
i

AN INVESTIGATION INTO TENSOR BASED
MAGNETIC FIELD FORWARD MODELLING,
AND SOURCE DETECTION.

Patrick Cole

A Thesis submitted to the Faculty of Science, University of the Witwatersrand,

Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy

Johannesburg, 2018

ii

DECLARATION

I declare that this Theses is my own, unaided work. It is being submitted for the Degree of

Doctor of Philosophy at the University of the Witwatersrand, Johannesburg. It has not

been submitted before for any degree or examination at any other University.

(Signature of candidate)

24 day of October, 2018, in Pretoria.

iii

ABSTRACT

The modelling of potential field data is often both time consuming and ambiguous. With

the use of tensor datasets becoming more commonplace, efficient techniques to model

these data are necessary. The two components of modelling, namely forward modelling

and inversion are addressed. The derivation of tensor forward modelling equations is

illustrated and it is shown that the forward modelling of voxel data, both in conventional

and tensor form, is not only viable but also has efficiencies which are as good, if not

better (when taking editing into account) than non-voxel techniques. The theoretical basis

for this modelling is presented here.

Source distance calculations is a form of inversion that provides a good starting model in

an efficient way. New tensor equations utilising analytic signals were derived for both

source distance and susceptibility calculations. The tensor forms offer the possibility of

lower noise in the calculations when dealing with tensor data. The synthesis of results

from these techniques into a final model is semi-automated and includes using cluster

analysis methods such as DBSCAN. This allows for automatic determination of relevant

features from the depth calculations.

The presence of remanent magnetisation in data often presents problems in forward and

inverse modelling. By deriving novel equations to directly calculate magnetic field

direction cosines from the tensor magnetic components, it is possible to get an indication

of the presence of remanence, direction of the remanent field and the complexity of

remanence within bodies. Tests on real tensor data over the Tallawang deposit in

Australia showed both strengths and limitations. In spite of not being a perfect dyke,

calculations for depth and width produced solutions in the expected range. Direction

cosine solutions over the body show a degree of complexity in the remanence, possibly

due to the presence of magnetite in lenses, thereby suggesting a complex composition.

The low Q-ratio and uncertainty in susceptibility for the area contributed to non-optimal

solutions for total magnetisation, remanent magnetisation, inclination and declination.

Synthetic modelling demonstrates that should the total magnetisation and susceptibility

be accurately known, it is possible to accurately derive remanent magnetisation,

inclination and declination.

The use of actual tensor data as well as the derivation of tensor datasets from total

magnetic intensity data showed that the process derived in this project not only is viable,

but also achieves good results. The extraction of valid source distance solutions from

raster data is straightforward and allows fast creation of the 3D starter model for the area,

from which improvements can be made through further forward modelling.

iv

Dedicated to my wife and best friend,

Janine Cole

v

ACKNOWLEDGEMENTS

I would like to acknowledge the Council for Geoscience for providing infrastructure and

data with which to do this study.

I would like to acknowledge Dr David Clark at the CSIRO for providing tensor data for the

study.

I would like to thank my supervisor, Prof Gordon Cooper for his guidance.

vi

TABLE OF CONTENTS

DECLARATION .. ii

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. ix

LIST OF TABLES .. xxiii

CHAPTER 1 INTRODUCTION ... 1

1.1 General Introduction .. 1

1.2 Objectives .. 3

1.3 Data Availability and Methodology .. 4

1.4 Thesis Organisation and Contributions ... 7

1.4.1 Chapter 1 ... 7

1.4.2 Chapter 2 ... 7

1.4.3 Chapter 3 ... 7

1.4.4 Chapter 4 ... 7

1.4.5 Chapter 5 ... 8

1.4.6 Chapter 6 ... 8

CHAPTER 2 CONVENTIONAL FORWARD MODELLING .. 9

2.1 Introduction .. 9

2.1.1 Implicit and explicit modelling .. 9

2.1.2 Axis conventions ... 11

2.2 Magnetic Field ... 12

2.2.1 Units .. 12

2.2.2 The 𝑩 Field .. 12

2.2.3 The 𝑯 Field, 𝑴 and 𝒌 .. 13

2.2.4 Remanent Magnetisation .. 14

2.2.5 Magnetic Potential ... 17

2.2.6 Total Magnetic Intensity .. 18

2.3 Conventional Forward Modelling in 3D ... 19

2.3.1 Forward Modelling Theory .. 19

2.3.2 Computational strategy for combined rectangular prism-based calculations 21

2.3.3 Forward modelling software test ... 24

2.3.4 Model creation and editing .. 25

2.3.5 Model accuracy ... 29

2.3.6 Depth versus resolution and sensitivity ... 33

2.3.7 Calculation time ... 34

vii

2.3.8 Link to inversion .. 37

2.3.9 Example: Trompsburg Complex .. 38

CHAPTER 3 TENSOR FORWARD MODELLING ... 45

3.1 Introduction .. 45

3.2 Tensors ... 47

3.2.1 Tensor Rank .. 47

3.2.2 Structure Tensor.. 48

3.2.3 Eigenvector and Eigenvalue Tensor Analysis ... 49

3.2.4 Axis Conventions – implications for tensor data ... 50

3.3 Tensor Acquisition ... 53

3.3.1 Hardware design ... 53

3.3.2 Practical survey issues .. 56

3.4 Tensor Processing .. 56

3.4.1 Balancing of gradiometers .. 56

3.4.2 Calibration of reference magnetometers ... 57

3.4.3 Decomposition of signals .. 58

3.4.4 Rotation and Euler Angles .. 58

3.4.5 Levelling and the Tensor Mean ... 60

3.4.6 Gridding ... 61

3.4.7 Errors and Noise ... 62

3.4.8 Grid denoising ... 65

3.5 Tensor Reduction to the Pole.. 66

3.6 Derivation of Tensor Magnetic Field Equations .. 68

3.6.1 Verifying the equations .. 76

3.7 Tensor Interpretation overview.. 82

3.8 Application to voxel forward modelling .. 84

CHAPTER 4 SOURCE DISTANCE CALCULATIONS ... 88

4.1 Introduction .. 88

4.2 Inverse Modelling .. 90

4.3 Total Magnetic Intensity Derivative Calculations .. 92

4.3.1 Approximate Total Magnetic Intensity ... 92

4.3.2 Total Magnetic Intensity .. 93

4.3.3 Numerical calculation of rank 3 tensor components and higher order analytic

signals 95

4.4 Analytic Signal ... 100

4.4.1 Calculation of First and Second Order Analytic Signals 103

4.5 Source Distance .. 105

4.5.1 Conventional method and results.. 105

4.5.2 Alternative methods and results .. 109

viii

4.5.3 Edge Detection .. 114

4.5.4 Susceptibility Calculation .. 116

4.5.5 Test – Step Model ... 119

4.5.6 Test – Dyke Model .. 120

4.6 Discussion ... 130

CHAPTER 5 REMANENCE CALCULATION ... 131

5.1 Introduction .. 131

5.1.1 Helbig Method ... 132

5.2 Theory ... 136

5.2.1 Direction Cosine Calculation ... 138

5.2.2 Magnetisation and Susceptibility Estimation ... 141

5.3 Test – Remanence .. 144

5.3.1 Tests on a single dyke .. 144

5.3.2 Tests on two dykes with no remanence .. 146

5.3.3 Tests on two dykes with remanence introduced ... 153

CHAPTER 6 SYNTHESIS OF MODELLING TECHNIQUES APPLIED TO REAL DATA

 161

6.1 Calculation of tensor components from TMI ... 162

6.2 Peak Following Routine .. 169

6.3 Tallawang Field Trial ... 172

6.3.1 Geological Setting and Data ... 172

6.3.2 Baseline Model of Tallawang Body ... 173

6.3.3 Modelling of measured tensor data. .. 181

6.3.4 Discussion of Results .. 196

6.4 Lichtenberg/Zeerust .. 198

6.4.1 Geological Setting and Data ... 198

6.4.2 Data Preparation ... 204

6.4.3 Methodology and Results .. 207

CHAPTER 7 CONCLUSIONS .. 218

REFERENCES .. 220

APPENDIX .. 229

ix

LIST OF FIGURES

Figure 1 Diagram showing anomaly solution for layer 1 and lithology 1 calculated for a

rectangular prism. Solid arrows show which calculations are summed into the total field

for this rectangular prism. Dashed arrows indicate solutions outside of the modelled area,

but which will be used when summing anomalies. ... 22

Figure 2 Diagram showing anomaly solution for layer 1 and lithology 1 calculated in

Figure 1, then reused for a different rectangular prism. .. 23

Figure 3 Diagram showing the anomaly solutions which must be used when the

topography is not flat. Notice that anomaly solutions are now calculated in the reverse

direction (on and under the ground), i.e. 𝑅10, 𝑅1−1 .. 23

Figure 4 Modelled results of a dyke, showing a gravity and magnetic comparison of

results between calculated voxel responses and GM-SYS. Regional geomagnetic field is

30,000 nT, with inclination of -63 degrees and declination of -17 degrees. The

susceptibility 0.01 SI. Density is 2.8 g/cm3. Remanent magnetisation is 0.199 A/m with

inclination of 35 degrees and declination of 80 degrees. The anomaly responses are

shown in (a) and the body modelled is shown in (b). .. 25

Figure 5 Comparison between polygonal shape (left) and rectangular prism based shape

(right) ... 26

Figure 6 Demonstration of increasing complexity in polygonal modelling. In (a) a simple

starting polygon is shown. In (b) the starting polygon is intersected by another shape

(say, a dyke). In (c) the increase in polygonal facets if only one edit has been made to the

model is shown. .. 27

Figure 7 Modelled profile with calculated and observed magnetic data. Each pixel in the

model represents a voxel with corresponding magnetic lithology..................................... 28

Figure 8 Horizontal slice of a 3D model. ... 28

Figure 9 Illustration showing the increase in voxel resolution necessary to approximate

dipping dykes. ... 29

Figure 10 Model of a dipping dyke with a comparison between polygonal (GM-SYS)

versus voxel calculations. (a) and (b) show the anomaly and the body respectively.

Regional geomagnetic field is 30,000 nT, with inclination of -63 degrees and declination

x

of -17 degrees. The susceptibility 0.01 SI. Density is 2.8 g/cm3. Remanent magnetisation

is 0.199 A/m with inclination of 35 degrees and declination of 80 degrees. 30

Figure 11 Model of a dipping dyke with a comparison between polygonal (GM-SYS)

versus voxel calculations, with the voxels shifted into a slightly more favourable position

(half the width of a voxel in this case). (a) and (b) show the anomaly and the body

respectively. .. 31

Figure 12 Model of a dipping dyke with a comparison between polygonal (GM-SYS)

versus voxel calculations at a higher voxel resolution (twice the resolution in this case).

(a) and (b) show the anomaly and the body respectively. .. 32

Figure 13 Illustration of the relationship between model depth and anomaly accuracy. As

can be seen, the deviation of the voxel dyke at deeper depths has a minor impact on the

anomaly. .. 34

Figure 14 The top image shows the anomaly from a rectangular prism. The bottom image

illustrates how these are combined to obtain the resultant anomaly. 36

Figure 15 Performance increase using the algorithm ... 37

Figure 16 Relationship between forward modelling and inversion. The model is changed

(forward modelling) to fit data or the data is used (inversion) to derive a model. 38

Figure 17 (a) Locality of the Trompsburg Complex (enlarged in (b)); (b) Simplified

geological map of the area around the Complex. ... 39

Figure 18 (a) Observed Bouguer anomaly data over the Trompsburg Complex; (b)

Observed magnetic data over the Trompsburg Complex. An IGRF has been removed

from the magnetic field. ... 40

Figure 19 (a) Plan view of layer 11 of the model. The location of profile 11 (shown in (b))

is indicated; (b) Magnetic profile view of profile 98. (c) Gravity profile view of profile 98.

The horizontal blue line indicates the layer shown in (a). The vertical exaggeration is

roughly 10 times. Black blocks above the model show the locality of two boreholes. (d)

Model at profile. ... 41

Figure 20 Perspective views of the 3D model. (a) All the lithologies are transparent; (b)

Gabbro made opaque to show the extent of the model; (c) Gabbro made transparent, but

olivine gabbro, mineralised gabbro and magnetite kept opaque; (d) Gabbro and olivine

xi

gabbro made transparent, mineralised gabbro and magnetite kept opaque; (e) View from

the south with no vertical exaggeration applied. ... 42

Figure 21 (a) Grid of the calculated gravity field; (b) Grid of the calculated magnetic field.

 .. 43

Figure 22 (a) Difference between the observed and calculated gravity fields; (b)

Difference between the observed and calculated magnetic fields. The largest differences

in the model are associated with the contact between the model and surrounding

geology, as well as the surrounding geology. The model itself has a reasonable fit,

excluding some areas in the centre which needs additional modelling. 43

Figure 23 (a) Model imported into Google Earth. The lithologies were separated for better

visibility; (b) Observed magnetic data set is also shown .. 44

Figure 24 The orientation of the SQUID magnetometer sensors, from Billings (2012) 54

Figure 25 A single axial gradiometer from the GETMAG system, from Schmidt et al.,

(2004) .. 55

Figure 26 Proper Euler angles where (𝒙, 𝒚, 𝒛) is shown in blue and (𝒙′′′, 𝒚′′′, 𝒛′′′) is shown

in red. (𝒙′′, 𝒚′′, 𝒛′′) is shown in green and the final position 𝒙′, 𝒚′, 𝒛′ is shown in black.

(Diebel, 2006) .. 59

Figure 27 Estimated errors due to changes in roll, pitch and yaw, with 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 errors

show in red, green and blue respectively. (a) shows the change in field when only roll is

varied. (b) shows the change when only pitch is varied. (c) shows the changed when yaw

is varied. (d) is the combination of all the changes. .. 64

Figure 28 Effect of inclination and declination on an anomaly. A rectangular prism was

modelled, with susceptibility 0.1 SI and ambient field of 28,000 nT. Inclinations and

declinations are indicated on the graphs. (a) shows the profile intersecting the body

perpendicular to the declination, and west to east. (b) shows the same anomaly, but now

in the direction of the declination, and therefore north to south Notice the lack of

symmetry, indicating that from this direction, 𝐵𝑧𝑧 is no longer a good approximation for

RTP. .. 67

Figure 29 Synthetic magnetic tensor calculations for a rectangular prism at inclination 45

degrees, declination 30 degrees. (a) to (c) are the primary components of the field. (d) to

(h), (j) are the tensor components. (i) is the total magnetic intensity. 72

xii

Figure 30 Cross section profiles going west-east through the centre of the rectangular

prism at inclination 45 degrees, declination 30 degrees. (a) to (c) are the primary

components of the field. (d) to (h), (j) are the tensor components. (i) is the total

magnetic intensity. .. 73

Figure 31 Synthetic magnetic tensor calculations for a rectangular prism at inclination 90

degrees, declination 0 degrees. (a) to (c) are the primary components of the field. (d) to

(h), (j) are the tensor components. (i) is the total magnetic intensity. 74

Figure 32 Cross section profiles through the centre of the rectangular prism at inclination

90 degrees, declination 0 degrees. (a) to (c) are the primary components of the field.

(d) to (h), (j) are the tensor components. (i) is the total magnetic intensity. 75

Figure 33 Comparison between tensor and conventional calculations for 𝐵𝑡𝑚𝑖. The source

is a rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the

surface. The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees

and declination is 30 degrees. .. 77

Figure 34 Comparison between tensor and conventional calculations for 𝐵𝑥. The source is

a rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the

surface. The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees

and declination is 30 degrees. .. 78

Figure 35 Comparison between tensor and conventional calculations for 𝐵𝑦. The source

is a rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the

surface. The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees

and declination is 30 degrees. .. 78

Figure 36 Comparison between tensor and conventional calculations for 𝐵𝑧. The source is

a rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the

surface. The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees

and declination is 30 degrees. .. 79

Figure 37 Comparison between tensor and conventional calculations for 𝐵𝑥𝑥. The source

is a rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the

surface. The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees

and declination is 30 degrees. .. 79

Figure 38 Comparison between tensor and conventional calculations for 𝐵𝑥𝑦. The source

is a rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the

xiii

surface. The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees

and declination is 30 degrees. .. 80

Figure 39 Comparison between tensor and conventional calculations for 𝐵𝑦𝑦. The source

is a rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the

surface. The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees

and declination is 30 degrees. .. 80

Figure 40 Comparison between tensor and conventional calculations for 𝐵𝑦𝑧. The source

is a rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the

surface. The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees

and declination is 30 degrees. .. 81

Figure 41 Comparison between tensor and conventional calculations for 𝐵𝑥𝑧. The source

is a rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the

surface. The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees

and declination is 30 degrees. .. 81

Figure 42 Profile of 𝐵𝑡𝑚𝑖 of demonstration model, running from west to east. 84

Figure 43 3D view of demonstration model. All coordinates are in metres 85

Figure 44 Field Component results for model. (a) to (d) are Btmi, Bx, By and Bz

respectively. .. 86

Figure 45 Tensor component results for model. ... 87

Figure 46 Synthetic magnetic tensor calculations for a rectangular prism. a) to c) show

the three components of the magnetic field - 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧. d), e), f), g), h) and j) show the

tensor components 𝐵𝑥𝑥 , 𝐵𝑥𝑦 , 𝐵𝑥𝑧 , 𝐵𝑦𝑦 , 𝐵𝑦𝑧 , 𝐵𝑧𝑧 respectively. i) Total magnetic intensity of the

study area. Note that 𝐵𝑥𝑦 = 𝐵𝑦𝑧 , 𝐵𝑥𝑧 = 𝐵𝑧𝑥 , 𝐵𝑦𝑧 = 𝐵𝑧𝑦, so they are not shown. The

magnetic field intensity used was 28000 nT, the susceptibility was 0.1 SI, the inclination

was -60º, the declination was -15º. The depth of the rectangular prism was 20 m. The

horizontal extent of the rectangular prism is 200 m by 200 m and it goes down to a depth

of 3000 m .. 107

Figure 47 a) First order analytic signal of the data shown in Figure 46i). b) Second order

analytic signal of the data shown in Figure 46i). c) Source-distance calculation results. d)

Results of calculation of r from equation (4.61) (blue) over the synthetic modelled body for

the profile shown as a dashed black line in c). A value of N = 0 was used in equation

xiv

(4.61). Note that the negative of r is plotted so that the values closest to zero represent

the source depth ... 108

Figure 48 (a) Comparison between 𝐴𝑠 and 𝐴𝑠2, with a source of width 200 m and depth

200 m and (b) width 200 m and depth 70 m. The separation of peaks is apparent in (b).

 .. 115

Figure 49 Results of negative r calculated for a step. Dots are non-tensor calculations.

Lines are from tensor component calculations. Both were calculated at the same position.

Values closest to zero give source depth and location. The synthetic model is also

shown. Notice the straight line solution due to the inability of zero order analytic signals to

calculate depth in this case (since N = 0). .. 119

Figure 50 Results of r calculated for a dyke. Dots are conventional calculations. Lines are

from tensor component calculations. The synthetic model is also shown. 120

Figure 51 a) shows the magnetic field (blue) and analytic signal (red) over a vertical dyke

b) shows the dyke and the calculated solutions for depth. ... 122

Figure 52 a) shows the magnetic field (blue) and analytic signal (red) over a dipping dyke

b) shows the dyke and the calculated solutions for depth. ... 123

Figure 53 a) Noise free total magnetic intensity over a thin dyke of width 2 metres, with

magnetic field intensity of 28,000 nT, susceptibility of 0.1 SI, inclination of -60º,

declination of -15º and depth of the dyke equal to 20 m, b) Source-distance calculations

over a thin dyke with noise-free data. Results from equations (4.72), (4.74), (4.75), (4.85)

and (4.86) are shown in red, green, blue, cyan and yellow respectively. c) Total Magnetic

Intensity for the same dyke with Gaussian noise with a standard deviation equal to 1.58%

of the maximum data amplitude added d) Source-distance calculations over the thin dyke

with the noisy TMI data, using same colour scheme as in (b). 124

Figure 54 Varying levels of noise applied to the dyke from Figure 53, using equations

(4.81) in green and (4.82) in blue. a) 0 nT Gaussian noise added, b) 0.01 nT Gaussian

noise added, c) 0.1 nT Gaussian noise added d) 1 nT Gaussian noise added. 126

Figure 55 Varying levels of noise applied to the dyke from Figure 53 using (4.68) in blue

and (4.70) in green. a) 0 nT Gaussian noise added, b) 0.01 nT Gaussian noise added,

c) 0.1 nT Gaussian noise added d) 1 nT Gaussian noise added.................................... 127

xv

Figure 56 Results from equations (4.74) and (4.85) are shown in solid yellow and solid

red. Equations (4.89) and (4.92) are shown in yellow and red x’s. Equations (4.86) and

(4.89) are shown in yellow and red dots. The model is shown in black. 129

Figure 57 (a) Quiver plot showing a comparison between inclinations from the ambient

field and the measured field including remanence. (b) Quiver plot showing a comparison

between declination from the ambient field and the measured field including remanence.

 .. 141

Figure 58 Two dykes modelled with the following parameters. 𝐵𝑎 = 28,000 nT, 𝐻𝑖𝑛𝑐 =

60°, 𝐻𝑑𝑒𝑐 = −30°, 𝑘 = 0.01 𝑆𝐼. Each dyke has a width of 10 m, a depth of 20 m and length

of 400 m. The bottom of the modelled dykes is 3000 m. The grid spacing was 10 m. (a)

Top view of the model. (b) Side view of the model with calculated TMI, at the location of

the blue line in (a) .. 147

Figure 59 Magnetic field and components. a) to c) show the three components of the

magnetic field - 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧. d), e), f), g), h) and j) show the tensor components

𝐵𝑥𝑥 , 𝐵𝑥𝑦 , 𝐵𝑥𝑧 , 𝐵𝑦𝑦 , 𝐵𝑦𝑧 , 𝐵𝑧𝑧 respectively. i) Total magnetic intensity of the study area. The

magnetic field intensity used was 28000 nT, the susceptibility was 0.01 SI, the inclination

was 60º, the declination was −30°. Each dyke has a width of 10 m, and a depth of 20 m.

There is no remanence. .. 149

Figure 60 Results of calculating the 𝛼𝑡 direction cosine. The value is constant everywhere

since the dykes are not remanently magnetised... 150

Figure 61 Results of calculating the 𝛽𝑡 direction cosine. The value is constant everywhere

since the dykes are not remanently magnetised... 150

Figure 62 Results of calculating the 𝛾𝑡 direction cosine. The value is constant everywhere

since the dykes are not remanently magnetised... 151

Figure 63 Total magnetisation over two dykes with no remanent magnetisation and using

equation (5.61) (outline shown in black). The off dyke asymmetry is caused by the

variation in the depth solution component of this calculation resulting from the ratio of the

two analytic signals in the calculation of equation (5.61) .. 151

Figure 64 Output from remanent magnetisation calculation over two dykes with no

remanent magnetisation and using equations (5.63) and (5.61) (outline shown in black).

 .. 152

xvi

Figure 65 Total magnetisation over two dykes with no remanent magnetisation and using

equation (5.59) (outline shown in black) ... 152

Figure 66 Output from remanent magnetisation calculation over two dykes with no

remanent magnetisation using equation (5.63) and (5.59) (outline shown in black) 153

Figure 67 with the following parameters. B = 28,000 nT, 𝐻𝑖𝑛𝑐 = 60°, 𝐻𝑑𝑒𝑐 = −30°, 𝑘 =

0.01 𝑆𝐼. The right dyke (blue) has the following remanent values: 𝑀𝑟 = 0.323 𝐴/𝑚, 𝑀𝑖𝑛𝑐 =

50° and 𝑀𝑑𝑒𝑐 = −20°. Each dyke has a width of 10 m, length of 400 m and a depth of

20 m. The depth extent of the modelled dykes is 3000 m. The grid spacing was 10 m. (a)

Top view of the model. (b) Side view of the model with calculated TMI, at the location of

the blue line in (a) .. 154

Figure 68 Magnetic field and components. a) to c) show the three components of the

magnetic field - 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧. d), e), f), g), h) and j) show the tensor components

𝐵𝑥𝑥 , 𝐵𝑥𝑦 , 𝐵𝑥𝑧 , 𝐵𝑦𝑦 , 𝐵𝑦𝑧 , 𝐵𝑧𝑧 respectively. i) Total magnetic intensity of the study area. The

magnetic field intensity used was 28000 nT, the susceptibility was 0.01 SI, the inclination

was 60º, the declination was −30°. The eastern dyke has 𝑀𝑟 = 0.323 𝐴/𝑚, 𝑀𝑖𝑛𝑐 = 50°

and 𝑀𝑑𝑒𝑐 = −20°. Each dyke has a width of 10 m, and a depth of 20 m. 156

Figure 69 Results of calculating the 𝛼𝑡 direction cosine. The dyke on the right has

remanent magnetisation. ... 157

Figure 70 Results of calculating the 𝛽𝑡 direction cosine. The dyke on the right has

remanent magnetisation. ... 157

Figure 71 Results of calculating the 𝛾𝑡 direction cosine. The dyke on the right has

remanent magnetisation. ... 158

Figure 72 Total magnetisation over two dykes and using equation (5.61) (outline shown in

black). The dyke on the right has remanent magnetisation. Edge effects due to the Hilbert

transform have been masked. .. 159

Figure 73 Total magnetisation over two dykes and using equation (5.59) (outline shown in

black). The dyke on the right has remanent magnetisation .. 159

Figure 74 Output from the remanent magnetisation calculation over two dykes and using

equations (5.63) and (5.61) (outline shown in black). The dyke on the right has remanent

magnetisation. Edge effects due to the Hilbert transform have been masked. 160

xvii

Figure 75 Output from the remanent magnetisation calculation over two dykes using

equation (5.63) and (5.59) (outline shown in black). The dyke on the right has remanent

magnetisation. ... 160

Figure 76 The process flow for calculations involving pseudo tensor calculations 161

Figure 77 The process flow for calculations involving measured tensor data 162

Figure 78 Demonstration of the effect of remanence. The black square shows the

horizontal location of the source (a) No remanence and the derived z component

matches its modelled counterpart. (b) Remanence is now modelled but the derived field is

now different. ... 165

Figure 79 Demonstration of the effect using correct direction cosines. The black square

shows the horizontal location of the source (a) No remanence and the derived z

component matches its modelled counterpart. (b) Remanence is now modelled, and the

derived field is a better approximation of the true field. .. 165

Figure 80 Demonstration of the effect of remanence using field parameters similar to that

of the Tallawang area. The black square shows the horizontal location of the source (a)

No remanence and the derived z component matches its modelled counterpart. (b)

Remanence is now modelled showing similar results. ... 166

Figure 81 Demonstration of the effect of Gaussian noise with a standard deviation equal

to 1.0% of the maximum data amplitude added to the TMI. The black square shows the

horizontal location of the source (a) No remanence and the derived z component

matches its modelled counterpart, even with noise. (b) Remanence is now modelled but

the derived field is now different, and noise can be seen clearly here. 167

Figure 82 Demonstration of the effect of Gaussian noise with a standard deviation equal

to 5.0% of the maximum data amplitude added to the TMI. The black square shows the

horizontal location of the source (a) No remanence and the derived z component has

deteriorated when compare to its modelled counterpart. (b) Remanence is now modelled

but the derived field is now different, and noise can be seen more clearly here 168

Figure 83 Demonstration of the effect of integrating the derived tensor values. (a) No

remanence and the integrated z component shows a shift from the true z component

value. (b) Remanence is once again modelled. The integrated value mirrors the derived

field, with a shift, and does not correspond to the true z component value. 168

xviii

Figure 84 Analytic signal dataset used as input for peak following routine 169

Figure 85 Peak locations plotted in terms of eastings and northings 170

Figure 86 Filtered results for the peak locations (Figure 85) after DBSCAN 171

Figure 87 Geology of the Tallawang skarn (Schmidt et al., 2004). 172

Figure 88 TMI data collected over Tallawang, showing the location of the three tensor

profiles. Grid north is 340º True. Tensor survey lines are shown in black and are labelled.

 .. 173

Figure 89 Model of the dipping Tallawang body showing the calculated and measured

data over the deposit. The dashed black line indicates the centre of the body closest to

the surface. The body comprises of layers of rectangular prisms, illustrating the

calculation of such anomalies using rectangular prisms. .. 174

Figure 90 Tensor components calculated for the Tallawang body. 175

Figure 91 Depth calculation using zero and first order analytic signals. (a) shows the zero

order calculations (b) shows the first order calculations (c) shows the depth results over

the centre of the anomaly. The dashed line shows the location of the body centre. 176

Figure 92 Depth calculation using first and second order analytic signals. (a) shows the

first order calculations (b) shows the second order calculations (c) shows the depth

results over the centre of the anomaly. The dashed line shows the location of the body

centre. ... 177

Figure 93 Results for the dyke width calculation. (a) shows the conventional analytic

signal, denoted 𝐴0 (b) shows the higher order analytic signal, denoted 𝐴1. (c) shows

results for the depth calculation. The dashed line shows the location of the body centre.

 .. 178

Figure 94 (a) Susceptibility calculations and (b) magnetisation calculations for the body.

The dashed line shows the location of the body centre. ... 179

Figure 95 (a) Quiver plot showing a comparison between inclinations from the ambient

field and the modelled field including remanence. (b) Quiver plot showing a comparison

between declination from the ambient field and the total modelled field including

remanence. There is not much difference between the two fields. 179

xix

Figure 96 (a) Direction cosines resulting from the model. (b) calculated inclinations and

declinations using ideal susceptibilities and magnetisations. (2.5 SI and 140 A/m). The

dashed line shows the location of the body centre. .. 180

Figure 97 TMI data of (a) line 50 and (b) line 60. The dashed line shows the location of

the body centre. .. 181

Figure 98 (a) First order analytic signal of line 50 showing distinct peak (b) Second order

analytic signal of line 50 showing more complex peaks. The dashed line shows the

location of the body centre. ... 182

Figure 99 Tensor components measured for line 60 of the Tallawang body. 184

Figure 100 Depth calculation using zero and first order analytic signals. (a) shows the

zero order calculations (b) shows the first order calculations (c) shows the depth results

over the centre of the anomaly. N = 1. The dashed line shows the location of the body

centre. ... 185

Figure 101 Depth calculation using first and second order analytic signals. (a) shows the

first order calculations (b) shows the second order calculations (c) shows the depth

results over the centre of the anomaly. N = 1. The dashed line shows the location of the

body centre. .. 186

Figure 102 Results for the dyke width calculation. (a) shows the conventional analytic

signal, denoted 𝐴0 (b) shows the higher order analytic signal, denoted 𝐴1. (c) shows

results for the depth calculation. The dashed line shows the location of the body centre

 .. 187

Figure 103 (a) susceptibility calculated from analytic signal formulae (b) magnetisation

calculated from analytic signal formulae. The dashed line shows the location of the body

centre. ... 188

Figure 104 (a) Quiver plot showing a comparison between inclinations from the ambient

field and the measured field including remanence. (b) Quiver plot showing a comparison

between declination from the ambient field and the measured field including remanence

 .. 189

Figure 105 (a) Direction cosines resulting from the model. (b) calculated inclinations and

declinations. The dashed line shows the location of the body centre. 189

Figure 106 Tensor components measured for line 50 of the Tallawang body. 190

xx

Figure 107 Depth calculation using zero and first order analytic signals. (a) shows the

zero order calculations (b) shows the first order calculations (c) shows the depth results

over the centre of the anomaly. The dashed line shows the location of the body centre.

 .. 191

Figure 108 Depth calculation using first and second order analytic signals. (a) shows the

first order calculations (b) shows the second order calculations (c) shows the depth

results over the centre of the anomaly. The dashed line shows the location of the body

centre. ... 192

Figure 109 Results for the dyke width calculation. (a) shows the conventional analytic

signal, denoted 𝐴0 (b) shows the higher order analytic signal, denoted 𝐴1. (c) shows

results for the depth calculation. The dashed line shows the location of the body centre.

Gaps in results are where no solution was possible. .. 193

Figure 110 (a) susceptibility calculated from analytic signal formulae (b) magnetisation

calculated from analytic signal formulae. The dashed line shows the location of the body

centre. ... 194

Figure 111 (a) Quiver plot showing a comparison between inclinations from the ambient

field and the measured field including remanence. (b) Quiver plot showing a comparison

between declination from the ambient field and the measured field including remanence.

 .. 195

Figure 112 (a) Direction cosines resulting from the model. (b) calculated inclinations and

declinations. The dashed line shows the location of the body centre. 195

Figure 113 a) Geology of the area (Geological Survey of South Africa, 1993). b) The

location of the survey is shown on the map of South Africa. .. 199

Figure 114 Borehole information over the Lichtenberg/Zeerust Area. No intersections with

dykes is visible. ... 200

Figure 115 a) Geology of the northern area (Geological Survey of South Africa, 1993). b)

The location of the survey is shown on the map of South Africa. 201

Figure 116 Borehole information over the northern area. Only one dyke was intersected

(Witrand 1) as is evident by the presence of diabase. .. 202

Figure 117 Total Magnetic Intensity of the study area. The dashed line shows the location

of a profile shown in Figure 132 .. 203

xxi

Figure 118 Digital Elevation Model of the study area, obtained from the magnetic survey.

 .. 204

Figure 119 Polynomial surface used to prepare magnetic data for FFT 205

Figure 120 Resultant magnetic field once polynomial surface is subtracted. 205

Figure 121 Derived tensor components from the TMI. The dashed line in (i) shows the

location of a profile shown in Figure 132 .. 206

Figure 122 𝐴𝑠0dataset used in calculations for 𝑟 and 𝑘. ... 208

Figure 123 𝐴𝑠1dataset used in calculations for 𝑟 and 𝑘. ... 208

Figure 124 Depth to source results using (4.75) (Cooper 2015). Only values over peaks

are valid. Source depths have been corrected for flying height. 209

Figure 125 Depth to source results using (4.74). Source depths have been corrected for

flying height. .. 209

Figure 126 Calculated values for susceptibilities. Only values over dykes are valid. 210

Figure 127 a), b) and c) show the source-distance results calculated from equations

(4.72), (4.73) and (4.74). d), e) and f) show the depth results from equations (4.85),

(4.86), (4.87). g) Source-distance from equation (4.75). h) Susceptibility from equation

(4.109). A dyke width of 100 meters was used. The flight height of 50 m was removed

from the distances. .. 211

Figure 128 Filtered results after DBSCAN .. 212

Figure 129 Peak locations with susceptibilities. The susceptibilities are displayed to

illustrate the general susceptibility regimes within the dykes, for input into determining

how many general susceptibility classes are in the data. ... 213

Figure 130 Susceptibility distribution with classes in colour. Class1 is in blue and class 2

is in red. ... 214

Figure 131 3D model of dykes. All coordinates are in metres. 214

Figure 132 a) A north-south profile extracted from the centre of the study area (orange)

as shown in Figure 117, and forward model response of the model shown as a solid line,

xxii

(blue) using the results of the source-distance and susceptibility calculations. b) Model

used to generate the synthetic magnetic data shown in (a). The red dykes have a

susceptibility of 0.023 SI and the blue dykes have a susceptibility of 0.175 SI. The results

of the source-distance calculations are overlain. .. 215

Figure 133 Susceptibility distribution of cluster analysis performed on 10 classes. 216

Figure 134 a) The same A north-south profile extracted as in Figure 132, from the centre

of the study area (orange) as shown in Figure 107, and forward model response of the

model shown as a solid line, (blue) using the results of the source-distance and

susceptibility calculations. b) Locations of dykes are shown with depth solutions. 217

xxiii

LIST OF TABLES

Table 1 Interpretation of tensor components and invariants, from Schmidt and Clark

(2006) .. 82

Table 2 Values of N versus magnetic source types (Ma and Li, 2013) 105

Table 3 Values of 𝑐 and 𝛽 for total, vertical and horizontal fields, where 𝑖 is the inclination

of the earth’s magnetic field, 𝐴 is the angle between magnetic north and the positive x

axis , tan𝐼 = tan𝑖cos𝐴 and d is the dip of a thin infinite sheet or step. From (Nabighian,

1972) ... 110

Table 4 Comparison between true widths and calculated widths for various depths. 118

Table 5 Summary of results for a dyke of width 10 meters, depth of 20 meters, with 𝐵 =

 28 000 𝑛𝑇, 𝐻𝑖𝑛𝑐 = 60°, 𝐻𝑑𝑒𝑐 = −30°, 𝑘 = 0.01 𝑆𝐼 and no remanence 144

Table 6 Summary of results for a dyke of width 10 meters, depth of 20 meters, with 𝐵 =

 28 000 𝑛𝑇, 𝐻𝑖𝑛𝑐 = 60°, 𝐻𝑑𝑒𝑐 = −30°, 𝑘 = 0.01 𝑆𝐼 , 𝑀𝑟 = 0.323 𝐴/𝑚, 𝑀𝑖𝑛𝑐 = 50° and 𝑀𝑑𝑒𝑐 =

−20° .. 144

Table 7 Summary of results for a dyke of width 10 meters, depth of 20 meters, with, 𝐵 =

 28 000 nT, 𝐻𝑖𝑛𝑐 = 60°, 𝐻𝑑𝑒𝑐 = −30°, 𝑘 = 0.01 𝑆𝐼, 𝑀𝑟 = 0.323 𝐴/𝑚, 𝑀𝑖𝑛𝑐 = −20° and

𝑀𝑑𝑒𝑐 = 40° ... 145

Table 8 Summary of results for a dyke of width 10 meters, depth of 20 meters, with, 𝐵 =

 28 000 nT, 𝐻𝑖𝑛𝑐 = 60°, 𝐻𝑑𝑒𝑐 = −30°, 𝑘 = 0.01 𝑆𝐼, 𝑀𝑟 = 0.323 𝐴/𝑚, 𝑀𝑖𝑛𝑐 = −20° and

𝑀𝑑𝑒𝑐 = 40°. A Gaussian noise was added to each input dataset, with standard deviation

equal to 1.0% of the respective dataset amplitude. .. 145

Table 9 Indication of errors in technique through a range of Q-ratios. The results

represent a dyke of width 10 meters, depth of 20 meters, with, 𝐵 = 28 000 nT, 𝐻𝑖𝑛𝑐 =

60°, 𝐻𝑑𝑒𝑐 = −30°, 𝑘 = 0.01 𝑆𝐼, 𝑀𝑖𝑛𝑐 = −20° and 𝑀𝑑𝑒𝑐 = 40°. Values for 𝑀𝑟 are changed

in the test. .. 146

Table 10 Summary of results for two dykes of width 10 meters, depth of 20 meters, with

𝐵 = 28 000 𝑛𝑇, 𝐻𝑖𝑛𝑐 = 60°, 𝐻𝑑𝑒𝑐 = −30°, 𝑘 = 0.01 𝑆𝐼 and no remanence. 147

Table 11 Summary of results for two dykes of width 10 meters, depth of 20 meters, with

𝐵 = 28 000 𝑛𝑇, 𝐻𝑖𝑛𝑐 = 60°, 𝐻𝑑𝑒𝑐 = −30°, 𝑘 = 0.01 𝑆𝐼 and no remanence. The dyke on

xxiv

the right has remanence with the following parameters: 𝑀𝑟 = 0.323 𝐴/𝑚, 𝑀𝑖𝑛𝑐 = 50° and

𝑀𝑑𝑒𝑐 = −20°. ... 155

1

CHAPTER 1 INTRODUCTION

1.1 General Introduction

Airborne geophysical surveying has resulted in vast quantities of potential field data that

are available globally. The ongoing demand to find more resources has meant that the

efficient modelling and interpretation of this form of data (especially in three dimensions)

is more critical than ever. The modelling ambiguity of potential field data, coupled with the

sheer volume collected has created significant delays in an industry that more than ever

is demanding not only 2D but also 3D models of geology. The modelling of such data has

made great strides since the work of Bhattacharyya (1964), with his derivation of

magnetic anomalies from prism shaped bodies, Talwani (1965), who developed magnetic

anomalies from arbitrary shapes and Nabighian (1972), with his paper on the analytic

signal of two dimensional bodies which paved the way for future studies on analytic

signals. More recent examples are Guptasarma and Singh (1999) who derived equations

for magnetic anomalies of arbitrary shaped polygons and Cooper (1997), who

demonstrated the forward modelling of data within modern software, have also made

advances in modelling magnetic and gravity data. Holstein, FitzGerald and Stefanov,

(2013) developed optimized formula and code for the gravity and magnetic effect of a

homogenous prismatic target, by taking advantage of advances made for the general

polyhedral case.

However, there is need for an efficient overall modelling strategy needed to model such

data. In addition to the ambiguity of the data, some techniques introduce noise into the

modelling process, further exacerbating the inherent modelling difficulties.

The modelling of potential field data, specifically gravity and magnetic data, is broadly

subdivided into two subjects, namely forward modelling and inverse modelling. In forward

modelling, potential field data is calculated by manually postulating geological parameters

such as density, susceptibility and the geometry of the body, which is being modelled.

This resultant field is compared with the measured field, and the process is repeated until

the calculated and measured fields match. Forward modelling is as reliable as the human

input and needs trial and error. The calculation of this model in three dimensions can be

time consuming, so this thesis will examine the optimisation of the modelling process.

In inversion, the measured field is accepted as input, and some or all of the susceptibility,

density and geometry values are calculated automatically. Due to the inherent ambiguity

of potential field data, finding the correct solutions for model values is challenging. One

technique used to overcome some of this problem is semiautomatic source detection.

2

Source detection determines parameters such as the depth to different source types (e.g.

dykes, contacts etc) in different ways, often using the derivatives or Hilbert transforms of

the data (Cooper and Whitehead, 2016).

Despite the excellent work of authors such as Bhattacharyya (1964), Talwani (1965),

Nabighian (1972), Guptasarma and Singh (1999), Cooper (1997) and Holstein,

FitzGerald and Stefanov (2013) in examining different aspects of modelling; the holistic

gathering of techniques such as source distance and forward modelling, while balancing

each technique’s strengths and weaknesses against each other, is an area where more

work is needed.

Without the development of these strategies and the techniques to be used by the

strategies, the full set of possibilities of potential field data will not be achieved and it will

remain consigned to the history book of “cheaper datasets to be collected first”.

This study will address this gap by looking at the modelling process from a practical point

of view, of not only model creation, but also editing. It will examine each of the broad

modelling facets – whether forward modelling, inversion or source detection – and

develop a strategy to maximise the strengths of each form of modelling while minimising

the weaknesses. It will also look into developing modelling techniques involving the

newer tensor or gradiometer data. This will take the form of forward modelling and source

distance estimation techniques. It will assess and develop new techniques in relation to

various forward models – such as dykes, contacts and dipoles.

Ultimately, the benefits will include:

1) More efficient modelling process

2) Reduced sensitivity to noise by using tensor data where possible and improved

techniques

3) Better source location accuracy and model accuracy in general.

3

1.2 Objectives

Aim: To develop an overall strategy in the modelling of potential field data (but more

specifically magnetic data) and to examine forward modelling and source detection

techniques as applied to magnetic tensor data. This will include the following:

1) The development of a modelling process, which allows for the smooth and efficient

creation and editing of geological models.

2) The integration of multiple modelling techniques – whether forward modelling,

inversion and source detection – into the modelling pipeline

3) The enhancement of these techniques to use tensor data.

4) The minimisation of the effects of noise in the modelling process (specifically with

source detection techniques)

Hypothesis: The overall development of a strategy to model potential field data will

improve model accuracy and efficiency. The modelling of magnetic tensor data gives extra

insight into the nature of potential fields. Therefore, it should improve inversion through

source detection and forward modelling of potential fields.

Questions:

1) Can voxel based forward modelling be as efficient as, or more efficient than,

modelling geometrical bodies?

2) Can forward modelling and inversion be integrated to improve each technique’s

strengths while minimising the weaknesses?

3) Can tensor data overcome some of the ambiguity of forward and/or inverse

modelling?

4) Can source detection be improved with tensor data?

5) What insight can the individual tensor components give to forward modelling and

source detection?

4

1.3 Data Availability and Methodology

Magnetic and gravity data is freely available from the Council for Geoscience, for the entire

South Africa at a regional scale. High-resolution magnetic data is also available for selected

portions of the country. For the purposes of this study, the study area is not as important

as a pre-existing knowledge of the area in order to test the validity of any models calculated.

Theoretical tensor data will be used to test algorithms, with a final demonstration of

algorithms using a tensor dataset derived from conventional total magnetic intensity data.

The process is described by Pedersen, Rasmussen and Dyrelius (1990) and Yin et

al.(2016). The algorithms will also be tested independently against the theoretical tensor

data published and provided by Dr David Clark (Clark, 2013).

Ideally measured magnetic tensor data should be used, but at the time of the writing of

thesis, mining companies such as Anglo and DeBeers had suspended the release of such

data to students for studies. After an extensive search, it was realised this would not be

possible. Fortunately, it was possible to obtain measured tensor data from Dr David Clark,

collected by the GETMAG system over a magnetic skarn deposit at Tallawang, near

Gulgong, New South Wales, Australia.

Of critical importance is the methodology. Therefore, each application of tensor data will

be examined, coded in Python and evaluated.

The following process will be followed:

1) Examination and coding of voxel based forward modelling of tensor and non-tensor

data

2) Examination and coding of voxel-based source-distance inversion of tensor and

non-tensor data

3) Examination and coding of source detection techniques

4) Synthesis of the above techniques into a modelling strategy

5) Testing and enhancements to the techniques

Voxel based modelling has been chosen as an effective strategy to simplify model creation

and editing. This will also maximise the synergies between forward and inverse modelling.

With voxel-based modelling, it is also possible to increase voxel dimensions, with an

increase in depth, lowering the model resolution correspondingly. This is a valid

consideration since when comparing voxels of equal size, deeper voxels contribute less to

the magnetic anomaly and can therefore be made bigger. This opens up more possibilities

for speeding up modelling.

Source detection and source distance inversion techniques will be examined as a means

to constrain the model further.

5

The modelling of regular and tensor data will be examined, in particular for source detection

techniques. This is in part due to the efficiency of such techniques as a viable alternative

to other, more costly, inversion techniques.

Source detection and tensors are a key area for new research. Pedersen and Rasmussen

(1990) discussed the gradient tensor with implications for data collection and processing.

A considerable amount of work has been done on gravity tensor data, for example Li (2001)

developed an algorithm for the 3D inversion of gravity gradiometer data, Beiki (2010)

examined analytic signals of the gravity gradient tensor and their application to estimate

source location, Cevallos (2016) published the interpretation of the direction of gravity

gradient eigenvectors and Christensen et al. (2015) investigated the noise and repeatability

of airborne gravity gradiometry. Less has been published for magnetic tensor data. Schmidt

and Clark (2006) discussed the properties and uses of the magnetic gradient tensor in

source characterisation. Heath, (2003); Heath, Heinson and Greenhalgh (2003) reported

on potential field tensor data with respect to an inversion strategy.

The modelling of source distances has been extensively developed for total magnetic

intensity (TMI) data by Cooper (2016, 2015, 2014a, 2014b, 2014c); Cooper and Whitehead

(2016); Ma and Du (2012).

This work will focus on magnetic tensors. The forward modelling of rectangular prism data

will be demonstrated and used for theoretical tests. All source model equations will be

rederived into new tensor forms, checked and re-derived into alternate tensor forms where

possible. The modelled tensor data is then tested in the new tensor source distance

equations.

Conventional source detection techniques often make use of transforms of the potential

field, which includes 1st and 2nd order derivatives. The disadvantage of this is the

amplification of noise in the data (Cooper, 2015). Another disadvantage is that calculated

derivatives (especially in the case of horizontal derivatives) do not represent the

instantaneous rate of change of the potential field. Rather, they are an estimate based on

adjacent field values, which can be tens to hundreds of meters apart. Measured

gradiometer data does not suffer as much from these problems. Any noise is due to the

instrument, and not exaggerated from a calculation. The fact that the data is an

instantaneous rate of change implies that modelling should be more accurate.

To examine this properly, source-distance equations will be applied to the components of

the magnetic field for various forward models (for example dykes and steps). This will also

be applied to the gradients of the components similarly, involving the computation of

different types of analytic signal.

6

Remanence relating to tensor data will also be examined. Techniques by authors such as

Clark (2014) will be reviewed and equations will be derived from first principles relating to

source detection theory.

The tensor-based source detection techniques should have benefits such as better source

location accuracy and reduced sensitivity to noise. The increased number of datasets that

a tensor provides should allow for less ambiguous modelling.

7

1.4 Thesis Organisation and Contributions

The organisation and contributions of the thesis are presented here. In general, work

presented in this thesis should be regarded as novel unless it has been referenced.

1.4.1 Chapter 1

Chapter 1 gives an overall introduction into the thesis, along with its objectives as well as

data availability.

1.4.2 Chapter 2

Chapter 2 introduces forward modelling methodology applied to total magnetic intensity

(TMI) data. It advocates an approach to the use of rectangular prisms in forward

modelling and details novel strategies which can be used to optimise calculations for

speed, making the results and speed comparable to other methods of forward modelling.

It also details a novel method of model input which is suited to the use of rectangular

prisms in modelling. By allowing the user to draw a model in a manner similar to a paint

program, models can be easily input, and more importantly, easily edited.

The chapters discusses pros and cons of rectangular prism modelling and tests the

modelling on an interpretation over the Trompsburg Complex.

1.4.3 Chapter 3

Chapter 3 introduces tensor forward modelling. It continues the rectangular prism based

modelling, since this is a theme of this thesis. It also gives background into tensor

mathematics applied to potential fields, as well as the processing of tensor data. The

derivation of tensor modelling equations is demonstrated. The equations are presented

with a small novel twist – they allow coordinates to be input in ENU convention (i.e x-axis

is east, y-axis is west and z-axis is up) which is compatible with all major GIS and remote

sensing software. However, the polarity of results are the same as in END (east north

down) and (NED) conventions, making them directly comparable with datasets using

modern potential field standards.

1.4.4 Chapter 4

Chapter 4 introduces tensor equations applied to source distance calculations utilising

analytic signals. All tensor derivations of the equations are new, as well some new

variants of existing equations in the literature. These variants use component definitions

8

of the analytic signal, which was tested both theoretically and practically to see if the

depth relations still held. This has been published in Cole and Cooper (2018). The

chapter also examines the effects of noise on the equations, and tests results

appropriately.

1.4.5 Chapter 5

Chapter 5 examines remanence in tensor data. It gives an appropriate background on

previous work and proceeds to derive novel equations to directly calculate magnetic field

direction cosines from the tensor magnetic components. These cosines can easily give

an indication of remanence and a starting point for the direction of the remanent field.

They also can give an indication of the complexity of remanence within bodies. Equations

are also derived to directly calculate remanent inclination, declination and magnetisation,

as well as a demonstration of the limitations of such equations.

1.4.6 Chapter 6

Chapter 6 applies the source distance and remanence equations to real data. Two

datasets are used – one using tensors derived from TMI data over the

Lichtenberg/Zeerust area. These tensors are limited in that they do not account for

remanence properly, and proof of this is given through modelled demonstrations. This

limitation has not been discussed before in literature, but it emphasizes the advantage of

measured tensor data over calculated tensor data, in that only measured data captures

the remanent information properly. The results from this interpretation are a first order, 3D

interpretation of the dykes over this area using depths and susceptibilities derived from

the data.

The second dataset is over the Tallawang magnetite skarn. This tensor data is highly

magnetic (with susceptibility of up to 4 SI and remanence of up to 40 A/m). The source

distance and remanence techniques are tested on both a simple model of the skarn and

the tensor data, and limitations to the processes are demonstrated.

9

CHAPTER 2 CONVENTIONAL FORWARD MODELLING

2.1 Introduction

Forward modelling is the process of calculating data from model parameters. In this case,

a potential field is calculated from parameters such as geometry of source, susceptibility

and density. Early work focussed on calculating anomalies from different sources

(Nettleton, 1942; Henderson and Zietz, 1948; Reford, 1964; Hjelt, 1972, 1974; Plouff,

1976; Barnett, 1976; Coggon, 1976; Andreasen and Zietz, 1969; Kogbetliantz, 1944; Hall,

1959). Although it was originally calculated along 2D profiles, scientists such as

Bhattacharyya (1964) and Talwani (1965) pioneered the calculation of potential fields

using bodies comprised of prisms and polygonal facets. More recently, this has been

refined by Guptasarma and Singh (1999) and Singh and Guptasarma (2001a; b), who

used line integrals to calculate the field component due to each polygonal facet. Holstein

(2003) derived formulas from the gravity potential field and field gradient tensor for a

polyhedral target body of a spatially linear density medium.

Broadly speaking, there are two basic strategies. One is to calculate a model made up of

a matrix of rectangular prisms or rectangular columns (Bhattacharyya, 1964). The other is

to form bodies from arbitrary polygonal shapes. Intuitively, it makes sense that the

modelling of arbitrary polygons, whether in 2D or 3D, should be more efficient. This is

because it may be possible to represent a body with fewer polygons than as a matrix of

rectangular prisms or voxels. However, the simple intersection of a 3D geometry with

another 3D geometry (say, a sedimentary layer with a dyke) causes the number of

polygon facets to increase dramatically and increases the complexity of the modelling

process (discussed in section 2.3.4). This thesis will show that voxel or rectangular prism-

based modelling can be made efficient, and that such modelling synergises naturally well

with inversion techniques.

