depth of 3000 m 

Figure 47 shows the datasets used to calculate r, namely 𝐴𝑠1 and 𝐴𝑠2, as well as r. Using 

the tensor data to calculate r located the edges of the body correctly (Figure 47d). Over 

the edges of the body the distance to the source becomes its depth. Notice that valid 

solutions for 𝑟 are those closest to the source, and are therefore directly above the 

source. Insofar as a depth estimate is concerned, other solutions are invalid. The source 

itself is defined by the analytic signal representing either a contact or edge of a body 

(Figure 47 (b) is an example of the edge of body seen in the analytic signal), or a dyke.  



108 

 

Source distance calculations done in this way are not affected by field direction or 

susceptibility, making it a robust technique.  

The equations for a dyke are valid for the lower extent of the dyke extending to infinity (or 

sufficiently deep enough). Any error in the calculation therefore decreases with increasing 

lower depth extent for the dyke. This is not necessarily a bad assumption in a model, 

given that dykes originate from deep below the surface.  

 

Figure 47 a) First order analytic signal of the data shown in Figure 46i).  b) Second order 
analytic signal of the data shown in Figure 46i).  c) Source-distance calculation results. d) 
Results of calculation of r from equation (4.61) (blue) over the synthetic modelled body for 
the profile shown as a dashed black line in c). A value of N = 0 was used in equation (4.61). 
Note that the negative of r is plotted so that the values closest to zero represent the source 
depth. 
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4.5.2 Alternative methods and results 

Tensors provide alternative derivation possibilities for source distance equations. Two 

alternative methods are presented here. 

Method 1 

Cooper (2014c) derived equation (4.61) based on the work of MacLeod, Jones and Dai 

(1993) and then Salem et al. (2004), who showed that the analytic signal can be defined 

as: 

 
𝐴𝑠1 =

𝐾

(𝑥2 + 𝑧2)
(𝑁+1)

2

 (4.68) 

 

where K is a constant and N is an index relating to source type. This equation is originally 

based on the work of Nabighian (1972) who defined the analytic signal as: 

 
𝐴𝑠1 =

𝜓2 

𝑥2 + 𝑧2
 (4.69) 

 

This is derived from the components of the magnetic anomaly from a thin dyke, which 

form a Hilbert transform pair, and is given by Nabighian (1972) : 

 𝜕𝑓

𝜕𝑥
=

𝜓(𝑥 sin 𝜙 + 𝑧 cos𝜙)

𝑥2 + 𝑧2
 (4.70) 

 

 𝜕𝑓

𝜕𝑧
=

𝜓(𝑥 cos𝜙 − 𝑧 sin 𝜙)

𝑥2 + 𝑧2
 (4.71) 

 

where 𝜓 = 2𝑘𝐵𝑎𝑐 sin 𝑑, k is susceptibility, 𝐵𝑎 is the earth’s magnetic field, d is the dip of a 

thin infinite sheet, z is the depth of the dyke, x is the horizontal displacement of the dyke 

and c and 𝜙 are given in Table 3. The quantity 𝑓 can be either the total, vertical or 

horizontal field. The derivative simply converts the anomaly from that of a step to that of a 

sheet. Therefore, when considering steps, one need deal with 𝑓 only, but when dealing 

with dykes, the entire derivative must be considered. This is an important property, as will 

be seen later. 
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Table 3 Values of 𝒄 and 𝜷 for total, vertical and horizontal fields, where 𝒊 is the inclination of 

the earth’s magnetic field, 𝑨 is the angle between magnetic north and the positive x axis , 

𝐭𝐚𝐧 𝑰 = 𝐭𝐚𝐧 𝒊 𝐜𝐨𝐬𝑨⁄  and d is the dip of a thin infinite sheet or step. From (Nabighian, 1972) 

 Total Field Anomaly Vertical Field Anomaly Horizontal Field Anomaly 

c 1 − cos2 𝑖 sin2 𝐴 √1 − cos2 𝑖 sin2 𝐴 cos𝐴 √1 − cos2 𝑖 sin2 𝐴 

𝜙 2𝐼 − 𝑑 − 90 𝐼 − 𝑑 𝐼 − 𝑑 − 90 

 

To convert between total, vertical or horizontal fields, one need only adjust the equations 

for 𝑐 and 𝜙 as given in Table 3. What is important to note from equations (4.68) and 

(4.69) is that they are equally valid for total, vertical and horizontal fields. This means that 

equation (4.61) is also valid for the primary field components for a thin dyke or a step. 

This implies that in equation (4.70) 
𝜕𝑓

𝜕𝑥
⁄  (for dykes) or 𝑓 (for steps) can be substituted 

with 𝐵𝑡𝑚𝑖 , 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧, while making the appropriate changes from Table 3 

Noting that (4.41), (4.42) and (4.43) are the analytic signals of the primary field 

components, 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 can be combined with (4.61), resulting in three new relationships: 

 
𝑟 =

(𝑁 + 1)𝐴𝑠𝑥1

A𝑠𝑥2

 (4.72) 

 

 
𝑟 =

(𝑁 + 1)𝐴𝑠𝑦1

A𝑠𝑦2

 (4.73) 

 

 
𝑟 =

(𝑁 + 1)𝐴𝑠𝑧1

A𝑠𝑧2

 (4.74) 

 

The central differences technique shown in section 4.3.3 can easily be used to calculate 

the second order analytic signal.  

Method 2 

The equations in method 1 are sensitive to noise, because of the use of higher order 

derivatives. To overcome this by using lower order derivatives Cooper (2015) 

demonstrated that: 

 
𝑟 =

𝑁𝐴𝑠0

𝐴𝑠1

 (4.75) 
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where  

 
𝐴𝑠0 = √𝐵𝑡𝑚𝑖

2 + ℋ𝑥(𝐵𝑡𝑚𝑖)
2 + ℋ𝑦(𝐵𝑡𝑚𝑖)

2  (4.76) 

 

N is the index relating to source type (Table 2) and ℋ𝑥 ,ℋ𝑦 are the Hilbert transforms in 

the x and y directions. It can be shown that this also holds for tensor components. Let us 

start by examining the component 𝐵𝑧. For a dyke, we write (4.70) and (4.71) in terms of 

this component (e.g. 
𝜕𝑓

𝜕𝑧
⁄ = 𝐵𝑧 and 

𝜕𝑓
𝜕𝑥

⁄ = ℋ𝑥(𝐵𝑧)) it follows that (from Nabighian, 

1972): 

 
ℋ𝑥(𝐵𝑧) = −

𝜓𝑧(𝑥 sin 𝜙𝑧 + 𝑧 cos𝜙𝑧)

𝑥2 + 𝑧2
 (4.77) 

 

 
𝐵𝑧 =

𝜓𝑧(𝑥 cos 𝜙𝑧 − 𝑧 sin 𝜙𝑧)

𝑥2 + 𝑧2
 (4.78) 

 

Where 𝜓𝑧 = 2𝑘𝐵𝑎√1 − cos2 𝑖 sin2 𝐴 sin 𝑑 and 𝜙𝑧 = 𝐼 − 𝑑, taken from Table 3, since in this 

case we are dealing with a vertical field anomaly. Values are also given for total field and 

horizontal field anomalies. Now, noting that (4.77) and (4.78) are 2D equations, we can 

assume the following:  

 ℋ𝑦(𝐵𝑧) = 0 (4.79) 

 

Substituting (4.77), (4.78) and (4.79) into (4.76) and simplifying: 

 𝐴𝑠𝑧0 = √𝐵𝑧
2 + ℋ𝑥(𝐵𝑧)

2 + 0

= √
𝜓𝑧

2(𝑥 cos 𝜙𝑧 − 𝑧 sin𝜙𝑧)
2

(𝑥2 + 𝑧2)2
+

𝜓𝑧
2(𝑥 sin 𝜙𝑧 + 𝑧 cos𝜙𝑧)

2

(𝑥2 + 𝑧2)2

=
𝜓𝑧

√(𝑥2 + 𝑧2)
 

(4.80) 

 

The horizontal and vertical derivatives of 𝐵𝑧 are: 

 
𝐵𝑧𝑥 =

−𝜓𝑧((𝑥
2 − 𝑧2) cos 𝜙𝑧 − 2𝑥𝑧 sin𝜙𝑧)

(𝑥2 + 𝑧2)2
 (4.81) 
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𝐵𝑧𝑧 =

−𝜓𝑧((𝑥
2 − 𝑧2) sin 𝜙𝑧 + 2𝑥𝑧 cos𝜙𝑧)

(𝑥2 + 𝑧2)2
 (4.82) 

 

Given that: 

 𝐴𝑠𝑧1 = √𝐵𝑧𝑥
2 + 𝐵𝑧𝑧

2  (4.83) 

 

It follows that: 

 
𝐴𝑠𝑧1 =

𝜓𝑧

𝑥2 + 𝑧2
 (4.84) 

 

Dividing (4.80) by (4.84): 

 
𝑟 =

𝐴𝑠𝑧0

𝐴𝑠𝑧1

 (4.85) 

 

In a similar fashion it can be seen that: 

 
𝑟 =

𝐴𝑠𝑥0

𝐴𝑠𝑥1

 (4.86) 

If the dyke were oriented along the y axis instead of the x axis then 

 
𝑟 =

𝐴𝑠𝑦0

𝐴𝑠𝑦1

 (4.87) 

 

𝐴𝑠𝑥0, 𝐴𝑠𝑦0, 𝐴𝑠𝑧0 are calculated using equation (4.76) with 𝑓 = 𝐵𝑥, 𝑓 = 𝐵𝑦 or 𝑓 = 𝐵𝑧 

respectively. If (4.85) is generalized for different 𝑁 > 0, 𝑟 becomes: 

 
𝑟 =

𝑁𝐴𝑠𝑧0

𝐴𝑠𝑧1

 (4.88) 

 

𝐴𝑠𝑧 is also ideal since it is not biased towards any one direction and is symmetrical in the 

sense of reduced to the pole data. The other advantage of (4.88) is that there is no need 

to calculate any rank 3 tensor component numerically. 
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Note that the components of the analytic signal are interchangeable, as long as both 

components sample or detect the anomaly. For example, if the feature is a north-south 

dyke, it is detectable on both the x and the z components, but not the y component. 

Therefore, the y component cannot be used interchangeably while the x and z 

components can. Examples of interchanging these components are given below. 

 
𝑟 =

(𝑁 + 1)𝐴𝑠𝑥1

𝐴𝑠𝑧2

 (4.89) 

 

 
𝑟 =

(𝑁 + 1)𝐴𝑠𝑦1

𝐴𝑠𝑧2

 (4.90) 

 

 
𝑟 =

(𝑁 + 1)𝐴𝑠𝑥1

𝐴𝑠𝑦2

 (4.91) 

 

And 

 
𝑟 =

𝑁𝐴𝑠𝑥0

𝐴𝑠𝑧1

 (4.92) 

 

 
𝑟 =

𝑁𝐴𝑠𝑦0

𝐴𝑠𝑧1

 (4.93) 

 

 
𝑟 =

𝑁𝐴𝑠𝑥0

𝐴𝑠𝑦1

 (4.94) 

 

We can build on this derivation for a dyke, by proposing a new derivation for a step. If we 

remember that (from Nabighian, 1972) 𝑓 in (4.70) and (4.71) is actually the field of a step, 

we can substitute 𝐵𝑧 directly into (4.70) and (4.71). We get (for a step) 

 

 𝜕𝐵𝑧

𝜕𝑥
= 𝐵𝑧𝑥 = −

𝜓𝑧(𝑥 sin𝜙𝑧 + 𝑧 cos𝜙𝑧)

𝑥2 + 𝑧2
 (4.95) 

 

 𝜕𝐵𝑧

𝜕𝑧
= 𝐵𝑧𝑧 =

𝜓𝑧(𝑥 cos 𝜙𝑧 − 𝑧 sin𝜙𝑧)

𝑥2 + 𝑧2
 (4.96) 
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If we remember that: 

 ℋ𝑥(𝐵𝑧𝑥) = −𝐵𝑧𝑧 (4.97) 

 

The implication of (4.95), (4.96) and (4.97) is that: 

 
𝐴𝑠𝑧𝑧0 = √𝐵𝑧𝑧

2 + ℋ𝑥(𝐵𝑧𝑧)
2 + ℋ𝑦(𝐵𝑧𝑧)

2 (4.98) 

 

 
𝐴𝑠𝑧𝑧1 = √𝐵𝑧𝑧𝑥

2 + 𝐵𝑧𝑧𝑦
2 + 𝐵𝑧𝑧𝑧

2  (4.99) 

 

Therefore following the same logic in deriving (4.85), for a step,  

 
𝑟 =

𝐴𝑠𝑧𝑧0

𝐴𝑠𝑧𝑧1

 (4.100) 

 

A final version of the depth equations is presented, using 𝐴𝑠𝑥𝑦𝑧 demonstrated in section 

4.4. These analytic signals are magnitude combinations of the 𝐴𝑠𝑥 , 𝐴𝑠𝑦 and 𝐴𝑠𝑧 analytic 

signals. Using these, the new depth equations are: 

 
𝑟 =

𝑁𝐴𝑠𝑥𝑦𝑧0

𝐴𝑠𝑥𝑦𝑧1

 (4.101) 

 

 
𝑟 =

(𝑁 + 1)𝐴𝑠𝑥𝑦𝑧1

𝐴𝑠𝑥𝑦𝑧2

 (4.102) 

 

4.5.3 Edge Detection 

In 2D, source distance techniques based on the analytic signal give optimal solutions on 

the crests of analytic signal peaks. This is because these points coincide with the location 

of the source in question. These crests are either centred over the source, in the case 

dykes, or are situated on the edges, in the case of steps or contacts. This fact can 

therefore be used to predetermine the optimal locations for solutions of 𝑟, should this be 

desired. It should be noted that peak values of 𝑟 can be used, since they are by definition 
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closest to the source. Under perfect conditions this may be the best choice for 

determining source locations (since these peaks relate directly to the calculation of 𝑟 

itself). However, complex geological sources or noise and uncertainty in the data may 

necessitate using potentially cleaner signals for edge and source detection. 

The difference between steps and dykes, in terms of analytic signals is important. Hsu, 

Coppens and Shyu (1998) point out that when a dyke-like feature becomes too shallow, 

the single peak separate into two separate peaks. For the analytic signal this happens 

when the width of the dyke is greater than the depth to the top of the dyke. For higher 

orders of analytic signal, this can happen sooner. An example of this is shown in Figure 

48. The source was modelled in an ambient field of 28 000 nT, with inclination of -60 

degrees, and declination of -15 degrees. The susceptibility was 0.1 SI. The analytic 

signals calculated were normalized for comparison purposes.  

 

Figure 48 (a) Comparison between 𝑨𝒔  and 𝑨𝒔𝟐, with a source of width 200 m and depth 200 
m and (b) width 200 m and depth 70 m. The separation of peaks is apparent in (b). 

Figure 48(b) in particular shows the transitionary situation where the lower order analytic 

signal has only one clear peak, while the higher order analytic signal shows two peaks. 

The implication of this is that the higher order analytic signal should be used for the 

detection of optimal solution locations. In addition, the transitionary nature of the analytic 

signal may be diagnostic of N being a fractional value, between 0 (for a step) and 1 (for a 

dyke). In this case the value of N=0.3 gave a solution of 75 m for depth to source edges, 

while in the case of Figure 48(a) the standard value of N=1 for a dyke gave a minimum 

solution of 220 m at the centre of the anomaly. 
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4.5.4 Susceptibility Calculation 

Cooper (2015) showed that the susceptibility-width product of a thin dyke can be 

calculated, using the following equation (in SI units): 

 
𝑘. 𝑤 =

4𝜋 ∙ 𝐴𝑠0 ∙ 𝑧

2𝐵𝑎 . 𝑐
=

4𝜋 ∙ 𝐴𝑠1 ∙ 𝑧2

2𝐵𝑎 . 𝑐
 (4.103) 

 

where 𝑘 is susceptibility, 𝑤 is the width of the dyke, 𝐵𝑎 is the earth’s magnetic field, 𝑧 is 

the depth to the dyke, and 𝑐 = 1 − cos2 𝑖 sin2 𝐴 from Table 3. This was derived using the 

following two equations and setting 𝑥 = 0: 

 
𝐴𝑠0 =

2𝑘. 𝐵𝑎 . 𝑐. 𝑤 

4𝜋√𝑥2 + 𝑧2
 (4.104) 

 

 
𝐴𝑠1 =

2𝑘. 𝐵𝑎 . 𝑐. 𝑤

4𝜋(𝑥2 + 𝑧2)
 (4.105) 

 

However, a simpler, new, version of this equation can be derived by squaring (4.104) and 

dividing this by (4.105). From this it follows that: 

 
𝑘. 𝑤 =

4𝜋 ∙ 𝐴𝑠0
2

𝐴𝑠1 ∙ 2 ∙ 𝐵𝑎 ∙ 𝑐
 (4.106) 

 

Similarly, by using the value of 𝑐𝑛𝑒𝑤 =  √1 − cos2 𝑖 sin2 𝐴 = √𝑐 (Table 2), expressions 

from 𝐴𝑧 can be derived. Therefore: 

 

 
𝐴𝑠𝑧0 =

2𝑘. 𝐵𝑎 . √𝑐. 𝑤 

4𝜋√𝑥2 + 𝑧2
 (4.107) 

 

 
𝐴𝑠𝑧1 =

2𝑘. 𝐵𝑎 . √𝑐. 𝑤

4𝜋(𝑥2 + 𝑧2)
 (4.108) 

 

From this, it follows that: 
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𝑘. 𝑤 =

4𝜋 ∙ 𝐴𝑠𝑧0
2

𝐴𝑠𝑧1 ∙ 2 ∙ 𝐵𝑎 ∙ √𝑐
 (4.109) 

 

These equations have the advantage that they are not dependant on the depth of the 

source. However, if one of the analytic signal calculations is affected by noise, they may 

not be ideal. For versions incorporating depth and focussing on only one analytic signal, 

we have:  

 
𝑘. 𝑤 =

4𝜋 ∙ 𝐴𝑠𝑧0 ∙ 𝑧

2𝐵𝑎 . √𝑐
 

(4.110) 

 

 
𝑘. 𝑤 =

4𝜋 ∙ 𝐴𝑠𝑧1 ∙ 𝑧2

2𝐵𝑎 . √𝑐
 (4.111) 

These last two equations are similar to (4.103), except that they now relate to 𝐴𝑧0 and 

𝐴𝑧1. The incorporation of depth means that more accurate estimates are possible if an 

accurate depth is available, through boreholes for example. 

It is important to remember that the susceptibility-width product is being calculated, and 

not susceptibility alone. This means that an estimate for dyke width must be made in 

order to calculate the susceptibility of the dyke.  

If the width can be estimated, then the calculation of the susceptibility is possible. For 

dyke like anomalies, the width of the dyke has to be less than the depth of the dyke. If 

this is not the case, the analytic anomaly separates into two anomalies (one for each 

edge) and the behaviour of the anomaly is more step–like. 

Width estimation using analytic signals has been looked at by other authors. (Hsu, 

Coppens and Shyu, 1998; Bastani and Pedersen, 2001). The method by Hsu, Coppens 

and Shyu (1998) is examined here. The method calls for an alternative definition of the 

analytic signal.  

 

|𝐴𝑛| = √[
𝜕

𝜕𝑥
(∇𝑛𝐵𝑡𝑚𝑖)]

2

+ [
𝜕

𝜕𝑦
(∇𝑛𝐵𝑡𝑚𝑖)]

2

+ [
𝜕

𝜕𝑧
(∇𝑛𝐵𝑡𝑚𝑖)]

2

 (4.112) 

 

where ∇𝑛=
𝜕𝑛

𝜕𝑧𝑛 and ∇0= 1. Using this definition, the half-width of a dyke was defined to 

be: 
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𝑤 = √
2𝑑

𝑐1

− 𝑑2 (4.113) 

 

where 𝑐1 = |
𝐴1

𝐴0
|. 𝐴0 is the conventional analytic signal 𝐴𝑠1 and 𝑑 is the depth to the 

source. To calculate 𝐴1, using the standard tensor components, we make use of equation 

(4.1), to calculate the following: 

 

 𝜕

𝜕𝑥
(∇1𝐵𝑡𝑚𝑖) =

𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥𝑧
 

(4.114) 

 

 𝜕

𝜕𝑦
(∇1𝐵𝑡𝑚𝑖) =

𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝑧
 

(4.115) 

 

 𝜕

𝜕𝑧
(∇1𝐵𝑡𝑚𝑖) =

𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧2
 

(4.116) 

 

Expressions for this using tensor components can be found in section 4.3. These 

equations can easily be used to calculate width. Table 4 shows some examples of width 

calculations. The widths tend to be overestimated, but are nonetheless a good starting 

point. The accuracy of this width is dependent on an accurate estimate of depth.  

Table 4 Comparison between true widths and calculated widths for various depths. 

Depth (m) True Width (m) Calculated Width (m) 

30 30 36 

50 30 40.28 

100 30 44 

100 40 50 

50 40 47.32 

 

Alternatively, if the susceptibility is known (through petrophysical analysis or given an 

estimate based on geological knowledge), then the width can be estimated through the 

above equations.  
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4.5.5 Test – Step Model 

The term 'step' is used to describe the steeply-dipping boundary between two bodies with 

significantly different density or magnetisation, where the far extents of the bodies are far 

enough away, that they do not contribute significantly to the anomaly at the boundary. 

Examples of where steps can occur are terraces and contacts. 

Steps can be modelled by large rectangular prisms. A rectangular prism with a width of 

200 meters, a height of 280 meters, at a depth of 20 meters was modelled. Since this is a 

step, a value of N=0 is chosen. The field strength was 28 000 nT. The inclination is -60 

degrees and the declination is -15 degrees. The susceptibility is 0.1 SI. There is no 

remanence. The results are shown in Figure 49. 

 

 

Figure 49 Results of negative r calculated for a step. Dots are non-tensor calculations. Lines 
are from tensor component calculations. Both were calculated at the same position. Values 
closest to zero give source depth and location. The synthetic model is also shown. Notice 
the straight line solution due to the inability of zero order analytic signals to calculate depth 
in this case (since N = 0). 

Lines denote calculations using tensor analytic signals, and dots denote calculations 

using regular analytic signals. Notice that for the case N=0, no solution is possible for 

steps with zero order analytic signals. However, all equations with first and second order 

analytic signals produce accurate depth results. 
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4.5.6 Test – Dyke Model 

A dyke model differs from a step in that the width is negligible compared to the depth. 

Both sides of the dyke contribute to the anomaly.  

Dykes can be modelled by thin rectangular prisms. A dyke with a width of 2 meters, 

length of 4000 meters, a height of 2800 meters, at a depth of 200 meters was modelled. 

Since this is a dyke, a value of N=1 is chosen. The field strength was 28 000 nT. The 

inclination is -60 degrees and the declination is -15 degrees. The susceptibility is 0.1 SI. 

There is no remanence. The results are shown in Figure 50. 

 

Figure 50 Results of r calculated for a dyke. Dots are conventional calculations. Lines are 
from tensor component calculations. The synthetic model is also shown. 

Lines denote calculations using tensor analytic signals, and dots denote calculations 

using regular analytic signals. The tensor analytic signals produce similar results to the 

regular analytic signals. Of interest is that the results for the zero order analytic signals 

seem superior. All equations produce similar results and the depth calculation seems to 

be effective.  

In order to examine the effect of dip on the calculation of depth, two models were 

calculated. One model was a vertical dyke (Figure 51) and the other model was a dipping 

dyke (Figure 52). The field strength was 28 000 nT. The inclination is -60 degrees and the 
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declination is -15 degrees. The susceptibility is 0.1 SI. There is no remanence. Both 

dykes had a width of 20 m and a depth of 30 m. Equation (4.75) was used to calculate 

depth estimates. In both cases, as can be seen from the figures, the depth estimate is 

calculated reliably. The reason for this is due to the high decay rate of magnetic 

anomalies, which means that the majority of the signal being used for the depth comes 

from the closest point to the surface. Therefore, dip does not affect the depth calculation. 

With this in mind, future models will use a vertical dyke, for simplicity’s sake. The simple 

visual identification of a dipping dyke can be seen by the separation between the analytic 

signal anomaly and the corresponding magnetic anomaly, as can be seen by a simple 

comparison between Figure 51 and Figure 52. 

A more detailed examination of the effects of noise, is shown in Figure 53. 
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Figure 51 a) shows the magnetic field (blue) and analytic signal (red) over a vertical dyke  b) 
shows the dyke and the calculated solutions for depth. 
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Figure 52 a) shows the magnetic field (blue) and analytic signal (red) over a dipping dyke  b) 
shows the dyke and the calculated solutions for depth. 
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Figure 53 a) Noise free total magnetic intensity over a thin dyke of width 2 metres, with 
magnetic field intensity of 28,000 nT, susceptibility of 0.1 SI, inclination of -60º, declination 
of -15º and depth of the dyke equal to 20 m,  b) Source-distance calculations over a thin 
dyke with noise-free data. Results from equations (4.72), (4.74), (4.75), (4.85) and (4.86) are 
shown in red, green, blue, cyan and yellow respectively.  c) Total Magnetic Intensity for the 
same dyke with Gaussian noise with a standard deviation equal to 1.58% of the maximum 
data amplitude added  d) Source-distance calculations over the thin dyke with the noisy TMI 
data, using same colour scheme as in (b). 
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Figure 53 shows source-distance calculations for the magnetic anomaly from a dyke 

using equations (4.72), (4.74), (4.85) and (4.86) with N = 1. The depth to the dyke is 

determined reliably both when the data is noise free (Figure 53a and b) or had Gaussian 

noise with a standard deviation equal to 1.58% of the maximum data amplitude added to 

the TMI (Figure 53c and d). 

Figure 54 investigates the effect of varying degrees of noise added to the individual 

tensor components. This test uses equations (4.85) and (4.86) with N = 1, since these 

equations produced better results than equation (4.72) and (4.74). Figure 54 a), b), c) and 

d) show Gaussian noise envelopes with a standard deviation of 0 nT, 0.01 nT, 0.1 nT and 

1 nT added to each tensor component respectively. In all cases the estimate of depth 

over the dyke is reasonable, although in the last case the dyke location is harder to detect 

on the data itself. Moving away from the location of the dyke, the stability of the solution 

becomes significantly compromised by the noise.  

Figure 55 investigates the same noise effect using equations (4.72) and (4.74) with N = 1, 

In all cases the estimate of depth over the dyke is over estimated. In the case of (d), the 

depth is compromised by the noise. 

In all these cases, the need to identify (or at least verify) the dyke location using a method 

other than source distance is obvious. Noisy data can obscure the location of the dyke, 

but if that location is known, the solution remains viable.  
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Figure 54 Varying levels of noise applied to the dyke from Figure 53, using equations (4.85) 
in green and (4.86) in blue.  a) 0 nT Gaussian noise added,  b) 0.01 nT Gaussian noise added, 
c) 0.1 nT Gaussian noise added d) 1 nT Gaussian noise added. 
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Figure 55 Varying levels of noise applied to the dyke from Figure 53 using  (4.72) in blue and 
(4.74) in green.  a) 0 nT Gaussian noise added,  b) 0.01 nT Gaussian noise added, c) 0.1 nT 
Gaussian noise added d) 1 nT Gaussian noise added. 
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Figure 56 shows the effects of using equations (4.74), (4.85), (4.89) to (4.94) over the 

same north–south dyke. Results from equations (4.74) and (4.85) are shown in solid 

yellow and solid red. Equations (4.89) and (4.92) are shown in yellow and red x’s. 

Equations (4.90) and (4.93) are shown in yellow and red dots. Red was chosen to denote 

ratios which use 𝐴𝑠0/𝐴𝑠1 and yellow was chosen to denote ratios which use 𝐴𝑠1/𝐴𝑠2. 

Equations (4.89), (4.92), (4.74) and (4.85) all produce good results. Equations (4.90) and 

(4.93) however, use 𝐴𝑠𝑦0 and 𝐴𝑠𝑦1 which cannot detect the dyke in its north-south 

orientation easily, so the calculations break down. Equations (4.91) and (4.94) both use 

only 𝐴𝑠𝑥 and 𝐴𝑠𝑦. Since there is extremely bad coupling of 𝐴𝑠𝑦 to the dyke, the results are 

unstable and produce depths in excess of the 200 m limit on Figure 56.  

The equations have different strengths and potentially different uses. Equations which 

use only 𝐴𝑠𝑧0 and 𝐴𝑠𝑧1 will detect all anomalies, since these analytic signals have no 

horizontal bias. For pure source depth calculation, it is advisable to therefore use 

equations which rely on 𝐴𝑠𝑧 only, such as (4.74) and (4.85). 

If selective depth calculations are needed with some directional bias, then equations 

(4.89) to (4.94) may be helpful. Detecting which solutions are valid in such cases is 

straightforward. One needs only compare the solution of one of these equations with 

depths produced by (4.74) and (4.85). If they are within an acceptable threshold, then the 

directionally biased version of depth is valid. Other depths can then be discarded. 

The solutions for equations (4.74) and (4.89) (shown in a yellow line and yellow dots) 

show a low where the dyke occurs. As discussed in section 4.5.3, this is due to the depth 

of the dyke being too shallow for the use of those equations. The depth can be halved in 

this case, converting the equations to that of a step, and potentially improving the depth 

estimate. Alternatively, solutions from (4.74) and (4.85) can be compared as a diagnostic 

tool to confirm that a shallow dyke is present or verify the reliability of assuming the 

anomaly belongs to a dyke.  
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Figure 56 Results from equations (4.74) and (4.85) are shown in solid yellow and solid red. 
Equations (4.89) and (4.92) are shown in yellow and red x’s. Equations (4.90) and (4.93) are 
shown in yellow and red dots. The model is shown in black. 
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4.6 Discussion 

The source distance technique is a reliable method for depth determination, as long as 

the source type is known. Still, this limitation is not too restrictive, since it enables 

interpreters to have good initial starting models which can be refined later using forward 

modelling. 

As a general rule, step or contact like bodies are defined to be those which have widths 

greater than their depths. Dykes are defined to be those where the width of the dyke is 

less than the depth (Hsu, Coppens and Shyu, 1998). Source type determination is 

important, especially from the perspective of what the magnetic field can resolve. If the 

dyke is very deep, however, it may masquerade as another source type (such as a line of 

dipoles from the perspective of the analytic signal) and higher orders of N may be 

necessary. Nevertheless, magnetic data is recognised as a shallow interpretation 

technique, so this limitation is not too problematic within the context of the dataset.  

It should be noted that the use of magnetics might not limited to shallow interpretations. 

For example, it is routinely used for deeper volcanic body interpretation in the oil industry. 

In this case, this limitation must be taken into account. Alternative techniques can, of 

course, be considered, such as the depth estimation through power spectrum analysis 

proposed by Spector and Grant, (1970). 
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CHAPTER 5 REMANENCE CALCULATION 

5.1 Introduction 

Magnetic sources can be magnetised in a direction different to the direction of the 

geomagnetic field. If such magnetisation occurs, we say that the source exhibits 

remanence. Effective interpretation of magnetic data means that this magnetisation must 

be quantified and accommodated. Many methods have been developed to determine 

remanence and Clark (2014) reviewed these. This introduction will briefly present the 

main methods used historically. 

The magnetization can be measured directly on oriented samples taken directly from the 

field (Clark and Emerson, 1991). The advantage of this method is the accuracy of 

measurement. Challenges here are in obtaining samples that are representative of the 

anomaly being studied, or all facets of it (especially if the anomaly is not homogenous). 

Borehole measurements can provide another source of information. This can provide 

reliable information of a source from within a borehole which intersects the source. The 

measurements are taken either from samples extracted from the hole, or in situ by a 

borehole logging tool (Bosum, Eberle and Rehi, 1988). 

Petrologic and palaeomagnetic information can be used to infer probable susceptibility 

and remanence directions based on geological history, magnetic mineral grain size 

ranges, compositions and modal percentages. This requires some form of model to be 

developed based on the type of ore being studied. Ranges of susceptibility, remanence 

intensity and Q-ratio (Koenigsberger ratio, see section 2.2.4) for a variety of magnetic 

mineral compositions, domain states and types of NRM are available in the literature for 

use (Clark, 1997) These models are normally expressed in terms of simple formulae. By 

applying some form of constraint (such as model body compactness) which is thought to 

mimic the geology being studied, magnetisation can be determined, or at the very least, 

accounted for. Examples of this are the determination of apparent susceptibility and 

apparent magnetisation based on model constraints provided by terrain, geology etc. 

These assumptions must be at least approximately correct for good solutions.  

Vector and gradient data have opened up possibilities for direct inversion leading to the 

estimation of remanent parameters. Simple sources are a convenient method for 

obtaining these parameters from such data. 
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If both vector magnetic and vector gravity data are available, the use of Poisson’s 

theorem can allow for the estimation of magnetisation parameters. The reasoning is that 

the same source, giving rise to both magnetic and gravity anomalies, can make use of a 

magnetic anomaly calculated directly from the gravity data in order to compare this with 

measured magnetic field. To clarify this, Clark (2014) showed that the reduced to the pole 

magnetic anomaly is proportional to the vertical gradient of the gravity anomaly. 

Comparison of this calculated magnetic field against the measured magnetic field offers 

the possibility for parameter estimation. 

Another method uses a controlled magnetic source to investigate the susceptibility 

distribution of a (typically shallow) subsurface. This takes the form of a long current 

carrying cable or a dipole source and frequency domain EM systems are one choice for 

this.  

Helbig analysis (Helbig, 1963) provides another means to calculate magnetisation 

parameters and will be described in the next section. 

Reduction to the pole has also been used. Correctly estimating magnetisation direction 

results in an anomaly that is predominantly positive, and more symmetric than TMI 

anomalies. Many different methods to achieve this have been described by Clark (2014). 

These techniques tend to work well for simple, shallow sources with steep dips, or when 

contacts are shallow. They are suited to scanning large areas to detect anomalous 

magnetisation direction, which can then be analysed further with other methods (Clark, 

2014). 

Base stations can be used in the vicinity of sources to measure the vector and gradient 

fields. The principle is that time-varying electric currents flowing in the ionosphere and 

magnetosphere results in changes in induced magnetisation. However, remanent 

magnetisation remains unaffected. These techniques take advantage of this difference in 

order to determine magnetisation parameters.  

5.1.1 Helbig Method 

A review of this technique is warranted because of its application to tensor data. Helbig 

(1963) noticed that the integrals of anomaly components, all having the same 

magnetisation direction over an infinite plane, are zero. The Helbig method makes use of 

this fact to estimate the vector components of the total magnetisation (𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧) for a 

compact source, from the first integral moments of the vector components of the 

anomalous magnetic field (𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧). These moments are calculated as follows: 
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Schmidt and Clark (1998) applied this theory to vector components calculated by Fourier 

processing of a conventional total magnetic intensity survey. Others have continued to 

study this approach (Phillips, 2005). Phillips et al. (2007) applied the methodology to 

magnetic tensor data. 

As long as a planar surface is subtracted from each magnetic vector component, one can 

integrate over a limited area, since the mean component value in the window is zero, and 

the requirement that the first order integral moments should vanish is approximately met 

(Phillips, 2005). From these calculations, total magnetisation directions can be estimated. 

Phillips et al., (2007) proposed using this form of calculation in a moving window over a 

grid in order to estimate the total magnetisation continuously. They did point out, though, 

that the estimate would only be accurate over sources. According to them, the location of 

the source would be determined through some other technique. Phillips et al., (2007) 

extended the equations to the magnetic tensor, by deriving the following expressions: 
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Clark (2014) expands this further to adapt the Helbig method to the concept of 

Normalised Source Strength (NSS). If we calculate the eigenvalues and eigenvectors of a 

magnetic gradient tensor, we obtain three eigenvalues (𝜆1, 𝜆2, 𝜆3). From this, the NSS is 

defined as: 

 
𝜇 = √−𝜆2

2 − 𝜆1
2𝜆3

2 (5.7) 

 

where 𝜆1 ≥ 𝜆2 ≥ 𝜆3. Based on this, the horizontal location, depth and magnitude of 

magnetisation can be calculated using the following equations: 
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where 𝑥0, 𝑦0 is the source location, ℎ′ is the estimated depth to the source, 𝑚′ is the 

estimated total magnetisation, 𝐶 = 𝜇0 4𝜋⁄   and 𝜇0is the permeability of free space. Clark 

(2014) reports that equations (5.8) to (5.11) are exact for a point dipole source and are 
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very accurate for equidimensional sources buried at moderate depths and compact 

sources of arbitrary shape, where the dipole contribution dominates the anomaly.  

Because finite integrals have issues with the tails of anomalies (such as noise and 

interfering anomalies), Clark (2014) also developed a series of corrections centred on 

(𝑥0, 𝑦0) and using polar coordinates to accommodate these issues. These are  

 
ℎ = ℎ′√

2
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 𝑚 = 𝑚′(1 + 3(𝑅 ℎ⁄ )2 + 3(𝑅 ℎ⁄ )4) (5.13) 
 

where 𝑅 is the radius of a disc around the source location. Clark (2014) points out that a 

disc can be used in the place of a square of equivalent area since the difference between 

the two is at most 1% over a wide range of 𝑅 ℎ⁄ . Clark (2014) then presents the derived 

version of (𝑀𝑥 , 𝑀𝑦, 𝑀𝑧) as follows: 
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where 𝜌, 𝜃 are polar coordinates centred on (𝑥0, 𝑦0).  
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5.2 Theory 

The ability to detect and calculate remanent parameters directly from magnetic data is 

extremely appealing. Tensors provide the necessary extra data to not only detect 

remanence, but also to quantify it to an extent. This chapter proposes applications of 

tensors to remanence and shows one of the true strengths of magnetic tensors, namely 

the calculation of remanent parameters from the magnetic tensor field. 

While some parameters can be derived in general (such as direction cosines), other 

parameters (such as magnetisation) are model dependant. In particular, remanence can 

be detected and calculated in dykes using source distance equations. To do so, the total 

magnetisation of the field over the source must first be calculated. To solve this, the 

relationships between direction cosines can be taken advantage of. Remembering that 

(Blakely, 1995, p.89): 

 𝑴𝒕 = 𝑴𝒊 + 𝑴𝒓

= 𝑘.
𝑩𝒂

400𝜋
+ 𝑴𝒓 

 

(5.17) 

𝑩𝒂 is the ambient inducing field, 𝑴𝒊 is the induced magnetisation, 𝑴𝒓 is the remanent 

magnetisation and 𝑴𝒕 is the total magnetisation. This can be written as: 

 
|𝑴𝒕|. [𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡] =

𝑘. |𝑩𝒂|

400𝜋
. [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖] + |𝑴𝒓|. [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟] (5.18) 

 

Where 𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟 are the direction cosines due to the remanent field, 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 are the 

direction cosines due to the inducing field and 𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 are the resultant total direction 

cosines. This can be rearranged to:  

 
|𝑴𝒓|. [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟] =  |𝑴𝒕|. [𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡] −

𝑘. |𝑩𝒂|

400𝜋
. [𝛼𝑖, 𝛽𝑖 , 𝛾𝑖] (5.19) 

 

If 𝑴𝒓 has inclination and declination 𝑀𝑖𝑛𝑐 and 𝑀𝑑𝑒𝑐, then (for NED convention): 

 𝛼𝑟 = cos(𝑀𝑖𝑛𝑐) ∙ cos(𝑀𝑑𝑒𝑐) (5.20) 

 

 𝛽𝑟 = cos(𝑀𝑖𝑛𝑐) ∙ sin(𝑀𝑑𝑒𝑐) (5.21) 
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 𝛾𝑟 = sin(𝑀𝑖𝑛𝑐) (5.22) 

 

For ENU convention, 90 degrees should be subtracted from the declination. 

Rewriting (5.19), it follows that: 

 
|𝑴𝒓|. cos(𝑀𝑖𝑛𝑐) ∙ cos(𝑀𝑑𝑒𝑐) =  |𝑴𝒕|. 𝛼𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛼𝑖 (5.23) 

 

 
|𝑴𝒓|. cos(𝑀𝑖𝑛𝑐) ∙ sin(𝑀𝑑𝑒𝑐) =  |𝑴𝒕|. 𝛽𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛽𝑖 (5.24) 

 

 
|𝑴𝒓|. sin(𝑀𝑖𝑛𝑐) =  |𝑴𝒕|. 𝛾𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛾𝑖 (5.25) 

 

Using (5.23), (5.24), (5.25), 𝑀𝑖𝑛𝑐 and 𝑀𝑑𝑒𝑐 can be solved for: 

 
𝑀𝑑𝑒𝑐 = −2 tan−1 (

𝐴 + √𝐴2 + 𝐵2

𝐵
) − 𝜋 + 𝑎𝑧𝑖𝑚𝑢𝑡ℎ (5.26) 

 

 
𝑀𝑖𝑛𝑐 = −2 tan−1 (

√𝐴2 + 𝐵2 − √A2 + B2 + C2 

𝐶
) (5.27) 

 

Where 𝑎𝑧𝑖𝑚𝑢𝑡ℎ refers to the angle between the x-direction and north, 𝜋 is simply to 

correct for misorientation of the solution, and: 

 
𝐴 = |𝑴𝒕|. 𝛼𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛼𝑖 (5.28) 

 

 
𝐵 =  |𝑴𝒕|. 𝛽𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛽𝑖 (5.29) 

 

 
𝐶 = |𝑴𝒕|. 𝛾𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛾𝑖 (5.30) 

 

The unknowns are |𝑴𝒕|, 𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 and 𝑘.  
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5.2.1 Direction Cosine Calculation 

The total field direction cosines (𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡) are the combined remanence and ambient field 

direction cosines. While they do not give the remanent vector direction in a source 

independent manner, they can be compared with the ambient field direction cosines. This 

comparison can show whether remanence exists in a particular area, and give an 

indication of the general direction of the remanent field vector (although this is imprecise.) 

These equations can also be used with |𝑴𝒕| and 𝑘 to determine the remanent vector 

direction more accurately, should these last two parameters be known.  