In addition, the forward modelling equations of a variety of sources – including dykes and

steps – form the basis for source detection techniques as well as the testing of those

techniques.

2.1.1 Implicit and explicit modelling

Conventional forward modelling where all model parameters and bodies are explicitly

defined by the interpreter, is an example of explicit modelling. It is obviously time

consuming, and can be prone to user-error in terms of some of the locations of geological

bodies as well as model parameters.

10

Implicit modelling, on the other hand, seeks to assemble a geological model implicitly,

taking into account geological information such as boreholes, contact locations and

orientations and other information (Lajaunie, Courrioux and Manuel, 1997). Essentially,

contact locations and orientation data are used to construct an implicit scalar potential

field through interpolation. This field can be updated with the addition of new data.

Geological boundaries are then described through isopotential surfaces and the dips of

such boundaries are represented by the gradients of the potential (McInerney et al.,

2007; Calcagno et al., 2008). Numerous authors have published on this work and made

refinements to it (McInerney et al., 2007; Calcagno et al., 2008; Fitzgerald and Milligan,

2013; Husson et al., 2018).

Implicit modelling is arguably an effective way of managing a model and is a good way of

defining an initial or ultimate model. It synergizes well with techniques such as forward

modelling and inversion (Guillen et al., 2008).

Although this thesis deals with explicit voxel based forward modelling, the nature of both

philosophies is that they will work well together and should not be thought of as

incompatible.

11

2.1.2 Axis conventions

Axis conventions are standardized ways of establishing the location and orientation of

coordinate axes. They are important as they make it possible to relate different datasets

which may come from different forms of axes. These conventions often specify the

directions of positive axes. For example, ENU denotes positive axes in the East, North

and Up directions. Coordinate systems are said to be left handed or right handed. If the

thumb is aligned with the z-axis, and the forefinger coincides with the x-axis, then the

direction of the y-axis is obtained by the second finger of the right hand for right handed

systems, or the second finger of the left hand for left handed systems. Alternatively, in

right handed systems the cross product of any two basis vectors in a left to right cyclic

sequence yields the third. They therefore satisfy 𝑿 × 𝒀 = 𝒁, 𝒀 × 𝒁 = 𝑿, 𝒁 × 𝑿 = 𝒀 where

𝑿, 𝒀, 𝒁 are the axis vectors. For left handed systems we have 𝑿 × 𝒀 = −𝒁, 𝒀 × 𝒁 =

−𝑿, 𝒁 × 𝑿 = −𝒀.

Below are a list of commonly used conventions:

 ENU (East, North, Up) – used in terrain and on land vehicles, right handed

 NED (North, East, Down) – used on aircraft, magnetics, right handed

 END (East, North, Down), left handed

 ESD (East, South, Down) right handed

 NEU (North, East, Up) left handed

The two most common conventions in use for potential field data are NED (North, East,

Down) (Henderson and Zietz, 1948; Tarlowski, 1989; Plouff, 1976; Li and Chouteau,

1998; Talwani, 1965; Singh and Guptasarma, 2001b) and ESD (East, South, Down) (Hall,

1959; Hjelt, 1972; Rasmussen and Pedersen, 1979; Kogbetliantz, 1944; Bhattacharyya,

1964; Coggon, 1976).

Nevertheless, other conventions are also in use. For example, NEU (North, East, Up)

(Baykiev et al., 2016) and ENU (East, North, Up) (Zhu, 2007).

This thesis advocates both NED and ENU conventions for magnetic data. They are both

right handed systems, and while not as commonly in use for potential field data, when

modelling, ENU allows for a more intuitive integration between a model and terrain or

map data (which follows ENU conventions). Where necessary, the convention associated

with an equation will be stated.

12

2.2 Magnetic Field

The magnetic field has been described using various terminologies (H field, B field, and

magnetic potential to name a few) and often these terms are used interchangeably.

Therefore, it is necessary to revisit the basic concepts to establish context in this study.

This section is intended to be a literature study to establish background, conventions to

be used in this thesis, and has been covered in many different sources in literature. For

convenience, one may refer to Blakely (1995, chaps 4–5).

2.2.1 Units

This study will follow the International System of Units (abbreviated as SI) (Blakely, 1995,

p 67). However, its alternative, the cgs (centimetre-gram-second) system may be referred

to occasionally in the text. The cgs system is also called the Gaussian unit system or

Gaussian-cgs units. Formulas exist for both cgs and SI units (Sheriff, 1991, p 183).

Conversions between these units are well documented in literature (Goldfarb and Fickett,

1985).

2.2.2 The 𝑩 Field

The Lorentz force law describes the combination of electric and magnetic force on a point

charge due to electromagnetic fields. It is defined as follows:

 𝑭 = 𝑞(𝑬 + 𝒗 ∙ 𝑩) (2.1)

where 𝑞 is the charge, 𝑬 is the electric field, 𝒗 is the velocity of the charged particle and 𝑩

is termed the magnetic field. The units of 𝑩 are teslas (T) or gauss (G), depending on

whether the units are according to SI or cgs conventions. In geophysics, nanotesla (nT)

or gamma (𝛾) are used and are numerically equivalent. The force due to a magnetic field

necessary to describe the motion of a charged particle is therefore (Blakely, 1995, p.66):

 𝑭 = 𝑞(𝒗 ∙ 𝑩) (2.2)

The 𝑩 field is the magnetic field measured by magnetometers on surveys.

13

2.2.3 The 𝑯 Field, 𝑴 and 𝒌

The measured 𝑩 field is comprised of two main sources (Blakely, 1995, sec.5.3); that

which comes from external field (𝑯), and that which comes from nearby materials (𝑴). It

can be stated as follows (Sheriff, 1991, p 185):

 𝑩 = 𝜇0(𝑯 + 𝑴) = 𝑩𝒂 + 𝑩𝒎 (2.3)

where 𝜇0 is the permeability in a vacuum (units: newtons per ampere squared or N/A2)

and 𝑴 is referred to as the magnetisation or magnetic polarization. 𝑩𝒂 is the ambient

magnetic field and 𝑩𝒎 is the field due to the magnetisation. In SI units, both 𝑯 and 𝑴

have units of ampere per meter (A/m).

If the field 𝑯 is small, the response of the magnetisation 𝑴 in the material is

approximately linear:

 𝑴 = 𝑘𝑯 (2.4)

where 𝑘 is a dimensionless constant of proportionality called the magnetic susceptibility.

The magnetisation value shows how strongly a region of material is magnetised and is

therefore the magnetic dipole moment per unit volume. The susceptibility can be rewritten

as:

𝑘 =

|𝑴|

|𝑯|
 (2.5)

Substituting (2.4) into (2.3) gives:

 𝑩 = 𝜇0(𝑯 + 𝑴)
= 𝜇0(1 + 𝑘)𝑯
= 𝜇0𝜇𝑟𝑯
= 𝜇𝑯

(2.6)

where 𝜇𝑟 is the relative permeability of the material and 𝜇0is the permeability of free

space. This then becomes:

𝑯 =

𝑩

𝜇
 (2.7)

14

Alternatively, from (2.3) again:

𝑯 =

𝑩

𝜇0

− 𝑴 (2.8)

The units for the magnetic field strength 𝑯 can be derived from its relationship to the

magnetic field 𝑩 using equation (2.7). Since the unit of magnetic permeability (μ) is N/A2,

then the unit for the magnetic field strength is T/(N/A2) = (N/A·m)/(N/A2) = A/m, where T is

Tesla, N is Newton, A is Ampere and m is metre.

From all of this it can be seen that the units of 𝑯 and 𝑴 are the same, namely Ampere

per metre (A/m).

2.2.4 Remanent Magnetisation

This section will deal with basic remanent magnetisation theory. An expanded discussion

on remanence calculations in the case of tensors will be covered in CHAPTER 5

Magnetisation can be induced into a material (which by itself would otherwise have no

field) or it can originate from the material itself. Remanence is the magnetisation left

behind in a ferromagnetic material after an external magnetic field is removed. There are

various mechanisms by which this can happen (Butler, 2004). Thermoremanent

magnetisation is acquired through the cooling of igneous rocks below the Curie

temperature. Chemical remanent magnetisation occurs through magnetic grains

precipitating from a circulating solution of chemical reaction. Depositional remanent

magnetisation can occur through magnetic grains aligning with the magnetic field soon

after deposition. Viscous remanent magnetisation is acquired by ferromagnetic minerals

by sitting in a magnetic field for some time.

Remanence is an important concept when modelling magnetic data. It is taken into

account in magnetic field calculations as the component of the anomaly field that is not in

the direction of the current magnetic field. It forms part of the magnetisation or magnetic

polarization parameter.

If 𝑴 is the total magnetisation of a body, then (Blakely, 1995, p.89; Clark, 1997)

 𝑴 = 𝑴𝒊 + 𝑴𝒓

= 𝑘𝑯 + 𝑴𝒓
(2.9)

15

where 𝑴𝒊 and 𝑴𝒓 indicate induced and remanent magnetisation respectively. The relative

magnitude of remanence is defined as the ratio of 𝑴𝒓 to 𝑴𝒊 and has been named the

Koenigsberger ratio or the Q-ratio (Blakely, 1995, p.90; Clark, 1997):

𝑄 =

|𝑴𝒓|

|𝑴𝒊|
 (2.10)

A large Q-ratio is an indicator that magnetic material will tend to retain significant

remanent magnetisation. Strong remanent magnetisation suggests the presence of finely

crystalline magnetic mineral grains (Grant, 1985). Clark, (1997) provides a good overview

of the relationship between mineral grain domain structure and magnetisation. He noted

that small mineral grains (0.05 - 1μm) have a single domain (SD) structure, which means

that they are uniformly magnetised. Small mineral grains can retain remanent

magnetisation for a long time and are important carriers of remanent magnetisation in

many types of rocks. Larger grains are more likely to subdivide into a number of magnetic

domains (known as multi domain or MD grains) with different magnetic orientations,

thereby reducing the remanent magnetisation strength. Therefore, although these grains

can have high magnetic susceptibilities, they do not retain remanent magnetisation as

well as single domain grains. Pseudo single domain (PSD) grains have properties

intermediate between SD and MD grains. They are generally in the order of a few

microns in size (~1 – 20 μm). Clark, (1997) summarised that with increasing grain size,

the remanence generally decreases whereas susceptibility increases.

The defining characteristics of magnetic fields and magnetisation are the magnitude and

the direction of the fields. The direction of the fields are defined in terms of inclinations

and declinations, translated into direction cosines (Talwani, 1965). Direction cosines are

a method of translating angular information (inclination and declination) into conventional

coordinate space.

If 𝑴𝒓 has inclination and declination 𝑀𝑖𝑛𝑐 and 𝑀𝑑𝑒𝑐, then:

 𝛼𝑟 = cos(𝑀𝑖𝑛𝑐) ∙ cos(𝑀𝑑𝑒𝑐) (2.11)

 𝛽𝑟 = cos(𝑀𝑖𝑛𝑐) ∙ sin(𝑀𝑑𝑒𝑐) (2.12)

 𝛾𝑟 = sin(𝑀𝑖𝑛𝑐) (2.13)

16

Where 𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟 are the direction cosines of remanent magnetisation 𝑴𝒓.Note that these

expressions are valid for NED coordinate systems. If the x-axis does not point north, then

the deviation from north must be subtracted from the declination first. This is of critical

importance if using the ENU coordinate system where the deviation from north is 90

degrees.

Similarly, if 𝑴𝒊 (or 𝑯 since it will be in this direction) has inclination and declination 𝐻𝑖𝑛𝑐

and 𝐻𝑑𝑒𝑐, then it has the following direction cosines:

 𝛼𝑖 = cos(𝐻𝑖𝑛𝑐) ∙ cos(𝐻𝑑𝑒𝑐) (2.14)

 𝛽𝑖 = cos(𝐻𝑖𝑛𝑐) ∙ sin(𝐻𝑑𝑒𝑐) (2.15)

 𝛾𝑖 = sin(𝐻𝑖𝑛𝑐) (2.16)

From this the expression for 𝑴𝒓 becomes:

 𝑴𝒓 = |𝑴𝒓| ∙ [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟] (2.17)

|𝑴𝒓| is the magnitude of 𝑴𝒓. For the case of 𝑴𝒊 we can make use of equation (2.4),

which relates 𝑴𝒊 to 𝑯 and take advantage of the fact that since we know the ambient

magnetic field when modelling, equation (2.3) can be used with 𝑴 = 0. We therefore get

 𝑴𝒊 = |𝑴𝒊| ∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖]
= 𝑘 ∙ |𝑯| ∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖]

=
𝑘 ∙ |𝑩𝒂| ∙ 10−9

𝜇0

∙ [𝛼𝑖, 𝛽𝑖 , 𝛾𝑖]
(2.18)

|𝑩𝒂| is the ambient magnetic field in nanotesla, necessitating the need to multiply the

equation by 10−9 to convert it to tesla.

By substituting (2.17) and (2.18) into (2.9), it follows that:

17

 𝑴 = 𝑴𝒊 + 𝑴𝒓

=
𝑘 ∙ |𝑩𝒂| ∙ 10−9

𝜇0

∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖] + |𝑴𝒓| ∙ [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟]

=
𝑘 ∙ |𝑩𝒂|

400𝜋
∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖] + |𝑴𝒓| ∙ [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟]

= |𝑴| ∙ [𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡]

(2.19)

Where 𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 are the new resultant direction cosines.To express 𝑴 in field strength (𝑩

with units in tesla), (2.19) is multiplied by 𝜇0 4𝜋⁄ . For nanotesla this

becomes 𝜇0 × 10−9 4𝜋 = 100⁄ . Therefore:

𝑩 = 100 ∙ (

𝑘 ∙ |𝑩𝒂|

400𝜋
∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖] + |𝑴𝒓| ∙ [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟])

=
𝑘 ∙ |𝑩𝒂|

4𝜋
∙ [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖] + 100 ∙ |𝑴𝒓| ∙ [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟]

= |𝑩| ∙ [𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡]

(2.20)

Importantly, for use in forward modelling, the resultant direction cosines for 𝑴 can be

obtained by dividing 𝑴 by |𝑴| which can be obtained through the following equation:

 |𝑴| = √𝑴 ∙ 𝑴 (2.21)

 Where 𝑴 is defined by equation (2.19).

2.2.5 Magnetic Potential

The magnetic potential (Blakely, 1995, sec.4.3) is the work done by a magnetic particle

against the field. It is an important concept in derivations for forward modelling. The term

magnetic potential can be used for either of two quantities: the magnetic vector potential

(𝑨) and the magnetic scalar potential (φ).

Both quantities can be useful in calculating the magnetic field. The vector potential is

related to the 𝑩 field via:

 𝑩 = ∇ × 𝑨 (2.22)

where the operator “∇ ×” denotes taking the curl of the magnetic vector potential (𝑨)

18

The magnetic scalar potential φ is related to the 𝑯 field (in cases when there are no free

currents) by:

𝑯 = −∇𝜑 =

𝑩

𝜇0

=
∇ × 𝑨

𝜇0

 (2.23)

2.2.6 Total Magnetic Intensity

If 𝐵𝑥 , 𝐵𝑦 and 𝐵𝑧 are defined to be three components of a magnetic field 𝑩, and 𝛼, 𝛽, 𝛾 are

defined to be the direction cosines relating to the direction of the magnetic field, then the

total magnetic intensity 𝐵𝑡𝑚𝑖 (often referred to as 𝑓) can be approximately defined as:

 𝐵𝑡𝑚𝑖 = 𝛼 ∙ 𝐵𝑥 + 𝛽 ∙ 𝐵𝑦 + 𝛾 ∙ 𝐵𝑧 (2.24)

In spite of being an approximation, this expression has useful mathematical properties. It

obeys Laplace’s equation, and is therefore a true potential field. It can therefore be

continued between surfaces at differing levels, if accurately known everywhere over one

surface.

When anomalies are too strong, then this relationship is no longer accurate and the full

measured total field anomaly should be used. Schmidt and Clark (2006) point out that the

difference between the two expressions can be as large as 1,000 nT for a 10,000 nT

anomaly in a 50,000 nT regional field. The full total magnetic intensity is actually defined

as:

𝐵𝑡𝑚𝑖 = √(𝐵𝑥 + 𝛼𝐵𝑎)2 + (𝐵𝑦 + 𝛽𝐵𝑎)

2
+ (𝐵𝑧 + 𝛾𝐵𝑎)2 − 𝐵𝑎 (2.25)

where 𝐵𝑎 = |𝑩𝒂| is the ambient magnetic field. This version of 𝐵𝑡𝑚𝑖 is not a potential field,

since it does not obey Laplace’s equation exactly (Schmidt and Clark, 2006).

19

2.3 Conventional Forward Modelling in 3D

A voxel-based approach, rather than a polygonal approach, is advocated for potential

field modelling. This section aims to show that the creation and editing of voxel-based

models can be faster than the equivalent facet-based models. While the actual

calculation speeds of voxel-based models may not necessarily be faster, the section also

aims to demonstrate that they need not be inefficient either, simply by adopting optimised

calculation strategies.

2.3.1 Forward Modelling Theory

Firstly, the magnetic field due to a rectangular prism needs to be calculated. There are

many techniques which can be considered here. Bhattacharyya (1964) developed the

equations for a rectangular prism of infinite depth. Guptasarma and Singh (1999) and

Singh and Guptasarma (2001a; b) used line integrals to calculate the field component

due to each polygonal facet. Holstein (2003) derived formulas from the gravity potential

field and field gradient tensor for a polyhedral target body of a spatially linear density

medium. Parker (1973) showed that Fourier transforms can be used to calculate

magnetic or gravitational anomalies. More recently, Caratori Tontini, Cocchi and

Carmisciano, (2009) also applied Fourier transforms for rapid 3-D forward modelling of

potential fields.

In this case the technique by Bhattacharyya (1964) was used. The simplicity of the

technique makes it well suited to rectangular prism calculations. It is described and

developed into a Fortran routine, named ‘mbox’ by Blakely (1995, pp. 200-201) based on

the work by Bhattacharyya (1964). The dimensions of the prism are given by 𝑥1 ≤ 𝑥 ≤

𝑥2, 𝑦1 ≤ 𝑦 ≤ 𝑦2, 𝑧1 ≤ 𝑧 < ∞. The prism is observed in a regional field defined by

𝑯 = (𝐻𝑥 , 𝐻𝑦 , 𝐻𝑧) and the magnetisation of the rectangular prism is given as 𝑴 =

(𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧). The equations are (in NED convention)

𝐵 = 𝐶𝑚𝑀 [

𝛼23

2
log (

𝑟 − 𝑥′

𝑟 + 𝑥′
) +

𝛼13

2
log (

𝑟 − 𝑦′

𝑟 + 𝑦′
)

− 𝛼12 log(𝑟 + 𝑧1)

− 𝑀𝑥𝐻𝑥 tan−1 (
𝑥′𝑦′

𝑥′2 + 𝑟𝑧1 + 𝑧1
2)

− 𝑀𝑦𝐻𝑦 tan−1 (
𝑥′𝑦′

𝑟′2 + 𝑟𝑧1 + 𝑥′2
)

+ 𝑀𝑧𝐻𝑧 tan−1 (
𝑥′𝑦′

𝑟𝑧1

)] |
𝑥′ = 𝑥2

𝑥′ = 𝑥1
|
𝑦′ = 𝑦2

𝑦′ = 𝑦1

(2.26)

where:

20

 𝛼12 = 𝑀𝑥𝐻𝑦 + 𝑀𝑦𝐻𝑥 (2.27)

 𝛼13 = 𝑀𝑥𝐻𝑧 + 𝑀𝑧𝐻𝑥 (2.28)

 𝛼23 = 𝑀𝑦𝐻𝑧 + 𝑀𝑧𝐻𝑦 (2.29)

 𝑟2 = 𝑥′2 + 𝑦′2 + 𝑧′2 (2.30)

𝑀 = √𝑀𝑥

2 + 𝑀𝑦
2 + 𝑀𝑧

2 (2.31)

Cm is a constant that depends on the units of measurement. In cgs units, 𝐶𝑚 = 1 and in

SI units, 𝐶𝑚 = 𝜇0 4𝜋⁄ . Note that 𝑀 is the total magnetisation of the rectangular prism, as

described by (2.9) and the equations following. It is not the remanent magnetisation

exclusively.

When equation (2.26) is calculated twice, at different depths, the difference between the

solutions gives the solution for a rectangular prism bounded by the two depths.

Other techniques for calculating the magnetic field due to a magnetic body have also

been published. For example, Guptasarma and Singh (1999) published a technique to

compute the magnetic field resulting from a uniformly magnetised arbitrary polyhedron. It

is very well suited to polyhedrons and calculates the x, y and z components of the field as

well as the total field. However, to do this it calculates line integrals for each face of the

polyhedron. This makes it a more complex calculation than the ‘mbox’ routine described

above. As such it is not as efficient for voxel based calculations.

To demonstrate the versatility and applicability of voxel based calculations, the gravity

case is also presented. For the gravity field calculation Blakely (1995, pp. 186-187)

developed a FORTRAN routine, based on the work of Plouff (1976), named ‘gbox’. In this

case, the dimensions of the prism are given by 𝑥1 ≤ 𝑥 ≤ 𝑥2, 𝑦1 ≤ 𝑦 ≤ 𝑦2, 𝑧1 ≤ 𝑧 < 𝑧2. The

equations for gravity are (in NED convention):

𝑔 = 𝛾𝜌∑ ∑ ∑ 𝜇𝑖𝑗𝑘 [𝑧𝑘 tan−1

𝑥𝑖𝑦𝑖

𝑧𝑘𝑅𝑖𝑗𝑘

− 𝑥𝑖 log(𝑅𝑖𝑗𝑘 + 𝑦𝑗)

2

𝑘=1

2

𝑗=1

2

𝑖=1

− 𝑦𝑖 log(𝑅𝑖𝑗𝑘 + 𝑥𝑗)]

(2.32)

21

where 𝜌 is uniform density is, 𝛾 is the gravitation constant, 𝑅𝑖𝑗𝑘 = √𝑥𝑖
2 + 𝑦𝑗

2 + 𝑧𝑘
2 and

𝜇𝑖𝑗𝑘 = (−1)𝑖(−1)𝑗(−1)𝑘.

Unlike the case with calculating magnetic fields, this equation only has to be calculated

once per rectangular prism.

2.3.2 Computational strategy for combined rectangular prism-based calculations

A strategy is proposed for the computation of voxel based calculations. Voxels can be

modelled as rectangular prisms. The fundamental shape of the magnetic anomaly due to

a rectangular prism is dependent on three factors, namely the vertical distance from the

observation point, the direction of magnetisation (both remanent and induced) and the

magnetic susceptibility of the rectangular prism. If the terrain is flat, the horizontal location

of a rectangular prism has no impact on the fundamental shape of the anomaly over a

few hundred km2, since the inducing field does not change significantly over this size area

(Pedersen, Rasmussen and Dyrelius, 1990). In addition, susceptibility only affects the

vertical scale of the anomaly shape. Therefore, the same calculated anomaly can be

used for two different lithologies that only differ by susceptibility.

With this in mind, a lithology model comprised of voxels 𝐼𝑖𝑗𝑘 is defined, where 𝑖, 𝑗, 𝑘

represent rows, columns and layers in the model. For the purposes of programming, the

lithology model is made up of lithology indices, which are defined as follows:

𝐼𝑖𝑗𝑘 = {

−1 for air
0 for background lithology

≥ 1 𝑎𝑛𝑑 ≤ 𝑛 for modelled lithology

(2.33)

This set of lithology indices represents 𝑛 different magnetic lithologies in the model. The

value of -1 is used as a marker to account for air above terrain, and 0 is background

lithology. In this way, all aspects are accounted for, including terrain. For example,

equation (2.34) shows a slice of the lithology model with a small hill, made up of voxels

𝐼𝑖𝑗𝑘 where 𝑖 = 1, and 𝑗 and 𝑘 are all columns and layers respectively. For convenience,

the number of calculations at observation points is equal to the number of rectangular

prisms, with each calculation located horizontally in the centre of its respective

rectangular prism.

22

𝑰𝒊=𝟏 =

[

−1 −1 −1 −1 −1
−1 −1 0 −1 −1
0 0 0 0 0
0 1 1 1 0
0 1 1 1 0]

 (2.34)

𝑰𝒊=𝟏 are all the values of 𝐼𝑖𝑗𝑘 where 𝑖 = 1. For each value of 𝐼𝑖𝑗𝑘 > 0, the procedure is as

follows:

1) For a single rectangular prism, calculate the anomaly solutions, covering

twice the area of interest (to facilitate anomaly shifting later). The

anomaly solution for layer 𝑘 and lithology 𝑛 is defined as 𝑹𝒏𝒌 (Figure 1).

2) Repeat point (1) for each layer or depth of the model.

Figure 1 Diagram showing anomaly solution for layer 1 and lithology 1 calculated
for a rectangular prism. Solid arrows show which calculations are summed into the
total field for this rectangular prism. Dashed arrows indicate solutions outside of
the modelled area, but which will be used when summing anomalies.

These points are repeated for each of the n lithologies in the model. Then:

3) Iterate through each row, column and layer of the model 𝐼𝑖𝑗𝑘. For each

rectangular prism with lithology n at layer k of 𝐼𝑖𝑗𝑘, where 𝑛 > 0, shift 𝑹𝒏𝒌

to be centred at point 𝑖𝑗 and sum the solutions over the model to the total

calculated field (Figure 2).

23

Figure 2 Diagram showing anomaly solution for layer 1 and lithology 1 calculated
in Figure 1, then reused for a different rectangular prism.

The above strategy holds for perfectly flat terrain. In order to correct for topography,

rectangular prisms that may lie above the observation point have to be accounted for. An

example of this is an observation point in a valley that must still take into account

adjoining peaks that lie above it (Figure 3).

To account for this, point (2) above must also be done for a range of pseudo layers above

the model. This range is equal to the (maximum height – minimum height)/(rectangular

prism height). Then at point (3), 𝑅𝑛𝑘 is replaced with 𝑅𝑛(𝑘−𝑑) where d is an element of a

surface representing the number of rows below the maximum height.

Figure 3 Diagram showing the anomaly solutions which must be used when the
topography is not flat. Notice that anomaly solutions are now calculated in the
reverse direction (on and under the ground), i.e. 𝑹𝟏𝟎, 𝑹𝟏−𝟏

24

All of this is mathematically expressed as follows: assume the calculated magnetic field 𝐵

is for a grid of observation points of 𝑟 rows and 𝑐 columns. The model that it will be

calculated from also has 𝑟 rows and 𝑐 columns and has 𝑙 layers. The altitude correction 𝐷

has 𝑟 rows and 𝑐 columns and contains the integer layer offsets from the maximum

height. Equation (2.35) describes the final summation operation for each final grid

point 𝐵𝑝𝑞.

𝐵𝑝𝑞 = ∑ ∑ ∑ ∑ ∑ 𝐵𝑝𝑞𝑖𝑗𝑘

(𝑙+𝐷𝑝𝑞)

𝑘=𝐷𝑝𝑞

(𝑟+𝑞)

𝑗=𝑞

(𝑐+𝑝)

𝑖=𝑝

𝑐

𝑞=1

𝑟

𝑝=1

 (2.35)

where 𝐵𝑝𝑞𝑖𝑗𝑘 is the field contribution from magnetic lithology 𝐼𝑖𝑗𝑘 at location 𝑝, 𝑞, taken

from 𝑹𝒏𝒌 (shifted to be centred on position 𝑖, 𝑗).

2.3.3 Forward modelling software test

The theory outlined in sections 2.3.1 and 2.3.2 were tested against GM-SYS, a major

commercial package distributed by Geosoft. A dyke was modelled in a regional field of

30,000 nT, with an inclination of -63 degrees, and a declination of -17 degrees. The

susceptibility of the dyke was 0.01 SI. The density was 2.8 g/cm3. To test remanence, a

remanent magnetisation of 0.199 A/m was assigned to the dyke, with an associated

inclination of 35 degrees, and declination of 80 degrees.

Figure 4(a) shows the results of the comparison. As can be seen, the voxel based model

matches the GM-SYS modelled anomaly perfectly, illustrating that all aspects of the

calculation are working perfectly. Note that the voxel rectangular prisms (cyan colour) are

also shown in Figure 4(b). Less rectangular prisms could have been used but this was

necessary to test the computational strategy outlined in section 2.3.2. Although there are

90 rectangular prisms, only 9 anomalies corresponding to the 9 layers present needed to

be calculated.

25

Figure 4 Modelled results of a dyke, showing a gravity and magnetic comparison of results
between calculated voxel responses and GM-SYS. Regional geomagnetic field is 30,000 nT,
with inclination of -63 degrees and declination of -17 degrees. The susceptibility 0.01 SI.
Density is 2.8 g/cm3. Remanent magnetisation is 0.199 A/m with inclination of 35 degrees
and declination of 80 degrees. The anomaly responses are shown in (a) and the body
modelled is shown in (b).

2.3.4 Model creation and editing

As mentioned in the introduction, there are two basic strategies for forward modelling in

3D. The conventional approach is to form bodies from arbitrary polygonal shapes.

(a)

(b)

26

The time it takes to construct a 3D model can be prohibitive. Conventional polygonal

based 3D modelling programs (3DS Max, Maya, Blender) are akin to CAD packages and

require a steep learning curve, which is not always possible.

An alternative approach is to use a matrix of rectangular prisms or voxels to form the

body. Figure 5 shows a body represented by rectangular prisms and by polygons. Since

there are far more rectangular prisms than polygons, calculating a magnetic field from

rectangular prisms has fallen out of favour, if only to save calculation time.

Figure 5 Comparison between polygonal shape (left) and rectangular prism based shape
(right)

The major time-sink is in the editing of the 3D models. This problem is definitely present

when editing a polygonal style body. Figure 6 shows the increase in complexity from just

a few edits. This increase in complexity slows calculation times and may necessitate

polygonal simplification algorithms.

Model editing is therefore not trivial and can be extremely time consuming. This is

especially the case when directly editing a full 3D mesh of facets, because of the

increased geometric complexity of facets versus voxels. An example of this will be

demonstrated in section 2.3.9, where model creation and editing were reduced by an

order of magnitude (months to days).

27

Figure 6 Demonstration of increasing complexity in polygonal modelling. In (a) a simple
starting polygon is shown. In (b) the starting polygon is intersected by another shape (say, a
dyke). In (c) the increase in polygonal facets if only one edit has been made to the model is
shown.

The ideal would be to simply draw a sketch of the model and make changes in a similar

manner. The learning curve to do this is low and edits to the model are not as time

consuming.

This is possible with rectangular prism (or voxel) based modelling. If a model is defined

as having a set number of rows, columns and layers, then it is possible to slice that model

along one of its rows, columns or layers. This slice gives a 2D representation of that point

in the model. The slice can also be manually drawn on, much like a computer graphics

application. The pixels making up the “ink” of the line being drawn would each be a

rectangular prism or voxel (Figure 7).

28

Figure 7 Modelled profile with calculated and observed magnetic data. Each pixel in the
model represents a voxel with corresponding magnetic lithology.

Although edits are 2D, they are slices of a 3D model and can be made on both vertical

slices (much like conventional 2D software) and horizontal layers (Figure 8), thereby

ensuring model continuity.

Figure 8 Horizontal slice of a 3D model.

29

Edits on both vertical and horizontal slices are trivial. Edges of bodies can be quickly

redrawn with little to no learning curve required. The copying and pasting of details from

one profile to multiple other profiles is also simple to program and use.

In polygonal based modelling packages, each body would get a unique geophysical

definition. In a voxel-based design, this is simply not practical. Therefore, voxel-based

modelling in this case is defined to be magnetic lithology centric rather than body centric.

Each magnetic lithology gets a unique geophysical definition that is applied to all

rectangular prisms of that magnetic lithology. The advantage of this is that a magnetic

lithology only has to be changed once for all related bodies in the model.

With this in mind, a magnetic lithology is defined to mean all bodies (rectangular prisms)

with the same magnetic parameters – i.e. susceptibility, field direction, remanence.

2.3.5 Model accuracy

On the face of it, it makes sense that facets can model certain structures more precisely

than voxels. For example, a dipping dyke can be simply modelled with fewer points using

facets than with its voxel alternative, which will require potentially many more voxels to be

calculated to reach the same level of detail (Figure 9).

Figure 9 Illustration showing the increase in voxel resolution necessary to approximate
dipping dykes.

There are a few points to be noticed. The approximation used in Figure 9 uses 160

rectangular prisms for its calculation as opposed to 1 facet based calculation. However,

taking into account redundancies in the rectangular prism calculation, as pointed out

earlier, 160 can be reduced to 19 since we only need to calculate anomalies once per

layer. If the dyke is more complex, the facet based calculation will slow down (due to

30

increased facets) while the rectangular prism based calculation will remain similar to

before.

Figure 10 shows a comparison between voxel anomalies and polygonal anomalies. It

serves to highlight one of the pitfalls of voxel based modelling. Since each voxel has a

finite lateral resolution, if the edge of a body does not accurately coincide with the edge of

a voxel, an anomaly shift can occur. This is easily fixed, by either shifting the voxel

registration point (Figure 11) or by increasing the resolution of the voxet (data set of

voxels) (Figure 12)

Figure 10 Model of a dipping dyke with a comparison between polygonal (GM-SYS) versus
voxel calculations. (a) and (b) show the anomaly and the body respectively. Regional
geomagnetic field is 30,000 nT, with inclination of -63 degrees and declination of -17

(a)

(b)

31

degrees. The susceptibility 0.01 SI. Density is 2.8 g/cm3. Remanent magnetisation is 0.199
A/m with inclination of 35 degrees and declination of 80 degrees.

Figure 11 Model of a dipping dyke with a comparison between polygonal (GM-SYS) versus
voxel calculations, with the voxels shifted into a slightly more favourable position (half the
width of a voxel in this case). (a) and (b) show the anomaly and the body respectively.

(a)

(b)

32

Figure 12 Model of a dipping dyke with a comparison between polygonal (GM-SYS) versus
voxel calculations at a higher voxel resolution (twice the resolution in this case). (a) and (b)
show the anomaly and the body respectively.

Therefore, in terms of model accuracy, the resolution of the voxel model should be

comparable to the resolution of the observed dataset. Increasing the resolution of the

voxel model (i.e. decreasing each voxel’s dimensions) does allow for enhanced model

accuracies to be achieved. This is especially true if one takes into account the inherent

modelling error in terms of locations of bodies as input by interpreters and the fact that a

simple polygonal dyke is over-simplistic when compared to real geology.

The bottom line is that voxel models are a viable alternative to facet-based models, even

with concerns of a model made up essentially of rectangular prisms.

(a)

(b)

33

2.3.6 Depth versus resolution and sensitivity

The dipolar and monopolar nature of magnetic and gravity fields result in magnetic fields

and gravity fields decaying at a rate of 1 𝑟3⁄ and 1 𝑟2⁄ respectively (Blakely, 1995, pp.43,

75) . From this, it is clear that the further away geology is from the observation point, the

lower its contribution is to the respective potential field. This implies that our effective

model resolution is actually lower the further we are from the observation point. This is

commonly the case not just in potential field methods, but in all electrical methods.

A side effect of this is that small features in the field tend to relate to shallow sources (i.e.

they are close to the observation point) and broad features tend to relate to deeper

sources.

As a result of this, optimisations are possible if we take advantage of this property. By

lowering the resolution of the model as we move away from the source, less calculations

are necessary and the overall calculation time speeds up.

This is straightforward to implement on the strategy outlined in section 2.3.2.

Remembering that a rectangular prism is calculated at each depth in the model, the

dimensions of the prism can be increased for greater depths. If the horizontal dimension

of the rectangular prism is still a multiple of the smallest rectangular prism dimension,

there will not need to be any change in any aspect of the strategy.

To illustrate this, Figure 13 shows a simulation of decreasing the model resolution with

depth. The z-extent of the model sections were increased in an r2 manner, with the first

layered section being 50 m thick (area between surface and model), the next sections

being 150 m and 250 m thick, respectively, with the last section being 50 m thick since

the model ends after that point. As is evident, the fit is reasonable, illustrating that depth

related optimisations can be done to increase calculation speed. However, from an

aesthetic point of view, an interpreter may still prefer seeing (at the very least for

conceptual reasons) a fixed voxel resolution throughout the model. The simplification of

the model for calculation purposes can be either done behind the scenes or at the control

of the interpreter.

34

Figure 13 Illustration of the relationship between model depth and anomaly accuracy. As
can be seen, the deviation of the voxel dyke at deeper depths has a minor impact on the
anomaly.

A final consequence of the importance of features close to the observation point, versus

features far away from the observation point, is that the accurate modelling of topography

is important. It is the closest feature to the observer and thus the variation of (especially

magnetic) topography must be taken seriously and modelled appropriately.

2.3.7 Calculation time

There is no disputing that the calculation time for facets is efficient. Optimisations using

Fast Fourier transforms have also been developed to produce rapid modelling (Caratori

35

Tontini, Cocchi and Carmisciano, 2009). What is in question is whether a traditional voxet

based calculation can be optimised so that it is not especially inefficient.

To examine voxel based modelling, the solution for a rectangular prism (Blakely, 1995)

was used to calculate the potential field at each observation point. The problem that

becomes immediately apparent is that the sheer number of rectangular prisms in any

volume quickly becomes too large for any form of efficient calculation.

To illustrate this, since a single calculation of a rectangular prism is necessary to obtain

the field from a single observation point, a grid at the surface of the earth of 100 by 100

observations implies 10 000 calculations for one rectangular prism. If the model of the

earth volume has 100 rows, 100 columns and 100 layers, this implies 1 000 000

rectangular prisms and 10 000 000 000 calculations.

To optimize this calculation, the components that make up the calculation of a magnetic

anomaly need to be understood. There are three basic components

1) A geometric component which is simply due to the distance a magnetic body is

from the observation point

2) The field direction which is ultimately comprised of the inducing and remanent

fields.

3) The magnetic susceptibility which is in essence a scaling factor to give amplitude

to the field.

Point 1 contains no magnetic component. Since this is simply due to distance, the

consequence is that if a rectangular prism is at a specific depth, the anomaly from the

rectangular prism will be the same as the anomaly of any other rectangular prism at the

same depth.

Point 2 is more complex. The components of the magnetic field are woven into the

geometric calculation. In spite of this, in the case of two rectangular prisms at the same

depth but where one is remanent and the other is not, aspects of the geometric

calculation can be reused, saving time for the second rectangular prism calculation.

Point 3 is simply a scaling factor, so two rectangular prisms at the same depth differing by

only susceptibility will have final anomalies differing by the magnitude of the

susceptibilities only. This is a minor calculation.

Taking advantage of this and remembering that a magnetic lithology means all bodies

(rectangular prisms) with the same magnetic parameters – i.e. susceptibility, field

36

direction, remanence, all anomalies for a rectangular prism of a specific defined lithology

at a specific depth will be identical. The resultant overall field is simply the sum of the

individual fields from the individual rectangular prisms (Figure 14).

Figure 14 The top image shows the anomaly from a rectangular prism. The bottom image
illustrates how these are combined to obtain the resultant anomaly.

In this simplifying case, rectangular prisms are homogenous and there is no topography.

Since the anomalies for a rectangular prism at a specific depth are identical, we need

only calculate the field of a rectangular prism once, and shift the anomaly results to reflect

the locations of other rectangular prisms at the same depth. To account for all possible

shifts, the grid of the calculated anomaly must be four times bigger (double the rows and

columns) than the desired modelling extents.

A separate anomaly grid must therefore also be calculated for each depth (layer) in the

model. From the above calculation, the number of calculations is reduced by the number

of rectangular prisms in a layer (10 000) and multiplied by 4 to account for the increased

calculations. The new calculation total is 4 000 000 which is 0.04% of the original

calculations (Figure 15). This is significantly faster and enables rectangular prisms to be

used as a viable alternative for modelling.

37

Figure 15 Performance increase using the algorithm

Changes to susceptibility or density do not affect the field shape but merely the amplitude

of the anomaly. Therefore, it is not necessary to recalculate the entire field if one of these

parameters is changed.

2.3.8 Link to inversion

As mentioned before, in forward modelling, potential field data is calculated by manually

postulating geological parameters such as density, susceptibility and the geometry of the

body which is being modelled. This resultant field is compared with the measured field,

and the process is repeated until the calculated and measured fields match.

In inversion, the measured field is accepted as input, and some or all of the susceptibility,

density and geometry values are calculated automatically. Figure 16 illustrates the

relationship between forward modelling and inversion.

.

38

Figure 16 Relationship between forward modelling and inversion. The model is changed
(forward modelling) to fit data or the data is used (inversion) to derive a model.

Although inversion can be used to change polygonal geometry, it is often done on voxet

models, especially in other techniques such as resistivity and electromagnetic surveys.

These voxet models can then be used as input into voxet based potential field forward

modelling. These models are therefore more conveniently compatible with voxel based

forward modelling. Inversion is discussed in more detail in CHAPTER 4.

2.3.9 Example: Trompsburg Complex

This technique was used to create a very simple 3D model of the Trompsburg Complex,

a circular igneous intrusion located in the centre of South Africa (Figure 17(a)). It was

forward modelled using both magnetic and gravity data and using the process described

in section 2.3.2. Thick Karoo Supergroup sediments cover the Complex and it does not

crop out at all (Figure 17(b)). Its presence was only discovered when gravity and later

magnetic surveys were conducted over it in the 1940’s (Buchmann, 1960; Ortlepp, 1959).

Following its discovery seven boreholes were drilled into the north-western part of the

Complex where the magnetic intensities are the highest, and the main lithologies

encountered were gabbros, olivine gabbro, mineralised gabbro, troctolite and magnetite.

The Complex intruded into dolomites at 1915 ± 6 Ma (Maier et al., 2003). A detailed

description of the geological setting and physical properties of the lithologies can be

found in Maré and Cole (2005). It must be emphasised that the modelling in this report

was aimed more at illustrating a new software package, and not to conduct a detailed

investigation into the structure and geological development of the Trompsburg Complex.

Forward
Modelling

Data

Inversion

Model

39

Figure 17 (a) Locality of the Trompsburg Complex (enlarged in (b)); (b) Simplified geological
map of the area around the Complex.

Regional gravity and magnetic data collected during the 1970s and 1980s cover the

Complex and digital terrain data were extracted from the SRTM (Shuttle Radar

Tomography Mission) data set (Farr et al., 2007). The gravity data consists of a

measurement roughly every 9 km2 and the magnetic data were collected along north-

south directed flight lines spaced 1 km apart. These data sets were gridded using a

minimum curvature algorithm (Briggs, 1974) and using cell sizes of 1 km and 250 m for

the gravity and magnetic data respectively. The data sets had extents of 154.7 km in the

east-west (x) direction and 166.6 km in the north-south (y) direction. For the model, an x

and y cell size of 1000 m and a z cell size of 200 m were chosen, and the total depth (z)

extent was specified as 12 km. These settings resulted in a model consisting of 153

columns (x direction), 165 rows (y direction) and 60 layers (z direction).

Figure 18(a) and (b) show the observed Bouguer anomaly and magnetic data

respectively over the Trompsburg Complex. The dense, magnetic igneous rocks are

responsible for very prominent anomalies in the centre of both data sets. Data were

extracted for a larger area around the Complex to avoid edge effects. Linear NNE-SSW

and ENE-WSW striking anomalies, to the west and south of the circular anomaly are

related to terrain boundaries and were not modelled. A constant regional value of -150

40

mGal was removed from the Bouguer anomaly data to isolate the anomaly due to the

igneous Complex.

Figure 18 (a) Observed Bouguer anomaly data over the Trompsburg Complex; (b) Observed
magnetic data over the Trompsburg Complex. An IGRF has been removed from the
magnetic field.

Figure 19(a) shows one of the model layers in plan-view, and Figure 19(b) shows a

profile view running in an east-west direction almost through the centre of the model. This

profile coincides with two boreholes (positions indicated by black blocks in Figure 19(b))

that were used to constrain the model. Above the model the observed and calculated

gravity and magnetic fields along this profile are shown. The major features of the

magnetic data are present in the modelled anomaly. The discrepancies can be due to the

possibility that remanent magnetisation may be present, but this information was not

available. Figure 20 (a) to (e) show perspective views of the model in three dimensions

with various lithologies made transparent and opaque. In Figure 20 (a) to (d) the model

was exaggerated in the vertical direction, but in (e) no exaggeration was applied. This

shows the Complex to be saucer-shaped. The calculated gravity and magnetic field grids

are shown in Figure 21 (a) and (b) respectively. For the Complex itself, these grids

compare well with the observed grids (Figure 22 (a) and (b)).

41

Figure 19 (a) Plan view of layer 11 of the model. The location of profile 11 (shown in (b)) is
indicated; (b) Magnetic profile view of profile 98. (c) Gravity profile view of profile 98. The
horizontal blue line indicates the layer shown in (a). The vertical exaggeration is roughly 10
times. Black blocks above the model show the locality of two boreholes. (d) Model at
profile.

(c)

(b)

(a)

(d)

42

Figure 20 Perspective views of the 3D model. (a) All the lithologies are transparent; (b)
Gabbro made opaque to show the extent of the model; (c) Gabbro made transparent, but
olivine gabbro, mineralised gabbro and magnetite kept opaque; (d) Gabbro and olivine
gabbro made transparent, mineralised gabbro and magnetite kept opaque; (e) View from the
south with no vertical exaggeration applied.

Maré and Cole (2005) originally created a 3D model using polyhedral modelling

algorithms of Singh and Guptasarma (2001b; 2001a) and Guptasarma and Singh, (1999).

They interpreted the Complex as a circular layered intrusion with a feeder in the centre

reaching a depth of 16 km. Due to the ambiguity inherent in potential field data, the model

shown here (Figure 20) represents one (but not the only) possibility for the geometry of

the Trompsburg Complex. A circular layered model was also created, but due to a

different distribution of lithologies the body only goes down to a depth of 9 km below the

surface and no distinct feeder is visible. However, the primary benefit of this technique is

evidenced by the fact that the original model created in 2005 took approximately 3

43

months to produce using conventional polygonal based techniques. In this case,

modelling was done in less than a day. With more time spent, the model accuracy could

be improved.

Figure 21 (a) Grid of the calculated gravity field; (b) Grid of the calculated magnetic field.

Figure 22 (a) Difference between the observed and calculated gravity fields; (b) Difference
between the observed and calculated magnetic fields. The largest differences in the model
are associated with the contact between the model and surrounding geology, as well as the
surrounding geology. The model itself has a reasonable fit, excluding some areas in the
centre which needs additional modelling.

44

The model was exported to a .kmz file that can be viewed in Google Earth. In Figure

23(a) the model is shown with the lithologies separated. The model is shown above the

surface of the earth since it is currently impossible to view below the surface of the earth

in Google Earth. The observed and calculated data set can also be viewed in Google

Earth, as can be seen in Figure 23 (b) where the observed magnetic data set is shown.

Figure 23 (a) Model imported into Google Earth. The lithologies were separated for better
visibility; (b) Observed magnetic data set is also shown

45

CHAPTER 3 TENSOR FORWARD MODELLING

3.1 Introduction

Forward modelling relations to describe tensor fields due to various sources have been

described by numerous authors.

Holstein (2002) found simple relations to express, in tensor form, the gravity and

magnetic anomaly solutions for a uniform polyhedron, where the gravity and magnetic

solutions are linked through Poisson’s differential relation. He derived gravity potential,

gravity field and gravity field gradient tensor formulas for a polyhedral target comprising a

spatially linear varying density medium as well as the magnetic potential and magnetic

field in the case of a medium of spatially linear varying magnetisation (Holstein, 2003).

More recently, Holstein, FitzGerald and Stefanov (2013) presented closed formulae for

the gravity and magnetic effect due to a homogenous prismatic target. This includes the

potential, field and field gradient of gravity and magnetic prismatic targets.

Other work includes forward modelling equations for gravity and magnetic tensors

derived for a variety of sources, including rectangular prisms (Heath, 2007), and an

interpretation technique that makes use of forward modelling and inversion to construct a

realistic 3D model from multiple datasets including geology, physical properties of rocks,

topology and tensor data (Guillen et al., 2008).

Tensor measurements hold many advantages over traditional total magnetic intensity

surveys (Schmidt et al., 2004; Schmidt and Clark, 2006). Tensors have desirable

mathematical properties; tensor elements are true potential fields, allowing, for example,

rigorous continuation, RTP (Reduction to the Pole) and magnetization mapping. They

have independence from skewing caused by the geomagnetic field direction.

Tensors are measured using superior sensor technology; SQUID sensors have a high

sampling rate which allows the unaliased detection of high-frequency aircraft noise. This

can be efficiently removed by filtering. Tensor surveys also have all the benefits of vector

surveys without the disadvantage of high sensitivity to orientation. It is also possible to

perform error correction and noise estimates because of the inherent redundancy in

tensor components.

Measured tensors allow the calculation of parameters unaffected by aliasing across flight

lines. For example, the determination on which side of a flight line or a drill hole a source

46

lies. Compact source direction can be defined directly from a single measurement. The

calculation of compact source magnetic moments is also possible.

Tensors allow a higher resolution of shallow features and closely spaced sources as well

as pipe-like bodies and sources subparallel to flight path. There is also better delineation

of N-S elongated sources at low latitudes.

A wider range of new processed quantities unaffected by sensor misorientation is

available, including invariants, directional filters, depth slicing, source moments, and

dipole locations. These invariant quantities have benefits such as a higher resolving

power than the conventional analytic signal.

Tensors allow the direct determination of 3D analytic signal, as well as improved

accuracy of Euler deconvolution solutions using true measured gradients along and

across lines. Structures can be emphasised in different orientations, since each tensor

component represents a directional filter. By rotating the tensor coordinate system,

structural orientations can be emphasized. Magnetization direction information can also

be obtained via the combination of tensor components.

47

3.2 Tensors

Although magnetic data is commonly measured as a single value, gradiometer (or tensor)

data is becoming more common, especially in airborne gravity surveying. Gradiometer

data implies that for each location nine gradient magnetic or gravity values are recorded,

instead of simply one overall magnitude of the relevant field (Fitzgerald, Argast and

Holstein, 2009). This implies more data is available for modelling, potentially assisting in

overcoming modelling ambiguity challenges.

Tensors are an extension to the concepts of scalars, vectors and matrices. A tensor is

represented as an organized multidimensional array of numerical values. A practical

example of this is the magnetic gradient tensor (Nelson, 1988) :

𝑩 =

[

𝑑𝐵𝑥

𝑑𝑥

𝑑𝐵𝑥

𝑑𝑦

𝑑𝐵𝑥

𝑑𝑧
𝑑𝐵𝑦

𝑑𝑥

𝑑𝐵𝑦

𝑑𝑦

𝑑𝐵𝑦

𝑑𝑧
𝑑𝐵𝑧

𝑑𝑥

𝑑𝐵𝑧

𝑑𝑦

𝑑𝐵𝑧

𝑑𝑧]

= [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑦𝑥 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑧𝑥 𝐵𝑧𝑦 𝐵𝑧𝑧

] (3.1)

Where 𝐵𝑥, 𝐵𝑦 and 𝐵𝑧 are the 𝑥, 𝑦 and 𝑧 components of the magnetic field. The sheer

volume increase in measured data presents many opportunities for new input into source

detection and forward modelling algorithms.

3.2.1 Tensor Rank

Tensors may be classified by rank or order (Kolecki, 2002). This classification is reflected

in the number of components a tensor possesses in 𝑁-dimensional space. Therefore, a

tensor of order 𝑝 has 𝑁𝑝 components.

As an example, in a three-dimensional Euclidean space, the number of components of a

tensor is 3𝑝. From this, for example:

 A zero order tensor (𝑝 = 0) has one component and is called a scalar. Physical

quantities possessing magnitude only are represented by scalars.

 A tensor of order one (𝑝 = 1) has three components and is called a vector.

Quantities possessing both magnitude and direction are represented by vectors.

𝐵𝑥 is an example of a first rank tensor component.

 A tensor of order two (𝑝 = 2) has nine components and is typically represented

by a matrix. 𝐵𝑥𝑥 =
𝑑𝐵𝑥

𝑑𝑥
 is an example of a second rank tensor component

48

 A tensor of order three (𝑝 = 3) has twenty seven components. 𝐵𝑥𝑥𝑦 =
𝑑2𝐵𝑥

𝑑𝑥𝑑𝑦
 is an

example of a third rank tensor component.

3.2.2 Structure Tensor

A structure tensor is a matrix derived from the gradient of a function. It is a second order

tensor (has components such as 𝐵𝑥𝑦), and has 2D and 3D forms (can be represented by

either two or three variables). The 3D form is used in gradiometer surveys. Assume that

𝑩 is a function of three variables (𝑥, 𝑦, 𝑧). We can recognise that since 𝑯 = −∇𝜑, this

implies that (in SI units) 𝐵𝑥 = −𝜇0
𝑑𝜑

𝑑𝑥
, 𝐵𝑦 = −𝜇0

𝑑𝜑

𝑑𝑦
, 𝐵𝑧 = −𝜇0

𝑑𝜑

𝑑𝑧
 Therefore, combining

(3.1) and (2.23), the structure tensor would be (Heath, Heinson and Greenhalgh, 2003):

 𝑩 = ∇ ⊗ μ0∇𝜑

=

[

𝑑

𝑑𝑥
𝑑

𝑑𝑦
𝑑

𝑑𝑧]

[−𝜇0

𝑑𝜑

𝑑𝑥
−𝜇0

𝑑𝜑

𝑑𝑦
−𝜇0

𝑑𝜑

𝑑𝑧
]

= −𝜇0

[

𝑑2𝜑

𝑑𝑥2

𝑑2𝜑

𝑑𝑥𝑑𝑦

𝑑2𝜑

𝑑𝑥𝑑𝑧

𝑑2𝜑

𝑑𝑥𝑑𝑦

𝑑2𝜑

𝑑𝑦2

𝑑2𝜑

𝑑𝑦𝑑𝑧

𝑑2𝜑

𝑑𝑥𝑑𝑧

𝑑2𝜑

𝑑𝑦𝑧

𝑑2𝜑

𝑑𝑧2]

= [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑦𝑥 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑧𝑥 𝐵𝑧𝑦 𝐵𝑧𝑧

]

(3.2)

Where ⊗ is the dyadic product. Since the magnetic field is a potential gradient (see

equation (2.23)), the tensor components of (3.2) are second derivatives of the scalar

potential (φ). The consequence of this is symmetry of the tensor components. Therefore:

 𝐵𝑥𝑦 = 𝐵𝑦𝑥 , 𝐵𝑦𝑧 = 𝐵𝑧𝑦 , 𝐵𝑥𝑧 = 𝐵𝑧𝑥 (3.3)

According to Laplace’s equation:

 ∇2𝜑 = 0 (3.4)

 ∇ × 𝑩 = 0 (3.5)

49

From this it can be seen that:

 𝐵𝑥𝑥 + 𝐵𝑦𝑦 + 𝐵𝑧𝑧 = 0 (3.6)

Based on (3.3) and (3.6), (3.2) can be re-written as:

𝑩 = [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑦𝑥 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑧𝑥 𝐵𝑧𝑦 𝐵𝑧𝑧

] = [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑥𝑦 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑥𝑧 𝐵𝑦𝑧 −𝐵𝑥𝑥 − 𝐵𝑦𝑦

] (3.7)

This means that there are only five independent tensor components with magnetic and

gravity data. For magnetic data these are 𝐵𝑥𝑥 , 𝐵𝑥𝑦 , 𝐵𝑥𝑧 , 𝐵𝑦𝑦 , 𝐵𝑦𝑧.

3.2.3 Eigenvector and Eigenvalue Tensor Analysis

An alternative form of tensor representation, based on amplitudes and phases, is

discussed by Fitzgerald et al., (2007). Eigenvalues and eigenvectors provide a means to

transform a tensor measurement. Each reading is decomposed into the invariant

eigenvalue amplitudes and orthogonal rotation matrix with associated eigenvectors local

to the survey reference frame. The eigenvalue amplitudes and eigenvector rotations

represent the amplitude and phase of the tensor. The amplitude-phase form allows for

alternate fast and robust processing of tensor data while respecting the intrinsic physical

properties of tensors.

Clark (2012) gives a good overview of eigenvector analysis of the tensor If we define a

tensor measurement as the matrix 𝑩 with a scalar eigenvalue 𝜆 and eigenvector 𝒗 then

the relationship between these quantities is:

 𝑩𝒗 = 𝜆𝒗 (3.8)

The eigenvalues are solved by solving the characteristic equation det(𝑩 − 𝜆𝑰). Expanding

this, we get:

 𝜆3 + 𝐼1𝜆 − 𝐼2 = 0 (3.9)

where

50

 𝐼1 = 𝐵𝑦𝑦𝐵𝑧𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑦 + 𝐵𝑧𝑧𝐵𝑥𝑥 − 𝐵𝑥𝑦
2 − 𝐵𝑦𝑦

2

= 𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆2𝜆3

= −(𝜆1
2 + 𝜆2

2 + 𝜆3
2)/2

(3.10)

 𝐼2 = det(𝑩) = 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑧𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑧
2 + 𝐵𝑧𝑧𝐵𝑥𝑦

2 − 2𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑥𝑦
2

= 𝜆1𝜆2𝜆3
(3.11)

Where 𝜆1 ≥ 𝜆2 ≥ 𝜆3. Applying eigenvector analysis to our tensor equation, as shown in

equation (3.7), we obtain 3 eigenvalues and 3 eigenvectors. The rotation matrix 𝑹 which

has as its columns the eigenvectors [𝒗�̂�, 𝒗�̂�, 𝒗�̂�], diagonalises 𝑩 when applied to it. It is

straightforward to verify that the following holds:

𝑹𝑻𝑩𝑹 = 𝑹𝑻 [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑦𝑥 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑧𝑥 𝐵𝑧𝑦 𝐵𝑧𝑧

] 𝑹 = [

𝜆1

𝜆2

𝜆3

] (3.12)

The eigenvalues, and any combination thereof, are rotational invariants of the tensor.

Clark (2012) makes extensive use of one such rotational invariant, namely the normalised

source strength. It is defined as:

𝜇𝑛𝑠𝑠 = √−𝜆2

2 − 𝜆1𝜆3 (3.13)

Clark (2012) points out that unlike the tensor magnitude (Frobenius norm) |𝑩|, 𝜇 is

completely isotropic around a dipole source. This makes it ideal for homing applications.

3.2.4 Axis Conventions – implications for tensor data

Holstein et al. (2015) discuss at length the differences between different axis convention

systems, especially when applied to potential field tensor data. They formulated an

intuitive conversion between different reference systems. They further concluded that all

these systems give legitimate ways of representing vectors and tensors, but that

processing software should give the necessary flexibility to handle each of them, or if

necessary, a mixture.

In tensor notation, a NED tensor, which is right handed, may be represented as:

𝑻 = [

𝑇𝑁𝑁 𝑇𝑁𝐸 𝑇𝑁𝐷

𝑇𝑁𝐸 𝑇𝐸𝐸 𝑇𝐸𝐷

𝑇𝑁𝐷 𝑇𝐸𝐷 𝑇𝐷𝐷

] = [

𝑇11 𝑇12 𝑇13

𝑇21 𝑇22 𝑇23

𝑇31 𝑇32 𝑇33

] (3.14)

51

However, the ENU tensor, which is also right handed, would be represented as:

𝑻 = [

𝑇𝐸𝐸 𝑇𝑁𝐸 𝑇𝐸𝑈

𝑇𝑁𝐸 𝑇𝑁𝑁 𝑇𝑁𝑈

𝑇𝐸𝑈 𝑇𝑁𝑈 𝑇𝑈𝑈

] = [

𝑇22 𝑇21 −𝑇23

𝑇12 𝑇11 −𝑇13

−𝑇32 −𝑇31 𝑇33

] (3.15)

The END convention, which is a left handed convention, is:

𝑻 = [

𝑇𝐸𝐸 𝑇𝑁𝐸 𝑇𝐸𝐷

𝑇𝑁𝐸 𝑇𝑁𝑁 𝑇𝑁𝐷

𝑇𝐸𝐷 𝑇𝑁𝐷 𝑇𝐷𝐷

] = [

𝑇22 𝑇21 𝑇23

𝑇21 𝑇11 𝑇13

𝑇32 𝑇31 𝑇33

] (3.16)

Note that the numerical subscripts show the relation between the tensors, where 𝑁 =

1, 𝐸 = 2 and 𝑈 or 𝐷 = 3 Notice that signs only swap between Up and Down when

changing between left and right handed systems. Thus, care should be taken to

understand the axis convention when examining tensor data.

Conversion between the two systems (NED and ENU) can be achieved by using the

following rotation matrix:

𝑹 = [

0 1 0
1 0 0
0 0 −1

] (3.17)

And applying it in the following way:

 𝑻′ = 𝑹𝑻𝑻𝑹 (3.18)

where 𝑻′ is a new tensor matrix transformed from the old tensor matrix 𝑻

The specification of axis convention is also important when reporting eigenvalue and

eigenvector data derived from tensor data. The eigenvalues represent amplitudes and the

eigenvector represents rotations or phase. Although eigenvalues will be the same, the

eigenvectors will differ for different conventions.

In tensor notation, a NED set of eigenvectors may be represented as:

52

𝒗 = [

𝑣11 𝑣21 𝑣31

𝑣12 𝑣22 𝑣32

𝑣13 𝑣23 𝑣33

] (3.19)

However, the relation from this to ENU eigenvectors would be represented as:

𝒗 = [

−𝑣12 𝑣22 𝑣32

−𝑣11 𝑣21 𝑣31

−𝑣13 𝑣23 𝑣33

]
(3.20)

The relation to the END convention is:

𝒗 = [

𝑣12 𝑣22 𝑣32

𝑣11 𝑣21 𝑣31

𝑣13 −𝑣23 −𝑣33

]
(3.21)

53

3.3 Tensor Acquisition

Although tensor gradiometry is still in its infancy, Stolz et al. (2006) give a good brief

overview as to its history. They report that the first proposals for an airborne magnetic

gradiometer system was made by Fromm in 1952. Subsequent to this, Morris and

Pedersen achieved this in 1961 with two rigidly connected fluxgates. The challenge in this

method is in keeping the sensor axes parallel as well as eliminating airborne noise.

Since then, much effort has been made to improve on this original design, culminating in

improved gradiometers based on superconducting quantum interference devices

(SQUIDs) cooled with liquid nitrogen (high temperature superconductor, 77 Kelvin) or

liquid helium (low temperature superconductor, 4.2 Kelvin). These devices have low

intrinsic noise and are extremely sensitive detectors of magnetic field components

(Clarke and Braginski, 2004), and gradient tensor components when appropriately

configured.

Different configurations of SQUID magnetometers have been developed over the years.

Schmidt et al., (2004) describe a system developed by the CSIRO called GETMAG.

Keene, Humphrey and Horton (2005) describe a system using four individual SQUID

magnetometers. Stolz et al. (2006) report that the development of an airborne Full Tensor

Magnetic Gradiometry (FTMG) SQUID system by the Institute of Photonic Technology

(IPHT) began in 1997, and was named JeSSY STAR. It measures both the magnetic field

vector and the gradient tensor. No scalar magnetometer is assembled to measure the

TMI directly (Schiffler et al., 2017). Obtaining TMI for JeSSY STAR is described in

Schiffler et al. (2014).

3.3.1 Hardware design

Tensor gradiometer systems typically consist of a series of magnetic gradiometer

systems arranged in some configuration. Eschner and Ludwig (1995) filed a patent for a

system using planar gradiometers and this has been referenced by both Stolz et al.

(2015); and Billings (2012). A more complete description of the hardware design can be

obtained from Billings (2012), however it is worth describing the tensor sensor

configuration to better understand processing later.

A series of six planar gradiometers as well as three orthogonal magnetometers are

arranged in a pyramidal structure, to enable the determination of the full magnetic tensor

gradient (Figure 24).

54

Figure 24 The orientation of the SQUID magnetometer sensors, from Billings (2012)

The configuration of these gradiometers implies that each gradiometer measures a mix of

the desired tensor components. However, the geometry of the sensors means that these

components can be unmixed. Therefore, the signals measured by gradiometers are not

to be confused with the final tensor components.

This pyramidal sensor configuration is then cooled in a Dewar or vacuum flask, using

liquid nitrogen. From here, electronics pass the squid signals through to analogue to

digital convertors, and from there to the control computer. The system by Billings (2012)

also had an external fluxgate magnetometer to provide magnetic vector information.

Of equal importance is an IMU (inertial measurement unit) which consists of three

orthogonally oriented gyroscopes and three accelerometers, and a differential GPS

receiver. Both the IMU and the GPS are used to correct for the attitude of the instrument.

55

The GETMAG system is SQUID based system designed by the CSIRO meant for use on

the ground. Its principle is slightly different in that it is based on the concept of three

rotating axial gradiometers in an umbrella configuration (Schmidt et al., 2004). The initial

prototype of this system used one axial gradiometer, which could be manually rotated

about a z’-axis (an axis oriented at 45 degrees with respect to the horizon) through eight

discrete fixed positions spaced 45 degrees apart. The system can be moved through 120

degree increments around the vertical z-axis. (Figure 25)

Figure 25 A single axial gradiometer from the GETMAG system, from Schmidt et al., (2004)

This system operates in liquid nitrogen at 77 K. The axial gradiometer measures the first

derivative of the magnetic field and consists of a directly coupled SQUID magnetometer,

a superconducting flux transformer and a superconducting shield. These components are

fixed to the base of a radio-frequency shielded Dewar flask. Electronics are connected to

this for the purpose of collecting and filtering the data.

56

3.3.2 Practical survey issues

Schiffler et al. (2017) report that SQUID recordings are strongly corrupted by motion

noise due to the permanent rotation of the sensor during operation while in flight. Noise

removal from the magnetic field vector (𝐵𝑥, 𝐵𝑦 , 𝐵𝑧) cannot be done simply by geo-

referencing since the attitude data delivered by inertial measurement units (IMUs) is of

insufficient quality. However, the quality is adequate for the tensor measurements.

Therefore, the vector can be either calculated from the tensor, or the TMI.

One problem of this instrument is the superposition of the components of the magnetic

field over the measured gradient components. This effect has been regarded as a

parasitic effect (Schiffler et al., 2017) that arises due to fabrication limitations of the

sensors. To discriminate these parasitic signals from the desired gradient component, the

components of the magnetic field is also measured by three highly sensitive reference

magnetometers. The purpose of these magnetometers is only to compensate for the

parasitic field, and Schiffler et al. (2017) report that for their system they have an intrinsic

noise of 7 pT/Hz1/2 with a dynamic range of ± 100 μT. The digitized magnetic field has an

accuracy of ± 12 pT.

In reality the main part of the noise is due to the imperfect rotation of the magnetic field

vector and the magnetic gradient tensor quantities into a local coordinate frame (Schiffler

et al., 2017). Correction of this noise is achieved via the IMU and a differential GPS

receiver. This IMU and GPS data is used for geo-referencing, spatial orientation and

rotation of the body-frame data.

The attitude is represented by means of Euler angles. Schiffler et al. (2017) mention that

their IMU provided an accuracy of ±1°𝑅𝑀𝑆 for the roll and pitch angles and ±10°𝑅𝑀𝑆 for

the heading angle (yaw). Roll, pitch and yaw will be discussed in section 3.4.4

3.4 Tensor Processing

Tensor processing is described by Argast et al. (2010), Schiffler et al. (2014) and Schiffler

et al. (2017), as applied to the JeSSY STAR system. The steps to be followed will be

described in sequence in this section.

3.4.1 Balancing of gradiometers

Argast et al. (2010) and later Schiffler et al. (2014) describe a calibration technique

(balancing) used to remove the parasitic leakage of the “B” field into the measured mixed

gradients.

57

Balancing of the gradiometers is the process whereby the parasitic magnetic influences

are compensated for. It consists of the measured gradient component, the parasitic

influence and a frequency dependent term originated by eddy currents. The eddy

currents can be ignored in the JeSSY STAR system due to electronic design and attitude

changes at frequencies below 10 Hz. The measured (corrupted) signal 𝑔𝑘 is given by

(Schiffler et al., 2017):

𝑔𝑘 = ∆𝐺𝑘 + (�̃�𝑘 + ∑ 𝛼𝑖𝑘𝐵𝑖

𝑖=𝑥,𝑦,𝑧

) (3.22)

where ∆𝐺𝑘 is the uncorrupted gradiometer signal, �̃�𝑘 is the gradiometer offset, 𝐵𝑖 is the

field component in the direction 𝑖 = (𝑥, 𝑦, 𝑧) and 𝛼𝑖𝑘 represents the size of the three

orthogonal parasitic areas, with 𝑘 = {1, … , 6}.The 𝛼𝑖𝑘 (balancing coefficients) are

estimated by minimising the variance of ∆𝐺𝑘 using points where the magnetic gradient

are zero and no regional long wavelength gradient components are present. Argast et al.

(2010) state that the balancing coefficients are then averaged over all lines flown in the

same direction and are used to remove the parasitic B field from the measured mixed

gradients.

The remaining noise in the magnetic gradient tensor is due to the estimates being flawed

with standard errors in the least squares sense.

3.4.2 Calibration of reference magnetometers

Reference magnetometer calibration converts raw readings into magnetic field values. It

uses three misalignments, three sensitivities and three arbitrary offsets, described by

(Schiffler et al., 2017):

 𝑭 = 𝑺𝑫𝒅𝒊𝒔𝒕𝑩 + 𝑶 (3.23)

where 𝑭 = (𝐹𝑥, 𝐹𝑦 , 𝐹𝑧)
𝑇
 is the raw measurement data, 𝑩 = (𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧)

𝑇
 is the magnetic

field, 𝑺 is the sensitivity matrix, 𝑫𝒅𝒊𝒔𝒕 is the distortion matrix and 𝑶 = (𝑂𝑥 , 𝑂𝑦 , 𝑂𝑧)
𝑇
 is the

vector of the three offsets (SQUID magnetometers generally have unknown offsets). The

distortion matrix is the transformation matrix between the ideal coordinate systems and

the non-orthogonal sensor system and contains the misalignments. A minimisation

routine is used to solve for all this in order to achieve calibration.

58

3.4.3 Decomposition of signals

Signals are decomposed into balanced gradiometer signals using the sensor head and

gradiometer mounting geometry. Billings (2012) describe this process applied to the

pyramidal tensor sensor design. The six gradiometer outputs corresponding to the six

pyramid faces are linear combinations of the gradient tensor in the instrument frame.

Therefore, from each face, the calibrated gradiometer outputs 𝐵𝑥𝑘
′ 𝑧𝑘

′ are obtained, with the

faces designated by 𝑘 = 1,… ,6. This can be described by:

 𝑮′ = [𝐵𝑥1
′𝑧1

′ , … , 𝐵𝑥6
′𝑧6

′] = 𝑴[𝐵𝑥𝑥 , 𝐵𝑥𝑦 , 𝐵𝑥𝑧 , 𝐵𝑦𝑦 , 𝐵𝑧𝑧] (3.24)

The equation for 𝐵𝑥𝑘
′ 𝑧𝑘

′ is given by (Billings, 2012):

𝐵𝑥𝑘

′ 𝑧𝑘
′ =

1

2
(𝐵𝑥𝑥(1 + cos2 𝜓𝑘) + 𝐵𝑦𝑦(1 + sin2 𝜓𝑘)) sin 2𝜑

+
1

2
sin 2𝜑 sin 2𝜓𝑘 𝐵𝑥𝑦

+ cos 2𝜑 cos𝜓𝑘𝐵𝑥𝑧 + cos 2𝜑 sin 𝜓𝑘 𝐵𝑦𝑧

(3.25)

where 𝜓𝑘 denotes the horizontal orientation of the gradiometer on the hexagonal sensor

frame (see Figure 24) and 𝜑 denotes the slope of the hexagonal pyramid side on which

the sensor is mounted. The six equations resulting from equation (3.25) are then inverted

to obtain a least squares best fit. This process assumes that the applied gradient is

uniform. The challenge with this process is that the rank of the matrix being inverted must

be high enough for the inversion to succeed.

3.4.4 Rotation and Euler Angles

Euler angles (Rossberg, 1983, pp.228–230; Diebel, 2006) are three angles used to

describe the orientation of a rigid body (sensor or aircraft in this case) with respect to a

fixed coordinate system. Any orientation can be achieved by three rotations about the

axis of a coordinate system. As an example, assume that the axes of the original frame is

defined as (𝑥, 𝑦, 𝑧) and the rotated frame as (𝑥′, 𝑦′, 𝑧′). The rotations work as follows

(Figure 26):

1) The first rotation is by an angle 𝜓 about the 𝑧 axis, creating a new axis

(𝑥′′′, 𝑦′′′, 𝑧′′′).

2) The second rotation is by an angle 𝜃 about the 𝑥′′′ axis, creating a new axis

(𝑥′′, 𝑦′′, 𝑧′′) .

59

3) The third rotation is by an angle 𝜙 around the 𝑧′′ getting to final axis (𝑥′, 𝑦′, 𝑧′).

This particular Euler convention is known as the z-x-z convention, since the rotations take

place around those axes. In reality there are six possible conventions for proper Euler

angles.

Figure 26 Proper Euler angles where (𝒙, 𝒚, 𝒛) is shown in blue and (𝒙′′′ , 𝒚′′′, 𝒛′′′) is shown in

red. (𝒙′′, 𝒚′′, 𝒛′′) is shown in green and the final position (𝒙′, 𝒚′, 𝒛′) is shown in black. (Diebel,
2006)

Euler angles are used to define, and correct for, the attitude of the sensor. The three

angles relate to various combinations (depending on which Euler scheme is being

applied) of the roll, pitch and yaw of an aircraft. Roll is the rotation about an axis running

from nose to tail of the aircraft. Pitch is nose up or down about an axis running from wing

to wing (picture climbing or descending). Yaw, nose left or right about an axis running up

and down and in the plane defined by the aircraft body and its wings.

60

Tait-Bryan angles are another form of Euler angle. They are the convention normally

used in aerospace applications, which the main difference between them and proper

Euler angles being that the Tait-Bryan angles represent rotations about three distinct

axes (i.e. x-y-z as opposed to z-x-z). As a consequence, in this case Roll, Pitch and Yaw

will represent the three angles. There are also 6 conventions for this type of angle.

The attitude of the instrument as measured by the IMU is represented by Euler angles

These angles are necessary to take the five independent magnetic tensor components

from the body frame (aircraft) to the local frame (map). Schiffler et al. (2017) use the NED

reference frame and give the equation as:

 𝑮𝑁𝐸𝐷 = (𝑫𝑁𝐸𝐷
𝑏)𝑇𝑮𝑏𝑫𝑁𝐸𝐷

𝑏 (3.26)

where 𝑫𝑁𝐸𝐷
𝑏 is a rotation matrix which represents the attitude of the system during mobile

operation, and takes into account roll, pitch and yaw, as defined by Euler angles. 𝑮𝑁𝐸𝐷

and 𝑮𝑏 are the gradient components in the local frame and body frame respectively. If

𝛼, 𝛽, 𝛾 are the roll, pitch and yaw angles, then 𝑫𝑁𝐸𝐷
𝑏 is defined as (Cai, Chen and Lee,

2011, p.33):

 𝑫𝑁𝐸𝐷
𝑏

= (

cos 𝛽 cos 𝛾 cos 𝛽 sin 𝛾 − sin 𝛽
sin 𝛼 sin 𝛽 cos 𝛾 − cos 𝛼 sin 𝛾 sin 𝛼 sin 𝛽 sin 𝛾 + cos𝛼 cos 𝛾 sin 𝛼 cos 𝛽
cos 𝛼 sin 𝛽 cos 𝛾 + sin 𝛼 sin 𝛾 cos 𝛼 sin 𝛽 sin 𝛾 − sin 𝛼 cos 𝛾 cos 𝛼 cos 𝛽

)
(3.27)

3.4.5 Levelling and the Tensor Mean

The concept of a tensor mean is used in the levelling of airborne acquired tensor data

and is achieved by means of a variation of a heading correction (FitzGerald et al., 2009).

The calculation of the tensor mean must be discussed since it is not a simple averaging

of tensor components. Rather, it must take into account both the amplitude and phase

aspects of the tensor (FitzGerald et al., 2009) in order to preserve the intrinsic properties

of the tensor (for example the Laplace condition). One way to do so is to convert the raw

tensor to its amplitude and phase formulation first. The arithmetic mean can be used for

the eigenvalues, but finding the mean of the eigenvector component requires the use of

Fisher statistics (Fisher, 1953). To do so, the average rotational (eigenvector) part is

determined by gathering the associated directional cosine terms. The following is the

process followed:

1) Each rotation matrix is represented in terms of its associated direction cosines

61

2) Each of the direction cosine terms are squared and added, to give the square of

the resultant vector. The resultant direction cosines are calculated from this.

3) The average inclination, declination and angular dispersion are then estimated

from the resultant direction cosines.

Once the average tensor is calculated along flight lines and tie lines, this heading

correction can be applied. Further levelling can be achieved using the standard loop

closure technique (Green, 1983), minimising the Frobenius Norm of the delta misclosure

tensor at each crossover point. The Frobenius Norm is a matrix norm defined as the

square root of the sum of the absolute squares of its (in this case delta misclosure tensor)

elements. FitzGerald et al. (2009) reported good results using this approach.

Noise on the tensor magnetometers, which includes so-called ‘flux jumps’ needs to be

detected and removed during the processing (FitzGerald et al., 2009).

3.4.6 Gridding

The processing of data has also been well described by FitzGerald et al. (2009). The full

tensor gradients are decomposed into a structural and a rotational part. Each Full Tensor

Gradiometry (FTG) reading is decomposed using principal component analysis into the

invariant eigenvalue amplitudes and orthogonal rotation matrix with associated

eigenvectors local to the survey reference frame. This rotation represents the “phase” of

the signal. FitzGerald et al. (2009) use quaternions (Hamilton, 1853) to handle rotations

consistently.

Gridding of tensor data must be done in such a way as to ensure that the Laplace

condition (see section 3.2.2) is preserved. This condition defines how tensor components

derived from scalar potentials relate to each other. Conventional gridding would grid each

tensor component separately, causing a possible breakdown of this condition. To

maintain this condition, FitzGerald et al. (2009) and Fitzgerald and Holstein (2006)

propose the use of spherical linear interpolation (SLERP) and quaternions as a basis for

interpolation of the rotational component of the tensor. Conventional minimum curvature

gridding can then safely be used on the amplitude component of the tensor. There is a

patent granted in most jurisdictions in 2008 on this development. (Ref: Australian Patent

Application No. 2006900346 in the name of Desmond FitzGerald & Associates Pty Ltd

“An improved method of interpolation between a plurality of observed tensors”).

62

3.4.7 Errors and Noise

Noise is a problem for any system design and can come from many sources. One source

is from the instrument itself. A larger source of noise which needs to be corrected, is from

external forms of noise such as the rotation of the sensor while in flight. As an overview, a

number of SQUID sensors published in the literature, and their noise levels, are

discussed.

Errors can be potentially estimated from the high sampling rate of the gradiometer

magnetometers. If the assumption can be made that sources are over sampled, then

there exist redundant measurements from which error estimates can be derived.

A high temperature SQUID tensor gradiometer developed by QinetiQ is aimed at

magnetic anomaly detection (MAD) from a moving platform (Humphrey, Horton and

Keene, 2005; Keene, Humphrey and Horton, 2005). Gradients are calculated by

subtraction of the output of two magnetometers. They reported sensitivities of 80

pT/m/Hz1/2 at 1 Hz and 1 pT/m/Hz1/2 in the white noise region, while undergoing

rotational motions (pitch, roll and yaw) of ±5º. They detected gradient anomalies of ≥

1 nT/m with a 12 dB signal-to noise ratio and measurement bandwidth of 1 kHz.

Billings (2012) reports noise levels for the system developed through SERDP (Strategic

Environmental Research and Development Program) of 2 pT/m/Hz1/2 at 10 Hz, under

laboratory conditions.

The JeSSY STAR gradiometers have a noise level of 70 fT/mHz1/2, and the digitized

signal has a noise level of 200 fT/mHz1/2 (Schiffler et al., 2017). These noise levels are

also under laboratory conditions.

Schiffler et al. (2014) report that Euler angles generated by the IMU used with the JeSSY

STAR system have inaccuracies in the order of 0.1 degrees. This in turn is responsible

for motion noise in the order of 100 nT superimposed on the magnetic vector reference

magnetometers. The noise is primarily due to roll, pitch and yaw.

Schiffler et al. (2017) later report an IMU system which had accuracy levels of ± 1°𝑅𝑀𝑆 for

roll and pitch, and ± 10°𝑅𝑀𝑆 for yaw (RMS is short for root mean square, which is a

measure of signal standard deviation). This shows the challenge in IMU systems

maintaining high accuracy levels.

To demonstrate the impact that these accuracy levels have on the data, equation (3.27)

is used and is applied to the following equation (Schiffler et al., 2014):

63

 𝑩𝑟𝑒𝑓,𝑏 = 𝑫𝑁𝐸𝐷
𝑏 ∙ 𝑩𝑟𝑒𝑓 (3.28)

Here, 𝑫𝑁𝐸𝐷
𝑏 is equation (3.27), 𝑩𝑟𝑒𝑓 is the reference field vector and 𝑩𝑟𝑒𝑓,𝑏 are the values

rotated into the body frame. To investigate this, we can define various IMU resolutions

between 0 and 2 degrees. This can be simulated by calculating a corresponding rotation

of the field vector. The difference between the rotated field and the original field would be

an estimate of instrument error due to rotation (since a resolution of 1 degree does not

imply an error of 1 degree, only that the maximum error could be up to 1 degree). The

error is therefore defined as Error = Bref,b − Bref.

In this case, the field components over a body with susceptibility 0.1 SI were calculated.

The magnetic inclination was -62 degrees, the magnetic declination was -16 degrees and

the body was 20 metres below the surface of the earth. The ambient field was set to

28,000 nT. As a result, the magnetic field vector was calculated to be 𝑩𝑟𝑒𝑓 = (93.6, 264.8,

−921.1). Roll, pitch and yaw values are varied between 0 degrees and 2 degrees to see

the effect on the data. The results are shown in Figure 27.

64

Figure 27 Estimated errors due to changes in roll, pitch and yaw, with 𝑩𝒙, 𝑩𝒚, 𝑩𝒛 errors show

in red, green and blue respectively. (a) shows the change in field when only roll is varied. (b)
shows the change when only pitch is varied. (c) shows the changed when yaw is varied. (d)
is the combination of all the changes.

As can be seen, errors can be as high as 40 nT for a roll, pitch and yaw equalling 2

degrees. It must be noted as well that this simulation is for a susceptibility of 0.1 SI. The

errors will scale linearly with increases and decreases in susceptibility. Therefore, over a

highly magnetic terrain, it is possible to have errors an order of magnitude or higher.

Noise of this form is especially devastating if not corrected appropriately. It creates

severe corrugations on the data, making the data very difficult to interpret. Schiffler et al.

(2017) have gone further in trying to deal with this, where they propose using Hilbert-like

transforms on raw measurement data in order to obtain high quality gradient tensor and

field vector quantities.

(a)

(c) (d)

(b)

65

3.4.8 Grid denoising

Grid de-noising of tensor components can be obtained by making use of a smoothing

convolution kernel based on the work by Pajot et al. (2008). The process takes

advantage of third order tensor relationships such as 𝜕𝑦𝐵𝑥𝑥 = 𝜕𝑥𝐵𝑥𝑦 in a finite-difference

sense, and using this to calculate tensor filters based on minimizing tensor residuals in a

least square sense. FitzGerald et al. (2009) term this process MITRE (Minimising Tensor

Residual Errors).

The tensor noise residual can be measured in a grid with the following function

(Fitzgerald and Paterson, 2013):

𝑁𝑜𝑖𝑠𝑒 = [(

𝜕𝐵𝑥𝑥

𝜕𝑦
−

𝜕𝐵𝑥𝑦

𝜕𝑥
)

2

+ (
𝜕𝐵𝑥𝑦

𝜕𝑦
−

𝜕𝐵𝑦𝑦

𝜕𝑥
)

2

+ (
𝜕𝐵𝑥𝑧

𝜕𝑦
−

𝜕𝐵𝑦𝑧

𝜕𝑥
)

2

] 4∆𝑥∆𝑦

(3.29)

Where ∆𝑥, ∆𝑦 are grid spacing intervals. In central finite differences, this becomes:

 𝑁𝑜𝑖𝑠𝑒 = [(𝐵𝑥𝑥(𝑖, 𝑗 + 1) − 𝐵𝑥𝑥(𝑖, 𝑗 − 1) − 𝐵𝑥𝑦(𝑖 + 1, 𝑗)

− 𝐵𝑥𝑥(𝑖 − 1, 𝑗))
2

+ ⋯]
(3.30)

This can be applied to a smoothing kernel, and FitzGerald et al. (2009) illustrate the

smoothing process with the equation below:

𝐵𝑥𝑥𝑠𝑚𝑜𝑜𝑡ℎ

[3][3] =
1

16
(10𝐵𝑥𝑥[3][3] + 3(𝐵𝑥𝑥[3][1] + 𝐵𝑥𝑥[3][5])

+ 2(𝐵𝑥𝑦[2][4] − 𝐵𝑥𝑦[2][2] + 𝐵𝑥𝑦[4][2]

− 𝐵𝑥𝑦[4][4]) + 2𝐵𝑦𝑦[3][3] − 𝐵𝑦𝑦[5][3]

− 𝐵𝑦𝑦[1][3])

(3.31)

Equation (3.31) is illustrative of a 5x5 smoothing kernel used to calculate𝐵𝑥𝑥𝑠𝑚𝑜𝑜𝑡ℎ
[3][3],

with 𝐵 values being measured values. Values in square brackets denote the relative

position within the kernel. Therefore, [3][3] denotes the centre of the kernel.

66

3.5 Tensor Reduction to the Pole

Reduction to the Pole (RTP) is generally done to create a standard anomaly response set

for magnetic measurements. This has the defining characteristic that the RTP anomalies

delineate bodies well, making for easier interpretation.

Fitzgerald et al. (2009) point out that magnetic tensor data should be reduced to the pole

in order to obtain the best spatial registration for known geological bodies. They mention

that a candidate means of doing RTP on tensor data is available but is largely untested.

Because tensor data obeys Laplace’s equation, it is a true potential field and allows for

continuation and RTP (Schmidt and Clark, 2006). Heath (2007) calculated RTP directly

on tensor components using the standard FFT equation. The process involves

transforming the field data to the Fourier domain and multiplying this new dataset by the

term (𝜃𝑚𝜃𝑓)
−1, where:

𝜃𝑚 = �̂�𝑧 + 𝑖

�̂�𝑥𝑘𝑥 + �̂�𝑦𝑘𝑦

𝑘
 and 𝜃𝑓 = �̂�𝑧 + 𝑖

�̂�𝑥𝑘𝑥 + �̂�𝑦𝑘𝑦

𝑘
 (3.32)

In this case, (�̂�𝑥 , �̂�𝑦 , �̂�𝑧) is a unit vector in the direction of the magnetisation and

(�̂�𝑥, �̂�𝑦 , �̂�𝑧) is a unit vector in the direction of the ambient magnetic field, 𝑖 denotes an

imaginary number, 𝑘 is the wavenumber and (𝑘𝑥 , 𝑘𝑦) are spatial frequencies in the

horizontal direction with 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2
.

RTP cannot be done at low latitudes due to the RTP operator becoming unbounded

along the direction of the magnetic declination. This amplifies noise in this direction

resulting in linear features aligned with the declination dominating the RTP field (Li and

Oldenburg, 2001). However, Clark (2012) points out that gradient tensor measurements

have an advantage over TMI measurements at low latitudes. This is because TMI

measurements are insensitive to vertical and easterly components of the anomalous field.

On a related note, the ZZ component of the magnetic tensor corresponds to the ZZ

component of the RTP version of the magnetic tensor (Munschy and Fleury, 2011; Clark,

2013). Note that with negative inclinations, the ZZ component needs to be multiplied by

negative one for this equivalency to a pole in the northern hemisphere to occur. Similar to

standard RTP, this relationship breaks down the closer the field is to the equator. Figure

28 demonstrates this.

67

Figure 28 Effect of inclination and declination on an anomaly. A rectangular prism was
modelled, with susceptibility 0.1 SI and ambient field of 28,000 nT. Inclinations and
declinations are indicated on the graphs. (a) shows the profile intersecting the body
perpendicular to the declination, and west to east. (b) shows the same anomaly, but now in
the direction of the declination, and therefore north to south Notice the lack of symmetry,

indicating that from this direction, 𝑩𝒛𝒛 is no longer a good approximation for RTP.

Tensor reduction to the pole is potentially a large topic by itself and this section just

touches on some aspects of it. Modelling in this thesis does not make use of it, relying on

the ambient field instead.

68

3.6 Derivation of Tensor Magnetic Field Equations

Equations for use in tensors have been derived by other authors and the methodology is

well understood. Talwani (1965) and Plouff (1976) both make use of volume integrals

which are essentially the gravity tensor equations (3.37) to (3.42) below. Heath (2007)

also derived and studied tensor equations. Holstein (2002) found simple relations, in

tensor form, for the gravity and magnetic anomaly solutions for a uniform polyhedron.

Holstein (2003) derived gravity potential, field and field gradient tensor formulas for a

polyhedral target.

Assume both the model and the observation point reside in a Cartesian coordinate

system. In keeping with geographic conventions, the x-axis is defined to be west to east,

the y-axis to be south to north and the z-axis to be upwards positive (ENU). This was

done in order to easily incorporate terrain data, which follows an ENU convention.

However, to be most compatible with the NED convention for potential fields, the polarity

of the resulting fields will be the same as for NED or END. This allows flexibility in

coordinates while remaining comparable to existing standards.

In the case of a rectangular prism, the source of the potential field extends from x1 to x2,

y1 to y2, z1 to z2 and thus all equations have the following form:

 𝐵 = 𝐵(𝑥, 𝑦, 𝑧)|𝑥1
𝑥2|𝑦1

𝑦2
|
𝑧1

𝑧2

= 𝐵(𝑥2, 𝑦2 , 𝑧2) − 𝐵(𝑥1, 𝑦2 , 𝑧2) − 𝐵(𝑥2, 𝑦1 , 𝑧2) + 𝐵(𝑥1, 𝑦1, 𝑧2)
− 𝐵(𝑥2, 𝑦2 , 𝑧1) + 𝐵(𝑥1, 𝑦2 , 𝑧1) + 𝐵(𝑥2, 𝑦1, 𝑧1)
− 𝐵(𝑥1, 𝑦1, 𝑧1)

(3.33)

To simplify the notation, only the 𝐵(𝑥, 𝑦, 𝑧) term is given below for 𝐵 (magnetic field) and

𝑔 (gravity field), with the entirety of (3.33) being implied.

Since magnetic relations can be derived through Poisson’s relationship with the gravity

equations, the gravity equations derived by Talwani (1965) and Plouff (1976) are

presented first. Note equation derivations are normally presented in NED convention, but

in this case all derivations have been corrected for standard coordinate systems for 3D

models in the ENU convention– i.e. x positive eastwards, y positive northwards and z

negative downwards. This is for convenience in modelling and to give an alternate

derivation (although the differences truly are minor).

 𝑔𝑥 = 𝐺𝜌 [−𝑥 tan−1 (
𝑦𝑧

𝑥𝑟
) − 𝑦 log(𝑟 − 𝑧) − 𝑧 log(𝑟 − 𝑦)] (3.34)

69

 𝑔𝑦 = 𝐺𝜌 [𝑦 tan−1 (
𝑥𝑧

𝑦𝑟
) + 𝑥 log(𝑟 − 𝑧) − 𝑧 log(𝑥 + 𝑟)] (3.35)

 𝑔𝑧 = 𝐺𝜌 [𝑧 ∗ tan−1 (
𝑦𝑥

𝑧𝑟
) + 𝑥 log(𝑟 − 𝑦) − 𝑦 log(𝑥 + 𝑟)] (3.36)

 𝑔𝑥𝑥 = 𝐺𝜌 [− tan−1 (
𝑦𝑧

𝑥𝑟
)] (3.37)

 𝑔𝑦𝑦 = 𝐺𝜌 [− tan−1 (
𝑥𝑧

𝑦𝑟
)] (3.38)

 𝑔𝑧𝑧 = 𝐺𝜌 [− tan−1 (
𝑦𝑥

𝑧𝑟
)] (3.39)

 𝑔𝑥𝑦 = 𝐺𝜌[log(𝑟 − 𝑧)] (3.40)

 𝑔𝑦𝑧 = 𝐺𝜌[log(𝑥 + 𝑟)] (3.41)

 𝑔𝑥𝑧 = 𝐺𝜌[log(𝑟 − 𝑦)] (3.42)

where 𝜌 is the density, and 𝐺 = 6.67 ∗ 10−11𝑁𝑚2𝑘𝑔−2 is the gravitational constant. The

distance between the observation point and the source is described by 𝑟.These volume

equations or rank two gravity tensor components are then used in Poisson’s relation to

calculate corresponding magnetic components. Blakely (1995, pp. 91-93) defines it as

follows:

𝐵𝑚 = −

𝐶𝑚

𝐺𝜌
𝑴 ∙ ∇ 𝑼

= −
1

𝜇0𝐺𝜌
 𝑴 ∙ ∇ 𝑼

(3.43)

where 𝑼 is the gravitational potential, 𝑴 is the uniform magnetisation, 𝐶𝑚 = 1/𝜇0, 𝐺 =

6.67 ∗ 10−11 𝑁𝑚2 𝑘𝑔2⁄ , 𝜌 is density in 𝑘𝑔 𝑚3⁄ and 𝜇0 = 4𝜋 ∗ 10−7 𝐻𝑒𝑛𝑟𝑦 𝑚⁄ . Equation

(3.43) can then be written as:

70

𝐵𝑚 = −

𝑘𝐻

𝜇0𝐺𝜌
(𝛼

𝜕

𝜕𝑥
+ 𝛽

𝜕

𝜕𝑦
+ 𝛾

𝜕

𝜕𝑧
) 𝑔𝑚

= −
𝑘𝐻

𝜇0𝐺𝜌
[𝛼𝑔𝑚𝑥 + 𝛽𝑔𝑚𝑦 + 𝛾𝑔𝑚𝑧]

(3.44)

where 𝛼, 𝛽 and 𝛾 are the direction cosines of the induced magnetic field, 𝑘 is

susceptibility, 𝐻 is the magnetic field, measured in A/m and 𝑔𝑚 is the component of

gravity in the direction of magnetisation.

Substituting equations (3.37) to (3.42) into (3.44):

𝐵𝑥 =

𝑘𝐻

𝜇0

[−𝛼 tan−1 (
𝑦𝑧

𝑥𝑟
) + 𝛽 log(𝑟 − 𝑧) + 𝛾 log(𝑟 − 𝑦)] (3.45)

𝐵𝑦 =

𝑘𝐻

𝜇0

[𝛼 log(𝑟 − 𝑧) − 𝛽 tan−1 (
𝑥𝑧

𝑦𝑟
) + 𝛾 log(𝑥 + 𝑟)] (3.46)

𝐵𝑧 =

𝑘𝐻

𝜇0

[𝛼 log(𝑟 − 𝑦) + 𝛾 log(𝑥 + 𝑟) − 𝛾 tan−1 (
𝑦𝑥

𝑧𝑟
)] (3.47)

The final tensor equations are obtained by taking derivatives, with respect to x, y and z, of

(3.45) to (3.47). These are:

𝐵𝑥𝑥 =

𝑘𝐻

𝜇0𝑟
[𝛼

𝑦𝑧(𝑟2 + 𝑥2)

𝑟2𝑥2 + 𝑦2𝑧2
+ 𝛽

𝑥

𝑟 − 𝑧
+ 𝛾

𝑥

𝑟 − 𝑦
] (3.48)

𝐵𝑦𝑦 =

𝑘𝐻

𝜇0𝑟
[−𝛼

𝑦

𝑟 − 𝑧
− 𝛾

𝑦

𝑟 + 𝑥
− 𝛽

𝑥𝑧(𝑟2 + 𝑦2)

𝑟2𝑦2 + 𝑥2𝑧2
] (3.49)

𝐵𝑧𝑧 =

𝑘𝐻

𝜇0𝑟
[−𝛼

𝑧

𝑟 − 𝑦
− 𝛽

𝑧

𝑟 + 𝑥
− 𝛾

𝑥𝑦(𝑟2 + 𝑧2)

𝑟2𝑧2 + 𝑥2𝑦2
] (3.50)

𝐵𝑥𝑦 =

𝑘𝐻

𝜇0𝑟
[𝛼

𝑥𝑧

𝑥2 + 𝑦2
− 𝛽

𝑦

𝑟 − 𝑧
+ 𝛾] (3.51)

71

𝐵𝑦𝑧 =

𝑘𝐻

𝜇0𝑟
[𝛼 + 𝛽

𝑥𝑦

𝑦2 + 𝑧2
− 𝛾

𝑧

𝑟 + 𝑥
] (3.52)

𝐵𝑥𝑧 =

𝑘𝐻

𝜇0𝑟
[𝛼

𝑥𝑦

𝑥2 + 𝑧2
+ 𝛽 − 𝛾

𝑧

𝑟 − 𝑦
] (3.53)

Synthetic tensor data, calculated for a rectangular prism, is shown in Figure 29 and

Figure 30. The magnetic field intensity is 28,000 nT, susceptibility is 0.1 SI, inclination is

45 degrees, declination is 30 degrees. The rectangular prism has a width of 200 m and

height of 280 meters, situated between 20 meters and 300 meters. In this case, 𝐵𝑡𝑚𝑖 is

the total magnetic intensity.

72

Figure 29 Synthetic magnetic tensor calculations for a rectangular prism at inclination 45
degrees, declination 30 degrees. (a) to (c) are the primary components of the field. (d) to (h),
(j) are the tensor components. (i) is the total magnetic intensity.

73

Figure 30 Cross section profiles going west-east through the centre of the rectangular prism
at inclination 45 degrees, declination 30 degrees. (a) to (c) are the primary components of
the field. (d) to (h), (j) are the tensor components. (i) is the total magnetic intensity.

Another synthetic tensor data set, calculated for the same rectangular prism at the pole,

is shown in Figure 31 and Figure 32. The magnetic field intensity is 28,000 nT,

susceptibility is 0.1 SI, inclination is 90 degrees, declination is 0 degrees.

74

Figure 31 Synthetic magnetic tensor calculations for a rectangular prism at inclination 90
degrees, declination 0 degrees. (a) to (c) are the primary components of the field. (d) to
(h), (j) are the tensor components. (i) is the total magnetic intensity.

75

Figure 32 Cross section profiles through the centre of the rectangular prism at inclination 90
degrees, declination 0 degrees. (a) to (c) are the primary components of the field. (d) to
(h), (j) are the tensor components. (i) is the total magnetic intensity.

The symmetry of the TMI anomaly is reflected throughout the new tensor components,

and is especially obvious when comparing 𝐵𝑥𝑥 and 𝐵𝑧𝑧 in Figure 30 to the versions at the

pole in Figure 32.

76

3.6.1 Verifying the equations

Equation verification is an important process when deriving equations. The tensor

equations can be verified by understanding the relationships between these equations.

The Poisson relation can be used to compare datasets between gravity and magnetic

equations and the total magnetic intensity equation can be used to confirm the

component data with regularly calculated data.

The full total magnetic intensity is defined as:

𝐵𝑡𝑚𝑖 = √(𝐵𝑥 + 𝛼𝐵)2 + (𝐵𝑦 + 𝛽𝐵)

2
+ (𝐵𝑧 + 𝛾𝐵)2 − 𝐵 (3.54)

where 𝐵 is the ambient magnetic field, and 𝛼, 𝛽, 𝛾 are the direction cosines. The process

is as follows:

1) Check equations (3.45), (3.46), (3.47) by comparing them with results with

alternate calculations for 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 (for example, as demonstrated by Guptasarma

and Singh, 1999). Figure 33 to Figure 36 show the results of this.

2) Check equations (3.45), (3.46), (3.47) by substituting them into equation (3.50).

The results of this can be compared using results calculated with equation (2.26).

3) Check equations (3.48) to (3.53) by calculating the gradients of (3.45), (3.46),

(3.47) either in the space domain or the frequency domain. Figure 37 to Figure 41

show the results of this. Minor discrepancies will occur because of the

inaccuracies inherent in gradient calculations.

One possible source for error is the calculation of results over nodes or edges of the

rectangular prism (i.e. the line connecting two nodes). In such instances, the tensor

equations will generate division by zero errors. This problem is especially bad when the

observation is also on the surface of the rectangular prism. However, it is easily dealt

with. By ensuring that values are calculated away from the edges of the rectangular

prism, this error is prevented, even if the observation is on the surface of the rectangular

prism. The simplest way to achieve this is to calculate one value per rectangular prism,

with the x and y coordinate of that value being in the centre of the rectangular prism. The

z coordinate will either be 0 (resting on the top of the rectangular prism) or at the

observation height above the rectangular prism. Naturally for this strategy to work, the

number of rectangular prisms must equal the number of observations (assuming equal

spaced observations, which is the case for a grid). Otherwise there will be too few values

calculated to be useful when comparing to observed values.

77

All results confirm the validity of the tensor equations and the accuracy of the

calculations. In the case of point 3 above, it is never necessary to calculate a vertical

derivative. This is because of tensor symmetry. Therefore
𝑑𝐵𝑥

𝑑𝑧
=

𝑑𝐵𝑧

𝑑𝑥
,

𝑑𝐵𝑦

𝑑𝑧
=

𝑑𝐵𝑧

𝑑𝑦
 and

𝑑𝐵𝑧

𝑑𝑧
=

 −
𝑑𝐵𝑥

𝑑𝑥
−

𝑑𝐵𝑦

𝑑𝑦
. This simplifies the tests by confining them to horizontal derivatives.

Figure 33 Comparison between tensor and conventional calculations for 𝑩𝒕𝒎𝒊. The source is
a rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface.
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and
declination is 30 degrees.

78

Figure 34 Comparison between tensor and conventional calculations for 𝑩𝒙. The source is a
rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface.
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and
declination is 30 degrees.

Figure 35 Comparison between tensor and conventional calculations for 𝑩𝒚. The source is a

rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface.
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and
declination is 30 degrees.

79

Figure 36 Comparison between tensor and conventional calculations for 𝑩𝒛. The source is a
rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface.
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and
declination is 30 degrees.

Figure 37 Comparison between tensor and conventional calculations for 𝑩𝒙𝒙. The source is a
rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface.
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and
declination is 30 degrees.

80

Figure 38 Comparison between tensor and conventional calculations for 𝑩𝒙𝒚. The source is a

rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface.
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and
declination is 30 degrees.

Figure 39 Comparison between tensor and conventional calculations for 𝑩𝒚𝒚. The source is a

rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface.
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and
declination is 30 degrees.

81

Figure 40 Comparison between tensor and conventional calculations for 𝑩𝒚𝒛. The source is a

rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface.
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and
declination is 30 degrees.

Figure 41 Comparison between tensor and conventional calculations for 𝑩𝒙𝒛. The source is a
rectangular prism with dimension 100x100x280 cubic metres, 20 metres below the surface.
The ambient field is 28,000 nT, susceptibility is 0.1 SI, Inclination is 45 degrees and
declination is 30 degrees.

82

3.7 Tensor Interpretation overview

The interpretation of tensor components has more potential than conventional total

magnetic field interpretation, due to the variety of information which is presented through

the tensor measurements. It can, of course, be modelled using forward modelling and

inversion. Schmidt and Clark (2006) give an overview of the characteristics of the tensor

gradient components and derived quantities.

Table 1 Interpretation of tensor components and invariants, from Schmidt and Clark (2006)

Quantity Interpretation Comments

𝐵𝑥𝑥 E-W boundary delineation symmetric anomaly for vertical
magnetization, antisymmetric for
horizontal magnetization

𝐵𝑦𝑦 N-S boundary delineation symmetric anomaly for vertical
magnetization, antisymmetric for
horizontal magnetization

𝐵𝑥𝑦 Body corner delineation anomaly signs depend on
magnetization direction

𝐵𝑧𝑧 Delineates steep boundaries
preferentially

symmetric anomaly for vertical
magnetization; antisymmetric for
horizontal magnetization

𝐵𝑥𝑧 E-W boundary delineation antisymmetric anomaly for
vertical magnetization; symmetric
for N-S horizontal magnetization

𝐵𝑦𝑧 N-S boundary delineation antisymmetric anomaly for
vertical magnetization; symmetric
for E-W horizontal magnetization

𝐼1 Resolves source boundaries better resolving power than
analytic signal

𝐼2 Preferentially resolves shallower
features of complex sources.

Due to faster falloff with distance.

𝐼1 and 𝐼2 are invariants as described in equations (3.10) and (3.11) in section 3.2.3. The

normalised source strength (NSS) (Clark, 2012; Beiki et al., 2012) shown in equation

(3.13) is another tensor invariant which demonstrates the potential of tensor

interpretation. It is proportional to the magnitude of the dipole moment, while being

independent of the magnetisation direction. The 2D version of this is equal to the total

gradient, or the analytic signal amplitude of either the vertical field component 𝐵𝑧 or the

strike perpendicular horizontal component 𝐵𝑥. The 2D version is also independent of

magnetization direction. Clark (2014) made use of the normalised source strength in

conjunction with Helbig analysis (a method to estimate the vector components of the total

magnetisation) to determine locations of sources, their depths and magnitudes of

magnetic moments.

83

Both the NSS and tensor components have been used to determine source location

through Euler deconvolution (Beiki et al., 2012; Schmidt et al., 2004). Tensor and NSS

versions of Euler deconvolution give better estimates than standard Euler deconvolution

when anomalies from causative bodies are distorted by horizontally neighbouring

sources. Since the tensor Euler deconvolution is applied to all the measured tensor

components, it effectively takes advantage of the curvature information inherent in the

measurement, thereby improving source detection. If the conventional Euler equation for

TMI data is:

𝑥

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
+ 𝑦

𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
+ 𝑧

𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
= −𝑛𝐵𝑡𝑚𝑖 (3.55)

where 𝐵𝑡𝑚𝑖 is the anomalous field, then the tensor version is expressed as:

[

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑦𝑥 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑧𝑥 𝐵𝑧𝑦 𝐵𝑧𝑧

] [

𝑥 − 𝑥0

𝑦 − 𝑦0

𝑧 − 𝑧0

] = −𝑛 [

𝐵𝑥

𝐵𝑦

𝐵𝑧

] (3.56)

Where 𝑥0, 𝑦0 , 𝑧0 is an arbitrary origin and 𝑛 is the structural index or attenuation rate,

which varies typically between 1 and 4 depending on the source type (but can be higher).