To solve for 𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 the relationship between tensors, magnetic field components and 

the approximate magnetic field is used, namely: 

 𝐵𝑡𝑚𝑖 = 𝛼𝐵𝑥 + 𝛽𝐵𝑦 + 𝛾𝐵𝑧 

(5.31) 

 

This relationship is well understood and is independent of source. This implies that: 

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑥
= 𝛼𝑡𝐵𝑥𝑥 + 𝛽𝑡𝐵𝑦𝑥 + 𝛾𝑡𝐵𝑧𝑥 = 𝐵𝑡𝑥 (5.32) 

 

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑦
= 𝛼𝑡𝐵𝑥𝑦 + 𝛽𝑡𝐵𝑦𝑦 + 𝛾𝑡𝐵𝑧𝑦 = 𝐵𝑡𝑦 (5.33) 

 

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑧
= 𝛼𝑡𝐵𝑥𝑧 + 𝛽𝑡𝐵𝑦𝑧 + 𝛾𝑡𝐵𝑧𝑧 = 𝐵𝑡𝑧 (5.34) 

 

From equations (5.32), (5.33), (5.34) through simple substitution, the following general 

equations are derived: 

 
𝛼𝑡 =

Btx(Byz
2 − ByyBzz) + Bty(BxyBzz − BxzByz) + Btz(BxzByy − BxyByz)

−BxxByyBzz + BxxByz
2 + Bxy

2 Bzz −  2BxyBxzByz + Bxz
2 Byy

 (5.35) 

 

 
βt =

Btx(BxzByz − BxyBzz) + Bty(BxxBzz − Bxz
2 ) + Btz(BxyBxz − BxxByz)

BxxByyBzz − BxxByz
2 − Bxy

2 Bzz + 2BxyBxzByz − Bxz
2 Byy

 (5.36) 
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γt =

Btx(BxyByz − BxzByy) + Bty(BxyBxz − BxxByz) + Btz(BxxByy − Bxy
2 )

BxxByyBzz − BxxByz
2 − Bxy

2 Bzz + 2BxyBxzByz − Bxz
2 Byy

 (5.37) 

 

An alternate derivation is provided in the event that calculating the vertical derivative of 

the TMI is not desired, and using equations (5.31), (5.32) and (5.33). 

 
𝛼𝑡 =

𝐵𝑥𝑦𝐵𝑦𝑧𝐵𝑡𝑚𝑖 − 𝐵𝑥𝑦𝐵𝑧𝐵𝑡𝑦 + 𝐵𝑥𝑧𝐵𝑦𝐵𝑡𝑦 − 𝐵𝑥𝑧𝐵𝑦𝑦𝐵𝑡𝑚𝑖 − 𝐵𝑦𝐵𝑦𝑧𝐵𝑡𝑥 + 𝐵𝑦𝑦𝐵𝑧𝐵𝑡𝑥

𝐵𝑥𝐵𝑥𝑦𝐵𝑦𝑧 − 𝐵𝑥𝐵𝑥𝑧𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑦𝐵𝑦𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑧 − 𝐵𝑥𝑦
2 𝐵𝑧 + 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦

 (5.38) 

 

 
𝛽𝑡 =

−𝐵𝑥𝐵𝑥𝑧𝐵𝑡𝑦 + 𝐵𝑥𝐵𝑦𝑧𝐵𝑡𝑥 − 𝐵𝑥𝑥𝐵𝑦𝑧𝐵𝑡𝑚𝑖 + 𝐵𝑥𝑥𝐵𝑧𝐵𝑡𝑦 + 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑡𝑚𝑖 − 𝐵𝑥𝑦𝐵𝑧𝐵𝑡𝑥

𝐵𝑥𝐵𝑥𝑦𝐵𝑦𝑧 − 𝐵𝑥𝐵𝑥𝑧𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑦𝐵𝑦𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑧 − 𝐵𝑥𝑦
2 𝐵𝑧 + 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦

 (5.39) 

 

 
𝛾𝑡 =

𝐵𝑥𝐵𝑥𝑦𝐵𝑡𝑦 − 𝐵𝑥𝐵𝑦𝑦𝐵𝑡𝑥 − 𝐵𝑥𝑥𝐵𝑦𝐵𝑡𝑦 + 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑚𝑖 − 𝐵𝑥𝑦
2 𝐵𝑡𝑚𝑖 + 𝐵𝑥𝑦𝐵𝑦𝐵𝑡𝑥

𝐵𝑥𝐵𝑥𝑦𝐵𝑦𝑧 − 𝐵𝑥𝐵𝑥𝑧𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑦𝐵𝑦𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑧 − 𝐵𝑥𝑦
2 𝐵𝑧 + 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦

 (5.40) 

 

A more accurate version of these equations can be derived using the same process from 

full total magnetic intensity, which is defined as: 

 
𝐵𝑡𝑚𝑖 = √(𝐵𝑥 + 𝛼𝐵𝑎)2 + (𝐵𝑦 + 𝛽𝐵𝑎)

2
+ (𝐵𝑧 + 𝛾𝐵𝑎)2 − 𝐵𝑎 (5.41) 

 

where 𝐵𝑎 is the ambient magnetic field. Calculating derivatives of this, we get: 

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑥
=

𝐵𝑥𝑥(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑥(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑥(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (5.42) 

 

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑦
=

𝐵𝑥𝑦(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑦(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑦(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (5.43) 

 

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑧
=

𝐵𝑥𝑧(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑧(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑧(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (5.44) 

 

Once again, we can solve for 𝛼, 𝛽, 𝛾 from equations (5.42), (5.43) and (5.44). We get: 
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 𝛼 = (−𝐵𝑎𝐵𝑥𝑥𝐵𝑥𝑦𝐵𝑡𝑦 + 𝐵𝑎𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑥 − 𝐵𝑎𝐵𝑥𝑦𝐵𝑦𝑦𝐵𝑡𝑦 − 𝐵𝑎𝐵𝑥𝑦𝐵𝑦𝑧𝐵𝑡𝑧

+ 𝐵𝑎𝐵𝑥𝑧𝐵𝑦𝑦𝐵𝑡𝑧 − 𝐵𝑎𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑡𝑦 + 𝐵𝑎𝐵𝑦𝑦
2 𝐵𝑡𝑥 + 𝐵𝑎𝐵𝑦𝑧

2 𝐵𝑡𝑥

− 𝐵𝑥𝐵𝑥𝑥
2 𝐵𝑦𝑦 + 𝐵𝑥𝐵𝑥𝑥𝐵𝑥𝑦

2 − 𝐵𝑥𝐵𝑥𝑥𝐵𝑦𝑦
2 − 𝐵𝑥𝐵𝑥𝑥𝐵𝑦𝑧

2 + 𝐵𝑥𝐵𝑥𝑦
2 𝐵𝑦𝑦

+ 2 𝐵𝑥𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧 − 𝐵𝑥𝐵𝑥𝑧
2 𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑥𝑦𝐵𝑡𝑚𝑖  𝐵𝑡𝑦

+ 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑚𝑖  𝐵𝑡𝑥 − 𝐵𝑥𝑦𝐵𝑦𝑦𝐵𝑡𝑚𝑖  𝐵𝑡𝑦 − 𝐵𝑥𝑦𝐵𝑦𝑧𝐵𝑡𝑚𝑖  𝐵𝑡𝑧

+ 𝐵𝑥𝑧𝐵𝑦𝑦𝐵𝑡𝑚𝑖  𝐵𝑡𝑧 − 𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑡𝑚𝑖  𝐵𝑡𝑦 + 𝐵𝑦𝑦
2 𝐵𝑡𝑚𝑖  𝐵𝑡𝑥

+ 𝐵𝑦𝑧
2 𝐵𝑡𝑚𝑖  𝐵𝑡𝑥)

÷ (𝐵𝑎(𝐵𝑥𝑥
2 𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑥𝑦

2 + 𝐵𝑥𝑥𝐵𝑦𝑦
2 + 𝐵𝑥𝑥𝐵𝑦𝑧

2 − 𝐵𝑥𝑦
2 𝐵𝑦𝑦

− 2 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧 + 𝐵𝑥𝑧
2 𝐵𝑦𝑦)) 

(5.45) 

 

 𝛽 = (𝐵𝑎𝐵𝑥𝑥
2 𝐵𝑡𝑦 − 𝐵𝑎𝐵𝑥𝑥𝐵𝑥𝑦𝐵𝑡𝑥 + 𝐵𝑎𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑦 + 𝐵𝑎𝐵𝑥𝑥𝐵𝑦𝑧𝐵𝑡𝑧 − 𝐵𝑎𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑡𝑧

− 𝐵𝑎𝐵𝑥𝑦𝐵𝑦𝑦𝐵𝑡𝑥 + 𝐵𝑎𝐵𝑥𝑧
2 𝐵𝑡𝑦 − 𝐵𝑎𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑡𝑥 − 𝐵𝑥𝑥

2 𝐵𝑦𝐵𝑦𝑦

+ 𝐵𝑥𝑥
2 𝐵𝑡𝑚𝑖  𝐵𝑡𝑦 + 𝐵𝑥𝑥𝐵𝑥𝑦

2 𝐵𝑦 − 𝐵𝑥𝑥𝐵𝑥𝑦𝐵𝑡𝑚𝑖  𝐵𝑡𝑥 − 𝐵𝑥𝑥𝐵𝑦𝐵𝑦𝑦
2

− 𝐵𝑥𝑥𝐵𝑦𝐵𝑦𝑧
2 + 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑚𝑖  𝐵𝑡𝑦 + 𝐵𝑥𝑥𝐵𝑦𝑧𝐵𝑡𝑚𝑖  𝐵𝑡𝑧 + 𝐵𝑥𝑦

2 𝐵𝑦𝐵𝑦𝑦

+ 2 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝐵𝑦𝑧 − 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑡𝑚𝑖  𝐵𝑡𝑧 − 𝐵𝑥𝑦𝐵𝑦𝑦𝐵𝑡𝑚𝑖  𝐵𝑡𝑥

− 𝐵𝑥𝑧
2 𝐵𝑦𝐵𝑦𝑦 + 𝐵𝑥𝑧

2 𝐵𝑡𝑚𝑖  𝐵𝑡𝑦 − 𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑡𝑚𝑖  𝐵𝑡𝑥)

÷ (𝐵𝑎(𝐵𝑥𝑥
2 𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑥𝑦

2 + 𝐵𝑥𝑥𝐵𝑦𝑦
2 + 𝐵𝑥𝑥𝐵𝑦𝑧

2 − 𝐵𝑥𝑦
2 𝐵𝑦𝑦

− 2 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧 + 𝐵𝑥𝑧
2 𝐵𝑦𝑦)) 

(5.46) 

 

 𝛾 = (−𝐵𝑎𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑧 + 𝐵𝑎𝐵𝑥𝑥𝐵𝑦𝑧𝐵𝑡𝑦 + 𝐵𝑎𝐵𝑥𝑦
2 𝐵𝑡𝑧 − 𝐵𝑎𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑡𝑦 − 𝐵𝑎𝐵𝑥𝑦𝐵𝑦𝑧𝐵𝑡𝑥

+ 𝐵𝑎𝐵𝑥𝑧𝐵𝑦𝑦𝐵𝑡𝑥 − 𝐵𝑥𝑥
2 𝐵𝑦𝑦𝐵𝑧 + 𝐵𝑥𝑥𝐵𝑥𝑦

2 𝐵𝑧 − 𝐵𝑥𝑥𝐵𝑦𝑦
2 𝐵𝑧

− 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑚𝑖  𝐵𝑡𝑧 − 𝐵𝑥𝑥𝐵𝑦𝑧
2 𝐵𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑧𝐵𝑡𝑚𝑖  𝐵𝑡𝑦 + 𝐵𝑥𝑦

2 𝐵𝑦𝑦𝐵𝑧

+ 𝐵𝑥𝑦
2 𝐵𝑡𝑚𝑖  𝐵𝑡𝑧 + 2 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑧 − 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑡𝑚𝑖  𝐵𝑡𝑦

− 𝐵𝑥𝑦𝐵𝑦𝑧𝐵𝑡𝑚𝑖  𝐵𝑡𝑥 − 𝐵𝑥𝑧
2 𝐵𝑦𝑦𝐵𝑧 + 𝐵𝑥𝑧𝐵𝑦𝑦𝐵𝑡𝑚𝑖  𝐵𝑡𝑥)

÷ (𝐵𝑎(𝐵𝑥𝑥
2 𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑥𝑦

2 + 𝐵𝑥𝑥𝐵𝑦𝑦
2 + 𝐵𝑥𝑥𝐵𝑦𝑧

2 − 𝐵𝑥𝑦
2 𝐵𝑦𝑦

− 2 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧 + 𝐵𝑥𝑧
2 𝐵𝑦𝑦)) 

(5.47) 

 

Notice that to keep these equations manageable, a value for 𝐵𝑡𝑚𝑖 must be measured and 

used. The choice of which equations to use really depends on which datasets have been 

measured. The last three equations are preferred, since they give precise results not 

affected by field approximations.  

Results from these direction cosine equations can be compared with the ambient field in 

the form of quiver plots. An example of this is shown in Figure 57. For visual 

representation, each arrow is located at its magnetic value in TMI. The arrows 

themselves represent the x and y component of the field in the inclination plane or the 

declination plane. So for declinations, these components are (in NED):  

 
𝐷𝑒𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐴𝑟𝑟𝑜𝑤 𝑋 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =

𝛽

√𝛼2 + 𝛽2
 (5.48) 
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 𝐷𝑒𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐴𝑟𝑟𝑜𝑤 𝑌 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =
𝛼

√𝛼2 + 𝛽2
 (5.49) 

 

And for inclinations, these are: 

 
𝐼𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐴𝑟𝑟𝑜𝑤 𝑋 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =

√𝛼2 + 𝛽2

√𝛼2 + 𝛽2 + 𝛾2
 (5.50) 

 

 𝐼𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐴𝑟𝑟𝑜𝑤 𝑌 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =
𝛾

√𝛼2 + 𝛽2 + 𝛾2
 (5.51) 

 

 

Figure 57 (a) Quiver plot showing a comparison between inclinations from the ambient field 
and the measured field including remanence. (b) Quiver plot showing a comparison between 
declination from the ambient field and the measured field including remanence.  

These equations are model independent and therein lies their usefulness.  

5.2.2 Magnetisation and Susceptibility Estimation 

For magnetisation and susceptibility, a model of some sort must be assumed. Source 

distance equations provide simple models from which to calculate magnetisation in 

certain instances. With this in mind, 𝑘 can be estimated for dykes using equations (4.106) 

or (4.109), if an assumption about the width of the dyke can be made. To calculate for 

magnetisation due to a thin dyke, 𝑘. 𝐹 in equations (4.104), (4.105), (4.107), (4.108), is 

replaced with 𝑀𝑡 ∙ 𝜇0 ∙ 10−9 4𝜋 = 100⁄ 𝑀𝑡   (to include remanent magnetisation).  

Therefore: 
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𝐴𝑠0 =

200.𝑀𝑡 . 𝑐. 𝑤 

√𝑥2 + 𝑧2
 (5.52) 

 

 
𝐴𝑠1 =

200.𝑀𝑡 . 𝑐. 𝑤

𝑥2 + 𝑧2
 (5.53) 

 

 
𝐴𝑠𝑧0 =

200.𝑀𝑡 . √𝑐. 𝑤 

√𝑥2 + 𝑧2
 (5.54) 

 

 
𝐴𝑠𝑧1 =

200.𝑀𝑡 . √𝑐. 𝑤

𝑥2 + 𝑧2
 (5.55) 

 

where 𝑤 is the width of the dyke, 𝑥, 𝑧 is the distance and depth to the dyke respectively, 

and 𝑐 is from Table 3. 𝐴𝑠0 and 𝐴𝑠1are the zero and first order analytic signals. 𝐴𝑠𝑧0 and 

𝐴𝑠𝑧1are the zero and first order tensor analytic signals in the z direction.  

We can just rewrite (5.52), (5.53), (5.54) and (5.55) in terms of 𝑀𝑡. 

 

 
𝑀𝑡 =

𝐴𝑠0√𝑥2 + 𝑧2

200 ∙ 𝑤 ∙ 𝑐
 (5.56) 

 

 
𝑀𝑡 =

𝐴𝑠1(𝑥
2 + 𝑧2)

200 ∙ 𝑤 ∙ 𝑐
 (5.57) 

 

 
𝑀𝑡 =

𝐴𝑠𝑧0√𝑥2 + 𝑧2

200 ∙ 𝑤 ∙ √𝑐
 (5.58) 

 

 
𝑀𝑡 =

𝐴𝑠𝑧1(𝑥
2 + 𝑧2)

200 ∙ 𝑤 ∙ √𝑐
 (5.59) 

 

Alternatively, from (5.52) and (5.53) 𝑀𝑡 can be solved for: 
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𝑀𝑡 =

𝐴𝑠0
2

200 ∙ 𝐴𝑠1 ∙ 𝑤 ∙ 𝑐
 (5.60) 

 

From (5.54) and (5.55) 𝑀𝑡 can be solved for: 

 
𝑀𝑡 =

𝐴𝑠𝑧0
2

200 ∙ 𝐴𝑠𝑧1 ∙ 𝑤 ∙ √𝑐
 (5.61) 

 

Note that 𝑐 = 1 − 𝛽𝑡
2 for NED convention, and 𝑐 = 1 − 𝛼𝑡

2 for ENU convention. 

Alternatively, by squaring (5.54) and dividing by (5.53) we get (for NED): 

 
𝑀𝑡 =

𝐴𝑠𝑧0
2

200 ∙ 𝐴𝑠1 ∙ 𝑤
 (5.62) 

 

This is the total magnetisation of the dyke. This can then be substituted into equation 

(5.23), and it follows that: 

 

𝑀𝑟 =
𝑀𝑡 ∙ 𝛼𝑡 −

𝑘|𝑩𝒂|
400𝜋

∙ 𝛼𝑖

cos (𝑀𝑖𝑛𝑐) ∙ cos (𝑀𝑑𝑒𝑐)
= √𝐴2 + 𝐵2 + 𝐶2 (5.63) 

 

Where 𝐴, 𝐵, 𝐶 are defined in equations (5.28), (5.29) and (5.30). Estimates for 𝑘 must 

either be known through paleomagnetic measurement, or by using estimates obtained 

using equation (4.106) and equation (4.113). These estimates are not ideal since 

susceptibility estimates using analytic signals include the effect of remanence in them, 

and would not be accurate indications of true susceptibility. In fact, these susceptibility 

estimates are just 𝑘 = 400𝜋𝑀𝑡 𝐵𝑎⁄ . This is perfectly fine if there is no remanence but not 

ideal for remanent calculation. 

As a side note, these equations are only useful for actual, measured or modelled tensor 

datasets with TMI. They will not work with pseudo-tensor derivations (Pedersen, 

Rasmussen and Dyrelius (1990) and Yin et al.(2016)). This is because pseudo-tensor 

derivations makes the assumption of constant direction cosines (no remanence) and so 

no remanence will be detected. This is discussed further in CHAPTER 6. 
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5.3 Test – Remanence 

5.3.1 Tests on a single dyke 

A single dyke was modelled to test different scenarios. The dyke has a width of 10 m, and 

a depth of 20 m. The bottom of the modelled dyke is 3000 m. The grid spacing was 10 m, 

with a measurement centred over each dyke. Table 5 to Table 7 below show the results 

from using the derived equations, versus the original values. The values for 𝑀𝑡 are 

calculated using equation (5.61). For the purpose of this test, knowledge of the 

susceptibility is assumed (0.01 SI) 

Table 5 shows the results for the single dyke with no remanence. Table 6 and Table 7 

show the same situation with remanence. In all three cases, the direction cosines are 

calculated perfectly, while 𝑀𝑡 tends to be underestimated. Values for 𝑀𝑟 ,  𝑀𝑖𝑛𝑐 , 𝑀𝑑𝑒𝑐 are 

dependent on accurate values of 𝑀𝑡 and deteriorate accordingly. However, even in the 

worst case (Table 7) where remanent direction is vastly different to the ambient field 

direction, the calculated remanent inclination and declination values are close to the real 

values. If however, the magnetisation and susceptibility estimates are worse, then results 

will deteriorate. 

Table 5 Summary of results for a dyke of width 10 meters, depth of 20 meters, depth extent 

of 3000 m, with 𝑩 =  𝟐𝟖 𝟎𝟎𝟎 𝒏𝑻,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰 and no remanence 

Parameter Original Calculated 

𝛼𝑡 -0.25 -0.2504 

𝛽𝑡 -0.433 -0.4331 

𝛾𝑡 0.866 0.8658 

𝑀𝑖𝑛𝑐 N/A N/A 

𝑀𝑑𝑒𝑐 N/A N/A 

𝑀𝑡  0.2228 0.2013 

𝑀𝑟 N/A N/A 

 

Table 6 Summary of results for a dyke of width 10 meters, depth of 20 meters, depth extent 

of 3000 m, with 𝑩 =  𝟐𝟖 𝟎𝟎𝟎 𝒏𝑻,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰 , 𝑴𝒓 = 𝟎. 𝟑𝟐𝟑 𝑨/𝒎, 𝑴𝒊𝒏𝒄 =
𝟓𝟎° and 𝑴𝒅𝒆𝒄 = −𝟐𝟎° 

Parameter Original Calculated 

𝛼𝑡 -0.2332 -0.2344 

𝛽𝑡 -0.5368 -0.5372 

𝛾𝑡 0.8108 0.8102 

𝑀𝑖𝑛𝑐 50 49.04 

𝑀𝑑𝑒𝑐 -20 -19.52 

𝑀𝑡 0.5432 0.4887 

𝑀𝑟 0.323 0.2688 
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Table 7 Summary of results for a dyke of width 10 meters, depth of 20 meters, depth extent 

of 3000 m, with, 𝑩 =  𝟐𝟖 𝟎𝟎𝟎 𝐧𝐓,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰, 𝑴𝒓 = 𝟎. 𝟑𝟐𝟑 𝑨/𝒎, 𝑴𝒊𝒏𝒄 =
−𝟐𝟎° and 𝑴𝒅𝒆𝒄 = 𝟒𝟎° 

Parameter Original Calculated 

𝛼𝑡 0.3801 0.3796 

𝛽𝑡 -0.8972 -0.8976 

𝛾𝑡 0.2249 0.2243 

𝑀𝑖𝑛𝑐 -20 -22.01 

𝑀𝑑𝑒𝑐 40 41.10 

𝑀𝑡 0.3667 0.3467 

𝑀𝑟 0.323 0.3074 

 

A Gaussian noise was added to each of the tensor datasets used in the calculation of 

Table 8. The standard deviation of the noise added to each dataset was equal to 1.0% of 

the maximum respective dataset amplitude. The results are shown in Table 8. Noise 

affects the results, and the direction cosine calculation is sensitive to it. The calculation of 

𝛽𝑡 in this case has a value greater than 1, which would not be possible if it were not for 

noise. Outliers like this can be an indicator to the quality of the data being collected, since 

this sort of value would not happen with noise free data. The total magnetisation 

calculation, by contrast, is less sensitive to the noise. 

Table 8 Summary of results for a dyke of width 10 meters, depth of 20 meters, depth extent 

of 3000 m, with, 𝑩 =  𝟐𝟖 𝟎𝟎𝟎 𝐧𝐓,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰, 𝑴𝒓 = 𝟎. 𝟑𝟐𝟑 𝑨/𝒎, 𝑴𝒊𝒏𝒄 =
−𝟐𝟎° and 𝑴𝒅𝒆𝒄 = 𝟒𝟎°. A Gaussian noise was added to each input dataset, with standard 
deviation equal to 1.0% of the respective dataset amplitude. 

Parameter Original Calculated 

𝛼𝑡 0.3801 0.3611 

𝛽𝑡 -0.8972 -2.525 

𝛾𝑡 0.2249 0.2086 

𝑀𝑖𝑛𝑐 -20 -8.98 

𝑀𝑑𝑒𝑐 40 13.22 

𝑀𝑡 0.3667 0.3373 

𝑀𝑟 0.323 0.7853 

 

Table 9 shows the effect of decreasing the remanent magnetisation in the dyke, and 

hence decreasing the Q-ratio. As the amount of remanence decreases, the effect of the 

error in the total magnetisation estimate increases, and the result is a decrease in 

accuracy for inclination and declination estimation. High Q-ratios implying high 

remanence can offset some of the inaccuracy in the magnetisation calculation. 
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Table 9 Indication of errors in technique through a range of Q-ratios. The results represent a 

dyke of width 10 meters, depth of 20 meters, depth extent of 3000 m, with, 𝑩 =
 𝟐𝟖 𝟎𝟎𝟎 𝐧𝐓,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰, 𝑴𝒊𝒏𝒄 = −𝟐𝟎°  and 𝑴𝒅𝒆𝒄 = 𝟒𝟎°. Values for 𝑴𝒓 
are changed in the test. 

𝑀𝑟 (A/m) Q-Ratio Inclination Declination 

0.323 2.1 -21.97 41.07 

0.269 1.46 -23.25 41.84 

0.215 0.934 -25.25 43.07 

0.1615 0.525 -28.40 45.11 

0.108 0.233 -33.48 48.69 

0.081 0.131 -37.35 51.77 

 

This is an important limitation, since inaccurate magnetisation results will also result in 

inaccurate remanent field calculations.  

5.3.2 Tests on two dykes with no remanence 

A test is necessary to see if the calculation holds up when more than one dyke in present. 

Two north-south dykes were modelled with the following parameters. 𝐵𝑎 = 28,000 nT, 

𝐻𝑖𝑛𝑐 = 60°, 𝐻𝑑𝑒𝑐 = −30°, 𝑘 = 0.01 𝑆𝐼. Each dyke has a width of 10 m, and a depth of 20 m 

and length of 400 m. The bottom of the modelled dykes is 3000 m. The grid spacing was 

10 m, with a measurement centred over each dyke. The area is 400 m by 400 m, 

implying a 40x40 calculated grid. Figure 58 shows the forward model, and Figure 59 

shows the tensor data calculated from that model. Figure 60 to Figure 64 are all 

calculated using equations (5.35), (5.36), (5.37), (5.62) and (5.63) respectively. Figure 60, 

Figure 61 and Figure 62 all show constant values, which is what would be expected since 

neither dyke has remanence. As a side note, only dykes were modelled because of the 

limitation of the magnetisation calculation to dykes. Table 10 shows the results of the 

calculations for both dykes in this case. Discrepancies in the magnetisation values are 

due to the additive effect of the fields from the two dykes on each other. 
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Figure 58 Two dykes modelled with the following parameters. 𝑩𝒂 = 28,000 nT, 𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 
𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰. Each dyke has a width of 10 m, a depth of 20 m and length of 
400 m. The bottom of the modelled dykes is 3000 m. The grid spacing was 10 m. (a) Top view 
of the model. (b) Side view of the model with calculated TMI, at the location of the blue line 
in (a) 

 

Table 10 Summary of results for two dykes of width 10 meters, depth of 20 meters, depth 

extent of 3000 m, with 𝑩 =  𝟐𝟖 𝟎𝟎𝟎 𝒏𝑻,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰 and no 
remanence. 

Parameter Left Dyke Right Dyke 

Original Calculated Original Calculated 

𝛼𝑡 -0.25 -0.2500 -0.25 -0.2499 

𝛽𝑡 -0.433 -0.4330 -0.433 -0.4331 

𝛾𝑡 0.866 0.8660 0.866 0.8661 

𝑀𝑖𝑛𝑐 N/A N/A N/A N/A 

𝑀𝑑𝑒𝑐 N/A N/A N/A N/A 

𝑀𝑡 0.2228 0.2138 0.2228 0.2295 

𝑀𝑟 N/A N/A N/A N/A 

 

Figure 63 shows the total magnetisation calculated for two dykes. The results given on 

this image can also be compared with the results in Table 5 which were for a single dyke. 

The calculated value for total magnetisation lies values between 0.21 A/m and 0.23 A/m, 

which is close to the true value of 𝑀𝑡 = 0.2228 A/m. Note that for magnetisation and 

remanent inclination and declination, only the results above the dykes are valid. This is 

due to the depth portion of the calculation which is only correct over the dyke. The off 

dyke asymmetry in the magnetisation calculations is an artefact caused by the depth 

portion of the calculation in equation (5.61), given by the ratio of analytic signals, 

changing as the observation point moves away from the dyke. In contrast, Figure 65 

shows the same calculation using equation (5.59), which has a constant depth for the 
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dyke. Consequently the result is far more symmetrical. However, the depth to the dyke 

must be known in this case. The reality is that the symmetry of the anomalies is of no 

consequence (other than for visual effect), since the positions of the dyke should already 

be known either from the analytic signal itself or standard source depth calculations. 

Figure 64 shows the calculated remanent magnetisation. Since this calculation uses the 

total magnetisation values for a dyke, and since that calculation is only valid above a 

dyke, only the areas above the dykes are valid. As can be seen, the values are low (blue) 

over the dykes, indicating no remanent magnetisation is present.  

The interference pattern on the edge of Figure 63 and Figure 64 is a side effect of the 

calculation of 𝐴𝑠𝑧0 or 𝐴𝑠0 , which have edge effects as a result of FFT generated Hilbert 

transforms. This effect is amplified in (5.61) and (5.62), which takes the square of the 

analytic signal. The pattern is not present when using equation (5.59), which does not 

square the analytic signal. 

Figure 65 and Figure 66 show the total magnetisation and remanence calculated using 

equation (5.59). The results are better than in the case of (5.61). The magnetisation 

estimates are close to the true value of 0.2228 A.m. Anomalies are far more symmetric, 

leaving little doubt as to the location of the dyke. The symmetry of the two anomalies is a 

result of the fact that this equation does not divide one analytic signal by another, but 

rather uses a constant depth estimate, implying that the depth to the dyke must be known 

in order to use this equation. This is not necessarily a disadvantage, since the depth 

estimate can come from an outside source, allowing for better depth estimates. In the 

case of (5.61); one analytic signal is divided by another to automatically calculate this 

depth, but with the consequence that the depth estimates will vary away from the dyke, 

leading to a non-symmetric response. The advantage of using equations like (5.61) is that 

should the dykes have different depths, it will automatically account for this. 
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Figure 59 Magnetic field and components.  a) to c) show the three components of the 

magnetic field - 𝑩𝒙, 𝑩𝒚, 𝑩𝒛. d), e), f), g), h) and j) show the tensor components 

𝑩𝒙𝒙, 𝑩𝒙𝒚, 𝑩𝒙𝒛, 𝑩𝒚𝒚, 𝑩𝒚𝒛, 𝑩𝒛𝒛 respectively. i) Total magnetic intensity of the study area. The 

magnetic field intensity used was 28000 nT, the susceptibility was 0.01 SI, the inclination 

was 60º, the declination was −𝟑𝟎°. Each dyke has a width of 10 m, and a depth of 20 m. 
There is no remanence. 
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Figure 60 Results of calculating the 𝜶𝒕 direction cosine. The value is constant everywhere 
since the dykes are not remanently magnetised. 

 

 

Figure 61 Results of calculating the 𝜷𝒕 direction cosine. The value is constant everywhere 
since the dykes are not remanently magnetised. 
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Figure 62 Results of calculating the 𝜸𝒕 direction cosine. The value is constant everywhere 
since the dykes are not remanently magnetised. 

 

 

Figure 63 Total magnetisation over two dykes with no remanent magnetisation and using 
equation (5.61) (outline shown in black). The off dyke asymmetry is caused by the variation 
in the depth solution component of this calculation resulting from the ratio of the two 
analytic signals in the calculation of equation (5.61) 
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Figure 64 Output from remanent magnetisation calculation over two dykes with no remanent 
magnetisation and using equations (5.63) and (5.61) (outline shown in black). 

 

Figure 65 Total magnetisation over two dykes with no remanent magnetisation and using 
equation (5.59) (outline shown in black) 
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Figure 66 Output from remanent magnetisation calculation over two dykes with no remanent 
magnetisation using equation (5.63) and (5.59) (outline shown in black) 

5.3.3 Tests on two dykes with remanence introduced 

To test the effect of remanence in the calculation across multiple dykes, two north-south 

dykes were modelled with the following parameters. B = 28,000 nT, 𝐻𝑖𝑛𝑐 = 60°, 𝐻𝑑𝑒𝑐 =

−30°, 𝑘 = 0.01 𝑆𝐼. The right dyke has the following remanent values: 𝑀𝑟 = 0.323 𝐴/𝑚, 

𝑀𝑖𝑛𝑐 = 50°  and 𝑀𝑑𝑒𝑐 = −20°. Each dyke has a width of 10 m, length of 400 m and a 

depth of 20 m. The bottom of the modelled dykes is 3000 m. The grid spacing was 10 m, 

with a measurement centred over each dyke. Note that the eastern dyke has remanence, 

while the western dyke has no remanence. The area is 400 m by 400 m, implying a 

40x40 calculated grid. Figure 67 shows the forward model, and Figure 68 shows the 

tensor data calculated from that model. Figure 69 to Figure 74 are all calculated using 

equations (5.35), (5.36), (5.37), (5.62) and (5.63) respectively. Figure 69 to Figure 71 

show the direction cosine results. As can be expected, the direction cosines are different 

between the two dykes. Table 11 shows a summary of the results.  
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Figure 67 with the following parameters. B = 28,000 nT, 𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰. 
The right dyke (blue) has the following remanent values: 𝑴𝒓 = 𝟎. 𝟑𝟐𝟑 𝑨/𝒎, 𝑴𝒊𝒏𝒄 = 𝟓𝟎°  and 

𝑴𝒅𝒆𝒄 = −𝟐𝟎°. Each dyke has a width of 10 m, length of 400 m and a depth of 20 m. The depth 
extent of the modelled dykes is 3000 m. The grid spacing was 10 m. (a) Top view of the 
model. (b) Side view of the model with calculated TMI, at the location of the blue line in (a) 

Two things must be noted. Firstly, the calculation of susceptibility does not give good 

results over the remanent dyke. This is because the equations from section 4.5.4 do not 

account for the effect of remanence. Because of this, knowledge of the susceptibility is 

assumed (0.01 SI) as before and as a result calculated magnetisations and remanent 

field directions are close to the original values. Without knowing the susceptibility, the 

remanent parameters will be incorrect. A simple test for the presence of remanence is by 

comparison of the calculated direction cosines to that of the ambient field. If they are 

approximately the same, there is no remanence and the susceptibility value can be used 

in modelling. 

The second is that the deviations of the direction cosines from the modelled direction 

cosines is not strictly speaking wrong. The difference in the values comes from 

perspective. The original values are from the perspective of the sources and reflect the 

field direction from the respective source only. The calculated values are from the 

combination of all sources in the region and reflect what an observer will see. As such 

they will be different. Nevertheless, as can be seen, directly over the sources they are a 

reasonable approximation for the source cosines.  
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Table 11 Summary of results for two dykes of width 10 meters, depth of 20 meters, depth 

extent of 3000 m, with 𝑩 =  𝟐𝟖 𝟎𝟎𝟎 𝒏𝑻,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰 and no 

remanence. The dyke on the right has remanence with the following parameters: 𝑴𝒓 =
𝟎. 𝟑𝟐𝟑 𝑨/𝒎, 𝑴𝒊𝒏𝒄 = 𝟓𝟎°  and 𝑴𝒅𝒆𝒄 = −𝟐𝟎°.  

Parameter Left Dyke (No Remanence) Right Dyke (Remanence) 

Original Calculated Original Calculated 

𝛼𝑡 -0.25 -0.2500 -0.2332 -0.2330 

𝛽𝑡 -0.433 -0.459 -0.5368 -0.5250 

𝛾𝑡 0.866 0.867 0.8108 0.8106 

𝑀𝑖𝑛𝑐 N/A N/A 50 51.245 

𝑀𝑑𝑒𝑐 N/A N/A -20 -20.915 

𝑀𝑡 0.2228 0.2054 0.5432 0.5820 

𝑀𝑟 N/A N/A 0.323 0.3576 

𝑘 0.01 0.009 0.01 0.026 

 

The prominent anomaly at the top of Figure 69, Figure 70 and Figure 71 is an important 

discussion point. The same anomaly results through the use of any of the options for 

direction cosine calculations and is therefore not an error in the equations. The direction 

cosine images contain no information about magnetization, and only give information 

about the field direction at each point. In these figures, the two dykes stop at the top and 

the bottom of the figure. Along the length of the dykes, their respective equipotential field 

lines will run parallel to each other, resulting in a smooth transition of direction cosines. At 

the ends of the dykes (such as in the north of the figures), these lines diverge resulting in 

a more varied field direction. This, coupled with the field direction from each source, can 

cause anomalies such as seen to the north. The anomaly is real, and although it is not an 

indicator of a source beneath it, it is an indicator of a remanent source nearby. The 

implication of this is that for modelling purposes, the source location must be known 

beforehand. Fortunately, source location is easily determinable using other methods, 

such as the analytic signal.  

Figure 72 shows the total magnetisation calculated for a dyke. Figure 74 shows remanent 

magnetisation. Since this calculation uses the total magnetisation values for a dyke, and 

since that calculation is only valid above a dyke, only the results above the dykes are 

valid. Edge effects have been masked for presentation purposes. 

Figure 73 shows the same calculation using equation (5.59). As before, the result is far 

more symmetrical. However, the depth to the dyke must be known in order to use this 

equation. 

Figure 74 shows remanent magnetisation using equations (5.63) and (5.61). As can be 

seen, the values are low (blue) over the non-remanent dyke and high (red) over the 

remanent dyke. Edge effects have been masked for presentation purposes. In contrast, 
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Figure 75 shows remanent magnetisation using equations (5.63) and (5.59). The 

anomalies are far more symmetric, since a constant depth to the dyke is used in equation 

5.59. 

 

 

Figure 68 Magnetic field and components.  a) to c) show the three components of the 

magnetic field - 𝑩𝒙, 𝑩𝒚, 𝑩𝒛. d), e), f), g), h) and j) show the tensor components 

𝑩𝒙𝒙, 𝑩𝒙𝒚, 𝑩𝒙𝒛, 𝑩𝒚𝒚, 𝑩𝒚𝒛, 𝑩𝒛𝒛 respectively. i) Total magnetic intensity of the study area. The 

magnetic field intensity used was 28000 nT, the susceptibility was 0.01 SI, the inclination 

was 60º, the declination was −𝟑𝟎°. The eastern dyke has 𝑴𝒓 = 𝟎. 𝟑𝟐𝟑 A/m, 𝑴𝒊𝒏𝒄  = 𝟓𝟎° and 

𝑴𝒅𝒆𝒄 = −𝟐𝟎°. Each dyke has a width of 10 m, and a depth of 20 m. 
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Figure 69 Results of calculating the 𝜶𝒕 direction cosine. The dyke on the right has remanent 
magnetisation. 

 

 

Figure 70 Results of calculating the 𝜷𝒕 direction cosine. The dyke on the right has remanent 
magnetisation. 
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Figure 71 Results of calculating the 𝜸𝒕 direction cosine. The dyke on the right has remanent 
magnetisation. 
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Figure 72 Total magnetisation over two dykes and using equation (5.61) (outline shown in 
black). The dyke on the right has remanent magnetisation. Edge effects due to the Hilbert 
transform have been masked. 

 

 

Figure 73 Total magnetisation over two dykes and using equation (5.59) (outline shown in 
black). The dyke on the right has remanent magnetisation 
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Figure 74 Output from the remanent magnetisation calculation over two dykes and using 
equations (5.63) and (5.61) (outline shown in black). The dyke on the right has remanent 
magnetisation. Edge effects due to the Hilbert transform have been masked. 

 

Figure 75 Output from the remanent magnetisation calculation over two dykes using 
equation (5.63) and (5.59) (outline shown in black). The dyke on the right has remanent 
magnetisation.  
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CHAPTER 6 SYNTHESIS OF MODELLING TECHNIQUES 

APPLIED TO REAL DATA 

The synthesis of the techniques discussed in the preceding chapters is straightforward: 

1) Use the source detection routine to calculate the depths to sources for the model 

(section 4.5.1 and 4.5.2) across profiles or grids. 

2) Obtain estimates or calculate the susceptibilities of the sources (section 4.5.4) 

across profiles or grids. 

3) If the data is real tensor data, assess the remanence of the bodies (section 5.2) 

across profiles or grids. 

4) Determine connectivity, if any, between identified sources (section 4.5.3) and 

extract relevant dyke or step solutions from these features (section 6.2) 

5) Use the voxel based forward modelling to complete the model, based on tensor 

data (section 3.6). The number of input lithologies can be determined by using 

classification on susceptibility solutions, and remanent parameters if available. 

Points 1 to 3 calculate values across entire datasets. Obviously, not all cells in a grid refer 

to dykes or steps, so point 4 uses peak following to extract only the relevant solutions. 

Point 5 then applies this calculated information to forward modelling. Figure 76 shows the 

process flow for the case where tensor data is calculated from TMI data (pseudo tensor 

data). Figure 77 shows the case where measured tensor data is available. 

 

Figure 76 The process flow for calculations involving pseudo tensor calculations 
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Figure 77 The process flow for calculations involving measured tensor data 

These steps will be demonstrated and elaborated on using real data.  

In addition to measured tensor data available over the Tallawang area, tensor data will be 

calculated from conventional total magnetic intensity data to illustrate the technique over 

a wider area.  

6.1 Calculation of tensor components from TMI 

Clark (2013) discusses the use of a calculated tensor dataset versus a measured tensor 

dataset. He confirms that the tensor components can be calculated from TMI data, but 

may be affected by deficiencies in the TMI survey itself. Clark (2013) further stressed that 

while direct measurement of the gradient tensor would produce superior results, useful 

gradient tensor data can be produced via Fourier processing, provided that a number of 

issues are addressed. These include: 

 Effective removal of regional trend. 

 Careful windowing, to minimise Gibbs phenomenon “ringing” and spectral 

leakage. 

 Sample density (including between lines) appropriate to eliminate aliasing of high 

frequencies in the measured fields. 

 Appropriate grid interpolation method for TMI data, with sampling no greater than 

ℎ/2, where h is the depth to the source (Reid, 1980). 

 Accurate reduction of TMI data to a common level. 
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•Calculate for dyke depths

•Calculate for step depths
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Clark (2013) states that the TMI surveys require a line spacing comparable to the survey 

altitude. If there is non-magnetic cover, the depth to magnetic basement can be added to 

the survey altitude. The grid spacing should be no more than half the depth to sources. 

Clark (2013) does confirm that grid spacing restriction can be relaxed slightly in situations 

where the source crosses multiple lines.  