84

3.8 Application to voxel forward modelling

The tensor equations are directly applicable to the voxel based modelling developed in

section 2.3.2. To demonstrate the effectiveness of this, a simple model of a dyke and a

step has been created. The magnetic field is 28,000 nT, with inclination -62 degrees and

declination -16 degrees. The height of observation is 0 metres, and the susceptibility is

0.1 (SI units).

Figure 42 and Figure 43 show 2D and 3D views of the synthetic model, while Figure 44

and Figure 45 show the responses of the profile shown in Figure 42, both for the

conventional magnetic components and the tensor components. The 2D profile shown

runs from west to east. Since both the dyke and the step are north-south in orientation, it

is expected that the largest anomalies with come in the x direction (for ENU convention)

and z direction or combinations thereof. This is indeed the case, with the dominant

anomalies being 𝐵𝑥 , 𝐵𝑧 , 𝐵𝑥𝑥 , 𝐵𝑥𝑧 in Figure 44 and Figure 45. The anomaly shape is sharper

over the dyke than over the step, as is to be expected. The amplitude is also smaller,

which is expected since they share the same susceptibility.

The test therefore shows that the voxel based modelling can be successfully applied to

tensors.

Figure 42 Profile of 𝑩𝒕𝒎𝒊 of demonstration model, running from west to east.

85

Figure 43 3D view of demonstration model. All coordinates are in metres

86

Figure 44 Field Component results for model. (a) to (d) are Btmi, Bx, By and Bz respectively.

87

Figure 45 Tensor component results for model.

88

CHAPTER 4 SOURCE DISTANCE CALCULATIONS

4.1 Introduction

Calculating the distance to a buried source of a magnetic or gravity anomaly has been

examined throughout the last century. Of particular interest is the work of Nabighian

(1972), who realised that potential fields were analytic in nature and could be described in

terms of a so called analytic signal amplitude, and Thompson (1982) who used Euler

deconvolution to solve source distances for a variety of sources. Hsu, Coppens and Shyu

(1998) calculated depths to magnetic sources using the analytic signal. More recently

(Ma and Du, 2012; Cooper, 2014a, 2014b, 2015; Cooper and Whitehead, 2016) utilized

various orders of the analytic signal to calculate source distance parameters. Although

there has been work with tensor data (Zhang et al., 2000), the application of tensor data

to improving source distance techniques has yet to be fully explored and is therefore an

important focus of this thesis. The direct application of tensor data to source distance

techniques is not the only objective, but also the development of analogous versions of

source distance equations using tensor components only.

Although gravity and magnetic data is commonly measured as a single value,

gradiometer (or tensor) data is becoming more common, especially in airborne gravity

surveying. This implies more data is available for modelling.

Tensor datasets are a possible way of overcoming the modelling ambiguity challenges.

Although not as prevalent as the measurement of scalar magnetic and gravity fields, the

measurement of gradiometer data means that for each location nine gradient magnetic or

gravity values are recorded, instead of simply one overall magnitude of the relevant field.

This influx of data presents opportunities for optimizing modelling of data and forms part

of the basis for the new work in this field described in this section. Beiki (2010) used

analytic signals of the gravity tensor to estimate source location. Cevallos (2014) has

used curvatures derived from airborne gravity gradient data to produce 3D models.

Fitzgerald and Holstein (2016) used gravity gradiometry inversion to optimise the surface

mapping of elongated geological features. In the case of magnetic tensors, the

normalised source strength and its vector gradient has been used to determine source

locations for compact sources, thin sheets, contacts and other models such as vertical

pipes (Clark, 2012, 2013; Beiki et al., 2012). Schmidt et al., (2004) have used tensor

Euler deconvolution applied to the SQUID based GETMAG system.

This section will examine source distance techniques relating to the analytic signal and

the application of tensor data to this. The original versions of these techniques used TMI

89

(Total Magnetic Intensity) data and the analytic signal from TMI data only, but new work

developed includes the derivation and testing of analogous versions of these source

distance methods using tensor components and tensor versions of the analytic signal.

This has been published in Cole and Cooper (2018).

At this point it is worth discussing homogeneity versus heterogeneity with respect to

modelling. Homogeneity assumes that a model, or body, is uniform in composition with

respect to a characteristic of that body, such as susceptibility. In reality, this is not an

accurate assumption to make since the earth is seldom homogenous. Heterogeneity

implies non-uniformity in this characteristic. Traditional forward modelling is an example

of homogeneity since each body being modelled has constant physical properties. This is

not always the case, and Holstein (2003) derived gravity and magnetic formulas for

media where, for example, density and magnetisation are varying linearly. Inversion

applied to voxels (as described in the next section) is also an example of heterogeneity

since each voxel can have a slightly different value for the characteristic it describes.

Source distance techniques are interesting in this respect in that for a single value,

homogeneity is assumed (i.e. if we are calculating the distance to a dyke, the dyke is

assumed to have constant susceptibility). However, when applied over observations

covering an area, the variety of depths and susceptibilities determined by the source

distance technique (as will be seen in CHAPTER 6) shows a more heterogeneous set of

solutions and hints at perhaps a hybrid between homogenous techniques and

heterogeneous techniques.

90

4.2 Inverse Modelling

As mentioned in section 2.3.8, inverse modelling can be thought of as the inverse of the

forward problem, in that instead of postulating model parameters to calculate data, data is

used to calculate the model parameters directly. A solution to an inverse problem is

obtained by estimating some model, and testing predicted data against observed data

using misfit and mathematical acceptability criteria. If these two criteria are unacceptable,

the model is adjusted until the two criteria are satisfied. Predicted data can be calculated

using forward modelling applied to the model. Upon final generation of the model, it must

still be examined to see whether it makes geological sense. If not, the method for

generating the model may have to be changed. There are several approaches to

inversion, including stochastic (for example, Monte Carlo, Genetic Algorithms)

deterministic (for example steepest descent, conjugate gradients) and analytical (Bilayer

in DC resistivity). Many of the different types of inversion applicable to magnetic data can

be found in Nabighian et al. (2005)

In the case of potential fields, the solutions are non-unique. This means that a single

measured anomaly can be described by a shallow, broad anomaly, as well as a deeper

compact anomaly (Johnson and van Klinken, 1979). This implies that some strategy is

required to improve the calculation of the model parameters.

The complexity of the inversion process means that there are two challenges to

overcome:

1) The non-uniqueness of the solution

2) The complexity of the model means that calculations can be prohibitively time

consuming.

There are many different approaches to inversion. Polygonal inversion (where the

modelling body is defined by a series of polygons or polygonal facets) inverts the nodes

of the polygons to adjust for the location of the body, as well the body parameters (such

as susceptibility or density). The one constraint is that the body is generally regarded as

homogenous.

Voxel based inversion does not seek to define a body via nodes, but rather in terms of

the distribution of some physical property (such as density or susceptibility). The resulting

solutions are therefore heterogeneous, since each voxel can have a different solution.

The manner in which the inversion is optimised is defined by some inversion strategy. For

example Barbosa (1994) describes a means to model gravity data using body

compactness as the key model for the inversion.

91

The non-uniqueness of the solution is dealt with in a number of different ways. Firstly, it

can be restricted based on prior information. This can take the form of geological

information (knowing which areas may host magnetic rocks based on geology),

geophysical information (restrictions to ranges of physical properties such as density and

susceptibility) and can also include some logical hypothesis on the nature of the model

(i.e. compactness as mentioned above). The University of British Columbia (UBC) codes

(MAG3D, 2017) use compactness as well as depth weighting for their inversion of

magnetic data. Depth weighting is a method used to counteract the natural decay in

magnetic data (Li and Oldenburg, 1996). Without this, most solutions will be concentrated

close to the observations. Accurate knowledge of the topography is also vital to obtaining

meaningful solutions.

Adjusting model constraints can be an effective method to overcome point 1. However,

for point 2, the time consuming nature of inversion means that in three dimensions,

iteratively correcting mistakes is not always a realistic solution. To illustrate this, assume

we have a grid at the surface of the earth of 100 by 100 observations. If our model has

100 layers, without some suitable optimisation strategy, the forward modelling alone

would imply that the 1 000 000 voxels equates to 10 000 000 000 calculations. One way

to deal with this is by increasing the layer thickness with increasing depth, thereby

reducing the number of layers necessary.

Source detection techniques fall into a sub category of inverse techniques known as

depth to source estimation techniques (Nabighian et al., 2005). This category includes

Werner deconvolution, the Naudy method, Euler deconvolution and the analytic signal, to

name a few. It seeks to overcome the non-uniqueness and time efficiency challenges by

simplifying the problem and avoiding the need to iteratively change a model in order to

generate an optimal solution. This is generally achieved by limiting the number of model

geometries, or sources, and by targeting simpler parameters, such as depth to source

instead of the full geometrical description of the model.

92

4.3 Total Magnetic Intensity Derivative Calculations

The total magnetic intensity and its derivatives are used in source distance and tensor

calculations. Since there is more than one version of calculating the total magnetic

intensity and its derivatives, both are covered here.

4.3.1 Approximate Total Magnetic Intensity

As mentioned in section 2.2.6, the approximate total magnetic intensity is defined as:

 𝐵𝑡𝑚𝑖 = 𝛼 ∙ 𝐵𝑥 + 𝛽 ∙ 𝐵𝑦 + 𝛾 ∙ 𝐵𝑧 (4.1)

where 𝐵𝑥 , 𝐵𝑦 and 𝐵𝑧 are defined to be three components of a magnetic field 𝑩, and 𝛼, 𝛽, 𝛾

are defined to be the direction cosines relating to the direction of the magnetic field.

The tensor for a magnetic field is given by:

𝑩 =

[

𝜕𝐵𝑥

𝜕𝑥

𝜕𝐵𝑥

𝜕𝑦

𝜕𝐵𝑥

𝜕𝑧
𝜕𝐵𝑦

𝜕𝑥

𝜕𝐵𝑦

𝜕𝑦

𝜕𝐵𝑦

𝜕𝑧
𝜕𝐵𝑧

𝜕𝑥

𝜕𝐵𝑧

𝜕𝑦

𝜕𝐵𝑧

𝜕𝑧]

= [

𝐵𝑥𝑥 𝐵𝑥𝑦 𝐵𝑥𝑧

𝐵𝑥𝑦 𝐵𝑦𝑦 𝐵𝑦𝑧

𝐵𝑥𝑧 𝐵𝑦𝑧 𝐵𝑧𝑧

] (4.2)

In tensor notation therefore, the x, y and z derivatives of 𝐵𝑡𝑚𝑖 are:

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
= 𝛼 ∙ 𝐵𝑥𝑥 + 𝛽 ∙ 𝐵𝑦𝑥 + 𝛾 ∙ 𝐵𝑧𝑥 (4.3)

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
= 𝛼 ∙ 𝐵𝑥𝑦 + 𝛽 ∙ 𝐵𝑦𝑦 + 𝛾 ∙ 𝐵𝑧𝑦 (4.4)

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
= 𝛼 ∙ 𝐵𝑥𝑧 + 𝛽 ∙ 𝐵𝑦𝑧 + 𝛾 ∙ 𝐵𝑧𝑧 (4.5)

93

The advantage of these expressions is not only convenience, but also the fact that they

do not require knowledge of either the total magnetic intensity, or the three components

of the magnetic field.

Second derivatives can be easily defined as follows:

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥2
= 𝛼 ∙

𝜕𝐵𝑥𝑥

𝜕𝑥
+ 𝛽 ∙

𝜕𝐵𝑦𝑥

𝜕𝑥
+ 𝛾 ∙

𝜕𝐵𝑧𝑥

𝜕𝑥
 (4.6)

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑥
= 𝛼 ∙

𝜕𝐵𝑥𝑦

𝜕𝑥
+ 𝛽 ∙

𝜕𝐵𝑦𝑦

𝜕𝑥
+ 𝛾 ∙

𝜕𝐵𝑧𝑦

𝜕𝑥
 (4.7)

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑥
= 𝛼 ∙

𝜕𝐵𝑥𝑧

𝜕𝑥
+ 𝛽 ∙

𝜕𝐵𝑦𝑧

𝜕𝑥
+ 𝛾 ∙

𝜕𝐵𝑧𝑧

𝜕𝑥

(4.8)

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦2
= 𝛼 ∙

𝜕𝐵𝑥𝑦

𝜕𝑦
+ 𝛽 ∙

𝜕𝐵𝑦𝑦

𝜕𝑦
+ 𝛾 ∙

𝜕𝐵𝑧𝑦

𝜕𝑦
 (4.9)

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧2
= 𝛼 ∙

𝜕𝐵𝑥𝑧

𝜕𝑧
+ 𝛽 ∙

𝜕𝐵𝑦𝑧

𝜕𝑧
+ 𝛾 ∙

𝜕𝐵𝑧𝑧

𝜕𝑧
 (4.10)

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑦
= 𝛼 ∙

𝜕𝐵𝑥𝑧

𝜕𝑦
+ 𝛽 ∙

𝜕𝐵𝑦𝑧

𝜕𝑦
+ 𝛾 ∙

𝜕𝐵𝑧𝑧

𝜕𝑦
 (4.11)

And remembering that
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑦⁄ =
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑧⁄ ,
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑥⁄ =
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥𝜕𝑦⁄ and

𝜕2𝐵𝑡𝑚𝑖
𝜕𝑧𝜕𝑥

⁄ =
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥𝜕𝑧
⁄ .

4.3.2 Total Magnetic Intensity

As mentioned in section 2.2.6, when anomalies are too strong, then the approximation in

equation (4.1) is no longer accurate and the full measured total field anomaly should be

used. The full total magnetic intensity is defined as:

𝐵𝑡𝑚𝑖 = √(𝐵𝑥 + 𝛼𝐵𝑎)2 + (𝐵𝑦 + 𝛽𝐵𝑎)

2
+ (𝐵𝑧 + 𝛾𝐵𝑎)2 − 𝐵𝑎 (4.12)

94

where 𝐵𝑎 is the ambient magnetic field. The derivatives are:

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
=

𝐵𝑥𝑥(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑥(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑥(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (4.13)

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
=

𝐵𝑥𝑦(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑦(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑦(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (4.14)

 𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
=

𝐵𝑥𝑧(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑧(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑧(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (4.15)

The second derivatives are expressed as:

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥2
=

𝐵𝑥𝑥𝑥𝐷 + 𝐵𝑥𝑦𝑥𝐸 + 𝐵𝑧𝑥𝑥𝐹 + 𝐵𝑥𝑥
2 + 𝐵𝑥𝑦

2 + 𝐵𝑧𝑥
2

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑥𝑥𝐷 + 𝐵𝑥𝑦𝐸 + 𝐵𝑧𝑥𝐹)

2

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)3

(4.16)

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑥

=
𝐵𝑥𝑥𝑦𝐷 + 𝐵𝑥𝑦𝑦𝐸 + 𝐵𝑧𝑥𝑦𝐹 + 𝐵𝑥𝑦𝐵𝑥𝑥 + 𝐵𝑦𝑦𝐵𝑥𝑦 + 𝐵𝑧𝑦𝐵𝑧𝑥

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑥𝑦𝐷 + 𝐵𝑦𝑦𝐸 + 𝐵𝑧𝑦𝐹)(𝐵𝑥𝑥𝐷 + 𝐵𝑥𝑦𝐸 + 𝐵𝑧𝑥𝐹)

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)3

(4.17)

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑥

=
𝐵𝑧𝑥𝑥𝐷 + 𝐵𝑥𝑦𝑧𝐸 + 𝐵𝑧𝑧𝑥𝐹 + 𝐵𝑧𝑥𝐵𝑥𝑥 + 𝐵𝑧𝑦𝐵𝑥𝑦 + 𝐵𝑧𝑧𝐵𝑧𝑥

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑧𝑥𝐷 + 𝐵𝑧𝑦𝐸 + 𝐵𝑧𝑧𝐹)(𝐵𝑥𝑥𝐷 + 𝐵𝑥𝑦𝐸 + 𝐵𝑧𝑥𝐹)

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)3

(4.18)

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦2
=

𝐵𝑥𝑦𝑦𝐷 + 𝐵𝑦𝑦𝑦𝐸 + 𝐵𝑧𝑦𝑦𝐹 + 𝐵𝑥𝑦
2 + 𝐵𝑦𝑦

2 + 𝐵𝑧𝑦
2

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑥𝑦𝐷 + 𝐵𝑦𝑦𝐸 + 𝐵𝑧𝑦𝐹)

2

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)
3

(4.19)

95

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧2
=

𝐵𝑧𝑥𝑧𝐷 + 𝐵𝑧𝑧𝑦𝐸 + 𝐵𝑧𝑧𝑧𝐹 + 𝐵𝑧𝑥
2 + 𝐵𝑧𝑦

2 + 𝐵𝑧𝑧
2

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑧𝑥𝐷 + 𝐵𝑧𝑦𝐸 + 𝐵𝑧𝑧𝐹)

2

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)3

(4.20)

 𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑦

=
𝐵𝑥𝑦𝑧𝐷 + 𝐵𝑧𝑦𝑦𝐸 + 𝐵𝑧𝑧𝑦𝐹 + 𝐵𝑧𝑥𝐵𝑥𝑦 + 𝐵𝑧𝑦𝐵𝑦𝑦 + 𝐵𝑧𝑧𝐵𝑧𝑦

𝐵𝑡𝑚𝑖 + 𝐵𝑎

−
(𝐵𝑧𝑥𝐷 + 𝐵𝑧𝑦𝐸 + 𝐵𝑧𝑧𝐹)(𝐵𝑥𝑦𝐷 + 𝐵𝑦𝑦𝐸 + 𝐵𝑧𝑦𝐹)

(𝐵𝑡𝑚𝑖 + 𝐵𝑎)
3

(4.21)

where 𝐷 = 𝐵𝑥 + 𝛼𝐵𝑎, 𝐸 = 𝐵𝑦 + 𝛽𝐵𝑎 and 𝐹 = 𝐵𝑧 + 𝛾𝐵𝑎.

Since derivatives of the tensor components are calculated numerically, second x and y

derivatives of 𝐵𝑡𝑚𝑖 can be calculated by numerical differentiation of the results of

equations (4.13) and (4.14), as there is no advantage to using derived equations.

Therefore only equation (4.20) is necessary if avoiding calculating vertical derivatives (i.e.

the z derivative).

4.3.3 Numerical calculation of rank 3 tensor components and higher order

analytic signals

The numerical calculation of the rank 3 tensors used in equations (4.6) to (4.11) or the

derivatives of equations (4.3) to (4.5) and (4.13) to (4.15) can be done using numerical

differentiation. This can be achieved using, for example, central differences and the

gradient function in a mathematical language such as MATLAB or Python. Central

differences and finite difference schemes are well documented in literature (for example

Numerical recipes by Press et al., 2007). A disadvantage of finite difference schemes is

that they are an approximation to the exact analytical solution. They are affected by

round-off error, which is the loss of precision due to computer rounding of decimal

numbers. Since they are related to a truncated form of a Taylor series, a truncation error

also exists (error due to approximating and infinite sum with a finite sum). As a simple

example, we can define the forward Euler scheme as follows:

 𝜕𝑢(𝑥𝑗)

𝜕𝑥
=

𝑢(𝑥𝑗 + ∆𝑥) − 𝑢(𝑥𝑗)

∆𝑥
 (4.22)

where ∆𝑥 is the grid spacing, 𝑥𝑖 is the grid coordinate, and 𝑢 is the grid data from which

we want a derivative calculated. This scheme compares the current data point with the

96

next data point. The backward Euler scheme compares the current data point with the

previous data point, and is defined as:

 𝜕𝑢(𝑥𝑗)

𝜕𝑥
=

𝑢(𝑥𝑗) − 𝑢(𝑥𝑗 − ∆𝑥)

∆𝑥
 (4.23)

And for the central differences, which take advantage of data points on both sides of the

current data point, we have:

 𝜕𝑢(𝑥𝑗)

𝜕𝑥
=

𝑢(𝑥𝑗 + ∆𝑥) − 𝑢(𝑥𝑗 − ∆𝑥)

2∆𝑥
 (4.24)

To understand the error, we need to look at the Taylor series. Using the above variables,

we have:

𝑢(𝑥𝑗 + ∆𝑥) = 𝑢(𝑥𝑗) + ∆𝑥𝑗

𝜕𝑢

𝜕𝑥
|
𝑥𝑗

+
∆𝑥𝑗

2

2!

𝜕2𝑢

𝜕𝑥2
|
𝑥𝑗

 +
∆𝑥𝑗

3

3!

𝜕3𝑢

𝜕3𝑥
|
𝑥𝑗

+ ⋯

(4.25)

Rearranging this, we see the following:

 𝑢(𝑥𝑗 + ∆𝑥) − 𝑢(𝑥𝑗)

∆𝑥𝑗

−
𝜕𝑢

𝜕𝑥
|
𝑥𝑗

=
∆𝑥𝑗

2!

𝜕2𝑢

𝜕𝑥2
|
𝑥𝑗

 +
∆𝑥𝑗

2

3!

𝜕3𝑢

𝜕3𝑥
|
𝑥𝑗

+ ⋯ (4.26)

The terms on the left side are clearly the forward Euler formula subtracting the desired

answer, while the terms on the right are the truncation error terms. If 𝑢 is sufficiently

smooth (i.e. possesses higher order derivatives), the first truncation error term is used to

define the order of magnitude of the error. Typically, forward and reverse Euler schemes

have first order errors, while central difference schemes have second order errors. There

do exist higher order variations of these finite difference schemes.

This error is quoted using Big O notation. A second order error is therefore quoted as

𝑂(∆𝑥2). Note that it does not mean that the error is a big as ∆𝑥2 since there are other

terms in the Taylor expansion coupled with the ∆𝑥2 term, but rather that the error (or

reduction thereof) is proportional to ∆𝑥2. The interpretation of this is that for a second

order error, if, for example, we decrease the spacing by half, we can expect a reduction in

error of 22. Higher order finite difference schemes are therefore desirable. As long as

higher order derivatives for the data exist, higher order versions of finite difference

97

schemes can produce viable solutions. In the case of numerical differentiation used in

this thesis, a fourth order scheme was applied and was found to be optimal.

An alternative to using finite differences is to use Fourier spectral methods, where

differentiation is a simple multiplication. This can be significantly more accurate, but data

must be periodic, which may not be the case. Care must be taken here, to avoid

phenomena such as ringing, otherwise the accuracy will deteriorate severely. Equation

(4.27) shows relationship to calculate the x-derivative in the Fourier domain.

ℱ [

𝜕𝑢(𝑥)

𝜕𝑥
] = 𝑖 ∙ 𝑘𝑥ℱ[𝑢(𝑥)] (4.27)

where 𝑘𝑥 is the spatial frequencies in x-direction direction and should not be confused

with susceptibility. ℱ[] expresses the Fourier transform.

To see how the forward difference, central difference and Fourier relationships relate to

each other, take the Fourier transform of the Taylor series. We then have:

ℱ[𝑢(𝑥𝑗 + ∆𝑥)] = ℱ[𝑢(𝑥𝑗)] + ℱ [∆𝑥𝑗

𝜕𝑢

𝜕𝑥
|
𝑥𝑗

] + ℱ [
∆𝑥𝑗

2

2!

𝜕2𝑢

𝜕𝑥2
|
𝑥𝑗

] + ⋯

= ℱ[𝑢(𝑥𝑖)] + (𝑖 ∙ 𝑘𝑥)∆𝑥𝑗ℱ[𝑢(𝑥𝑗)] +
(𝑖 ∙ 𝑘𝑥)

2∆𝑥𝑗
2

2!
ℱ[𝑢(𝑥𝑗)] + ⋯

(4.28)

This is the expansion for an exponential function, i.e. 𝑒𝑥 = 1 + 𝑥 + 𝑥2/2!. Therefore we

get:

 ℱ[𝑢(𝑥𝑗 + ∆𝑥)] = ℱ[𝑢(𝑥𝑗)] ∙ 𝑒𝑖𝑘𝑥∆𝑥𝑗 (4.29)

Equation (4.29) can now be used to compare the different schemes. If we now take the

Fourier transform of the forward difference scheme, we get:

ℱ [

𝜕𝑢(𝑥𝑗)

𝜕𝑥
] = ℱ [

𝑢(𝑥𝑗 + ∆𝑥) − 𝑢(𝑥𝑗)

∆𝑥
]

= ℱ[𝑢(𝑥𝑗)] ∙
𝑒𝑖𝑘𝑥∆𝑥𝑗 − 1

∆𝑥
= ℱ[𝑢(𝑥𝑗)] ∙ (−1 + 1 + 𝑖 ∙ 𝑘𝑥∆𝑥 + ⋯)/∆𝑥

= 𝑖 ∙ 𝑘𝑥 ℱ[𝑢(𝑥𝑗)] + ⋯

(4.30)

98

The final simplification is achieved taking the Taylor expansion of the exponential term.

Equation (4.30) implies that the frequency domain operator is an approximation to the

forward difference. Taking note of the identity sin 𝜃 =
1

2𝑖
(𝑒𝑖𝜃 − 𝑒−𝑖𝜃), we can do the same

with the central difference:

ℱ [

𝜕𝑢(𝑥𝑗)

𝜕𝑥
] = ℱ [

𝑢(𝑥𝑗 + ∆𝑥) − 𝑢(𝑥𝑗 − ∆𝑥)

2∆𝑥
]

= ℱ[𝑢(𝑥𝑗)] ∙
𝑒𝑖𝑘𝑥∆𝑥𝑗 − 𝑒−𝑖𝑘𝑥∆𝑥𝑗

2∆𝑥

=
𝑖 ∙ sin(𝑘𝑥∆𝑥)

∆𝑥
 ℱ[𝑢(𝑥𝑗)]

≈ 𝑖 ∙ 𝑘𝑥 ℱ[𝑢(𝑥𝑗)]

(4.31)

The last line is the first term of the Taylor expansion for a sine function. This result also

implies that the frequency domain operator is an approximation to the central difference,

and that in the frequency domain the central difference corresponds to a sine function.

Both methods have been used in geophysics. For example, Daudt et al. (1989) compares

both techniques when applied to seismograms. They came to the conclusion that for their

application, all techniques tested had comparable accuracy.

Pajot et al. (2008) describe a third option, involving computing a low-degree polynomial fit

of the data using a sample of neighbouring points. The analytical derivative of this

polynomial function is then used to approximate the derivative of the component. This

method is necessary when data are sampled more densely in one direction than in the

other, but if the data are distributed evenly, according to Pajot, the method offers no

advantage over the finite difference method.

Only horizontal gradients are calculated using one of these techniques. Vertical gradients

use continuation as an integral part of the calculation. Horizontal gradients are always

preferred to vertical gradients due to simplicity in calculations and reduction in possible

noise. Fortunately, a rank 3 tensor can always be rewritten so that only horizontal

gradients are calculated. For example:

 𝐵𝑥𝑦𝑧 = 𝐵𝑧𝑥𝑦 = 𝐵𝑧𝑦𝑥 = 𝐵𝑥𝑧𝑦 = 𝐵𝑦𝑧𝑥 (4.32)

 𝐵𝑥𝑥𝑧 = 𝐵𝑧𝑥𝑥 = 𝐵𝑥𝑧𝑥 (4.33)

99

 𝐵𝑦𝑦𝑧 = 𝐵𝑧𝑦𝑦 = 𝐵𝑦𝑧𝑦 (4.34)

 𝐵𝑧𝑧𝑧 = −𝐵𝑥𝑥𝑧 − 𝐵𝑦𝑦𝑧 = −𝐵𝑧𝑥𝑥 − 𝐵𝑧𝑦𝑦 (4.35)

Therefore, by using the relationships in equations (4.32) to (4.35), the calculation of

vertical gradients directly can be avoided. The appropriate horizontal gradient calculation

can be chosen to minimise on calculation errors.

100

4.4 Analytic Signal

Source detection techniques quite often utilise properties of the analytic signal, so this will

be described as well.

An analytic signal is a complex signal which has no negative-frequency components.

Real and imaginary parts of an analytic signal are related to each other by the Hilbert

transform (Gabor, 1946). Thus we have:

 𝑨 = 𝐹 + 𝑖ℋ (4.36)

where 𝑨 is the analytic signal, 𝐹 is the original signal and ℋ is the Hilbert transform of

that signal.

The construction of the analytic signal can also be understood as suppressing the

negative frequency components.

The analytic signal plays an important role in one-dimensional signal processing. One of

the main reasons for this fact is that the instantaneous amplitude and the instantaneous

phase of a real signal 𝐹 at a certain position x can be defined as the magnitude and the

angular argument of the complex-valued analytic signal 𝑨 at the position x.

The analytic signal is a global concept, i.e. the analytic signal at a position x depends on

the entire original signal and not only on values at positions near x.

Nabighian (1972) noticed that 𝜕𝐵𝑡𝑚𝑖 𝜕𝑥⁄ is the negative Hilbert transform of 𝜕𝐵𝑡𝑚𝑖 𝜕𝑧⁄ ,

where 𝐵𝑡𝑚𝑖 is the total magnetic intensity. Thus in 2D:

𝑨𝒔𝟏 =

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
+ 𝑖ℋ (

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
)

=
𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
−

𝑖𝜕𝐵𝑡𝑚𝑖

𝜕𝑧

(4.37)

𝑨𝒔𝟏 is the first order analytic signal. Essentially, vertical and horizontal derivatives of

potential field data are the Hilbert transforms of each other. The amplitude of the 2D

analytic signal is then:

𝐴𝑠1 = √(
𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
)

2

+ (
𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
)

2

 (4.38)

101

In 3D it follows that the analytic signal vector is defined as:

𝑨𝒔𝟏 = (

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
,
𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
,−

𝑖𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
) (4.39)

The amplitude of this is:

𝐴𝑠1 = √(
𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
)

2

+ (
𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
)

2

+ (
𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
)

2

 (4.40)

Three versions of analytic signals exist for tensor data (Beiki, 2010) as well. They are:

𝐴𝑠𝑥1 = √(
𝜕𝐵𝑥

𝜕𝑥
)

2

+ (
𝜕𝐵𝑥

𝜕𝑦
)

2

+ (
𝜕𝐵𝑥

𝜕𝑧
)

2

= √𝐵𝑥𝑥
2 + 𝐵𝑥𝑦

2 + 𝐵𝑥𝑧
2

(4.41)

𝐴𝑠𝑦1 = √(
𝜕𝐵𝑦

𝜕𝑥
)

2

+ (
𝜕𝐵𝑦

𝜕𝑦
)

2

+ (
𝜕𝐵𝑦

𝜕𝑧
)

2

= √𝐵𝑥𝑦
2 + 𝐵𝑦𝑦

2 + 𝐵𝑦𝑧
2

(4.42)

𝐴𝑠𝑧1 = √(
𝜕𝐵𝑧

𝜕𝑥
)

2

+ (
𝜕𝐵𝑧

𝜕𝑦
)

2

+ (
𝜕𝐵𝑧

𝜕𝑧
)

2

= √𝐵𝑥𝑧
2 + 𝐵𝑦𝑧

2 + 𝐵𝑧𝑧
2

(4.43)

where 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 are components of the field, and 𝐵𝑥𝑥 , 𝐵𝑥𝑦 , 𝐵𝑥𝑧 , 𝐵𝑦𝑦 , 𝐵𝑦𝑧 , 𝐵𝑧𝑧 are tensor

components.

Tensor analytic signals are useful for source distance calculations. However, in some

cases the directional bias of each tensor analytic signal might not be desired. To deal

with this, a tensor analytic signal magnitude is defined as follows:

𝐴𝑠𝑥𝑦𝑧 = √𝐴𝑠𝑥

2 + 𝐴𝑠𝑦
2 + 𝐴𝑠𝑧

2

(4.44)

For first order analytic signals, this simplifies to:

102

𝐴𝑠𝑥𝑦𝑧1 = √𝐵𝑥𝑥

2 + 2𝐵𝑥𝑦
2 + 2𝐵𝑥𝑧

2 + 𝐵𝑦𝑦
2 + 2𝐵𝑦𝑧

2 + 𝐵𝑧𝑧
2

(4.45)

Other orders of analytic signal exist, although there is more than one definition of these

orders. The first variant presented here is the variant in use by the source detection

calculations (Cooper and Whitehead, 2016). In this case the second order analytic signal

is defined as:

𝐴𝑠2 = √(
𝜕𝐴𝑠1

𝜕𝑥
)

2

+ (
𝜕𝐴𝑠1

𝜕𝑦
)

2

+ (
𝜕𝐴𝑠1

𝜕𝑧
)

2

 (4.46)

The zero order analytic signal is defined as

𝐴𝑠0 = √𝐵𝑡𝑚𝑖

2 + ℋ𝑥(𝐵𝑡𝑚𝑖)
2 + ℋ𝑦(𝐵𝑡𝑚𝑖)

2 (4.47)

where ℋ𝑥 ,ℋ𝑦 are the Hilbert transforms in the x and y directions.

Building on this, higher orders of analytic signal for tensors are derived as follows:

𝐴𝑠𝑥2 = √(
𝜕𝐴𝑠𝑥1

𝜕𝑥
)

2

+ (
𝜕𝐴𝑠𝑥1

𝜕𝑦
)

2

+ (
𝜕𝐴𝑠𝑥1

𝜕𝑧
)

2

 (4.48)

𝐴𝑠𝑦2 = √(
𝜕𝐴𝑠𝑦1

𝜕𝑥
)

2

+ (
𝜕𝐴𝑠𝑦1

𝜕𝑦
)

2

+ (
𝜕𝐴𝑠𝑦1

𝜕𝑧
)

2

 (4.49)

𝐴𝑠𝑧2 = √(
𝜕𝐴𝑠𝑧1

𝜕𝑥
)

2

+ (
𝜕𝐴𝑠𝑧1

𝜕𝑦
)

2

+ (
𝜕𝐴𝑠𝑧1

𝜕𝑧
)

2

 (4.50)

Similarly, the zero order tensor analytic signal is defined as:

103

𝐴𝑠𝑥0 = √𝐵𝑥

2 + ℋ𝑥(𝐵𝑥)
2 + ℋ𝑦(𝐵𝑥)

2 (4.51)

𝐴𝑠𝑦0 = √𝐵𝑦

2 + ℋ𝑥(𝐵𝑦)
2
+ ℋ𝑦(𝐵𝑦)

2
 (4.52)

𝐴𝑠𝑧0 = √𝐵𝑧

2 + ℋ𝑥(𝐵𝑧)
2 + ℋ𝑦(𝐵𝑧)

2 (4.53)

The second variant of analytic signal orders by Hsu, Coppens and Shyu, (1998) is

defined differently, namely as:

|𝐴𝑛| = √[
𝜕

𝜕𝑥
(∇𝑛𝐵𝑡𝑚𝑖)]

2

+ [
𝜕

𝜕𝑦
(∇𝑛𝐵𝑡𝑚𝑖)]

2

+ [
𝜕

𝜕𝑧
(∇𝑛𝐵𝑡𝑚𝑖)]

2

 (4.54)

Where ∇𝑛=
𝜕𝑛

𝜕𝑧𝑛 and ∇0= 1. In this case, 𝐴0 is the equivalent of the conventional analytic

signal 𝐴𝑠1.

4.4.1 Calculation of First and Second Order Analytic Signals

Numerical calculation of first and second order analytic signals is straight forward. This

procedure is generic, so input is defined as 𝑑𝑥, 𝑑𝑦, 𝑑𝑧. These can be any relevant 𝑥, 𝑦 or 𝑧

component of the field respectively. For example, 𝑑𝑥 can be 𝐵𝑥𝑥 , 𝐵𝑥𝑦 , 𝐵𝑦𝑥 , 𝐵𝑥𝑧 or 𝐵𝑧𝑥.

 𝐴𝑠1 = √𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 (4.55)

Using central differences, the following horizontal gradients are calculated:

 𝑑𝑦𝑧 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑧 𝑤. 𝑟. 𝑡. 𝑦

𝑑𝑥𝑧 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑧 𝑤. 𝑟. 𝑡. 𝑥

𝑑𝑦𝑦 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑦 𝑤. 𝑟. 𝑡. 𝑦

𝑑𝑥𝑦 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑥 𝑤. 𝑟. 𝑡. 𝑦

𝑑𝑥𝑥 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑥 𝑤. 𝑟. 𝑡. 𝑥

𝑑𝑧𝑧 = −𝑑𝑥𝑥 − 𝑑𝑦𝑦

(4.56)

104

Using this, the following can then be calculated:

 𝜕𝐴𝑠1

𝜕𝑥
=

𝑑𝑥 ∙ 𝑑𝑥𝑥 + 𝑑𝑦 ∙ 𝑑𝑥𝑦 + 𝑑𝑧 ∙ 𝑑𝑥𝑧

𝐴𝑠
 (4.57)

 𝜕𝐴𝑠1

𝜕𝑦
=

𝑑𝑥 ∙ 𝑑𝑥𝑦 + 𝑑𝑦 ∙ 𝑑𝑦𝑦 + 𝑑𝑧 ∙ 𝑑𝑦𝑧

𝐴𝑠
 (4.58)

 𝜕𝐴𝑠1

𝜕𝑧
=

𝑑𝑥 ∙ 𝑑𝑥𝑧 + 𝑑𝑦 ∙ 𝑑𝑧𝑦 + 𝑑𝑧 ∙ 𝑑𝑧𝑧

𝐴𝑠

(4.59)

𝐴𝑠2 = √
𝜕𝐴𝑠1

2

𝜕𝑥
+

𝜕𝐴𝑠1
2

𝜕𝑦
+

𝜕𝐴𝑠1
2

𝜕𝑧
 (4.60)

105

4.5 Source Distance

The following sections detail an application of tensors to source distance calculations,

especially the work of Ma and Du (2012), Cooper (2014a, 2014b, 2015) and Cooper and

Whitehead (2016). All tensor derivations are new and have been published (as an output

of this thesis) in Cole and Cooper (2018).

4.5.1 Conventional method and results

Source detection techniques seek to calculate the distance from the surface to a source

of some type, whether it is a dyke, a contact or other body. They are typically based on

some form of manipulation of the analytic signal. Since the analytic signal finds the edges

of bodies, or thin features such as dykes, these techniques are generally limited to this as

well.

Cooper (2014c) showed that:

𝑟 =

(𝑁 + 1)𝐴𝑠1

A𝑠2

 (4.61)

where r is the distance to the source, As is the analytic signal amplitude of the magnetic

field 𝐵𝑡𝑚𝑖 and As2 is the 2nd order analytic signal. N is an index denoting the source type

(Table 2).

𝐴𝑠1 and 𝐴𝑠2 are defined as:

𝐴𝑠1 = √(
𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
)

2

+ (
𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
)

2

+ (
𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
)

2

 (4.62)

𝐴𝑠2 = √(
𝜕𝐴𝑠1

𝜕𝑥
)

2

+ (
𝜕𝐴𝑠1

𝜕𝑦
)

2

+ (
𝜕𝐴𝑠1

𝜕𝑧
)

2

 (4.63)

Table 2 Values of N versus magnetic source types (Ma and Li, 2013)

N Magnetic Source Type

0 Contact or step

1 Vertical Dyke

2 Horizontal Cylinder

3 Dipole

106

The values in Table 2 represent indexes for the nature of a source and are not to be

confused with the structural index as defined by Euler deconvolution. In Euler

deconvolution, separate indices are defined for both magnetic and gravity cases (Reid

and Thurston, 2014). However, the indices in Table 2 are related directly to different

source types as modelled through the analytic signal. MacLeod, Jones and Dai (1993)

give these equations for contacts, sheets (or dykes) and horizontal cylinders. This was

generalized by Salem et al. (2004) and is expressed as:

𝐴𝑠1 =

𝐾

(𝑥2 + 𝑧2)
(𝑁+1)

2

 (4.64)

Where K is a constant. We can substitute expression for 𝐵𝑡𝑚𝑖 and its derivatives (section

4.3) into equation (4.62) to obtain the tensor version of the analytic signal amplitude 𝐴𝑠1.

Similarly (Cooper, 2014c):

 𝜕𝐴𝑠1

𝜕𝑥
= (

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥2
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑥
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑥
)/𝐴𝑠1 (4.65)

 𝜕𝐴𝑠1

𝜕𝑦
= (

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥𝜕𝑦
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦2
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧𝜕𝑦
)/𝐴𝑠1 (4.66)

 𝜕𝐴𝑠1

𝜕𝑧
= (

𝜕𝐵𝑡𝑚𝑖

𝜕𝑥
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥𝜕𝑧
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑦
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝜕𝑧
+

𝜕𝐵𝑡𝑚𝑖

𝜕𝑧
∙
𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧2
)/𝐴𝑠1 (4.67)

where derivative terms can be calculated using the equations and processes in section

4.3.

Equations (4.65), (4.66) and (4.67) are then substituted into (4.63) to obtain 𝐴𝑠2. The

tensor versions of 𝐴𝑠 and 𝐴𝑠2 can then be substituted into (4.61) to calculate r.

Synthetic tensor data, calculated for a cubic body, is shown in Figure 46. This data is

used to test the tensor derivations for the source equations. The magnetic field intensity

is 28,000 nT, susceptibility is 0.1 SI, inclination is -60 degrees, declination is -15 degrees.

The rectangular prism has a width of 200 m and height of 280 meters, situated between

20 meters and 300 meters.

107

Figure 46 Synthetic magnetic tensor calculations for a rectangular prism. a) to c) show the

three components of the magnetic field - 𝑩𝒙, 𝑩𝒚, 𝑩𝒛. d), e), f), g), h) and j) show the tensor

components 𝑩𝒙𝒙, 𝑩𝒙𝒚, 𝑩𝒙𝒛, 𝑩𝒚𝒚, 𝑩𝒚𝒛, 𝑩𝒛𝒛 respectively. i) Total magnetic intensity of the study

area. Note that 𝑩𝒙𝒚 = 𝑩𝒚𝒙, 𝑩𝒙𝒛 = 𝑩𝒛𝒙, 𝑩𝒚𝒛 = 𝑩𝒛𝒚, so they are not shown. The magnetic field

intensity used was 28000 nT, the susceptibility was 0.1 SI, the inclination was -60º, the
declination was -15º. The depth of the rectangular prism was 20 m. The horizontal extent of
the rectangular prism is 200 m by 200 m and it goes down to a depth of 3000 m

Figure 47 shows the datasets used to calculate r, namely 𝐴𝑠1 and 𝐴𝑠2, as well as r. Using

the tensor data to calculate r located the edges of the body correctly (Figure 47d). Over

the edges of the body the distance to the source becomes its depth. Notice that valid

solutions for 𝑟 are those closest to the source, and are therefore directly above the

source. Insofar as a depth estimate is concerned, other solutions are invalid. The source

itself is defined by the analytic signal representing either a contact or edge of a body

(Figure 47 (b) is an example of the edge of body seen in the analytic signal), or a dyke.

108

Source distance calculations done in this way are not affected by field direction or

susceptibility, making it a robust technique.

The equations for a dyke are valid for the lower extent of the dyke extending to infinity (or

sufficiently deep enough). Any error in the calculation therefore decreases with increasing

lower depth extent for the dyke. This is not necessarily a bad assumption in a model,

given that dykes originate from deep below the surface.

Figure 47 a) First order analytic signal of the data shown in Figure 46i). b) Second order
analytic signal of the data shown in Figure 46i). c) Source-distance calculation results. d)
Results of calculation of r from equation (4.61) (blue) over the synthetic modelled body for
the profile shown as a dashed black line in c). A value of N = 0 was used in equation (4.61).
Note that the negative of r is plotted so that the values closest to zero represent the source
depth.

109

4.5.2 Alternative methods and results

Tensors provide alternative derivation possibilities for source distance equations. Two

alternative methods are presented here.

Method 1

Cooper (2014c) derived equation (4.61) based on the work of MacLeod, Jones and Dai

(1993) and then Salem et al. (2004), who showed that the analytic signal can be defined

as:

𝐴𝑠1 =

𝐾

(𝑥2 + 𝑧2)
(𝑁+1)

2

 (4.68)

where K is a constant and N is an index relating to source type. This equation is originally

based on the work of Nabighian (1972) who defined the analytic signal as:

𝐴𝑠1 =

𝜓2

𝑥2 + 𝑧2
 (4.69)

This is derived from the components of the magnetic anomaly from a thin dyke, which

form a Hilbert transform pair, and is given by Nabighian (1972) :

 𝜕𝑓

𝜕𝑥
=

𝜓(𝑥 sin 𝜙 + 𝑧 cos𝜙)

𝑥2 + 𝑧2
 (4.70)

 𝜕𝑓

𝜕𝑧
=

𝜓(𝑥 cos𝜙 − 𝑧 sin 𝜙)

𝑥2 + 𝑧2
 (4.71)

where 𝜓 = 2𝑘𝐵𝑎𝑐 sin 𝑑, k is susceptibility, 𝐵𝑎 is the earth’s magnetic field, d is the dip of a

thin infinite sheet, z is the depth of the dyke, x is the horizontal displacement of the dyke

and c and 𝜙 are given in Table 3. The quantity 𝑓 can be either the total, vertical or

horizontal field. The derivative simply converts the anomaly from that of a step to that of a

sheet. Therefore, when considering steps, one need deal with 𝑓 only, but when dealing

with dykes, the entire derivative must be considered. This is an important property, as will

be seen later.

110

Table 3 Values of 𝒄 and 𝜷 for total, vertical and horizontal fields, where 𝒊 is the inclination of

the earth’s magnetic field, 𝑨 is the angle between magnetic north and the positive x axis ,

𝐭𝐚𝐧 𝑰 = 𝐭𝐚𝐧 𝒊 𝐜𝐨𝐬𝑨⁄ and d is the dip of a thin infinite sheet or step. From (Nabighian, 1972)

 Total Field Anomaly Vertical Field Anomaly Horizontal Field Anomaly

c 1 − cos2 𝑖 sin2 𝐴 √1 − cos2 𝑖 sin2 𝐴 cos𝐴 √1 − cos2 𝑖 sin2 𝐴

𝜙 2𝐼 − 𝑑 − 90 𝐼 − 𝑑 𝐼 − 𝑑 − 90

To convert between total, vertical or horizontal fields, one need only adjust the equations

for 𝑐 and 𝜙 as given in Table 3. What is important to note from equations (4.68) and

(4.69) is that they are equally valid for total, vertical and horizontal fields. This means that

equation (4.61) is also valid for the primary field components for a thin dyke or a step.

This implies that in equation (4.70)
𝜕𝑓

𝜕𝑥
⁄ (for dykes) or 𝑓 (for steps) can be substituted

with 𝐵𝑡𝑚𝑖 , 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧, while making the appropriate changes from Table 3

Noting that (4.41), (4.42) and (4.43) are the analytic signals of the primary field

components, 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 can be combined with (4.61), resulting in three new relationships:

𝑟 =

(𝑁 + 1)𝐴𝑠𝑥1

A𝑠𝑥2

 (4.72)

𝑟 =

(𝑁 + 1)𝐴𝑠𝑦1

A𝑠𝑦2

 (4.73)

𝑟 =

(𝑁 + 1)𝐴𝑠𝑧1

A𝑠𝑧2

 (4.74)

The central differences technique shown in section 4.3.3 can easily be used to calculate

the second order analytic signal.

Method 2

The equations in method 1 are sensitive to noise, because of the use of higher order

derivatives. To overcome this by using lower order derivatives Cooper (2015)

demonstrated that:

𝑟 =

𝑁𝐴𝑠0

𝐴𝑠1

 (4.75)

111

where

𝐴𝑠0 = √𝐵𝑡𝑚𝑖

2 + ℋ𝑥(𝐵𝑡𝑚𝑖)
2 + ℋ𝑦(𝐵𝑡𝑚𝑖)

2 (4.76)

N is the index relating to source type (Table 2) and ℋ𝑥 ,ℋ𝑦 are the Hilbert transforms in

the x and y directions. It can be shown that this also holds for tensor components. Let us

start by examining the component 𝐵𝑧. For a dyke, we write (4.70) and (4.71) in terms of

this component (e.g.
𝜕𝑓

𝜕𝑧
⁄ = 𝐵𝑧 and

𝜕𝑓
𝜕𝑥

⁄ = ℋ𝑥(𝐵𝑧)) it follows that (from Nabighian,

1972):

ℋ𝑥(𝐵𝑧) = −

𝜓𝑧(𝑥 sin 𝜙𝑧 + 𝑧 cos𝜙𝑧)

𝑥2 + 𝑧2
 (4.77)

𝐵𝑧 =

𝜓𝑧(𝑥 cos 𝜙𝑧 − 𝑧 sin 𝜙𝑧)

𝑥2 + 𝑧2
 (4.78)

Where 𝜓𝑧 = 2𝑘𝐵𝑎√1 − cos2 𝑖 sin2 𝐴 sin 𝑑 and 𝜙𝑧 = 𝐼 − 𝑑, taken from Table 3, since in this

case we are dealing with a vertical field anomaly. Values are also given for total field and

horizontal field anomalies. Now, noting that (4.77) and (4.78) are 2D equations, we can

assume the following:

 ℋ𝑦(𝐵𝑧) = 0 (4.79)

Substituting (4.77), (4.78) and (4.79) into (4.76) and simplifying:

 𝐴𝑠𝑧0 = √𝐵𝑧
2 + ℋ𝑥(𝐵𝑧)

2 + 0

= √
𝜓𝑧

2(𝑥 cos 𝜙𝑧 − 𝑧 sin𝜙𝑧)
2

(𝑥2 + 𝑧2)2
+

𝜓𝑧
2(𝑥 sin 𝜙𝑧 + 𝑧 cos𝜙𝑧)

2

(𝑥2 + 𝑧2)2

=
𝜓𝑧

√(𝑥2 + 𝑧2)

(4.80)

The horizontal and vertical derivatives of 𝐵𝑧 are:

𝐵𝑧𝑥 =

−𝜓𝑧((𝑥
2 − 𝑧2) cos 𝜙𝑧 − 2𝑥𝑧 sin𝜙𝑧)

(𝑥2 + 𝑧2)2
 (4.81)

112

𝐵𝑧𝑧 =

−𝜓𝑧((𝑥
2 − 𝑧2) sin 𝜙𝑧 + 2𝑥𝑧 cos𝜙𝑧)

(𝑥2 + 𝑧2)2
 (4.82)

Given that:

 𝐴𝑠𝑧1 = √𝐵𝑧𝑥
2 + 𝐵𝑧𝑧

2 (4.83)

It follows that:

𝐴𝑠𝑧1 =

𝜓𝑧

𝑥2 + 𝑧2
 (4.84)

Dividing (4.80) by (4.84):

𝑟 =

𝐴𝑠𝑧0

𝐴𝑠𝑧1

 (4.85)

In a similar fashion it can be seen that:

𝑟 =

𝐴𝑠𝑥0

𝐴𝑠𝑥1

 (4.86)

If the dyke were oriented along the y axis instead of the x axis then

𝑟 =

𝐴𝑠𝑦0

𝐴𝑠𝑦1

 (4.87)

𝐴𝑠𝑥0, 𝐴𝑠𝑦0, 𝐴𝑠𝑧0 are calculated using equation (4.76) with 𝑓 = 𝐵𝑥, 𝑓 = 𝐵𝑦 or 𝑓 = 𝐵𝑧

respectively. If (4.85) is generalized for different 𝑁 > 0, 𝑟 becomes:

𝑟 =

𝑁𝐴𝑠𝑧0

𝐴𝑠𝑧1

 (4.88)

𝐴𝑠𝑧 is also ideal since it is not biased towards any one direction and is symmetrical in the

sense of reduced to the pole data. The other advantage of (4.88) is that there is no need

to calculate any rank 3 tensor component numerically.

113

Note that the components of the analytic signal are interchangeable, as long as both

components sample or detect the anomaly. For example, if the feature is a north-south

dyke, it is detectable on both the x and the z components, but not the y component.

Therefore, the y component cannot be used interchangeably while the x and z

components can. Examples of interchanging these components are given below.