The creation of a tensor dataset is straightforward. The process is described by Clark 

(2013), Pedersen, Rasmussen and Dyrelius (1990) and Yin et al.(2016). Using fast 

Fourier transforms, the components of the magnetic field are related to the total magnetic 

intensity 𝑓 as follows: 

 
ℱ[𝐵𝑥] =

𝑖 ∙ 𝑘𝑥

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.1) 

 

 
ℱ[𝐵𝑦] =

𝑖 ∙ 𝑘𝑦

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.2) 

 

 
ℱ[𝐵𝑧] =

𝑘

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.3) 

 

where 𝑘 = √𝑘𝑥
2 + 𝑘𝑦

2 , 𝑘𝑥 and 𝑘𝑦 are spatial frequencies in horizontal direction, and should 

not be confused with susceptibility. ℱ[ ] expresses the Fourier transform. Also, 𝛼, 𝛽 and 

𝛾 are direction cosines as defined in equations (2.14), (2.15) and (2.16). Similarly, the 

tensor operators are defined as: 

 
ℱ[𝐵𝑥𝑥] =

−𝑘𝑥
2

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.4) 

 

 
ℱ[𝐵𝑥𝑦] =

−𝑘𝑥𝑘𝑦

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.5) 

 

 
ℱ[𝐵𝑥𝑧] =

𝑖 ∙ 𝑘𝑥𝑘

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.6) 

 

 
ℱ[𝐵𝑦𝑧] =

𝑖 ∙ 𝑘𝑦𝑘

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.7) 
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ℱ[𝐵𝑦𝑦] =

−𝑘𝑦
2

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.8) 

 

 
ℱ[𝐵𝑧𝑧] =

𝑘2

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.9) 

 

These equation make use of the approximation to the TMI, i.e. 

 𝑓 = 𝛼 ∙ 𝐵𝑥 + 𝛽 ∙ 𝐵𝑦 + 𝛾 ∙ 𝐵𝑧 (6.10) 

 

The true expression is actually (Schmidt and Clark, 2006): 

 
𝐵𝑡𝑚𝑖 = √(𝐵𝑥 + 𝛼𝐵)2 + (𝐵𝑦 + 𝛽𝐵)

2
+ (𝐵𝑧 + 𝛾𝐵)2 − 𝐵𝑎

= 𝑓 +
𝐵𝑥

2 + 𝐵𝑦
2 + 𝐵𝑧

2 − 𝐵𝑡𝑚𝑖
2

2𝐵𝑎

 
(6.11) 

 

where 𝐵𝑡𝑚𝑖 also refers to the measured total magnetic intensity and 𝐵 is the ambient field. 

This implies that if the anomalies are big enough, the calculations for the tensors will be 

inaccurate. The process to correct this is as follows (Clark, 2013): 

1) Calculate the values for the magnetic vector data using equations (6.1), (6.2) and 

(6.3) 

2) Calculate a corrected estimate for the magnetic field 𝑓 using the following 

equation: 

 
𝑓 = 𝐵𝑡𝑚𝑖 −

𝐵𝑥
2 + 𝐵𝑦

2 + 𝐵𝑧
2 − 𝐵𝑡𝑚𝑖

2

2𝐵𝑎

 (6.12) 

 

3) Repeat steps 1 and 2 with the updated value for 𝑓, until the difference between 𝑓 

and 𝐵𝑡𝑚𝑖 is less than an acceptable threshold defined by the expected noise 

level. 

4) Apply this updated value to equations (6.4) to (6.9). 

This technique is not without its limitations though. The process relies on direction 

cosines which must be known beforehand. These direction cosines are not due to only 

the ambient field, but also include the effect of remanence in the source. If remanence is 

present, especially if its magnetisation is proportional to that of the inducing field, 
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incorrect solutions will result. Figure 78 illustrates this. The source was modelled in an 

ambient field of 28 000 nT, with inclination of 60 degrees, and declination of -30 degrees. 

The susceptibility was 0.01 SI. The source was 20 m below the surface. In Figure 78(b) 

remanent magnetisation of 0.323 A/m with an inclination of -40 degrees and declination 

of 20 degrees is applied.  

 

Figure 78 Demonstration of the effect of remanence. The black square shows the horizontal 
location of the source (a) No remanence and the derived z component matches its modelled 
counterpart. (b) Remanence is now modelled but the derived field is now different. 

Figure 79 shows the effect of using direction cosines which incorporate the remanent 

magnetisation of the source. The resultant derived field component is now a more 

accurate approximation of the true field component. 

 

Figure 79 Demonstration of the effect using correct direction cosines. The black square 
shows the horizontal location of the source (a) No remanence and the derived z component 
matches its modelled counterpart. (b) Remanence is now modelled, and the derived field is a 
better approximation of the true field. 
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The paper by Schmidt et al., (2004) reports that the calculation of tensor data from TMI 

data does retain the remanent information, as is evident from their results when 

comparing calculated versus measured tensor data. In their case there is good 

agreement between these two datasets. A body was modelled using remanent field 

parameters and ambient field parameters similar to reported by Schmidt et al., (2004) for 

the Tallawang survey. The source was modelled in an ambient field of 57 000 nT, with 

inclination of -63 degrees, and declination of 12 degrees. The susceptibility was 2.5 SI. 

The source was 20 m below the surface. The remanent magnetisation was 40 A/m with 

an inclination of -70 degrees and declination of -60. The results are shown in Figure 80. 

As can been seen there is negligible difference in anomaly shape between the 

calculations where the body has remanence, to when the body does not have 

remanence. In addition, in the remanent case, there is now good agreement between the 

derived and the true values for the 𝐵𝑧 field.The logical conclusion is that for this case, the 

combination of similar inclinations and low Q-ratio (.124 in this case) make the impact of 

remanence on the peak shape negligible, giving the appearance that the technique can 

account for remanence.  

 

Figure 80 Demonstration of the effect of remanence using field parameters similar to that of 
the Tallawang area. The black square shows the horizontal location of the source (a) No 
remanence and the derived z component matches its modelled counterpart. (b) Remanence 
is now modelled showing similar results. 

A final case is shown in examining the effect of noise of this technique. The model used 

is the same as that used for Figure 78. Gaussian noise with a standard deviation equal to 

1.0% of the maximum data amplitude was added to the modelled TMI data. The same 

noise was added for the case with remanence. In both cases the effect of noise has a can 

be seen on the calculation of the component, but it is a minor effect and the integrity of 

the component calculation is intact. In the remanent case, since this anomaly is flatter, 
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the effect of noise is larger, which is to be expected. These results show the robustness 

of this technique. 

 

Figure 81 Demonstration of the effect of Gaussian noise with a standard deviation equal to 
1.0% of the maximum data amplitude added to the TMI. The black square shows the 
horizontal location of the source (a) No remanence and the derived z component matches its 
modelled counterpart, even with noise. (b) Remanence is now modelled but the derived field 
is now different, and noise can be seen clearly here. 

Figure 82 shows the effect of increased noise with Gaussian noise with a standard 

deviation equal to 5.0% of the maximum data amplitude was added to the modelled TMI 

data. Once again, the same noise was added for the case with remanence. The effect of 

the noise has now increased dramatically, impacting on the integrity of the calculated 

components. Therefore, the quality of the TMI data is important when using this 

technique. 

Figure 83 shows the effect of calculating the 𝐵𝑧 component from the derived 𝐵𝑥𝑧 tensor 

component. This is achieved through numerical integration, and as expected there is a 

shift in the results from the true value. This is because any derivative (such as 𝐵𝑥𝑧  which 

is the x-derivative of 𝐵𝑧) eliminates any constant from the original quantity. Upon 

integration, that constant is no longer present and a shift is the result. Since this 

calculation was performed on the derived 𝐵𝑥𝑧 tensor data, the integrated value mimics the 

derived 𝐵𝑧 data. 
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Figure 82 Demonstration of the effect of Gaussian noise with a standard deviation equal to 
5.0% of the maximum data amplitude added to the TMI. The black square shows the 
horizontal location of the source (a) No remanence and the derived z component has 
deteriorated when compare to its modelled counterpart. (b) Remanence is now modelled but 
the derived field is now different, and noise can be seen more clearly here 

 

Figure 83 Demonstration of the effect of integrating the derived tensor values. (a) No 
remanence and the integrated z component shows a shift from the true z component value. 
(b) Remanence is once again modelled. The integrated value mirrors the derived field, with a 
shift, and does not correspond to the true z component value. 

In summary, tensor components can be calculated from TMI data, but care must be taken 

to understand the limitations. Best results are achieved with data that is relatively noise 

free, and for areas where there is no remanence. If remanence does occur in the study 

area, good results can be achieved if the remanent directions are similar to the ambient 

field direction, and the Q-ratio is low. Areas with remanence may need laboratory 

samples measured to confirm this.  
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6.2 Peak Following Routine 

The determination of the location of optimal solutions can be achieved through the use of 

peak following on an appropriate edge detection dataset. In this case, the analytic signal 

𝐴𝑠 can be used to find the location for relevant depth and susceptibility solutions. A 

number of peak following routines are available. Some utilize derivatives to find peaks 

and troughs where derivatives are zero. Others simply compare arrays with a moving 

window and identify maximum points. False positives due to noise may be eliminated 

through smoothing. This latter technique is what was used, and can be found in the SciPy 

library (Jones, Oliphant, Peterson, et al, 2001) as the command argrelmax. The output 

from this should be a set of grid row and column indices relating to peaks found. The 

indices are then applied to the depth and susceptibility datasets to extract the correct 

depth and susceptibility solutions. Figure 84 shows the input dataset from the 

Lichtenberg/Zeerust region and Figure 85 shows the results. 

 

Figure 84 Analytic signal dataset used as input for peak following routine 
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Figure 85 Peak locations plotted in terms of eastings and northings 

Depths which are greater than the predefined depth of the model can then be filtered out 

from these initial solution. Indices are reduced to reflect this filtering. 

The next step is to differentiate between solutions of different sources. Point sources can 

be differentiated from linear sources (such as edges or dykes) by using a relevant form of 

cluster analysis with the index data (solution coordinates) as input. The Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) method (Ester et al., 1996) was 

used in this case. DBSCAN has the advantage that it can find arbitrary shaped clusters. 

Since valid solutions must be grouped into dykes and other sources, this is critical. 

The DBSCAN method is a density-based clustering algorithm. It groups together points in 

space that are packed closely together (points with many nearby neighbours). It classifies 

points which are in low density regions as outliers. It requires two parameters, namely the 

minimum number of points to form a dense region, and the minimum distance between 

any two samples to be considered in the same neighbourhood. Because of the density 

criterion, DBSCAN can find arbitrarily shaped clusters. It also does not require the 

number of clusters to be set beforehand.  
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Filtering is applied to the DBSCAN results. In this case, since dykes are the target, 

classes with too few members are excluded. Figure 86 shows the results. 

 

Figure 86 Filtered results for the peak locations (Figure 85) after DBSCAN 

A final point is that results may not be produced for only the feature being investigated. 

For example, we may be interested in dykes only, but some steps may be visible. The 

peak following routines may follow some of these sources as well (for example, since the 

edge of a step is identified on the analytic signal by a peak). A final differentiation 

between dykes, steps and other features can then be done through a process of manual 

examination and elimination of relevant filtered results. This can be done in a GIS, for 

example. While full automation is a desirable goal, manual interaction such as this can 

improve the relevance and quality of results vastly. 
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6.3 Tallawang Field Trial  

6.3.1 Geological Setting and Data 

Tensor data over the Tallawang magnetite deposit was generously provided by Dr David 

Clark of the CSIRO (Commonwealth Scientific and Industrial Research Organisation).  

The Tallawang magnetite deposit (32°12′𝑆, 149°27′𝐸) is a tabular skarn body (Figure 87). 

It is located 18 km north of Gulgong, New South Wales, Australia, along the western 

margin of the Carboniferous Gulgong Granite (Schmidt et al., 2004; Clark et al., 1998). 

The skarn was intruded during the late stages of the Kanimblan Orogeny in the Late 

Carboniferous. The deposit strikes NNW and dips steeply to the west. The magnetite 

occurs in lenses with magnetite zones being displaced in an east-west direction, by 

transverse faulting (Schmidt et al., 2004).  

 

Figure 87 Geology of the Tallawang skarn (Schmidt et al., 2004). 

The magnetite body has been drilled, and the properties of oriented block samples of the 

magnetite characterised. Schmidt et al., (2004) reported that the strongest samples had a 

susceptibility of 3.8 SI, with a remanence of 40 A/m and Q-ratios of 0.2 to 0.5. The 

remanence had a mean direction of WNW and steeply up. They further stated that this 

direction was a combination of two directions, namely, a viscous remanent magnetization 

(VRM) component in the direction of the recent geomagnetic field, and a reversed mid-

Carboniferous field component. Clark et al., (1998) calculated the inclination to be −72° ±

30°. 
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Schmidt et al., (2004) performed a tensor survey using the GETMAG system, detailed in 

section 3.3.1. They also collected high resolution TMI data using two Caesium vapour 

magnetometers separated vertically by 1 m. Readings were taken at 10 m intervals along 

east-west lines. The TMI data was collected for comparison purposes with the tensor 

data. 

Three profiles were selected for the survey, denoted by 50mN, 60mN and 120mN by 

Schmidt et al., (2004) and are shown in Figure 88. 

 

Figure 88 TMI data collected over Tallawang, showing the location of the three tensor 
profiles. Grid north is 340º True. Tensor survey lines are shown in black and are labelled. 

 

6.3.2 Baseline Model of Tallawang Body 

A simple baseline forward model of the Tallawang body was created in order to test 

methodology and understand the results from the measured data. The Tallawang body 

comprises a 10 m wide section of high magnetite content, with a further low magnetite 

content section to the west of the body (Figure 87). The high magnetite section was 

modelled since the majority of the anomaly comes from this ore and this makes for a 

good approximation of a dyke. The body was modelled in an ambient field of 56 701.6 nT, 

with inclination of -63 degrees, and declination of 11.47 degrees. The susceptibility was 

2.5 SI. The source was 20 m below the surface. The remanent magnetisation was 30 A/m 

with an inclination of -70 degrees and declination of -60 degrees. The model results are 
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shown in Figure 89. The axis orientation of the model is NED to match that of the 

measured survey data. 

 

Figure 89 Model of the dipping Tallawang body showing the calculated and measured data 
over the deposit. The dashed black line indicates the centre of the body closest to the 
surface.  The body comprises of layers of rectangular prisms, illustrating the calculation of 
such anomalies using rectangular prisms. 

Figure 90 shows the tensor components calculated for the body. Tensor information is 

contained largely in the y and z directions, which is to be expected since the body runs 

north-south.  

Figure 91 shows depth calculations using zero and first order analytic signal calculations. 

Equations used for the depth are shown on the figure. Since the modelled body is dyke-

like, N=1. Depths calculated using these equations range from 14.5 to 19 metres. The 

shallowest depth uses the y-component only, with the other three depths clustering 

between 17 and 19 metres.  

Figure 92 shows depth calculations using first and second order analytic signals. 

Equations used for the depth are shown on the figure. These depths tend to be deeper, 

ranging from 21 to 24 metres. Most of the depths cluster between approximately 21 and 

22.5 metres, with the depth from the conventional analytic signal at 24 metres. 
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The hybrid depth using all three analytic signal components (denoted 𝐴𝑠𝑥𝑦𝑧 in equations 

on the figures) gives conservative and stable solutions, since it appears with the clusters 

of solutions on both cases. 

 

Figure 90 Tensor components calculated for the Tallawang body.  
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Figure 91 Depth calculation using zero and first order analytic signals. (a) shows the zero 
order calculations (b) shows the first order calculations (c) shows the depth results over the 
centre of the anomaly. The dashed line shows the location of the body centre. 
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Figure 92 Depth calculation using first and second order analytic signals. (a) shows the first 
order calculations (b) shows the second order calculations (c) shows the depth results over 
the centre of the anomaly. The dashed line shows the location of the body centre. 
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Figure 93 Results for the dyke width calculation.  (a) shows the conventional analytic signal, 

denoted 𝑨𝟎  (b) shows the higher order analytic signal, denoted 𝑨𝟏.  (c) shows results for the 
width calculation. The dashed line shows the location of the body centre. 

Figure 93 shows results for the width calculations. The width is estimated at 11.3 metres, 

which is close to the modelled solution. A depth of 20 metres was used for this width 

estimate, to show the relative accuracy of the width estimate under ideal conditions. This 

depth is a reasonable mean value given the range of depths calculated using analytic 

signals.  

These results are presented first, since they lead into the susceptibility and magnetisation 

calculations shown in Figure 94. 



179 

 

 

Figure 94 (a) Susceptibility calculations and (b) magnetisation calculations for the body. The 
dashed line shows the location of the body centre. 

Steep anomalies relate to equations where a fixed depth (20 m) was used. In all cases, a 

width of 11.3 metres was used. The results give susceptibility ranges from 1.97 to 2.66. 

Steep anomalies with accurate fixed depths give the most reliable solutions, between 

2.35 to 2.53 SI. The true total magnetisation for the model is 140 A/m. Relative to this, the 

solutions are underestimated, ranging from approximately 90 to 120 A/m.  

Direction cosines for the modelled field were also calculated and are shown in Figure 95. 

 

Figure 95 (a) Quiver plot showing a comparison between inclinations from the ambient field 
and the modelled field including remanence. (b) Quiver plot showing a comparison between 
declination from the ambient field and the total modelled field including remanence. There is 
not much difference between the two fields.  
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As can be seen, the inclinations are almost identical, where the ambient inclination was   

-63 degrees, and the total inclination including remanence, is now -66 degrees. 

Accordingly the quiver plot shows not much change. In the case of the declinations, there 

is a small change visible, where the ambient declination was 11.47 degrees and the new 

resultant declination is now 1.32 degrees. The quiver plot is useful since it gives an 

indication of where the remanent field direction lies, as well as the overall impact of 

remanence on the ambient field. In this case, the new total declination is 1.32 degrees, 

which is less than 11.47 degrees, and is diagnostic of a remanent field which is less than 

1.32 degrees (since in this case only a value lower than 1.32 degrees can reduce the 

ambient field from 11.47 degrees to 1.32 degrees). 

 

Figure 96 (a) Direction cosines resulting from the model. (b) calculated inclinations and 
declinations using ideal susceptibilities and magnetisations. (2.5 SI and 140 A/m). The 
dashed line shows the location of the body centre. 

Figure 96(a) shows direction cosines using ordinary graphs. They are constant since 

there is only one body in the model, and the field which results is constant. Figure 96(b) 

shows values for inclination and declination when ideal values of 2.5 SI and 140 A/m are 

used for susceptibility and magnetisation. If the magnetisation is set to 114 A/m, in line 

with one of the magnetisation estimates, the results are not as accurate, with a resulting 

inclination of -21 degrees and declination of -119 degrees, This then shows that, as 

discussed in section 5.2, because of the low Q-ratio (0.07 in the case of this model) 

remanent magnetisation inclination and declination estimates of real data are unlikely to 

be accurate for this area.  
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6.3.3 Modelling of measured tensor data. 

Line 50 and line 60 were examined since, being 10 metres apart, they offer the unique 

possibility of being able to measure tensor gradients between the lines. This is necessary 

for some of the calculations (for example the 3D analytic signal), which require cross line 

gradients for best results. The sample spacing of the data along each line was also 10 

metres. Figure 97 shows the TMI data of the two lines. The location of the lines can be 

seen in Figure 88. 

 

Figure 97 TMI data of (a) line 50 and (b) line 60. The dashed line shows the location of the 
body centre. 

Figure 98 shows the first and second order analytic signals from line 50. Both line 50 and 

line 60 are used in the x (northern) components, which accounts for the small peak in the 

west. What is important to note is that while there is a single peak for the first order 

analytic signal, the second order analytic signal has multiple peaks. In analytic signals, 

this suggests that the body is shallow, and that for this dataset, a step solution (N=0) may 

need to be used as opposed to a dyke solution (N=1). 
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Figure 98 (a) First order analytic signal of line 50 showing distinct peak  (b) Second order 
analytic signal of line 50 showing more complex peaks. The dashed line shows the location 
of the body centre. 
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Line 60 

Figure 99 shows the tensor data recorded for line 60. The samples are spaced 10 metres 

apart. The sharp anomaly in the west is caused by a steel drill collar (Clark, 2012). As 

such, this region is of no interest and is trimmed off in subsequent plots. A comparison 

between Figure 90 and Figure 99 shows that the tensor components for the measured 

data has a greater range over the skarn than in the model. This clearly shows that the 

skarn is more complex than a simple dyke and already may test some of the assumptions 

with respect to a dyke formula. Figure 100 shows the depth calculations using zero and 

first order analytic signals. The solutions range between 16 metres and 24 metres which 

the worst solution being that using 𝐴𝑠𝑦. Figure 101 shows the depth calculation using first 

and second order analytic solutions for a dyke. These range between 40 and 

approximately 100 metres. However, if the step model is used, since 𝐴𝑠2 better 

resembles step data (it has a low instead of a peak over the source), then the depth 

solutions would range between 20 and 50 metres, with the majority of the solutions 

between 20 and 32 metres. Figure 102 shows the calculation of body width, which ranges 

between 10 to 25 metres. All these solutions are consistent with the published depth of 

approximately 19.9 metres  (Clark, 2012) and the width on the geological map (Figure 87) 

(Schmidt et al., 2004). 
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Figure 99 Tensor components measured for line 60 of the Tallawang body. 
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Figure 100 Depth calculation using zero and first order analytic signals. (a) shows the zero 
order calculations (b) shows the first order calculations (c) shows the depth results over the 
centre of the anomaly. N = 1. The dashed line shows the location of the body centre. 
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Figure 101 Depth calculation using first and second order analytic signals. (a) shows the 
first order calculations (b) shows the second order calculations (c) shows the depth results 
over the centre of the anomaly. N = 1. The dashed line shows the location of the body centre. 
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Figure 102 Results for the dyke width calculation.  (a) shows the conventional analytic 

signal, denoted 𝑨𝟎  (b) shows the higher order analytic signal, denoted 𝑨𝟏.  (c) shows results 
for the width calculation. The dashed line shows the location of the body centre 

Figure 103 shows results of the calculated susceptibility and magnetism. A depth of 20 

metres and a width of 15 metres was used in the calculation. Susceptibilities range 

between 2 SI and 14 SI over the body, and magnetisations range between 100 A/m and 

600 A/m. Clearly many of these values are too large, with the components using 𝐴𝑠𝑧 

closest to the real values (4.3 SI to 4.7 SI and 193 A/m to 211 A/m). The inaccuracy may 

be indicative of the incorrect model used for calculating magnetisation and susceptibility 

and therefore not fitting this case perfectly.  
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Figure 103 (a) susceptibility calculated from analytic signal formulae (b) magnetisation 
calculated from analytic signal formulae. The dashed line shows the location of the body 
centre. 

Figure 104 shows quiver plots of the inclinations and declinations of the measured tensor 

values, compared with those of the ambient field. Measured inclinations, for the most 

part, are largely coincident with that of the ambient field. This makes sense since the 

remanence is steeply up, which is largely coincident with the ambient field. Deviations in 

the values to the west are caused either by another source or remanence, or, errors in 

the data (since the magnitude of the cosines in this section are occasionally greater than 

1, which can only occur if there are errors in the measured data). Measured declinations 

show a more complex picture. They are largely positive west of the skarn and negative 

east of the skarn. This may relate to the complexity of the remanence which resides in 

the magnetite lenses. 

The direction cosines shown on Figure 105(a) show a complexity in the field over the 

body, meaning that assumptions of homogeneity in modelling may not be valid. Some of 

the variability may be due to inherent data accuracy. 

Figure 105(b) shows results for the inclination and declination calculations. The values of 

susceptibility and magnetisation used were calculated values and were 4.69 SI and 

211.67 A/m respectively. These values are too large and the inaccuracies are reflected in 

the calculated inclinations and declinations, which are incorrect. The remanent 

magnetisation calculated from this is 103.97 A/m, which is larger than the maximum value 

of 40 A/m by a factor of 2.5. 
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Figure 104 (a) Quiver plot showing a comparison between inclinations from the ambient field 
and the measured field including remanence. (b) Quiver plot showing a comparison between 
declination from the ambient field and the measured field including remanence 

 

 

Figure 105 (a) Direction cosines resulting from the model. (b) calculated inclinations and 
declinations. The dashed line shows the location of the body centre. 
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Line 50 

Line 50 shows a similar picture. Figure 106 shows tensor data measured over the skarn. 

The anomaly to the west may be related to the magnetic collar and is excluded from 

future figures.  

 

Figure 106 Tensor components measured for line 50 of the Tallawang body. 

Figure 107 shows the depth calculations using zero and first order analytic signals. The 

solutions range between 13 metres and 20 metres with the worst solution being that 

using 𝐴𝑠𝑧 in this case. Figure 108 shows the depth calculation using first and second 

order analytic solutions for a dyke. These range between 35 and approximately 65 

metres. However, if the step model is used, since 𝐴𝑠2 resembles step data more, then the 

depth solutions would range between 17 and 32 metres, with the majority of the solutions 

between 17 and 27 metres. Figure 109 shows the calculation of body width, which ranges 
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between 20 to 24 metres. All these solutions are consistent with the published depth of 

approximately 19.9 metres  (Clark, 2012) and the width on the geological map in Figure 

87 (Schmidt et al., 2004). 

 

Figure 107 Depth calculation using zero and first order analytic signals. (a) shows the zero 
order calculations (b) shows the first order calculations (c) shows the depth results over the 
centre of the anomaly. The dashed line shows the location of the body centre. 
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Figure 108 Depth calculation using first and second order analytic signals. (a) shows the 
first order calculations (b) shows the second order calculations (c) shows the depth results 
over the centre of the anomaly. The dashed line shows the location of the body centre. 
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Figure 109 Results for the dyke width calculation.  (a) shows the conventional analytic 

signal, denoted 𝑨𝟎  (b) shows the higher order analytic signal, denoted 𝑨𝟏.  (c) shows results 
for the width calculation. The dashed line shows the location of the body centre. Gaps in 
results are where no solution was possible. 

Figure 110 shows results of the calculated susceptibility and magnetism. A depth of 20 

metres and a width of 15 metres was used in the calculation. Susceptibilities range 

between 0.5 SI and 7 SI over the body, and magnetisations range between 25 A/m and 

300 A/m. Once again, many of these values are too large. In this case 𝐴𝑠𝑧 formulae 

provide the best solutions, ranging from 1.7 SI to 3.95 SI and 77 A/m to 178 A/m. Given 

the limited data available for this study, more survey data is needed for more conclusive 

formulae comparisons.  
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Figure 110 (a) susceptibility calculated from analytic signal formulae (b) magnetisation 
calculated from analytic signal formulae. The dashed line shows the location of the body 
centre. 

Figure 111 shows quiver plots of the inclinations and declinations of the measured tensor 

values derived from direction cosines, compared with those of the ambient field. 

Measured inclinations, for the most part, are once again largely coincident with that of the 

ambient field. Measured declinations are largely coincident over the peak, and are 

positive west of the skarn while being negative east of the skarn. This is consistent with 

line 60’s results 

The direction cosines shown on Figure 112(a) once again show a complexity in the field 

over the body. They are slightly different to those in Figure 105(a), emphasizing 

inhomogeneity, while close enough to show that similar results are obtained for both 

lines. 

Figure 112 (b) shows results for the inclination and declination calculations. The values of 

susceptibility and magnetisation used were calculated values and were 1.71 SI and 77.56 

A/m respectively. The values are chosen from the same magnetisation and susceptibility 

calculations as for profile 60. These values are smaller than expected, and once gain the 

inaccuracies are reflected in the calculated inclinations and declinations, which are 

incorrect. The remanent magnetisation calculated from this is 39.24 A/m, which is close to 

the true value.  

 



195 

 

 

Figure 111 (a) Quiver plot showing a comparison between inclinations from the ambient field 
and the measured field including remanence. (b) Quiver plot showing a comparison between 
declination from the ambient field and the measured field including remanence.  

 

 

Figure 112 (a) Direction cosines resulting from the model. (b) calculated inclinations and 
declinations. The dashed line shows the location of the body centre. 
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6.3.4 Discussion of Results 

The testing of source distance methods over Tallawang followed two phases. First, a test 

model was created in order to understand and predict typical values which should be 

expected as well as identify any possible limitations in this specific magnetic field and 

remanence environment. From this, successful width and depth predictions resulted. 

Predicted magnetisations were lower than in the model, and hinted at possible problems 

in the remanence calculation to follow. If the real magnetisation and susceptibility values 

were used, then inclination and declination could be predicted reliably. However, the use 

of predicted magnetisations gave incorrect inclinations and declinations for remanence. 

This simple test can be used in any environment to ascertain whether the prevailing 

geomagnetic and geological conditions will allow robust determination of remanent 

magnetisation parameters. 

In the second phase, two of the Tallawang lines were investigated. Depth and width 

results were in line with real depth values. Susceptibility and magnetisation solutions 

were extremely varied and as such remanent parameter estimations were incorrect in 

both cases. It should come as no surprise that in an area of remanence, the susceptibility 

solutions would vary since the analytic formula for susceptibility does not account 

properly for remanence. However, the direction cosine calculations are robust and make 

no assumptions other than accuracy for measured data. These results showed a complex 

body which is probably not entirely homogenous with respect to it physical properties. 

Although the direction cosines are for the total magnetic field, and not the remanence 

field alone, when compared with the ambient field direction cosines, a sense of remanent 

field direction, at least in a gross sense, can be gleaned.  

A comment should be made regarding the sample separation and the depth calculation. 

The minimum depth obtainable from a sample spacing of ∆𝑥 is 𝑟 = 2∆𝑥 − 𝑓𝑙𝑦𝑖𝑛𝑔 ℎ𝑒𝑖𝑔ℎ𝑡 

(Reid, 1980). This equation is applied to any calculation which relies on the relationship 

between adjacent samples – for example derivatives and power spectra calculations. In 

this case, since there is no flying height, this implies that with a sample spacing of 10 

metres, the minimum depth calculated is 20 metres. This indicates that the depth 

calculation is operating at the limits of its accuracy for the Tallawang survey. However, 

should all the tensor field data be entirely measured (i.e. no gradient calculations are 

performed), then this limitation is not present, since the depth calculations will then not 

rely on any information (derivative calculations in this case) derived from adjacent 

samples. 
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As a final note, even though low Q-ratios are indicative of inaccurate remanence 

calculations, low Q-ratios are also indicative of a situation where remanence does not 

play a serious role in the field directions, and so forward modelling is still effective using 

just ambient field parameters. Therefore the restriction of this technique to higher Q-ratios 

basically limits it to situations where it is really needed. 
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6.4 Lichtenberg/Zeerust  

6.4.1 Geological Setting and Data 

The study area chosen is a small area in the Lichtenberg/Zeerust region in the North 

West Province of South Africa. Dolomite of the Malmani Subgroup covers most of the 

area with Ventersdorp Supergroup present along the southern margin. Karoo Supergroup 

rocks partly cover the older material in the southeast (Figure 113). The Ventersdorp 

Supergroup consists of basaltic and andesitic rocks and sedimentary sequences and is 

considered the largest “Large Igneous Province” of the Kaapvaal Craton (Altermann and 

Lenhardt, 2012). 

The Malmani Subgroup forms part of the Transvaal Supergroup that rests unconformably 

on the Ventersdorp Supergroup. It consists of dolomites that formed in a carbonate 

platform system between ~2.58 and 2.5 Ga (Eroglu et al., 2015). None of the geological 

formations in the study area contains substantial magnetic minerals and will therefore not 

cause anomalies on the magnetic data. 

A few diabase dykes and quartz veins have been mapped in the northeast, but most of 

the large predominantly ENE-striking lineaments were inferred from regional airborne 

magnetic data.  

Borehole data from the Council for Geoscience log database were examined. Locations 

are shown in Figure 113, with associated borehole logs in Figure 114. The towns of 

Bakerville and Lichtenburg are shown on the map. In particular two boreholes on the farm 

Dudfield, drilled in 1974 by Anglo Alpha Cement, are on or very close to the southern 

magnetic lineament (Dudfield 2 and Dudfield 3), but failed to intersect a dyke. This is an 

indication that the dykes may be deeper than these two boreholes, the maximum depth of 

which are 55 metres and 71 metres respectively. The top 44 to 50 meters consist of 

surficial deposits, followed by the lava of the Ventersdorp Supergroup. There is no 

mention of dolerite or diabase encountered in the borehole. 

Other boreholes were drilled by the same company north of the lineament. These indicate 

surficial deposits (overburden, calcrete, clay) over dolomite. In the late 1930s, two deep 

boreholes (L1 and Welverdiend) were drilled in the north. These only indicate dolomite 

over Ventersdorp lava. 
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Figure 113 a) Geology of the area (Geological Survey of South Africa, 1993). b) The location 
of the survey is shown on the map of South Africa.  
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Figure 114 Borehole information over the Lichtenberg/Zeerust Area. No intersections with 
dykes is visible. 

Expanding on the assessment of dyke depths, an area immediately to the north was 

chosen with clusters of boreholes over similar-striking dykes. Clusters of boreholes were 

drilled on or very close to the ENE striking lineament. Kareebosch 70 and 71 were drilled 

by United States Steel International (New York) Inc. in 1971 to depths of 120 m and 93 m 

respectively. These boreholes only encountered dolomite. The same company drilled 

N10 to the east. It was only 31 meters deep and only encountered dolomite. 

A series of holes was drilled across the lineament on Strydfontein by Armco-Bronne (Pty) 

Ltd in 1979. The drilling configuration suggests that the lineament may have been 

targeted, with the deepest hole reaching a depth of 130 m. None of holes found diabase 

or dolerite. 

Since none of the clusters intersected with dykes, it suggests that for the most part the 

ENE dyke depths may be deeper than the maximum borehole depth of 130 metres.  

Only in the east, an isolated borehole (Witrand 1) contained diabase, indicating the 

intersection with dyke-like material. The hole was drilled by the CGS, and is located on a 

NW-striking dyke (indicating that it is not the same dyke swarm as the ENE dykes). The 
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borehole starts in the shale of the Pretoria Group and ends in dolomite. It encountered a 

20 m thick diabase intrusion at 30 meters and a 13 m thick intrusion at 56 m depth. 

 

Figure 115 a) Geology of the northern area (Geological Survey of South Africa, 1993). b) The 
location of the survey is shown on the map of South Africa.  
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Figure 116 Borehole information over the northern area. Only one dyke was intersected 
(Witrand 1) as is evident by the presence of diabase.  

 

The data to be used are a section of a single sensor (scalar) magnetic survey flown by 

the Council for Geoscience in 2003. The line spacing was 120 m and was flown NE to 

SW using a Cessna 206 at 50 m flying height. The along line sampling interval is 

generally between 3 to 4 metres, depending on the aircraft speed. The data was gridded 

at 40 m spacing. It includes total magnetic intensity data (Figure 117) as well as a digital 

elevation model (Figure 118) which is used for the 3D model creation. The digital 

elevation model was calculated using GPS and laser altimeter data.  

The area chosen was relatively flat in order to minimise survey flying height errors in the 

acquisition of the data. The magnetic dataset consists of a series of mostly east-northeast 

striking dykes. These come in three flavours – highly magnetic, moderately magnetic and 

remanently magnetised (negative anomaly).  

A cursory visual inspection of the TMI data (Figure 117) suggests that there are at least 

two groups of dykes without obvious remanence – two dykes with strong anomalies 

striking in an east west direction, and other dykes of more varied orientation with lower 

amplitude anomalies. A third group contains remanence (a negative anomaly in the South 

African context suggests this) and can be seen on an east west striking dyke running 

across the centre of the area. This is easier to see on images later in the chapter, for 

example Figure 120. 
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Figure 117 Total Magnetic Intensity of the study area. The dashed line shows the location of 
a profile shown in Figure 132 
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Figure 118 Digital Elevation Model of the study area, obtained from the magnetic survey. 

6.4.2 Data Preparation 

It is standard in FFT processing to subtract a polynomial surface from the data being 

processed in order to ensure more stable solutions. It will also remove or minimise the 

effect of deeper large bodies from the estimation of shallow sources. This, and the 

resultant magnetic field, is shown in Figure 119 and Figure 120. The surface itself can be 

estimated directly from the data by constructing a low degree Vandermonde matrix, and 

solving using least squares. In this case a second degree Vandermonde matrix was 

constructed. 

Figure 121 shows the derived datasets for the components and tensor components of the 

magnetic field. The x direction is east-west, and the y direction is north-south (ENU 

convention). The geomagnetic field strength during the survey was 28 280 nT, with an 

inclination and declination of -64º and -17º respectively. 
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Figure 119 Polynomial surface used to prepare magnetic data for FFT 

 

 

Figure 120 Resultant magnetic field once polynomial surface is subtracted. 
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Figure 121 Derived tensor components from the TMI. The dashed line in (i) shows the 
location of a profile shown in Figure 132 
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6.4.3 Methodology and Results 

The methodology to create 3D models from the source distance calculations is 

straightforward. First, the extents and resolution of the model are set. The extents are in 

the x, y and z dimensions and the resolution should be relevant to the detection limit of 

features to be delineated. 

Secondly, a number of datasets can be calculated. The depths to sources (𝑟) are 

calculated using formulae described in section 4.5. Since these depths are actually the 

distance from the observation to the top of the source, they are corrected for flying height. 

These are all calculated at the resolution of the input data, which in this case is 40 m. 

This ensures that aliasing problems do not affect the integrity of the depths. The minimum 

depth obtainable from a sample spacing of ∆𝑥 is 𝑟 = 2∆𝑥 − 𝑓𝑙𝑦𝑖𝑛𝑔 ℎ𝑒𝑖𝑔ℎ𝑡 (Reid, 1980). 

Therefore, for a survey at a flying height of 50 m, this implies a minimum depth of 30 m. 

Dyke widths are estimated using equation (4.113). These widths are dependent on the 

depth solutions obtained. The mean widths using either conventional analytic signal 

depths (equation (4.75)) or component analytic signal depths (such as equations (4.74) 

and (4.85)) was approximately 133 metres with a standard deviation of 129 metres, 

showing a wide variability of possible widths. To simplify the calculations for rectangular 

prism modelling, a representative width was chosen. Given the tendency of the width 

estimation to overestimate widths of deeper sources, this was set to 100 meters as a 

starting point. It can be refined later through a forward modelling phase, if necessary.  

The susceptibilities (𝑘) of the sources are calculated using formulae described in 4.5.4, 

and assuming a dyke width of 100 m (which is the resolution of the model). Even though 

the widths have been fixed and may result in inaccurate susceptibilities, it should be 

noted that the overall width-susceptibility relationship means that from a forward 

modelling point of view, this inaccuracy in susceptibility is compensated by the width and 

the fitting of the anomaly should still be achieved.  

Figure 122 and Figure 123 show the analytic signal datasets used in the depth to source 

calculations. Figure 124 shows the results of the depth to source calculations. A value of 

N=1 was used for the depth calculation, which used equation (4.75) defined by Cooper 

(2015). Figure 125 shows the depth calculations using (4.74). Note that only the values 

along the dykes (typically closest to zero) are valid depths. This is because any source 

distance equation represents a distance to the closest source, which only becomes a 

depth over the source. Similarly, in Figure 126 only the susceptibility values over the 

peaks are valid. For the susceptibility calculations, 𝑤 = 100 𝑚, 𝐹 = 28 280 𝑛𝑇, 𝐼 =

63.88°, 𝐷 = −17.18° . 
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Figure 122 𝑨𝒔𝟎 dataset used in calculations for 𝒓 and 𝒌. 

 

Figure 123 𝑨𝒔𝟏 dataset used in calculations for 𝒓 and 𝒌. 
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Figure 124 Depth to source results using (4.75) (Cooper 2015). Only values over peaks are 
valid. Source depths have been corrected for flying height. 

 

Figure 125 Depth to source results using (4.74). Source depths have been corrected for 
flying height. 
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Figure 126 Calculated values for susceptibilities. Only values over dykes are valid. 

For comparison, Figure 125 shows results using equation (4.74) as opposed to equation 

(4.75) in Figure 124. The critical difference is that in Figure 124 a zero order analytic 

signal is used and produces cleaner results. This is due to higher orders of analytic signal 

being more susceptible to noise. 

A more extensive comparison is shown in Figure 127. Figure 127 a) and d) show depths 

calculated using 𝐴𝑠𝑥 (equations (4.72) and (4.86) respectively) and therefore highlight 

structures in the y-direction, whereas Figure 127 b) and e) show depths calculated using 

𝐴𝑠𝑦 (equations (4.73) and (4.87) respectively) and highlight structures in the x-direction. 

Equations (4.74), (4.75) and (4.85) (𝐴𝑠𝑧 and 𝐴𝑠) do not have any azimuthal bias, as shown 

in Figure 127 c), f), and g). Features that are common to results from the use of equations 

(4.74), (4.75) and (4.85) are probably due to valid sources. The different solutions that are 

obtained from the tensor data can therefore can be used for quality control. Since the 

numerical calculation of the source distances by the different methods is computationally 

trivial, they should therefore be used together in interpretation projects (Cooper and 

Whitehead, 2016). Figure 127 h) shows the susceptibility results (calculated using equation 

(4.109)). 
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Figure 127 a), b) and c) show the source-distance results calculated from equations (4.72), 
(4.73) and (4.74). d), e) and f) show the depth results from equations (4.85), (4.86), (4.87).  g) 
Source-distance from equation (4.75). h) Susceptibility from equation (4.109). A dyke width 
of 100 meters was used. The flight height of 50 m was removed from the distances. 

All algorithms show similar results for the source depths. The depths have a mean value 

of -165 metres with a standard deviation of 83 metres, which is geologically acceptable 

since this area is covered by surface deposits (a flight height of 50 metres was removed 

from the distances) However, equations (4.72), (4.73) and (4.74) (Figure 127a), b) and c)) 

use higher order derivatives in their calculation, and are therefore more sensitive to noise, 

but conversely they should be less sensitive to interference (Cooper, 2016; Cooper, 2015). 

The lower orders of 𝐴𝑠 used in equations (4.85), (4.86), (4.87) and (4.75) (Figure 127d), 

e), f) and g)) give cleaner results. In either case, solutions can be located using 𝐴𝑠 only and 

extracting the depth solution from the relevant location.  

Following this, a peak finding routine was applied to 𝐴𝑠 to obtain the optimal locations for 

sources. Results are shown in Figure 128. Notice that depending on the threshold, 

locations which are not valid sources (i.e. plugs as opposed to dykes) may be detected. 
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An example of this is highlighted by a red circle in Figure 128. Such outliers can either be 

manually edited out, using a GIS for example, or can be left in, with solutions corrected in 

the forward modelling phase. 

 

Figure 128 Filtered results after DBSCAN, The red outline indicates an example of a possible 
plug-like body which has been misclassified. 

Now, each point in Figure 128 will have a different susceptibility solution. This is shown in 

Figure 129. This may not be desirable for a number of reasons: 

1) Some of the solutions may be outliers which are not realistic and have been 

generated due to noise and/or aliasing in the datasets 

2) The number of solutions is akin to having a separate lithology for each solution – 

complicating forward modelling enormously. Depending on hardware available, 

this may not be a problem. 
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Figure 129 Peak locations with susceptibilities. The susceptibilities are displayed to 
illustrate the general susceptibility regimes within the dykes, for input into determining how 
many general susceptibility classes are in the data.  

Therefore, to simplify the number of susceptibility solutions, conventional k-means cluster 

analysis (MacQueen, 1967) can be used to establish susceptibility groupings in the data. 

The usefulness of this is that it can be done to 1-D data as well. The class centre points 

become the susceptibilities used in the model and are assigned to the reduced depth 

solutions. 

Examination of the magnetic data shows at least two different types of non remanent 

dykes – one with high susceptibility, and others with moderate susceptibility and one 

remanent dyke. However, examination of the susceptibility distribution shows two 

prominent groups, most likely because the susceptibility calculations cannot account for 

remanence and the remanent dyke had similar calculated susceptibilities to one of the 

non-remanent groups. Because of this, the classification was performed with two classes. 

Class 1 had a centre point of k = 0.023 and class 2 had a centre point of 0.175. The 

distribution of susceptibilities with classes overlain can be seen in Figure 130. Note that a 

log normal distribution can be used when displaying magnetic properties. 

These depth solutions are then converted to the 3D voxel based model (Figure 131), 

where they can be used in forward modelling (Figure 132) to further improve the results. 

The forward modelling can be in conventional or tensor form. Figure 131 in particular 



214 

 

shows that the susceptibility groups shown in red and blue occur coincide exactly with 

corresponding dyke groups visually seen in Figure 120. 

 

Figure 130 Susceptibility distribution with classes in colour. Class1 is in blue and class 2 is 
in red. 

 

Figure 131 3D model of dykes. All coordinates are in metres. 
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Figure 132 a) A north-south profile extracted from the centre of the study area (orange) as 
shown in Figure 117, and forward model response of the model shown as a solid line, (blue) 
using the results of the source-distance and susceptibility calculations. b) Model used to 
generate the synthetic magnetic data shown in (a). The red dykes have a susceptibility of 
0.023 SI and the blue dykes have a susceptibility of 0.175 SI. The results of the source-
distance calculations are overlain. 

The results of the modelling (Figure 132)) confirm the validity of both the depths and 

susceptibility estimates. These susceptibility values are reasonable for dolerite dykes. 

Discrepancies between the source distance results and the forward modelled results may 

be due to the susceptibility values being over simplified, incorrect dyke widths, or the 

presence of remanent magnetisation. This does not affect the source distance 

calculations, only the susceptibility estimates. 

Therefore, the process of taking depth solutions dataset, extracting the correct solutions, 

identifying key features (such as dykes as opposed to point/plug like features) and 

converting that information into a model is straightforward. Initial dykes/edges will be 

vertical, but this just forms a reasonable starting point for further forward modelling. 
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A more heterogeneous susceptibility solution can be obtained by simply adding more 

classes in the classification phase of the process. As an example, k-means cluster 

analysis of the susceptibilities was performed on 10 classes. The results are of the 

susceptibility distribution are shown in Figure 133. 

Figure 134 shows the results. In general, all solutions are better. With small magnetic 

peaks being better represented. The second large peak at 21 000 metres has a slightly 

worse solution. The remanent peak just after 15 000 meters is interesting, since it is 

larger than before but mirrors the negative remanent anomaly better. Since the analytic 

signal of the negative remanent anomaly would be positive, this shows how the routine is 

trying to fit a non-remanent version of this peak. 

 

Figure 133 Susceptibility distribution of cluster analysis performed on 10 classes. 
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Figure 134 a) The same A north-south profile extracted as in Figure 132, from the centre of 
the study area (orange) as shown in Figure 107, and forward model response of the model 
shown as a solid line, (blue) using the results of the source-distance and susceptibility 
calculations. b) Locations of dykes are shown with depth solutions. 
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CHAPTER 7 CONCLUSIONS 

The forward modelling of voxel data, both in conventional and tensor form, has been 

shown to not only be viable but also has efficiencies which are as good, if not better 

(when taking editing into account) than non-voxel techniques. Rectangular prisms in 

particular allow for a number of optimisations in the calculation of the forward model. 

However, the reduction of modelling time is best made with a reasonable starting point to 

the modelling process. Source distance calculations provide an efficient form of inversion 

with which to provide this starting model. The application of tensor data to source 

detection techniques has been shown to be viable and agrees well with previous work 

done by Cooper, (Cooper, 2014c; 2014b, 2015; Cooper and Whitehead, 2016). The 

advantage is potentially lower noise in the calculation of the analytic signal (𝐴𝑠1), due to 

using direct measurements rather than derived derivative products. 

Remanence was examined and equations for direction cosines relating the total 

magnetisation were developed. These cosines are model independent and are extremely 

useful in assessing whether remanence exists in an area (even if only subtly) as well as 

giving an indication of the possible direction of remanence in order to achieve the current 

field direction. When applied to real tensor data, the solutions also give an indication of 

the variability in the remanent field over the body, indicating the possibly homogeneity or 

heterogeneity of remanent material.  

From the direction cosines, equations for remanent magnetisation, inclination and 

declination were developed. The limitation on these equations are that they are meant for 

dykes, and are more effective at higher Q-ratios. In addition, the susceptibility derived 

from the analytic signal is not well suited for this, since it is based on a field which 

includes remanence. Therefore, it may give an indication of susceptibility, but in a 

remanent environment an external measurement of susceptibility will be needed. 

The derivation of tensor datasets from total magnetic intensity data showed that the 

process not only is viable, but also achieves good results. However, one restriction is that 

remanence is not captured in such a derivation. The extraction of valid source distance 

solutions from raster data is straightforward and allows fast creation of the 3D starter 

model for the area, from which improvements can be made through further forward 

modelling. Calculations of susceptibility are important for accurate forward modelling of 

these datasets, and are most effective in non-remanent areas. The use of direction 

cosine calculations to detect remanence is not possible in the case of synthetic data, 
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since the basic premise of such data is that one constant set of direction cosines was 

used to create the dataset in the first place.  

The testing of source distance techniques on tensor data showed both strengths and 

limitations. In spite of the fact that the tensor dataset tested (Tallawang) was not over a 

perfect dyke, the calculations for depth and width proved robust with solutions in the 

expected range. The low Q-ratio and uncertainty in susceptibility contributed to non-

optimal solution for total magnetisation and from this, remanent magnetisation, inclination 

and declination. A synthetic model describing the Tallawang skarn proved though, that 

should the total magnetisation and susceptibility be accurately known, it is possible to 

accurately derive remanent magnetisation, inclination and declination. Direction cosine 

solutions over the body showed a degree of complexity in the remanence, possibly due to 

the presence of magnetite in lenses, thereby suggesting a complex composition. 

  



220 

 

REFERENCES 

Altermann, W. and Lenhardt, N., 2012. The volcano-sedimentary succession of the 
Archean Sodium Group, Ventersdorp Supergroup, South Africa: Volcanology, 
sedimentology and geochemistry. Precambrian Research, 214–215, pp.60–81. 

Andreasen, G.E. and Zietz, I., 1969. Magnetic fields for a 4x6 prismatic model. Geological 
Survey Professional Paper 666. Washington, USA: United States Government Printing 
Office, 228 pages. 

Argast, D., Fitzgerald, D.J., Holstein, H., Stolz, R. and Chwala, A., 2010. Compensation 
of the full magnetic tensor gradient signal. In: ASEG 2010. Sydney, Austrailia, pp.1–4. 

Barbosa, V.C.F., 1994. Generalized compact gravity inversion. Geophysics, 59(1), 
pp.57–68. 

Barnett, C.T., 1976. Theoretical modelling of the magnetic and gravitational fields of an 
arbitrarily shaped three-dimensional body. Geophysics, 41(6), pp.1353–1364. 

Bastani, M. and Pedersen, L.B., 2001. Automatic interpretation of magnetic dike 
parameters using the analytical signal technique. Geophysics, 66(2), pp.551–561. 

Baykiev, E., Ebbing, J., Brönner, M. and Fabian, K., 2016. Forward modeling magnetic 
fields of induced and remanent magnetization in the lithosphere using tesseroids. 
Computers and Geosciences, 96, pp.124–135. 

Beiki, M., 2010. Analytic signals of gravity gradient tensor and their application to 
estimate source location. Geophysics, 75(6), pp.I59–I74. 

Beiki, M., Clark, D.A., Austin, J.R. and Foss, C.A., 2012. Estimating source location using 
normalized magnetic source strength calculated from magnetic gradient tensor data. 
Geophysics, 77(6), pp.J23–J37. 

Bhattacharyya, B.K., 1964. Magnetic anomalies due to prism-shaped bodies with 
arbitrary polarization. Geophysics, 29(4), pp.517–531. 

Billings, S., 2012. Superconducting Magnetic Tensor Gradiometer System for Detection 
of Underwater Military Munitions ( MR-1661 ). Sky Research, Inc., 108 pages. 

Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge 
University Press, Cambridge (UK), 441 pages. 

Bosum, W., Eberle, D. and Rehi, H.-J., 1988. A gyro-oriented 3-component borehole 
magnetometer for mineral prospecting, with examples of its application. Geophysical 
Prospecting, 36(8), pp.933–961. 

Briggs, I.C., 1974. Machine contouring using minimum curvature. Geophysics, 39(1), 
pp.39–48. 

Buchmann, J.P., 1960. Exploration of a geophysical anomaly at Trompsburg, Orange 
Free State, South Africa. Transactions of the Geological Society of South Africa, 63, 
pp.1–10. 



221 

 

Butler, R.F., 2004. Paleomagnetism: Magnetic Domains to Geologic Terranes. Electronic 
edition, University of Portland, 248 pages. 

Cai, G., Chen, B.M. and Lee, T.H., 2011. Coordinate Systems and Transformations. In: 
Advances in Industrial Control. Springer London, pp.23–34. 

Calcagno, P., Chilès, J.P., Courrioux, G. and Guillen, A., 2008. Geological modelling from 
field data and geological knowledge. Part I. Modelling method coupling 3D potential-field 
interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171(1–4), 
pp.147–157. 

Caratori Tontini, F., Cocchi, L. and Carmisciano, C., 2009. Rapid 3-D forward model of 
potential fields with application to the Palinuro Seamount magnetic anomaly (southern 
Tyrrhenian Sea, Italy). Journal of Geophysical Research, 114(B2), p.B02103. 

Cevallos, C., 2014. Automatic generation of 3D geophysical models using curvatures 
derived from airborne gravity gradient data. Geophysics, 79(5), pp.G49–G58. 

Cevallos, C., 2016. Interpreting the direction of the gravity gradient tensor eigenvectors: 
Their relation to curvature parameters of the gravity field. Geophysics, 81(3), pp.G49–
G57. 

Christensen, A.N., Dransfield, M.H., Van Galder, C. and Methods, P., 2015. Noise and 
repeatability of airborne gravity gradiometry. First Break, 33(April), pp.55–63. 

Clark, D.A., 1997. Magnetic petrophysics and magnetic petrology: aids to geological 
interpretation of magnetic surveys. AGSO Journal of Australian Geology & Geophysics, 
17(2), pp.83–103. 

Clark, D.A., 2012. New methods for interpretation of magnetic vector and gradient tensor 
data I: Eigenvector analysis and the normalised source strength. Exploration Geophysics, 
43(4), pp.267–282. 

Clark, D.A., 2013. New methods for interpretation of magnetic vector and gradient tensor 
data II: Application to the Mount Leyshon anomaly, Queensland, Australia. Exploration 
Geophysics, 44(2), pp.114–127. 

Clark, D.A., 2014. Integrated Magnetics: Contributions to improved processing and 
interpretation of magnetic gradient tensor data, new methods for source location and 
estimation of magnetisation, and predictive magnetic exploration models. Macquarie 
University, PhD Thesis, 345 pages. 

Clark, D.A. and Emerson, D.W., 1991. Notes on rock magnetization characteristics in 
applied geophysical studies. Exploration Geophysics, 22(3), pp.547–555. 

Clark, D.A., Schmidt, P.W., Coward, D.A. and Huddleston, M.P., 1998. Remote 
determination of magnetic properties and improved drill targeting of magnetic anomaly 
sources by Differential Vector Magnetometry (DVM). Exploration Geophysics, 29(4), 
pp.312–319. 

Clarke, J. and Braginski, A.I., 2004. The SQUID Handbook. Vol. I Fundamentals and 
Technology of SQUIDS and SQUID Systems, Weinheim, FRG: Wiley-VCH Verlag GmbH 
& Co. KGaA, 414 pages. 

Coggon, J.H., 1976. Magnetic and gravity anomalies of polyhedra. Geoexploration, 14(2), 



222 

 

pp.93–105. 

Cole, P. and Cooper, G.R.J., 2018. Determination of the distance to magnetic sources 
using tensor data. Pure and Applied Geophysics, 175(6), pp.2237–2250. 

Cooper, G.R.J., 1997. GravMap and PFproc: Software for filtering geophysical map data. 
Computers & Geosciences, 23(1), pp.91–101. 

Cooper, G.R.J., 2014a. Reducing the dependence of the analytic signal amplitude of 
aeromagnetic data on the source vector direction. Geophysics, 79(4), pp.J55–J60. 

Cooper, G.R.J., 2014b. The automatic determination of the location, depth, and dip of 
contacts from aeromagnetic data. Geophysics, 79(3), pp.35–41. 

Cooper, G.R.J., 2014c. The automatic determination of the location and depth of contacts 
and dykes from aeromagnetic data. Pure and Applied Geophysics, 171(9), pp.2417–
2423. 

Cooper, G.R.J., 2015. Using the analytic signal amplitude to determine the location and 
depth of thin dikes from magnetic data. Geophysics, 80(1), pp.J1–J6. 

Cooper, G.R.J., 2016. An improved method for determining the distance to magnetic 
sources. Pure and Applied Geophysics, 173(4), pp.1279–1288. 

Cooper, G.R.J. and Whitehead, R.C., 2016. Determining the distance to magnetic 
sources. Geophysics, 81(2), pp.J39–J48. 

Daudt, C.R., Braile, L.W., Nowack, R.. and Chiang, C.S., 1989. A comparison of finite-
difference and Fourier method calculations of synthetic seismograms. Bulletin of the 
Seismological Society of America, 79(4), pp.1210–1230. 

Diebel, J., 2006. Representing attitude: Euler angles, unit quaternions, and rotation 
vectors. Matrix, 58, pp.1–35. 

Eroglu, S., Schoenberg, R., Wille, M., Beukes, N. and Taubald, H., 2015. Geochemical 
stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58-2.50Ga-old 
Transvaal Supergroup carbonate platform, South Africa. Precambrian Research, 266, 
pp.27–46. 

Eschner, W. and Ludwig, W., 1995. Planar gradiomenetrs arranged on non-parallel 
surfaces for determination of a gradient tensor of a magnetic field. US005469056A. 

Ester, M., Kriegel, H.-P., Sander, J. and Xu, X., 1996. A density-based algorithm for 
discovering clusters in large spatial databases with noise. In: Proceedings of the Second 
International Conference on Knowledge Discovery and Data Mining (KDD-96). Elsevier, 
pp.226–231. 

Farr, T., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, 
M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., 
Oskin, M., Burbank, D. and Alsdorf, D., 2007. The shuttle radar topography mission. 
Reviews of Geophysics, 45(2005), pp.1–33. 

Fisher, R., 1953. Dispersion on a sphere. Proceedings of the Royal Society A: 
Mathematical, Physical and Engineering Sciences, 217(1130), pp.295–305. 



223 

 

Fitzgerald, D.J., Argast, D. and Holstein, H., 2009. Further developments with full tensor 
gradiometry datasets. In: 20th International Geophysical Conference and Exhibition (22-
25 November 2009). Adelaide, South Australia, pp.1–7. 

FitzGerald, D.J., Argast, D., Paterson, R. and Holstein, H., 2009. Full tensor magnetic 
gradiometry processing and interpretation developments. In: 11th SAGA Biennial 
Technical Meeting and Exhibition. pp.265–272. 

Fitzgerald, D.J. and Holstein, H., 2006. Innovative data processing methods for gradient 
airborne geophysical data sets. The Leading Edge, 25(1), pp.87–94. 

Fitzgerald, D.J. and Holstein, H., 2016. Optimising surface mapping of elongated 
geological features from full tensor gravity gradiometry. In: Vienna 2016 - 78th EAGE 
Conference & Exhibition 2016. Vienna, Austria, 30 May - 2 June 2016. 

Fitzgerald, D.J. and Milligan, P., 2013. Defining a deep fault network for Australia, using 
3D ‘worming’ (SEG annual meeting, Houston 2013). In: SEG Annual Meeting, Houston 
2013. Houston, USA, pp.1126–1130. 

Fitzgerald, D.J. and Paterson, R., 2013. Getting the best value from gravity gradiometry. 
In: 13th SAGA Biennial Conference & Exhibition. Kruger National Park, South Africa. 

Fitzgerald, D.J., Reid, A.B., Holstein, H. and Biegert, E., 2007. The amplitude / phase 
treatment of full tensor gradiometry. In: SEG / San Antonio 2007 Annual Meeting. San 
Antonio, pp.765–769. 

Gabor, D., 1946. Theory of communication. Journal of the Institution of Electrical 
Engineers - Part III: Radio and Communication Engineering, 93(26), pp.429–457. 

Geological Survey of South Africa, 1993. 1:250 000 Geological Series, Vryburg (2624). 

Goldfarb, R.B. and Fickett, F.R., 1985. Units for Magnetic Properties, NBS Special 
Publication 696. Boulder, Colorado, 1 page. 

Grant, F.S., 1985. Aeromagnetics, geology and ore environments, I. Magnetite in 
igneous, sedimentary and metamorphic rocks: An overview. Geoexploration, 23(3), 
pp.303–333. 

Green, A.A., 1983. A comparison of adjustment procedures for leveling aeromagnetic 
survey data. Geophysics, 48(6), pp.745–753. 

Guillen, A., Calcagno, P., Courrioux, G., Joly, A. and Ledru, P., 2008. Geological 
modelling from field data and geological knowledge. Part II. Modelling validation using 
gravity and magnetic data inversion. Physics of the Earth and Planetary Interiors, 171(1–
4), pp.158–169. 

Guptasarma, D. and Singh, B., 1999. New scheme for computing the magnetic field 
resulting from a uniformly magnetized arbitrary polyhedron. Geophysics, 64(1), pp.70–74. 

Hall, D.H., 1959. Direction of polarization determined from magnetic anomalies. Journal 
of Geophysical Research, 64(11), pp.1945–1959. 

Hamilton, W.R., 1853. Lectures on quaternions. Royal Irish Academy, pp.1–736. 



224 

 

Heath, P., 2003. Evolving the regolith from gravity and magnetics tensor data : theory and 
preliminary results. In: Advances in Regolith. pp.165–169. 

Heath, P., 2007. Analysis of potential field gradient tensor data: forward modelling, 
inversion and near-surface exploration. University of Adelaide, PhD Thesis, 206 pages. 

Heath, P., Heinson, G. and Greenhalgh, S., 2003. Some comments on potential field 
tensor data. Exploration Geophysics, 34(1), pp.57–62. 

Helbig, K., 1963. Some integrals of magnetic anomalies and their relation to the 
parameters of the disturbing body. Zeitschrift für Geophysik, (29), pp.83–96. 

Henderson, R.G. and Zietz, I., 1948. Analysis of total magnetic intensity anomalies 
produced by point and line sources. Geophysics, 13(3), pp.428–436. 

Hjelt, S.-E., 1972. Magnetostatic anomalies of dipping prisms. Geoexploration, 10(4), 
pp.239–254. 

Hjelt, S.-E., 1974. The gravity anomaly of a dipping prism. Geoexploration, 12(1), pp.29–
39. 

Holstein, H., 2002. Gravimagnetic similarity in anomaly formulas for uniform polyhedra. 
Geophysics, 67(4), pp.1126–1133. 

Holstein, H., 2003. Gravimagnetic anomaly formulas for polyhedra of spatially linear 
media. Geophysics, 68(1), pp.157–167. 

Holstein, H., FitzGerald, D.J. and Stefanov, H., 2013. Gravimagnetic similarity for 
homogeneous rectangular prisms. In: 75th EAGE Conference & Exhibition. London, UK, 
pp.10–13. 

Holstein, H., Fitzgerald, D.J., Zengerer, M. and Starr, A., 2015. Left or right handed 
potential data? First Break, 33(April), pp.87–92. 

Hsu, S.-K., Coppens, D. and Shyu, C.-T., 1998. Depth to magnetic source using the 
generalized analytic signal. Geophysics, 63(6), pp.1947–1957. 

Humphrey, K.P., Horton, T.J. and Keene, M.N., 2005. Detection of mobile targets from a 
moving platform using an actively shielded, adaptively balanced SQUID gradiometer. 
IEEE Transactions on Applied Superconductivity, 15(2 PART I), pp.753–756. 

Husson, E., Guillen, A., Séranne, M., Courrioux, G. and Couëffé, R., 2018. 3D Geological 
modelling and gravity inversion of a structurally complex carbonate area: application for 
karstified massif localization. Basin Research, 30(4), pp.766–782. 

Johnson, B.D. and van Klinken, G., 1979. Some equivalent bodies and ambiguity in 
magnetic and Gravity interpretation. Exploration Geophysics, 10(1), pp.109–110. 

Jones, E., Oliphant, T., Peterson, P. and Others, 2001. SciPy: Open Source Scientific 
Tools for Python. [online] Available at: <http://www.scipy.org/> [Accessed 23 Aug. 2017]. 

Keene, M.N., Humphrey, K.P. and Horton, T.J., 2005. Actively shielded, adaptively 
balanced SQUID gradiometer system for operation aboard moving platforms. IEEE 
Transactions on Applied Superconductivity, 15(2 PART I), pp.761–764. 



225 

 

Kogbetliantz, E.G., 1944. Quantitative interpretation of magnetic and gravitational 
anomalies. Geophysics, 9, pp.463–493. 

Kolecki, J.C., 2002. An Introduction to Tensors for Students of Physics and Engineering. 
NASA/TM—2002-211716. Glenn Research Center, Cleveland, Ohio, 29 pages. 

Lajaunie, C., Courrioux, G. and Manuel, L., 1997. Foliation fields and 3D cartography in 
geology: Principles of a method based on potential interpolation. Mathematical Geology, 
29(4), pp.571–584. 

Li, X. and Chouteau, M., 1998. Three dimensional gravity modeling in all space. Surveys 
in Geophysics, 19(4), pp.339–368. 

Li, Y., 2001. 3‐D inversion of gravity gradiometer data. In: SEG Technical Program 
Expanded Abstracts 2001. Society of Exploration Geophysicists, pp.1470–1473. 

Li, Y. and Oldenburg, D.W., 1996. 3-D inversion of magnetic data. Geophysics, 61(2), 
pp.394–408. 

Li, Y. and Oldenburg, D.W., 2001. Stable reduction to the pole at the magnetic equator. 
Geophysics, 66(2), p.571. 

Ma, G. and Du, X., 2012. An improved analytic signal technique for the depth and 
structural index from 2D magnetic anomaly data. Pure and Applied Geophysics, 169(12), 
pp.2193–2200. 

Ma, G. and Li, L., 2013. Direct analytic signal (DAS) method in the interpretation of 
magnetic data. Journal of Applied Geophysics, 88, pp.101–104. 

MacLeod, I.N., Jones, K. and Dai, T.F., 1993. 3-D analytic signal in the interpretation of 
total magnetic field data at low magnetic latitudes. Exploration Geophysics, 24(4), 
pp.679–690. 

MacQueen, J., 1967. Some methods for classification and analysis of multivariate 
observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics 
and Probability, 1(233), pp.281–297. 

MAG3D, 2017. A Program Library for Forward Modelling and Inversion of Magnetic Data 
over 3D Structures, version 6. Developed under the consortium research project 
Joint/Cooperative Inversion of Geophysical and Geological Data, UBC-Geophysical 
Inversion Facility, Department of Earth and Ocean Sciences, University of British 
Columbia, Vancouver, British Columbia. 

Maier, W.D., Peltonen, P., Grantham, G. and Mänttári, I., 2003. A new 1.9 Ga age for the 
Trompsburg intrusion, South Africa. Earth and Planetary Science Letters, 212, pp.251–
360. 

Maré, L.P. and Cole, J., 2005. The Trompsburg Complex, South Africa: A preliminary 
three dimensional model. Journal of African Earth Sciences, 44, pp.314–330. 

McInerney, P., Goldberg, A., Calcagno, P., Courrioux, G., Guillen, R. and Seikel, R., 
2007. Improved 3D geology modelling using an implicit function interpolator and forward 
modelling of potential field data. Exploration 07: Fifth Decennial International Conference 
on Mineral Exploration, pp.919–922. 



226 

 

Munschy, M. and Fleury, S., 2011. Scalar, vector, tensor magnetic anomalies: 
Measurement or computation? Geophysical Prospecting, 59(6), pp.1035–1045. 

Nabighian, M.N., 1972. The analytic signal of two dimensional magnetic bodies with 
polygonal cross section: its properties and use for automated anomaly interpretation. 
Geophysics, 37(3), pp.507–517. 

Nabighian, M.N., Grauch, V.J.S., Hansen, R.O., LaFehr, T.R., Li, Y., Peirce, J.W., 
Phillips, J.D. and Ruder, M.E., 2005. The historical development of the magnetic method 
in exploration. Geophysics, 70(6), p.33ND–61ND. 

Nelson, J.B., 1988. Calculation of the magnetic gradient tensor from total field gradient 
measurements and its application to geophysical interpretation. Geophysics, 53(7), 
pp.957–966. 

Nettleton, L.L., 1942. Gravity and magnetic calculations. Geophysics, 7(3), pp.293–310. 

Ortlepp, R.J., 1959. A pre-Karoo igneous complex at Trompsburg, Orange Free State, 
revealed by drilling exploration. Transactions of the Geological Society of South Africa, 
62, pp.33–57. 

Pajot, G., de Viron, O., Diament, M., Lequentrec-Lalancette, M.-F. and Mikhailov, V., 
2008. Noise reduction through joint processing of gravity and gravity gradient data. 
Geophysics, 73(3), pp.I23–I34. 

Parker, R., 1973. The rapid calcuation of potential anomalies. Geophysical Journal of the 
Royal Astronomical Society, 31, pp.447–455. 

Pedersen, L.B. and Rasmussen, T.M., 1990. The gradient tensor of potential field 
anomalies: Some implications on data collection and data processing of maps. 
Geophysics, 55(12), p.1558. 

Pedersen, L.B., Rasmussen, T.M. and Dyrelius, D., 1990. Construction of component 
maps from aeromagnetic total field anomaly maps. Geophysical Prospecting, 38(7), 
pp.795–804. 

Phillips, J.D., 2005. Can we estimate total magnetization directions from aeromagnetic 
data using Helbig’s integrals? Earth Planets Space, 57(1), pp.681–689. 

Phillips, J.D., Nabighian, M.N., Smith, D. V. and Li, Y., 2007. Estimating locations and 
total magnetization vectors of compact magnetic sources from scalar, vector, or tensor 
magnetic measurements through combined Helbig and Euler analysis. In: SEG Technical 
Program Expanded Abstracts. San Antonio, pp.770–774. 

Plouff, D., 1976. Gravity and magnetic fields of polygonal prisms and application to 
magnetic terrain corrections. Geophysics, 41(4), pp.727–741. 

Press, W.H., Teukolsky, S.A., Vettering, W.T. and Flannery, B.P., 2007. Numerical 
Recipes in C: The Art of Scientific Computing. In: 3rd ed. New York: Cambridge 
University Press., pp.186–190. 

Rasmussen, R. and Pedersen, L.B., 1979. End corrections in potential field modelling. 
Geophysical Prospecting, 27(4), pp.749–760. 

Reford, M.S., 1964. Magnetic anomalies over thin sheets. Geophysics, 29(4), pp.532–



227 

 

536. 

Reid, A.B., 1980. Aeromagnetic survey design. Geophysics, 45(5), pp.973–976. 

Reid, A.B. and Thurston, J.B., 2014. The structural index in gravity and magnetic 
interpretation: Errors, uses, and abuses. Geophysics, 79(4), pp.J61–J66. 

Rossberg, K., 1983. A First Course in Analytical Mechanics. John Wiley and Sons, Inc., 
pp.228–231. 

Salem, A., Ravat, D., Mushayandebvu, M.F. and Ushijima, K., 2004. Linearized least‐
squares method for interpretation of potential‐field data from sources of simple geometry. 
Geophysics, 69(3), pp.783–788. 

Schiffler, M., Queitsch, M., Stolz, R., Chwala, A., Krech, W., Meyer, H.G. and Kukowski, 
N., 2014. Calibration of SQUID vector magnetometers in full tensor gradiometry systems. 
Geophysical Journal International, 198(2), pp.954–964. 

Schiffler, M., Queitsch, M., Stolz, R., Meyer, H.G. and Kukowski, N., 2017. Application of 
Hilbert-like transforms for enhanced processing of full tensor magnetic gradient data. 
Geophysical Prospecting, 65, pp.68–81. 

Schmidt, P., Clark, D.A., Leslie, K., Bick, M., Tilbrook, D. and Foley, C., 2004. GETMAG - 
a SQUID magnetic tensor gradiometer for mineral and oil exploration. Exploration 
Geophysics, 35(4), pp.297–305. 

Schmidt, P.W. and Clark, D.A., 1998. The calculation of magnetic components and 
moments from TMI: a case study from the Tuckers igneous complex, Queensland. 
Exploration Geophysics, 29(4), p.609. 

Schmidt, P.W. and Clark, D.A., 2006. The magnetic gradient tensor: Its properties and 
uses in source characterization. The Leading Edge, 25(1), pp.75–78. 

Sheriff, R.E., 1991. Encyclopedic Dictionary of Applied Geophysics. 3rd ed. Society of 
Exploration Geophysicists. 

Singh, B. and Guptasarma, D., 2001a. Joint modelling of gravity and magnetic fields - a 
new computational approach. Current Science, 81(12), pp.1626–1628. 

Singh, B. and Guptasarma, D., 2001b. New method for fast computation of gravity and 
magnetic anomalies from arbitrary polyhedra. Geophysics, 66(2), p.521. 

Spector, A. and Grant, F.S., 1970. Statistical models for interpreting aeromagnetic data. 
Geophysics, 35(2), pp.293–302. 

Stolz, R., Schiffler, M., Queitsch, M., Schmelz, M., Goepel, A., Kukowski, N., Meyer, M. 
and Meyer, H., 2015. Why bother about gradients ? - SQUID based full tensor magnetic 
gradiometer for mineral exploration. In: 14th SAGA Biennial Technical Meeting and 
Exhibition. Drakensberg, South Africa. 

Stolz, R., Zakosarenko, V., Schulz, M., Chwala, A., Fritzsch, L., Meyer, H. and Köstlin, E., 
2006. Magnetic full-tensor SQUID gradiometer system for geophysical applications. 
Leading Edge, (February), pp.178–180. 



228 

 

Talwani, M., 1965. Computation with the help of a digital computer of magnetic anomalies 
caused by bodies of arbitrary shape. Geophysics, 30(5), pp.797–817. 

Tarlowski, C., 1989. Magnetic modelling of two and three-dimensional bodies. Australia: 
Australian Government Publishing Service. 

Thompson, D.T., 1982. EULDPH: A new technique for making computer‐assisted depth 
estimates from magnetic data. Geophysics, 47(1), pp.31–37. 

Yin, G., Zhang, Y., Mi, S., Fan, H. and Li, Z., 2016. Calculation of the magnetic gradient 
tensor from total magnetic anomaly field based on regularized method in frequency 
domain. Journal of Applied Geophysics, 134, pp.44–54. 

Zhang, C., Mushayandebvu, M.F., Reid, A.B., Fairhead, J.D. and Odegard, M.E., 2000. 
Euler deconvolution of gravity tensor gradient data. Geophysics, 65(2), pp.512–520. 

Zhu, L., 2007. Gravity gradient modeling using with Gravity and DEM. The Ohio State 
University Columbus, Ohio 43210. 

 

  



229 

 

APPENDIX 

Source code examples for performing calculations used in this thesis are provided below. 

They are all written in python and will require a python installation. The code contains 

routines for forward modelling, both for conventional and tensor data, as well as tests for 

source depth calculations 

The program requires at a minimum the following: 

 python 3.5.4 

 GDAL 2.1.4 

 matplotlib 2.0.2 

 numba 0.34.0 

 numpy 1.13.1 

 scipy 0.19.1 

 scikit_learn 0.18.2 

 cycler 0.10.0 

 pygmi 2.4.1 
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# ----------------------------------------------------------------------------- 

# Name:        tensorfin.py 

# 

# Author:      Patrick Cole 

# E-Mail:      pcole@geoscience.org.za 

# 

# Copyright:   (c) 2018 Council for Geoscience 

# Licence:     GPL-3.0 

# 

# This code is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 3 of the License, or 

# (at your option) any later version. 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

# GNU General Public License for more details. 

# 

# You should have received a copy of the GNU General Public License 

# along with this program.  If not, see <http://www.gnu.org/licenses/>. 

# ----------------------------------------------------------------------------- 

""" 

tensorfin.py forms part of the PhD submission for Patrick Cole at the 

University of the Witwatersrand. 

 

The code contains routines for forward modelling, both for conventional and 

tensor data. 

 

The program requires at a minimum the following: 

* python 3.5.4 

* GDAL 2.1.4 

* matplotlib 2.0.2 

* numba 0.34.0 

* numpy 1.13.1 

* scipy 0.19.1 

* scikit_learn 0.18.2 

* cycler 0.10.0 

* PyGMI 

 

Since PyGMI is likely to be a separate install, the path to it can be specified 

below. 

 

Forward modelling is based on the work by Blakely (1995) and Heath (2007) 

 

Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications. 

Heath, P., 2007. Analysis of Potential Field Gradient Tensor Data: Forward 

Modelling, Inversion and Near-Surface Exploration. The University of Adelaide. 

 

""" 

 

# pylint: disable=C0103,R0201,R0904,R0914,R0915, W0612, E1101 

 

import sys 

import copy 

import glob 

import tempfile 

import winsound 

import warnings 

from osgeo import gdal, osr 

import numpy as np 

from numpy.polynomial import polynomial 

import scipy.interpolate as si 

import scipy.signal as ss 

from numba import jit 

import matplotlib.pyplot as plt 

from matplotlib import colors 

from mpl_toolkits.axes_grid1 import make_axes_locatable 

from sklearn.cluster import DBSCAN, KMeans 

from cycler import cycler 
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from pygmi.pfmod.iodefs import ExportMod3D 

 

 

PyGMIPATH = r'C:\Work\Programming\pygmi' 

plt.rcParams['axes.prop_cycle'] = cycler(color='bgrcmyk') 

plt.rcParams['axes.grid'] = True 

plt.rcParams['axes.axisbelow'] = True 

plt.rcParams['image.cmap'] = 'jet' 

 

 

class GeoData(object): 

    """ 

    Data layer class: 

    This class defines each geological type and calculates the field 

    for one cube from the standard definitions. 

 

    The is a class which contains the geophysical information for a single 

    lithology. This includes the final calculated field for that lithology 

    only. 

 

    Attributes 

    ---------- 

 

    qratio : float 

        q ratio for remanence 

    minc : float 

        remanence inclination 

    mdec : float 

        remanence declination 

    mstrength : float 

        remanence magnetization 

    finc : float 

        field inclination 

    fdec : float 

        field declination 

    hintn : float 

        field strength 

    theta : float 

        azimuth 

    dxy : float 

        cube dimension 

    susc : float 

        susceptibility 

    dens : float 

        density 

    bdens : float 

        background density 

    height : float 

        observation height 

    Gc : float 

        Gravitation con 

    """ 

    def __init__(self, parent=None, ncols=10, nrows=10, numz=10, dxy=10., 

                 d_z=10., mht=80., ght=0.): 

        self.hintn = 30000. 

        self.susc = 0.01 

        self.mstrength = 0. 

        self.finc = -63. 

        self.fdec = -17. 

        self.minc = -63. 

        self.mdec = -17. 

        self.theta = 90. 

        self.bdensity = 2.67 

        self.density = 2.85 

        self.qratio = 0.0 

        self.lith_index = 0 

        self.parent = parent 

        if hasattr(parent, 'pbars'): 

            self.pbars = parent.pbars 

        else: 

            self.pbars = None 

 

        if hasattr(parent, 'showtext'): 
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            self.showtext = parent.showtext 

        else: 

            self.showtext = print 

 

    # ncols and nrows are the smaller dimension of the original grid. 

    # numx, numy, numz are the dimensions of the larger grid to be used as a 

    # template. 

 

        self.modified = True 

        self.g_cols = None 

        self.g_rows = None 

        self.g_dxy = None 

        self.numz = None 

        self.dxy = None 

        self.d_z = None 

        self.zobsm = None 

        self.zobsg = None 

 

        self.mlayers = None 

        self.mtmp = None 

        self.glayers = None 

 

        self.x12 = None 

        self.y12 = None 

        self.z12 = None 

 

        self.set_xyz(ncols, nrows, numz, dxy, mht, ght, d_z) 

 

    def calc_origin_grav(self, hcor=None): 

        """ Calculate the field values for the lithologies""" 

 

        if self.modified is True: 

            numx = self.g_cols*self.g_dxy 

            numy = self.g_rows*self.g_dxy 

 

# The 2 lines below ensure that the profile goes over the center of the grid 

# cell 

            xdist = np.arange(self.g_dxy/2, numx+self.g_dxy/2, self.g_dxy, 

                              dtype=float) 

            ydist = np.arange(numy-self.g_dxy/2, -1*self.g_dxy/2, 

                              -1*self.g_dxy, dtype=float) 

 

            if hcor is None: 

                hcor2 = 0 

            else: 

                hcor2 = int(self.numz-hcor.max()) 

 

            self.showtext('   Calculate gravity origin field') 

            self.gboxmain(xdist, ydist, self.zobsg, hcor2) 

 

            self.modified = False 

 

    def calc_origin_mag(self, hcor=None): 

        """ Calculate the field values for the lithologies""" 

 

        if self.modified is True: 

            numx = self.g_cols*self.g_dxy 

            numy = self.g_rows*self.g_dxy 

 

# The 2 lines below ensure that the profile goes over the center of the grid 

# cell 

            xdist = np.arange(self.g_dxy/2, numx+self.g_dxy/2, self.g_dxy, 

                              dtype=float) 

            ydist = np.arange(numy-self.g_dxy/2, -1*self.g_dxy/2, 

                              -1*self.g_dxy, dtype=float) 

 

            self.showtext('   Calculate magnetic origin field') 

 

            if hcor is None: 

                hcor2 = 0 

            else: 

                hcor2 = int(self.numz-hcor.max()) 
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            self.mboxmain(xdist, ydist, self.zobsm, hcor2) 

#            self.mtmp = self.mlayers.copy() 

#            self.gmmain(xdist, ydist) 

 

            self.modified = False 

 

    def rho(self): 

        """ Returns the density contrast """ 

        return self.density - self.bdensity 

 

    def set_xyz(self, ncols, nrows, numz, g_dxy, mht, ght, d_z, dxy=None, 

                modified=True): 

        """ Sets/updates xyz parameters again """ 

        self.modified = modified 

        self.g_cols = ncols*2+1 

        self.g_rows = nrows*2+1 

        self.numz = numz 

        self.g_dxy = g_dxy 

        self.d_z = d_z 

        self.zobsm = -mht 

        self.zobsg = -ght 

 

        if dxy is None: 

            self.dxy = g_dxy  # This must be a multiple of g_dxy or equal to it 

        else: 

            self.dxy = dxy  # This must be a multiple of g_dxy or equal to it. 

 

        self.set_xyz12() 

 

    def set_xyz12(self): 

        """ Set x12, y12, z12. This is the limits of the cubes for the model""" 

 

        numx = self.g_cols*self.g_dxy 

        numy = self.g_rows*self.g_dxy 

        numz = self.numz*self.d_z 

        dxy = self.dxy 

        d_z = self.d_z 

 

        self.x12 = np.array([numx/2-dxy/2, numx/2+dxy/2]) 

        self.y12 = np.array([numy/2-dxy/2, numy/2+dxy/2]) 

        self.z12 = np.arange(-numz, numz+d_z, d_z) 

 

    def gboxmain(self, xobs, yobs, zobs, hcor): 

        """ Gbox routine by Blakely 

            Note: xobs, yobs and zobs must be floats or there will be problems 

            later. 

 

        Subroutine GBOX computes the vertical attraction of a 

        rectangular prism.  Sides of prism are parallel to x,y,z axes, 

        and z axis is vertical down. 

 

        Input parameters: 

            Observation point is (x0,y0,z0).  The prism extends from x1 

            to x2, from y1 to y2, and from z1 to z2 in the x, y, and z 

            directions, respectively.  Density of prism is rho.  All 

            distance parameters in units of m; 

 

        Output parameters: 

            Vertical attraction of gravity, g, in mGal/rho. 

            Must still be multiplied by rho outside routine. 

            Done this way for speed. """ 

 

        glayers = [] 

        piter = iter 

 

        z1122 = self.z12.copy() 

        x_1 = float(self.x12[0]) 

        y_1 = float(self.y12[0]) 

        x_2 = float(self.x12[1]) 

        y_2 = float(self.y12[1]) 

        z_0 = float(zobs) 

        numx = int(self.g_cols) 

        numy = int(self.g_rows) 
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        if zobs == 0: 

            zobs = -0.01 

 

        for z1 in piter(z1122[:-1]): 

            if z1 < z1122[hcor]: 

                glayers.append(np.zeros((self.g_cols, self.g_rows))) 

                continue 

 

            z2 = z1 + self.d_z 

 

            gval = np.zeros([self.g_cols, self.g_rows]) 

 

            gval = gbox(gval, xobs, yobs, numx, numy, z_0, x_1, y_1, z1, 

                        x_2, y_2, z2, np.ones(2), np.ones(2), np.ones(2), 

                        np.array([-1, 1])) 

 

            gval *= 6.6732e-3 

            glayers.append(gval) 

 

        self.glayers = np.array(glayers) 

 

    def mboxmain(self, xobs, yobs, zobs, hcor): 

        """ Mbox routine by Blakely 

            Note: xobs, yobs and zobs must be floats or there will be problems 

            later. 

 

        Subroutine MBOX computes the total field anomaly of an infinitely 

        extended rectangular prism.  Sides of prism are parallel to x,y,z 

        axes, and z is vertical down.  Bottom of prism extends to infinity. 