𝑟 =

(𝑁 + 1)𝐴𝑠𝑥1

𝐴𝑠𝑧2

 (4.89)

𝑟 =

(𝑁 + 1)𝐴𝑠𝑦1

𝐴𝑠𝑧2

 (4.90)

𝑟 =

(𝑁 + 1)𝐴𝑠𝑥1

𝐴𝑠𝑦2

 (4.91)

And

𝑟 =

𝑁𝐴𝑠𝑥0

𝐴𝑠𝑧1

 (4.92)

𝑟 =

𝑁𝐴𝑠𝑦0

𝐴𝑠𝑧1

 (4.93)

𝑟 =

𝑁𝐴𝑠𝑥0

𝐴𝑠𝑦1

 (4.94)

We can build on this derivation for a dyke, by proposing a new derivation for a step. If we

remember that (from Nabighian, 1972) 𝑓 in (4.70) and (4.71) is actually the field of a step,

we can substitute 𝐵𝑧 directly into (4.70) and (4.71). We get (for a step)

 𝜕𝐵𝑧

𝜕𝑥
= 𝐵𝑧𝑥 = −

𝜓𝑧(𝑥 sin𝜙𝑧 + 𝑧 cos𝜙𝑧)

𝑥2 + 𝑧2
 (4.95)

 𝜕𝐵𝑧

𝜕𝑧
= 𝐵𝑧𝑧 =

𝜓𝑧(𝑥 cos 𝜙𝑧 − 𝑧 sin𝜙𝑧)

𝑥2 + 𝑧2
 (4.96)

114

If we remember that:

 ℋ𝑥(𝐵𝑧𝑥) = −𝐵𝑧𝑧 (4.97)

The implication of (4.95), (4.96) and (4.97) is that:

𝐴𝑠𝑧𝑧0 = √𝐵𝑧𝑧

2 + ℋ𝑥(𝐵𝑧𝑧)
2 + ℋ𝑦(𝐵𝑧𝑧)

2 (4.98)

𝐴𝑠𝑧𝑧1 = √𝐵𝑧𝑧𝑥

2 + 𝐵𝑧𝑧𝑦
2 + 𝐵𝑧𝑧𝑧

2 (4.99)

Therefore following the same logic in deriving (4.85), for a step,

𝑟 =

𝐴𝑠𝑧𝑧0

𝐴𝑠𝑧𝑧1

 (4.100)

A final version of the depth equations is presented, using 𝐴𝑠𝑥𝑦𝑧 demonstrated in section

4.4. These analytic signals are magnitude combinations of the 𝐴𝑠𝑥 , 𝐴𝑠𝑦 and 𝐴𝑠𝑧 analytic

signals. Using these, the new depth equations are:

𝑟 =

𝑁𝐴𝑠𝑥𝑦𝑧0

𝐴𝑠𝑥𝑦𝑧1

 (4.101)

𝑟 =

(𝑁 + 1)𝐴𝑠𝑥𝑦𝑧1

𝐴𝑠𝑥𝑦𝑧2

 (4.102)

4.5.3 Edge Detection

In 2D, source distance techniques based on the analytic signal give optimal solutions on

the crests of analytic signal peaks. This is because these points coincide with the location

of the source in question. These crests are either centred over the source, in the case

dykes, or are situated on the edges, in the case of steps or contacts. This fact can

therefore be used to predetermine the optimal locations for solutions of 𝑟, should this be

desired. It should be noted that peak values of 𝑟 can be used, since they are by definition

115

closest to the source. Under perfect conditions this may be the best choice for

determining source locations (since these peaks relate directly to the calculation of 𝑟

itself). However, complex geological sources or noise and uncertainty in the data may

necessitate using potentially cleaner signals for edge and source detection.

The difference between steps and dykes, in terms of analytic signals is important. Hsu,

Coppens and Shyu (1998) point out that when a dyke-like feature becomes too shallow,

the single peak separate into two separate peaks. For the analytic signal this happens

when the width of the dyke is greater than the depth to the top of the dyke. For higher

orders of analytic signal, this can happen sooner. An example of this is shown in Figure

48. The source was modelled in an ambient field of 28 000 nT, with inclination of -60

degrees, and declination of -15 degrees. The susceptibility was 0.1 SI. The analytic

signals calculated were normalized for comparison purposes.

Figure 48 (a) Comparison between 𝑨𝒔 and 𝑨𝒔𝟐, with a source of width 200 m and depth 200
m and (b) width 200 m and depth 70 m. The separation of peaks is apparent in (b).

Figure 48(b) in particular shows the transitionary situation where the lower order analytic

signal has only one clear peak, while the higher order analytic signal shows two peaks.

The implication of this is that the higher order analytic signal should be used for the

detection of optimal solution locations. In addition, the transitionary nature of the analytic

signal may be diagnostic of N being a fractional value, between 0 (for a step) and 1 (for a

dyke). In this case the value of N=0.3 gave a solution of 75 m for depth to source edges,

while in the case of Figure 48(a) the standard value of N=1 for a dyke gave a minimum

solution of 220 m at the centre of the anomaly.

116

4.5.4 Susceptibility Calculation

Cooper (2015) showed that the susceptibility-width product of a thin dyke can be

calculated, using the following equation (in SI units):

𝑘. 𝑤 =

4𝜋 ∙ 𝐴𝑠0 ∙ 𝑧

2𝐵𝑎 . 𝑐
=

4𝜋 ∙ 𝐴𝑠1 ∙ 𝑧2

2𝐵𝑎 . 𝑐
 (4.103)

where 𝑘 is susceptibility, 𝑤 is the width of the dyke, 𝐵𝑎 is the earth’s magnetic field, 𝑧 is

the depth to the dyke, and 𝑐 = 1 − cos2 𝑖 sin2 𝐴 from Table 3. This was derived using the

following two equations and setting 𝑥 = 0:

𝐴𝑠0 =

2𝑘. 𝐵𝑎 . 𝑐. 𝑤

4𝜋√𝑥2 + 𝑧2
 (4.104)

𝐴𝑠1 =

2𝑘. 𝐵𝑎 . 𝑐. 𝑤

4𝜋(𝑥2 + 𝑧2)
 (4.105)

However, a simpler, new, version of this equation can be derived by squaring (4.104) and

dividing this by (4.105). From this it follows that:

𝑘. 𝑤 =

4𝜋 ∙ 𝐴𝑠0
2

𝐴𝑠1 ∙ 2 ∙ 𝐵𝑎 ∙ 𝑐
 (4.106)

Similarly, by using the value of 𝑐𝑛𝑒𝑤 = √1 − cos2 𝑖 sin2 𝐴 = √𝑐 (Table 2), expressions

from 𝐴𝑧 can be derived. Therefore:

𝐴𝑠𝑧0 =

2𝑘. 𝐵𝑎 . √𝑐. 𝑤

4𝜋√𝑥2 + 𝑧2
 (4.107)

𝐴𝑠𝑧1 =

2𝑘. 𝐵𝑎 . √𝑐. 𝑤

4𝜋(𝑥2 + 𝑧2)
 (4.108)

From this, it follows that:

117

𝑘. 𝑤 =

4𝜋 ∙ 𝐴𝑠𝑧0
2

𝐴𝑠𝑧1 ∙ 2 ∙ 𝐵𝑎 ∙ √𝑐
 (4.109)

These equations have the advantage that they are not dependant on the depth of the

source. However, if one of the analytic signal calculations is affected by noise, they may

not be ideal. For versions incorporating depth and focussing on only one analytic signal,

we have:

𝑘. 𝑤 =

4𝜋 ∙ 𝐴𝑠𝑧0 ∙ 𝑧

2𝐵𝑎 . √𝑐

(4.110)

𝑘. 𝑤 =

4𝜋 ∙ 𝐴𝑠𝑧1 ∙ 𝑧2

2𝐵𝑎 . √𝑐
 (4.111)

These last two equations are similar to (4.103), except that they now relate to 𝐴𝑧0 and

𝐴𝑧1. The incorporation of depth means that more accurate estimates are possible if an

accurate depth is available, through boreholes for example.

It is important to remember that the susceptibility-width product is being calculated, and

not susceptibility alone. This means that an estimate for dyke width must be made in

order to calculate the susceptibility of the dyke.

If the width can be estimated, then the calculation of the susceptibility is possible. For

dyke like anomalies, the width of the dyke has to be less than the depth of the dyke. If

this is not the case, the analytic anomaly separates into two anomalies (one for each

edge) and the behaviour of the anomaly is more step–like.

Width estimation using analytic signals has been looked at by other authors. (Hsu,

Coppens and Shyu, 1998; Bastani and Pedersen, 2001). The method by Hsu, Coppens

and Shyu (1998) is examined here. The method calls for an alternative definition of the

analytic signal.

|𝐴𝑛| = √[
𝜕

𝜕𝑥
(∇𝑛𝐵𝑡𝑚𝑖)]

2

+ [
𝜕

𝜕𝑦
(∇𝑛𝐵𝑡𝑚𝑖)]

2

+ [
𝜕

𝜕𝑧
(∇𝑛𝐵𝑡𝑚𝑖)]

2

 (4.112)

where ∇𝑛=
𝜕𝑛

𝜕𝑧𝑛 and ∇0= 1. Using this definition, the half-width of a dyke was defined to

be:

118

𝑤 = √
2𝑑

𝑐1

− 𝑑2 (4.113)

where 𝑐1 = |
𝐴1

𝐴0
|. 𝐴0 is the conventional analytic signal 𝐴𝑠1 and 𝑑 is the depth to the

source. To calculate 𝐴1, using the standard tensor components, we make use of equation

(4.1), to calculate the following:

 𝜕

𝜕𝑥
(∇1𝐵𝑡𝑚𝑖) =

𝜕2𝐵𝑡𝑚𝑖

𝜕𝑥𝑧

(4.114)

 𝜕

𝜕𝑦
(∇1𝐵𝑡𝑚𝑖) =

𝜕2𝐵𝑡𝑚𝑖

𝜕𝑦𝑧

(4.115)

 𝜕

𝜕𝑧
(∇1𝐵𝑡𝑚𝑖) =

𝜕2𝐵𝑡𝑚𝑖

𝜕𝑧2

(4.116)

Expressions for this using tensor components can be found in section 4.3. These

equations can easily be used to calculate width. Table 4 shows some examples of width

calculations. The widths tend to be overestimated, but are nonetheless a good starting

point. The accuracy of this width is dependent on an accurate estimate of depth.

Table 4 Comparison between true widths and calculated widths for various depths.

Depth (m) True Width (m) Calculated Width (m)

30 30 36

50 30 40.28

100 30 44

100 40 50

50 40 47.32

Alternatively, if the susceptibility is known (through petrophysical analysis or given an

estimate based on geological knowledge), then the width can be estimated through the

above equations.

119

4.5.5 Test – Step Model

The term 'step' is used to describe the steeply-dipping boundary between two bodies with

significantly different density or magnetisation, where the far extents of the bodies are far

enough away, that they do not contribute significantly to the anomaly at the boundary.

Examples of where steps can occur are terraces and contacts.

Steps can be modelled by large rectangular prisms. A rectangular prism with a width of

200 meters, a height of 280 meters, at a depth of 20 meters was modelled. Since this is a

step, a value of N=0 is chosen. The field strength was 28 000 nT. The inclination is -60

degrees and the declination is -15 degrees. The susceptibility is 0.1 SI. There is no

remanence. The results are shown in Figure 49.

Figure 49 Results of negative r calculated for a step. Dots are non-tensor calculations. Lines
are from tensor component calculations. Both were calculated at the same position. Values
closest to zero give source depth and location. The synthetic model is also shown. Notice
the straight line solution due to the inability of zero order analytic signals to calculate depth
in this case (since N = 0).

Lines denote calculations using tensor analytic signals, and dots denote calculations

using regular analytic signals. Notice that for the case N=0, no solution is possible for

steps with zero order analytic signals. However, all equations with first and second order

analytic signals produce accurate depth results.

120

4.5.6 Test – Dyke Model

A dyke model differs from a step in that the width is negligible compared to the depth.

Both sides of the dyke contribute to the anomaly.

Dykes can be modelled by thin rectangular prisms. A dyke with a width of 2 meters,

length of 4000 meters, a height of 2800 meters, at a depth of 200 meters was modelled.

Since this is a dyke, a value of N=1 is chosen. The field strength was 28 000 nT. The

inclination is -60 degrees and the declination is -15 degrees. The susceptibility is 0.1 SI.

There is no remanence. The results are shown in Figure 50.

Figure 50 Results of r calculated for a dyke. Dots are conventional calculations. Lines are
from tensor component calculations. The synthetic model is also shown.

Lines denote calculations using tensor analytic signals, and dots denote calculations

using regular analytic signals. The tensor analytic signals produce similar results to the

regular analytic signals. Of interest is that the results for the zero order analytic signals

seem superior. All equations produce similar results and the depth calculation seems to

be effective.

In order to examine the effect of dip on the calculation of depth, two models were

calculated. One model was a vertical dyke (Figure 51) and the other model was a dipping

dyke (Figure 52). The field strength was 28 000 nT. The inclination is -60 degrees and the

121

declination is -15 degrees. The susceptibility is 0.1 SI. There is no remanence. Both

dykes had a width of 20 m and a depth of 30 m. Equation (4.75) was used to calculate

depth estimates. In both cases, as can be seen from the figures, the depth estimate is

calculated reliably. The reason for this is due to the high decay rate of magnetic

anomalies, which means that the majority of the signal being used for the depth comes

from the closest point to the surface. Therefore, dip does not affect the depth calculation.

With this in mind, future models will use a vertical dyke, for simplicity’s sake. The simple

visual identification of a dipping dyke can be seen by the separation between the analytic

signal anomaly and the corresponding magnetic anomaly, as can be seen by a simple

comparison between Figure 51 and Figure 52.

A more detailed examination of the effects of noise, is shown in Figure 53.

122

Figure 51 a) shows the magnetic field (blue) and analytic signal (red) over a vertical dyke b)
shows the dyke and the calculated solutions for depth.

123

Figure 52 a) shows the magnetic field (blue) and analytic signal (red) over a dipping dyke b)
shows the dyke and the calculated solutions for depth.

124

Figure 53 a) Noise free total magnetic intensity over a thin dyke of width 2 metres, with
magnetic field intensity of 28,000 nT, susceptibility of 0.1 SI, inclination of -60º, declination
of -15º and depth of the dyke equal to 20 m, b) Source-distance calculations over a thin
dyke with noise-free data. Results from equations (4.72), (4.74), (4.75), (4.85) and (4.86) are
shown in red, green, blue, cyan and yellow respectively. c) Total Magnetic Intensity for the
same dyke with Gaussian noise with a standard deviation equal to 1.58% of the maximum
data amplitude added d) Source-distance calculations over the thin dyke with the noisy TMI
data, using same colour scheme as in (b).

125

Figure 53 shows source-distance calculations for the magnetic anomaly from a dyke

using equations (4.72), (4.74), (4.85) and (4.86) with N = 1. The depth to the dyke is

determined reliably both when the data is noise free (Figure 53a and b) or had Gaussian

noise with a standard deviation equal to 1.58% of the maximum data amplitude added to

the TMI (Figure 53c and d).

Figure 54 investigates the effect of varying degrees of noise added to the individual

tensor components. This test uses equations (4.85) and (4.86) with N = 1, since these

equations produced better results than equation (4.72) and (4.74). Figure 54 a), b), c) and

d) show Gaussian noise envelopes with a standard deviation of 0 nT, 0.01 nT, 0.1 nT and

1 nT added to each tensor component respectively. In all cases the estimate of depth

over the dyke is reasonable, although in the last case the dyke location is harder to detect

on the data itself. Moving away from the location of the dyke, the stability of the solution

becomes significantly compromised by the noise.

Figure 55 investigates the same noise effect using equations (4.72) and (4.74) with N = 1,

In all cases the estimate of depth over the dyke is over estimated. In the case of (d), the

depth is compromised by the noise.

In all these cases, the need to identify (or at least verify) the dyke location using a method

other than source distance is obvious. Noisy data can obscure the location of the dyke,

but if that location is known, the solution remains viable.

126

Figure 54 Varying levels of noise applied to the dyke from Figure 53, using equations (4.85)
in green and (4.86) in blue. a) 0 nT Gaussian noise added, b) 0.01 nT Gaussian noise added,
c) 0.1 nT Gaussian noise added d) 1 nT Gaussian noise added.

127

Figure 55 Varying levels of noise applied to the dyke from Figure 53 using (4.72) in blue and
(4.74) in green. a) 0 nT Gaussian noise added, b) 0.01 nT Gaussian noise added, c) 0.1 nT
Gaussian noise added d) 1 nT Gaussian noise added.

128

Figure 56 shows the effects of using equations (4.74), (4.85), (4.89) to (4.94) over the

same north–south dyke. Results from equations (4.74) and (4.85) are shown in solid

yellow and solid red. Equations (4.89) and (4.92) are shown in yellow and red x’s.

Equations (4.90) and (4.93) are shown in yellow and red dots. Red was chosen to denote

ratios which use 𝐴𝑠0/𝐴𝑠1 and yellow was chosen to denote ratios which use 𝐴𝑠1/𝐴𝑠2.

Equations (4.89), (4.92), (4.74) and (4.85) all produce good results. Equations (4.90) and

(4.93) however, use 𝐴𝑠𝑦0 and 𝐴𝑠𝑦1 which cannot detect the dyke in its north-south

orientation easily, so the calculations break down. Equations (4.91) and (4.94) both use

only 𝐴𝑠𝑥 and 𝐴𝑠𝑦. Since there is extremely bad coupling of 𝐴𝑠𝑦 to the dyke, the results are

unstable and produce depths in excess of the 200 m limit on Figure 56.

The equations have different strengths and potentially different uses. Equations which

use only 𝐴𝑠𝑧0 and 𝐴𝑠𝑧1 will detect all anomalies, since these analytic signals have no

horizontal bias. For pure source depth calculation, it is advisable to therefore use

equations which rely on 𝐴𝑠𝑧 only, such as (4.74) and (4.85).

If selective depth calculations are needed with some directional bias, then equations

(4.89) to (4.94) may be helpful. Detecting which solutions are valid in such cases is

straightforward. One needs only compare the solution of one of these equations with

depths produced by (4.74) and (4.85). If they are within an acceptable threshold, then the

directionally biased version of depth is valid. Other depths can then be discarded.

The solutions for equations (4.74) and (4.89) (shown in a yellow line and yellow dots)

show a low where the dyke occurs. As discussed in section 4.5.3, this is due to the depth

of the dyke being too shallow for the use of those equations. The depth can be halved in

this case, converting the equations to that of a step, and potentially improving the depth

estimate. Alternatively, solutions from (4.74) and (4.85) can be compared as a diagnostic

tool to confirm that a shallow dyke is present or verify the reliability of assuming the

anomaly belongs to a dyke.

129

Figure 56 Results from equations (4.74) and (4.85) are shown in solid yellow and solid red.
Equations (4.89) and (4.92) are shown in yellow and red x’s. Equations (4.90) and (4.93) are
shown in yellow and red dots. The model is shown in black.

130

4.6 Discussion

The source distance technique is a reliable method for depth determination, as long as

the source type is known. Still, this limitation is not too restrictive, since it enables

interpreters to have good initial starting models which can be refined later using forward

modelling.

As a general rule, step or contact like bodies are defined to be those which have widths

greater than their depths. Dykes are defined to be those where the width of the dyke is

less than the depth (Hsu, Coppens and Shyu, 1998). Source type determination is

important, especially from the perspective of what the magnetic field can resolve. If the

dyke is very deep, however, it may masquerade as another source type (such as a line of

dipoles from the perspective of the analytic signal) and higher orders of N may be

necessary. Nevertheless, magnetic data is recognised as a shallow interpretation

technique, so this limitation is not too problematic within the context of the dataset.

It should be noted that the use of magnetics might not limited to shallow interpretations.

For example, it is routinely used for deeper volcanic body interpretation in the oil industry.

In this case, this limitation must be taken into account. Alternative techniques can, of

course, be considered, such as the depth estimation through power spectrum analysis

proposed by Spector and Grant, (1970).

131

CHAPTER 5 REMANENCE CALCULATION

5.1 Introduction

Magnetic sources can be magnetised in a direction different to the direction of the

geomagnetic field. If such magnetisation occurs, we say that the source exhibits

remanence. Effective interpretation of magnetic data means that this magnetisation must

be quantified and accommodated. Many methods have been developed to determine

remanence and Clark (2014) reviewed these. This introduction will briefly present the

main methods used historically.

The magnetization can be measured directly on oriented samples taken directly from the

field (Clark and Emerson, 1991). The advantage of this method is the accuracy of

measurement. Challenges here are in obtaining samples that are representative of the

anomaly being studied, or all facets of it (especially if the anomaly is not homogenous).

Borehole measurements can provide another source of information. This can provide

reliable information of a source from within a borehole which intersects the source. The

measurements are taken either from samples extracted from the hole, or in situ by a

borehole logging tool (Bosum, Eberle and Rehi, 1988).

Petrologic and palaeomagnetic information can be used to infer probable susceptibility

and remanence directions based on geological history, magnetic mineral grain size

ranges, compositions and modal percentages. This requires some form of model to be

developed based on the type of ore being studied. Ranges of susceptibility, remanence

intensity and Q-ratio (Koenigsberger ratio, see section 2.2.4) for a variety of magnetic

mineral compositions, domain states and types of NRM are available in the literature for

use (Clark, 1997) These models are normally expressed in terms of simple formulae. By

applying some form of constraint (such as model body compactness) which is thought to

mimic the geology being studied, magnetisation can be determined, or at the very least,

accounted for. Examples of this are the determination of apparent susceptibility and

apparent magnetisation based on model constraints provided by terrain, geology etc.

These assumptions must be at least approximately correct for good solutions.

Vector and gradient data have opened up possibilities for direct inversion leading to the

estimation of remanent parameters. Simple sources are a convenient method for

obtaining these parameters from such data.

132

If both vector magnetic and vector gravity data are available, the use of Poisson’s

theorem can allow for the estimation of magnetisation parameters. The reasoning is that

the same source, giving rise to both magnetic and gravity anomalies, can make use of a

magnetic anomaly calculated directly from the gravity data in order to compare this with

measured magnetic field. To clarify this, Clark (2014) showed that the reduced to the pole

magnetic anomaly is proportional to the vertical gradient of the gravity anomaly.

Comparison of this calculated magnetic field against the measured magnetic field offers

the possibility for parameter estimation.

Another method uses a controlled magnetic source to investigate the susceptibility

distribution of a (typically shallow) subsurface. This takes the form of a long current

carrying cable or a dipole source and frequency domain EM systems are one choice for

this.

Helbig analysis (Helbig, 1963) provides another means to calculate magnetisation

parameters and will be described in the next section.

Reduction to the pole has also been used. Correctly estimating magnetisation direction

results in an anomaly that is predominantly positive, and more symmetric than TMI

anomalies. Many different methods to achieve this have been described by Clark (2014).

These techniques tend to work well for simple, shallow sources with steep dips, or when

contacts are shallow. They are suited to scanning large areas to detect anomalous

magnetisation direction, which can then be analysed further with other methods (Clark,

2014).

Base stations can be used in the vicinity of sources to measure the vector and gradient

fields. The principle is that time-varying electric currents flowing in the ionosphere and

magnetosphere results in changes in induced magnetisation. However, remanent

magnetisation remains unaffected. These techniques take advantage of this difference in

order to determine magnetisation parameters.

5.1.1 Helbig Method

A review of this technique is warranted because of its application to tensor data. Helbig

(1963) noticed that the integrals of anomaly components, all having the same

magnetisation direction over an infinite plane, are zero. The Helbig method makes use of

this fact to estimate the vector components of the total magnetisation (𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧) for a

compact source, from the first integral moments of the vector components of the

anomalous magnetic field (𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧). These moments are calculated as follows:

133

𝑀𝑥 = −

1

2𝜋
∫ ∫ 𝑥𝐵𝑧𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 (5.1)

𝑀𝑦 = −

1

2𝜋
∫ ∫ 𝑦𝐵𝑧𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 (5.2)

𝑀𝑧 = −

1

2𝜋
∫ ∫ 𝑥𝐵𝑥𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

= −
1

2𝜋
∫ ∫ 𝑦𝐵𝑦𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 (5.3)

Schmidt and Clark (1998) applied this theory to vector components calculated by Fourier

processing of a conventional total magnetic intensity survey. Others have continued to

study this approach (Phillips, 2005). Phillips et al. (2007) applied the methodology to

magnetic tensor data.

As long as a planar surface is subtracted from each magnetic vector component, one can

integrate over a limited area, since the mean component value in the window is zero, and

the requirement that the first order integral moments should vanish is approximately met

(Phillips, 2005). From these calculations, total magnetisation directions can be estimated.

Phillips et al., (2007) proposed using this form of calculation in a moving window over a

grid in order to estimate the total magnetisation continuously. They did point out, though,

that the estimate would only be accurate over sources. According to them, the location of

the source would be determined through some other technique. Phillips et al., (2007)

extended the equations to the magnetic tensor, by deriving the following expressions:

𝑀𝑥 =

1

4𝜋
∫ ∫ 𝑥2𝐵𝑧𝑥𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

=
1

2𝜋
∫ ∫ 𝑥𝑦𝐵𝑧𝑦𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 (5.4)

𝑀𝑦 =

1

4𝜋
∫ ∫ 𝑦2𝐵𝑧𝑦𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

=
1

2𝜋
∫ ∫ 𝑥𝑦𝐵𝑧𝑥𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 (5.5)

134

𝑀𝑧 =

1

4𝜋
∫ ∫ 𝑥2𝐵𝑥𝑥𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

=
1

4𝜋
∫ ∫ 𝑦2𝐵𝑦𝑦𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

=
1

2𝜋
∫ ∫ 𝑥𝑦𝐵𝑥𝑦𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

=
1

2𝜋
∫ ∫ 𝑥𝑦𝐵𝑦𝑥𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

(5.6)

Clark (2014) expands this further to adapt the Helbig method to the concept of

Normalised Source Strength (NSS). If we calculate the eigenvalues and eigenvectors of a

magnetic gradient tensor, we obtain three eigenvalues (𝜆1, 𝜆2, 𝜆3). From this, the NSS is

defined as:

𝜇 = √−𝜆2

2 − 𝜆1
2𝜆3

2 (5.7)

where 𝜆1 ≥ 𝜆2 ≥ 𝜆3. Based on this, the horizontal location, depth and magnitude of

magnetisation can be calculated using the following equations:

𝑥0 =

∫ ∫ 𝑥𝜇𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

∫ ∫ 𝜇𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

=
∫ ∫ 𝑥𝜇2𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

∫ ∫ 𝜇2𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 (5.8)

𝑦0 =

∫ ∫ 𝑦𝜇𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

∫ ∫ 𝜇𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

=
∫ ∫ 𝑦𝜇2𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

∫ ∫ 𝜇2𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 (5.9)

ℎ′ =

∫ ∫ 𝜇𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

√3𝜋 ∫ ∫ 𝜇2𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

(5.10)

𝑚′ =

∫ ∫ 𝜇𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

9𝜋2𝐶 ∫ ∫ 𝜇2𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 (5.11)

where 𝑥0, 𝑦0 is the source location, ℎ′ is the estimated depth to the source, 𝑚′ is the

estimated total magnetisation, 𝐶 = 𝜇0 4𝜋⁄ and 𝜇0is the permeability of free space. Clark

(2014) reports that equations (5.8) to (5.11) are exact for a point dipole source and are

135

very accurate for equidimensional sources buried at moderate depths and compact

sources of arbitrary shape, where the dipole contribution dominates the anomaly.

Because finite integrals have issues with the tails of anomalies (such as noise and

interfering anomalies), Clark (2014) also developed a series of corrections centred on

(𝑥0, 𝑦0) and using polar coordinates to accommodate these issues. These are

ℎ = ℎ′√

2

1 − 3(𝑅 ℎ′⁄)2 + √1 − 2(𝑅 ℎ′⁄)2 − 3(𝑅 ℎ′⁄)4
 (5.12)

 𝑚 = 𝑚′(1 + 3(𝑅 ℎ⁄)2 + 3(𝑅 ℎ⁄)4) (5.13)

where 𝑅 is the radius of a disc around the source location. Clark (2014) points out that a

disc can be used in the place of a square of equivalent area since the difference between

the two is at most 1% over a wide range of 𝑅 ℎ⁄ . Clark (2014) then presents the derived

version of (𝑀𝑥 , 𝑀𝑦, 𝑀𝑧) as follows:

𝑀𝑥 =

ℎ

2𝜋𝐶
∫ ∫(𝑥 − 𝑥0) 𝜆2𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

=

ℎ
2𝜋𝐶 ∫ ∫ (𝑥 − 𝑥0) 𝜆2𝜌𝑑𝜌𝑑𝜃

𝑅

0

2𝜋

0

1 −
1 + 3𝑅2 2ℎ2⁄

(1 + 𝑅2 ℎ2⁄)3 2⁄

(5.14)

𝑀𝑦 =

ℎ

2𝜋𝐶
∫ ∫(𝑦 − 𝑦0) 𝜆2𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

=

ℎ
2𝜋𝐶 ∫ ∫ (𝑦 − 𝑦0) 𝜆2𝜌𝑑𝜌𝑑𝜃

𝑅

0

2𝜋

0

1 −
1 + 3𝑅2 2ℎ2⁄

(1 + 𝑅2 ℎ2⁄)3 2⁄

(5.15)

𝑀𝑧 =

ℎ2

2𝜋𝐶
∫ ∫ 𝜆2𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

=

ℎ2

2𝜋𝐶 ∫ ∫ 𝜆2𝜌𝑑𝜌𝑑𝜃
𝑅

0

2𝜋

0

1 −
1

(1 + 𝑅2 ℎ2⁄)3 2⁄

(5.16)

where 𝜌, 𝜃 are polar coordinates centred on (𝑥0, 𝑦0).

136

5.2 Theory

The ability to detect and calculate remanent parameters directly from magnetic data is

extremely appealing. Tensors provide the necessary extra data to not only detect

remanence, but also to quantify it to an extent. This chapter proposes applications of

tensors to remanence and shows one of the true strengths of magnetic tensors, namely

the calculation of remanent parameters from the magnetic tensor field.

While some parameters can be derived in general (such as direction cosines), other

parameters (such as magnetisation) are model dependant. In particular, remanence can

be detected and calculated in dykes using source distance equations. To do so, the total

magnetisation of the field over the source must first be calculated. To solve this, the

relationships between direction cosines can be taken advantage of. Remembering that

(Blakely, 1995, p.89):

 𝑴𝒕 = 𝑴𝒊 + 𝑴𝒓

= 𝑘.
𝑩𝒂

400𝜋
+ 𝑴𝒓

(5.17)

𝑩𝒂 is the ambient inducing field, 𝑴𝒊 is the induced magnetisation, 𝑴𝒓 is the remanent

magnetisation and 𝑴𝒕 is the total magnetisation. This can be written as:

|𝑴𝒕|. [𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡] =

𝑘. |𝑩𝒂|

400𝜋
. [𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖] + |𝑴𝒓|. [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟] (5.18)

Where 𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟 are the direction cosines due to the remanent field, 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 are the

direction cosines due to the inducing field and 𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 are the resultant total direction

cosines. This can be rearranged to:

|𝑴𝒓|. [𝛼𝑟 , 𝛽𝑟 , 𝛾𝑟] = |𝑴𝒕|. [𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡] −

𝑘. |𝑩𝒂|

400𝜋
. [𝛼𝑖, 𝛽𝑖 , 𝛾𝑖] (5.19)

If 𝑴𝒓 has inclination and declination 𝑀𝑖𝑛𝑐 and 𝑀𝑑𝑒𝑐, then (for NED convention):

 𝛼𝑟 = cos(𝑀𝑖𝑛𝑐) ∙ cos(𝑀𝑑𝑒𝑐) (5.20)

 𝛽𝑟 = cos(𝑀𝑖𝑛𝑐) ∙ sin(𝑀𝑑𝑒𝑐) (5.21)

137

 𝛾𝑟 = sin(𝑀𝑖𝑛𝑐) (5.22)

For ENU convention, 90 degrees should be subtracted from the declination.

Rewriting (5.19), it follows that:

|𝑴𝒓|. cos(𝑀𝑖𝑛𝑐) ∙ cos(𝑀𝑑𝑒𝑐) = |𝑴𝒕|. 𝛼𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛼𝑖 (5.23)

|𝑴𝒓|. cos(𝑀𝑖𝑛𝑐) ∙ sin(𝑀𝑑𝑒𝑐) = |𝑴𝒕|. 𝛽𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛽𝑖 (5.24)

|𝑴𝒓|. sin(𝑀𝑖𝑛𝑐) = |𝑴𝒕|. 𝛾𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛾𝑖 (5.25)

Using (5.23), (5.24), (5.25), 𝑀𝑖𝑛𝑐 and 𝑀𝑑𝑒𝑐 can be solved for:

𝑀𝑑𝑒𝑐 = −2 tan−1 (

𝐴 + √𝐴2 + 𝐵2

𝐵
) − 𝜋 + 𝑎𝑧𝑖𝑚𝑢𝑡ℎ (5.26)

𝑀𝑖𝑛𝑐 = −2 tan−1 (

√𝐴2 + 𝐵2 − √A2 + B2 + C2

𝐶
) (5.27)

Where 𝑎𝑧𝑖𝑚𝑢𝑡ℎ refers to the angle between the x-direction and north, 𝜋 is simply to

correct for misorientation of the solution, and:

𝐴 = |𝑴𝒕|. 𝛼𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛼𝑖 (5.28)

𝐵 = |𝑴𝒕|. 𝛽𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛽𝑖 (5.29)

𝐶 = |𝑴𝒕|. 𝛾𝑡 −

𝑘. |𝑩𝒂|

400𝜋
. 𝛾𝑖 (5.30)

The unknowns are |𝑴𝒕|, 𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 and 𝑘.

138

5.2.1 Direction Cosine Calculation

The total field direction cosines (𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡) are the combined remanence and ambient field

direction cosines. While they do not give the remanent vector direction in a source

independent manner, they can be compared with the ambient field direction cosines. This

comparison can show whether remanence exists in a particular area, and give an

indication of the general direction of the remanent field vector (although this is imprecise.)

These equations can also be used with |𝑴𝒕| and 𝑘 to determine the remanent vector

direction more accurately, should these last two parameters be known.

To solve for 𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 the relationship between tensors, magnetic field components and

the approximate magnetic field is used, namely:

 𝐵𝑡𝑚𝑖 = 𝛼𝐵𝑥 + 𝛽𝐵𝑦 + 𝛾𝐵𝑧

(5.31)

This relationship is well understood and is independent of source. This implies that:

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑥
= 𝛼𝑡𝐵𝑥𝑥 + 𝛽𝑡𝐵𝑦𝑥 + 𝛾𝑡𝐵𝑧𝑥 = 𝐵𝑡𝑥 (5.32)

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑦
= 𝛼𝑡𝐵𝑥𝑦 + 𝛽𝑡𝐵𝑦𝑦 + 𝛾𝑡𝐵𝑧𝑦 = 𝐵𝑡𝑦 (5.33)

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑧
= 𝛼𝑡𝐵𝑥𝑧 + 𝛽𝑡𝐵𝑦𝑧 + 𝛾𝑡𝐵𝑧𝑧 = 𝐵𝑡𝑧 (5.34)

From equations (5.32), (5.33), (5.34) through simple substitution, the following general

equations are derived:

𝛼𝑡 =

Btx(Byz
2 − ByyBzz) + Bty(BxyBzz − BxzByz) + Btz(BxzByy − BxyByz)

−BxxByyBzz + BxxByz
2 + Bxy

2 Bzz − 2BxyBxzByz + Bxz
2 Byy

 (5.35)

βt =

Btx(BxzByz − BxyBzz) + Bty(BxxBzz − Bxz
2) + Btz(BxyBxz − BxxByz)

BxxByyBzz − BxxByz
2 − Bxy

2 Bzz + 2BxyBxzByz − Bxz
2 Byy

 (5.36)

139

γt =

Btx(BxyByz − BxzByy) + Bty(BxyBxz − BxxByz) + Btz(BxxByy − Bxy
2)

BxxByyBzz − BxxByz
2 − Bxy

2 Bzz + 2BxyBxzByz − Bxz
2 Byy

 (5.37)

An alternate derivation is provided in the event that calculating the vertical derivative of

the TMI is not desired, and using equations (5.31), (5.32) and (5.33).

𝛼𝑡 =

𝐵𝑥𝑦𝐵𝑦𝑧𝐵𝑡𝑚𝑖 − 𝐵𝑥𝑦𝐵𝑧𝐵𝑡𝑦 + 𝐵𝑥𝑧𝐵𝑦𝐵𝑡𝑦 − 𝐵𝑥𝑧𝐵𝑦𝑦𝐵𝑡𝑚𝑖 − 𝐵𝑦𝐵𝑦𝑧𝐵𝑡𝑥 + 𝐵𝑦𝑦𝐵𝑧𝐵𝑡𝑥

𝐵𝑥𝐵𝑥𝑦𝐵𝑦𝑧 − 𝐵𝑥𝐵𝑥𝑧𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑦𝐵𝑦𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑧 − 𝐵𝑥𝑦
2 𝐵𝑧 + 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦

 (5.38)

𝛽𝑡 =

−𝐵𝑥𝐵𝑥𝑧𝐵𝑡𝑦 + 𝐵𝑥𝐵𝑦𝑧𝐵𝑡𝑥 − 𝐵𝑥𝑥𝐵𝑦𝑧𝐵𝑡𝑚𝑖 + 𝐵𝑥𝑥𝐵𝑧𝐵𝑡𝑦 + 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑡𝑚𝑖 − 𝐵𝑥𝑦𝐵𝑧𝐵𝑡𝑥

𝐵𝑥𝐵𝑥𝑦𝐵𝑦𝑧 − 𝐵𝑥𝐵𝑥𝑧𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑦𝐵𝑦𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑧 − 𝐵𝑥𝑦
2 𝐵𝑧 + 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦

 (5.39)

𝛾𝑡 =

𝐵𝑥𝐵𝑥𝑦𝐵𝑡𝑦 − 𝐵𝑥𝐵𝑦𝑦𝐵𝑡𝑥 − 𝐵𝑥𝑥𝐵𝑦𝐵𝑡𝑦 + 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑚𝑖 − 𝐵𝑥𝑦
2 𝐵𝑡𝑚𝑖 + 𝐵𝑥𝑦𝐵𝑦𝐵𝑡𝑥

𝐵𝑥𝐵𝑥𝑦𝐵𝑦𝑧 − 𝐵𝑥𝐵𝑥𝑧𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑦𝐵𝑦𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑧 − 𝐵𝑥𝑦
2 𝐵𝑧 + 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦

 (5.40)

A more accurate version of these equations can be derived using the same process from

full total magnetic intensity, which is defined as:

𝐵𝑡𝑚𝑖 = √(𝐵𝑥 + 𝛼𝐵𝑎)2 + (𝐵𝑦 + 𝛽𝐵𝑎)

2
+ (𝐵𝑧 + 𝛾𝐵𝑎)2 − 𝐵𝑎 (5.41)

where 𝐵𝑎 is the ambient magnetic field. Calculating derivatives of this, we get:

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑥
=

𝐵𝑥𝑥(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑥(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑥(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (5.42)

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑦
=

𝐵𝑥𝑦(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑦(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑦(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (5.43)

 𝑑𝐵𝑡𝑚𝑖

𝑑𝑧
=

𝐵𝑥𝑧(𝐵𝑥 + 𝛼𝐵𝑎) + 𝐵𝑦𝑧(𝐵𝑦 + 𝛽𝐵𝑎) + 𝐵𝑧𝑧(𝐵𝑧 + 𝛾𝐵𝑎)

𝐵𝑡𝑚𝑖 + 𝐵𝑎

 (5.44)

Once again, we can solve for 𝛼, 𝛽, 𝛾 from equations (5.42), (5.43) and (5.44). We get:

140

 𝛼 = (−𝐵𝑎𝐵𝑥𝑥𝐵𝑥𝑦𝐵𝑡𝑦 + 𝐵𝑎𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑥 − 𝐵𝑎𝐵𝑥𝑦𝐵𝑦𝑦𝐵𝑡𝑦 − 𝐵𝑎𝐵𝑥𝑦𝐵𝑦𝑧𝐵𝑡𝑧

+ 𝐵𝑎𝐵𝑥𝑧𝐵𝑦𝑦𝐵𝑡𝑧 − 𝐵𝑎𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑡𝑦 + 𝐵𝑎𝐵𝑦𝑦
2 𝐵𝑡𝑥 + 𝐵𝑎𝐵𝑦𝑧

2 𝐵𝑡𝑥

− 𝐵𝑥𝐵𝑥𝑥
2 𝐵𝑦𝑦 + 𝐵𝑥𝐵𝑥𝑥𝐵𝑥𝑦

2 − 𝐵𝑥𝐵𝑥𝑥𝐵𝑦𝑦
2 − 𝐵𝑥𝐵𝑥𝑥𝐵𝑦𝑧

2 + 𝐵𝑥𝐵𝑥𝑦
2 𝐵𝑦𝑦

+ 2 𝐵𝑥𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧 − 𝐵𝑥𝐵𝑥𝑧
2 𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑥𝑦𝐵𝑡𝑚𝑖 𝐵𝑡𝑦

+ 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑚𝑖 𝐵𝑡𝑥 − 𝐵𝑥𝑦𝐵𝑦𝑦𝐵𝑡𝑚𝑖 𝐵𝑡𝑦 − 𝐵𝑥𝑦𝐵𝑦𝑧𝐵𝑡𝑚𝑖 𝐵𝑡𝑧

+ 𝐵𝑥𝑧𝐵𝑦𝑦𝐵𝑡𝑚𝑖 𝐵𝑡𝑧 − 𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑡𝑚𝑖 𝐵𝑡𝑦 + 𝐵𝑦𝑦
2 𝐵𝑡𝑚𝑖 𝐵𝑡𝑥

+ 𝐵𝑦𝑧
2 𝐵𝑡𝑚𝑖 𝐵𝑡𝑥)

÷ (𝐵𝑎(𝐵𝑥𝑥
2 𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑥𝑦

2 + 𝐵𝑥𝑥𝐵𝑦𝑦
2 + 𝐵𝑥𝑥𝐵𝑦𝑧

2 − 𝐵𝑥𝑦
2 𝐵𝑦𝑦

− 2 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧 + 𝐵𝑥𝑧
2 𝐵𝑦𝑦))

(5.45)

 𝛽 = (𝐵𝑎𝐵𝑥𝑥
2 𝐵𝑡𝑦 − 𝐵𝑎𝐵𝑥𝑥𝐵𝑥𝑦𝐵𝑡𝑥 + 𝐵𝑎𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑦 + 𝐵𝑎𝐵𝑥𝑥𝐵𝑦𝑧𝐵𝑡𝑧 − 𝐵𝑎𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑡𝑧

− 𝐵𝑎𝐵𝑥𝑦𝐵𝑦𝑦𝐵𝑡𝑥 + 𝐵𝑎𝐵𝑥𝑧
2 𝐵𝑡𝑦 − 𝐵𝑎𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑡𝑥 − 𝐵𝑥𝑥

2 𝐵𝑦𝐵𝑦𝑦

+ 𝐵𝑥𝑥
2 𝐵𝑡𝑚𝑖 𝐵𝑡𝑦 + 𝐵𝑥𝑥𝐵𝑥𝑦

2 𝐵𝑦 − 𝐵𝑥𝑥𝐵𝑥𝑦𝐵𝑡𝑚𝑖 𝐵𝑡𝑥 − 𝐵𝑥𝑥𝐵𝑦𝐵𝑦𝑦
2

− 𝐵𝑥𝑥𝐵𝑦𝐵𝑦𝑧
2 + 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑚𝑖 𝐵𝑡𝑦 + 𝐵𝑥𝑥𝐵𝑦𝑧𝐵𝑡𝑚𝑖 𝐵𝑡𝑧 + 𝐵𝑥𝑦

2 𝐵𝑦𝐵𝑦𝑦

+ 2 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝐵𝑦𝑧 − 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑡𝑚𝑖 𝐵𝑡𝑧 − 𝐵𝑥𝑦𝐵𝑦𝑦𝐵𝑡𝑚𝑖 𝐵𝑡𝑥

− 𝐵𝑥𝑧
2 𝐵𝑦𝐵𝑦𝑦 + 𝐵𝑥𝑧

2 𝐵𝑡𝑚𝑖 𝐵𝑡𝑦 − 𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑡𝑚𝑖 𝐵𝑡𝑥)

÷ (𝐵𝑎(𝐵𝑥𝑥
2 𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑥𝑦

2 + 𝐵𝑥𝑥𝐵𝑦𝑦
2 + 𝐵𝑥𝑥𝐵𝑦𝑧

2 − 𝐵𝑥𝑦
2 𝐵𝑦𝑦

− 2 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧 + 𝐵𝑥𝑧
2 𝐵𝑦𝑦))

(5.46)

 𝛾 = (−𝐵𝑎𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑧 + 𝐵𝑎𝐵𝑥𝑥𝐵𝑦𝑧𝐵𝑡𝑦 + 𝐵𝑎𝐵𝑥𝑦
2 𝐵𝑡𝑧 − 𝐵𝑎𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑡𝑦 − 𝐵𝑎𝐵𝑥𝑦𝐵𝑦𝑧𝐵𝑡𝑥

+ 𝐵𝑎𝐵𝑥𝑧𝐵𝑦𝑦𝐵𝑡𝑥 − 𝐵𝑥𝑥
2 𝐵𝑦𝑦𝐵𝑧 + 𝐵𝑥𝑥𝐵𝑥𝑦

2 𝐵𝑧 − 𝐵𝑥𝑥𝐵𝑦𝑦
2 𝐵𝑧

− 𝐵𝑥𝑥𝐵𝑦𝑦𝐵𝑡𝑚𝑖 𝐵𝑡𝑧 − 𝐵𝑥𝑥𝐵𝑦𝑧
2 𝐵𝑧 + 𝐵𝑥𝑥𝐵𝑦𝑧𝐵𝑡𝑚𝑖 𝐵𝑡𝑦 + 𝐵𝑥𝑦

2 𝐵𝑦𝑦𝐵𝑧

+ 𝐵𝑥𝑦
2 𝐵𝑡𝑚𝑖 𝐵𝑡𝑧 + 2 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧𝐵𝑧 − 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑡𝑚𝑖 𝐵𝑡𝑦

− 𝐵𝑥𝑦𝐵𝑦𝑧𝐵𝑡𝑚𝑖 𝐵𝑡𝑥 − 𝐵𝑥𝑧
2 𝐵𝑦𝑦𝐵𝑧 + 𝐵𝑥𝑧𝐵𝑦𝑦𝐵𝑡𝑚𝑖 𝐵𝑡𝑥)

÷ (𝐵𝑎(𝐵𝑥𝑥
2 𝐵𝑦𝑦 − 𝐵𝑥𝑥𝐵𝑥𝑦

2 + 𝐵𝑥𝑥𝐵𝑦𝑦
2 + 𝐵𝑥𝑥𝐵𝑦𝑧

2 − 𝐵𝑥𝑦
2 𝐵𝑦𝑦

− 2 𝐵𝑥𝑦𝐵𝑥𝑧𝐵𝑦𝑧 + 𝐵𝑥𝑧
2 𝐵𝑦𝑦))

(5.47)

Notice that to keep these equations manageable, a value for 𝐵𝑡𝑚𝑖 must be measured and

used. The choice of which equations to use really depends on which datasets have been

measured. The last three equations are preferred, since they give precise results not

affected by field approximations.

Results from these direction cosine equations can be compared with the ambient field in

the form of quiver plots. An example of this is shown in Figure 57. For visual

representation, each arrow is located at its magnetic value in TMI. The arrows

themselves represent the x and y component of the field in the inclination plane or the

declination plane. So for declinations, these components are (in NED):

𝐷𝑒𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐴𝑟𝑟𝑜𝑤 𝑋 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =

𝛽

√𝛼2 + 𝛽2
 (5.48)

141

 𝐷𝑒𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐴𝑟𝑟𝑜𝑤 𝑌 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =
𝛼

√𝛼2 + 𝛽2
 (5.49)

And for inclinations, these are:

𝐼𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐴𝑟𝑟𝑜𝑤 𝑋 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =

√𝛼2 + 𝛽2

√𝛼2 + 𝛽2 + 𝛾2
 (5.50)

 𝐼𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐴𝑟𝑟𝑜𝑤 𝑌 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =
𝛾

√𝛼2 + 𝛽2 + 𝛾2
 (5.51)

Figure 57 (a) Quiver plot showing a comparison between inclinations from the ambient field
and the measured field including remanence. (b) Quiver plot showing a comparison between
declination from the ambient field and the measured field including remanence.

These equations are model independent and therein lies their usefulness.

5.2.2 Magnetisation and Susceptibility Estimation

For magnetisation and susceptibility, a model of some sort must be assumed. Source

distance equations provide simple models from which to calculate magnetisation in

certain instances. With this in mind, 𝑘 can be estimated for dykes using equations (4.106)

or (4.109), if an assumption about the width of the dyke can be made. To calculate for

magnetisation due to a thin dyke, 𝑘. 𝐹 in equations (4.104), (4.105), (4.107), (4.108), is

replaced with 𝑀𝑡 ∙ 𝜇0 ∙ 10−9 4𝜋 = 100⁄ 𝑀𝑡 (to include remanent magnetisation).

Therefore:

142

𝐴𝑠0 =

200.𝑀𝑡 . 𝑐. 𝑤

√𝑥2 + 𝑧2
 (5.52)

𝐴𝑠1 =

200.𝑀𝑡 . 𝑐. 𝑤

𝑥2 + 𝑧2
 (5.53)

𝐴𝑠𝑧0 =

200.𝑀𝑡 . √𝑐. 𝑤

√𝑥2 + 𝑧2
 (5.54)

𝐴𝑠𝑧1 =

200.𝑀𝑡 . √𝑐. 𝑤

𝑥2 + 𝑧2
 (5.55)

where 𝑤 is the width of the dyke, 𝑥, 𝑧 is the distance and depth to the dyke respectively,

and 𝑐 is from Table 3. 𝐴𝑠0 and 𝐴𝑠1are the zero and first order analytic signals. 𝐴𝑠𝑧0 and

𝐴𝑠𝑧1are the zero and first order tensor analytic signals in the z direction.

We can just rewrite (5.52), (5.53), (5.54) and (5.55) in terms of 𝑀𝑡.

𝑀𝑡 =

𝐴𝑠0√𝑥2 + 𝑧2

200 ∙ 𝑤 ∙ 𝑐
 (5.56)

𝑀𝑡 =

𝐴𝑠1(𝑥
2 + 𝑧2)

200 ∙ 𝑤 ∙ 𝑐
 (5.57)

𝑀𝑡 =

𝐴𝑠𝑧0√𝑥2 + 𝑧2

200 ∙ 𝑤 ∙ √𝑐
 (5.58)

𝑀𝑡 =

𝐴𝑠𝑧1(𝑥
2 + 𝑧2)

200 ∙ 𝑤 ∙ √𝑐
 (5.59)

Alternatively, from (5.52) and (5.53) 𝑀𝑡 can be solved for:

143

𝑀𝑡 =

𝐴𝑠0
2

200 ∙ 𝐴𝑠1 ∙ 𝑤 ∙ 𝑐
 (5.60)

From (5.54) and (5.55) 𝑀𝑡 can be solved for:

𝑀𝑡 =

𝐴𝑠𝑧0
2

200 ∙ 𝐴𝑠𝑧1 ∙ 𝑤 ∙ √𝑐
 (5.61)

Note that 𝑐 = 1 − 𝛽𝑡
2 for NED convention, and 𝑐 = 1 − 𝛼𝑡

2 for ENU convention.

Alternatively, by squaring (5.54) and dividing by (5.53) we get (for NED):

𝑀𝑡 =

𝐴𝑠𝑧0
2

200 ∙ 𝐴𝑠1 ∙ 𝑤
 (5.62)

This is the total magnetisation of the dyke. This can then be substituted into equation

(5.23), and it follows that:

𝑀𝑟 =
𝑀𝑡 ∙ 𝛼𝑡 −

𝑘|𝑩𝒂|
400𝜋

∙ 𝛼𝑖

cos (𝑀𝑖𝑛𝑐) ∙ cos (𝑀𝑑𝑒𝑐)
= √𝐴2 + 𝐵2 + 𝐶2 (5.63)

Where 𝐴, 𝐵, 𝐶 are defined in equations (5.28), (5.29) and (5.30). Estimates for 𝑘 must

either be known through paleomagnetic measurement, or by using estimates obtained

using equation (4.106) and equation (4.113). These estimates are not ideal since

susceptibility estimates using analytic signals include the effect of remanence in them,

and would not be accurate indications of true susceptibility. In fact, these susceptibility

estimates are just 𝑘 = 400𝜋𝑀𝑡 𝐵𝑎⁄ . This is perfectly fine if there is no remanence but not

ideal for remanent calculation.

As a side note, these equations are only useful for actual, measured or modelled tensor

datasets with TMI. They will not work with pseudo-tensor derivations (Pedersen,

Rasmussen and Dyrelius (1990) and Yin et al.(2016)). This is because pseudo-tensor

derivations makes the assumption of constant direction cosines (no remanence) and so

no remanence will be detected. This is discussed further in CHAPTER 6.

144

5.3 Test – Remanence

5.3.1 Tests on a single dyke

A single dyke was modelled to test different scenarios. The dyke has a width of 10 m, and

a depth of 20 m. The bottom of the modelled dyke is 3000 m. The grid spacing was 10 m,

with a measurement centred over each dyke. Table 5 to Table 7 below show the results

from using the derived equations, versus the original values. The values for 𝑀𝑡 are

calculated using equation (5.61). For the purpose of this test, knowledge of the

susceptibility is assumed (0.01 SI)

Table 5 shows the results for the single dyke with no remanence. Table 6 and Table 7

show the same situation with remanence. In all three cases, the direction cosines are

calculated perfectly, while 𝑀𝑡 tends to be underestimated. Values for 𝑀𝑟 , 𝑀𝑖𝑛𝑐 , 𝑀𝑑𝑒𝑐 are

dependent on accurate values of 𝑀𝑡 and deteriorate accordingly. However, even in the

worst case (Table 7) where remanent direction is vastly different to the ambient field

direction, the calculated remanent inclination and declination values are close to the real

values. If however, the magnetisation and susceptibility estimates are worse, then results

will deteriorate.