        Two calls to mbox can provide the anomaly of a prism with finite 

        thickness; e.g., 

 

            call mbox(x0,y0,z0,x1,y1,z1,x2,y2,mi,md,fi,fd,m,theta,t1) 

            call mbox(x0,y0,z0,x1,y1,z2,x2,y2,mi,md,fi,fd,m,theta,t2) 

            t=t1-t2 

 

        Requires subroutine DIRCOS.  Method from Bhattacharyya (1964). 

 

        Input parameters: 

            Observation point is (x0,y0,z0).  Prism extends from x1 to 

            x2, y1 to y2, and z1 to infinity in x, y, and z directions, 

            respectively.  Magnetization defined by inclination mi, 

            declination md, intensity m.  Ambient field defined by 

            inclination fi and declination fd.  X axis has declination 

            theta. Distance units are irrelevant but must be consistent. 

            Angles are in degrees, with inclinations positive below 

            horizontal and declinations positive east of true north. 

            Magnetization in A/m. 

 

        Output paramters: 

            Total field anomaly t, in nT.""" 

 

        mlayers = [] 

        piter = iter 

 

        z1122 = self.z12.copy() 

        z1122 = z1122.astype(float) 

        x1 = float(self.x12[0]) 

        y1 = float(self.y12[0]) 

        x2 = float(self.x12[1]) 

        y2 = float(self.y12[1]) 

        z0 = float(zobs) 

        numx = int(self.g_cols) 

        numy = int(self.g_rows) 

 

        ma, mb, mc = dircos(self.minc, self.mdec, self.theta) 

        fa, fb, fc = dircos(self.finc, self.fdec, self.theta) 

 

        mr = self.mstrength * np.array([ma, mb, mc]) * 100 

        mi = self.susc*self.hintn*np.array([fa, fb, fc]) / (4*np.pi) 

        m3 = mr+mi 
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        mt = np.sqrt(m3 @ m3) 

        if mt > 0: 

            m3 /= mt 

 

        ma, mb, mc = m3 

 

        fm1 = ma*fb + mb*fa 

        fm2 = ma*fc + mc*fa 

        fm3 = mb*fc + mc*fb 

        fm4 = ma*fa 

        fm5 = mb*fb 

        fm6 = mc*fc 

 

        if zobs == 0: 

            zobs = -0.01 

 

        z1122 = np.append(z1122, [2*z1122[-1]-z1122[-2]]) 

 

        for z1 in piter(z1122): 

            if z1 < z1122[hcor]: 

                mlayers.append(np.zeros((self.g_cols, self.g_rows))) 

                continue 

 

            mval = np.zeros([self.g_cols, self.g_rows]) 

 

            mval = mbox(mval, xobs, yobs, numx, numy, z0, x1, y1, z1, x2, y2, 

                        fm1, fm2, fm3, fm4, fm5, fm6, np.ones(2), np.ones(2)) 

 

            mlayers.append(mval) 

 

        self.mlayers = np.array(mlayers) * mt 

        self.mlayers = self.mlayers[:-1]-self.mlayers[1:] 

 

 

class Data(object): 

    """ 

    PyGMI Data Object 

 

    Attributes 

    ---------- 

    data : numpy masked array 

        array to contain raster data 

    tlx : float 

        Top Left X coordinate of raster grid 

    tly : float 

        Top Left Y coordinate of raster grid 

    xdim : float 

        x-dimension of grid cell 

    ydim : float 

        y-dimension of grid cell 

    nrofbands : int 

        number of raster bands 

    dataid : str 

        band name or id 

    rows : int 

        number of rows for each raster grid/band 

    cols : int 

        number of columns for each raster grid/band 

    nullvalue : float 

        grid null or nodata value 

    norm : dictionary 

        normalized data 

    gtr : tuple 

        projection information 

    wkt : str 

        projection information 

    units : str 

        description of units to be used with color bars 

    """ 

    def __init__(self): 

        self.data = np.ma.array([]) 

        self.tlx = 0.0  # Top Left X coordinate 

        self.tly = 0.0  # Top Left Y coordinate 
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        self.xdim = 1.0 

        self.ydim = 1.0 

        self.nrofbands = 1 

        self.dataid = '' 

        self.rows = -1 

        self.cols = -1 

        self.nullvalue = 1e+20 

        self.norm = {} 

        self.gtr = (0.0, 1.0, 0.0, 0.0, -1.0) 

        self.wkt = '' 

        self.units = '' 

 

 

class LithModel(object): 

    """ Lithological Model Data. 

 

    This is the main data structure for the modelling program 

 

    Attributes 

    ---------- 

    mlut : dictionary 

        color table for lithologies 

    numx : int 

        number of columns per layer in model 

    numy : int 

        number of rows per layer in model 

    numz : int 

        number of layers in model 

    dxy : float 

        dimension of cubes in the x and y directions 

    d_z : float 

        dimension of cubes in the z direction 

    lith_index : numpy array 

        3D array of lithological indices. 

    curlayer : int 

        Current layer 

    xrange : list 

        minimum and maximum x coordinates 

    yrange : list 

        minimum and maximum y coordinates 

    zrange : list 

        minimum and maximum z coordinates 

    curprof : int 

        current profile : in x or y direction) 

    griddata : dictionary 

        dictionary of Data classes with raster data 

    custprofx : dictionary 

        custom profile x coordinates 

    custprofy : dictionary 

        custom profile y coordinates 

    profpics : dictionary 

        profile pictures 

    lith_list : dictionary 

        list of lithologies 

    lith_list_reverse : dictionary 

        reverse lookup for lith_list 

    mht : float 

        height of magnetic sensor 

    ght : float 

        height of gravity sensor 

    gregional : float 

        gravity regional correction 

    name : str 

        name of the model 

    """ 

 

    def __init__(self): 

        self.mlut = {0: [170, 125, 90], 1: [255, 255, 0]} 

        self.numx = None 

        self.numy = None 

        self.numz = None 

        self.dxy = None 

        self.d_z = None 
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        self.lith_index = None 

        self.lith_index_old = None 

        self.curlayer = None 

        self.xrange = [None, None] 

        self.yrange = [None, None] 

        self.zrange = [None, None] 

        self.curprof = None 

        self.griddata = {} 

        self.custprofx = {} 

        self.custprofy = {} 

        self.profpics = {} 

        self.lith_list = {} 

        self.lith_list_reverse = {} 

        self.mht = None 

        self.ght = None 

        self.gregional = 100 

        self.name = '3D Model' 

        self.dataid = '3D Model' 

        self.tmpfiles = None 

 

        # Next line calls a function to update the variables above. 

        self.update(50, 40, 5, 0, 0, 0, 100, 100, 100, 0) 

 

        self.olith_index = None 

        self.odxy = None 

        self.od_z = None 

        self.oxrng = None 

        self.oyrng = None 

        self.ozrng = None 

        self.onumx = None 

        self.onumy = None 

        self.onumz = None 

 

        self.is_ew = True 

 

    def lithold_to_lith(self, nodtm=False): 

        """ Transfers an old lithology to the new one, using updates parameters 

        """ 

        if self.olith_index is None: 

            return 

 

        xvals = np.arange(self.xrange[0], self.xrange[1], self.dxy) 

        yvals = np.arange(self.yrange[0], self.yrange[1], self.dxy) 

        zvals = np.arange(self.zrange[0], self.zrange[1], self.d_z) 

 

        if xvals[-1] == self.xrange[1]: 

            xvals = xvals[:-1] 

        if yvals[-1] == self.yrange[1]: 

            yvals = yvals[:-1] 

        if zvals[-1] == self.zrange[1]: 

            yvals = yvals[:-1] 

 

        xvals += 0.5 * self.dxy 

        yvals += 0.5 * self.dxy 

        zvals += 0.5 * self.d_z 

 

        xvals = xvals[self.oxrng[0] < xvals] 

        xvals = xvals[xvals < self.oxrng[1]] 

        yvals = yvals[self.oyrng[0] < yvals] 

        yvals = yvals[yvals < self.oyrng[1]] 

        zvals = zvals[self.ozrng[0] < zvals] 

        zvals = zvals[zvals < self.ozrng[1]] 

 

        for x_i in xvals: 

            o_i = int((x_i - self.oxrng[0]) / self.odxy) 

            i = int((x_i - self.xrange[0]) / self.dxy) 

            for x_j in yvals: 

                o_j = int((x_j - self.oyrng[0]) / self.odxy) 

                j = int((x_j - self.yrange[0]) / self.dxy) 

                for x_k in zvals: 

                    o_k = int((self.ozrng[1] - x_k) / self.od_z) 

                    k = int((self.zrange[1] - x_k) / self.d_z) 
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                    if (self.lith_index[i, j, k] != -1 and 

                            self.olith_index[o_i, o_j, o_k] != -1) or nodtm: 

                        self.lith_index[i, j, k] = \ 

                            self.olith_index[o_i, o_j, o_k] 

 

    def dtm_to_lith(self): 

        """ Assign the DTM to the model. This means creating nodata values in 

        areas above the DTM. These values are assigned a lithology of -1.""" 

 

        if 'DTM Dataset' not in self.griddata: 

            return 

 

        self.lith_index = np.zeros([self.numx, self.numy, self.numz], 

                                   dtype=int) 

 

        curgrid = self.griddata['DTM Dataset'] 

 

        d_x = curgrid.xdim 

        d_y = curgrid.ydim 

        utlx = curgrid.tlx 

        utly = curgrid.tly 

        gcols = curgrid.cols 

        grows = curgrid.rows 

 

        gxmin = utlx 

        gymax = utly 

        utlz = curgrid.data.max() 

 

        self.lith_index[:, :, :] = 0 

 

        for i in range(self.numx): 

            xcrd = self.xrange[0] + (i + .5) * self.dxy 

            xcrd2 = int((xcrd - gxmin) / d_x) 

            for j in range(self.numy): 

                ycrd = self.yrange[1] - (j + .5) * self.dxy 

                ycrd2 = grows - int((gymax - ycrd) / d_y) 

                if ycrd2 == grows: 

                    ycrd2 = grows-1 

 

                if (ycrd2 >= 0 and xcrd2 >= 0 and ycrd2 < grows and 

                        xcrd2 < gcols): 

                    alt = curgrid.data.data[ycrd2, xcrd2] 

                    if (curgrid.data.mask[ycrd2, xcrd2] or 

                            np.isnan(alt) or alt == curgrid.nullvalue): 

                        alt = curgrid.data.mean() 

                    k_2 = int((utlz - alt) / self.d_z) 

                    self.lith_index[i, j, :k_2] = -1 

 

    def init_grid(self, data): 

        """ Initializes raster variables in the Data class 

 

        Args: 

            data (numpy masked array): masked array containing raster data.""" 

 

        grid = Data() 

        grid.data = data 

        grid.cols = self.numx 

        grid.rows = self.numy 

        grid.xdim = self.dxy 

        grid.ydim = self.dxy 

        grid.tlx = self.xrange[0] 

        grid.tly = self.yrange[1] 

        return grid 

 

    def init_calc_grids(self): 

        """ Initializes mag and gravity from the model """ 

        tmp = np.ma.zeros([self.numy, self.numx]) 

        self.griddata['Calculated Magnetics'] = self.init_grid(tmp.copy()) 

        self.griddata['Calculated Magnetics'].dataid = 'Calculated Magnetics' 

        self.griddata['Calculated Magnetics'].units = 'nT' 

        self.griddata['Calculated Gravity'] = self.init_grid(tmp.copy()) 

        self.griddata['Calculated Gravity'].dataid = 'Calculated Gravity' 

        self.griddata['Calculated Gravity'].units = 'mgal' 
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    def is_modified(self, modified=True): 

        """ Updates modified flag 

 

        Args: 

            modified (bool): flag for whether the lithology has been modified 

        """ 

        for i in self.lith_list: 

            self.lith_list[i].modified = modified 

 

    def update(self, cols, rows, layers, utlx, utly, utlz, dxy, d_z, mht=-1, 

               ght=-1, usedtm=True): 

        """ Updates the local variables for the LithModel class 

 

        Args: 

            cols (int): number of columns per layer in model 

            rows (int): number of rows per layer in model 

            layers (int): number of layers in model 

            utlx (float): upper top left (NW) x coordinate 

            utly (float): upper top left (NW) y coordinate 

            utlz (float): upper top left (NW) z coordinate 

            dxy (float): dimension of cubes in the x and y directions 

            d_z (float): dimension of cubes in the z direction 

            mht (float): height of magnetic sensor 

            ght (float): height of gravity sensor 

        """ 

        if mht != -1: 

            self.mht = mht 

        if ght != -1: 

            self.ght = ght 

 

        self.olith_index = self.lith_index 

        self.odxy = self.dxy 

        self.od_z = self.d_z 

        self.oxrng = np.copy(self.xrange) 

        self.oyrng = np.copy(self.yrange) 

        self.ozrng = np.copy(self.zrange) 

        self.onumx = self.numx 

        self.onumy = self.numy 

        self.onumz = self.numz 

 

        xextent = cols * dxy 

        yextent = rows * dxy 

        zextent = layers * d_z 

 

        self.numx = cols 

        self.numy = rows 

        self.numz = layers 

        self.xrange = [utlx, utlx + xextent] 

        self.yrange = [utly - yextent, utly] 

        self.zrange = [utlz - zextent, utlz] 

 

        self.custprofx[0] = self.xrange 

        self.custprofy[0] = (self.yrange[0], self.yrange[0]) 

 

        self.dxy = dxy 

        self.d_z = d_z 

        self.curlayer = 0 

        self.curprof = 0 

        self.lith_index = np.zeros([self.numx, self.numy, self.numz], 

                                   dtype=int) 

        self.lith_index_old = np.zeros([self.numx, self.numy, self.numz], 

                                       dtype=int) 

        self.lith_index_old[:] = -1 

 

        self.init_calc_grids() 

        if usedtm: 

            self.dtm_to_lith() 

        self.lithold_to_lith(not usedtm) 

        self.update_lithlist() 

        self.is_modified() 

 

    def update_lithlist(self): 
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        """ Updates lith_list from local variables""" 

        for i in self.lith_list: 

            self.lith_list[i].set_xyz(self.numx, self.numy, self.numz, 

                                      self.dxy, self.mht, self.ght, self.d_z, 

                                      modified=False) 

 

    def update_lith_list_reverse(self): 

        """ Update the lith_list reverse lookup. It must be run at least once 

        before using lith_list_reverse""" 

        keys = list(self.lith_list.keys()) 

        values = list(self.lith_list.values()) 

 

        if not keys: 

            return 

 

        self.lith_list_reverse = {} 

        for i in range(len(keys)): 

            self.lith_list_reverse[list(values)[i].lith_index] = list(keys)[i] 

 

 

class TensorCube(object): 

    """ 

    This class computes the forward modelled tensor responses for a cube. 

 

    Attributes 

    ---------- 

    minc : float 

        remanence inclination 

    mdec : float 

        remanence declination 

    mstrength : float 

        remanence magnetization 

    inc : float 

        field inclination 

    dec : float 

        field declination 

    hintn : float 

        field strength 

    azim : float 

        azimuth 

    dxy : float 

        cube dimension 

    susc : float 

        susceptibility 

    dens : float 

        density 

    bdens : float 

        background density 

    height : float 

        observation height 

    Gc : float 

        Gravitation constant = 6.6732e-3  # includes 100000 factor to convert 

        to mGal 

    u : list 

        x cube coordinates 

    v : list 

        y cube coordinates 

    w : list 

        z cube coordinates 

    rc : list 

        length of model 

    """ 

    def __init__(self): 

 

        self.minc = -60.0 

        self.mdec = -15.0 

        self.mstrength = 0 

        self.inc = -60.0 

        self.dec = -15.0 

        self.hintn = 28000 

        self.azim = 90 

        self.dxy = 10 

        self.susc = 0.1 
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        self.dens = 2.85 

        self.bdens = 2.67 

        self.height = 0.0 

        self.Gc = 6.6732e-3  # includes 100000 factor to convert to mGal 

        self.mt = None 

 

        self.u = [100, 300] 

        self.v = [100, 300] 

        self.w = [-20, -3000] 

        self.rc = 400 

 

        self.cx = None 

        self.cy = None 

        self.cz = None 

        self.pmag = None 

        self.pbx = None 

        self.pby = None 

        self.pbz = None 

 

        self.pgrv = None 

        self.pgx = None 

        self.pgy = None 

        self.pgz = None 

 

        self.bx = None 

        self.by = None 

        self.bz = None 

        self.bxx = None 

        self.byy = None 

        self.bzz = None 

        self.bxy = None 

        self.byz = None 

        self.bxz = None 

        self.magval = None 

 

        self.gx = None 

        self.gy = None 

        self.gz = None 

        self.gxx = None 

        self.gyy = None 

        self.gzz = None 

        self.gxy = None 

        self.gyz = None 

        self.gxz = None 

        self.grvval = None 

        self.xyall = None 

        self.coords = None 

 

    def init_grids(self): 

        """ init grids """ 

        self.xyall = np.arange(0, int(self.rc), int(self.dxy), 

                               dtype=np.float64) 

        self.xyall += self.dxy/2. 

 

        tmp = (len(self.xyall), len(self.xyall)) 

 

        self.bx = np.zeros(tmp) 

        self.by = np.zeros(tmp) 

        self.bz = np.zeros(tmp) 

        self.bxx = np.zeros(tmp) 

        self.byy = np.zeros(tmp) 

        self.bzz = np.zeros(tmp) 

        self.bxy = np.zeros(tmp) 

        self.byz = np.zeros(tmp) 

        self.bxz = np.zeros(tmp) 

 

        self.gx = np.zeros(tmp) 

        self.gy = np.zeros(tmp) 

        self.gz = np.zeros(tmp) 

        self.gxx = np.zeros(tmp) 

        self.gyy = np.zeros(tmp) 

        self.gzz = np.zeros(tmp) 

        self.gxy = np.zeros(tmp) 
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        self.gyz = np.zeros(tmp) 

        self.gxz = np.zeros(tmp) 

 

        self.coords = np.zeros((len(self.xyall), len(self.xyall), 2)) 

 

    def calc_all(self): 

        """ calc all """ 

        self.init_grids() 

 

        ma, mb, mc = dircos(self.minc, self.mdec, self.azim) 

        fa, fb, fc = dircos(self.inc, self.dec, self.azim) 

 

        mr = self.mstrength*np.array([ma, mb, mc])*100 

        mi = self.susc*self.hintn/(4*np.pi)*np.array([fa, fb, fc]) 

        m3 = mr+mi 

        m = np.sqrt(m3 @ m3) 

        m3 /= m 

        self.cx, self.cy, self.cz = m3 

 

        self.mt = m 

 

 

        print('Q-ratio', (mr@mr)/(mi@mi), 'mt', self.mt) 

 

 

        const = m 

        for i, y in enumerate(self.xyall): 

            for j, x in enumerate(self.xyall): 

                self.bx[-i-1, j] = self.fsum(self.Bx, x, y, self.height) 

                self.by[-i-1, j] = self.fsum(self.By, x, y, self.height) 

                self.bz[-i-1, j] = self.fsum(self.Bz, x, y, self.height) 

                self.bxx[-i-1, j] = self.fsum(self.Bxx, x, y, self.height) 

                self.byy[-i-1, j] = self.fsum(self.Byy, x, y, self.height) 

                self.bzz[-i-1, j] = self.fsum(self.Bzz, x, y, self.height) 

                self.bxy[-i-1, j] = self.fsum(self.Bxy, x, y, self.height) 

                self.byz[-i-1, j] = self.fsum(self.Byz, x, y, self.height) 

                self.bxz[-i-1, j] = self.fsum(self.Bxz, x, y, self.height) 

                self.coords[-i-1, j, 0] = x 

                self.coords[-i-1, j, 1] = y 

 

        self.bx *= const 

        self.by *= const 

        self.bz *= const 

        self.bxx *= const 

        self.byy *= const 

        self.bzz *= const 

        self.byz *= const 

        self.bxz *= const 

        self.bxy *= const 

 

        for j, x in enumerate(self.xyall): 

            for i, y in enumerate(self.xyall): 

                self.gx[-i-1, j] = self.fsum(self.Gx, x, y, 0.0) 

                self.gy[-i-1, j] = self.fsum(self.Gy, x, y, 0.0) 

                self.gz[-i-1, j] = self.fsum(self.Gz, x, y, 0.0) 

                self.gxx[-i-1, j] = self.fsum(self.Gxx, x, y, 0.0) 

                self.gyy[-i-1, j] = self.fsum(self.Gyy, x, y, 0.0) 

                self.gzz[-i-1, j] = self.fsum(self.Gzz, x, y, 0.0) 

                self.gxy[-i-1, j] = self.fsum(self.Gxy, x, y, 0.0) 

                self.gyz[-i-1, j] = self.fsum(self.Gyz, x, y, 0.0) 

                self.gxz[-i-1, j] = self.fsum(self.Gxz, x, y, 0.0) 

 

        constg = (self.dens-self.bdens)*self.Gc 

        self.gx *= constg 

        self.gy *= constg 

        self.gz *= constg 

        self.gxx *= constg 

        self.gyy *= constg 

        self.gzz *= constg 

        self.gyz *= constg 

        self.gxz *= constg 

        self.gxy *= constg 
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#        self.magval = self.cx*self.bx+self.cy*self.by+self.cz*self.bz 

        self.grvval = self.gz 

        self.magval = np.sqrt((self.bx+self.hintn*self.cx)**2 + 

                              (self.by+self.hintn*self.cy)**2 + 

                              (self.bz+self.hintn*self.cz)**2)-self.hintn 

 

    def fsum(self, func, x, y, z): 

        """ function """ 

        x1 = (x-self.u[0]) 

        x2 = (x-self.u[1]) 

        y2 = -(y-self.v[0]) 

        y1 = -(y-self.v[1]) 

        z2 = -(z-self.w[0]) 

        z1 = -(z-self.w[1]) 

 

#        y1 = (y-self.v[0]) 

#        y2 = (y-self.v[1]) 

#        z2 = -(z-self.w[0]) 

#        z1 = -(z-self.w[1]) 

 

        tmp = (func(x2, y2, z2) - func(x1, y2, z2) - func(x2, y1, z2) + 

               func(x1, y1, z2) - func(x2, y2, z1) + func(x1, y2, z1) + 

               func(x2, y1, z1) - func(x1, y1, z1)) 

 

        return tmp 

 

    def getabg(self): 

        """ gets alpha, beta and gamma """ 

 

        a, b, g = dircos(self.inc, self.dec, self.azim) 

 

        return a, b, g 

 

    def plot_mag(self): 

        """ plots mag components """ 

 

        extent = (0, self.rc, 0, self.rc) 

        x1, x2 = self.u 

        y1, y2 = self.v 

 

        plt.figure(figsize=(8, 8)) 

 

        ax = plt.subplot(4, 3, 1) 

        plt.ylabel('Distance (m)') 

        plt.xlabel('Distance (m)') 

        im = plt.imshow(self.bx, vmin=-500, vmax=500, extent=extent) 

        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

        plt.gca().add_line(ply) 

        plt.xticks([0, self.rc]) 

        plt.yticks([0, self.rc], rotation='vertical') 

        plt.title('(a)', loc='left') 

        divider = make_axes_locatable(ax) 

        cax = divider.append_axes("right", size="5%", pad=0.05) 

        plt.title('$B_{x}$ (nT)', size='medium') 

        plt.colorbar(im, cax=cax, ticks=[-500, 0, 500]) 

 

        ax = plt.subplot(4, 3, 2) 

        plt.ylabel('Distance (m)') 

        plt.xlabel('Distance (m)') 

        im = plt.imshow(self.by, vmin=-500, vmax=500, extent=extent) 

        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

        plt.gca().add_line(ply) 

        plt.xticks([0, self.rc]) 

        plt.yticks([0, self.rc], rotation='vertical') 

        plt.title('(b)', loc='left') 

        divider = make_axes_locatable(ax) 

        cax = divider.append_axes("right", size="5%", pad=0.05) 

        plt.title('$B_{y}$ (nT)', size='medium') 

        plt.colorbar(im, cax=cax, ticks=[-500, 0, 500]) 

 

        ax = plt.subplot(4, 3, 3) 

        plt.ylabel('Distance (m)') 

        plt.xlabel('Distance (m)') 
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        im = plt.imshow(self.bz, vmin=-500, vmax=500, extent=extent) 

        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

        plt.gca().add_line(ply) 

        plt.xticks([0, self.rc]) 

        plt.yticks([0, self.rc], rotation='vertical') 

        plt.title('(c)', loc='left') 

        divider = make_axes_locatable(ax) 

        cax = divider.append_axes("right", size="5%", pad=0.05) 

        plt.title('$B_{z}$ (nT)', size='medium') 

        plt.colorbar(im, cax=cax, ticks=[-500, 0, 500]) 

 

        ax = plt.subplot(4, 3, 4) 

        plt.ylabel('Distance (m)') 

        plt.xlabel('Distance (m)') 

        im = plt.imshow(self.bxx, vmin=-10, vmax=10, extent=extent) 

        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

        plt.gca().add_line(ply) 

        plt.xticks([0, self.rc]) 

        plt.yticks([0, self.rc], rotation='vertical') 

        plt.title('(d)', loc='left') 

        divider = make_axes_locatable(ax) 

        cax = divider.append_axes("right", size="5%", pad=0.05) 

        plt.title('$B_{xx}$ (nT/m)', size='medium') 

        plt.colorbar(im, cax=cax, ticks=[-10, 0, 10]) 

 

        ax = plt.subplot(4, 3, 8) 

        plt.ylabel('Distance (m)') 

        plt.xlabel('Distance (m)') 

        im = plt.imshow(self.byy, vmin=-10, vmax=10, extent=extent) 

        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

        plt.gca().add_line(ply) 

        plt.xticks([0, self.rc]) 

        plt.yticks([0, self.rc], rotation='vertical') 

        plt.title('(g)', loc='left') 

        divider = make_axes_locatable(ax) 

        cax = divider.append_axes("right", size="5%", pad=0.05) 

        plt.title('$B_{yy}$ (nT/m)', size='medium') 

        plt.colorbar(im, cax=cax, ticks=[-10, 0, 10]) 

 

        ax = plt.subplot(4, 3, 12) 

        plt.ylabel('Distance (m)') 

        plt.xlabel('Distance (m)') 

        im = plt.imshow(self.bzz, vmin=-10, vmax=10, extent=extent) 

        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

        plt.gca().add_line(ply) 

        plt.xticks([0, self.rc]) 

        plt.yticks([0, self.rc], rotation='vertical') 

        plt.title('(j)', loc='left') 

        divider = make_axes_locatable(ax) 

        cax = divider.append_axes("right", size="5%", pad=0.05) 

        plt.title('$B_{zz}$ (nT/m)', size='medium') 

        plt.colorbar(im, cax=cax, ticks=[-10, 0, 10]) 

 

        ax = plt.subplot(4, 3, 5) 

        plt.ylabel('Distance (m)') 

        plt.xlabel('Distance (m)') 

        im = plt.imshow(self.bxy, vmin=-5, vmax=5, extent=extent) 

        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

        plt.gca().add_line(ply) 

        plt.xticks([0, self.rc]) 

        plt.yticks([0, self.rc], rotation='vertical') 

        plt.title('(e)', loc='left') 

        divider = make_axes_locatable(ax) 

        cax = divider.append_axes("right", size="5%", pad=0.05) 

        plt.title('$B_{xy}$ (nT/m)', size='medium') 

        plt.colorbar(im, cax=cax, ticks=[-5, 0, 5]) 

 

        ax = plt.subplot(4, 3, 9) 

        plt.ylabel('Distance (m)') 

        plt.xlabel('Distance (m)') 

        im = plt.imshow(self.byz, vmin=-10, vmax=10, extent=extent) 

        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

        plt.gca().add_line(ply) 
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        plt.xticks([0, self.rc]) 

        plt.yticks([0, self.rc], rotation='vertical') 

        plt.title('(h)', loc='left') 

        divider = make_axes_locatable(ax) 

        cax = divider.append_axes("right", size="5%", pad=0.05) 

        plt.title('$B_{yz}$ (nT/m)', size='medium') 

        plt.colorbar(im, cax=cax, ticks=[-10, 0, 10]) 

 

        ax = plt.subplot(4, 3, 6) 

        plt.ylabel('Distance (m)') 

        plt.xlabel('Distance (m)') 

        im = plt.imshow(self.bxz, vmin=-10, vmax=10, extent=extent) 

        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

        plt.gca().add_line(ply) 

        plt.xticks([0, self.rc]) 

        plt.yticks([0, self.rc], rotation='vertical') 

        plt.title('(f)', loc='left') 

        divider = make_axes_locatable(ax) 

        cax = divider.append_axes("right", size="5%", pad=0.05) 

        plt.title('$B_{xz}$ (nT/m)', size='medium') 

        plt.colorbar(im, cax=cax, ticks=[-10, 0, 10]) 

 

        ax = plt.subplot(4, 3, 10) 

        plt.ylabel('Distance (m)') 

        plt.xlabel('Distance (m)') 

        dtmp = self.magval 

        im = plt.imshow(dtmp, vmin=-500, vmax=500, extent=extent) 

        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

        plt.gca().add_line(ply) 

        plt.xticks([0, self.rc]) 

        plt.yticks([0, self.rc], rotation='vertical') 

        plt.title('(i)', loc='left') 

        divider = make_axes_locatable(ax) 

        cax = divider.append_axes("right", size="5%", pad=0.05) 

        plt.title('$B_{tmi}$ (nT)', size='medium') 

        plt.colorbar(im, cax=cax, ticks=[-500, 0, 500]) 

 

        plt.tight_layout() 

        plt.show() 

 

#        print('Manual calculations for gradient') 

#        plt.figure(figsize=(8, 8)) 

# 

#        bxy1, bxx = np.gradient(self.bx[::-1], self.dxy) 

#        byy, bxy = np.gradient(self.by[::-1], self.dxy) 

#        byz, bxz = np.gradient(self.bz[::-1], self.dxy) 

#        bxy = bxy[::-1] 

#        bxy1 = bxy1[::-1] 

#        byy = byy[::-1] 

#        bxx = bxx[::-1] 

#        byz = byz[::-1] 

#        bxz = bxz[::-1] 

#        bzz = -bxx-byy 

# 

#        ax = plt.subplot(4, 3, 4) 

#        plt.ylabel('Distance (m)') 

#        plt.xlabel('Distance (m)') 

#        im = plt.imshow(bxx, cmap=cm, vmin=-10, vmax=10, extent=extent) 

#        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k') 

#        plt.gca().add_line(ply) 

#        plt.xticks([0, self.rc]) 

#        plt.yticks([0, self.rc], rotation='vertical') 

#        plt.title('(d)', loc='left') 

#        divider = make_axes_locatable(ax) 

#        cax = divider.append_axes("right", size="5%", pad=0.05) 

#        plt.title('$B_{xx}$ (nT/m)', size='medium') 

#        plt.colorbar(im, cax=cax, ticks=[-10, 0, 10]) 

# 

#        ax = plt.subplot(4, 3, 8) 

#        plt.ylabel('Distance (m)') 

#        plt.xlabel('Distance (m)') 

#        im = plt.imshow(byy, cmap=cm, vmin=-10, vmax=10, extent=extent) 

#        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k') 
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#        plt.gca().add_line(ply) 

#        plt.xticks([0, self.rc]) 

#        plt.yticks([0, self.rc], rotation='vertical') 

#        plt.title('(g)', loc='left') 

#        divider = make_axes_locatable(ax) 

#        cax = divider.append_axes("right", size="5%", pad=0.05) 

#        plt.title('$B_{yy}$ (nT/m)', size='medium') 

#        plt.colorbar(im, cax=cax, ticks=[-10, 0, 10]) 

# 

#        ax = plt.subplot(4, 3, 12) 

#        plt.ylabel('Distance (m)') 

#        plt.xlabel('Distance (m)') 

#        im = plt.imshow(bzz, cmap=cm, vmin=-10, vmax=10, extent=extent) 

#        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k') 

#        plt.gca().add_line(ply) 

#        plt.xticks([0, self.rc]) 

#        plt.yticks([0, self.rc], rotation='vertical') 

#        plt.title('(j)', loc='left') 

#        divider = make_axes_locatable(ax) 

#        cax = divider.append_axes("right", size="5%", pad=0.05) 

#        plt.title('$B_{zz}$ (nT/m)', size='medium') 

#        plt.colorbar(im, cax=cax, ticks=[-10, 0, 10]) 

# 

#        ax = plt.subplot(4, 3, 5) 

#        plt.ylabel('Distance (m)') 

#        plt.xlabel('Distance (m)') 

#        im = plt.imshow(bxy, cmap=cm, vmin=-5, vmax=5, extent=extent) 

#        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k') 

#        plt.gca().add_line(ply) 

#        plt.xticks([0, self.rc]) 

#        plt.yticks([0, self.rc], rotation='vertical') 

#        plt.title('(e)', loc='left') 

#        divider = make_axes_locatable(ax) 

#        cax = divider.append_axes("right", size="5%", pad=0.05) 

#        plt.title('$B_{xy}$ (nT/m)', size='medium') 

#        plt.colorbar(im, cax=cax, ticks=[-5, 0, 5]) 

# 

#        ax = plt.subplot(4, 3, 7) 

#        plt.ylabel('Distance (m)') 

#        plt.xlabel('Distance (m)') 

#        im = plt.imshow(bxy1, cmap=cm, vmin=-5, vmax=5, extent=extent) 

#        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k') 

#        plt.gca().add_line(ply) 

#        plt.xticks([0, self.rc]) 

#        plt.yticks([0, self.rc], rotation='vertical') 

#        plt.title('(e)', loc='left') 

#        divider = make_axes_locatable(ax) 

#        cax = divider.append_axes("right", size="5%", pad=0.05) 

#        plt.title('$B_{xy1}$ (nT/m)', size='medium') 

#        plt.colorbar(im, cax=cax, ticks=[-5, 0, 5]) 

# 

# 

#        ax = plt.subplot(4, 3, 9) 

#        plt.ylabel('Distance (m)') 

#        plt.xlabel('Distance (m)') 

#        im = plt.imshow(byz, cmap=cm, vmin=-10, vmax=10, extent=extent) 

#        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k') 

#        plt.gca().add_line(ply) 

#        plt.xticks([0, self.rc]) 

#        plt.yticks([0, self.rc], rotation='vertical') 

#        plt.title('(h)', loc='left') 

#        divider = make_axes_locatable(ax) 

#        cax = divider.append_axes("right", size="5%", pad=0.05) 

#        plt.title('$B_{yz}$ (nT/m)', size='medium') 

#        plt.colorbar(im, cax=cax, ticks=[-10, 0, 10]) 

# 

#        ax = plt.subplot(4, 3, 6) 

#        plt.ylabel('Distance (m)') 

#        plt.xlabel('Distance (m)') 

#        im = plt.imshow(bxz, cmap=cm, vmin=-10, vmax=10, extent=extent) 

#        ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k') 

#        plt.gca().add_line(ply) 

#        plt.xticks([0, self.rc]) 
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#        plt.yticks([0, self.rc], rotation='vertical') 

#        plt.title('(f)', loc='left') 

#        divider = make_axes_locatable(ax) 

#        cax = divider.append_axes("right", size="5%", pad=0.05) 

#        plt.title('$B_{xz}$ (nT/m)', size='medium') 

#        plt.colorbar(im, cax=cax, ticks=[-10, 0, 10]) 

# 

#        plt.tight_layout() 

#        plt.show() 

 

    def plot_grav(self): 

        """ Plots gravity """ 

 

        plt.figure(figsize=(8, 8)) 

 

        plt.subplot(4, 3, 1) 

        plt.imshow(self.gx) 

        plt.title('gx') 

        plt.subplot(4, 3, 2) 

        plt.imshow(self.gy) 

        plt.title('gy') 

        plt.subplot(4, 3, 3) 

        plt.imshow(self.gz) 

        plt.title('gz') 

        plt.subplot(4, 3, 4) 

        plt.imshow(self.gxx) 

        plt.title('gxx') 

        plt.subplot(4, 3, 8) 

        plt.imshow(self.gyy) 

        plt.title('gyy') 

        plt.subplot(4, 3, 12) 

        plt.imshow(self.gzz) 

        plt.title('gzz') 

        plt.subplot(4, 3, 5) 

        plt.imshow(self.gxy) 

        plt.title('gxy') 

        plt.subplot(4, 3, 9) 

        plt.imshow(self.gyz) 

        plt.title('gyz') 

        plt.subplot(4, 3, 6) 

        plt.imshow(self.gxz) 

        plt.title('gxz') 

 

        plt.tight_layout() 

        plt.show() 

 

#        plt.figure(figsize=(8, 8)) 

# 

#        gxy, gxx = np.gradient(self.gx[::-1], self.dxy) 

#        gxy = gxy[::-1] 

#        gxx = gxx[::-1] 

#        gyy, gyx = np.gradient(self.gy[::-1], self.dxy) 

#        gyy = gyy[::-1] 

#        gyx = gyx[::-1] 

#        gyz, gxz = np.gradient(self.gz[::-1], self.dxy) 

#        gyz = gyz[::-1] 

#        gxz = gxz[::-1] 

#        gzz = -gxx-gyy 

# 

#        plt.subplot(4, 3, 4) 

#        plt.imshow(gxx) 

#        plt.title('gxx') 

#        plt.subplot(4, 3, 8) 

#        plt.imshow(gyy) 

#        plt.title('gyy') 

#        plt.subplot(4, 3, 12) 

#        plt.imshow(gzz) 

#        plt.title('gzz') 

#        plt.subplot(4, 3, 5) 

#        plt.imshow(gxy) 

#        plt.title('gxy') 

#        plt.subplot(4, 3, 9) 

#        plt.imshow(gyz) 
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#        plt.title('gyz') 

#        plt.subplot(4, 3, 6) 

#        plt.imshow(gxz) 

#        plt.title('gxz') 

#        plt.subplot(4, 3, 7) 

#        plt.imshow(gyx) 

#        plt.title('gyx') 

# 

#        plt.tight_layout() 

#        plt.show() 

 

    def regrid(self, data): 

        """ fills holes """ 

        mask = np.logical_not(np.isnan(data)) 

 

        xx, yy = np.meshgrid(np.arange(data.shape[1]), 

                             np.arange(data.shape[0])) 

        xym = np.vstack((np.ravel(xx[mask]), np.ravel(yy[mask]))).T 

        data0 = np.ravel(data[:, :][mask]) 

        interp0 = si.NearestNDInterpolator(xym, data0) 

        result0 = interp0(np.ravel(xx), np.ravel(yy)).reshape(xx.shape) 

 

        result0 = np.ma.masked_invalid(result0) 

 

        return result0 

 

    def Gx(self, x, y, z): 

        """ function """ 

        r = np.sqrt(x**2+y**2+z**2) 

 

        x = np.array(x) 

        y = np.array(y) 

        z = np.array(z) 

        tmp = x*np.arctan2(y*z, x*r)-y*np.log(r+z)-z*np.log(r+y) 

 

        return -tmp 

 

    def Gy(self, x, y, z): 

        """ function """ 

        r = np.sqrt(x**2+y**2+z**2) 

        x = np.array(x) 

        y = np.array(y) 

        z = np.array(z) 

 

        tmp = y*np.arctan2(x*z, y*r)-x*np.log(r+z)-z*np.log(x+r) 

 

        return -tmp 

 

    def Gz(self, x, y, z): 

        """ function """ 

        r = np.sqrt(x**2+y**2+z**2) 

 

        x = np.array(x) 

        y = np.array(y) 

        z = np.array(z) 

 

#        tmp = z*np.arctan2(x*y, z*r)-x*np.log(r+y)-y*np.log(x+r) 

        tmp = z*np.arctan((x*y)/(z*r))-x*np.log(r+y)-y*np.log(x+r) 

        return -tmp 

 

    def Gxx(self, x, y, z): 

        """ function """ 

        r = np.sqrt(x**2+y**2+z**2) 

 

        x = np.array(x) 

        y = np.array(y) 

        z = np.array(z) 

 

        tmp = np.arctan2(y*z, x*r) 

#        return -tmp 

        return -tmp 

 

    def Gyy(self, x, y, z): 
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        """ function """ 

        r = np.sqrt(x**2+y**2+z**2) 

 

        x = np.array(x) 

        y = np.array(y) 

        z = np.array(z) 

 

        tmp = np.arctan2(x*z, y*r) 

#        return -tmp 

        return -tmp 

 

    def Gzz(self, x, y, z): 

        """ function """ 

        r = np.sqrt(x**2+y**2+z**2) 

 

        x = np.array(x) 

        y = np.array(y) 

        z = np.array(z) 

 

        tmp = np.arctan2(x*y, z*r) 

        return -tmp 

 

    def Gxy(self, x, y, z): 

        """ function """ 

        r = np.sqrt(x**2+y**2+z**2) 

 

        if z+r == 0: 

            tmp = np.nan 

        else: 

            tmp = -np.log(r+z) 

        return -tmp 

 

    def Gyz(self, x, y, z): 

        """ function """ 

        r = np.sqrt(x**2+y**2+z**2) 

        tmp = -np.log(x+r) 

        return -tmp 

 

    def Gxz(self, x, y, z): 

        """ function """ 

        r = np.sqrt(x**2+y**2+z**2) 

        tmp = -np.log(r+y) 

        return -tmp 

 

    def Bx(self, x, y, z): 

        """ function """ 

        a, b, g = self.getabg() 

        tmp = a*self.Gxx(x, y, z) + b*self.Gxy(x, y, z) + g*self.Gxz(x, y, z) 

 

        return tmp 

 

    def By(self, x, y, z): 

        """ function """ 

        a, b, g = self.getabg() 

        tmp = a*self.Gxy(x, y, z) + b*self.Gyy(x, y, z) + g*self.Gyz(x, y, z) 

        return tmp 

 

    def Bz(self, x, y, z): 

        """ function """ 

        a, b, g = self.getabg() 

        tmp = a*self.Gxz(x, y, z) + b*self.Gyz(x, y, z) + g*self.Gzz(x, y, z) 

 

        return tmp 

 

    def Bxx(self, x, y, z): 

        """ function """ 

        a, b, g = self.getabg() 

        r = np.sqrt(x**2+y**2+z**2) 

        if x == 0 and y == 0: 

            tmp = 0 

        else: 

            tmp = (a*y*z*(r**2 + x**2)/(r*(r**2*x**2 + y**2*z**2)) + 

                   b*x/(r**2 + r*z) + g*x/(r**2 + r*y)) 
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#            tmp = (a*y*z*(r**2 + x**2)/(r*(r**2*x**2 + y**2*z**2)) + 

#                   b*x/(r**2 - r*z) + g*x/(r**2 - r*y)) 

 

        return tmp 

 

    def Byy(self, x, y, z): 

        """ function """ 

        a, b, g = self.getabg() 

        r = np.sqrt(x**2+y**2+z**2) 

 

        if x == 0 and y == 0: 

            tmp = 0 

        else: 

            tmp = (a*y/(r**2 + r*z) + 

                   b*x*z*(r**2 + y**2)/(r*(r**2*y**2 + x**2*z**2)) + 

                   g*y/(r**2 + r*x)) 

#            tmp = (-a*y/(r**2 - r*z) - g*y/(r**2 + r*x) - 

#                   b*x*z*(r**2 + y**2)/(r*(r**2*y**2 + x**2*z**2))) 

 

        return tmp 

 

    def Bzz(self, x, y, z): 

        """ function """ 

        a, b, g = self.getabg() 

        r = np.sqrt(x**2+y**2+z**2) 

 

        tmp = (a*z/(r**2 + r*y) + b*z/(r**2 + r*x) + 

               g*x*y*(r**2 + z**2)/(r*(r**2*z**2 + x**2*y**2))) 

#        tmp = (-a*z/(r**2 - r*y) - b*z/(r**2 + r*x) - 

#               g*x*y*(r**2 + z**2)/(r*(r**2*z**2 + x**2*y**2))) 

 

        return tmp 

 

    def Bxy(self, x, y, z): 

        """ function """ 

        a, b, g = self.getabg() 

        r = np.sqrt(x**2+y**2+z**2) 

 

        if x == 0 and y == 0: 

            tmp = g/r 

        else: 

            tmp = -a*x*z/(r*(x**2 + y**2)) + b*y/(r**2 + r*z) + g/r 

#            tmp = a*x*z/(r*(x**2 + y**2)) - b*y/(r**2 - r*z) + g/r 

 

        return tmp 

 

    def Byz(self, x, y, z): 

        """ function """ 

        a, b, g = self.getabg() 

        r = np.sqrt(x**2+y**2+z**2) 

 

#        tmp = a/r + b*x*y/(r*(y**2 + z**2)) - g*z/(r**2 + r*x) 

        tmp = a/r - b*x*y/(r*(y**2 + z**2)) + g*z/(r**2 + r*x) 

 

        return tmp 

 

    def Bxz(self, x, y, z): 

        """ function """ 

        a, b, g = self.getabg() 

        r = np.sqrt(x**2+y**2+z**2) 

 

#        tmp = a*x*y/(r*(x**2 + z**2)) + b/r - g*z/(r**2 - r*y) 

        tmp = -a*x*y/(r*(x**2 + z**2)) + b/r + g*z/(r**2 + r*y) 

 

        return tmp 

 

 

def importmod3d(filename): 

    """ 

    routine to convert a dictionary to an lmod 

 

    Parameters 

    ---------- 
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    filename : str 

        input filename of model file 

 

    Returns 

    ------- 

    lmod : LithModel 

        model class 

    """ 

    pre = '' 

    lmod = LithModel() 

    lmod.griddata.clear() 

    lmod.lith_list.clear() 

    indict = np.load(filename) 

    lithkeys = indict[pre+'lithkeys'] 

 

    lmod.gregional = indict[pre+'gregional'] 

    lmod.ght = indict[pre+'ght'] 

    lmod.mht = indict[pre+'mht'] 

    lmod.numx = indict[pre+'numx'] 

    lmod.numy = indict[pre+'numy'] 

    lmod.numz = indict[pre+'numz'] 

    lmod.dxy = indict[pre+'dxy'] 

    lmod.d_z = indict[pre+'d_z'] 

    lmod.lith_index = indict[pre+'lith_index'] 

    lmod.curprof = 0 

    lmod.curlayer = 0 

    lmod.xrange = np.array(indict[pre+'xrange']).tolist() 

    lmod.yrange = np.array(indict[pre+'yrange']).tolist() 

    lmod.zrange = np.array(indict[pre+'zrange']).tolist() 

    if pre+'custprofx' in indict: 

        lmod.custprofx = np.asscalar(indict[pre+'custprofx']) 

    else: 

        lmod.custprofx = {0: (lmod.xrange[0], lmod.xrange[1])} 

    if pre+'custprofy' in indict: 

        lmod.custprofy = np.asscalar(indict[pre+'custprofy']) 

    else: 

        lmod.custprofy = {0: (lmod.yrange[0], lmod.yrange[0])} 

 

    lmod.mlut = np.asscalar(indict[pre+'mlut']) 

    lmod.init_calc_grids() 

 

    lmod.griddata = np.asscalar(indict[pre+'griddata']) 

 

    for i in lmod.griddata: 

        lmod.griddata[i].data = np.ma.array(lmod.griddata[i].data) 

 

    # This gets rid of a legacy variable name 

    for i in lmod.griddata: 

        if not hasattr(lmod.griddata[i], 'dataid'): 

            lmod.griddata[i].dataid = '' 

        if hasattr(lmod.griddata[i], 'bandid'): 

            if lmod.griddata[i].dataid == '': 

                lmod.griddata[i].dataid = lmod.griddata[i].bandid 

            del lmod.griddata[i].bandid 

 

    wktfin = None 

    for i in lmod.griddata: 

        wkt = lmod.griddata[i].wkt 

        if wkt != '' and wkt is not None: 

            wktfin = wkt 

 

    if wktfin is not None: 

        for i in lmod.griddata: 

            wkt = lmod.griddata[i].wkt 

            if wkt == '' or wkt is None: 

                lmod.griddata[i].wkt = wktfin 

 

# Section to load lithologies. 

    lmod.lith_list['Background'] = GeoData() 

 

    for itxt in lithkeys: 

        if itxt != 'Background': 

            lmod.lith_list[itxt] = GeoData() 
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        lmod.lith_list[itxt].hintn = np.asscalar(indict[pre+itxt+'_hintn']) 

        lmod.lith_list[itxt].finc = np.asscalar(indict[pre+itxt+'_finc']) 

        lmod.lith_list[itxt].fdec = np.asscalar(indict[pre+itxt+'_fdec']) 

        lmod.lith_list[itxt].zobsm = np.asscalar(indict[pre+itxt+'_zobsm']) 

        lmod.lith_list[itxt].susc = np.asscalar(indict[pre+itxt+'_susc']) 

        lmod.lith_list[itxt].mstrength = np.asscalar( 

            indict[pre+itxt+'_mstrength']) 

        lmod.lith_list[itxt].qratio = np.asscalar( 

            indict[pre+itxt+'_qratio']) 

        lmod.lith_list[itxt].minc = np.asscalar(indict[pre+itxt+'_minc']) 

        lmod.lith_list[itxt].mdec = np.asscalar(indict[pre+itxt+'_mdec']) 

        lmod.lith_list[itxt].density = np.asscalar( 

            indict[pre+itxt+'_density']) 

        lmod.lith_list[itxt].bdensity = np.asscalar( 

            indict[pre+itxt+'_bdensity']) 

        lmod.lith_list[itxt].lith_index = np.asscalar( 

            indict[pre+itxt+'_lith_index']) 

        lmod.lith_list[itxt].g_cols = np.asscalar(indict[pre+itxt+'_numx']) 

        lmod.lith_list[itxt].g_rows = np.asscalar(indict[pre+itxt+'_numy']) 

        lmod.lith_list[itxt].numz = np.asscalar(indict[pre+itxt+'_numz']) 

        lmod.lith_list[itxt].g_dxy = np.asscalar(indict[pre+itxt+'_dxy']) 

        lmod.lith_list[itxt].dxy = np.asscalar(indict[pre+itxt+'_dxy']) 

        lmod.lith_list[itxt].d_z = np.asscalar(indict[pre+itxt+'_d_z']) 

        lmod.lith_list[itxt].zobsm = np.asscalar(indict[pre+itxt+'_zobsm']) 

        lmod.lith_list[itxt].zobsg = np.asscalar(indict[pre+itxt+'_zobsg']) 

        lmod.lith_list[itxt].modified = True 

        lmod.lith_list[itxt].set_xyz12() 

 

    return lmod 

 

 

def save_layer(mlist): 

    """ 

    Routine saves the mlayer and glayer to a file 

 

    Parameters 

    ---------- 

    mlist : list 

        list of gridded layers 

 

    Returns 

    ------- 

    outfile : str 

        temporary output filename 

    """ 

    outfile = tempfile.TemporaryFile() 

 

    outdict = {} 

 

    outdict['mlayers'] = mlist[1].mlayers 

    outdict['glayers'] = mlist[1].glayers 

 

    np.savez(outfile, **outdict) 

    outfile.seek(0) 

 

    mlist[1].mlayers = None 

    mlist[1].glayers = None 

 

    return outfile 

 

 

def data_to_gdal_mem(data, gtr, wkt, cols, rows, nodata=False): 

    """ 

    Data to GDAL mem format 

 

    Parameters 

    ---------- 

    data : PyGMI Data 

        PyGMI Dataset 

    gtr : tuple 

        Geotransform 

    wkt : str 
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        Projection in wkt (well known text) format 

    cols : int 

        columns 

    rows : int 

        rows 

    nodata : bool, optional 

        no data 

 

    Returns 

    ------- 

    src : GDAL mem format 

    """ 

    data.data = np.ma.array(data.data) 

    dtype = data.data.dtype 

# Get rid of array() which can break driver.create later 

    cols = int(cols) 

    rows = int(rows) 

 

    if dtype == np.uint8: 

        fmt = gdal.GDT_Byte 

    elif dtype == np.int32: 

        fmt = gdal.GDT_Int32 

    elif dtype == np.float64: 

        fmt = gdal.GDT_Float64 

    else: 

        fmt = gdal.GDT_Float32 

 

    driver = gdal.GetDriverByName('MEM') 

    src = driver.Create('', cols, rows, 1, fmt) 

 

    src.SetGeoTransform(gtr) 

    src.SetProjection(wkt) 

 

    if nodata is False: 

        if data.nullvalue is not None: 

            src.GetRasterBand(1).SetNoDataValue(data.nullvalue) 

        src.GetRasterBand(1).WriteArray(data.data) 

    else: 

        tmp = np.zeros((rows, cols)) 

        tmp = np.ma.masked_equal(tmp, 0) 

        src.GetRasterBand(1).SetNoDataValue(0)  # Set to this because of Reproj 

        src.GetRasterBand(1).WriteArray(tmp) 

 

    return src 

 

 

def gdal_to_dat(dest, bandid='Data'): 

    """ 

    GDAL to Data format 

 

    Parameters 

    ---------- 

    dest - GDAL format 

        GDAL format 

    bandid - str 

        band identity 

 

    Returns 

    ------- 

    dat : Data 

        data 

    """ 

    dat = Data() 

    gtr = dest.GetGeoTransform() 

 

    rtmp = dest.GetRasterBand(1) 

    dat.data = rtmp.ReadAsArray() 

    nval = rtmp.GetNoDataValue() 

 

    dat.data = np.ma.masked_equal(dat.data, nval) 

    dat.data.set_fill_value(nval) 

    dat.data = np.ma.fix_invalid(dat.data) 
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    dat.nrofbands = dest.RasterCount 

    dat.tlx = gtr[0] 

    dat.tly = gtr[3] 

    dat.dataid = bandid 

    dat.nullvalue = nval 

    dat.rows = dest.RasterYSize 

    dat.cols = dest.RasterXSize 

    dat.xdim = abs(gtr[1]) 

    dat.ydim = abs(gtr[5]) 

    dat.wkt = dest.GetProjection() 

    dat.gtr = gtr 

 

    return dat 

 

 

def get_raster(ifile): 

    """ 

    This function loads a raster dataset off the disk using the GDAL 

    libraries. It returns the data in a PyGMI data object. 

 

    Parameters 

    ---------- 

    ifile : str 

        filename to import 

 

    Returns 

    ------- 

    dat : PyGMI raster Data 

        dataset imported 

    """ 

    dat = [] 

    bname = ifile.split('/')[-1].rpartition('.')[0]+': ' 

    ifile = ifile[:] 

    ext = ifile[-3:] 

    custom_wkt = None 

 

    # Envi Case 

    if ext == 'hdr': 

        ifile = ifile[:-4] 

        tmp = glob.glob(ifile+'.dat') 

        if tmp: 

            ifile = tmp[0] 

 

    if ext == 'ers': 

        with open(ifile) as f: 

            metadata = f.read() 

            if 'STMLO' in metadata: 

                clong = metadata.split('STMLO')[1][:2] 

 

                orig = osr.SpatialReference() 

                if 'CAPE' in metadata: 

                    orig.ImportFromEPSG(4222) 

                    orig.SetTM(0., float(clong), 1., 0., 0.) 

                    orig.SetProjCS(r'Cape / TM'+clong) 

                    custom_wkt = orig.ExportToWkt() 

                elif 'WGS84' in metadata: 

                    orig.ImportFromEPSG(4148) 

                    orig.SetTM(0., float(clong), 1., 0., 0.) 

                    orig.SetProjCS(r'Hartebeesthoek94 / TM'+clong) 

                    custom_wkt = orig.ExportToWkt() 

 

    dataset = gdal.Open(ifile, gdal.GA_ReadOnly) 

 

    if dataset is None: 

        return None 

 

    gtr = dataset.GetGeoTransform() 

 

    for i in range(dataset.RasterCount): 

        rtmp = dataset.GetRasterBand(i+1) 

        bandid = rtmp.GetDescription() 

        nval = rtmp.GetNoDataValue() 

 



255 

 

        dat.append(Data()) 

        dat[i].data = rtmp.ReadAsArray() 

        if dat[i].data.dtype.kind == 'i': 

            if nval is None: 

                nval = 999999 

            nval = int(nval) 

        elif dat[i].data.dtype.kind == 'u': 

            if nval is None: 

                nval = 0 

            nval = int(nval) 

        else: 

            if nval is None: 

                nval = 1e+20 

            nval = float(nval) 

        if ext == 'ers' and nval == -1.0e+32: 

            dat[i].data[np.ma.less_equal(dat[i].data, nval)] = -1.0e+32 

 

# Note that because the data is stored in a masked array, the array ends up 

# being double the size that it was on the disk. 

        dat[i].data = np.ma.masked_invalid(dat[i].data) 

        dat[i].data.mask = (np.ma.getmaskarray(dat[i].data) | 

                            (dat[i].data == nval)) 

        if dat[i].data.mask.size == 1: 

            dat[i].data.mask = (np.ma.make_mask_none(dat[i].data.shape) + 

                                np.ma.getmaskarray(dat[i].data)) 

 

        dat[i].nrofbands = dataset.RasterCount 

        dat[i].tlx = gtr[0] 

        dat[i].tly = gtr[3] 

        if bandid == '': 

            bandid = bname+str(i+1) 

        dat[i].dataid = bandid 

        if bandid[-1] == ')': 

            dat[i].units = bandid[bandid.rfind('(')+1:-1] 

 

        dat[i].nullvalue = nval 

        dat[i].rows = dataset.RasterYSize 

        dat[i].cols = dataset.RasterXSize 

        dat[i].xdim = abs(gtr[1]) 

        dat[i].ydim = abs(gtr[5]) 

        dat[i].gtr = gtr 

 

        if custom_wkt is None: 

            srs = osr.SpatialReference() 

            srs.ImportFromWkt(dataset.GetProjection()) 

            srs.AutoIdentifyEPSG() 

            dat[i].wkt = srs.ExportToWkt() 

        else: 

            dat[i].wkt = custom_wkt 

 

    return dat 

 

 

def gridmatch(lmod, ctxt, rtxt): 

    """ 

    Matches the rows and columns of the second grid to the first grid 

 

 

    Parameters 

    ---------- 

    lmod : LithModel 

        lithology model 

    ctxt : str 

        input grid discription 1 

    rtxt : str 

        input grid discription 2 

 

    Returns 

    ------- 

    dat.data : numpy array 

        gridded data 

    """ 

    rgrv = lmod.griddata[rtxt] 
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    cgrv = lmod.griddata[ctxt] 

 

    data = rgrv 

    data2 = cgrv 

    orig_wkt = data.wkt 

    orig_wkt2 = data2.wkt 

 

    doffset = 0.0 

    if data.data.min() <= 0: 

        doffset = data.data.min()-1. 

        data.data = data.data - doffset 

 

    gtr0 = (data.tlx, data.xdim, 0.0, data.tly, 0.0, -data.ydim) 

    gtr = (data2.tlx, data2.xdim, 0.0, data2.tly, 0.0, -data2.ydim) 

    src = data_to_gdal_mem(data, gtr0, orig_wkt, data.cols, data.rows) 

    dest = data_to_gdal_mem(data, gtr, orig_wkt2, data2.cols, data2.rows, True) 

 

    gdal.ReprojectImage(src, dest, orig_wkt, orig_wkt2, gdal.GRA_Bilinear) 

 

    dat = gdal_to_dat(dest, data.dataid) 

 

    if doffset != 0.0: 

        dat.data = dat.data + doffset 

        data.data = data.data + doffset 

 

    return dat.data 

 

 

def calc_field(lmod, pbars=None, showtext=None, parent=None, 

               showreports=False, magcalc=False): 

    """ Calculate magnetic and gravity field 

 

    This function calculates the magnetic and gravity field. It has two 

    different modes of operation, by using the magcalc switch. If magcalc=True 

    then magnetic fields are calculated, otherwize only gravity is calculated. 

 

    Parameters 

    ---------- 

    lmod : LithModel 

        PyGMI lithological model 

    pbars : module 

        progress bar routine if available. (internal use) 

    showtext : module 

        showtext routine if available. (internal use) 

    showreports : bool 

        show extra reports 

    magcalc : bool 

        if true, calculates magnetic data, otherwize only gravity. 

 

    Returns 

    ------- 

    lmod.griddata : dictionary 

        dictionary of items of type Data. 

    """ 

 

    if showtext is None: 

        showtext = print 

    if pbars is not None: 

        pbars.resetall(mmax=2*(len(lmod.lith_list)-1)+1) 

        piter = pbars.iter 

    else: 

        piter = iter 

    if np.max(lmod.lith_index) == -1: 

        showtext('Error: Create a model first') 

        return lmod.griddata 

 

    # Init some variables for convenience 

    lmod.update_lithlist() 

 

    numx = int(lmod.numx) 

    numy = int(lmod.numy) 

    numz = int(lmod.numz) 
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    tmpfiles = {} 

 

# model index 

    modind = lmod.lith_index.copy() 

    modindcheck = lmod.lith_index_old.copy() 

 

    if modind.shape != modindcheck.shape: 

        tmp = False 

    else: 

        tmp = (modind == modindcheck) 

 

# If modind and modindcheck have different shapes, then tmp == False. The next 

# line checks for that. 

 

    if not isinstance(tmp, bool): 

        modind[tmp] = -1 

        modindcheck[tmp] = -1 

 

    if np.unique(modind).size == 1: 

        showtext('No changes to model!') 

        return lmod.griddata 

 

# get height corrections 

    tmp = np.copy(lmod.lith_index) 

    tmp[tmp > -1] = 0 

    hcor = np.abs(tmp.sum(2)) 

 

#    if np.unique(modindcheck).size == 1 and np.unique(modindcheck)[0] == -1: 

    for mlist in lmod.lith_list.items(): 

        mijk = mlist[1].lith_index 

        if mijk not in modind and mijk not in modindcheck: 

            continue 

        if mlist[0] != 'Background': 

            mlist[1].modified = True 

            showtext(mlist[0]+':') 

            if parent is not None: 

                mlist[1].parent = parent 

                mlist[1].pbars = parent.pbars 

                mlist[1].showtext = parent.showtext 

            if magcalc: 

                mlist[1].calc_origin_mag(hcor) 

            else: 

                mlist[1].calc_origin_grav() 

            tmpfiles[mlist[0]] = save_layer(mlist) 

        lmod.tmpfiles = tmpfiles 

 

    if showreports is True: 

        showtext('Summing data') 

 

# Get mlayers and glayers with correct rho and netmagn 

 

    if pbars is not None: 

        pbars.resetsub(maximum=(len(lmod.lith_list)-1)) 

        piter = pbars.iter 

 

    mgvalin = np.zeros(numx*numy) 

    mgval = np.zeros(numx*numy) 

 

    hcorflat = numz-hcor.flatten() 

    aaa = np.reshape(np.mgrid[0:numx, 0:numy], [2, numx*numy]) 

 

    for mlist in piter(lmod.lith_list.items()): 

        if mlist[0] == 'Background': 

            continue 

        mijk = mlist[1].lith_index 

        if mijk not in modind and mijk not in modindcheck: 

            continue 

        lmod.tmpfiles[mlist[0]].seek(0) 

 

        mfile = np.load(lmod.tmpfiles[mlist[0]]) 

 

        if magcalc: 

            mglayers = mfile['mlayers'] 
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        else: 

            mglayers = mfile['glayers']*mlist[1].rho() 

 

        showtext('Summing '+mlist[0]+' (May become non-responsive' + 

                 ' during this calculation)') 

 

        if np.unique(modind).size > 1 and mijk in modind: 

            i, j, k = np.nonzero(modind == mijk) 

            iuni = np.array(np.unique(i), dtype=np.int32) 

            juni = np.array(np.unique(j), dtype=np.int32) 

            kuni = np.array(np.unique(k), dtype=np.int32) 

 

            for k in kuni: 

                baba = sum_fields(k, mgval, numx, numy, modind, aaa[0], 

                                  aaa[1], mglayers, hcorflat, mijk, juni, 

                                  iuni) 

                mgvalin += baba 

 

        if np.unique(modindcheck).size > 1 and mijk in modindcheck: 

            i, j, k = np.nonzero(modindcheck == mijk) 

            iuni = np.array(np.unique(i), dtype=np.int32) 

            juni = np.array(np.unique(j), dtype=np.int32) 

            kuni = np.array(np.unique(k), dtype=np.int32) 

 

            for k in kuni: 

                baba = sum_fields(k, mgval, numx, numy, modindcheck, 

                                  aaa[0], 

                                  aaa[1], mglayers, hcorflat, mijk, juni, 

                                  iuni) 

                mgvalin -= baba 

 

        showtext('Done') 

 

        if pbars is not None: 

            pbars.incrmain() 

 

    mgvalin.resize([numx, numy]) 

    mgvalin = mgvalin.T 

    mgvalin = mgvalin[::-1] 

    mgvalin = np.ma.array(mgvalin) 

 

    if np.unique(modindcheck).size > 1: 

        if magcalc: 

            mgvalin += lmod.griddata['Calculated Magnetics'].data 

        else: 

            mgvalin += lmod.griddata['Calculated Gravity'].data 

 

    if magcalc: 

        lmod.griddata['Calculated Magnetics'].data = mgvalin 

    else: 

        lmod.griddata['Calculated Gravity'].data = mgvalin 

 

    if ('Gravity Regional' in lmod.griddata and not magcalc and 

            np.unique(modindcheck).size == 1): 

        zfin = gridmatch(lmod, 'Calculated Gravity', 'Gravity Regional') 

        lmod.griddata['Calculated Gravity'].data += zfin 

 

    if lmod.lith_index.max() <= 0: 

        lmod.griddata['Calculated Magnetics'].data *= 0. 

        lmod.griddata['Calculated Gravity'].data *= 0. 

 

    if 'Magnetic Dataset' in lmod.griddata: 

        ztmp = gridmatch(lmod, 'Magnetic Dataset', 'Calculated Magnetics') 

        lmod.griddata['Magnetic Residual'] = copy.deepcopy( 

            lmod.griddata['Magnetic Dataset']) 

        lmod.griddata['Magnetic Residual'].data = ( 

            lmod.griddata['Magnetic Dataset'].data - ztmp) 

        lmod.griddata['Magnetic Residual'].dataid = 'Magnetic Residual' 

 

    if 'Gravity Dataset' in lmod.griddata: 

        ztmp = gridmatch(lmod, 'Gravity Dataset', 'Calculated Gravity') 

        lmod.griddata['Gravity Residual'] = copy.deepcopy( 

            lmod.griddata['Gravity Dataset']) 
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        lmod.griddata['Gravity Residual'].data = ( 

            lmod.griddata['Gravity Dataset'].data - ztmp - lmod.gregional) 

        lmod.griddata['Gravity Residual'].dataid = 'Gravity Residual' 

 

    if parent is not None: 

        tmp = [i for i in set(lmod.griddata.values())] 

        parent.outdata['Raster'] = tmp 

    showtext('Calculation Finished') 

    if pbars is not None: 

        pbars.maxall() 

 

    lmod.lith_index_old = np.copy(lmod.lith_index) 

 

    return lmod.griddata 

 

 

@jit(nopython=True) 

def sum_fields(k, mgval, numx, numy, modind, aaa0, aaa1, mlayers, hcorflat, 

               mijk, jj, ii): 

    """ 

    Sum Calculated magnetic or gravity data 

 

    Parameters 

    ---------- 

    ii : list 

        list of x indices 

    jj : list 

        list of y indices 

    k : int 

        z index 

    mgval : numpy array 

        magnetic grid 

    numx : int 

        number of columns 

    numy : int 

        number of rows 

    modind : numpy array 

        modex indices 

    aaa0 : numpy array 

        relative x offset 

    aaa1 : numpy array 

        relative y offset 

    hcorflat : numpy array 

        relatrive z offset - height correction 

    mlayers : numpy array 

        multiple grids for each calculated layer 

    mijk : int 

        current lithology index 

 

    Returns 

    ------- 

    mgval : numpy array 

 

    """ 

 

    b = numx*numy 

    for j in range(b): 

        mgval[j] = 0. 

 

    for i in ii: 

        xoff = numx-i 

        for j in jj: 

            yoff = numy-j 

            if (modind[i, j, k] != mijk): 

                continue 

            for ijk in range(b): 

                xoff2 = xoff + aaa0[ijk] 

                yoff2 = aaa1[ijk]+yoff 

                hcor2 = hcorflat[ijk]+k 

                mgval[ijk] += mlayers[hcor2, xoff2, yoff2] 

 

    return mgval 
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def gradientO4(f, *varargs): 

    """ 

    Calculate the fourth-order-accurate gradient of an N-dimensional scalar 

    function. Uses central differences on the interior and first differences 

    on boundaries to give the same shape. 

 

    Inputs: 

      f -- An N-dimensional array giving samples of a scalar function 

      varargs -- 0, 1, or N scalars giving the sample distances in each 

      direction 

    Outputs: 

      N arrays of the same shape as f giving the derivative of f with respect 

      to each dimension. 

 

    from https://gist.github.com/deeplycloudy/1b9fa46d5290314d9be02a5156b48741 

 

    """ 

    N = len(f.shape)  # number of dimensions 

    n = len(varargs) 

    if n == 0: 

        dx = [1.0]*N 

    elif n == 1: 

        dx = [varargs[0]]*N 

    elif n == N: 

        dx = list(varargs) 

    else: 

        raise SyntaxError("invalid number of arguments") 

 

    # use central differences on interior and first differences on endpoints 

    outvals = [] 

 

    # create slice objects --- initially all are [:, :, ..., :] 

    slice0 = [slice(None)]*N 

    slice1 = [slice(None)]*N 

    slice2 = [slice(None)]*N 

    slice3 = [slice(None)]*N 

    slice4 = [slice(None)]*N 

 

    otype = f.dtype.char 

    if otype not in ['f', 'd', 'F', 'D']: 

        otype = 'd' 

 

    for axis in range(N): 

        # select out appropriate parts for this dimension 

        out = np.zeros(f.shape, f.dtype.char) 

 

        slice0[axis] = slice(2, -2) 

        slice1[axis] = slice(None, -4) 

        slice2[axis] = slice(1, -3) 

        slice3[axis] = slice(3, -1) 

        slice4[axis] = slice(4, None) 

        # 1D equivalent -- out[2:-2] = (f[:4]-8*f[1:-3]+8*f[3:-1]-f[4:])/12.0 

        out[slice0] = (f[slice1]-8.0*f[slice2]+8.0*f[slice3]-f[slice4])/12.0 

 

        slice0[axis] = slice(None, 2) 

        slice1[axis] = slice(1, 3) 

        slice2[axis] = slice(None, 2) 

        # 1D equivalent -- out[0:2] = (f[1:3] - f[0:2]) 

        out[slice0] = (f[slice1] - f[slice2]) 

 

        slice0[axis] = slice(-2, None) 

        slice1[axis] = slice(-2, None) 

        slice2[axis] = slice(-3, -1) 

        # 1D equivalent -- out[-2:] = (f[-2:] - f[-3:-1]) 

        out[slice0] = (f[slice1] - f[slice2]) 

 

        # divide by step size 

        outvals.append(out / dx[axis]) 

 

        # reset the slice object in this dimension to ":" 

        slice0[axis] = slice(None) 

        slice1[axis] = slice(None) 
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        slice2[axis] = slice(None) 

        slice3[axis] = slice(None) 

        slice4[axis] = slice(None) 

 

    if N == 1: 

        return outvals[0] 

 

    return outvals 

 

 

@jit(nopython=True) 

def gbox(gval, xobs, yobs, numx, numy, z_0, x_1, y_1, z_1, x_2, y_2, z_2, 

         x, y, z, isign): 

    """ 

    GBOX routine by Blakely 

 

    Subroutine GBOX computes the vertical attraction of a 

    rectangular prism.  Sides of prism are parallel to x,y,z axes, 

    and z axis is vertical down. 

 

    Input parameters: 

        Observation point is (x0,y0,z0).  The prism extends from x1 

        to x2, from y1 to y2, and from z1 to z2 in the x, y, and z 

        directions, respectively.  Density of prism is rho.  All 

        distance parameters in units of m; 

 

    Output parameters: 

        Vertical attraction of gravity, g, in mGal/rho. 

        Must still be multiplied by rho outside routine. 

        Done this way for speed. 

 

    Parameters 

    ---------- 

    gval : numpy array 

        gravity grid 

    xobs : numpy array 

        x observations 

    yobs : numpy array 

        y observations 

    numx : int 

        number of columns 

    numy : int 

        number of rows 

    z_0 : float 

        z observation point 

    x_1 : float 

        west side of cube 

    y_1 : float 

        south side of cube 

    z_1 : float 

        top of cube 

    x_2 : float 

        east side of cube 

    y_2 : float 

        north side of cube 

    z_2 : float 

        bottom of cube 

    x : numpy array 

        distance to x sides 

    y : numpy array 

        distance to y sides 

    z : numpy array 

        distance to z sides 

    isign : numpy array 

        calculation constants 

 

    Returns 

    ------- 

    gval : numpy array 

        output gravity grid 

 

    """ 
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    z[0] = z_0-z_1 

    z[1] = z_0-z_2 

 

    for ii in range(numx): 

        x[0] = xobs[ii]-x_1 

        x[1] = xobs[ii]-x_2 

        for jj in range(numy): 

            y[0] = yobs[jj]-y_1 

            y[1] = yobs[jj]-y_2 

            sumi = 0. 

            for i in range(2): 

                for j in range(2): 

                    for k in range(2): 

                        rijk = np.sqrt(x[i]*x[i]+y[j]*y[j]+z[k]*z[k]) 

                        ijk = isign[i]*isign[j]*isign[k] 

                        arg1 = np.arctan2(x[i]*y[j], z[k]*rijk) 

 

                        if arg1 < 0.: 

                            arg1 = arg1 + 2 * np.pi 

                        arg2 = rijk+y[j] 

                        arg3 = rijk+x[i] 

                        arg2 = np.log(arg2) 

                        arg3 = np.log(arg3) 

                        sumi += ijk*(z[k]*arg1-x[i]*arg2-y[j]*arg3) 

            gval[ii, jj] = sumi 

 

    return gval 

 

 

@jit(nopython=True) 

def mbox(mval, xobs, yobs, numx, numy, z0, x1, y1, z1, x2, y2, fm1, fm2, fm3, 

         fm4, fm5, fm6, alpha, beta): 

    """ 

    MBOX routine by Blakely 

 

    Subroutine MBOX computes the total field anomaly of an infinitely 

    extended rectangular prism.  Sides of prism are parallel to x,y,z 

    axes, and z is vertical down.  Bottom of prism extends to infinity. 

    Two calls to mbox can provide the anomaly of a prism with finite 

    thickness; e.g., 

 

        call mbox(x0,y0,z0,x1,y1,z1,x2,y2,mi,md,fi,fd,m,theta,t1) 

        call mbox(x0,y0,z0,x1,y1,z2,x2,y2,mi,md,fi,fd,m,theta,t2) 

        t=t1-t2 

 

    Requires subroutine DIRCOS.  Method from Bhattacharyya (1964). 

 

    Input parameters: 

        Observation point is (x0,y0,z0).  Prism extends from x1 to 

        x2, y1 to y2, and z1 to infinity in x, y, and z directions, 

        respectively.  Magnetization defined by inclination mi, 

        declination md, intensity m.  Ambient field defined by 

        inclination fi and declination fd.  X axis has declination 

        theta. Distance units are irrelevant but must be consistent. 

        Angles are in degrees, with inclinations positive below 

        horizontal and declinations positive east of true north. 

        Magnetization in A/m. 

 

    Output paramters: 

        Total field anomaly t, in nT. 

 

    Parameters 

    ---------- 

    mval : numpy array 

        gravity grid 

    xobs : numpy array 

        x observations 

    yobs : numpy array 

        y observations 

    numx : int 

        number of columns 

    numy : int 

        number of rows 
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    z_0 : float 

        z observation point 

    x_1 : float 

        west side of cube 

    y_1 : float 

        south side of cube 

    z_1 : float 

        top of cube 

    x_2 : float 

        east side of cube 

    y_2 : float 

        north side of cube 

    fm1 : float 

        calculation constants 

    fm2 : float 

        calculation constants 

    fm3 : float 

        calculation constants 

    fm4 : float 

        calculation constants 

    fm5 : float 

        calculation constants 

    fm6 : float 

        calculation constants 

    alpha : numpy array 

        calculation constants 

    beta : numpy array 

        calculation constants 

 

    Returns 

    ------- 

    mval : numpy array 

        output magnetic grid 

    """ 

 

    h = z1-z0 

    hsq = h**2 

 

    for ii in range(numx): 

        alpha[0] = x1-xobs[ii] 

        alpha[1] = x2-xobs[ii] 

        for jj in range(numy): 

            beta[0] = y1-yobs[jj] 

            beta[1] = y2-yobs[jj] 

            t = 0. 

 

            for i in range(2): 

                alphasq = alpha[i]**2 

                for j in range(2): 

                    sign = 1. 

                    if i != j: 

                        sign = -1. 

                    r0sq = alphasq+beta[j]**2+hsq 

                    r0 = np.sqrt(r0sq) 

                    r0h = r0*h 

                    alphabeta = alpha[i]*beta[j] 

                    arg1 = (r0-alpha[i])/(r0+alpha[i]) 

                    arg2 = (r0-beta[j])/(r0+beta[j]) 

                    arg3 = alphasq+r0h+hsq 

                    arg4 = r0sq+r0h-alphasq 

                    tlog = (fm3*np.log(arg1)/2.+fm2*np.log(arg2)/2. - 

                            fm1*np.log(r0+h)) 

                    tatan = (-fm4*np.arctan2(alphabeta, arg3) - 

                             fm5*np.arctan2(alphabeta, arg4) + 

                             fm6*np.arctan2(alphabeta, r0h)) 

 

                    t = t+sign*(tlog+tatan) 

            mval[ii, jj] = t 

 

    return mval 

 

 

def dircos(inc, dec, azim=90): 
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    """ 

    Calculate direction cosines from inclination and declination 

 

    Parameters 

    ---------- 

    inc : float 

        inclination in degrees positive below horizontal. 

    dec : float 

        declination in degrees positive east of true north. 

    azim : float 

        azimuth of x axis in degrees positive east of north. 

 

    Returns 

    ------- 

    a, b, c : direction cosines 

    """ 

 

    Inc = np.deg2rad(inc) 

    Dec = np.deg2rad(dec-azim) 

 

    a = np.cos(Inc)*np.cos(Dec) 

    b = np.cos(Inc)*np.sin(Dec) 

    g = np.sin(Inc) 

 

    return a, b, g 

 

 

def polyfit2d(x, y, f, deg): 

    """ 

    This fits a polynomial surface through a set of data. 

 

    Parameters 

    ---------- 

    x : numpy array 

        x coordinates 

    y : numpy array 

        y coordinates 

    f : numpy array 

        z values to fit surface through 

    deg : list 

        list of maximum degrees 

 

    Returns 

    ------- 

    c : numpy array 

        output surface 

 

    """ 

    x = np.asarray(x) 

    y = np.asarray(y) 

    f = np.asarray(f) 

    deg = np.asarray(deg) 

    vander = polynomial.polyvander2d(x, y, deg) 

    vander = vander.reshape((-1, vander.shape[-1])) 

    f = f.reshape((vander.shape[0],)) 

    c = np.linalg.lstsq(vander, f, rcond=None)[0] 

 

    return c.reshape(deg+1) 

 

 

def plot2(pdat, title='', clabel='', minstd=2, maxstd=2, extent=None, 

          cmap=None, notstd=False, show=True): 

    """ 

    Plotting routine for convenience. Plots images 

 

    Parameters 

    ---------- 

    pdat : numpy array 

        grid to plot 

    title : str 

        title 

    clabel: str 

        colourbar label 
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    minstd : float 

        minimum standard deviation or minimum value 

    maxstd : float 

        maximum standard deviation or maximum value 

    extent : list 

        coordinates of image extents 

    cmap : matplotlib colour map 

        colours to use in image 

    notstd : bool 

        flag for regular limits 

    show : bool 

        flag to show image immediately 

 

    Returns 

    ------- 

    None 

    """ 

    if cmap is None: 

        cmap = plt.cm.jet 

 

    if notstd: 

        vmin = minstd 

        vmax = maxstd 

    else: 

        vmin = np.median(pdat)-np.std(pdat)*minstd 

        vmax = np.median(pdat)+np.std(pdat)*maxstd 

 

    if show is True: 

        plt.figure(figsize=(9, 6)) 

 

    ax = plt.gca() 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

 

    extent = [0, extent[1]-extent[0], 0, extent[3]-extent[2]] 

 

    plt.xticks(extent[0:2], ha='center') 

    plt.yticks(extent[2:4], rotation='vertical', va='center') 

 

#    plt.xticks(ha='center') 

#    plt.yticks(rotation='vertical', va='center') 

 

    plt.title(title, loc='left') 

    im = plt.imshow(pdat, extent=extent, cmap=cmap, vmin=vmin, vmax=vmax) 

 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

 

#    plt.title(clabel, size='medium') 

    cbar = plt.colorbar(im, cax=cax) 

    cbar.set_label(clabel) 

    if show is True: 

        plt.tight_layout() 

        plt.show() 

    return ax 

 

 

def As_calcs(dx, dy, dz, dxy=1): 

    """ 

    Calculates Analytic signals 

 

    Parameters 

    ---------- 

    dx : numpy array 

        dx grid 

    dy : numpy array 

        dy grid 

    dz : numpy array 

        dz grid 

    dxy : float 

        cube dimension 

 

    Returns 
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    ------- 

    As : numpy array 

        first order analytic signal 

    As2 : numpy array 

        second order analytic signal 

    """ 

 

    deltax = dxy 

    deltay = dxy 

 

    As = np.sqrt(dx**2+dy**2+dz**2) 

 

# Order 2 gradients 

#    dyz, dxz = np.gradient(dz, deltax) 

#    dyy, _ = np.gradient(dy, deltay) 

#    dxy, dxx = np.gradient(dx, deltax) 

 

 

# Order 4 gradients 

    dyz, dxz = gradientO4(dz, deltax) 

    dyy, _ = gradientO4(dy, deltay) 

    dxy, dxx = gradientO4(dx, deltax) 

 

    dzz = -(dxx+dyy) 

    asxt = (dx*dxx + dy*dxy + dz*dxz) 

    asyt = (dx*dxy + dy*dyy + dz*dyz) 

    aszt = (dx*dxz + dy*dyz + dz*dzz) 

    As2 = np.sqrt(asxt**2+asyt**2+aszt**2)/As 

 

    return As, As2 

 

 

def pseudo_tensor(magval, inc=-62, dec=-16, dxy=10, cx=None, cy=None, cz=None): 

    """ 

    Pseudo tensor calculation 

 

    Parameters 

    ---------- 

    magval : numpy array 

        magnetic TMI values 

    inc : float 

        inclination 

    dec : float 

        inclination 

    dxy : float 

        cube dimension 

 

    Returns 

    ------- 

    ptensor : dictionary 

        pseudo tensor values 

 

    """ 

    if cx is None: 

        cx, cy, cz = dircos(inc, dec) 

 

    pwidth = max(magval.shape) 

    magval2 = np.pad(magval, pwidth, 'linear_ramp') 

 

    fft = np.fft.fft2(magval2) 

    kx = np.fft.fftfreq(fft.shape[1], d=dxy) 

    ky = np.fft.fftfreq(fft.shape[0], d=dxy) 

 

    ptensor = {} 

 

    kx, ky = np.meshgrid(kx, ky) 

    k = np.sqrt(kx**2+ky**2) 

    dterm = (1j*(cx*kx+cy*ky)+cz*k) 

 

    dterm[dterm == 0] = -np.finfo(float).eps 

    k[k == 0] = np.finfo(float).eps 

    kx[kx == 0] = np.finfo(float).eps 

    ky[ky == 0] = np.finfo(float).eps 
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    out1 = fft*kx*1j/dterm 

    out1[np.isnan(out1)] = 0. 

    out2 = np.fft.ifft2(out1) 

    ptensor['x'] = out2[pwidth:-pwidth, pwidth:-pwidth].real 

 

    out1 = fft*ky*1j/dterm 

    out1[np.isnan(out1)] = 0. 

    out2 = np.fft.ifft2(out1) 

    ptensor['y'] = out2[pwidth:-pwidth, pwidth:-pwidth].real 

 

    out1 = fft*k/dterm 

    out1[np.isnan(out1)] = 0. 

    out2 = np.fft.ifft2(out1) 

    ptensor['z'] = out2[pwidth:-pwidth, pwidth:-pwidth].real 

    FBz = out1 

 

    out1 = -2*np.pi*kx**2/k*FBz 

    out1[np.isnan(out1)] = 0. 

    out2 = np.fft.ifft2(out1) 

    ptensor['xx'] = out2[pwidth:-pwidth, pwidth:-pwidth].real 

 

    out1 = -2*np.pi*ky**2/k*FBz 

    out1[np.isnan(out1)] = 0. 

    out2 = np.fft.ifft2(out1) 

    ptensor['yy'] = out2[pwidth:-pwidth, pwidth:-pwidth].real 

 

    out1 = 2*np.pi*k*FBz 

    out1[np.isnan(out1)] = 0. 

    out2 = np.fft.ifft2(out1) 

    ptensor['zz'] = out2[pwidth:-pwidth, pwidth:-pwidth].real 

 

    out1 = -2*np.pi*kx*ky/k*FBz 

    out1[np.isnan(out1)] = 0. 

    out2 = np.fft.ifft2(out1) 

    ptensor['xy'] = out2[pwidth:-pwidth, pwidth:-pwidth].real 

 

    out1 = 2*np.pi*1j*kx*FBz 

    out1[np.isnan(out1)] = 0. 

    out2 = np.fft.ifft2(out1) 

    ptensor['xz'] = out2[pwidth:-pwidth, pwidth:-pwidth].real 

 

    out1 = 2*np.pi*1j*ky*FBz 

    out1[np.isnan(out1)] = 0. 

    out2 = np.fft.ifft2(out1) 

    ptensor['yz'] = out2[pwidth:-pwidth, pwidth:-pwidth].real 

 

    return ptensor 

 

 

def pseudo_limits(): 

    """ 

    Shows limits of pseudo tensor calculations, in that they cannot account 

    for remanence. 