Table 5 Summary of results for a dyke of width 10 meters, depth of 20 meters, depth extent

of 3000 m, with 𝑩 = 𝟐𝟖 𝟎𝟎𝟎 𝒏𝑻,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰 and no remanence

Parameter Original Calculated

𝛼𝑡 -0.25 -0.2504

𝛽𝑡 -0.433 -0.4331

𝛾𝑡 0.866 0.8658

𝑀𝑖𝑛𝑐 N/A N/A

𝑀𝑑𝑒𝑐 N/A N/A

𝑀𝑡 0.2228 0.2013

𝑀𝑟 N/A N/A

Table 6 Summary of results for a dyke of width 10 meters, depth of 20 meters, depth extent

of 3000 m, with 𝑩 = 𝟐𝟖 𝟎𝟎𝟎 𝒏𝑻,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰 , 𝑴𝒓 = 𝟎. 𝟑𝟐𝟑 𝑨/𝒎, 𝑴𝒊𝒏𝒄 =
𝟓𝟎° and 𝑴𝒅𝒆𝒄 = −𝟐𝟎°

Parameter Original Calculated

𝛼𝑡 -0.2332 -0.2344

𝛽𝑡 -0.5368 -0.5372

𝛾𝑡 0.8108 0.8102

𝑀𝑖𝑛𝑐 50 49.04

𝑀𝑑𝑒𝑐 -20 -19.52

𝑀𝑡 0.5432 0.4887

𝑀𝑟 0.323 0.2688

145

Table 7 Summary of results for a dyke of width 10 meters, depth of 20 meters, depth extent

of 3000 m, with, 𝑩 = 𝟐𝟖 𝟎𝟎𝟎 𝐧𝐓,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰, 𝑴𝒓 = 𝟎. 𝟑𝟐𝟑 𝑨/𝒎, 𝑴𝒊𝒏𝒄 =
−𝟐𝟎° and 𝑴𝒅𝒆𝒄 = 𝟒𝟎°

Parameter Original Calculated

𝛼𝑡 0.3801 0.3796

𝛽𝑡 -0.8972 -0.8976

𝛾𝑡 0.2249 0.2243

𝑀𝑖𝑛𝑐 -20 -22.01

𝑀𝑑𝑒𝑐 40 41.10

𝑀𝑡 0.3667 0.3467

𝑀𝑟 0.323 0.3074

A Gaussian noise was added to each of the tensor datasets used in the calculation of

Table 8. The standard deviation of the noise added to each dataset was equal to 1.0% of

the maximum respective dataset amplitude. The results are shown in Table 8. Noise

affects the results, and the direction cosine calculation is sensitive to it. The calculation of

𝛽𝑡 in this case has a value greater than 1, which would not be possible if it were not for

noise. Outliers like this can be an indicator to the quality of the data being collected, since

this sort of value would not happen with noise free data. The total magnetisation

calculation, by contrast, is less sensitive to the noise.

Table 8 Summary of results for a dyke of width 10 meters, depth of 20 meters, depth extent

of 3000 m, with, 𝑩 = 𝟐𝟖 𝟎𝟎𝟎 𝐧𝐓,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰, 𝑴𝒓 = 𝟎. 𝟑𝟐𝟑 𝑨/𝒎, 𝑴𝒊𝒏𝒄 =
−𝟐𝟎° and 𝑴𝒅𝒆𝒄 = 𝟒𝟎°. A Gaussian noise was added to each input dataset, with standard
deviation equal to 1.0% of the respective dataset amplitude.

Parameter Original Calculated

𝛼𝑡 0.3801 0.3611

𝛽𝑡 -0.8972 -2.525

𝛾𝑡 0.2249 0.2086

𝑀𝑖𝑛𝑐 -20 -8.98

𝑀𝑑𝑒𝑐 40 13.22

𝑀𝑡 0.3667 0.3373

𝑀𝑟 0.323 0.7853

Table 9 shows the effect of decreasing the remanent magnetisation in the dyke, and

hence decreasing the Q-ratio. As the amount of remanence decreases, the effect of the

error in the total magnetisation estimate increases, and the result is a decrease in

accuracy for inclination and declination estimation. High Q-ratios implying high

remanence can offset some of the inaccuracy in the magnetisation calculation.

146

Table 9 Indication of errors in technique through a range of Q-ratios. The results represent a

dyke of width 10 meters, depth of 20 meters, depth extent of 3000 m, with, 𝑩 =
 𝟐𝟖 𝟎𝟎𝟎 𝐧𝐓,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰, 𝑴𝒊𝒏𝒄 = −𝟐𝟎° and 𝑴𝒅𝒆𝒄 = 𝟒𝟎°. Values for 𝑴𝒓
are changed in the test.

𝑀𝑟 (A/m) Q-Ratio Inclination Declination

0.323 2.1 -21.97 41.07

0.269 1.46 -23.25 41.84

0.215 0.934 -25.25 43.07

0.1615 0.525 -28.40 45.11

0.108 0.233 -33.48 48.69

0.081 0.131 -37.35 51.77

This is an important limitation, since inaccurate magnetisation results will also result in

inaccurate remanent field calculations.

5.3.2 Tests on two dykes with no remanence

A test is necessary to see if the calculation holds up when more than one dyke in present.

Two north-south dykes were modelled with the following parameters. 𝐵𝑎 = 28,000 nT,

𝐻𝑖𝑛𝑐 = 60°, 𝐻𝑑𝑒𝑐 = −30°, 𝑘 = 0.01 𝑆𝐼. Each dyke has a width of 10 m, and a depth of 20 m

and length of 400 m. The bottom of the modelled dykes is 3000 m. The grid spacing was

10 m, with a measurement centred over each dyke. The area is 400 m by 400 m,

implying a 40x40 calculated grid. Figure 58 shows the forward model, and Figure 59

shows the tensor data calculated from that model. Figure 60 to Figure 64 are all

calculated using equations (5.35), (5.36), (5.37), (5.62) and (5.63) respectively. Figure 60,

Figure 61 and Figure 62 all show constant values, which is what would be expected since

neither dyke has remanence. As a side note, only dykes were modelled because of the

limitation of the magnetisation calculation to dykes. Table 10 shows the results of the

calculations for both dykes in this case. Discrepancies in the magnetisation values are

due to the additive effect of the fields from the two dykes on each other.

147

Figure 58 Two dykes modelled with the following parameters. 𝑩𝒂 = 28,000 nT, 𝑯𝒊𝒏𝒄 = 𝟔𝟎°,
𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰. Each dyke has a width of 10 m, a depth of 20 m and length of
400 m. The bottom of the modelled dykes is 3000 m. The grid spacing was 10 m. (a) Top view
of the model. (b) Side view of the model with calculated TMI, at the location of the blue line
in (a)

Table 10 Summary of results for two dykes of width 10 meters, depth of 20 meters, depth

extent of 3000 m, with 𝑩 = 𝟐𝟖 𝟎𝟎𝟎 𝒏𝑻,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰 and no
remanence.

Parameter Left Dyke Right Dyke

Original Calculated Original Calculated

𝛼𝑡 -0.25 -0.2500 -0.25 -0.2499

𝛽𝑡 -0.433 -0.4330 -0.433 -0.4331

𝛾𝑡 0.866 0.8660 0.866 0.8661

𝑀𝑖𝑛𝑐 N/A N/A N/A N/A

𝑀𝑑𝑒𝑐 N/A N/A N/A N/A

𝑀𝑡 0.2228 0.2138 0.2228 0.2295

𝑀𝑟 N/A N/A N/A N/A

Figure 63 shows the total magnetisation calculated for two dykes. The results given on

this image can also be compared with the results in Table 5 which were for a single dyke.

The calculated value for total magnetisation lies values between 0.21 A/m and 0.23 A/m,

which is close to the true value of 𝑀𝑡 = 0.2228 A/m. Note that for magnetisation and

remanent inclination and declination, only the results above the dykes are valid. This is

due to the depth portion of the calculation which is only correct over the dyke. The off

dyke asymmetry in the magnetisation calculations is an artefact caused by the depth

portion of the calculation in equation (5.61), given by the ratio of analytic signals,

changing as the observation point moves away from the dyke. In contrast, Figure 65

shows the same calculation using equation (5.59), which has a constant depth for the

148

dyke. Consequently the result is far more symmetrical. However, the depth to the dyke

must be known in this case. The reality is that the symmetry of the anomalies is of no

consequence (other than for visual effect), since the positions of the dyke should already

be known either from the analytic signal itself or standard source depth calculations.

Figure 64 shows the calculated remanent magnetisation. Since this calculation uses the

total magnetisation values for a dyke, and since that calculation is only valid above a

dyke, only the areas above the dykes are valid. As can be seen, the values are low (blue)

over the dykes, indicating no remanent magnetisation is present.

The interference pattern on the edge of Figure 63 and Figure 64 is a side effect of the

calculation of 𝐴𝑠𝑧0 or 𝐴𝑠0 , which have edge effects as a result of FFT generated Hilbert

transforms. This effect is amplified in (5.61) and (5.62), which takes the square of the

analytic signal. The pattern is not present when using equation (5.59), which does not

square the analytic signal.

Figure 65 and Figure 66 show the total magnetisation and remanence calculated using

equation (5.59). The results are better than in the case of (5.61). The magnetisation

estimates are close to the true value of 0.2228 A.m. Anomalies are far more symmetric,

leaving little doubt as to the location of the dyke. The symmetry of the two anomalies is a

result of the fact that this equation does not divide one analytic signal by another, but

rather uses a constant depth estimate, implying that the depth to the dyke must be known

in order to use this equation. This is not necessarily a disadvantage, since the depth

estimate can come from an outside source, allowing for better depth estimates. In the

case of (5.61); one analytic signal is divided by another to automatically calculate this

depth, but with the consequence that the depth estimates will vary away from the dyke,

leading to a non-symmetric response. The advantage of using equations like (5.61) is that

should the dykes have different depths, it will automatically account for this.

149

Figure 59 Magnetic field and components. a) to c) show the three components of the

magnetic field - 𝑩𝒙, 𝑩𝒚, 𝑩𝒛. d), e), f), g), h) and j) show the tensor components

𝑩𝒙𝒙, 𝑩𝒙𝒚, 𝑩𝒙𝒛, 𝑩𝒚𝒚, 𝑩𝒚𝒛, 𝑩𝒛𝒛 respectively. i) Total magnetic intensity of the study area. The

magnetic field intensity used was 28000 nT, the susceptibility was 0.01 SI, the inclination

was 60º, the declination was −𝟑𝟎°. Each dyke has a width of 10 m, and a depth of 20 m.
There is no remanence.

150

Figure 60 Results of calculating the 𝜶𝒕 direction cosine. The value is constant everywhere
since the dykes are not remanently magnetised.

Figure 61 Results of calculating the 𝜷𝒕 direction cosine. The value is constant everywhere
since the dykes are not remanently magnetised.

151

Figure 62 Results of calculating the 𝜸𝒕 direction cosine. The value is constant everywhere
since the dykes are not remanently magnetised.

Figure 63 Total magnetisation over two dykes with no remanent magnetisation and using
equation (5.61) (outline shown in black). The off dyke asymmetry is caused by the variation
in the depth solution component of this calculation resulting from the ratio of the two
analytic signals in the calculation of equation (5.61)

152

Figure 64 Output from remanent magnetisation calculation over two dykes with no remanent
magnetisation and using equations (5.63) and (5.61) (outline shown in black).

Figure 65 Total magnetisation over two dykes with no remanent magnetisation and using
equation (5.59) (outline shown in black)

153

Figure 66 Output from remanent magnetisation calculation over two dykes with no remanent
magnetisation using equation (5.63) and (5.59) (outline shown in black)

5.3.3 Tests on two dykes with remanence introduced

To test the effect of remanence in the calculation across multiple dykes, two north-south

dykes were modelled with the following parameters. B = 28,000 nT, 𝐻𝑖𝑛𝑐 = 60°, 𝐻𝑑𝑒𝑐 =

−30°, 𝑘 = 0.01 𝑆𝐼. The right dyke has the following remanent values: 𝑀𝑟 = 0.323 𝐴/𝑚,

𝑀𝑖𝑛𝑐 = 50° and 𝑀𝑑𝑒𝑐 = −20°. Each dyke has a width of 10 m, length of 400 m and a

depth of 20 m. The bottom of the modelled dykes is 3000 m. The grid spacing was 10 m,

with a measurement centred over each dyke. Note that the eastern dyke has remanence,

while the western dyke has no remanence. The area is 400 m by 400 m, implying a

40x40 calculated grid. Figure 67 shows the forward model, and Figure 68 shows the

tensor data calculated from that model. Figure 69 to Figure 74 are all calculated using

equations (5.35), (5.36), (5.37), (5.62) and (5.63) respectively. Figure 69 to Figure 71

show the direction cosine results. As can be expected, the direction cosines are different

between the two dykes. Table 11 shows a summary of the results.

154

Figure 67 with the following parameters. B = 28,000 nT, 𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰.
The right dyke (blue) has the following remanent values: 𝑴𝒓 = 𝟎. 𝟑𝟐𝟑 𝑨/𝒎, 𝑴𝒊𝒏𝒄 = 𝟓𝟎° and

𝑴𝒅𝒆𝒄 = −𝟐𝟎°. Each dyke has a width of 10 m, length of 400 m and a depth of 20 m. The depth
extent of the modelled dykes is 3000 m. The grid spacing was 10 m. (a) Top view of the
model. (b) Side view of the model with calculated TMI, at the location of the blue line in (a)

Two things must be noted. Firstly, the calculation of susceptibility does not give good

results over the remanent dyke. This is because the equations from section 4.5.4 do not

account for the effect of remanence. Because of this, knowledge of the susceptibility is

assumed (0.01 SI) as before and as a result calculated magnetisations and remanent

field directions are close to the original values. Without knowing the susceptibility, the

remanent parameters will be incorrect. A simple test for the presence of remanence is by

comparison of the calculated direction cosines to that of the ambient field. If they are

approximately the same, there is no remanence and the susceptibility value can be used

in modelling.

The second is that the deviations of the direction cosines from the modelled direction

cosines is not strictly speaking wrong. The difference in the values comes from

perspective. The original values are from the perspective of the sources and reflect the

field direction from the respective source only. The calculated values are from the

combination of all sources in the region and reflect what an observer will see. As such

they will be different. Nevertheless, as can be seen, directly over the sources they are a

reasonable approximation for the source cosines.

155

Table 11 Summary of results for two dykes of width 10 meters, depth of 20 meters, depth

extent of 3000 m, with 𝑩 = 𝟐𝟖 𝟎𝟎𝟎 𝒏𝑻,𝑯𝒊𝒏𝒄 = 𝟔𝟎°, 𝑯𝒅𝒆𝒄 = −𝟑𝟎°, 𝒌 = 𝟎. 𝟎𝟏 𝑺𝑰 and no

remanence. The dyke on the right has remanence with the following parameters: 𝑴𝒓 =
𝟎. 𝟑𝟐𝟑 𝑨/𝒎, 𝑴𝒊𝒏𝒄 = 𝟓𝟎° and 𝑴𝒅𝒆𝒄 = −𝟐𝟎°.

Parameter Left Dyke (No Remanence) Right Dyke (Remanence)

Original Calculated Original Calculated

𝛼𝑡 -0.25 -0.2500 -0.2332 -0.2330

𝛽𝑡 -0.433 -0.459 -0.5368 -0.5250

𝛾𝑡 0.866 0.867 0.8108 0.8106

𝑀𝑖𝑛𝑐 N/A N/A 50 51.245

𝑀𝑑𝑒𝑐 N/A N/A -20 -20.915

𝑀𝑡 0.2228 0.2054 0.5432 0.5820

𝑀𝑟 N/A N/A 0.323 0.3576

𝑘 0.01 0.009 0.01 0.026

The prominent anomaly at the top of Figure 69, Figure 70 and Figure 71 is an important

discussion point. The same anomaly results through the use of any of the options for

direction cosine calculations and is therefore not an error in the equations. The direction

cosine images contain no information about magnetization, and only give information

about the field direction at each point. In these figures, the two dykes stop at the top and

the bottom of the figure. Along the length of the dykes, their respective equipotential field

lines will run parallel to each other, resulting in a smooth transition of direction cosines. At

the ends of the dykes (such as in the north of the figures), these lines diverge resulting in

a more varied field direction. This, coupled with the field direction from each source, can

cause anomalies such as seen to the north. The anomaly is real, and although it is not an

indicator of a source beneath it, it is an indicator of a remanent source nearby. The

implication of this is that for modelling purposes, the source location must be known

beforehand. Fortunately, source location is easily determinable using other methods,

such as the analytic signal.

Figure 72 shows the total magnetisation calculated for a dyke. Figure 74 shows remanent

magnetisation. Since this calculation uses the total magnetisation values for a dyke, and

since that calculation is only valid above a dyke, only the results above the dykes are

valid. Edge effects have been masked for presentation purposes.

Figure 73 shows the same calculation using equation (5.59). As before, the result is far

more symmetrical. However, the depth to the dyke must be known in order to use this

equation.

Figure 74 shows remanent magnetisation using equations (5.63) and (5.61). As can be

seen, the values are low (blue) over the non-remanent dyke and high (red) over the

remanent dyke. Edge effects have been masked for presentation purposes. In contrast,

156

Figure 75 shows remanent magnetisation using equations (5.63) and (5.59). The

anomalies are far more symmetric, since a constant depth to the dyke is used in equation

5.59.

Figure 68 Magnetic field and components. a) to c) show the three components of the

magnetic field - 𝑩𝒙, 𝑩𝒚, 𝑩𝒛. d), e), f), g), h) and j) show the tensor components

𝑩𝒙𝒙, 𝑩𝒙𝒚, 𝑩𝒙𝒛, 𝑩𝒚𝒚, 𝑩𝒚𝒛, 𝑩𝒛𝒛 respectively. i) Total magnetic intensity of the study area. The

magnetic field intensity used was 28000 nT, the susceptibility was 0.01 SI, the inclination

was 60º, the declination was −𝟑𝟎°. The eastern dyke has 𝑴𝒓 = 𝟎. 𝟑𝟐𝟑 A/m, 𝑴𝒊𝒏𝒄 = 𝟓𝟎° and

𝑴𝒅𝒆𝒄 = −𝟐𝟎°. Each dyke has a width of 10 m, and a depth of 20 m.

157

Figure 69 Results of calculating the 𝜶𝒕 direction cosine. The dyke on the right has remanent
magnetisation.

Figure 70 Results of calculating the 𝜷𝒕 direction cosine. The dyke on the right has remanent
magnetisation.

158

Figure 71 Results of calculating the 𝜸𝒕 direction cosine. The dyke on the right has remanent
magnetisation.

159

Figure 72 Total magnetisation over two dykes and using equation (5.61) (outline shown in
black). The dyke on the right has remanent magnetisation. Edge effects due to the Hilbert
transform have been masked.

Figure 73 Total magnetisation over two dykes and using equation (5.59) (outline shown in
black). The dyke on the right has remanent magnetisation

160

Figure 74 Output from the remanent magnetisation calculation over two dykes and using
equations (5.63) and (5.61) (outline shown in black). The dyke on the right has remanent
magnetisation. Edge effects due to the Hilbert transform have been masked.

Figure 75 Output from the remanent magnetisation calculation over two dykes using
equation (5.63) and (5.59) (outline shown in black). The dyke on the right has remanent
magnetisation.

161

CHAPTER 6 SYNTHESIS OF MODELLING TECHNIQUES

APPLIED TO REAL DATA

The synthesis of the techniques discussed in the preceding chapters is straightforward:

1) Use the source detection routine to calculate the depths to sources for the model

(section 4.5.1 and 4.5.2) across profiles or grids.

2) Obtain estimates or calculate the susceptibilities of the sources (section 4.5.4)

across profiles or grids.

3) If the data is real tensor data, assess the remanence of the bodies (section 5.2)

across profiles or grids.

4) Determine connectivity, if any, between identified sources (section 4.5.3) and

extract relevant dyke or step solutions from these features (section 6.2)

5) Use the voxel based forward modelling to complete the model, based on tensor

data (section 3.6). The number of input lithologies can be determined by using

classification on susceptibility solutions, and remanent parameters if available.

Points 1 to 3 calculate values across entire datasets. Obviously, not all cells in a grid refer

to dykes or steps, so point 4 uses peak following to extract only the relevant solutions.

Point 5 then applies this calculated information to forward modelling. Figure 76 shows the

process flow for the case where tensor data is calculated from TMI data (pseudo tensor

data). Figure 77 shows the case where measured tensor data is available.

Figure 76 The process flow for calculations involving pseudo tensor calculations

Dataset

•Pseudo Tensor Calculation

Depths

•Calculate step depths

•Calculate dyke depths

Susceptibilities

•Calculate for dyke depths

•Calculate for step depths

Feature Extraction

•Peak following to identify
dykes or contacts

•Extract data per feature
type

Forward modelling

•Classify susceptibilities to
simplify lithologies and do
forward modelling

162

Figure 77 The process flow for calculations involving measured tensor data

These steps will be demonstrated and elaborated on using real data.

In addition to measured tensor data available over the Tallawang area, tensor data will be

calculated from conventional total magnetic intensity data to illustrate the technique over

a wider area.

6.1 Calculation of tensor components from TMI

Clark (2013) discusses the use of a calculated tensor dataset versus a measured tensor

dataset. He confirms that the tensor components can be calculated from TMI data, but

may be affected by deficiencies in the TMI survey itself. Clark (2013) further stressed that

while direct measurement of the gradient tensor would produce superior results, useful

gradient tensor data can be produced via Fourier processing, provided that a number of

issues are addressed. These include:

 Effective removal of regional trend.

 Careful windowing, to minimise Gibbs phenomenon “ringing” and spectral

leakage.

 Sample density (including between lines) appropriate to eliminate aliasing of high

frequencies in the measured fields.

 Appropriate grid interpolation method for TMI data, with sampling no greater than

ℎ/2, where h is the depth to the source (Reid, 1980).

 Accurate reduction of TMI data to a common level.

Dataset

•Measured Tensor Data

•Filtering

Depths

•Calculate step depths

•Calculate dyke depths

Susceptibilities

•Calculate for dyke depths

•Calculate for step depths

Remanence

•Calculate direction cosines

•Calculate magnetisations

•Calculate field directions

Feature Extraction

•Peak following to identify
dykes or contacts

•Extract data per feature
type

Forward modelling

•Classify lithologies by
susceptibility and
remanence

•Calculate Forward Model

163

Clark (2013) states that the TMI surveys require a line spacing comparable to the survey

altitude. If there is non-magnetic cover, the depth to magnetic basement can be added to

the survey altitude. The grid spacing should be no more than half the depth to sources.

Clark (2013) does confirm that grid spacing restriction can be relaxed slightly in situations

where the source crosses multiple lines.

The creation of a tensor dataset is straightforward. The process is described by Clark

(2013), Pedersen, Rasmussen and Dyrelius (1990) and Yin et al.(2016). Using fast

Fourier transforms, the components of the magnetic field are related to the total magnetic

intensity 𝑓 as follows:

ℱ[𝐵𝑥] =

𝑖 ∙ 𝑘𝑥

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.1)

ℱ[𝐵𝑦] =

𝑖 ∙ 𝑘𝑦

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.2)

ℱ[𝐵𝑧] =

𝑘

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.3)

where 𝑘 = √𝑘𝑥
2 + 𝑘𝑦

2 , 𝑘𝑥 and 𝑘𝑦 are spatial frequencies in horizontal direction, and should

not be confused with susceptibility. ℱ[] expresses the Fourier transform. Also, 𝛼, 𝛽 and

𝛾 are direction cosines as defined in equations (2.14), (2.15) and (2.16). Similarly, the

tensor operators are defined as:

ℱ[𝐵𝑥𝑥] =

−𝑘𝑥
2

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.4)

ℱ[𝐵𝑥𝑦] =

−𝑘𝑥𝑘𝑦

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.5)

ℱ[𝐵𝑥𝑧] =

𝑖 ∙ 𝑘𝑥𝑘

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.6)

ℱ[𝐵𝑦𝑧] =

𝑖 ∙ 𝑘𝑦𝑘

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.7)

164

ℱ[𝐵𝑦𝑦] =

−𝑘𝑦
2

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.8)

ℱ[𝐵𝑧𝑧] =

𝑘2

𝑖 ∙ (𝛼𝑘𝑥 + 𝛽𝑘𝑦) + 𝛾𝑘
ℱ[𝑓] (6.9)

These equation make use of the approximation to the TMI, i.e.

 𝑓 = 𝛼 ∙ 𝐵𝑥 + 𝛽 ∙ 𝐵𝑦 + 𝛾 ∙ 𝐵𝑧 (6.10)

The true expression is actually (Schmidt and Clark, 2006):

𝐵𝑡𝑚𝑖 = √(𝐵𝑥 + 𝛼𝐵)2 + (𝐵𝑦 + 𝛽𝐵)

2
+ (𝐵𝑧 + 𝛾𝐵)2 − 𝐵𝑎

= 𝑓 +
𝐵𝑥

2 + 𝐵𝑦
2 + 𝐵𝑧

2 − 𝐵𝑡𝑚𝑖
2

2𝐵𝑎

(6.11)

where 𝐵𝑡𝑚𝑖 also refers to the measured total magnetic intensity and 𝐵 is the ambient field.

This implies that if the anomalies are big enough, the calculations for the tensors will be

inaccurate. The process to correct this is as follows (Clark, 2013):

1) Calculate the values for the magnetic vector data using equations (6.1), (6.2) and

(6.3)

2) Calculate a corrected estimate for the magnetic field 𝑓 using the following

equation:

𝑓 = 𝐵𝑡𝑚𝑖 −

𝐵𝑥
2 + 𝐵𝑦

2 + 𝐵𝑧
2 − 𝐵𝑡𝑚𝑖

2

2𝐵𝑎

 (6.12)

3) Repeat steps 1 and 2 with the updated value for 𝑓, until the difference between 𝑓

and 𝐵𝑡𝑚𝑖 is less than an acceptable threshold defined by the expected noise

level.

4) Apply this updated value to equations (6.4) to (6.9).

This technique is not without its limitations though. The process relies on direction

cosines which must be known beforehand. These direction cosines are not due to only

the ambient field, but also include the effect of remanence in the source. If remanence is

present, especially if its magnetisation is proportional to that of the inducing field,

165

incorrect solutions will result. Figure 78 illustrates this. The source was modelled in an

ambient field of 28 000 nT, with inclination of 60 degrees, and declination of -30 degrees.

The susceptibility was 0.01 SI. The source was 20 m below the surface. In Figure 78(b)

remanent magnetisation of 0.323 A/m with an inclination of -40 degrees and declination

of 20 degrees is applied.

Figure 78 Demonstration of the effect of remanence. The black square shows the horizontal
location of the source (a) No remanence and the derived z component matches its modelled
counterpart. (b) Remanence is now modelled but the derived field is now different.

Figure 79 shows the effect of using direction cosines which incorporate the remanent

magnetisation of the source. The resultant derived field component is now a more

accurate approximation of the true field component.

Figure 79 Demonstration of the effect using correct direction cosines. The black square
shows the horizontal location of the source (a) No remanence and the derived z component
matches its modelled counterpart. (b) Remanence is now modelled, and the derived field is a
better approximation of the true field.

166

The paper by Schmidt et al., (2004) reports that the calculation of tensor data from TMI

data does retain the remanent information, as is evident from their results when

comparing calculated versus measured tensor data. In their case there is good

agreement between these two datasets. A body was modelled using remanent field

parameters and ambient field parameters similar to reported by Schmidt et al., (2004) for

the Tallawang survey. The source was modelled in an ambient field of 57 000 nT, with

inclination of -63 degrees, and declination of 12 degrees. The susceptibility was 2.5 SI.

The source was 20 m below the surface. The remanent magnetisation was 40 A/m with

an inclination of -70 degrees and declination of -60. The results are shown in Figure 80.

As can been seen there is negligible difference in anomaly shape between the

calculations where the body has remanence, to when the body does not have

remanence. In addition, in the remanent case, there is now good agreement between the

derived and the true values for the 𝐵𝑧 field.The logical conclusion is that for this case, the

combination of similar inclinations and low Q-ratio (.124 in this case) make the impact of

remanence on the peak shape negligible, giving the appearance that the technique can

account for remanence.

Figure 80 Demonstration of the effect of remanence using field parameters similar to that of
the Tallawang area. The black square shows the horizontal location of the source (a) No
remanence and the derived z component matches its modelled counterpart. (b) Remanence
is now modelled showing similar results.

A final case is shown in examining the effect of noise of this technique. The model used

is the same as that used for Figure 78. Gaussian noise with a standard deviation equal to

1.0% of the maximum data amplitude was added to the modelled TMI data. The same

noise was added for the case with remanence. In both cases the effect of noise has a can

be seen on the calculation of the component, but it is a minor effect and the integrity of

the component calculation is intact. In the remanent case, since this anomaly is flatter,

167

the effect of noise is larger, which is to be expected. These results show the robustness

of this technique.

Figure 81 Demonstration of the effect of Gaussian noise with a standard deviation equal to
1.0% of the maximum data amplitude added to the TMI. The black square shows the
horizontal location of the source (a) No remanence and the derived z component matches its
modelled counterpart, even with noise. (b) Remanence is now modelled but the derived field
is now different, and noise can be seen clearly here.

Figure 82 shows the effect of increased noise with Gaussian noise with a standard

deviation equal to 5.0% of the maximum data amplitude was added to the modelled TMI

data. Once again, the same noise was added for the case with remanence. The effect of

the noise has now increased dramatically, impacting on the integrity of the calculated

components. Therefore, the quality of the TMI data is important when using this

technique.

Figure 83 shows the effect of calculating the 𝐵𝑧 component from the derived 𝐵𝑥𝑧 tensor

component. This is achieved through numerical integration, and as expected there is a

shift in the results from the true value. This is because any derivative (such as 𝐵𝑥𝑧 which

is the x-derivative of 𝐵𝑧) eliminates any constant from the original quantity. Upon

integration, that constant is no longer present and a shift is the result. Since this

calculation was performed on the derived 𝐵𝑥𝑧 tensor data, the integrated value mimics the

derived 𝐵𝑧 data.

168

Figure 82 Demonstration of the effect of Gaussian noise with a standard deviation equal to
5.0% of the maximum data amplitude added to the TMI. The black square shows the
horizontal location of the source (a) No remanence and the derived z component has
deteriorated when compare to its modelled counterpart. (b) Remanence is now modelled but
the derived field is now different, and noise can be seen more clearly here

Figure 83 Demonstration of the effect of integrating the derived tensor values. (a) No
remanence and the integrated z component shows a shift from the true z component value.
(b) Remanence is once again modelled. The integrated value mirrors the derived field, with a
shift, and does not correspond to the true z component value.

In summary, tensor components can be calculated from TMI data, but care must be taken

to understand the limitations. Best results are achieved with data that is relatively noise

free, and for areas where there is no remanence. If remanence does occur in the study

area, good results can be achieved if the remanent directions are similar to the ambient

field direction, and the Q-ratio is low. Areas with remanence may need laboratory

samples measured to confirm this.

169

6.2 Peak Following Routine

The determination of the location of optimal solutions can be achieved through the use of

peak following on an appropriate edge detection dataset. In this case, the analytic signal

𝐴𝑠 can be used to find the location for relevant depth and susceptibility solutions. A

number of peak following routines are available. Some utilize derivatives to find peaks

and troughs where derivatives are zero. Others simply compare arrays with a moving

window and identify maximum points. False positives due to noise may be eliminated

through smoothing. This latter technique is what was used, and can be found in the SciPy

library (Jones, Oliphant, Peterson, et al, 2001) as the command argrelmax. The output

from this should be a set of grid row and column indices relating to peaks found. The

indices are then applied to the depth and susceptibility datasets to extract the correct

depth and susceptibility solutions. Figure 84 shows the input dataset from the

Lichtenberg/Zeerust region and Figure 85 shows the results.

Figure 84 Analytic signal dataset used as input for peak following routine

170

Figure 85 Peak locations plotted in terms of eastings and northings

Depths which are greater than the predefined depth of the model can then be filtered out

from these initial solution. Indices are reduced to reflect this filtering.

The next step is to differentiate between solutions of different sources. Point sources can

be differentiated from linear sources (such as edges or dykes) by using a relevant form of

cluster analysis with the index data (solution coordinates) as input. The Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) method (Ester et al., 1996) was

used in this case. DBSCAN has the advantage that it can find arbitrary shaped clusters.

Since valid solutions must be grouped into dykes and other sources, this is critical.

The DBSCAN method is a density-based clustering algorithm. It groups together points in

space that are packed closely together (points with many nearby neighbours). It classifies

points which are in low density regions as outliers. It requires two parameters, namely the

minimum number of points to form a dense region, and the minimum distance between

any two samples to be considered in the same neighbourhood. Because of the density

criterion, DBSCAN can find arbitrarily shaped clusters. It also does not require the

number of clusters to be set beforehand.

171

Filtering is applied to the DBSCAN results. In this case, since dykes are the target,

classes with too few members are excluded. Figure 86 shows the results.

Figure 86 Filtered results for the peak locations (Figure 85) after DBSCAN

A final point is that results may not be produced for only the feature being investigated.

For example, we may be interested in dykes only, but some steps may be visible. The

peak following routines may follow some of these sources as well (for example, since the

edge of a step is identified on the analytic signal by a peak). A final differentiation

between dykes, steps and other features can then be done through a process of manual

examination and elimination of relevant filtered results. This can be done in a GIS, for

example. While full automation is a desirable goal, manual interaction such as this can

improve the relevance and quality of results vastly.

172

6.3 Tallawang Field Trial

6.3.1 Geological Setting and Data

Tensor data over the Tallawang magnetite deposit was generously provided by Dr David

Clark of the CSIRO (Commonwealth Scientific and Industrial Research Organisation).

The Tallawang magnetite deposit (32°12′𝑆, 149°27′𝐸) is a tabular skarn body (Figure 87).

It is located 18 km north of Gulgong, New South Wales, Australia, along the western

margin of the Carboniferous Gulgong Granite (Schmidt et al., 2004; Clark et al., 1998).

The skarn was intruded during the late stages of the Kanimblan Orogeny in the Late

Carboniferous. The deposit strikes NNW and dips steeply to the west. The magnetite

occurs in lenses with magnetite zones being displaced in an east-west direction, by

transverse faulting (Schmidt et al., 2004).

Figure 87 Geology of the Tallawang skarn (Schmidt et al., 2004).

The magnetite body has been drilled, and the properties of oriented block samples of the

magnetite characterised. Schmidt et al., (2004) reported that the strongest samples had a

susceptibility of 3.8 SI, with a remanence of 40 A/m and Q-ratios of 0.2 to 0.5. The

remanence had a mean direction of WNW and steeply up. They further stated that this

direction was a combination of two directions, namely, a viscous remanent magnetization

(VRM) component in the direction of the recent geomagnetic field, and a reversed mid-

Carboniferous field component. Clark et al., (1998) calculated the inclination to be −72° ±

30°.

173

Schmidt et al., (2004) performed a tensor survey using the GETMAG system, detailed in

section 3.3.1. They also collected high resolution TMI data using two Caesium vapour

magnetometers separated vertically by 1 m. Readings were taken at 10 m intervals along

east-west lines. The TMI data was collected for comparison purposes with the tensor

data.

Three profiles were selected for the survey, denoted by 50mN, 60mN and 120mN by

Schmidt et al., (2004) and are shown in Figure 88.

Figure 88 TMI data collected over Tallawang, showing the location of the three tensor
profiles. Grid north is 340º True. Tensor survey lines are shown in black and are labelled.

6.3.2 Baseline Model of Tallawang Body

A simple baseline forward model of the Tallawang body was created in order to test

methodology and understand the results from the measured data. The Tallawang body

comprises a 10 m wide section of high magnetite content, with a further low magnetite

content section to the west of the body (Figure 87). The high magnetite section was

modelled since the majority of the anomaly comes from this ore and this makes for a

good approximation of a dyke. The body was modelled in an ambient field of 56 701.6 nT,

with inclination of -63 degrees, and declination of 11.47 degrees. The susceptibility was

2.5 SI. The source was 20 m below the surface. The remanent magnetisation was 30 A/m

with an inclination of -70 degrees and declination of -60 degrees. The model results are

174

shown in Figure 89. The axis orientation of the model is NED to match that of the

measured survey data.

Figure 89 Model of the dipping Tallawang body showing the calculated and measured data
over the deposit. The dashed black line indicates the centre of the body closest to the
surface. The body comprises of layers of rectangular prisms, illustrating the calculation of
such anomalies using rectangular prisms.

Figure 90 shows the tensor components calculated for the body. Tensor information is

contained largely in the y and z directions, which is to be expected since the body runs

north-south.

Figure 91 shows depth calculations using zero and first order analytic signal calculations.

Equations used for the depth are shown on the figure. Since the modelled body is dyke-

like, N=1. Depths calculated using these equations range from 14.5 to 19 metres. The

shallowest depth uses the y-component only, with the other three depths clustering

between 17 and 19 metres.

Figure 92 shows depth calculations using first and second order analytic signals.

Equations used for the depth are shown on the figure. These depths tend to be deeper,

ranging from 21 to 24 metres. Most of the depths cluster between approximately 21 and

22.5 metres, with the depth from the conventional analytic signal at 24 metres.

175

The hybrid depth using all three analytic signal components (denoted 𝐴𝑠𝑥𝑦𝑧 in equations

on the figures) gives conservative and stable solutions, since it appears with the clusters

of solutions on both cases.

Figure 90 Tensor components calculated for the Tallawang body.

176

Figure 91 Depth calculation using zero and first order analytic signals. (a) shows the zero
order calculations (b) shows the first order calculations (c) shows the depth results over the
centre of the anomaly. The dashed line shows the location of the body centre.

177

Figure 92 Depth calculation using first and second order analytic signals. (a) shows the first
order calculations (b) shows the second order calculations (c) shows the depth results over
the centre of the anomaly. The dashed line shows the location of the body centre.

178

Figure 93 Results for the dyke width calculation. (a) shows the conventional analytic signal,

denoted 𝑨𝟎 (b) shows the higher order analytic signal, denoted 𝑨𝟏. (c) shows results for the
width calculation. The dashed line shows the location of the body centre.

Figure 93 shows results for the width calculations. The width is estimated at 11.3 metres,

which is close to the modelled solution. A depth of 20 metres was used for this width

estimate, to show the relative accuracy of the width estimate under ideal conditions. This

depth is a reasonable mean value given the range of depths calculated using analytic

signals.

These results are presented first, since they lead into the susceptibility and magnetisation

calculations shown in Figure 94.

179

Figure 94 (a) Susceptibility calculations and (b) magnetisation calculations for the body. The
dashed line shows the location of the body centre.

Steep anomalies relate to equations where a fixed depth (20 m) was used. In all cases, a

width of 11.3 metres was used. The results give susceptibility ranges from 1.97 to 2.66.

Steep anomalies with accurate fixed depths give the most reliable solutions, between

2.35 to 2.53 SI. The true total magnetisation for the model is 140 A/m. Relative to this, the

solutions are underestimated, ranging from approximately 90 to 120 A/m.

Direction cosines for the modelled field were also calculated and are shown in Figure 95.

Figure 95 (a) Quiver plot showing a comparison between inclinations from the ambient field
and the modelled field including remanence. (b) Quiver plot showing a comparison between
declination from the ambient field and the total modelled field including remanence. There is
not much difference between the two fields.

180

As can be seen, the inclinations are almost identical, where the ambient inclination was

-63 degrees, and the total inclination including remanence, is now -66 degrees.

Accordingly the quiver plot shows not much change. In the case of the declinations, there

is a small change visible, where the ambient declination was 11.47 degrees and the new

resultant declination is now 1.32 degrees. The quiver plot is useful since it gives an

indication of where the remanent field direction lies, as well as the overall impact of

remanence on the ambient field. In this case, the new total declination is 1.32 degrees,

which is less than 11.47 degrees, and is diagnostic of a remanent field which is less than

1.32 degrees (since in this case only a value lower than 1.32 degrees can reduce the

ambient field from 11.47 degrees to 1.32 degrees).

Figure 96 (a) Direction cosines resulting from the model. (b) calculated inclinations and
declinations using ideal susceptibilities and magnetisations. (2.5 SI and 140 A/m). The
dashed line shows the location of the body centre.

Figure 96(a) shows direction cosines using ordinary graphs. They are constant since

there is only one body in the model, and the field which results is constant. Figure 96(b)

shows values for inclination and declination when ideal values of 2.5 SI and 140 A/m are

used for susceptibility and magnetisation. If the magnetisation is set to 114 A/m, in line

with one of the magnetisation estimates, the results are not as accurate, with a resulting

inclination of -21 degrees and declination of -119 degrees, This then shows that, as

discussed in section 5.2, because of the low Q-ratio (0.07 in the case of this model)

remanent magnetisation inclination and declination estimates of real data are unlikely to

be accurate for this area.

181

6.3.3 Modelling of measured tensor data.

Line 50 and line 60 were examined since, being 10 metres apart, they offer the unique

possibility of being able to measure tensor gradients between the lines. This is necessary

for some of the calculations (for example the 3D analytic signal), which require cross line

gradients for best results. The sample spacing of the data along each line was also 10

metres. Figure 97 shows the TMI data of the two lines. The location of the lines can be

seen in Figure 88.

Figure 97 TMI data of (a) line 50 and (b) line 60. The dashed line shows the location of the
body centre.

Figure 98 shows the first and second order analytic signals from line 50. Both line 50 and

line 60 are used in the x (northern) components, which accounts for the small peak in the

west. What is important to note is that while there is a single peak for the first order

analytic signal, the second order analytic signal has multiple peaks. In analytic signals,

this suggests that the body is shallow, and that for this dataset, a step solution (N=0) may

need to be used as opposed to a dyke solution (N=1).

182

Figure 98 (a) First order analytic signal of line 50 showing distinct peak (b) Second order
analytic signal of line 50 showing more complex peaks. The dashed line shows the location
of the body centre.

183

Line 60

Figure 99 shows the tensor data recorded for line 60. The samples are spaced 10 metres

apart. The sharp anomaly in the west is caused by a steel drill collar (Clark, 2012). As

such, this region is of no interest and is trimmed off in subsequent plots. A comparison

between Figure 90 and Figure 99 shows that the tensor components for the measured

data has a greater range over the skarn than in the model. This clearly shows that the

skarn is more complex than a simple dyke and already may test some of the assumptions

with respect to a dyke formula. Figure 100 shows the depth calculations using zero and

first order analytic signals. The solutions range between 16 metres and 24 metres which

the worst solution being that using 𝐴𝑠𝑦. Figure 101 shows the depth calculation using first

and second order analytic solutions for a dyke. These range between 40 and

approximately 100 metres. However, if the step model is used, since 𝐴𝑠2 better

resembles step data (it has a low instead of a peak over the source), then the depth

solutions would range between 20 and 50 metres, with the majority of the solutions

between 20 and 32 metres. Figure 102 shows the calculation of body width, which ranges

between 10 to 25 metres. All these solutions are consistent with the published depth of

approximately 19.9 metres (Clark, 2012) and the width on the geological map (Figure 87)

(Schmidt et al., 2004).

184

Figure 99 Tensor components measured for line 60 of the Tallawang body.

185

Figure 100 Depth calculation using zero and first order analytic signals. (a) shows the zero
order calculations (b) shows the first order calculations (c) shows the depth results over the
centre of the anomaly. N = 1. The dashed line shows the location of the body centre.

186

Figure 101 Depth calculation using first and second order analytic signals. (a) shows the
first order calculations (b) shows the second order calculations (c) shows the depth results
over the centre of the anomaly. N = 1. The dashed line shows the location of the body centre.

187

Figure 102 Results for the dyke width calculation. (a) shows the conventional analytic

signal, denoted 𝑨𝟎 (b) shows the higher order analytic signal, denoted 𝑨𝟏. (c) shows results
for the width calculation. The dashed line shows the location of the body centre

Figure 103 shows results of the calculated susceptibility and magnetism. A depth of 20

metres and a width of 15 metres was used in the calculation. Susceptibilities range

between 2 SI and 14 SI over the body, and magnetisations range between 100 A/m and

600 A/m. Clearly many of these values are too large, with the components using 𝐴𝑠𝑧

closest to the real values (4.3 SI to 4.7 SI and 193 A/m to 211 A/m). The inaccuracy may

be indicative of the incorrect model used for calculating magnetisation and susceptibility

and therefore not fitting this case perfectly.

188

Figure 103 (a) susceptibility calculated from analytic signal formulae (b) magnetisation
calculated from analytic signal formulae. The dashed line shows the location of the body
centre.

Figure 104 shows quiver plots of the inclinations and declinations of the measured tensor

values, compared with those of the ambient field. Measured inclinations, for the most

part, are largely coincident with that of the ambient field. This makes sense since the

remanence is steeply up, which is largely coincident with the ambient field. Deviations in

the values to the west are caused either by another source or remanence, or, errors in

the data (since the magnitude of the cosines in this section are occasionally greater than

1, which can only occur if there are errors in the measured data). Measured declinations

show a more complex picture. They are largely positive west of the skarn and negative

east of the skarn. This may relate to the complexity of the remanence which resides in

the magnetite lenses.

The direction cosines shown on Figure 105(a) show a complexity in the field over the

body, meaning that assumptions of homogeneity in modelling may not be valid. Some of

the variability may be due to inherent data accuracy.

Figure 105(b) shows results for the inclination and declination calculations. The values of

susceptibility and magnetisation used were calculated values and were 4.69 SI and

211.67 A/m respectively. These values are too large and the inaccuracies are reflected in

the calculated inclinations and declinations, which are incorrect. The remanent

magnetisation calculated from this is 103.97 A/m, which is larger than the maximum value

of 40 A/m by a factor of 2.5.

189

Figure 104 (a) Quiver plot showing a comparison between inclinations from the ambient field
and the measured field including remanence. (b) Quiver plot showing a comparison between
declination from the ambient field and the measured field including remanence

Figure 105 (a) Direction cosines resulting from the model. (b) calculated inclinations and
declinations. The dashed line shows the location of the body centre.

190

Line 50

Line 50 shows a similar picture. Figure 106 shows tensor data measured over the skarn.

The anomaly to the west may be related to the magnetic collar and is excluded from

future figures.

Figure 106 Tensor components measured for line 50 of the Tallawang body.

Figure 107 shows the depth calculations using zero and first order analytic signals. The

solutions range between 13 metres and 20 metres with the worst solution being that

using 𝐴𝑠𝑧 in this case. Figure 108 shows the depth calculation using first and second

order analytic solutions for a dyke. These range between 35 and approximately 65

metres. However, if the step model is used, since 𝐴𝑠2 resembles step data more, then the

depth solutions would range between 17 and 32 metres, with the majority of the solutions

between 17 and 27 metres. Figure 109 shows the calculation of body width, which ranges

191

between 20 to 24 metres. All these solutions are consistent with the published depth of

approximately 19.9 metres (Clark, 2012) and the width on the geological map in Figure

87 (Schmidt et al., 2004).

Figure 107 Depth calculation using zero and first order analytic signals. (a) shows the zero
order calculations (b) shows the first order calculations (c) shows the depth results over the
centre of the anomaly. The dashed line shows the location of the body centre.

192

Figure 108 Depth calculation using first and second order analytic signals. (a) shows the
first order calculations (b) shows the second order calculations (c) shows the depth results
over the centre of the anomaly. The dashed line shows the location of the body centre.

193

Figure 109 Results for the dyke width calculation. (a) shows the conventional analytic

signal, denoted 𝑨𝟎 (b) shows the higher order analytic signal, denoted 𝑨𝟏. (c) shows results
for the width calculation. The dashed line shows the location of the body centre. Gaps in
results are where no solution was possible.

Figure 110 shows results of the calculated susceptibility and magnetism. A depth of 20

metres and a width of 15 metres was used in the calculation. Susceptibilities range

between 0.5 SI and 7 SI over the body, and magnetisations range between 25 A/m and

300 A/m. Once again, many of these values are too large. In this case 𝐴𝑠𝑧 formulae

provide the best solutions, ranging from 1.7 SI to 3.95 SI and 77 A/m to 178 A/m. Given

the limited data available for this study, more survey data is needed for more conclusive

formulae comparisons.

194

Figure 110 (a) susceptibility calculated from analytic signal formulae (b) magnetisation
calculated from analytic signal formulae. The dashed line shows the location of the body
centre.

Figure 111 shows quiver plots of the inclinations and declinations of the measured tensor

values derived from direction cosines, compared with those of the ambient field.

Measured inclinations, for the most part, are once again largely coincident with that of the

ambient field. Measured declinations are largely coincident over the peak, and are

positive west of the skarn while being negative east of the skarn. This is consistent with

line 60’s results

The direction cosines shown on Figure 112(a) once again show a complexity in the field

over the body. They are slightly different to those in Figure 105(a), emphasizing

inhomogeneity, while close enough to show that similar results are obtained for both

lines.

Figure 112 (b) shows results for the inclination and declination calculations. The values of

susceptibility and magnetisation used were calculated values and were 1.71 SI and 77.56

A/m respectively. The values are chosen from the same magnetisation and susceptibility

calculations as for profile 60. These values are smaller than expected, and once gain the

inaccuracies are reflected in the calculated inclinations and declinations, which are

incorrect. The remanent magnetisation calculated from this is 39.24 A/m, which is close to

the true value.

195

Figure 111 (a) Quiver plot showing a comparison between inclinations from the ambient field
and the measured field including remanence. (b) Quiver plot showing a comparison between
declination from the ambient field and the measured field including remanence.

Figure 112 (a) Direction cosines resulting from the model. (b) calculated inclinations and
declinations. The dashed line shows the location of the body centre.

196

6.3.4 Discussion of Results

The testing of source distance methods over Tallawang followed two phases. First, a test

model was created in order to understand and predict typical values which should be

expected as well as identify any possible limitations in this specific magnetic field and

remanence environment. From this, successful width and depth predictions resulted.

Predicted magnetisations were lower than in the model, and hinted at possible problems

in the remanence calculation to follow. If the real magnetisation and susceptibility values

were used, then inclination and declination could be predicted reliably. However, the use

of predicted magnetisations gave incorrect inclinations and declinations for remanence.

This simple test can be used in any environment to ascertain whether the prevailing

geomagnetic and geological conditions will allow robust determination of remanent

magnetisation parameters.

In the second phase, two of the Tallawang lines were investigated. Depth and width

results were in line with real depth values. Susceptibility and magnetisation solutions

were extremely varied and as such remanent parameter estimations were incorrect in

both cases. It should come as no surprise that in an area of remanence, the susceptibility

solutions would vary since the analytic formula for susceptibility does not account

properly for remanence. However, the direction cosine calculations are robust and make

no assumptions other than accuracy for measured data. These results showed a complex

body which is probably not entirely homogenous with respect to it physical properties.

Although the direction cosines are for the total magnetic field, and not the remanence

field alone, when compared with the ambient field direction cosines, a sense of remanent

field direction, at least in a gross sense, can be gleaned.

A comment should be made regarding the sample separation and the depth calculation.

The minimum depth obtainable from a sample spacing of ∆𝑥 is 𝑟 = 2∆𝑥 − 𝑓𝑙𝑦𝑖𝑛𝑔 ℎ𝑒𝑖𝑔ℎ𝑡

(Reid, 1980). This equation is applied to any calculation which relies on the relationship

between adjacent samples – for example derivatives and power spectra calculations. In

this case, since there is no flying height, this implies that with a sample spacing of 10

metres, the minimum depth calculated is 20 metres. This indicates that the depth

calculation is operating at the limits of its accuracy for the Tallawang survey. However,

should all the tensor field data be entirely measured (i.e. no gradient calculations are

performed), then this limitation is not present, since the depth calculations will then not

rely on any information (derivative calculations in this case) derived from adjacent

samples.

197

As a final note, even though low Q-ratios are indicative of inaccurate remanence

calculations, low Q-ratios are also indicative of a situation where remanence does not

play a serious role in the field directions, and so forward modelling is still effective using

just ambient field parameters. Therefore the restriction of this technique to higher Q-ratios

basically limits it to situations where it is really needed.

198

6.4 Lichtenberg/Zeerust

6.4.1 Geological Setting and Data

The study area chosen is a small area in the Lichtenberg/Zeerust region in the North

West Province of South Africa. Dolomite of the Malmani Subgroup covers most of the

area with Ventersdorp Supergroup present along the southern margin. Karoo Supergroup

rocks partly cover the older material in the southeast (Figure 113). The Ventersdorp

Supergroup consists of basaltic and andesitic rocks and sedimentary sequences and is

considered the largest “Large Igneous Province” of the Kaapvaal Craton (Altermann and

Lenhardt, 2012).

The Malmani Subgroup forms part of the Transvaal Supergroup that rests unconformably

on the Ventersdorp Supergroup. It consists of dolomites that formed in a carbonate

platform system between ~2.58 and 2.5 Ga (Eroglu et al., 2015). None of the geological

formations in the study area contains substantial magnetic minerals and will therefore not

cause anomalies on the magnetic data.

A few diabase dykes and quartz veins have been mapped in the northeast, but most of

the large predominantly ENE-striking lineaments were inferred from regional airborne

magnetic data.

Borehole data from the Council for Geoscience log database were examined. Locations

are shown in Figure 113, with associated borehole logs in Figure 114. The towns of

Bakerville and Lichtenburg are shown on the map. In particular two boreholes on the farm

Dudfield, drilled in 1974 by Anglo Alpha Cement, are on or very close to the southern

magnetic lineament (Dudfield 2 and Dudfield 3), but failed to intersect a dyke. This is an

indication that the dykes may be deeper than these two boreholes, the maximum depth of

which are 55 metres and 71 metres respectively. The top 44 to 50 meters consist of

surficial deposits, followed by the lava of the Ventersdorp Supergroup. There is no

mention of dolerite or diabase encountered in the borehole.