 

    Parameters 

    ---------- 

    None 

 

    Returns 

    ------- 

    None 

    """ 

 

    inc = 60 

    dec = -30 

 

    Tz = [] 

    oTz = [] 

    magval = [] 

 

    tcube = None 

    for mstr in [0, 0.323]: 
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        del tcube 

        tcube = TensorCube() 

        tcube.inc = inc 

        tcube.dec = dec 

        tcube.mstrength = mstr 

        tcube.minc = -40 

        tcube.mdec = 20 

        tcube.susc = 0.01 

        tcube.hintn = 28000. 

        tcube.azim = 90 

#        tcube.dxy = 5 

 

        tcube.calc_all() 

 

        prof = int(tcube.magval.shape[0]//2) 

 

        dxy = tcube.dxy 

 

        magval.append(tcube.magval) 

        Tz.append(tcube.bz) 

 

    # calculate artificial tensor 

 

        ptensor = pseudo_tensor(tcube.magval, inc, dec, dxy, 

                                tcube.cx, tcube.cy, tcube.cz) 

 

        oTz.append(ptensor['z']) 

 

        print(tcube.cx, tcube.cy, tcube.cz) 

#        magval2 = tcube.cx*tcube.bx+tcube.cy*tcube.by+tcube.cz*tcube.bz 

 

    xcoords = np.arange(0, tcube.rc, tcube.dxy) 

    x1, x2 = tcube.u 

    y1, y2 = 0, -20  # tcube.v 

 

    plt.figure(figsize=(8, 4)) 

    plt.subplot(121) 

    plt.title('(a) No remanence', loc='left') 

    plt.ylim(-50, 200) 

    ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

    plt.gca().add_line(ply) 

    plt.plot(xcoords, magval[0][prof], '-.', label='$B_{tmi}$') 

    plt.plot(xcoords, Tz[0][prof], '.', label='$B_{z}$') 

    plt.plot(xcoords, oTz[0][prof], label='Derived $B_{z}$') 

    plt.ylabel('(nT)') 

    plt.xlabel('Distance (m)') 

    plt.legend(loc='upper left') 

 

    plt.subplot(122) 

    plt.ylim(-50, 200.) 

    plt.title('(b) Remanence', loc='left') 

    ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

    plt.gca().add_line(ply) 

    plt.plot(xcoords, magval[1][prof], '-.', label='$B_{tmi}$') 

    plt.plot(xcoords, Tz[1][prof], '.', label='$B_{z}$') 

    plt.plot(xcoords, oTz[1][prof], label='Derived $B_{z}$') 

    plt.ylabel('(nT)') 

    plt.xlabel('Distance (m)') 

    plt.legend(loc='upper left') 

 

    plt.tight_layout() 

    plt.show() 

 

 

def tests(): 

    """ 

    Test program for calculation of tensor cube data. 

 

    Parameters 

    ---------- 

    None 

 

    Returns 
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    ------- 

    None 

    """ 

 

    tcube = TensorCube() 

    tcube.calc_all() 

 

    tcube.plot_grav() 

    tcube.plot_mag() 

 

    pt = pseudo_tensor(tcube.magval) 

 

    plt.figure(figsize=(8, 8)) 

 

    plt.subplot(4, 3, 1) 

    plt.imshow(pt['x'], vmin=-500, vmax=500) 

    plt.title('x') 

    plt.subplot(4, 3, 2) 

    plt.imshow(pt['y'], vmin=-500, vmax=500) 

    plt.title('y') 

    plt.subplot(4, 3, 3) 

    plt.imshow(pt['z'], vmin=-500, vmax=500) 

    plt.title('z') 

    plt.subplot(4, 3, 4) 

    plt.imshow(pt['xx'], vmin=-10, vmax=10) 

    plt.title('xx') 

    plt.subplot(4, 3, 8) 

    plt.imshow(pt['yy'], vmin=-10, vmax=10) 

    plt.title('yy') 

    plt.subplot(4, 3, 12) 

    plt.imshow(pt['zz'], vmin=-10, vmax=10) 

    plt.title('zz') 

    plt.subplot(4, 3, 5) 

    plt.imshow(pt['xy'], vmin=-10, vmax=10) 

    plt.title('xy') 

    plt.subplot(4, 3, 9) 

    plt.imshow(pt['yz'], vmin=-10, vmax=10) 

    plt.title('yz') 

    plt.subplot(4, 3, 6) 

    plt.imshow(pt['xz'], vmin=-10, vmax=10) 

    plt.title('xz') 

 

    plt.subplot(4, 3, 10) 

    a, b, g = dircos(-62., -16.) 

 

    nmagval = a*pt['x']+b*pt['y']+g*pt['z'] 

    plt.imshow(nmagval, vmin=-500, vmax=500) 

 

    plt.tight_layout() 

    plt.show() 

 

    dxy = tcube.dxy 

 

    # Now we begin the tensor stuff 

 

    Txx = np.ma.masked_invalid(tcube.bxx) 

    Txy = np.ma.masked_invalid(tcube.bxy) 

    Txz = np.ma.masked_invalid(tcube.bxz) 

    Tyy = np.ma.masked_invalid(tcube.byy) 

    Tyz = np.ma.masked_invalid(tcube.byz) 

    Tzz = np.ma.masked_invalid(tcube.bzz) 

 

    cx = tcube.cx 

    cy = tcube.cy 

    cz = tcube.cz 

 

    Htmi_x = cx*Txx+cy*Txy+cz*Txz 

    Htmi_y = cx*Txy+cy*Tyy+cz*Tyz 

    Htmi_z = cx*Txz+cy*Tyz+cz*Tzz 

 

    Asp = np.sqrt(Htmi_x**2 + Htmi_y**2 + Htmi_z**2) 

 

    Txxy, Txxx = gradientO4(Txx, dxy) 
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    Tyyy, Tyyx = gradientO4(Tyy, dxy) 

    Tzzy, Tzzx = gradientO4(Tzz, dxy) 

    Txyy, Txyx = gradientO4(Txy, dxy) 

    Txzy, Txzx = gradientO4(Txz, dxy) 

    Tyzy, Tyzx = gradientO4(Tyz, dxy) 

 

    Txxz = Txzx 

    Tyyz = Tyzy 

    Tzzz = -(Txxz+Tyyz) 

    Txyz = Tyzx 

    Txzz = Tzzx 

    Tyzz = Tzzy 

 

    As_x = (Htmi_x*(cx*Txxx + cy*Txyx + cz*Txzx) + 

            Htmi_y*(cx*Txyx + cy*Tyyx + cz*Tyzx) + 

            Htmi_z*(cx*Txzx + cy*Tyzx + cz*Tzzx)) 

 

    As_y = (Htmi_x*(cx*Txxy + cy*Txyy + cz*Txzy) + 

            Htmi_y*(cx*Txyy + cy*Tyyy + cz*Tyzy) + 

            Htmi_z*(cx*Txzy + cy*Tyzy + cz*Tzzy)) 

 

    As_z = (Htmi_x*(cx*Txxz + cy*Txyz + cz*Txzz) + 

            Htmi_y*(cx*Txyz + cy*Tyyz + cz*Tyzz) + 

            Htmi_z*(cx*Txzz + cy*Tyzz + cz*Tzzz)) 

 

    As2p = np.sqrt(As_x**2 + As_y**2 + As_z**2)/Asp 

 

    N = 0.0 

    distancep = (N+1)*Asp/As2p 

 

    xcoords = np.arange(0, tcube.rc, tcube.dxy) 

    x1, x2 = tcube.u 

    y1, y2 = tcube.v 

    z1, z2 = tcube.w 

    z2 = -300 

 

    extent = (0, tcube.rc, 0, tcube.rc) 

 

    plt.figure(figsize=(6, 6)) 

    plt.subplot(2, 2, 1) 

    ax = plt.gca() 

    im = plt.imshow(Asp, extent=extent) 

    divider = make_axes_locatable(ax) 

    ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

    plt.gca().add_line(ply) 

    plt.xticks([0, tcube.rc]) 

    plt.yticks([0, tcube.rc], rotation='vertical') 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    plt.title('(a)', loc='left') 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('$As_{1}$ (nT/m)', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    plt.subplot(2, 2, 2) 

    ax = plt.gca() 

    im = plt.imshow(As2p, extent=extent) 

    ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 

    plt.gca().add_line(ply) 

    plt.xticks([0, tcube.rc]) 

    plt.yticks([0, tcube.rc], rotation='vertical') 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    plt.title('(b)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title(r'$As_{2} (\mathrm{nT/m}^2)$', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    plt.subplot(2, 2, 3) 

    ax = plt.gca() 

    im = plt.imshow(-distancep, vmax=0, extent=extent) 

    ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k') 
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    plt.gca().add_line(ply) 

    ply = plt.Line2D([0, tcube.rc], [tcube.rc/2, tcube.rc/2], color='k', 

                     ls='dashed') 

    plt.gca().add_line(ply) 

    plt.xticks([0, tcube.rc]) 

    plt.yticks([0, tcube.rc], rotation='vertical') 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    plt.title('(c)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('Depth (m)', size='medium') 

    plt.colorbar(im, cax=cax, ticks=[0, -50, -100, -150, -200]) 

 

    plt.subplot(2, 2, 4) 

    plt.plot(xcoords, -distancep[20]) 

    ply = plt.Line2D([x1, x1, x2, x2], [z2, z1, z1, z2], color='k') 

    plt.gca().add_line(ply) 

    plt.xlabel('Distance (m)') 

    plt.ylabel('Depth (m)', labelpad=-10) 

    plt.yticks([0, -200]) 

    plt.title('(d)', loc='left') 

 

    plt.tight_layout() 

    plt.show() 

 

 

def remanence(): 

    """ 

    Test program for calculation of remanence. 

 

    Parameters 

    ---------- 

    None 

 

    Returns 

    ------- 

    None 

    """ 

    cmap = plt.cm.jet 

 

    inc = 60 

    dec = -30 

    minc = 50 

    mdec = -20 

    mstrength = 0.323 

    lmstrength = 0. 

    susc = 0.01 

    hintn = 28000. 

 

    print('inclination: ', inc) 

    fa, fb, fc = dircos(inc, dec, 90) 

    ma, mb, mc = dircos(minc, mdec, 90) 

 

# This is A/m 

    mr = lmstrength*np.array([ma, mb, mc]) 

    mi = susc*hintn*np.array([fa, fb, fc])/(400*np.pi) 

 

    m3 = mr+mi 

    m = np.sqrt(m3 @ m3) 

    m3 /= m 

    cx1, cy1, cz1 = m3 

    m1 = m 

 

    mr = mstrength*np.array([ma, mb, mc]) 

    mi = susc*hintn*np.array([fa, fb, fc])/(400*np.pi) 

    m3 = mr+mi 

    m = np.sqrt(m3 @ m3) 

    m3 /= m 

    cx2, cy2, cz2 = m3 

    m2 = m 

 

############################### 
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    tcube1 = TensorCube() 

    tcube1.inc = inc 

    tcube1.dec = dec 

    tcube1.mstrength = lmstrength 

    tcube1.minc = minc 

    tcube1.mdec = mdec 

    tcube1.susc = susc 

    tcube1.hintn = hintn 

    tcube1.u = [90, 100] 

    tcube1.v = [0, 400] 

#    tcube1.v = [100, 300] 

    tcube1.w = [-20, -3000] 

    tcube1.rc = 400 

 

    tcube1.init_grids() 

    tcube1.calc_all() 

    N = 1 

 

    tcube2 = TensorCube() 

    tcube2.inc = inc 

    tcube2.dec = dec 

    tcube2.mstrength = mstrength 

    tcube2.minc = minc 

    tcube2.mdec = mdec 

    tcube2.susc = susc 

    tcube2.hintn = hintn 

    tcube2.u = [290, 300]  # [250, 350] 

    tcube2.v = tcube1.v  # [150, 250] 

    tcube2.w = tcube1.w 

    tcube2.rc = 400 

 

    tcube2.init_grids() 

    tcube2.calc_all() 

 

################################# 

 

    print('rmi:', lmstrength*400*np.pi) 

    print('kH:', tcube1.susc*tcube1.hintn) 

    print('mi:', tcube1.susc*tcube1.hintn/(400*np.pi), 

          'mr:', lmstrength, 

          'mt:', m) 

 

    ####################### 

    Tx = tcube1.bx 

    Ty = tcube1.by 

    Tz = tcube1.bz 

    Txx = tcube1.bxx 

    Txy = tcube1.bxy 

    Txz = tcube1.bxz 

    Tyy = tcube1.byy 

    Tyz = tcube1.byz 

    Tzz = tcube1.bzz 

    magval = tcube1.magval 

 

    dxy = tcube1.dxy 

 

    cx, cy, cz = cx1, cy1, cz1 

    Hx = (Txx*(Tx+cx*hintn)+Txy*(Ty+cy*hintn)+Txz*(Tz+cz*hintn))/(magval+hintn) 

    Hy = (Txy*(Tx+cx*hintn)+Tyy*(Ty+cy*hintn)+Tyz*(Tz+cz*hintn))/(magval+hintn) 

    Hz = (Txz*(Tx+cx*hintn)+Tyz*(Ty+cy*hintn)+Tzz*(Tz+cz*hintn))/(magval+hintn) 

 

    Tx = tcube2.bx 

    Ty = tcube2.by 

    Tz = tcube2.bz 

    Txx = tcube2.bxx 

    Txy = tcube2.bxy 

    Txz = tcube2.bxz 

    Tyy = tcube2.byy 

    Tyz = tcube2.byz 

    Tzz = tcube2.bzz 

    magval = tcube2.magval 

 

    cx, cy, cz = cx2, cy2, cz2 
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    Hx += (Txx*(Tx+cx*hintn)+Txy*(Ty+cy*hintn)+Txz*(Tz+cz*hintn))/(magval+hintn) 

    Hy += (Txy*(Tx+cx*hintn)+Tyy*(Ty+cy*hintn)+Tyz*(Tz+cz*hintn))/(magval+hintn) 

    Hz += (Txz*(Tx+cx*hintn)+Tyz*(Ty+cy*hintn)+Tzz*(Tz+cz*hintn))/(magval+hintn) 

 

    Tx = tcube1.bx+tcube2.bx 

    Ty = tcube1.by+tcube2.by 

    Tz = tcube1.bz+tcube2.bz 

    Txx = tcube1.bxx+tcube2.bxx 

    Txy = tcube1.bxy+tcube2.bxy 

    Txz = tcube1.bxz+tcube2.bxz 

    Tyy = tcube1.byy+tcube2.byy 

    Tyz = tcube1.byz+tcube2.byz 

    Tzz = tcube1.bzz+tcube2.bzz 

    magval = tcube1.magval+tcube2.magval 

 

    plt.imshow(magval) 

    plt.show() 

 

    cx2a, cy2a, cz2a = cx2, cy2, cz2 

    cx2, cy2, cz2 = cosines_from_tensor3(Hx, Hy, Hz, magval, Txx, Tyy, 

                                         Txy, Txz, Tyz, hintn, Tx, Ty, Tz) 

 

    As, As2 = As_calcs(Hx, Hy, Hz, dxy) 

 

    Hilbx = ss.hilbert(magval, axis=1).imag 

    Hilby = ss.hilbert(magval, axis=0).imag 

    As0 = np.sqrt(magval**2 + Hilbx**2 + Hilby**2) 

 

    Hilbx = ss.hilbert(Tz, axis=1).imag 

    Hilby = ss.hilbert(Tz, axis=0).imag 

    Asz0 = np.sqrt(Tz**2 + Hilbx**2 + Hilby**2) 

 

    Asx, Asx2 = As_calcs(Txx, Txy, Txz, dxy) 

    Asy, Asy2 = As_calcs(Txy, Tyy, Tyz, dxy) 

    Asz, Asz2 = As_calcs(Txz, Tyz, Tzz, dxy) 

 

####################### 

    r1 = -N*As0/As 

    r2 = -N*Asz0/Asz 

 

    print('###################') 

    print('depth:', tcube1.w[0], r1[19, 9], r2[19, 9]) 

 

####################### 

    width = tcube1.u[1]-tcube1.u[0] 

    depth = tcube1.w[0] 

    print('width:', width) 

 

 

    mt = As0**2/(As*2*width*(1-cy2**2)*100) 

    mt2 = Asz*depth**2/(width*200**np.sqrt(1-cy2**2)) 

    mt2a = Asz0**2/(Asz*width*200*np.sqrt(1-cy2**2)) 

    mt2b = Asz0**2/(As*width*200) 

 

    mt2 = mt2b 

 

    print('cx1:', cx1, cx2[19, 9]) 

    print('cy1:', cy1, cy2[19, 9]) 

    print('cz1:', cz1, cz2[19, 9]) 

 

    print('cx2:', cx2a, cx2[19, 29]) 

    print('cy2:', cy2a, cy2[19, 29]) 

    print('cz2:', cz2a, cz2[19, 29]) 

 

    susc = mt2*400*np.pi/tcube1.hintn 

 

    print('inc:', inc, 'minc:', minc) 

    print('dec:', dec, 'mdec:', mdec) 

    print('mt (real):', m1, 'mt:', mt[19, 9], 'mt2a', mt2a[19, 9], 

          'mt2', mt2[19, 9]) 

    print('2mt (real):', m2, 'mt:', mt[19, 29], 'mt2a', mt2a[19, 29], 

          'mt2', mt2[19, 29]) 

    print('susc:', tcube1.susc, susc[19, 9]) 
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    print('2susc:', tcube1.susc, susc[19, 29]) 

 

    mt[:, :] = mt2 

 

    plt.figure(figsize=(9, 6)) 

    vmin = np.median(cx2)-np.std(cx2)*2 

    vmax = np.median(cx2)+np.std(cx2)*2 

 

    ax = plt.gca() 

    plt.title(r'$\alpha_{t}$') 

    plt.imshow(cx2, extent=(0, 400, 0, 400), cmap=cmap, vmin=vmin, vmax=vmax) 

    plt.colorbar() 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

 

    x1, x2 = tcube1.u 

    y1, y2 = tcube1.v 

    ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k') 

    ax.add_line(ply) 

 

    x1, x2 = tcube2.u 

    y1, y2 = tcube2.v 

    ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k') 

    ax.add_line(ply) 

    plt.show() 

 

    plt.figure(figsize=(9, 6)) 

    vmin = np.median(cy2)-np.std(cy2)*2 

    vmax = np.median(cy2)+np.std(cy2)*2 

 

    ax = plt.gca() 

    plt.title(r'$\beta_{t}$') 

    plt.imshow(cy2, extent=(0, 400, 0, 400), cmap=cmap, vmin=vmin, vmax=vmax) 

    plt.colorbar() 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

 

    x1, x2 = tcube1.u 

    y1, y2 = tcube1.v 

    ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k') 

    ax.add_line(ply) 

 

    x1, x2 = tcube2.u 

    y1, y2 = tcube2.v 

    ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k') 

    ax.add_line(ply) 

    plt.show() 

 

    plt.figure(figsize=(9, 6)) 

    vmin = np.median(cz2)-np.std(cz2)*2 

    vmax = np.median(cz2)+np.std(cz2)*2 

 

    ax = plt.gca() 

    plt.title(r'$\gamma_{t}$') 

    plt.imshow(cz2, extent=(0, 400, 0, 400), cmap=cmap, vmin=vmin, vmax=vmax) 

    plt.colorbar() 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

 

    x1, x2 = tcube1.u 

    y1, y2 = tcube1.v 

    ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k') 

    ax.add_line(ply) 

 

    x1, x2 = tcube2.u 

    y1, y2 = tcube2.v 

    ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k') 

    ax.add_line(ply) 

    plt.show() 

 

############################################################################### 

 

    rc = tcube1.rc 
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    extent = (0, rc, 0, rc) 

    x1, x2 = tcube1.u 

    y1, y2 = tcube1.v 

 

    plt.figure(figsize=(8, 8)) 

 

    ax = plt.subplot(4, 3, 1) 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    im = plt.imshow(Tx, extent=extent) 

 

    plt.xticks([0, rc]) 

    plt.yticks([0, rc], rotation='vertical') 

    plt.title('(a)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('$B_{x}$ (nT)', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    ax = plt.subplot(4, 3, 2) 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    im = plt.imshow(Ty, extent=extent) 

 

    plt.xticks([0, rc]) 

    plt.yticks([0, rc], rotation='vertical') 

    plt.title('(b)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('$B_{y}$ (nT)', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    ax = plt.subplot(4, 3, 3) 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    im = plt.imshow(Tz, extent=extent) 

 

    plt.xticks([0, rc]) 

    plt.yticks([0, rc], rotation='vertical') 

    plt.title('(c)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('$B_{z}$ (nT)', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    ax = plt.subplot(4, 3, 4) 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    im = plt.imshow(Txx, extent=extent) 

 

    plt.xticks([0, rc]) 

    plt.yticks([0, rc], rotation='vertical') 

    plt.title('(d)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('$B_{xx}$ (nT/m)', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    ax = plt.subplot(4, 3, 8) 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    im = plt.imshow(Tyy, extent=extent) 

 

    plt.xticks([0, rc]) 

    plt.yticks([0, rc], rotation='vertical') 

    plt.title('(g)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('$B_{yy}$ (nT/m)', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    ax = plt.subplot(4, 3, 12) 

    plt.ylabel('Distance (m)') 
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    plt.xlabel('Distance (m)') 

    im = plt.imshow(Tzz, extent=extent) 

 

    plt.xticks([0, rc]) 

    plt.yticks([0, rc], rotation='vertical') 

    plt.title('(j)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('$B_{zz}$ (nT/m)', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    ax = plt.subplot(4, 3, 5) 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    im = plt.imshow(Txy, extent=extent) 

 

    plt.xticks([0, rc]) 

    plt.yticks([0, rc], rotation='vertical') 

    plt.title('(e)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('$B_{xy}$ (nT/m)', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    ax = plt.subplot(4, 3, 9) 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    im = plt.imshow(Tyz, extent=extent) 

 

    plt.xticks([0, rc]) 

    plt.yticks([0, rc], rotation='vertical') 

    plt.title('(h)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('$B_{yz}$ (nT/m)', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    ax = plt.subplot(4, 3, 6) 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    im = plt.imshow(Txz, extent=extent) 

 

    plt.xticks([0, rc]) 

    plt.yticks([0, rc], rotation='vertical') 

    plt.title('(f)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('$B_{xz}$ (nT/m)', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    ax = plt.subplot(4, 3, 10) 

    plt.ylabel('Distance (m)') 

    plt.xlabel('Distance (m)') 

    dtmp = magval 

    im = plt.imshow(dtmp, extent=extent) 

 

    plt.xticks([0, rc]) 

    plt.yticks([0, rc], rotation='vertical') 

    plt.title('(i)', loc='left') 

    divider = make_axes_locatable(ax) 

    cax = divider.append_axes("right", size="5%", pad=0.05) 

    plt.title('$B_{tmi}$ (nT)', size='medium') 

    plt.colorbar(im, cax=cax) 

 

    plt.tight_layout() 

    plt.show() 

 

############################################################################### 

    azim = 90 

    mr, minc, mdec = rem_from_cosines(cx2, cy2, cz2, mt, tcube1.susc, hintn, 

                                      inc, dec, azim) 

 

    print('inc:', tcube2.inc) 
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    print('dec:', tcube2.dec) 

    print('minc:', tcube2.minc, minc[19, 29]) 

    print('mdec:', tcube2.mdec, mdec[19, 29]) 

    print('mr:', tcube2.mstrength, mr[19, 29]) 

 

    title = ['Total Magnetisation', 'Remanent Magnetisation'] 

    clabel = 'A/m' 

    cmap = plt.cm.jet 

    minstd = 1 

    maxstd = 1 

    extent = (0, 400, 0, 400) 

 

    mask = np.ma.make_mask_none(mt.shape)+True 

    mask[1:-1, 1:-1] = False 

 

    mt = np.ma.array(mt, mask=mask) 

    mr = np.ma.array(mr, mask=mask) 

 

    for i, pdat in enumerate([mt, mr]): 

        vmin = np.ma.median(pdat)-np.ma.std(pdat)*minstd 

        vmax = np.ma.median(pdat)+2*np.ma.std(pdat)*maxstd 

 

        plt.figure(figsize=(9, 6)) 

        plt.title(title[i]) 

        plt.imshow(pdat, extent=extent, cmap=cmap, vmin=vmin, vmax=vmax) 

        plt.colorbar().set_label(clabel) 

        plt.ylabel('Northings (m)') 

        plt.xlabel('Eastings (m)') 

 

        x1, x2 = tcube1.u 

        y1, y2 = tcube1.v 

        ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k') 

        plt.gca().add_line(ply) 

 

        x1, x2 = tcube2.u 

        y1, y2 = tcube2.v 

        ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k') 

        plt.gca().add_line(ply) 

 

        plt.tight_layout() 

        plt.show() 

 

 

def interp(filename): 

    """ 

    Implementation of the interpretatin routine in PhD 

 

    Parameters 

    ---------- 

    filename : string 

        input PyGMI model filename. This contains all raster data in it. 

 

    Returns 

    ------- 

    None 

    """ 

 

    N = 1  # dyke 

    fht = 50  # flying height 

    w = 100  # this is the dike width 

    numclasses = 10 

 

 

# Import model file 

    lmod = importmod3d(filename) 

 

    maxdepth = lmod.numz*lmod.d_z 

 

    maxdepth = 500 

 

    inc = lmod.lith_list['Generic 1'].finc 

    dec = lmod.lith_list['Generic 1'].fdec 

    hintn = lmod.lith_list['Generic 1'].hintn 
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    magval = lmod.griddata['Magnetic Dataset'].data.data 

    tmp = lmod.griddata['Magnetic Dataset'] 

    magextent = (tmp.tlx, tmp.tlx+tmp.cols*tmp.xdim, tmp.tly-tmp.rows*tmp.ydim, 

                 tmp.tly) 

    dtmval = lmod.griddata['DTM Dataset'].data.data 

    tmp = lmod.griddata['DTM Dataset'] 

    dxy = lmod.griddata['Magnetic Dataset'].xdim 

 

# subtract surface from dataset 

 

    rows, cols = magval.shape 

    y, x = np.mgrid[:rows, :cols] 

    c = polyfit2d(x, y, magval, [2, 2]) 

    f = polynomial.polyval2d(x, y, c) 

 

    magval -= f 

 

# calculate artificial tensor 

 

    ptensor = pseudo_tensor(magval, inc, dec, dxy) 

 

    Tx = ptensor['x'] 

    Ty = ptensor['y'] 

    Tz = ptensor['z'] 

    Txx = ptensor['xx'] 

    Tyy = ptensor['yy'] 

    Tzz = ptensor['zz'] 

    Txy = ptensor['xy'] 

    Txz = ptensor['xz'] 

    Tyz = ptensor['yz'] 

 

    plt.figure(figsize=(9, 6)) 

 

    ax = plt.gca() 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

 

    plt.title('Total Magnetic Intensity') 

    plt.imshow(magval+f, extent=magextent, vmin=-150, 

               vmax=400) 

    plt.colorbar().set_label('nT') 

 

    ply = plt.Line2D([magextent[0]+15520, magextent[0]+15520], 

                     [magextent[2], magextent[3]], color='k', ls='dashed') 

    ax.add_line(ply) 

 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(9, 6)) 

    plt.title('Polynomial Surface') 

    plt.imshow(f, extent=magextent) 

    plt.colorbar().set_label('nT') 

 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(9, 6)) 

    plt.title('Total Magnetic Intensity - Polynomial Surface') 

    plt.imshow(magval, extent=magextent, vmin=-100, vmax=150) 

    plt.colorbar().set_label('nT') 

 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(8, 8)) 

    ax = plt.subplot(4, 3, 10) 

 

    plot2(magval, '(i) $B_{tmi}$', '(nT)', minstd=2.0, maxstd=2.5, 

          extent=magextent, show=False) 

    ply = plt.Line2D([15520, 15520], [0, 36705], color='k', ls='dashed') 

    ax.add_line(ply) 
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    plt.subplot(4, 3, 1) 

    plot2(Tx, '(a) $B_{x}$', '(nT)', minstd=1, maxstd=2.5, 

          extent=magextent, show=False) 

    plt.subplot(4, 3, 2) 

    plot2(Ty, '(b) $B_{y}$', '(nT)', minstd=1, maxstd=2.5, 

          extent=magextent, show=False) 

    plt.subplot(4, 3, 3) 

    plot2(Tz, '(c) $B_{z}$', '(nT)', minstd=1, maxstd=2.5, 

          extent=magextent, show=False) 

    plt.subplot(4, 3, 4) 

    plot2(Txx, '(d) $B_{xx}$', '(nT/m)', minstd=1, maxstd=2.5, 

          extent=magextent, show=False) 

    plt.subplot(4, 3, 8) 

    plot2(Tyy, '(g) $B_{yy}$', '(nT/m)', minstd=1, maxstd=2.5, 

          extent=magextent, show=False) 

    plt.subplot(4, 3, 12) 

    plot2(Tzz, '(j) $B_{zz}$', '(nT/m)', minstd=1, maxstd=2.5, 

          extent=magextent, show=False) 

    plt.subplot(4, 3, 5) 

    plot2(Txy, '(e) $B_{xy}$', '(nT/m)', minstd=1, maxstd=2.5, 

          extent=magextent, show=False) 

    plt.subplot(4, 3, 6) 

    plot2(Txz, '(f) $B_{xz}$', '(nT/m)', minstd=1, maxstd=2.5, 

          extent=magextent, show=False) 

    plt.subplot(4, 3, 9) 

    plot2(Tyz, '(h) $B_{yz}$', '(nT/m)', minstd=1, maxstd=2.5, 

          extent=magextent, show=False) 

    plt.tight_layout() 

    plt.show() 

 

    cx, cy, cz = dircos(inc, dec) 

    Hx = (Txx*(Tx+cx*hintn)+Txy*(Ty+cy*hintn)+Txz*(Tz+cz*hintn))/(magval+hintn) 

    Hy = (Txy*(Tx+cx*hintn)+Tyy*(Ty+cy*hintn)+Tyz*(Tz+cz*hintn))/(magval+hintn) 

    Hz = (Txz*(Tx+cx*hintn)+Tyz*(Ty+cy*hintn)+Tzz*(Tz+cz*hintn))/(magval+hintn) 

 

    As, As2 = As_calcs(Hx, Hy, Hz, dxy) 

    Asz, Asz2 = As_calcs(Txz, Tyz, Tzz, dxy) 

    Asy, Asy2 = As_calcs(Txy, Tyy, Tyz, dxy) 

    Asx, Asx2 = As_calcs(Txx, Txy, Txz, dxy) 

 

    As0 = As0_calc(magval) 

    Asx0 = As0_calc(Tx) 

    Asy0 = As0_calc(Ty) 

    Asz0 = As0_calc(Tz) 

 

    r1 = -N*As0/As + fht 

    rx12 = -(N+1)*Asx/Asx2 + fht 

    ry12 = -(N+1)*Asy/Asy2 + fht 

    rz12 = -(N+1)*Asz/Asz2 + fht 

    rx01 = -N*Asx0/Asx + fht 

    ry01 = -N*Asy0/Asy + fht 

    rz01 = -N*Asz0/Asz + fht 

 

    r1[r1 < -maxdepth] = -maxdepth 

    r1[r1 > 0] = 0 

 

    idat = r1 

    rp = ss.argrelmax(idat, order=16, axis=0) 

 

    F = lmod.lith_list['Generic 1'].hintn 

    c = np.sin(np.deg2rad(lmod.lith_list['Generic 1'].finc))**2 

    k = 4*np.pi*As0**2/(As*2*F*c*w) 

 

    plt.figure(figsize=(9, 6)) 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

    plt.title('$As_{0}$') 

    plt.imshow(As0, extent=magextent, vmin=-30, vmax=280) 

    plt.colorbar().set_label('nT') 

    plt.tight_layout() 

    plt.show() 
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    plt.figure(figsize=(9, 6)) 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

    plt.title('$As_{1}$') 

    plt.imshow(As, extent=magextent, vmin=-0.2, vmax=1.3) 

    plt.colorbar().set_label('nT/m') 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(9, 6)) 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

    plt.title('$-r$') 

    plt.imshow(r1, extent=magextent, vmin=-500, vmax=0, cmap=plt.cm.jet_r) 

    plt.colorbar().set_label('m') 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(9, 6)) 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

    plt.title('$-r$') 

    plt.imshow(rz12, extent=magextent, vmin=-500, vmax=0, cmap=plt.cm.jet_r) 

    plt.colorbar().set_label('m') 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(9, 6)) 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

    plt.title('$k$') 

    plt.imshow(k, extent=magextent, vmin=-0.1, vmax=0.9) 

    plt.colorbar().set_label('SI Units') 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(8, 8)) 

    plt.subplot(3, 3, 1) 

    plot2(rx12, '(a)', 'Depth (m)', minstd=-400, maxstd=0, 

          extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False) 

    plt.subplot(3, 3, 2) 

    plot2(ry12, '(b)', 'Depth (m)', minstd=-400, maxstd=0, 

          extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False) 

    plt.subplot(3, 3, 3) 

    plot2(rz12, '(c)', 'Depth (m)', minstd=-400, maxstd=0, 

          extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False) 

    plt.subplot(3, 3, 4) 

    plot2(rx01, '(d)', 'Depth (m)', minstd=-400, maxstd=0, 

          extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False) 

    plt.subplot(3, 3, 5) 

    plot2(ry01, '(e)', 'Depth (m)', minstd=-400, maxstd=0, 

          extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False) 

    plt.subplot(3, 3, 6) 

    plot2(rz01, '(f)', 'Depth (m)', minstd=-400, maxstd=0, 

          extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False) 

    plt.subplot(3, 3, 7) 

    plot2(r1, '(g)', 'Depth (m)', minstd=-400, maxstd=0., 

          extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False) 

    plt.subplot(3, 3, 9) 

    plot2(k, '(h)', 'SI units', minstd=1, maxstd=2.5, 

          extent=magextent, show=False) 

    plt.tight_layout() 

    plt.show() 

 

    tmp = lmod.griddata['Magnetic Dataset'] 

    plt.figure(figsize=(7, 6)) 

    plt.title('Peak Locations') 

    plt.plot(tmp.tlx+rp[1]*tmp.xdim, tmp.tly-rp[0]*tmp.ydim, 'k.') 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

    plt.axis('equal') 

    plt.xlim([magextent[0], magextent[1]]) 

    plt.ylim([magextent[2], magextent[3]]) 
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    plt.tight_layout() 

    plt.show() 

 

    db = DBSCAN(eps=7, algorithm='brute').fit(np.transpose(rp)) 

    labels = db.labels_ 

    newlabels = (labels != -1) 

 

    for i in np.unique(labels): 

        if i == -1: 

            continue 

        elif np.sum(labels == i) < 10: 

            newlabels[labels == i] = False 

        else: 

            newlabels[labels == i] = True 

 

    labels = labels[newlabels] 

    rp = (rp[0][newlabels], rp[1][newlabels]) 

    k = k[rp] 

 

    rall = depth_from_tensor(Tx, Ty, Tz, Txx, Tyy, Tzz, Txy, Txz, Tyz, N, 

                             fht, magval, dxy, Hx, Hy, Hz) 

 

    means = [] 

    meds = [] 

    for i in rall: 

        plt.title('depths:'+i) 

        depth = rall[i] 

 

        w1 = depth[rp] 

        w1 = np.ma.masked_invalid(w1) 

        w1 = w1[~w1.mask] 

        w1 = w1.flatten() 

 

        width, A0, A1 = width_from_tensor(Hx, Hy, Hz, Txx, Tyy, Tzz, Txy, Txz, 

                                          Tyz, fht, dxy, depth, magval, hintn, 

                                          Tx, Ty, Tz, cx, cy, cz) 

 

        plt.title('widths:'+i) 

        w1 = width[rp] 

        w1 = np.ma.masked_invalid(w1) 

        w1 = w1[~w1.mask] 

        w1 = w1.flatten() 

 

        print('widths:'+i+' mean:', w1.mean(), 'std:', w1.std()) 

        print('widths:'+i+' median:', np.median(w1)) 

 

        means.append(w1.mean()) 

        meds.append(np.median(w1.std())) 

 

    print('width std', np.mean(meds)) 

    print('width mean', np.mean(means)) 

 

    plt.figure(figsize=(7, 6)) 

    plt.title('Peak Locations') 

    plt.plot(tmp.tlx+rp[1]*tmp.xdim, tmp.tly-rp[0]*tmp.ydim, 'k.') 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

    plt.axis('equal') 

    plt.xlim([magextent[0], magextent[1]]) 

    plt.ylim([magextent[2], magextent[3]]) 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(9, 6)) 

    plt.title('Peak Locations with Susceptibility') 

    plt.scatter(tmp.tlx+rp[1]*tmp.xdim, tmp.tly-rp[0]*tmp.ydim, c=k, 

                cmap=plt.cm.jet) 

    plt.ylabel('Northings (m)') 

    plt.xlabel('Eastings (m)') 

    plt.axis('equal') 

    plt.colorbar().set_label('SI units') 

    plt.xlim([magextent[0], magextent[1]]) 

    plt.ylim([magextent[2], magextent[3]]) 
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    plt.tight_layout() 

    plt.show() 

 

    km = KMeans(n_clusters=numclasses).fit(np.expand_dims(k, 1)) 

    klabels = km.labels_ 

    kmc = km.cluster_centers_ 

 

    plt.figure(figsize=(7, 5)) 

    plt.title('Susceptibility Distribution') 

 

    N, bins, patches = plt.hist(k, 100) 

 

    fracs = np.zeros_like(N) 

    for i in np.unique(klabels): 

        kmin = k[klabels == i].min() 

        kmax = k[klabels == i].max() 

        filt = np.logical_and(bins >= kmin, bins <= kmax) 

        fracs[filt[:-1]] = i 

 

    norm = colors.Normalize(fracs.min(), fracs.max()) 

 

    for thisfrac, thispatch in zip(fracs, patches): 

        color = plt.cm.jet(norm(thisfrac)) 

        thispatch.set_facecolor(color) 

 

    plt.ylabel('counts') 

    plt.xlabel('k (SI units)') 

    sm = plt.cm.ScalarMappable(cmap=plt.cm.jet, norm=norm) 

    sm._A = [] 

    cbar = plt.colorbar(sm, ticks=np.unique(klabels)) 

    cbar.ax.set_yticklabels((np.unique(klabels)+1).astype(str).tolist()) 

 

    cbar.set_label('Class Number') 

 

    plt.tight_layout() 

    plt.show() 

 

    print('Susceptibilities: ', kmc) 

 

# remember that r1 is negative below 

    depths = ((dtmval.max()-(dtmval[rp]+r1[rp]))/lmod.d_z).astype(int) 

    depths[depths >= lmod.numz] = -1 

 

    for i, dep in enumerate(depths): 

        yy = int(lmod.numy-rp[0][i]*lmod.numy/dtmval.shape[0]) 

        xx = int(rp[1][i]*lmod.numx/dtmval.shape[1]) 

 

        if dep != -1: 

            lmod.lith_index[xx, yy, dep:] = klabels[i]+1 

 

    for i, _ in enumerate(kmc): 

        lmod.lith_list['Generic '+str(i+1)] = \ 

            copy.deepcopy(lmod.lith_list['Generic 1']) 

        lmod.lith_list['Generic '+str(i+1)].lith_index = i+1 

        lmod.lith_list['Generic '+str(i+1)].susc = kmc[i] 

 

# Save model 

    lmod.mlut = {0: [170, 125, 90], 2: [255, 0, 0], 1: [0, 0, 255], 

                 3: [0, 255, 0]} 

 

    filename = filename[:-4]+'_out.npz' 

    emod = ExportMod3D(None) 

    emod.ifile = filename 

    emod.indata['Model3D'] = [lmod] 

 

    emod.lmod = lmod 

    emod.ifile = str(filename) 

    emod.ext = filename[-3:] 

    emod.savemodel() 

 

    newmag = calc_field(lmod, magcalc=True) 

 

    ztmp = gridmatch(lmod, 'Magnetic Dataset', 'Calculated Magnetics') 
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    dtmp = newmag['Magnetic Dataset'] 

 

    xcoords = np.arange(0, dtmp.ydim*dtmp.rows, dtmp.ydim)+dtmp.ydim/2 

 

    plt.figure(figsize=(8, 8)) 

    plt.subplot(2, 1, 1) 

    plt.title('(a)', loc='left') 

    plt.ylabel('$B_{tmi}$ (nT)') 

    plt.xlabel('Distance (m)') 

 

    col = int(15520/40) 

    plt.plot(xcoords, ztmp.data[::-1, col]) 

    plt.plot(xcoords, dtmp.data[::-1, col], '.') 

 

    plt.subplot(2, 1, 2) 

    plt.title('(b)', loc='left') 

    plt.ylabel('Depth (m)') 

    plt.xlabel('Distance (m)') 

    plt.ylim([-500, 0]) 

 

    depths = r1[::-1, col] 

 

    # Suspicious depths can be further filtered out here 

    depths[73:90] = -500 

    depths[584:595] = -500 

 

    rp = ss.argrelmax(depths, order=4)[0] 

 

    plt.plot(xcoords, np.ma.masked_equal(depths, -500)) 

    for i in rp: 

        plt.plot([xcoords[i], xcoords[i]], [-500, depths[i]], 'r') 

 

    plt.show() 

 

 

def As0_calc(idata): 

    """ 

    Calculates the 0 order analytic signal using hilbert transforms 

 

    Parameters 

    ---------- 

    idata : numpy array 

        grid of magnetic data 

 

    Returns 

    ------- 

    As0 : numpy array 

        zero order analytic signal 

 

    """ 

 

    Hilbx = ss.hilbert(idata, axis=1).imag 

    Hilby = ss.hilbert(idata, axis=0).imag 

    As0 = np.sqrt(idata**2 + Hilbx**2 + Hilby**2) 

 

    return As0 

 

 

def depth_from_tensor(Tx, Ty, Tz, Txx, Tyy, Tzz, Txy, Txz, Tyz, N, 

                      fht, magval, dxy, Hx, Hy, Hz): 

    """ 

    Calculates depth to source from tensor values 

 

    Parameters 

    ---------- 

    Tx : numpy array 

        Tx component 

    Ty : numpy array 

        Ty component 

    Tz : numpy array 

        Tz component 

    Txx : numpy array 

        Txx component 
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    Tyy : numpy array 

        Tyy component 

    Tzz : numpy array 

        Tzz component 

    Txy : numpy array 

        Txy component 

    Txz : numpy array 

        Txz component 

    Tyz : numpy array 

        Tyz component 

    N : integer 

        N value for depth, 0 for steps and 1 for dykes 

    fht : float 

        flying height 

    magval : numpy array 

        TMI array 

    dxy : float 

        grid cell size 

    Hx : numpy array 

        x derivative of TMI 

    Hy : numpy array 

        y derivative of TMI 

    Hz : numpy array 

        z derivative of TMI 

 

    Returns 

    ------- 

    r : python dictionary 

        dictionary of different calculated depths 

    """ 

 

    As0 = As0_calc(magval) 

    Asx0 = As0_calc(Tx) 

    Asy0 = As0_calc(Ty) 

    Asz0 = As0_calc(Tz) 

 

    As, As2 = As_calcs(Hx, Hy, Hz, dxy) 

    Asx, Asx2 = As_calcs(Txx, Txy, Txz, dxy) 

    Asy, Asy2 = As_calcs(Txy, Tyy, Tyz, dxy) 

    Asz, Asz2 = As_calcs(Txz, Tyz, Tzz, dxy) 

 

    Asall0 = np.sqrt(Asx0**2+Asy0**2+Asz0**2) 

    Asall1 = np.sqrt(Asx**2+Asy**2+Asz**2) 

    Asall2 = np.sqrt(Asx2**2+Asy2**2+Asz2**2) 

 

    r = {} 

    r['1'] = -N*As0/As+fht 

    r['12'] = -(N+1)*As/As2+fht 

 

    r['a01'] = -N*Asall0/Asall1+fht 

    r['a12'] = -(N+1)*Asall1/Asall2+fht 

 

    r['x12'] = -(N+1)*Asx/Asx2+fht 

    r['y12'] = -(N+1)*Asy/Asy2+fht 

    r['z12'] = -(N+1)*Asz/Asz2+fht 

 

    r['x01'] = -N*Asx0/Asx+fht 

    r['y01'] = -N*Asy0/Asy+fht 

    r['z01'] = -N*Asz0/Asz+fht 

 

    return r 

 

 

def width_from_tensor(Hx, Hy, Hz, Txx, Tyy, Tzz, Txy, Txz, Tyz, fht, 

                      dxy, depth, TMI, Ba, Tx, Ty, Tz, cx, cy, cz): 

    """ 

    Calculates dyke width from tensor values. 

 

 

    Parameters 

    ---------- 

    Hx : numpy array 

        x derivative of TMI 
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    Hy : numpy array 

        y derivative of TMI 

    Hz : numpy array 

        z derivative of TMI 

    Txx : numpy array 

        Txx component 

    Tyy : numpy array 

        Tyy component 

    Tzz : numpy array 

        Tzz component 

    Txy : numpy array 

        Txy component 

    Txz : numpy array 

        Txz component 

    Tyz : numpy array 

        Tyz component 

    fht : float 

        flying height 

    depth : numpy array 

        depth grid or value 

    TMI : numpy array 

        TMI data 

    Tx : numpy array 

        Tx component 

    Ty : numpy array 

        Ty component 

    Tz : numpy array 

        Tz component 

    cx : numpy array 

        alpha direction cosine 

    cy : numpy array 

        beta direction cosine 

    cz : numpy array 

        gamma direction cosine 

 

 

    Returns 

    ------- 

    width : numpy array 

        grid of widths 

    A0 : numpy array 

        A0 analytic signal 

    A1 : numpy array 

        A1 analytic signal 

    """ 

 

    depth2 = np.abs(depth)+np.abs(fht) 

 

    Txxy, Txxx = gradientO4(Txx, dxy) 

    Tyyy, Tyyx = gradientO4(Tyy, dxy) 

    Tzzy, Tzzx = gradientO4(Tzz, dxy) 

    Txyy, Txyx = gradientO4(Txy, dxy) 

    Txzy, Txzx = gradientO4(Txz, dxy) 

    Tyzy, Tyzx = gradientO4(Tyz, dxy) 

 

    Txxz = Txzx 

    Tyyz = Tyzy 

    Tzzz = -(Txxz+Tyyz) 

    Txyz = Tyzx 

    Txzz = Tzzx 

 

    D = Tx+cx*Ba 

    E = Ty+cy*Ba 

    F = Tz+cz*Ba 

 

    Htmi_zz = ((Txzz*D+Tzzy*E+Tzzz*F+Txz**2+Tyz**2+Tzz**2)/(TMI+Ba) - 

               (Txz*D+Tyz*E+Tzz*F)**2/(TMI+Ba)**3) 

 

    Htmi_yz = ((Txyz*D+Tyyz*E+Tzzy*F+Txz*Txy+Tyz*Tyy+Tzz*Tyz)/(TMI+Ba) - 

               (Txz*D+Tyz*E+Tzz*F)*(Txy*D+Tyy*E+Tyz*F)/(TMI+Ba)**3) 

 

    Htmi_xz = ((Txxz*D+Txyz*E+Tzzx*F+Txz*Txx+Tyz*Txy+Tzz*Txz)/(TMI+Ba) - 

               (Txz*D+Tyz*E+Tzz*F)*(Txx*D+Txy*E+Txz*F)/(TMI+Ba)**3) 
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    A0 = np.sqrt(Hx**2+Hy**2+Hz**2) 

    A1 = np.sqrt(Htmi_xz**2+Htmi_yz**2+Htmi_zz**2) 

    c1 = A1/A0 

 

    width = 2*np.sqrt((2*depth2/c1-depth2**2)) 

 

    return width, A0, A1 

 

 

def susc_from_tensor(Tx, Ty, Tz, Txx, Tyy, Tzz, Txz, Tyz, magval, hintn, 

                     width, depth1, fht, Hx, Hy, Hz, cy, dxy, Txy): 

    """ 

    Calculates susceptibility and magnetisation from tensor values 

 

    Parameters 

    ---------- 

    Tx : numpy array 

        Tx component 

    Ty : numpy array 

        Ty component 

    Tz : numpy array 

        Tz component 

    Txx : numpy array 

        Txx component 

    Tyy : numpy array 

        Tyy component 

    Tzz : numpy array 

        Tzz component 

    Txz : numpy array 

        Txz component 

    Tyz : numpy array 

        Tyz component 

    magval : numpy array 

        TMI array 

    hintn : float 

        ambient field strength in nT 

    width : numpy array or float 

        dyke width 

    depth1 : numpy array 

        dyke depth 

    fht : float 

        flying height 

    Hx : numpy array 

        x derivative of TMI 

    Hy : numpy array 

        y derivative of TMI 

    Hz : numpy array 

        z derivative of TMI 

    cy : numpy array 

        direction cosine - alpha for ENU/END or beta for NED 

    dxy : float 

        grid cell size 

    Txy : numpy array 

        Txy component 

 

    Returns 

    ------- 

    k : python dictionary 

        dictionary of different calculated magnetisations and susceptibilities 

    """ 

    depth = np.abs(depth1)+np.abs(fht) 

 

    As0 = As0_calc(magval) 

    Asx0 = As0_calc(Tx) 

    Asy0 = As0_calc(Ty) 

    Asz0 = As0_calc(Tz) 

 

    As, As2 = As_calcs(Hx, Hy, Hz, dxy) 

    Asx, Asx2 = As_calcs(Txx, Txy, Txz, dxy) 

    Asy, Asy2 = As_calcs(Txy, Tyy, Tyz, dxy) 

    Asz, Asz2 = As_calcs(Txz, Tyz, Tzz, dxy) 
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    Asall0 = np.sqrt(Asx0**2+Asy0**2+Asz0**2) 

    Asall1 = np.sqrt(Asx**2+Asy**2+Asz**2) 

 

    F = hintn 

    c = 1-cy**2 

 

    k = {} 

    k['mt01'] = As0**2/(200*As*width*c) 

    k['mtz1d'] = Asz*depth**2/(width*200*np.sqrt(c)) 

    k['mtz01'] = Asz0**2/(200*Asz*width*np.sqrt(c)) 

    k['mtz0d'] = Asz0*depth/(width*200*np.sqrt(c)) 

    k['mtall'] = Asall0**2/(200*Asall1*width*c) 

 

    k['k01'] = k['mt01']*4*np.pi*100/F 

    k['kz1d'] = k['mtz1d']*4*np.pi*100/F 

    k['kz01'] = k['mtz01']*4*np.pi*100/F 

    k['kz0d'] = k['mtz0d']*4*np.pi*100/F 

    k['kall'] = k['mtall']*4*np.pi*100/F 

 

    return k 

 

 

def cosines_from_tensor(Hx, Hy, Hz, Txx, Tyy, Tzz, Txy, Txz, Tyz): 

    """ 

    Direction cosines from tensor, first approx equation. 

 

    Parameters 

    ---------- 

    Hx : numpy array 

        x derivative of TMI 

    Hy : numpy array 

        y derivative of TMI 

    Hz : numpy array 

        z derivative of TMI 

    Txx : numpy array 

        Txx component 

    Tyy : numpy array 

        Tyy component 

    Tzz : numpy array 

        Tzz component 

    Txy : numpy array 

        Txy component 

    Txz : numpy array 

        Txz component 

    Tyz : numpy array 

        Tyz component 

 

    Returns 

    ------- 

    cx : numpy array 

        alpha direction cosine 

    cy : numpy array 

        beta direction cosine 

    cz : numpy array 

        gamma direction cosine 

    """ 

 

    warnings.filterwarnings('ignore') 

    cx2 = (Hx*(Tyz**2 - Tyy*Tzz) + 

           Hy*(Txy*Tzz - Txz*Tyz) + 

           Hz*(Txz*Tyy - Txy*Tyz))/(Txx*Tyz**2 - Txx*Tyy*Tzz + Txy**2*Tzz - 

                                    2*Txy*Txz*Tyz + Txz**2*Tyy) 

 

    cy2 = (Hx*(Txz*Tyz - Txy*Tzz) + 

           Hy*(Txx*Tzz - Txz**2) + 

           Hz*(Txy*Txz - Txx*Tyz))/(Txx*Tyy*Tzz - Txx*Tyz**2 - Txy**2*Tzz + 

                                    2*Txy*Txz*Tyz - Txz**2*Tyy) 

 

    cz2 = (Hx*(Txy*Tyz - Txz*Tyy) + 

           Hy*(Txy*Txz - Txx*Tyz) + 

           Hz*(Txx*Tyy - Txy**2))/(Txx*Tyy*Tzz - Txx*Tyz**2 - Txy**2*Tzz + 

                                   2*Txy*Txz*Tyz - Txz**2*Tyy) 
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    return (cx2, cy2, cz2) 

 

 

def cosines_from_tensor2(tx, ty, f, bxx, byy, bxy, bxz, byz, bx, by, bz): 

    """ 

    Direction cosines from tensor, second approx equation. 

 

    Parameters 

    ---------- 

    tx : numpy array 

        x derivative of TMI 

    ty : numpy array 

        y derivative of TMI 

    f : numpy array 

        TMI data 

    bxx : numpy array 

        Txx component 

    byy : numpy array 

        Tyy component 

    bzz : numpy array 

        Tzz component 

    bxy : numpy array 

        Txy component 

    bxz : numpy array 

        Txz component 

    byz : numpy array 

        Tyz component 

    bx : numpy array 

        Tx component 

    by : numpy array 

        Ty component 

    bz : numpy array 

        Tz component 

 

    Returns 

    ------- 

    cx : numpy array 

        alpha direction cosine 

    cy : numpy array 

        beta direction cosine 

    cz : numpy array 

        gamma direction cosine 

    """ 

 

    warnings.filterwarnings('ignore') 

    cx2 = (bxy*byz*f - bxy*bz*ty + bxz*by*ty - bxz*byy*f - by*byz*tx + 

           byy*bz*tx)/(bx*bxy*byz - bx*bxz*byy - bxx*by*byz + bxx*byy*bz - 

                       bxy**2*bz + bxy*bxz*by) 

    cy2 = (-bx*bxz*ty + bx*byz*tx - bxx*byz*f + bxx*bz*ty + bxy*bxz*f - 

           bxy*bz*tx)/(bx*bxy*byz - bx*bxz*byy - bxx*by*byz + bxx*byy*bz - 

                       bxy**2*bz + bxy*bxz*by) 

    cz2 = (bx*bxy*ty - bx*byy*tx - bxx*by*ty + bxx*byy*f - bxy**2*f + 

           bxy*by*tx)/(bx*bxy*byz - bx*bxz*byy - bxx*by*byz + bxx*byy*bz - 

                       bxy**2*bz + bxy*bxz*by) 

 

    return (cx2, cy2, cz2) 

 

 

def cosines_from_tensor3(tx, ty, tz, f, bxx, byy, bxy, bxz, byz, B, bx, by, 

                         bz): 

    """ 

    Direction cosines from tensor, full equation. 

 

    Parameters 

    ---------- 

    tx : numpy array 

        x derivative of TMI 

    ty : numpy array 

        y derivative of TMI 

    tz : numpy array 

        z derivative of TMI 

    f : numpy array 

        TMI data 
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    bxx : numpy array 

        Txx component 

    byy : numpy array 

        Tyy component 

    bzz : numpy array 

        Tzz component 

    bxy : numpy array 

        Txy component 

    bxz : numpy array 

        Txz component 

    byz : numpy array 

        Tyz component 

    B : float 

        ambient field strength 

    bx : numpy array 

        Tx component 

    by : numpy array 

        Ty component 

    bz : numpy array 

        Tz component 

 

    Returns 

    ------- 

    cx : numpy array 

        alpha direction cosine 

    cy : numpy array 

        beta direction cosine 

    cz : numpy array 

        gamma direction cosine 

    """ 

 

    warnings.filterwarnings('ignore') 

    cx2 = (-B*bxx*bxy*ty + B*bxx*byy*tx - B*bxy*byy*ty - B*bxy*byz*tz + 

           B*bxz*byy*tz - B*bxz*byz*ty + B*byy**2*tx + B*byz**2*tx - 

           bx*bxx**2*byy + bx*bxx*bxy**2 - bx*bxx*byy**2 - bx*bxx*byz**2 + 

           bx*bxy**2*byy + 2*bx*bxy*bxz*byz - bx*bxz**2*byy - bxx*bxy*f*ty + 

           bxx*byy*f*tx - bxy*byy*f*ty - bxy*byz*f*tz + bxz*byy*f*tz - 

           bxz*byz*f*ty + byy**2*f*tx + 

           byz**2*f*tx)/(B*(bxx**2*byy - bxx*bxy**2 + bxx*byy**2 + 

                            bxx*byz**2 - bxy**2*byy - 2*bxy*bxz*byz + 

                            bxz**2*byy)) 

    cy2 = (B*bxx**2*ty - B*bxx*bxy*tx + B*bxx*byy*ty + B*bxx*byz*tz - 

           B*bxy*bxz*tz - B*bxy*byy*tx + B*bxz**2*ty - B*bxz*byz*tx - 

           bxx**2*by*byy + bxx**2*f*ty + bxx*bxy**2*by - bxx*bxy*f*tx - 

           bxx*by*byy**2 - bxx*by*byz**2 + bxx*byy*f*ty + bxx*byz*f*tz + 

           bxy**2*by*byy + 2*bxy*bxz*by*byz - bxy*bxz*f*tz - bxy*byy*f*tx - 

           bxz**2*by*byy + bxz**2*f*ty - 

           bxz*byz*f*tx)/(B*(bxx**2*byy - bxx*bxy**2 + bxx*byy**2 + 

                             bxx*byz**2 - bxy**2*byy - 2*bxy*bxz*byz + 

                             bxz**2*byy)) 

    cz2 = (-B*bxx*byy*tz + B*bxx*byz*ty + B*bxy**2*tz - B*bxy*bxz*ty - 

           B*bxy*byz*tx + B*bxz*byy*tx - bxx**2*byy*bz + bxx*bxy**2*bz - 

           bxx*byy**2*bz - bxx*byy*f*tz - bxx*byz**2*bz + bxx*byz*f*ty + 

           bxy**2*byy*bz + bxy**2*f*tz + 2*bxy*bxz*byz*bz - bxy*bxz*f*ty - 

           bxy*byz*f*tx - bxz**2*byy*bz + 

           bxz*byy*f*tx)/(B*(bxx**2*byy - bxx*bxy**2 + bxx*byy**2 + 

                             bxx*byz**2 - bxy**2*byy - 2*bxy*bxz*byz + 

                             bxz**2*byy)) 

 

    return (cx2, cy2, cz2) 

 

 

def rem_from_cosines(cx2, cy2, cz2, mt, susc, hintn, inc, dec, azim): 

    """ 

    Remanence calculations 

 

 

    Parameters 

    ---------- 

    cx2 : numpy array 

        alpha direction cosine 

    cy2 : numpy array 

        beta direction cosine 
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    cz2 : numpy array 

        gamma direction cosine 

    mt : numpy array 

        total magnetisation 

    susc : numpy array 

        susceptibility 

    hintn : float 

        ambient field strength in nT 

    inc : float 

        inclination of inducing field 

    dec : float 

        declination of inducing field 

    azim : float 

        angle between x direction and North. 

 

    Returns 

    ------- 

    mstr : numpy array 

        remanent magnetisation 

    minc : numpy array 

        remanent inclination 

    mdec : numpy array 

        remanent declination 

    """ 

    f1 = susc*hintn 

    fa, fb, fc = dircos(inc, dec, azim) 

 

    A = cx2*mt - f1*fa/(400*np.pi) 

    B = cy2*mt - f1*fb/(400*np.pi) 

    C = cz2*mt - f1*fc/(400*np.pi) 

 

    mdec = -2*np.arctan2((A + np.sqrt(A**2 + B**2)), B) 

    mdec = np.rad2deg(mdec)-180+azim 

    mdec[mdec > 180] -= 360 

    mdec[mdec < -180] += 360 

 

    tmp1 = -np.sqrt(A**2+B**2+C**2)+np.sqrt(A**2+B**2) 

    tmp2 = C 

    minc = -2*np.arctan2(tmp1, tmp2) 

    minc = np.rad2deg(minc) 

 

    minc[minc > 90] -= 360 

    minc[minc < -90] += 360 

 

    ma, mb, mc = dircos(minc, mdec, azim) 

 

    mstr = np.sqrt(A**2+B**2+C**2) 

 

    return (mstr, minc, mdec) 

 

 

def tallafwd(): 

    """ 

    Simple forward model for simulating tallawang anomaly. See section 6.3.2 

 

    Parameters 

    ---------- 

    None 

 

    Returns 

    ------- 

    None 

    """ 

 

    hintn = 56701.6 

    inc = -63.0575 

    dec = 11.47 

    susc = 2.5 

    mstr = 30 

    minc = -70 

    mdec = -60 

    dxy = 5 

    fht = 0 
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    depth = 20 

    width = 10 

 

    tcube = TensorCube() 

    tcube.susc = susc 

    tcube.mstrength = mstr 

    tcube.inc = inc 

    tcube.dec = dec 

    tcube.minc = minc 

    tcube.mdec = mdec 

    tcube.hintn = hintn 

    tcube.height = 0 

    tcube.dxy = dxy 

    tcube.u = [100-width, 100] 

    cpnt = int(np.mean(tcube.u)/dxy) 

    azim = tcube.azim 

 

    xblocks = [] 

    yblocks = [] 

    for offset in np.arange(depth, 150, dxy): 

 

        print('offset', offset) 

        xoff = (offset-depth)*20/(150-depth) 

        tcube.u = [102-width-xoff, 102-xoff] 

        tcube.v = [0, 150] 

        tcube.w = [-offset, -(offset+dxy)] 

        tcube.rc = 150 

 

        xblocks.append(tcube.u) 

        yblocks.append(tcube.w) 

 

        tcube.calc_all() 

        coords = tcube.xyall 

 

        if offset == depth: 

            Txx = tcube.bxx 

            Txy = tcube.bxy 

            Txz = tcube.bxz 

            Tyy = tcube.byy 

            Tyz = tcube.byz 

            Tzz = tcube.bzz 

            Tx = tcube.bx 

            Ty = tcube.by 

            Tz = tcube.bz 

            magval = tcube.magval 

        else: 

            Txx = Txx + tcube.bxx 

            Txy = Txy + tcube.bxy 

            Txz = Txz + tcube.bxz 

            Tyy = Tyy + tcube.byy 

            Tyz = Tyz + tcube.byz 

            Tzz = Tzz + tcube.bzz 

            Tx = Tx + tcube.bx 

            Ty = Ty + tcube.by 

            Tz = Tz + tcube.bz 

            magval = magval + tcube.magval 

 

    print('mt (tcube)', tcube.mt/100) 

    cx = tcube.cx 

    cy = tcube.cy 

    cz = tcube.cz 

 

    Hx = (Txx*(Tx+cx*hintn)+Txy*(Ty+cy*hintn)+Txz*(Tz+cz*hintn))/(magval+hintn) 

    Hy = (Txy*(Tx+cx*hintn)+Tyy*(Ty+cy*hintn)+Tyz*(Tz+cz*hintn))/(magval+hintn) 

    Hz = (Txz*(Tx+cx*hintn)+Tyz*(Ty+cy*hintn)+Tzz*(Tz+cz*hintn))/(magval+hintn) 

 

    As, As2 = As_calcs(Hx, Hy, Hz, dxy) 

    Asz, Asz2 = As_calcs(Txz, Tyz, Tzz, dxy) 

    Asy, Asy2 = As_calcs(Txy, Tyy, Tyz, dxy) 

    Asx, Asx2 = As_calcs(Txx, Txy, Txz, dxy) 

 

    As0 = As0_calc(magval) 

    Asx0 = As0_calc(Tx) 
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    Asy0 = As0_calc(Ty) 

    Asz0 = As0_calc(Tz) 

 

    plt.figure(figsize=(8, 6)) 

    plt.subplot(2, 1, 1) 

    plt.plot(coords, magval[8], label='TMI calculated') 

    plt.xlim(0, 150) 

    plt.ylabel('(nT)') 

    plt.xlabel('Distance (m)') 

    plt.yticks(rotation='vertical', va='center') 

    plt.axvline(x=97, c='r', ls='dashed') 

    plt.legend() 

 

    plt.subplot(2, 1, 2) 

    plt.xlim(0, 150) 

    plt.ylabel('Depth (m)') 

    plt.xlabel('Distance (m)') 

    for i, _ in enumerate(xblocks): 

        x1, x2 = xblocks[i] 

        y1, y2 = yblocks[i] 

        plt.plot([x1, x2, x2, x1, x1], [y1, y1, y2, y2, y1], 'k') 

 

    plt.tight_layout() 

    plt.show() 

 

    N = 1 

    depths = depth_from_tensor(Tx, Ty, Tz, Txx, Tyy, Tzz, Txy, Txz, Tyz, N, 

                               fht, magval, dxy, Hx, Hy, Hz) 

 

    print('depth fixed') 

    depth = abs(depth) 

    tmp = width_from_tensor(Hx, Hy, Hz, Txx, Tyy, Tzz, Txy, Txz, Tyz, fht, 

                            dxy, depth, magval, hintn, Tx, Ty, Tz, cx, cy, 

                            cz) 

    widths, A0, A1 = tmp 

 

#    print('width fixed') 

    width = np.zeros_like(widths)+widths[15].min() 

 

    tmp = cosines_from_tensor3(Hx, Hy, Hz, magval, Txx, Tyy, Txy, Txz, 

                               Tyz, hintn, Tx, Ty, Tz) 

    cx2, cy2, cz2 = tmp 

 

    k = susc_from_tensor(Tx, Ty, Tz, Txx, Tyy, Tzz, Txz, Tyz, magval, hintn, 

                         width, depth, fht, Hx, Hy, Hz, cy2, dxy, Txy) 

 

    mt1 = tcube.mt/100 

 

    # Susceptibility and magnetisation can be fixed for the remanence 

    # calculations. 

    susc1 = susc 

    mt1 = 114  # 140 is the accurate value, and 114 is the innacurate value 

 

    tmp = rem_from_cosines(cx2, cy2, cz2, mt1, susc1, hintn, inc, dec, azim) 

    mstr, minc2, mdec2 = tmp 

 

    print('Center point', cpnt*dxy) 

    print('Width', width[cpnt, cpnt]) 

    print('cx', cx, cx2[cpnt, cpnt]) 

    print('cy', cy, cy2[cpnt, cpnt]) 

    print('cz', cz, cz2[cpnt, cpnt]) 

    print('mdec2', mdec, mdec2[cpnt, cpnt]) 

    print('minc2', minc, minc2[cpnt, cpnt]) 

    print('mstr2', mstr[cpnt, cpnt]) 

 

    coords = tcube.xyall 

    cpnt = magval.shape[0]//2 

 

# Convert the EN to NE axes. 

    Asx, Asy = Asy, Asx 

    Asx0, Asy0 = Asy0, Asx0 

    Asx2, Asy2 = Asy2, Asx2 

    Txx, Tyy = Tyy, Txx 
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    Tyz, Txz = Txz, Tyz 

 

    r = depths 

    r['x01'], r['y01'] = r['y01'], r['x01'] 

    r['x12'], r['y12'] = r['y12'], r['x12'] 

 

# Plot data 

    i = cpnt 

    cpnt = 97  # black dashed line on plots 

    minc = minc2 

    mdec = mdec2 

    r = depths 

 

    dxy = coords[1]-coords[0] 

    icpnt = int(round(cpnt/dxy)) 

    s = slice(icpnt-1, icpnt+1) 

    s2 = slice(icpnt-2, icpnt+2) 

    s3 = slice(int(60/dxy), int(130/dxy)) 

    s4 = slice(5, -1) 

    s = s4 

    s2 = s4 

 

    # Plot the tensor components 

    plt.figure(figsize=(8, 8)) 

    plt.subplot(331) 

    plt.title('(a) $T_{xx}$', loc='left') 

    plt.ylabel('(nT/m)') 

    plt.xlabel('Distance (m)') 

    plt.plot(coords, Txx[i]) 

    plt.yticks(rotation='vertical', va='center') 

 

    plt.subplot(332) 

    plt.title('(b) $T_{xy}$', loc='left') 

    plt.ylabel('(nT/m)') 

    plt.xlabel('Distance (m)') 

    plt.plot(coords, Txy[i]) 

    plt.yticks(rotation='vertical', va='center') 

 

    plt.subplot(333) 

    plt.title('(c) $T_{xz}$', loc='left') 

    plt.ylabel('(nT/m)') 

    plt.xlabel('Distance (m)') 

    plt.plot(coords, Txz[i]) 

    plt.yticks(rotation='vertical', va='center') 

 

    plt.subplot(335) 

    plt.title('(d) $T_{yy}$', loc='left') 

    plt.ylabel('(nT/m)') 

    plt.xlabel('Distance (m)') 

    plt.plot(coords, Tyy[i]) 

    plt.yticks(rotation='vertical', va='center') 

 

    plt.subplot(336) 

    plt.title('(e) $T_{yz}$', loc='left') 

    plt.ylabel('(nT/m)') 

    plt.xlabel('Distance (m)') 

    plt.plot(coords, Tyz[i]) 

    plt.yticks(rotation='vertical', va='center') 

 

    plt.subplot(339) 

    plt.title('(f) $T_{zz}$', loc='left') 

    plt.ylabel('(nT/m)') 

    plt.xlabel('Distance (m)') 

    plt.plot(coords, Tzz[i]) 

    plt.yticks(rotation='vertical', va='center') 

 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(8, 8)) 

    plt.subplot(221) 

    plt.title('(a)', loc='left') 

    plt.plot(coords[s4], As0[i][s4], label='$As_{0}$') 
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    plt.plot(coords[s4], Asy0[i][s4], label='$As_{y0}$') 

    plt.plot(coords[s4], Asz0[i][s4], label='$As_{z0}$') 

    plt.xlabel('Distance (m)') 

    plt.ylabel('(nT)') 

    plt.legend() 

    plt.yticks(rotation='vertical', va='center') 

    plt.axvline(x=cpnt, c='k', ls='dashed') 

    plt.xlim(coords[0], coords[-1]) 

 

    plt.subplot(222) 

    plt.title('(b)', loc='left') 

    plt.plot(coords[s4], As[i][s4], label='$As_{1}$') 

    plt.plot(coords[s4], Asy[i][s4], label='$As_{y1}$') 

    plt.plot(coords[s4], Asz[i][s4], label='$As_{z1}$') 

    plt.xlabel('Distance (m)') 

    plt.ylabel('(nT/m)') 

    plt.legend() 

    plt.yticks(rotation='vertical', va='center') 

    plt.axvline(x=cpnt, c='k', ls='dashed') 

    plt.xlim(coords[0], coords[-1]) 

 

    plt.subplot(223) 

    plt.title('(c)', loc='left') 

    plt.plot(coords[s], r['1'][i][s], label=r'$\frac{N As_{0}}{As_{1}}$') 

    plt.plot(coords[s], r['y01'][i][s], label=r'$\frac{N As_{y0}}{As_{y1}}$') 

    plt.plot(coords[s], r['z01'][i][s], label=r'$\frac{N As_{z0}}{As_{z1}}$') 

    plt.plot(coords[s], r['a01'][i][s], label=r'$\frac{N As_{xyz0}}{As_{xyz1}}$') 

    plt.axvline(x=cpnt, c='k', ls='dashed') 

    plt.xlabel('Distance (m)') 

    plt.ylabel('Depth (m)') 

    plt.xlim(coords[0], coords[-1]) 

    plt.ylim(-25, 0) 

    plt.legend(loc=2, prop={'size': 12}) 

    plt.yticks(rotation='vertical', va='center') 

 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(8, 8)) 

    plt.subplot(221) 

    plt.title('(a)', loc='left') 

    plt.plot(coords[s4], As[i][s4], label='$As_{1}$') 

    plt.plot(coords[s4], Asy[i][s4], label='$As_{y1}$') 

    plt.plot(coords[s4], Asz[i][s4], label='$As_{z1}$') 

    plt.xlabel('Distance (m)') 

    plt.ylabel('(nT/m)') 

    plt.legend() 

    plt.yticks(rotation='vertical', va='center') 

    plt.axvline(x=cpnt, c='k', ls='dashed') 

    plt.xlim(coords[0], coords[-1]) 

 

    plt.subplot(222) 

    plt.title('(b)', loc='left') 

    plt.plot(coords[s4], As2[i][s4], label='$As_{2}$') 

    plt.plot(coords[s4], Asy2[i][s4], label='$As_{y2}$') 

    plt.plot(coords[s4], Asz2[i][s4], label='$As_{z2}$') 

    plt.xlabel('Distance (m)') 

    plt.ylabel('(nT/m$^2$)') 

    plt.legend() 

    plt.yticks(rotation='vertical', va='center') 

    plt.axvline(x=cpnt, c='k', ls='dashed') 

    plt.xlim(coords[0], coords[-1]) 

 

    plt.subplot(223) 

    plt.title('(c)', loc='left') 

    plt.plot(coords[s], r['12'][i][s], 

             label=r'$\frac{(N+1) As_{1}}{As_{2}}$') 

    plt.plot(coords[s], r['y12'][i][s], 

             label=r'$\frac{(N+1) As_{y1}}{As_{y2}}$') 

    plt.plot(coords[s], r['z12'][i][s], 

             label=r'$\frac{(N+1) As_{z1}}{As_{z2}}$') 

    plt.plot(coords[s], r['a12'][i][s], 

             label=r'$\frac{(N+1) As_{xyz1}}{As_{xyz2}}$') 
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    plt.axvline(x=cpnt, c='k', ls='dashed') 

    plt.xlabel('Distance (m)') 

    plt.ylabel('Depth (m)') 

    plt.xlim(coords[0], coords[-1]) 

    plt.ylim(-30, 0) 

 

    plt.legend(loc=2, prop={'size': 12}) 

    plt.yticks(rotation='vertical', va='center') 

 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(8, 8)) 

    plt.subplot(221) 

    plt.title('(a)', loc='left') 

    plt.plot(coords[s4], A0[i][s4], label='$A_{0}$') 

    plt.xlabel('Distance (m)') 

    plt.ylabel('(nT/m)') 

    plt.legend() 

    plt.yticks(rotation='vertical', va='center') 

    plt.axvline(x=cpnt, c='k', ls='dashed') 

    plt.xlim(coords[0], coords[-1]) 

 

    plt.subplot(222) 

    plt.title('(b)', loc='left') 

    plt.plot(coords[s4], A1[i][s4], label='$A_{1}$') 

    plt.xlabel('Distance (m)') 

    plt.ylabel('(nT/m$^2$)') 

    plt.legend() 

    plt.yticks(rotation='vertical', va='center') 

    plt.xlim(coords[0], coords[-1]) 

    plt.axvline(x=cpnt, c='k', ls='dashed') 

    plt.xlim(coords[0], coords[-1]) 

 

    plt.subplot(223) 

    plt.title('(c)', loc='left') 

    plt.plot(coords[s4], widths[i][s4], 

             label=r'$2 \sqrt{\frac{2d}{c}-d^2}$') 

    plt.xlabel('Distance (m)') 

    plt.ylabel('Width (m)') 

    plt.xlim(coords[0], coords[-1]) 

    plt.legend(prop={'size': 12}) 

    plt.axvline(x=cpnt, c='k', ls='dashed') 

    plt.yticks(rotation='vertical', va='center') 

 

    plt.tight_layout() 

    plt.show() 

 

    lmt01 = r'$\frac{As_{0}^2}{As_{1} 200 w c}$' 

    lmtz1d = r'$\frac{As_{z1}d^2}{As_{1} 200 w \sqrt{c}}$' 

    lmtz01 = r'$\frac{As_{z0}^2}{As_{z1} 200 w \sqrt{c}}$' 

    lmtz0d = r'$\frac{As_{z0}d}{200 w \sqrt{c}}$' 

    lmtall = r'$\frac{As_{xyz0}^2}{As_{xyz1} 200 w \sqrt{c}}$' 

    lk01 = r'$\frac{4 \pi As_{0}^2}{As_{1} 2 B_{a} w c}$' 

    lkz1d = r'$\frac{4 \pi As_{z1}d^2}{As_{1} 2 B_{a} w \sqrt{c}}$' 

    lkz01 = r'$\frac{4 \pi As_{z0}^2}{As_{z1} 2 B_{a} w \sqrt{c}}$' 

    lkz0d = r'$\frac{4 \pi As_{z0}d}{2 B_{a} w \sqrt{c}}$' 

    lkall = r'$\frac{4 \pi As_{xyz0}^2}{As_{xyz1} 2 B_{a} w \sqrt{c}}$' 

 

    plt.figure(figsize=(8, 4)) 

    plt.subplot(121) 

    plt.title('(a) $Susceptibility$', loc='left') 

    plt.ylabel('(SI)') 

    plt.xlabel('Distance (m)') 

    plt.plot(coords[s3], k['k01'][i][s3], label=lk01) 

    plt.plot(coords[s3], k['kz1d'][i][s3], label=lkz1d) 

    plt.plot(coords[s3], k['kz01'][i][s3], label=lkz01) 

    plt.plot(coords[s3], k['kz0d'][i][s3], label=lkz0d) 

    plt.plot(coords[s3], k['kall'][i][s3], label=lkall) 

    plt.xlim(coords[0], coords[-1]) 

    plt.legend(loc=2, prop={'size': 13}) 

    plt.yticks(rotation='vertical', va='center') 

    plt.axvline(x=cpnt, c='k', ls='dashed') 
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    plt.subplot(122) 

    plt.title('(b) $Magnetisation$', loc='left') 

    plt.ylabel('(A/m)') 

    plt.xlabel('Distance (m)') 

    plt.plot(coords[s3], k['mt01'][i][s3], label=lmt01) 

    plt.plot(coords[s3], k['mtz1d'][i][s3], label=lmtz1d) 

    plt.plot(coords[s3], k['mtz01'][i][s3], label=lmtz01) 

    plt.plot(coords[s3], k['mtz0d'][i][s3], label=lmtz0d) 

    plt.plot(coords[s3], k['mtall'][i][s3], label=lmtall) 

    plt.xlim(coords[0], coords[-1]) 

    plt.legend(loc=2, prop={'size': 13}) 

    plt.yticks(rotation='vertical', va='center') 

    plt.axvline(x=cpnt, c='k', ls='dashed') 

 

    plt.tight_layout() 

    plt.show() 

 

    plt.figure(figsize=(8, 5)) 

    plt.subplot(121) 

    plt.title('(a)', loc='left') 

    plt.plot(coords[s4], cx2[i][s4], label=r'$\alpha$') 

    plt.plot(coords[s4], cy2[i][s4], label=r'$\beta$') 

    plt.plot(coords[s4], cz2[i][s4], label=r'$\gamma$') 

    plt.xlabel('Distance (m)') 

    plt.ylabel('(direction cosine)') 

    plt.ylim(-1.2, 1.) 

    plt.legend() 

    plt.yticks(rotation='vertical', va='center') 

    plt.axvline(x=cpnt, c='k', ls='dashed') 

    plt.xlim(coords[0], coords[-1]) 

 

    plt.subplot(122) 

    plt.title('(b)', loc='left') 

    plt.plot(coords[s2], minc[i][s2], label='inc') 

    plt.plot(coords[s2], mdec[i][s2], label='dec') 

    plt.xlabel('Distance (m)') 

    plt.ylabel('(degrees)') 

    plt.yticks(rotation='vertical', va='center') 

    plt.axvline(x=cpnt, c='k', ls='dashed') 

    plt.xlim(coords[0], coords[-1]) 

    plt.legend() 

 

    plt.tight_layout() 

    plt.show() 

 

    # First do inclination 

 

    cx1, cy1, cz1 = dircos(inc, dec, azim) 

    xvals = coords 

    yvals = magval[i] 

 

    plt.figure(figsize=(8, 4)) 

    plt.subplot(121) 

    plt.title('(a)', loc='left') 

    plt.ylabel('(nT)') 

    plt.xlabel('Distance (m)') 

    plt.yticks(rotation='vertical', va='center') 

 

    cmagn1 = np.sqrt(cx1**2+cy1**2+cz1**2) 

 

    uvals = np.zeros_like(coords) + np.sqrt(cx1**2+cy1**2)/cmagn1 

    vvals = np.zeros_like(coords) + cz1/cmagn1 

 

    Q1 = plt.quiver(xvals, yvals, uvals, vvals, color='r', headwidth=5) 

 

    cmagn2 = np.sqrt(cx2[i]**2+cy2[i]**2+cz2[i]**2) 

 

    uvals = np.zeros_like(coords) + np.sqrt(cx2[i]**2+cy2[i]**2)/cmagn2 

    vvals = np.zeros_like(coords) + cz2[i]/cmagn2 

 

    Q2 = plt.quiver(xvals, yvals, uvals, vvals, color='y', headwidth=5) 
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    plt.quiverkey(Q1, 0.1, .9, 1, 'I (ambient field)', labelpos='E') 

    plt.quiverkey(Q2, 0.1, .8, 1, 'I (resultant)', labelpos='E') 

 

    # Now declination 

 

    plt.subplot(122) 

    plt.ylabel('(nT)') 

    plt.xlabel('Distance (m)') 

    plt.yticks(rotation='vertical', va='center') 

    plt.title('(b)', loc='left') 

 

    cmagn1 = np.sqrt(cx1**2+cy1**2) 

    cmagn2 = np.sqrt(cx2[i]**2+cy2[i]**2) 

 

    if azim == 90: 

        uvals = np.zeros_like(coords) + cx1/cmagn1 

        vvals = np.zeros_like(coords) - cy1/cmagn1 

    else: 

        uvals = np.zeros_like(coords) + cy1/cmagn1 

        vvals = np.zeros_like(coords) + cx1/cmagn1 

 

    Q1 = plt.quiver(xvals, yvals, uvals, vvals, color='r', headwidth=5) 

 

    if azim == 90: 

        uvals = np.zeros_like(coords) + cx2[i]/cmagn2 

        vvals = np.zeros_like(coords) - cy2[i]/cmagn2 

    else: 

        uvals = np.zeros_like(coords) + cy2[i]/cmagn2 

        vvals = np.zeros_like(coords) + cx2[i]/cmagn2 

 

    Q2 = plt.quiver(xvals, yvals, uvals, vvals, color='y', headwidth=5) 

 

    plt.quiverkey(Q1, 0.1, 0.9, 1, 'D (ambient field)', labelpos='E') 

    plt.quiverkey(Q2, 0.1, 0.8, 1, 'D (resultant)', labelpos='E') 

 

    plt.tight_layout() 

    plt.show() 

 

    inc = np.rad2deg(np.arctan(cz2[i][icpnt] / 

                               np.sqrt(cx2[i][icpnt]**2+cy2[i][icpnt]**2))) 

    dec = np.rad2deg(np.arctan(cy2[i][icpnt]/cx2[i][icpnt]))+azim 

    print('field inc', inc) 

    print('field dec', dec) 

 

 

# This section calls the program. You can use either of the two routines below. 

if __name__ == "__main__": 

    try: 

        sys.path.index(PyGMIPATH) 

    except ValueError: 

        sys.path.append(PyGMIPATH) 

 

#    tests() 

#    remanence() 

#    interp(r'.\data2\licht1.npz') 

    tallafwd() 

 

    print('Finished!') 

    winsound.PlaySound('SystemQuestion', winsound.SND_ALIAS) 

 