Other boreholes were drilled by the same company north of the lineament. These indicate

surficial deposits (overburden, calcrete, clay) over dolomite. In the late 1930s, two deep

boreholes (L1 and Welverdiend) were drilled in the north. These only indicate dolomite

over Ventersdorp lava.

199

Figure 113 a) Geology of the area (Geological Survey of South Africa, 1993). b) The location
of the survey is shown on the map of South Africa.

200

Figure 114 Borehole information over the Lichtenberg/Zeerust Area. No intersections with
dykes is visible.

Expanding on the assessment of dyke depths, an area immediately to the north was

chosen with clusters of boreholes over similar-striking dykes. Clusters of boreholes were

drilled on or very close to the ENE striking lineament. Kareebosch 70 and 71 were drilled

by United States Steel International (New York) Inc. in 1971 to depths of 120 m and 93 m

respectively. These boreholes only encountered dolomite. The same company drilled

N10 to the east. It was only 31 meters deep and only encountered dolomite.

A series of holes was drilled across the lineament on Strydfontein by Armco-Bronne (Pty)

Ltd in 1979. The drilling configuration suggests that the lineament may have been

targeted, with the deepest hole reaching a depth of 130 m. None of holes found diabase

or dolerite.

Since none of the clusters intersected with dykes, it suggests that for the most part the

ENE dyke depths may be deeper than the maximum borehole depth of 130 metres.

Only in the east, an isolated borehole (Witrand 1) contained diabase, indicating the

intersection with dyke-like material. The hole was drilled by the CGS, and is located on a

NW-striking dyke (indicating that it is not the same dyke swarm as the ENE dykes). The

201

borehole starts in the shale of the Pretoria Group and ends in dolomite. It encountered a

20 m thick diabase intrusion at 30 meters and a 13 m thick intrusion at 56 m depth.

Figure 115 a) Geology of the northern area (Geological Survey of South Africa, 1993). b) The
location of the survey is shown on the map of South Africa.

202

Figure 116 Borehole information over the northern area. Only one dyke was intersected
(Witrand 1) as is evident by the presence of diabase.

The data to be used are a section of a single sensor (scalar) magnetic survey flown by

the Council for Geoscience in 2003. The line spacing was 120 m and was flown NE to

SW using a Cessna 206 at 50 m flying height. The along line sampling interval is

generally between 3 to 4 metres, depending on the aircraft speed. The data was gridded

at 40 m spacing. It includes total magnetic intensity data (Figure 117) as well as a digital

elevation model (Figure 118) which is used for the 3D model creation. The digital

elevation model was calculated using GPS and laser altimeter data.

The area chosen was relatively flat in order to minimise survey flying height errors in the

acquisition of the data. The magnetic dataset consists of a series of mostly east-northeast

striking dykes. These come in three flavours – highly magnetic, moderately magnetic and

remanently magnetised (negative anomaly).

A cursory visual inspection of the TMI data (Figure 117) suggests that there are at least

two groups of dykes without obvious remanence – two dykes with strong anomalies

striking in an east west direction, and other dykes of more varied orientation with lower

amplitude anomalies. A third group contains remanence (a negative anomaly in the South

African context suggests this) and can be seen on an east west striking dyke running

across the centre of the area. This is easier to see on images later in the chapter, for

example Figure 120.

203

Figure 117 Total Magnetic Intensity of the study area. The dashed line shows the location of
a profile shown in Figure 132

204

Figure 118 Digital Elevation Model of the study area, obtained from the magnetic survey.

6.4.2 Data Preparation

It is standard in FFT processing to subtract a polynomial surface from the data being

processed in order to ensure more stable solutions. It will also remove or minimise the

effect of deeper large bodies from the estimation of shallow sources. This, and the

resultant magnetic field, is shown in Figure 119 and Figure 120. The surface itself can be

estimated directly from the data by constructing a low degree Vandermonde matrix, and

solving using least squares. In this case a second degree Vandermonde matrix was

constructed.

Figure 121 shows the derived datasets for the components and tensor components of the

magnetic field. The x direction is east-west, and the y direction is north-south (ENU

convention). The geomagnetic field strength during the survey was 28 280 nT, with an

inclination and declination of -64º and -17º respectively.

205

Figure 119 Polynomial surface used to prepare magnetic data for FFT

Figure 120 Resultant magnetic field once polynomial surface is subtracted.

206

Figure 121 Derived tensor components from the TMI. The dashed line in (i) shows the
location of a profile shown in Figure 132

207

6.4.3 Methodology and Results

The methodology to create 3D models from the source distance calculations is

straightforward. First, the extents and resolution of the model are set. The extents are in

the x, y and z dimensions and the resolution should be relevant to the detection limit of

features to be delineated.

Secondly, a number of datasets can be calculated. The depths to sources (𝑟) are

calculated using formulae described in section 4.5. Since these depths are actually the

distance from the observation to the top of the source, they are corrected for flying height.

These are all calculated at the resolution of the input data, which in this case is 40 m.

This ensures that aliasing problems do not affect the integrity of the depths. The minimum

depth obtainable from a sample spacing of ∆𝑥 is 𝑟 = 2∆𝑥 − 𝑓𝑙𝑦𝑖𝑛𝑔 ℎ𝑒𝑖𝑔ℎ𝑡 (Reid, 1980).

Therefore, for a survey at a flying height of 50 m, this implies a minimum depth of 30 m.

Dyke widths are estimated using equation (4.113). These widths are dependent on the

depth solutions obtained. The mean widths using either conventional analytic signal

depths (equation (4.75)) or component analytic signal depths (such as equations (4.74)

and (4.85)) was approximately 133 metres with a standard deviation of 129 metres,

showing a wide variability of possible widths. To simplify the calculations for rectangular

prism modelling, a representative width was chosen. Given the tendency of the width

estimation to overestimate widths of deeper sources, this was set to 100 meters as a

starting point. It can be refined later through a forward modelling phase, if necessary.

The susceptibilities (𝑘) of the sources are calculated using formulae described in 4.5.4,

and assuming a dyke width of 100 m (which is the resolution of the model). Even though

the widths have been fixed and may result in inaccurate susceptibilities, it should be

noted that the overall width-susceptibility relationship means that from a forward

modelling point of view, this inaccuracy in susceptibility is compensated by the width and

the fitting of the anomaly should still be achieved.

Figure 122 and Figure 123 show the analytic signal datasets used in the depth to source

calculations. Figure 124 shows the results of the depth to source calculations. A value of

N=1 was used for the depth calculation, which used equation (4.75) defined by Cooper

(2015). Figure 125 shows the depth calculations using (4.74). Note that only the values

along the dykes (typically closest to zero) are valid depths. This is because any source

distance equation represents a distance to the closest source, which only becomes a

depth over the source. Similarly, in Figure 126 only the susceptibility values over the

peaks are valid. For the susceptibility calculations, 𝑤 = 100 𝑚, 𝐹 = 28 280 𝑛𝑇, 𝐼 =

63.88°, 𝐷 = −17.18° .

208

Figure 122 𝑨𝒔𝟎 dataset used in calculations for 𝒓 and 𝒌.

Figure 123 𝑨𝒔𝟏 dataset used in calculations for 𝒓 and 𝒌.

209

Figure 124 Depth to source results using (4.75) (Cooper 2015). Only values over peaks are
valid. Source depths have been corrected for flying height.

Figure 125 Depth to source results using (4.74). Source depths have been corrected for
flying height.

210

Figure 126 Calculated values for susceptibilities. Only values over dykes are valid.

For comparison, Figure 125 shows results using equation (4.74) as opposed to equation

(4.75) in Figure 124. The critical difference is that in Figure 124 a zero order analytic

signal is used and produces cleaner results. This is due to higher orders of analytic signal

being more susceptible to noise.

A more extensive comparison is shown in Figure 127. Figure 127 a) and d) show depths

calculated using 𝐴𝑠𝑥 (equations (4.72) and (4.86) respectively) and therefore highlight

structures in the y-direction, whereas Figure 127 b) and e) show depths calculated using

𝐴𝑠𝑦 (equations (4.73) and (4.87) respectively) and highlight structures in the x-direction.

Equations (4.74), (4.75) and (4.85) (𝐴𝑠𝑧 and 𝐴𝑠) do not have any azimuthal bias, as shown

in Figure 127 c), f), and g). Features that are common to results from the use of equations

(4.74), (4.75) and (4.85) are probably due to valid sources. The different solutions that are

obtained from the tensor data can therefore can be used for quality control. Since the

numerical calculation of the source distances by the different methods is computationally

trivial, they should therefore be used together in interpretation projects (Cooper and

Whitehead, 2016). Figure 127 h) shows the susceptibility results (calculated using equation

(4.109)).

211

Figure 127 a), b) and c) show the source-distance results calculated from equations (4.72),
(4.73) and (4.74). d), e) and f) show the depth results from equations (4.85), (4.86), (4.87). g)
Source-distance from equation (4.75). h) Susceptibility from equation (4.109). A dyke width
of 100 meters was used. The flight height of 50 m was removed from the distances.

All algorithms show similar results for the source depths. The depths have a mean value

of -165 metres with a standard deviation of 83 metres, which is geologically acceptable

since this area is covered by surface deposits (a flight height of 50 metres was removed

from the distances) However, equations (4.72), (4.73) and (4.74) (Figure 127a), b) and c))

use higher order derivatives in their calculation, and are therefore more sensitive to noise,

but conversely they should be less sensitive to interference (Cooper, 2016; Cooper, 2015).

The lower orders of 𝐴𝑠 used in equations (4.85), (4.86), (4.87) and (4.75) (Figure 127d),

e), f) and g)) give cleaner results. In either case, solutions can be located using 𝐴𝑠 only and

extracting the depth solution from the relevant location.

Following this, a peak finding routine was applied to 𝐴𝑠 to obtain the optimal locations for

sources. Results are shown in Figure 128. Notice that depending on the threshold,

locations which are not valid sources (i.e. plugs as opposed to dykes) may be detected.

212

An example of this is highlighted by a red circle in Figure 128. Such outliers can either be

manually edited out, using a GIS for example, or can be left in, with solutions corrected in

the forward modelling phase.

Figure 128 Filtered results after DBSCAN, The red outline indicates an example of a possible
plug-like body which has been misclassified.

Now, each point in Figure 128 will have a different susceptibility solution. This is shown in

Figure 129. This may not be desirable for a number of reasons:

1) Some of the solutions may be outliers which are not realistic and have been

generated due to noise and/or aliasing in the datasets

2) The number of solutions is akin to having a separate lithology for each solution –

complicating forward modelling enormously. Depending on hardware available,

this may not be a problem.

213

Figure 129 Peak locations with susceptibilities. The susceptibilities are displayed to
illustrate the general susceptibility regimes within the dykes, for input into determining how
many general susceptibility classes are in the data.

Therefore, to simplify the number of susceptibility solutions, conventional k-means cluster

analysis (MacQueen, 1967) can be used to establish susceptibility groupings in the data.

The usefulness of this is that it can be done to 1-D data as well. The class centre points

become the susceptibilities used in the model and are assigned to the reduced depth

solutions.

Examination of the magnetic data shows at least two different types of non remanent

dykes – one with high susceptibility, and others with moderate susceptibility and one

remanent dyke. However, examination of the susceptibility distribution shows two

prominent groups, most likely because the susceptibility calculations cannot account for

remanence and the remanent dyke had similar calculated susceptibilities to one of the

non-remanent groups. Because of this, the classification was performed with two classes.

Class 1 had a centre point of k = 0.023 and class 2 had a centre point of 0.175. The

distribution of susceptibilities with classes overlain can be seen in Figure 130. Note that a

log normal distribution can be used when displaying magnetic properties.

These depth solutions are then converted to the 3D voxel based model (Figure 131),

where they can be used in forward modelling (Figure 132) to further improve the results.

The forward modelling can be in conventional or tensor form. Figure 131 in particular

214

shows that the susceptibility groups shown in red and blue occur coincide exactly with

corresponding dyke groups visually seen in Figure 120.

Figure 130 Susceptibility distribution with classes in colour. Class1 is in blue and class 2 is
in red.

Figure 131 3D model of dykes. All coordinates are in metres.

215

Figure 132 a) A north-south profile extracted from the centre of the study area (orange) as
shown in Figure 117, and forward model response of the model shown as a solid line, (blue)
using the results of the source-distance and susceptibility calculations. b) Model used to
generate the synthetic magnetic data shown in (a). The red dykes have a susceptibility of
0.023 SI and the blue dykes have a susceptibility of 0.175 SI. The results of the source-
distance calculations are overlain.

The results of the modelling (Figure 132)) confirm the validity of both the depths and

susceptibility estimates. These susceptibility values are reasonable for dolerite dykes.

Discrepancies between the source distance results and the forward modelled results may

be due to the susceptibility values being over simplified, incorrect dyke widths, or the

presence of remanent magnetisation. This does not affect the source distance

calculations, only the susceptibility estimates.

Therefore, the process of taking depth solutions dataset, extracting the correct solutions,

identifying key features (such as dykes as opposed to point/plug like features) and

converting that information into a model is straightforward. Initial dykes/edges will be

vertical, but this just forms a reasonable starting point for further forward modelling.

216

A more heterogeneous susceptibility solution can be obtained by simply adding more

classes in the classification phase of the process. As an example, k-means cluster

analysis of the susceptibilities was performed on 10 classes. The results are of the

susceptibility distribution are shown in Figure 133.

Figure 134 shows the results. In general, all solutions are better. With small magnetic

peaks being better represented. The second large peak at 21 000 metres has a slightly

worse solution. The remanent peak just after 15 000 meters is interesting, since it is

larger than before but mirrors the negative remanent anomaly better. Since the analytic

signal of the negative remanent anomaly would be positive, this shows how the routine is

trying to fit a non-remanent version of this peak.

Figure 133 Susceptibility distribution of cluster analysis performed on 10 classes.

217

Figure 134 a) The same A north-south profile extracted as in Figure 132, from the centre of
the study area (orange) as shown in Figure 107, and forward model response of the model
shown as a solid line, (blue) using the results of the source-distance and susceptibility
calculations. b) Locations of dykes are shown with depth solutions.

218

CHAPTER 7 CONCLUSIONS

The forward modelling of voxel data, both in conventional and tensor form, has been

shown to not only be viable but also has efficiencies which are as good, if not better

(when taking editing into account) than non-voxel techniques. Rectangular prisms in

particular allow for a number of optimisations in the calculation of the forward model.

However, the reduction of modelling time is best made with a reasonable starting point to

the modelling process. Source distance calculations provide an efficient form of inversion

with which to provide this starting model. The application of tensor data to source

detection techniques has been shown to be viable and agrees well with previous work

done by Cooper, (Cooper, 2014c; 2014b, 2015; Cooper and Whitehead, 2016). The

advantage is potentially lower noise in the calculation of the analytic signal (𝐴𝑠1), due to

using direct measurements rather than derived derivative products.

Remanence was examined and equations for direction cosines relating the total

magnetisation were developed. These cosines are model independent and are extremely

useful in assessing whether remanence exists in an area (even if only subtly) as well as

giving an indication of the possible direction of remanence in order to achieve the current

field direction. When applied to real tensor data, the solutions also give an indication of

the variability in the remanent field over the body, indicating the possibly homogeneity or

heterogeneity of remanent material.

From the direction cosines, equations for remanent magnetisation, inclination and

declination were developed. The limitation on these equations are that they are meant for

dykes, and are more effective at higher Q-ratios. In addition, the susceptibility derived

from the analytic signal is not well suited for this, since it is based on a field which

includes remanence. Therefore, it may give an indication of susceptibility, but in a

remanent environment an external measurement of susceptibility will be needed.

The derivation of tensor datasets from total magnetic intensity data showed that the

process not only is viable, but also achieves good results. However, one restriction is that

remanence is not captured in such a derivation. The extraction of valid source distance

solutions from raster data is straightforward and allows fast creation of the 3D starter

model for the area, from which improvements can be made through further forward

modelling. Calculations of susceptibility are important for accurate forward modelling of

these datasets, and are most effective in non-remanent areas. The use of direction

cosine calculations to detect remanence is not possible in the case of synthetic data,

219

since the basic premise of such data is that one constant set of direction cosines was

used to create the dataset in the first place.

The testing of source distance techniques on tensor data showed both strengths and

limitations. In spite of the fact that the tensor dataset tested (Tallawang) was not over a

perfect dyke, the calculations for depth and width proved robust with solutions in the

expected range. The low Q-ratio and uncertainty in susceptibility contributed to non-

optimal solution for total magnetisation and from this, remanent magnetisation, inclination

and declination. A synthetic model describing the Tallawang skarn proved though, that

should the total magnetisation and susceptibility be accurately known, it is possible to

accurately derive remanent magnetisation, inclination and declination. Direction cosine

solutions over the body showed a degree of complexity in the remanence, possibly due to

the presence of magnetite in lenses, thereby suggesting a complex composition.

220

REFERENCES

Altermann, W. and Lenhardt, N., 2012. The volcano-sedimentary succession of the
Archean Sodium Group, Ventersdorp Supergroup, South Africa: Volcanology,
sedimentology and geochemistry. Precambrian Research, 214–215, pp.60–81.

Andreasen, G.E. and Zietz, I., 1969. Magnetic fields for a 4x6 prismatic model. Geological
Survey Professional Paper 666. Washington, USA: United States Government Printing
Office, 228 pages.

Argast, D., Fitzgerald, D.J., Holstein, H., Stolz, R. and Chwala, A., 2010. Compensation
of the full magnetic tensor gradient signal. In: ASEG 2010. Sydney, Austrailia, pp.1–4.

Barbosa, V.C.F., 1994. Generalized compact gravity inversion. Geophysics, 59(1),
pp.57–68.

Barnett, C.T., 1976. Theoretical modelling of the magnetic and gravitational fields of an
arbitrarily shaped three-dimensional body. Geophysics, 41(6), pp.1353–1364.

Bastani, M. and Pedersen, L.B., 2001. Automatic interpretation of magnetic dike
parameters using the analytical signal technique. Geophysics, 66(2), pp.551–561.

Baykiev, E., Ebbing, J., Brönner, M. and Fabian, K., 2016. Forward modeling magnetic
fields of induced and remanent magnetization in the lithosphere using tesseroids.
Computers and Geosciences, 96, pp.124–135.

Beiki, M., 2010. Analytic signals of gravity gradient tensor and their application to
estimate source location. Geophysics, 75(6), pp.I59–I74.

Beiki, M., Clark, D.A., Austin, J.R. and Foss, C.A., 2012. Estimating source location using
normalized magnetic source strength calculated from magnetic gradient tensor data.
Geophysics, 77(6), pp.J23–J37.

Bhattacharyya, B.K., 1964. Magnetic anomalies due to prism-shaped bodies with
arbitrary polarization. Geophysics, 29(4), pp.517–531.

Billings, S., 2012. Superconducting Magnetic Tensor Gradiometer System for Detection
of Underwater Military Munitions (MR-1661). Sky Research, Inc., 108 pages.

Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge
University Press, Cambridge (UK), 441 pages.

Bosum, W., Eberle, D. and Rehi, H.-J., 1988. A gyro-oriented 3-component borehole
magnetometer for mineral prospecting, with examples of its application. Geophysical
Prospecting, 36(8), pp.933–961.

Briggs, I.C., 1974. Machine contouring using minimum curvature. Geophysics, 39(1),
pp.39–48.

Buchmann, J.P., 1960. Exploration of a geophysical anomaly at Trompsburg, Orange
Free State, South Africa. Transactions of the Geological Society of South Africa, 63,
pp.1–10.

221

Butler, R.F., 2004. Paleomagnetism: Magnetic Domains to Geologic Terranes. Electronic
edition, University of Portland, 248 pages.

Cai, G., Chen, B.M. and Lee, T.H., 2011. Coordinate Systems and Transformations. In:
Advances in Industrial Control. Springer London, pp.23–34.

Calcagno, P., Chilès, J.P., Courrioux, G. and Guillen, A., 2008. Geological modelling from
field data and geological knowledge. Part I. Modelling method coupling 3D potential-field
interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171(1–4),
pp.147–157.

Caratori Tontini, F., Cocchi, L. and Carmisciano, C., 2009. Rapid 3-D forward model of
potential fields with application to the Palinuro Seamount magnetic anomaly (southern
Tyrrhenian Sea, Italy). Journal of Geophysical Research, 114(B2), p.B02103.

Cevallos, C., 2014. Automatic generation of 3D geophysical models using curvatures
derived from airborne gravity gradient data. Geophysics, 79(5), pp.G49–G58.

Cevallos, C., 2016. Interpreting the direction of the gravity gradient tensor eigenvectors:
Their relation to curvature parameters of the gravity field. Geophysics, 81(3), pp.G49–
G57.

Christensen, A.N., Dransfield, M.H., Van Galder, C. and Methods, P., 2015. Noise and
repeatability of airborne gravity gradiometry. First Break, 33(April), pp.55–63.

Clark, D.A., 1997. Magnetic petrophysics and magnetic petrology: aids to geological
interpretation of magnetic surveys. AGSO Journal of Australian Geology & Geophysics,
17(2), pp.83–103.

Clark, D.A., 2012. New methods for interpretation of magnetic vector and gradient tensor
data I: Eigenvector analysis and the normalised source strength. Exploration Geophysics,
43(4), pp.267–282.

Clark, D.A., 2013. New methods for interpretation of magnetic vector and gradient tensor
data II: Application to the Mount Leyshon anomaly, Queensland, Australia. Exploration
Geophysics, 44(2), pp.114–127.

Clark, D.A., 2014. Integrated Magnetics: Contributions to improved processing and
interpretation of magnetic gradient tensor data, new methods for source location and
estimation of magnetisation, and predictive magnetic exploration models. Macquarie
University, PhD Thesis, 345 pages.

Clark, D.A. and Emerson, D.W., 1991. Notes on rock magnetization characteristics in
applied geophysical studies. Exploration Geophysics, 22(3), pp.547–555.

Clark, D.A., Schmidt, P.W., Coward, D.A. and Huddleston, M.P., 1998. Remote
determination of magnetic properties and improved drill targeting of magnetic anomaly
sources by Differential Vector Magnetometry (DVM). Exploration Geophysics, 29(4),
pp.312–319.

Clarke, J. and Braginski, A.I., 2004. The SQUID Handbook. Vol. I Fundamentals and
Technology of SQUIDS and SQUID Systems, Weinheim, FRG: Wiley-VCH Verlag GmbH
& Co. KGaA, 414 pages.

Coggon, J.H., 1976. Magnetic and gravity anomalies of polyhedra. Geoexploration, 14(2),

222

pp.93–105.

Cole, P. and Cooper, G.R.J., 2018. Determination of the distance to magnetic sources
using tensor data. Pure and Applied Geophysics, 175(6), pp.2237–2250.

Cooper, G.R.J., 1997. GravMap and PFproc: Software for filtering geophysical map data.
Computers & Geosciences, 23(1), pp.91–101.

Cooper, G.R.J., 2014a. Reducing the dependence of the analytic signal amplitude of
aeromagnetic data on the source vector direction. Geophysics, 79(4), pp.J55–J60.

Cooper, G.R.J., 2014b. The automatic determination of the location, depth, and dip of
contacts from aeromagnetic data. Geophysics, 79(3), pp.35–41.

Cooper, G.R.J., 2014c. The automatic determination of the location and depth of contacts
and dykes from aeromagnetic data. Pure and Applied Geophysics, 171(9), pp.2417–
2423.

Cooper, G.R.J., 2015. Using the analytic signal amplitude to determine the location and
depth of thin dikes from magnetic data. Geophysics, 80(1), pp.J1–J6.

Cooper, G.R.J., 2016. An improved method for determining the distance to magnetic
sources. Pure and Applied Geophysics, 173(4), pp.1279–1288.

Cooper, G.R.J. and Whitehead, R.C., 2016. Determining the distance to magnetic
sources. Geophysics, 81(2), pp.J39–J48.

Daudt, C.R., Braile, L.W., Nowack, R.. and Chiang, C.S., 1989. A comparison of finite-
difference and Fourier method calculations of synthetic seismograms. Bulletin of the
Seismological Society of America, 79(4), pp.1210–1230.

Diebel, J., 2006. Representing attitude: Euler angles, unit quaternions, and rotation
vectors. Matrix, 58, pp.1–35.

Eroglu, S., Schoenberg, R., Wille, M., Beukes, N. and Taubald, H., 2015. Geochemical
stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58-2.50Ga-old
Transvaal Supergroup carbonate platform, South Africa. Precambrian Research, 266,
pp.27–46.

Eschner, W. and Ludwig, W., 1995. Planar gradiomenetrs arranged on non-parallel
surfaces for determination of a gradient tensor of a magnetic field. US005469056A.

Ester, M., Kriegel, H.-P., Sander, J. and Xu, X., 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96). Elsevier,
pp.226–231.

Farr, T., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller,
M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M.,
Oskin, M., Burbank, D. and Alsdorf, D., 2007. The shuttle radar topography mission.
Reviews of Geophysics, 45(2005), pp.1–33.

Fisher, R., 1953. Dispersion on a sphere. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 217(1130), pp.295–305.

223

Fitzgerald, D.J., Argast, D. and Holstein, H., 2009. Further developments with full tensor
gradiometry datasets. In: 20th International Geophysical Conference and Exhibition (22-
25 November 2009). Adelaide, South Australia, pp.1–7.

FitzGerald, D.J., Argast, D., Paterson, R. and Holstein, H., 2009. Full tensor magnetic
gradiometry processing and interpretation developments. In: 11th SAGA Biennial
Technical Meeting and Exhibition. pp.265–272.

Fitzgerald, D.J. and Holstein, H., 2006. Innovative data processing methods for gradient
airborne geophysical data sets. The Leading Edge, 25(1), pp.87–94.

Fitzgerald, D.J. and Holstein, H., 2016. Optimising surface mapping of elongated
geological features from full tensor gravity gradiometry. In: Vienna 2016 - 78th EAGE
Conference & Exhibition 2016. Vienna, Austria, 30 May - 2 June 2016.

Fitzgerald, D.J. and Milligan, P., 2013. Defining a deep fault network for Australia, using
3D ‘worming’ (SEG annual meeting, Houston 2013). In: SEG Annual Meeting, Houston
2013. Houston, USA, pp.1126–1130.

Fitzgerald, D.J. and Paterson, R., 2013. Getting the best value from gravity gradiometry.
In: 13th SAGA Biennial Conference & Exhibition. Kruger National Park, South Africa.

Fitzgerald, D.J., Reid, A.B., Holstein, H. and Biegert, E., 2007. The amplitude / phase
treatment of full tensor gradiometry. In: SEG / San Antonio 2007 Annual Meeting. San
Antonio, pp.765–769.

Gabor, D., 1946. Theory of communication. Journal of the Institution of Electrical
Engineers - Part III: Radio and Communication Engineering, 93(26), pp.429–457.

Geological Survey of South Africa, 1993. 1:250 000 Geological Series, Vryburg (2624).

Goldfarb, R.B. and Fickett, F.R., 1985. Units for Magnetic Properties, NBS Special
Publication 696. Boulder, Colorado, 1 page.

Grant, F.S., 1985. Aeromagnetics, geology and ore environments, I. Magnetite in
igneous, sedimentary and metamorphic rocks: An overview. Geoexploration, 23(3),
pp.303–333.

Green, A.A., 1983. A comparison of adjustment procedures for leveling aeromagnetic
survey data. Geophysics, 48(6), pp.745–753.

Guillen, A., Calcagno, P., Courrioux, G., Joly, A. and Ledru, P., 2008. Geological
modelling from field data and geological knowledge. Part II. Modelling validation using
gravity and magnetic data inversion. Physics of the Earth and Planetary Interiors, 171(1–
4), pp.158–169.

Guptasarma, D. and Singh, B., 1999. New scheme for computing the magnetic field
resulting from a uniformly magnetized arbitrary polyhedron. Geophysics, 64(1), pp.70–74.

Hall, D.H., 1959. Direction of polarization determined from magnetic anomalies. Journal
of Geophysical Research, 64(11), pp.1945–1959.

Hamilton, W.R., 1853. Lectures on quaternions. Royal Irish Academy, pp.1–736.

224

Heath, P., 2003. Evolving the regolith from gravity and magnetics tensor data : theory and
preliminary results. In: Advances in Regolith. pp.165–169.

Heath, P., 2007. Analysis of potential field gradient tensor data: forward modelling,
inversion and near-surface exploration. University of Adelaide, PhD Thesis, 206 pages.

Heath, P., Heinson, G. and Greenhalgh, S., 2003. Some comments on potential field
tensor data. Exploration Geophysics, 34(1), pp.57–62.

Helbig, K., 1963. Some integrals of magnetic anomalies and their relation to the
parameters of the disturbing body. Zeitschrift für Geophysik, (29), pp.83–96.

Henderson, R.G. and Zietz, I., 1948. Analysis of total magnetic intensity anomalies
produced by point and line sources. Geophysics, 13(3), pp.428–436.

Hjelt, S.-E., 1972. Magnetostatic anomalies of dipping prisms. Geoexploration, 10(4),
pp.239–254.

Hjelt, S.-E., 1974. The gravity anomaly of a dipping prism. Geoexploration, 12(1), pp.29–
39.

Holstein, H., 2002. Gravimagnetic similarity in anomaly formulas for uniform polyhedra.
Geophysics, 67(4), pp.1126–1133.

Holstein, H., 2003. Gravimagnetic anomaly formulas for polyhedra of spatially linear
media. Geophysics, 68(1), pp.157–167.

Holstein, H., FitzGerald, D.J. and Stefanov, H., 2013. Gravimagnetic similarity for
homogeneous rectangular prisms. In: 75th EAGE Conference & Exhibition. London, UK,
pp.10–13.

Holstein, H., Fitzgerald, D.J., Zengerer, M. and Starr, A., 2015. Left or right handed
potential data? First Break, 33(April), pp.87–92.

Hsu, S.-K., Coppens, D. and Shyu, C.-T., 1998. Depth to magnetic source using the
generalized analytic signal. Geophysics, 63(6), pp.1947–1957.

Humphrey, K.P., Horton, T.J. and Keene, M.N., 2005. Detection of mobile targets from a
moving platform using an actively shielded, adaptively balanced SQUID gradiometer.
IEEE Transactions on Applied Superconductivity, 15(2 PART I), pp.753–756.

Husson, E., Guillen, A., Séranne, M., Courrioux, G. and Couëffé, R., 2018. 3D Geological
modelling and gravity inversion of a structurally complex carbonate area: application for
karstified massif localization. Basin Research, 30(4), pp.766–782.

Johnson, B.D. and van Klinken, G., 1979. Some equivalent bodies and ambiguity in
magnetic and Gravity interpretation. Exploration Geophysics, 10(1), pp.109–110.

Jones, E., Oliphant, T., Peterson, P. and Others, 2001. SciPy: Open Source Scientific
Tools for Python. [online] Available at: <http://www.scipy.org/> [Accessed 23 Aug. 2017].

Keene, M.N., Humphrey, K.P. and Horton, T.J., 2005. Actively shielded, adaptively
balanced SQUID gradiometer system for operation aboard moving platforms. IEEE
Transactions on Applied Superconductivity, 15(2 PART I), pp.761–764.

225

Kogbetliantz, E.G., 1944. Quantitative interpretation of magnetic and gravitational
anomalies. Geophysics, 9, pp.463–493.

Kolecki, J.C., 2002. An Introduction to Tensors for Students of Physics and Engineering.
NASA/TM—2002-211716. Glenn Research Center, Cleveland, Ohio, 29 pages.

Lajaunie, C., Courrioux, G. and Manuel, L., 1997. Foliation fields and 3D cartography in
geology: Principles of a method based on potential interpolation. Mathematical Geology,
29(4), pp.571–584.

Li, X. and Chouteau, M., 1998. Three dimensional gravity modeling in all space. Surveys
in Geophysics, 19(4), pp.339–368.

Li, Y., 2001. 3‐D inversion of gravity gradiometer data. In: SEG Technical Program
Expanded Abstracts 2001. Society of Exploration Geophysicists, pp.1470–1473.

Li, Y. and Oldenburg, D.W., 1996. 3-D inversion of magnetic data. Geophysics, 61(2),
pp.394–408.

Li, Y. and Oldenburg, D.W., 2001. Stable reduction to the pole at the magnetic equator.
Geophysics, 66(2), p.571.

Ma, G. and Du, X., 2012. An improved analytic signal technique for the depth and
structural index from 2D magnetic anomaly data. Pure and Applied Geophysics, 169(12),
pp.2193–2200.

Ma, G. and Li, L., 2013. Direct analytic signal (DAS) method in the interpretation of
magnetic data. Journal of Applied Geophysics, 88, pp.101–104.

MacLeod, I.N., Jones, K. and Dai, T.F., 1993. 3-D analytic signal in the interpretation of
total magnetic field data at low magnetic latitudes. Exploration Geophysics, 24(4),
pp.679–690.

MacQueen, J., 1967. Some methods for classification and analysis of multivariate
observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, 1(233), pp.281–297.

MAG3D, 2017. A Program Library for Forward Modelling and Inversion of Magnetic Data
over 3D Structures, version 6. Developed under the consortium research project
Joint/Cooperative Inversion of Geophysical and Geological Data, UBC-Geophysical
Inversion Facility, Department of Earth and Ocean Sciences, University of British
Columbia, Vancouver, British Columbia.

Maier, W.D., Peltonen, P., Grantham, G. and Mänttári, I., 2003. A new 1.9 Ga age for the
Trompsburg intrusion, South Africa. Earth and Planetary Science Letters, 212, pp.251–
360.

Maré, L.P. and Cole, J., 2005. The Trompsburg Complex, South Africa: A preliminary
three dimensional model. Journal of African Earth Sciences, 44, pp.314–330.

McInerney, P., Goldberg, A., Calcagno, P., Courrioux, G., Guillen, R. and Seikel, R.,
2007. Improved 3D geology modelling using an implicit function interpolator and forward
modelling of potential field data. Exploration 07: Fifth Decennial International Conference
on Mineral Exploration, pp.919–922.

226

Munschy, M. and Fleury, S., 2011. Scalar, vector, tensor magnetic anomalies:
Measurement or computation? Geophysical Prospecting, 59(6), pp.1035–1045.

Nabighian, M.N., 1972. The analytic signal of two dimensional magnetic bodies with
polygonal cross section: its properties and use for automated anomaly interpretation.
Geophysics, 37(3), pp.507–517.

Nabighian, M.N., Grauch, V.J.S., Hansen, R.O., LaFehr, T.R., Li, Y., Peirce, J.W.,
Phillips, J.D. and Ruder, M.E., 2005. The historical development of the magnetic method
in exploration. Geophysics, 70(6), p.33ND–61ND.

Nelson, J.B., 1988. Calculation of the magnetic gradient tensor from total field gradient
measurements and its application to geophysical interpretation. Geophysics, 53(7),
pp.957–966.

Nettleton, L.L., 1942. Gravity and magnetic calculations. Geophysics, 7(3), pp.293–310.

Ortlepp, R.J., 1959. A pre-Karoo igneous complex at Trompsburg, Orange Free State,
revealed by drilling exploration. Transactions of the Geological Society of South Africa,
62, pp.33–57.

Pajot, G., de Viron, O., Diament, M., Lequentrec-Lalancette, M.-F. and Mikhailov, V.,
2008. Noise reduction through joint processing of gravity and gravity gradient data.
Geophysics, 73(3), pp.I23–I34.

Parker, R., 1973. The rapid calcuation of potential anomalies. Geophysical Journal of the
Royal Astronomical Society, 31, pp.447–455.

Pedersen, L.B. and Rasmussen, T.M., 1990. The gradient tensor of potential field
anomalies: Some implications on data collection and data processing of maps.
Geophysics, 55(12), p.1558.

Pedersen, L.B., Rasmussen, T.M. and Dyrelius, D., 1990. Construction of component
maps from aeromagnetic total field anomaly maps. Geophysical Prospecting, 38(7),
pp.795–804.

Phillips, J.D., 2005. Can we estimate total magnetization directions from aeromagnetic
data using Helbig’s integrals? Earth Planets Space, 57(1), pp.681–689.

Phillips, J.D., Nabighian, M.N., Smith, D. V. and Li, Y., 2007. Estimating locations and
total magnetization vectors of compact magnetic sources from scalar, vector, or tensor
magnetic measurements through combined Helbig and Euler analysis. In: SEG Technical
Program Expanded Abstracts. San Antonio, pp.770–774.

Plouff, D., 1976. Gravity and magnetic fields of polygonal prisms and application to
magnetic terrain corrections. Geophysics, 41(4), pp.727–741.

Press, W.H., Teukolsky, S.A., Vettering, W.T. and Flannery, B.P., 2007. Numerical
Recipes in C: The Art of Scientific Computing. In: 3rd ed. New York: Cambridge
University Press., pp.186–190.

Rasmussen, R. and Pedersen, L.B., 1979. End corrections in potential field modelling.
Geophysical Prospecting, 27(4), pp.749–760.

Reford, M.S., 1964. Magnetic anomalies over thin sheets. Geophysics, 29(4), pp.532–

227

536.

Reid, A.B., 1980. Aeromagnetic survey design. Geophysics, 45(5), pp.973–976.

Reid, A.B. and Thurston, J.B., 2014. The structural index in gravity and magnetic
interpretation: Errors, uses, and abuses. Geophysics, 79(4), pp.J61–J66.

Rossberg, K., 1983. A First Course in Analytical Mechanics. John Wiley and Sons, Inc.,
pp.228–231.

Salem, A., Ravat, D., Mushayandebvu, M.F. and Ushijima, K., 2004. Linearized least‐
squares method for interpretation of potential‐field data from sources of simple geometry.
Geophysics, 69(3), pp.783–788.

Schiffler, M., Queitsch, M., Stolz, R., Chwala, A., Krech, W., Meyer, H.G. and Kukowski,
N., 2014. Calibration of SQUID vector magnetometers in full tensor gradiometry systems.
Geophysical Journal International, 198(2), pp.954–964.

Schiffler, M., Queitsch, M., Stolz, R., Meyer, H.G. and Kukowski, N., 2017. Application of
Hilbert-like transforms for enhanced processing of full tensor magnetic gradient data.
Geophysical Prospecting, 65, pp.68–81.

Schmidt, P., Clark, D.A., Leslie, K., Bick, M., Tilbrook, D. and Foley, C., 2004. GETMAG -
a SQUID magnetic tensor gradiometer for mineral and oil exploration. Exploration
Geophysics, 35(4), pp.297–305.

Schmidt, P.W. and Clark, D.A., 1998. The calculation of magnetic components and
moments from TMI: a case study from the Tuckers igneous complex, Queensland.
Exploration Geophysics, 29(4), p.609.

Schmidt, P.W. and Clark, D.A., 2006. The magnetic gradient tensor: Its properties and
uses in source characterization. The Leading Edge, 25(1), pp.75–78.

Sheriff, R.E., 1991. Encyclopedic Dictionary of Applied Geophysics. 3rd ed. Society of
Exploration Geophysicists.

Singh, B. and Guptasarma, D., 2001a. Joint modelling of gravity and magnetic fields - a
new computational approach. Current Science, 81(12), pp.1626–1628.

Singh, B. and Guptasarma, D., 2001b. New method for fast computation of gravity and
magnetic anomalies from arbitrary polyhedra. Geophysics, 66(2), p.521.

Spector, A. and Grant, F.S., 1970. Statistical models for interpreting aeromagnetic data.
Geophysics, 35(2), pp.293–302.

Stolz, R., Schiffler, M., Queitsch, M., Schmelz, M., Goepel, A., Kukowski, N., Meyer, M.
and Meyer, H., 2015. Why bother about gradients ? - SQUID based full tensor magnetic
gradiometer for mineral exploration. In: 14th SAGA Biennial Technical Meeting and
Exhibition. Drakensberg, South Africa.

Stolz, R., Zakosarenko, V., Schulz, M., Chwala, A., Fritzsch, L., Meyer, H. and Köstlin, E.,
2006. Magnetic full-tensor SQUID gradiometer system for geophysical applications.
Leading Edge, (February), pp.178–180.

228

Talwani, M., 1965. Computation with the help of a digital computer of magnetic anomalies
caused by bodies of arbitrary shape. Geophysics, 30(5), pp.797–817.

Tarlowski, C., 1989. Magnetic modelling of two and three-dimensional bodies. Australia:
Australian Government Publishing Service.

Thompson, D.T., 1982. EULDPH: A new technique for making computer‐assisted depth
estimates from magnetic data. Geophysics, 47(1), pp.31–37.

Yin, G., Zhang, Y., Mi, S., Fan, H. and Li, Z., 2016. Calculation of the magnetic gradient
tensor from total magnetic anomaly field based on regularized method in frequency
domain. Journal of Applied Geophysics, 134, pp.44–54.

Zhang, C., Mushayandebvu, M.F., Reid, A.B., Fairhead, J.D. and Odegard, M.E., 2000.
Euler deconvolution of gravity tensor gradient data. Geophysics, 65(2), pp.512–520.

Zhu, L., 2007. Gravity gradient modeling using with Gravity and DEM. The Ohio State
University Columbus, Ohio 43210.

229

APPENDIX

Source code examples for performing calculations used in this thesis are provided below.

They are all written in python and will require a python installation. The code contains

routines for forward modelling, both for conventional and tensor data, as well as tests for

source depth calculations

The program requires at a minimum the following:

 python 3.5.4

 GDAL 2.1.4

 matplotlib 2.0.2

 numba 0.34.0

 numpy 1.13.1

 scipy 0.19.1

 scikit_learn 0.18.2

 cycler 0.10.0

 pygmi 2.4.1

230

Name: tensorfin.py

Author: Patrick Cole

E-Mail: pcole@geoscience.org.za

Copyright: (c) 2018 Council for Geoscience

Licence: GPL-3.0

This code is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This code is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

"""

tensorfin.py forms part of the PhD submission for Patrick Cole at the

University of the Witwatersrand.

The code contains routines for forward modelling, both for conventional and

tensor data.

The program requires at a minimum the following:

* python 3.5.4

* GDAL 2.1.4

* matplotlib 2.0.2

* numba 0.34.0

* numpy 1.13.1

* scipy 0.19.1

* scikit_learn 0.18.2

* cycler 0.10.0

* PyGMI

Since PyGMI is likely to be a separate install, the path to it can be specified

below.

Forward modelling is based on the work by Blakely (1995) and Heath (2007)

Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications.

Heath, P., 2007. Analysis of Potential Field Gradient Tensor Data: Forward

Modelling, Inversion and Near-Surface Exploration. The University of Adelaide.

"""

pylint: disable=C0103,R0201,R0904,R0914,R0915, W0612, E1101

import sys

import copy

import glob

import tempfile

import winsound

import warnings

from osgeo import gdal, osr

import numpy as np

from numpy.polynomial import polynomial

import scipy.interpolate as si

import scipy.signal as ss

from numba import jit

import matplotlib.pyplot as plt

from matplotlib import colors

from mpl_toolkits.axes_grid1 import make_axes_locatable

from sklearn.cluster import DBSCAN, KMeans

from cycler import cycler

231

from pygmi.pfmod.iodefs import ExportMod3D

PyGMIPATH = r'C:\Work\Programming\pygmi'

plt.rcParams['axes.prop_cycle'] = cycler(color='bgrcmyk')

plt.rcParams['axes.grid'] = True

plt.rcParams['axes.axisbelow'] = True

plt.rcParams['image.cmap'] = 'jet'

class GeoData(object):

 """

 Data layer class:

 This class defines each geological type and calculates the field

 for one cube from the standard definitions.

 The is a class which contains the geophysical information for a single

 lithology. This includes the final calculated field for that lithology

 only.

 Attributes

 qratio : float

 q ratio for remanence

 minc : float

 remanence inclination

 mdec : float

 remanence declination

 mstrength : float

 remanence magnetization

 finc : float

 field inclination

 fdec : float

 field declination

 hintn : float

 field strength

 theta : float

 azimuth

 dxy : float

 cube dimension

 susc : float

 susceptibility

 dens : float

 density

 bdens : float

 background density

 height : float

 observation height

 Gc : float

 Gravitation con

 """

 def __init__(self, parent=None, ncols=10, nrows=10, numz=10, dxy=10.,

 d_z=10., mht=80., ght=0.):

 self.hintn = 30000.

 self.susc = 0.01

 self.mstrength = 0.

 self.finc = -63.

 self.fdec = -17.

 self.minc = -63.

 self.mdec = -17.

 self.theta = 90.

 self.bdensity = 2.67

 self.density = 2.85

 self.qratio = 0.0

 self.lith_index = 0

 self.parent = parent

 if hasattr(parent, 'pbars'):

 self.pbars = parent.pbars

 else:

 self.pbars = None

 if hasattr(parent, 'showtext'):

232

 self.showtext = parent.showtext

 else:

 self.showtext = print

 # ncols and nrows are the smaller dimension of the original grid.

 # numx, numy, numz are the dimensions of the larger grid to be used as a

 # template.

 self.modified = True

 self.g_cols = None

 self.g_rows = None

 self.g_dxy = None

 self.numz = None

 self.dxy = None

 self.d_z = None

 self.zobsm = None

 self.zobsg = None

 self.mlayers = None

 self.mtmp = None

 self.glayers = None

 self.x12 = None

 self.y12 = None

 self.z12 = None

 self.set_xyz(ncols, nrows, numz, dxy, mht, ght, d_z)

 def calc_origin_grav(self, hcor=None):

 """ Calculate the field values for the lithologies"""

 if self.modified is True:

 numx = self.g_cols*self.g_dxy

 numy = self.g_rows*self.g_dxy

The 2 lines below ensure that the profile goes over the center of the grid

cell

 xdist = np.arange(self.g_dxy/2, numx+self.g_dxy/2, self.g_dxy,

 dtype=float)

 ydist = np.arange(numy-self.g_dxy/2, -1*self.g_dxy/2,

 -1*self.g_dxy, dtype=float)

 if hcor is None:

 hcor2 = 0

 else:

 hcor2 = int(self.numz-hcor.max())

 self.showtext(' Calculate gravity origin field')

 self.gboxmain(xdist, ydist, self.zobsg, hcor2)

 self.modified = False

 def calc_origin_mag(self, hcor=None):

 """ Calculate the field values for the lithologies"""

 if self.modified is True:

 numx = self.g_cols*self.g_dxy

 numy = self.g_rows*self.g_dxy

The 2 lines below ensure that the profile goes over the center of the grid

cell

 xdist = np.arange(self.g_dxy/2, numx+self.g_dxy/2, self.g_dxy,

 dtype=float)

 ydist = np.arange(numy-self.g_dxy/2, -1*self.g_dxy/2,

 -1*self.g_dxy, dtype=float)

 self.showtext(' Calculate magnetic origin field')

 if hcor is None:

 hcor2 = 0

 else:

 hcor2 = int(self.numz-hcor.max())

233

 self.mboxmain(xdist, ydist, self.zobsm, hcor2)

self.mtmp = self.mlayers.copy()

self.gmmain(xdist, ydist)

 self.modified = False

 def rho(self):

 """ Returns the density contrast """

 return self.density - self.bdensity

 def set_xyz(self, ncols, nrows, numz, g_dxy, mht, ght, d_z, dxy=None,

 modified=True):

 """ Sets/updates xyz parameters again """

 self.modified = modified

 self.g_cols = ncols*2+1

 self.g_rows = nrows*2+1

 self.numz = numz

 self.g_dxy = g_dxy

 self.d_z = d_z

 self.zobsm = -mht

 self.zobsg = -ght

 if dxy is None:

 self.dxy = g_dxy # This must be a multiple of g_dxy or equal to it

 else:

 self.dxy = dxy # This must be a multiple of g_dxy or equal to it.

 self.set_xyz12()

 def set_xyz12(self):

 """ Set x12, y12, z12. This is the limits of the cubes for the model"""

 numx = self.g_cols*self.g_dxy

 numy = self.g_rows*self.g_dxy

 numz = self.numz*self.d_z

 dxy = self.dxy

 d_z = self.d_z

 self.x12 = np.array([numx/2-dxy/2, numx/2+dxy/2])

 self.y12 = np.array([numy/2-dxy/2, numy/2+dxy/2])

 self.z12 = np.arange(-numz, numz+d_z, d_z)

 def gboxmain(self, xobs, yobs, zobs, hcor):

 """ Gbox routine by Blakely

 Note: xobs, yobs and zobs must be floats or there will be problems

 later.

 Subroutine GBOX computes the vertical attraction of a

 rectangular prism. Sides of prism are parallel to x,y,z axes,

 and z axis is vertical down.

 Input parameters:

 Observation point is (x0,y0,z0). The prism extends from x1

 to x2, from y1 to y2, and from z1 to z2 in the x, y, and z

 directions, respectively. Density of prism is rho. All

 distance parameters in units of m;

 Output parameters:

 Vertical attraction of gravity, g, in mGal/rho.

 Must still be multiplied by rho outside routine.

 Done this way for speed. """

 glayers = []

 piter = iter

 z1122 = self.z12.copy()

 x_1 = float(self.x12[0])

 y_1 = float(self.y12[0])

 x_2 = float(self.x12[1])

 y_2 = float(self.y12[1])

 z_0 = float(zobs)

 numx = int(self.g_cols)

 numy = int(self.g_rows)

234

 if zobs == 0:

 zobs = -0.01

 for z1 in piter(z1122[:-1]):

 if z1 < z1122[hcor]:

 glayers.append(np.zeros((self.g_cols, self.g_rows)))

 continue

 z2 = z1 + self.d_z

 gval = np.zeros([self.g_cols, self.g_rows])

 gval = gbox(gval, xobs, yobs, numx, numy, z_0, x_1, y_1, z1,

 x_2, y_2, z2, np.ones(2), np.ones(2), np.ones(2),

 np.array([-1, 1]))

 gval *= 6.6732e-3

 glayers.append(gval)

 self.glayers = np.array(glayers)

 def mboxmain(self, xobs, yobs, zobs, hcor):

 """ Mbox routine by Blakely

 Note: xobs, yobs and zobs must be floats or there will be problems

 later.

 Subroutine MBOX computes the total field anomaly of an infinitely

 extended rectangular prism. Sides of prism are parallel to x,y,z

 axes, and z is vertical down. Bottom of prism extends to infinity.

 Two calls to mbox can provide the anomaly of a prism with finite

 thickness; e.g.,

 call mbox(x0,y0,z0,x1,y1,z1,x2,y2,mi,md,fi,fd,m,theta,t1)

 call mbox(x0,y0,z0,x1,y1,z2,x2,y2,mi,md,fi,fd,m,theta,t2)

 t=t1-t2

 Requires subroutine DIRCOS. Method from Bhattacharyya (1964).

 Input parameters:

 Observation point is (x0,y0,z0). Prism extends from x1 to

 x2, y1 to y2, and z1 to infinity in x, y, and z directions,

 respectively. Magnetization defined by inclination mi,

 declination md, intensity m. Ambient field defined by

 inclination fi and declination fd. X axis has declination

 theta. Distance units are irrelevant but must be consistent.

 Angles are in degrees, with inclinations positive below

 horizontal and declinations positive east of true north.

 Magnetization in A/m.

 Output paramters:

 Total field anomaly t, in nT."""

 mlayers = []

 piter = iter

 z1122 = self.z12.copy()

 z1122 = z1122.astype(float)

 x1 = float(self.x12[0])

 y1 = float(self.y12[0])

 x2 = float(self.x12[1])

 y2 = float(self.y12[1])

 z0 = float(zobs)

 numx = int(self.g_cols)

 numy = int(self.g_rows)

 ma, mb, mc = dircos(self.minc, self.mdec, self.theta)

 fa, fb, fc = dircos(self.finc, self.fdec, self.theta)

 mr = self.mstrength * np.array([ma, mb, mc]) * 100

 mi = self.susc*self.hintn*np.array([fa, fb, fc]) / (4*np.pi)

 m3 = mr+mi

235

 mt = np.sqrt(m3 @ m3)

 if mt > 0:

 m3 /= mt

 ma, mb, mc = m3

 fm1 = ma*fb + mb*fa

 fm2 = ma*fc + mc*fa

 fm3 = mb*fc + mc*fb

 fm4 = ma*fa

 fm5 = mb*fb

 fm6 = mc*fc

 if zobs == 0:

 zobs = -0.01

 z1122 = np.append(z1122, [2*z1122[-1]-z1122[-2]])

 for z1 in piter(z1122):

 if z1 < z1122[hcor]:

 mlayers.append(np.zeros((self.g_cols, self.g_rows)))

 continue

 mval = np.zeros([self.g_cols, self.g_rows])

 mval = mbox(mval, xobs, yobs, numx, numy, z0, x1, y1, z1, x2, y2,

 fm1, fm2, fm3, fm4, fm5, fm6, np.ones(2), np.ones(2))

 mlayers.append(mval)

 self.mlayers = np.array(mlayers) * mt

 self.mlayers = self.mlayers[:-1]-self.mlayers[1:]

class Data(object):

 """

 PyGMI Data Object

 Attributes

 data : numpy masked array

 array to contain raster data

 tlx : float

 Top Left X coordinate of raster grid

 tly : float

 Top Left Y coordinate of raster grid

 xdim : float

 x-dimension of grid cell

 ydim : float

 y-dimension of grid cell

 nrofbands : int

 number of raster bands

 dataid : str

 band name or id

 rows : int

 number of rows for each raster grid/band

 cols : int

 number of columns for each raster grid/band

 nullvalue : float

 grid null or nodata value

 norm : dictionary

 normalized data

 gtr : tuple

 projection information

 wkt : str

 projection information

 units : str

 description of units to be used with color bars

 """

 def __init__(self):

 self.data = np.ma.array([])

 self.tlx = 0.0 # Top Left X coordinate

 self.tly = 0.0 # Top Left Y coordinate

236

 self.xdim = 1.0

 self.ydim = 1.0

 self.nrofbands = 1

 self.dataid = ''

 self.rows = -1

 self.cols = -1

 self.nullvalue = 1e+20

 self.norm = {}

 self.gtr = (0.0, 1.0, 0.0, 0.0, -1.0)

 self.wkt = ''

 self.units = ''

class LithModel(object):

 """ Lithological Model Data.

 This is the main data structure for the modelling program

 Attributes

 mlut : dictionary

 color table for lithologies

 numx : int

 number of columns per layer in model

 numy : int

 number of rows per layer in model

 numz : int

 number of layers in model

 dxy : float

 dimension of cubes in the x and y directions

 d_z : float

 dimension of cubes in the z direction

 lith_index : numpy array

 3D array of lithological indices.

 curlayer : int

 Current layer

 xrange : list

 minimum and maximum x coordinates

 yrange : list

 minimum and maximum y coordinates

 zrange : list

 minimum and maximum z coordinates

 curprof : int

 current profile : in x or y direction)

 griddata : dictionary

 dictionary of Data classes with raster data

 custprofx : dictionary

 custom profile x coordinates

 custprofy : dictionary

 custom profile y coordinates

 profpics : dictionary

 profile pictures

 lith_list : dictionary

 list of lithologies

 lith_list_reverse : dictionary

 reverse lookup for lith_list

 mht : float

 height of magnetic sensor

 ght : float

 height of gravity sensor

 gregional : float

 gravity regional correction

 name : str

 name of the model

 """

 def __init__(self):

 self.mlut = {0: [170, 125, 90], 1: [255, 255, 0]}

 self.numx = None

 self.numy = None

 self.numz = None

 self.dxy = None

 self.d_z = None

237

 self.lith_index = None

 self.lith_index_old = None

 self.curlayer = None

 self.xrange = [None, None]

 self.yrange = [None, None]

 self.zrange = [None, None]

 self.curprof = None

 self.griddata = {}

 self.custprofx = {}

 self.custprofy = {}

 self.profpics = {}

 self.lith_list = {}

 self.lith_list_reverse = {}

 self.mht = None

 self.ght = None

 self.gregional = 100

 self.name = '3D Model'

 self.dataid = '3D Model'

 self.tmpfiles = None

 # Next line calls a function to update the variables above.

 self.update(50, 40, 5, 0, 0, 0, 100, 100, 100, 0)

 self.olith_index = None

 self.odxy = None

 self.od_z = None

 self.oxrng = None

 self.oyrng = None

 self.ozrng = None

 self.onumx = None

 self.onumy = None

 self.onumz = None

 self.is_ew = True

 def lithold_to_lith(self, nodtm=False):

 """ Transfers an old lithology to the new one, using updates parameters

 """

 if self.olith_index is None:

 return

 xvals = np.arange(self.xrange[0], self.xrange[1], self.dxy)

 yvals = np.arange(self.yrange[0], self.yrange[1], self.dxy)

 zvals = np.arange(self.zrange[0], self.zrange[1], self.d_z)

 if xvals[-1] == self.xrange[1]:

 xvals = xvals[:-1]

 if yvals[-1] == self.yrange[1]:

 yvals = yvals[:-1]

 if zvals[-1] == self.zrange[1]:

 yvals = yvals[:-1]

 xvals += 0.5 * self.dxy

 yvals += 0.5 * self.dxy

 zvals += 0.5 * self.d_z

 xvals = xvals[self.oxrng[0] < xvals]

 xvals = xvals[xvals < self.oxrng[1]]

 yvals = yvals[self.oyrng[0] < yvals]

 yvals = yvals[yvals < self.oyrng[1]]

 zvals = zvals[self.ozrng[0] < zvals]

 zvals = zvals[zvals < self.ozrng[1]]

 for x_i in xvals:

 o_i = int((x_i - self.oxrng[0]) / self.odxy)

 i = int((x_i - self.xrange[0]) / self.dxy)

 for x_j in yvals:

 o_j = int((x_j - self.oyrng[0]) / self.odxy)

 j = int((x_j - self.yrange[0]) / self.dxy)

 for x_k in zvals:

 o_k = int((self.ozrng[1] - x_k) / self.od_z)

 k = int((self.zrange[1] - x_k) / self.d_z)

238

 if (self.lith_index[i, j, k] != -1 and

 self.olith_index[o_i, o_j, o_k] != -1) or nodtm:

 self.lith_index[i, j, k] = \

 self.olith_index[o_i, o_j, o_k]

 def dtm_to_lith(self):

 """ Assign the DTM to the model. This means creating nodata values in

 areas above the DTM. These values are assigned a lithology of -1."""

 if 'DTM Dataset' not in self.griddata:

 return

 self.lith_index = np.zeros([self.numx, self.numy, self.numz],

 dtype=int)

 curgrid = self.griddata['DTM Dataset']

 d_x = curgrid.xdim

 d_y = curgrid.ydim

 utlx = curgrid.tlx

 utly = curgrid.tly

 gcols = curgrid.cols

 grows = curgrid.rows

 gxmin = utlx

 gymax = utly

 utlz = curgrid.data.max()

 self.lith_index[:, :, :] = 0

 for i in range(self.numx):

 xcrd = self.xrange[0] + (i + .5) * self.dxy

 xcrd2 = int((xcrd - gxmin) / d_x)

 for j in range(self.numy):

 ycrd = self.yrange[1] - (j + .5) * self.dxy

 ycrd2 = grows - int((gymax - ycrd) / d_y)

 if ycrd2 == grows:

 ycrd2 = grows-1

 if (ycrd2 >= 0 and xcrd2 >= 0 and ycrd2 < grows and

 xcrd2 < gcols):

 alt = curgrid.data.data[ycrd2, xcrd2]

 if (curgrid.data.mask[ycrd2, xcrd2] or

 np.isnan(alt) or alt == curgrid.nullvalue):

 alt = curgrid.data.mean()

 k_2 = int((utlz - alt) / self.d_z)

 self.lith_index[i, j, :k_2] = -1

 def init_grid(self, data):

 """ Initializes raster variables in the Data class

 Args:

 data (numpy masked array): masked array containing raster data."""

 grid = Data()

 grid.data = data

 grid.cols = self.numx

 grid.rows = self.numy

 grid.xdim = self.dxy

 grid.ydim = self.dxy

 grid.tlx = self.xrange[0]

 grid.tly = self.yrange[1]

 return grid

 def init_calc_grids(self):

 """ Initializes mag and gravity from the model """

 tmp = np.ma.zeros([self.numy, self.numx])

 self.griddata['Calculated Magnetics'] = self.init_grid(tmp.copy())

 self.griddata['Calculated Magnetics'].dataid = 'Calculated Magnetics'

 self.griddata['Calculated Magnetics'].units = 'nT'

 self.griddata['Calculated Gravity'] = self.init_grid(tmp.copy())

 self.griddata['Calculated Gravity'].dataid = 'Calculated Gravity'

 self.griddata['Calculated Gravity'].units = 'mgal'

239

 def is_modified(self, modified=True):

 """ Updates modified flag

 Args:

 modified (bool): flag for whether the lithology has been modified

 """

 for i in self.lith_list:

 self.lith_list[i].modified = modified

 def update(self, cols, rows, layers, utlx, utly, utlz, dxy, d_z, mht=-1,

 ght=-1, usedtm=True):

 """ Updates the local variables for the LithModel class

 Args:

 cols (int): number of columns per layer in model

 rows (int): number of rows per layer in model

 layers (int): number of layers in model

 utlx (float): upper top left (NW) x coordinate

 utly (float): upper top left (NW) y coordinate

 utlz (float): upper top left (NW) z coordinate

 dxy (float): dimension of cubes in the x and y directions

 d_z (float): dimension of cubes in the z direction

 mht (float): height of magnetic sensor

 ght (float): height of gravity sensor

 """

 if mht != -1:

 self.mht = mht

 if ght != -1:

 self.ght = ght

 self.olith_index = self.lith_index

 self.odxy = self.dxy

 self.od_z = self.d_z

 self.oxrng = np.copy(self.xrange)

 self.oyrng = np.copy(self.yrange)

 self.ozrng = np.copy(self.zrange)

 self.onumx = self.numx

 self.onumy = self.numy

 self.onumz = self.numz

 xextent = cols * dxy

 yextent = rows * dxy

 zextent = layers * d_z

 self.numx = cols

 self.numy = rows

 self.numz = layers

 self.xrange = [utlx, utlx + xextent]

 self.yrange = [utly - yextent, utly]

 self.zrange = [utlz - zextent, utlz]

 self.custprofx[0] = self.xrange

 self.custprofy[0] = (self.yrange[0], self.yrange[0])

 self.dxy = dxy

 self.d_z = d_z

 self.curlayer = 0

 self.curprof = 0

 self.lith_index = np.zeros([self.numx, self.numy, self.numz],

 dtype=int)

 self.lith_index_old = np.zeros([self.numx, self.numy, self.numz],

 dtype=int)

 self.lith_index_old[:] = -1

 self.init_calc_grids()

 if usedtm:

 self.dtm_to_lith()

 self.lithold_to_lith(not usedtm)

 self.update_lithlist()

 self.is_modified()

 def update_lithlist(self):

240

 """ Updates lith_list from local variables"""

 for i in self.lith_list:

 self.lith_list[i].set_xyz(self.numx, self.numy, self.numz,

 self.dxy, self.mht, self.ght, self.d_z,

 modified=False)

 def update_lith_list_reverse(self):

 """ Update the lith_list reverse lookup. It must be run at least once

 before using lith_list_reverse"""

 keys = list(self.lith_list.keys())

 values = list(self.lith_list.values())

 if not keys:

 return

 self.lith_list_reverse = {}

 for i in range(len(keys)):

 self.lith_list_reverse[list(values)[i].lith_index] = list(keys)[i]

class TensorCube(object):

 """

 This class computes the forward modelled tensor responses for a cube.

 Attributes

 minc : float

 remanence inclination

 mdec : float

 remanence declination

 mstrength : float

 remanence magnetization

 inc : float

 field inclination

 dec : float

 field declination

 hintn : float

 field strength

 azim : float

 azimuth

 dxy : float

 cube dimension

 susc : float

 susceptibility

 dens : float

 density

 bdens : float

 background density

 height : float

 observation height

 Gc : float

 Gravitation constant = 6.6732e-3 # includes 100000 factor to convert

 to mGal

 u : list

 x cube coordinates

 v : list

 y cube coordinates

 w : list

 z cube coordinates

 rc : list

 length of model

 """

 def __init__(self):

 self.minc = -60.0

 self.mdec = -15.0

 self.mstrength = 0

 self.inc = -60.0

 self.dec = -15.0

 self.hintn = 28000

 self.azim = 90

 self.dxy = 10

 self.susc = 0.1

241

 self.dens = 2.85

 self.bdens = 2.67

 self.height = 0.0

 self.Gc = 6.6732e-3 # includes 100000 factor to convert to mGal

 self.mt = None

 self.u = [100, 300]

 self.v = [100, 300]

 self.w = [-20, -3000]

 self.rc = 400

 self.cx = None

 self.cy = None

 self.cz = None

 self.pmag = None

 self.pbx = None

 self.pby = None

 self.pbz = None

 self.pgrv = None

 self.pgx = None

 self.pgy = None

 self.pgz = None

 self.bx = None

 self.by = None

 self.bz = None

 self.bxx = None

 self.byy = None

 self.bzz = None

 self.bxy = None

 self.byz = None

 self.bxz = None

 self.magval = None

 self.gx = None

 self.gy = None

 self.gz = None

 self.gxx = None

 self.gyy = None

 self.gzz = None

 self.gxy = None

 self.gyz = None

 self.gxz = None

 self.grvval = None

 self.xyall = None

 self.coords = None

 def init_grids(self):

 """ init grids """

 self.xyall = np.arange(0, int(self.rc), int(self.dxy),

 dtype=np.float64)

 self.xyall += self.dxy/2.

 tmp = (len(self.xyall), len(self.xyall))

 self.bx = np.zeros(tmp)

 self.by = np.zeros(tmp)

 self.bz = np.zeros(tmp)

 self.bxx = np.zeros(tmp)

 self.byy = np.zeros(tmp)

 self.bzz = np.zeros(tmp)

 self.bxy = np.zeros(tmp)

 self.byz = np.zeros(tmp)

 self.bxz = np.zeros(tmp)

 self.gx = np.zeros(tmp)

 self.gy = np.zeros(tmp)

 self.gz = np.zeros(tmp)

 self.gxx = np.zeros(tmp)

 self.gyy = np.zeros(tmp)

 self.gzz = np.zeros(tmp)

 self.gxy = np.zeros(tmp)

242

 self.gyz = np.zeros(tmp)

 self.gxz = np.zeros(tmp)

 self.coords = np.zeros((len(self.xyall), len(self.xyall), 2))

 def calc_all(self):

 """ calc all """

 self.init_grids()

 ma, mb, mc = dircos(self.minc, self.mdec, self.azim)

 fa, fb, fc = dircos(self.inc, self.dec, self.azim)

 mr = self.mstrength*np.array([ma, mb, mc])*100

 mi = self.susc*self.hintn/(4*np.pi)*np.array([fa, fb, fc])

 m3 = mr+mi

 m = np.sqrt(m3 @ m3)

 m3 /= m

 self.cx, self.cy, self.cz = m3

 self.mt = m

 print('Q-ratio', (mr@mr)/(mi@mi), 'mt', self.mt)

 const = m

 for i, y in enumerate(self.xyall):

 for j, x in enumerate(self.xyall):

 self.bx[-i-1, j] = self.fsum(self.Bx, x, y, self.height)

 self.by[-i-1, j] = self.fsum(self.By, x, y, self.height)

 self.bz[-i-1, j] = self.fsum(self.Bz, x, y, self.height)

 self.bxx[-i-1, j] = self.fsum(self.Bxx, x, y, self.height)

 self.byy[-i-1, j] = self.fsum(self.Byy, x, y, self.height)

 self.bzz[-i-1, j] = self.fsum(self.Bzz, x, y, self.height)

 self.bxy[-i-1, j] = self.fsum(self.Bxy, x, y, self.height)

 self.byz[-i-1, j] = self.fsum(self.Byz, x, y, self.height)

 self.bxz[-i-1, j] = self.fsum(self.Bxz, x, y, self.height)

 self.coords[-i-1, j, 0] = x

 self.coords[-i-1, j, 1] = y

 self.bx *= const

 self.by *= const

 self.bz *= const

 self.bxx *= const

 self.byy *= const

 self.bzz *= const

 self.byz *= const

 self.bxz *= const

 self.bxy *= const

 for j, x in enumerate(self.xyall):

 for i, y in enumerate(self.xyall):

 self.gx[-i-1, j] = self.fsum(self.Gx, x, y, 0.0)

 self.gy[-i-1, j] = self.fsum(self.Gy, x, y, 0.0)

 self.gz[-i-1, j] = self.fsum(self.Gz, x, y, 0.0)

 self.gxx[-i-1, j] = self.fsum(self.Gxx, x, y, 0.0)

 self.gyy[-i-1, j] = self.fsum(self.Gyy, x, y, 0.0)

 self.gzz[-i-1, j] = self.fsum(self.Gzz, x, y, 0.0)

 self.gxy[-i-1, j] = self.fsum(self.Gxy, x, y, 0.0)

 self.gyz[-i-1, j] = self.fsum(self.Gyz, x, y, 0.0)

 self.gxz[-i-1, j] = self.fsum(self.Gxz, x, y, 0.0)

 constg = (self.dens-self.bdens)*self.Gc

 self.gx *= constg

 self.gy *= constg

 self.gz *= constg

 self.gxx *= constg

 self.gyy *= constg

 self.gzz *= constg

 self.gyz *= constg

 self.gxz *= constg

 self.gxy *= constg

243

self.magval = self.cx*self.bx+self.cy*self.by+self.cz*self.bz

 self.grvval = self.gz

 self.magval = np.sqrt((self.bx+self.hintn*self.cx)**2 +

 (self.by+self.hintn*self.cy)**2 +

 (self.bz+self.hintn*self.cz)**2)-self.hintn

 def fsum(self, func, x, y, z):

 """ function """

 x1 = (x-self.u[0])

 x2 = (x-self.u[1])

 y2 = -(y-self.v[0])

 y1 = -(y-self.v[1])

 z2 = -(z-self.w[0])

 z1 = -(z-self.w[1])

y1 = (y-self.v[0])

y2 = (y-self.v[1])

z2 = -(z-self.w[0])

z1 = -(z-self.w[1])

 tmp = (func(x2, y2, z2) - func(x1, y2, z2) - func(x2, y1, z2) +

 func(x1, y1, z2) - func(x2, y2, z1) + func(x1, y2, z1) +

 func(x2, y1, z1) - func(x1, y1, z1))

 return tmp

 def getabg(self):

 """ gets alpha, beta and gamma """

 a, b, g = dircos(self.inc, self.dec, self.azim)

 return a, b, g

 def plot_mag(self):

 """ plots mag components """

 extent = (0, self.rc, 0, self.rc)

 x1, x2 = self.u

 y1, y2 = self.v

 plt.figure(figsize=(8, 8))

 ax = plt.subplot(4, 3, 1)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(self.bx, vmin=-500, vmax=500, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.xticks([0, self.rc])

 plt.yticks([0, self.rc], rotation='vertical')

 plt.title('(a)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{x} (nT)', size='medium')

 plt.colorbar(im, cax=cax, ticks=[-500, 0, 500])

 ax = plt.subplot(4, 3, 2)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(self.by, vmin=-500, vmax=500, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.xticks([0, self.rc])

 plt.yticks([0, self.rc], rotation='vertical')

 plt.title('(b)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{y} (nT)', size='medium')

 plt.colorbar(im, cax=cax, ticks=[-500, 0, 500])

 ax = plt.subplot(4, 3, 3)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

244

 im = plt.imshow(self.bz, vmin=-500, vmax=500, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.xticks([0, self.rc])

 plt.yticks([0, self.rc], rotation='vertical')

 plt.title('(c)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{z} (nT)', size='medium')

 plt.colorbar(im, cax=cax, ticks=[-500, 0, 500])

 ax = plt.subplot(4, 3, 4)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(self.bxx, vmin=-10, vmax=10, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.xticks([0, self.rc])

 plt.yticks([0, self.rc], rotation='vertical')

 plt.title('(d)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{xx} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax, ticks=[-10, 0, 10])

 ax = plt.subplot(4, 3, 8)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(self.byy, vmin=-10, vmax=10, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.xticks([0, self.rc])

 plt.yticks([0, self.rc], rotation='vertical')

 plt.title('(g)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{yy} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax, ticks=[-10, 0, 10])

 ax = plt.subplot(4, 3, 12)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(self.bzz, vmin=-10, vmax=10, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.xticks([0, self.rc])

 plt.yticks([0, self.rc], rotation='vertical')

 plt.title('(j)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{zz} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax, ticks=[-10, 0, 10])

 ax = plt.subplot(4, 3, 5)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(self.bxy, vmin=-5, vmax=5, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.xticks([0, self.rc])

 plt.yticks([0, self.rc], rotation='vertical')

 plt.title('(e)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{xy} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax, ticks=[-5, 0, 5])

 ax = plt.subplot(4, 3, 9)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(self.byz, vmin=-10, vmax=10, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

245

 plt.xticks([0, self.rc])

 plt.yticks([0, self.rc], rotation='vertical')

 plt.title('(h)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{yz} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax, ticks=[-10, 0, 10])

 ax = plt.subplot(4, 3, 6)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(self.bxz, vmin=-10, vmax=10, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.xticks([0, self.rc])

 plt.yticks([0, self.rc], rotation='vertical')

 plt.title('(f)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{xz} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax, ticks=[-10, 0, 10])

 ax = plt.subplot(4, 3, 10)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 dtmp = self.magval

 im = plt.imshow(dtmp, vmin=-500, vmax=500, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.xticks([0, self.rc])

 plt.yticks([0, self.rc], rotation='vertical')

 plt.title('(i)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{tmi} (nT)', size='medium')

 plt.colorbar(im, cax=cax, ticks=[-500, 0, 500])

 plt.tight_layout()

 plt.show()

print('Manual calculations for gradient')

plt.figure(figsize=(8, 8))

bxy1, bxx = np.gradient(self.bx[::-1], self.dxy)

byy, bxy = np.gradient(self.by[::-1], self.dxy)

byz, bxz = np.gradient(self.bz[::-1], self.dxy)

bxy = bxy[::-1]

bxy1 = bxy1[::-1]

byy = byy[::-1]

bxx = bxx[::-1]

byz = byz[::-1]

bxz = bxz[::-1]

bzz = -bxx-byy

ax = plt.subplot(4, 3, 4)

plt.ylabel('Distance (m)')

plt.xlabel('Distance (m)')

im = plt.imshow(bxx, cmap=cm, vmin=-10, vmax=10, extent=extent)

ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k')

plt.gca().add_line(ply)

plt.xticks([0, self.rc])

plt.yticks([0, self.rc], rotation='vertical')

plt.title('(d)', loc='left')

divider = make_axes_locatable(ax)

cax = divider.append_axes("right", size="5%", pad=0.05)

plt.title('B_{xx} (nT/m)', size='medium')

plt.colorbar(im, cax=cax, ticks=[-10, 0, 10])

ax = plt.subplot(4, 3, 8)

plt.ylabel('Distance (m)')

plt.xlabel('Distance (m)')

im = plt.imshow(byy, cmap=cm, vmin=-10, vmax=10, extent=extent)

ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k')

246

plt.gca().add_line(ply)

plt.xticks([0, self.rc])

plt.yticks([0, self.rc], rotation='vertical')

plt.title('(g)', loc='left')

divider = make_axes_locatable(ax)

cax = divider.append_axes("right", size="5%", pad=0.05)

plt.title('B_{yy} (nT/m)', size='medium')

plt.colorbar(im, cax=cax, ticks=[-10, 0, 10])

ax = plt.subplot(4, 3, 12)

plt.ylabel('Distance (m)')

plt.xlabel('Distance (m)')

im = plt.imshow(bzz, cmap=cm, vmin=-10, vmax=10, extent=extent)

ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k')

plt.gca().add_line(ply)

plt.xticks([0, self.rc])

plt.yticks([0, self.rc], rotation='vertical')

plt.title('(j)', loc='left')

divider = make_axes_locatable(ax)

cax = divider.append_axes("right", size="5%", pad=0.05)

plt.title('B_{zz} (nT/m)', size='medium')

plt.colorbar(im, cax=cax, ticks=[-10, 0, 10])

ax = plt.subplot(4, 3, 5)

plt.ylabel('Distance (m)')

plt.xlabel('Distance (m)')

im = plt.imshow(bxy, cmap=cm, vmin=-5, vmax=5, extent=extent)

ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k')

plt.gca().add_line(ply)

plt.xticks([0, self.rc])

plt.yticks([0, self.rc], rotation='vertical')

plt.title('(e)', loc='left')

divider = make_axes_locatable(ax)

cax = divider.append_axes("right", size="5%", pad=0.05)

plt.title('B_{xy} (nT/m)', size='medium')

plt.colorbar(im, cax=cax, ticks=[-5, 0, 5])

ax = plt.subplot(4, 3, 7)

plt.ylabel('Distance (m)')

plt.xlabel('Distance (m)')

im = plt.imshow(bxy1, cmap=cm, vmin=-5, vmax=5, extent=extent)

ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k')

plt.gca().add_line(ply)

plt.xticks([0, self.rc])

plt.yticks([0, self.rc], rotation='vertical')

plt.title('(e)', loc='left')

divider = make_axes_locatable(ax)

cax = divider.append_axes("right", size="5%", pad=0.05)

plt.title('B_{xy1} (nT/m)', size='medium')

plt.colorbar(im, cax=cax, ticks=[-5, 0, 5])

ax = plt.subplot(4, 3, 9)

plt.ylabel('Distance (m)')

plt.xlabel('Distance (m)')

im = plt.imshow(byz, cmap=cm, vmin=-10, vmax=10, extent=extent)

ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k')

plt.gca().add_line(ply)

plt.xticks([0, self.rc])

plt.yticks([0, self.rc], rotation='vertical')

plt.title('(h)', loc='left')

divider = make_axes_locatable(ax)

cax = divider.append_axes("right", size="5%", pad=0.05)

plt.title('B_{yz} (nT/m)', size='medium')

plt.colorbar(im, cax=cax, ticks=[-10, 0, 10])

ax = plt.subplot(4, 3, 6)

plt.ylabel('Distance (m)')

plt.xlabel('Distance (m)')

im = plt.imshow(bxz, cmap=cm, vmin=-10, vmax=10, extent=extent)

ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], c='k')

plt.gca().add_line(ply)

plt.xticks([0, self.rc])

247

plt.yticks([0, self.rc], rotation='vertical')

plt.title('(f)', loc='left')

divider = make_axes_locatable(ax)

cax = divider.append_axes("right", size="5%", pad=0.05)

plt.title('B_{xz} (nT/m)', size='medium')

plt.colorbar(im, cax=cax, ticks=[-10, 0, 10])

plt.tight_layout()

plt.show()

 def plot_grav(self):

 """ Plots gravity """

 plt.figure(figsize=(8, 8))

 plt.subplot(4, 3, 1)

 plt.imshow(self.gx)

 plt.title('gx')

 plt.subplot(4, 3, 2)

 plt.imshow(self.gy)

 plt.title('gy')

 plt.subplot(4, 3, 3)

 plt.imshow(self.gz)

 plt.title('gz')

 plt.subplot(4, 3, 4)

 plt.imshow(self.gxx)

 plt.title('gxx')

 plt.subplot(4, 3, 8)

 plt.imshow(self.gyy)

 plt.title('gyy')

 plt.subplot(4, 3, 12)

 plt.imshow(self.gzz)

 plt.title('gzz')

 plt.subplot(4, 3, 5)

 plt.imshow(self.gxy)

 plt.title('gxy')

 plt.subplot(4, 3, 9)

 plt.imshow(self.gyz)

 plt.title('gyz')

 plt.subplot(4, 3, 6)

 plt.imshow(self.gxz)

 plt.title('gxz')

 plt.tight_layout()

 plt.show()

plt.figure(figsize=(8, 8))

gxy, gxx = np.gradient(self.gx[::-1], self.dxy)

gxy = gxy[::-1]

gxx = gxx[::-1]

gyy, gyx = np.gradient(self.gy[::-1], self.dxy)

gyy = gyy[::-1]

gyx = gyx[::-1]

gyz, gxz = np.gradient(self.gz[::-1], self.dxy)

gyz = gyz[::-1]

gxz = gxz[::-1]

gzz = -gxx-gyy

plt.subplot(4, 3, 4)

plt.imshow(gxx)

plt.title('gxx')

plt.subplot(4, 3, 8)

plt.imshow(gyy)

plt.title('gyy')

plt.subplot(4, 3, 12)

plt.imshow(gzz)

plt.title('gzz')

plt.subplot(4, 3, 5)

plt.imshow(gxy)

plt.title('gxy')

plt.subplot(4, 3, 9)

plt.imshow(gyz)

248

plt.title('gyz')

plt.subplot(4, 3, 6)

plt.imshow(gxz)

plt.title('gxz')

plt.subplot(4, 3, 7)

plt.imshow(gyx)

plt.title('gyx')

plt.tight_layout()

plt.show()

 def regrid(self, data):

 """ fills holes """

 mask = np.logical_not(np.isnan(data))

 xx, yy = np.meshgrid(np.arange(data.shape[1]),

 np.arange(data.shape[0]))

 xym = np.vstack((np.ravel(xx[mask]), np.ravel(yy[mask]))).T

 data0 = np.ravel(data[:, :][mask])

 interp0 = si.NearestNDInterpolator(xym, data0)

 result0 = interp0(np.ravel(xx), np.ravel(yy)).reshape(xx.shape)

 result0 = np.ma.masked_invalid(result0)

 return result0

 def Gx(self, x, y, z):

 """ function """

 r = np.sqrt(x**2+y**2+z**2)

 x = np.array(x)

 y = np.array(y)

 z = np.array(z)

 tmp = x*np.arctan2(y*z, x*r)-y*np.log(r+z)-z*np.log(r+y)

 return -tmp

 def Gy(self, x, y, z):

 """ function """

 r = np.sqrt(x**2+y**2+z**2)

 x = np.array(x)

 y = np.array(y)

 z = np.array(z)

 tmp = y*np.arctan2(x*z, y*r)-x*np.log(r+z)-z*np.log(x+r)

 return -tmp

 def Gz(self, x, y, z):

 """ function """

 r = np.sqrt(x**2+y**2+z**2)

 x = np.array(x)

 y = np.array(y)

 z = np.array(z)

tmp = z*np.arctan2(x*y, z*r)-x*np.log(r+y)-y*np.log(x+r)

 tmp = z*np.arctan((x*y)/(z*r))-x*np.log(r+y)-y*np.log(x+r)

 return -tmp

 def Gxx(self, x, y, z):

 """ function """

 r = np.sqrt(x**2+y**2+z**2)

 x = np.array(x)

 y = np.array(y)

 z = np.array(z)

 tmp = np.arctan2(y*z, x*r)

return -tmp

 return -tmp

 def Gyy(self, x, y, z):

249

 """ function """

 r = np.sqrt(x**2+y**2+z**2)

 x = np.array(x)

 y = np.array(y)

 z = np.array(z)

 tmp = np.arctan2(x*z, y*r)

return -tmp

 return -tmp

 def Gzz(self, x, y, z):

 """ function """

 r = np.sqrt(x**2+y**2+z**2)

 x = np.array(x)

 y = np.array(y)

 z = np.array(z)

 tmp = np.arctan2(x*y, z*r)

 return -tmp

 def Gxy(self, x, y, z):

 """ function """

 r = np.sqrt(x**2+y**2+z**2)

 if z+r == 0:

 tmp = np.nan

 else:

 tmp = -np.log(r+z)

 return -tmp

 def Gyz(self, x, y, z):

 """ function """

 r = np.sqrt(x**2+y**2+z**2)

 tmp = -np.log(x+r)

 return -tmp

 def Gxz(self, x, y, z):

 """ function """

 r = np.sqrt(x**2+y**2+z**2)

 tmp = -np.log(r+y)

 return -tmp

 def Bx(self, x, y, z):

 """ function """

 a, b, g = self.getabg()

 tmp = a*self.Gxx(x, y, z) + b*self.Gxy(x, y, z) + g*self.Gxz(x, y, z)

 return tmp

 def By(self, x, y, z):

 """ function """

 a, b, g = self.getabg()

 tmp = a*self.Gxy(x, y, z) + b*self.Gyy(x, y, z) + g*self.Gyz(x, y, z)

 return tmp

 def Bz(self, x, y, z):

 """ function """

 a, b, g = self.getabg()

 tmp = a*self.Gxz(x, y, z) + b*self.Gyz(x, y, z) + g*self.Gzz(x, y, z)

 return tmp

 def Bxx(self, x, y, z):

 """ function """

 a, b, g = self.getabg()

 r = np.sqrt(x**2+y**2+z**2)

 if x == 0 and y == 0:

 tmp = 0

 else:

 tmp = (a*y*z*(r**2 + x**2)/(r*(r**2*x**2 + y**2*z**2)) +

 b*x/(r**2 + r*z) + g*x/(r**2 + r*y))

250

tmp = (a*y*z*(r**2 + x**2)/(r*(r**2*x**2 + y**2*z**2)) +

b*x/(r**2 - r*z) + g*x/(r**2 - r*y))

 return tmp

 def Byy(self, x, y, z):

 """ function """

 a, b, g = self.getabg()

 r = np.sqrt(x**2+y**2+z**2)

 if x == 0 and y == 0:

 tmp = 0

 else:

 tmp = (a*y/(r**2 + r*z) +

 b*x*z*(r**2 + y**2)/(r*(r**2*y**2 + x**2*z**2)) +

 g*y/(r**2 + r*x))

tmp = (-a*y/(r**2 - r*z) - g*y/(r**2 + r*x) -

b*x*z*(r**2 + y**2)/(r*(r**2*y**2 + x**2*z**2)))

 return tmp

 def Bzz(self, x, y, z):

 """ function """

 a, b, g = self.getabg()

 r = np.sqrt(x**2+y**2+z**2)

 tmp = (a*z/(r**2 + r*y) + b*z/(r**2 + r*x) +

 g*x*y*(r**2 + z**2)/(r*(r**2*z**2 + x**2*y**2)))

tmp = (-a*z/(r**2 - r*y) - b*z/(r**2 + r*x) -

g*x*y*(r**2 + z**2)/(r*(r**2*z**2 + x**2*y**2)))

 return tmp

 def Bxy(self, x, y, z):

 """ function """

 a, b, g = self.getabg()

 r = np.sqrt(x**2+y**2+z**2)

 if x == 0 and y == 0:

 tmp = g/r

 else:

 tmp = -a*x*z/(r*(x**2 + y**2)) + b*y/(r**2 + r*z) + g/r

tmp = a*x*z/(r*(x**2 + y**2)) - b*y/(r**2 - r*z) + g/r

 return tmp

 def Byz(self, x, y, z):

 """ function """

 a, b, g = self.getabg()

 r = np.sqrt(x**2+y**2+z**2)

tmp = a/r + b*x*y/(r*(y**2 + z**2)) - g*z/(r**2 + r*x)

 tmp = a/r - b*x*y/(r*(y**2 + z**2)) + g*z/(r**2 + r*x)

 return tmp

 def Bxz(self, x, y, z):

 """ function """

 a, b, g = self.getabg()

 r = np.sqrt(x**2+y**2+z**2)

tmp = a*x*y/(r*(x**2 + z**2)) + b/r - g*z/(r**2 - r*y)

 tmp = -a*x*y/(r*(x**2 + z**2)) + b/r + g*z/(r**2 + r*y)

 return tmp

def importmod3d(filename):

 """

 routine to convert a dictionary to an lmod

 Parameters

251

 filename : str

 input filename of model file

 Returns

 lmod : LithModel

 model class

 """

 pre = ''

 lmod = LithModel()

 lmod.griddata.clear()

 lmod.lith_list.clear()

 indict = np.load(filename)

 lithkeys = indict[pre+'lithkeys']

 lmod.gregional = indict[pre+'gregional']

 lmod.ght = indict[pre+'ght']

 lmod.mht = indict[pre+'mht']

 lmod.numx = indict[pre+'numx']

 lmod.numy = indict[pre+'numy']

 lmod.numz = indict[pre+'numz']

 lmod.dxy = indict[pre+'dxy']

 lmod.d_z = indict[pre+'d_z']

 lmod.lith_index = indict[pre+'lith_index']

 lmod.curprof = 0

 lmod.curlayer = 0

 lmod.xrange = np.array(indict[pre+'xrange']).tolist()

 lmod.yrange = np.array(indict[pre+'yrange']).tolist()

 lmod.zrange = np.array(indict[pre+'zrange']).tolist()

 if pre+'custprofx' in indict:

 lmod.custprofx = np.asscalar(indict[pre+'custprofx'])

 else:

 lmod.custprofx = {0: (lmod.xrange[0], lmod.xrange[1])}

 if pre+'custprofy' in indict:

 lmod.custprofy = np.asscalar(indict[pre+'custprofy'])

 else:

 lmod.custprofy = {0: (lmod.yrange[0], lmod.yrange[0])}

 lmod.mlut = np.asscalar(indict[pre+'mlut'])

 lmod.init_calc_grids()

 lmod.griddata = np.asscalar(indict[pre+'griddata'])

 for i in lmod.griddata:

 lmod.griddata[i].data = np.ma.array(lmod.griddata[i].data)

 # This gets rid of a legacy variable name

 for i in lmod.griddata:

 if not hasattr(lmod.griddata[i], 'dataid'):

 lmod.griddata[i].dataid = ''

 if hasattr(lmod.griddata[i], 'bandid'):

 if lmod.griddata[i].dataid == '':

 lmod.griddata[i].dataid = lmod.griddata[i].bandid

 del lmod.griddata[i].bandid

 wktfin = None

 for i in lmod.griddata:

 wkt = lmod.griddata[i].wkt

 if wkt != '' and wkt is not None:

 wktfin = wkt

 if wktfin is not None:

 for i in lmod.griddata:

 wkt = lmod.griddata[i].wkt

 if wkt == '' or wkt is None:

 lmod.griddata[i].wkt = wktfin

Section to load lithologies.

 lmod.lith_list['Background'] = GeoData()

 for itxt in lithkeys:

 if itxt != 'Background':

 lmod.lith_list[itxt] = GeoData()

252

 lmod.lith_list[itxt].hintn = np.asscalar(indict[pre+itxt+'_hintn'])

 lmod.lith_list[itxt].finc = np.asscalar(indict[pre+itxt+'_finc'])

 lmod.lith_list[itxt].fdec = np.asscalar(indict[pre+itxt+'_fdec'])

 lmod.lith_list[itxt].zobsm = np.asscalar(indict[pre+itxt+'_zobsm'])

 lmod.lith_list[itxt].susc = np.asscalar(indict[pre+itxt+'_susc'])

 lmod.lith_list[itxt].mstrength = np.asscalar(

 indict[pre+itxt+'_mstrength'])

 lmod.lith_list[itxt].qratio = np.asscalar(

 indict[pre+itxt+'_qratio'])

 lmod.lith_list[itxt].minc = np.asscalar(indict[pre+itxt+'_minc'])

 lmod.lith_list[itxt].mdec = np.asscalar(indict[pre+itxt+'_mdec'])

 lmod.lith_list[itxt].density = np.asscalar(

 indict[pre+itxt+'_density'])

 lmod.lith_list[itxt].bdensity = np.asscalar(

 indict[pre+itxt+'_bdensity'])

 lmod.lith_list[itxt].lith_index = np.asscalar(

 indict[pre+itxt+'_lith_index'])

 lmod.lith_list[itxt].g_cols = np.asscalar(indict[pre+itxt+'_numx'])

 lmod.lith_list[itxt].g_rows = np.asscalar(indict[pre+itxt+'_numy'])

 lmod.lith_list[itxt].numz = np.asscalar(indict[pre+itxt+'_numz'])

 lmod.lith_list[itxt].g_dxy = np.asscalar(indict[pre+itxt+'_dxy'])

 lmod.lith_list[itxt].dxy = np.asscalar(indict[pre+itxt+'_dxy'])

 lmod.lith_list[itxt].d_z = np.asscalar(indict[pre+itxt+'_d_z'])

 lmod.lith_list[itxt].zobsm = np.asscalar(indict[pre+itxt+'_zobsm'])

 lmod.lith_list[itxt].zobsg = np.asscalar(indict[pre+itxt+'_zobsg'])

 lmod.lith_list[itxt].modified = True

 lmod.lith_list[itxt].set_xyz12()

 return lmod

def save_layer(mlist):

 """

 Routine saves the mlayer and glayer to a file

 Parameters

 mlist : list

 list of gridded layers

 Returns

 outfile : str

 temporary output filename

 """

 outfile = tempfile.TemporaryFile()

 outdict = {}

 outdict['mlayers'] = mlist[1].mlayers

 outdict['glayers'] = mlist[1].glayers

 np.savez(outfile, **outdict)

 outfile.seek(0)

 mlist[1].mlayers = None

 mlist[1].glayers = None

 return outfile

def data_to_gdal_mem(data, gtr, wkt, cols, rows, nodata=False):

 """

 Data to GDAL mem format

 Parameters

 data : PyGMI Data

 PyGMI Dataset

 gtr : tuple

 Geotransform

 wkt : str

253

 Projection in wkt (well known text) format

 cols : int

 columns

 rows : int

 rows

 nodata : bool, optional

 no data

 Returns

 src : GDAL mem format

 """

 data.data = np.ma.array(data.data)

 dtype = data.data.dtype

Get rid of array() which can break driver.create later

 cols = int(cols)

 rows = int(rows)

 if dtype == np.uint8:

 fmt = gdal.GDT_Byte

 elif dtype == np.int32:

 fmt = gdal.GDT_Int32

 elif dtype == np.float64:

 fmt = gdal.GDT_Float64

 else:

 fmt = gdal.GDT_Float32

 driver = gdal.GetDriverByName('MEM')

 src = driver.Create('', cols, rows, 1, fmt)

 src.SetGeoTransform(gtr)

 src.SetProjection(wkt)

 if nodata is False:

 if data.nullvalue is not None:

 src.GetRasterBand(1).SetNoDataValue(data.nullvalue)

 src.GetRasterBand(1).WriteArray(data.data)

 else:

 tmp = np.zeros((rows, cols))

 tmp = np.ma.masked_equal(tmp, 0)

 src.GetRasterBand(1).SetNoDataValue(0) # Set to this because of Reproj

 src.GetRasterBand(1).WriteArray(tmp)

 return src

def gdal_to_dat(dest, bandid='Data'):

 """

 GDAL to Data format

 Parameters

 dest - GDAL format

 GDAL format

 bandid - str

 band identity

 Returns

 dat : Data

 data

 """

 dat = Data()

 gtr = dest.GetGeoTransform()

 rtmp = dest.GetRasterBand(1)

 dat.data = rtmp.ReadAsArray()

 nval = rtmp.GetNoDataValue()

 dat.data = np.ma.masked_equal(dat.data, nval)

 dat.data.set_fill_value(nval)

 dat.data = np.ma.fix_invalid(dat.data)

254

 dat.nrofbands = dest.RasterCount

 dat.tlx = gtr[0]

 dat.tly = gtr[3]

 dat.dataid = bandid

 dat.nullvalue = nval

 dat.rows = dest.RasterYSize

 dat.cols = dest.RasterXSize

 dat.xdim = abs(gtr[1])

 dat.ydim = abs(gtr[5])

 dat.wkt = dest.GetProjection()

 dat.gtr = gtr

 return dat

def get_raster(ifile):

 """

 This function loads a raster dataset off the disk using the GDAL

 libraries. It returns the data in a PyGMI data object.

 Parameters

 ifile : str

 filename to import

 Returns

 dat : PyGMI raster Data

 dataset imported

 """

 dat = []

 bname = ifile.split('/')[-1].rpartition('.')[0]+': '

 ifile = ifile[:]

 ext = ifile[-3:]

 custom_wkt = None

 # Envi Case

 if ext == 'hdr':

 ifile = ifile[:-4]

 tmp = glob.glob(ifile+'.dat')

 if tmp:

 ifile = tmp[0]

 if ext == 'ers':

 with open(ifile) as f:

 metadata = f.read()

 if 'STMLO' in metadata:

 clong = metadata.split('STMLO')[1][:2]

 orig = osr.SpatialReference()

 if 'CAPE' in metadata:

 orig.ImportFromEPSG(4222)

 orig.SetTM(0., float(clong), 1., 0., 0.)

 orig.SetProjCS(r'Cape / TM'+clong)

 custom_wkt = orig.ExportToWkt()

 elif 'WGS84' in metadata:

 orig.ImportFromEPSG(4148)

 orig.SetTM(0., float(clong), 1., 0., 0.)

 orig.SetProjCS(r'Hartebeesthoek94 / TM'+clong)

 custom_wkt = orig.ExportToWkt()

 dataset = gdal.Open(ifile, gdal.GA_ReadOnly)

 if dataset is None:

 return None

 gtr = dataset.GetGeoTransform()

 for i in range(dataset.RasterCount):

 rtmp = dataset.GetRasterBand(i+1)

 bandid = rtmp.GetDescription()

 nval = rtmp.GetNoDataValue()

255

 dat.append(Data())

 dat[i].data = rtmp.ReadAsArray()

 if dat[i].data.dtype.kind == 'i':

 if nval is None:

 nval = 999999

 nval = int(nval)

 elif dat[i].data.dtype.kind == 'u':

 if nval is None:

 nval = 0

 nval = int(nval)

 else:

 if nval is None:

 nval = 1e+20

 nval = float(nval)

 if ext == 'ers' and nval == -1.0e+32:

 dat[i].data[np.ma.less_equal(dat[i].data, nval)] = -1.0e+32

Note that because the data is stored in a masked array, the array ends up

being double the size that it was on the disk.

 dat[i].data = np.ma.masked_invalid(dat[i].data)

 dat[i].data.mask = (np.ma.getmaskarray(dat[i].data) |

 (dat[i].data == nval))

 if dat[i].data.mask.size == 1:

 dat[i].data.mask = (np.ma.make_mask_none(dat[i].data.shape) +

 np.ma.getmaskarray(dat[i].data))

 dat[i].nrofbands = dataset.RasterCount

 dat[i].tlx = gtr[0]

 dat[i].tly = gtr[3]

 if bandid == '':

 bandid = bname+str(i+1)

 dat[i].dataid = bandid

 if bandid[-1] == ')':

 dat[i].units = bandid[bandid.rfind('(')+1:-1]

 dat[i].nullvalue = nval

 dat[i].rows = dataset.RasterYSize

 dat[i].cols = dataset.RasterXSize

 dat[i].xdim = abs(gtr[1])

 dat[i].ydim = abs(gtr[5])

 dat[i].gtr = gtr

 if custom_wkt is None:

 srs = osr.SpatialReference()

 srs.ImportFromWkt(dataset.GetProjection())

 srs.AutoIdentifyEPSG()

 dat[i].wkt = srs.ExportToWkt()

 else:

 dat[i].wkt = custom_wkt

 return dat

def gridmatch(lmod, ctxt, rtxt):

 """

 Matches the rows and columns of the second grid to the first grid

 Parameters

 lmod : LithModel

 lithology model

 ctxt : str

 input grid discription 1

 rtxt : str

 input grid discription 2

 Returns

 dat.data : numpy array

 gridded data

 """

 rgrv = lmod.griddata[rtxt]

256

 cgrv = lmod.griddata[ctxt]

 data = rgrv

 data2 = cgrv

 orig_wkt = data.wkt

 orig_wkt2 = data2.wkt

 doffset = 0.0

 if data.data.min() <= 0:

 doffset = data.data.min()-1.

 data.data = data.data - doffset

 gtr0 = (data.tlx, data.xdim, 0.0, data.tly, 0.0, -data.ydim)

 gtr = (data2.tlx, data2.xdim, 0.0, data2.tly, 0.0, -data2.ydim)

 src = data_to_gdal_mem(data, gtr0, orig_wkt, data.cols, data.rows)

 dest = data_to_gdal_mem(data, gtr, orig_wkt2, data2.cols, data2.rows, True)

 gdal.ReprojectImage(src, dest, orig_wkt, orig_wkt2, gdal.GRA_Bilinear)

 dat = gdal_to_dat(dest, data.dataid)

 if doffset != 0.0:

 dat.data = dat.data + doffset

 data.data = data.data + doffset

 return dat.data

def calc_field(lmod, pbars=None, showtext=None, parent=None,

 showreports=False, magcalc=False):

 """ Calculate magnetic and gravity field

 This function calculates the magnetic and gravity field. It has two

 different modes of operation, by using the magcalc switch. If magcalc=True

 then magnetic fields are calculated, otherwize only gravity is calculated.

 Parameters

 lmod : LithModel

 PyGMI lithological model

 pbars : module

 progress bar routine if available. (internal use)

 showtext : module

 showtext routine if available. (internal use)

 showreports : bool

 show extra reports

 magcalc : bool

 if true, calculates magnetic data, otherwize only gravity.

 Returns

 lmod.griddata : dictionary

 dictionary of items of type Data.

 """

 if showtext is None:

 showtext = print

 if pbars is not None:

 pbars.resetall(mmax=2*(len(lmod.lith_list)-1)+1)

 piter = pbars.iter

 else:

 piter = iter

 if np.max(lmod.lith_index) == -1:

 showtext('Error: Create a model first')

 return lmod.griddata

 # Init some variables for convenience

 lmod.update_lithlist()

 numx = int(lmod.numx)

 numy = int(lmod.numy)

 numz = int(lmod.numz)

257

 tmpfiles = {}

model index

 modind = lmod.lith_index.copy()

 modindcheck = lmod.lith_index_old.copy()

 if modind.shape != modindcheck.shape:

 tmp = False

 else:

 tmp = (modind == modindcheck)

If modind and modindcheck have different shapes, then tmp == False. The next

line checks for that.

 if not isinstance(tmp, bool):

 modind[tmp] = -1

 modindcheck[tmp] = -1

 if np.unique(modind).size == 1:

 showtext('No changes to model!')

 return lmod.griddata

get height corrections

 tmp = np.copy(lmod.lith_index)

 tmp[tmp > -1] = 0

 hcor = np.abs(tmp.sum(2))

if np.unique(modindcheck).size == 1 and np.unique(modindcheck)[0] == -1:

 for mlist in lmod.lith_list.items():

 mijk = mlist[1].lith_index

 if mijk not in modind and mijk not in modindcheck:

 continue

 if mlist[0] != 'Background':

 mlist[1].modified = True

 showtext(mlist[0]+':')

 if parent is not None:

 mlist[1].parent = parent

 mlist[1].pbars = parent.pbars

 mlist[1].showtext = parent.showtext

 if magcalc:

 mlist[1].calc_origin_mag(hcor)

 else:

 mlist[1].calc_origin_grav()

 tmpfiles[mlist[0]] = save_layer(mlist)

 lmod.tmpfiles = tmpfiles

 if showreports is True:

 showtext('Summing data')

Get mlayers and glayers with correct rho and netmagn

 if pbars is not None:

 pbars.resetsub(maximum=(len(lmod.lith_list)-1))

 piter = pbars.iter

 mgvalin = np.zeros(numx*numy)

 mgval = np.zeros(numx*numy)

 hcorflat = numz-hcor.flatten()

 aaa = np.reshape(np.mgrid[0:numx, 0:numy], [2, numx*numy])

 for mlist in piter(lmod.lith_list.items()):

 if mlist[0] == 'Background':

 continue

 mijk = mlist[1].lith_index

 if mijk not in modind and mijk not in modindcheck:

 continue

 lmod.tmpfiles[mlist[0]].seek(0)

 mfile = np.load(lmod.tmpfiles[mlist[0]])

 if magcalc:

 mglayers = mfile['mlayers']

258

 else:

 mglayers = mfile['glayers']*mlist[1].rho()

 showtext('Summing '+mlist[0]+' (May become non-responsive' +

 ' during this calculation)')

 if np.unique(modind).size > 1 and mijk in modind:

 i, j, k = np.nonzero(modind == mijk)

 iuni = np.array(np.unique(i), dtype=np.int32)

 juni = np.array(np.unique(j), dtype=np.int32)

 kuni = np.array(np.unique(k), dtype=np.int32)

 for k in kuni:

 baba = sum_fields(k, mgval, numx, numy, modind, aaa[0],

 aaa[1], mglayers, hcorflat, mijk, juni,

 iuni)

 mgvalin += baba

 if np.unique(modindcheck).size > 1 and mijk in modindcheck:

 i, j, k = np.nonzero(modindcheck == mijk)

 iuni = np.array(np.unique(i), dtype=np.int32)

 juni = np.array(np.unique(j), dtype=np.int32)

 kuni = np.array(np.unique(k), dtype=np.int32)

 for k in kuni:

 baba = sum_fields(k, mgval, numx, numy, modindcheck,

 aaa[0],

 aaa[1], mglayers, hcorflat, mijk, juni,

 iuni)

 mgvalin -= baba

 showtext('Done')

 if pbars is not None:

 pbars.incrmain()

 mgvalin.resize([numx, numy])

 mgvalin = mgvalin.T

 mgvalin = mgvalin[::-1]

 mgvalin = np.ma.array(mgvalin)

 if np.unique(modindcheck).size > 1:

 if magcalc:

 mgvalin += lmod.griddata['Calculated Magnetics'].data

 else:

 mgvalin += lmod.griddata['Calculated Gravity'].data

 if magcalc:

 lmod.griddata['Calculated Magnetics'].data = mgvalin

 else:

 lmod.griddata['Calculated Gravity'].data = mgvalin

 if ('Gravity Regional' in lmod.griddata and not magcalc and

 np.unique(modindcheck).size == 1):

 zfin = gridmatch(lmod, 'Calculated Gravity', 'Gravity Regional')

 lmod.griddata['Calculated Gravity'].data += zfin

 if lmod.lith_index.max() <= 0:

 lmod.griddata['Calculated Magnetics'].data *= 0.

 lmod.griddata['Calculated Gravity'].data *= 0.

 if 'Magnetic Dataset' in lmod.griddata:

 ztmp = gridmatch(lmod, 'Magnetic Dataset', 'Calculated Magnetics')

 lmod.griddata['Magnetic Residual'] = copy.deepcopy(

 lmod.griddata['Magnetic Dataset'])

 lmod.griddata['Magnetic Residual'].data = (

 lmod.griddata['Magnetic Dataset'].data - ztmp)

 lmod.griddata['Magnetic Residual'].dataid = 'Magnetic Residual'

 if 'Gravity Dataset' in lmod.griddata:

 ztmp = gridmatch(lmod, 'Gravity Dataset', 'Calculated Gravity')

 lmod.griddata['Gravity Residual'] = copy.deepcopy(

 lmod.griddata['Gravity Dataset'])

259

 lmod.griddata['Gravity Residual'].data = (

 lmod.griddata['Gravity Dataset'].data - ztmp - lmod.gregional)

 lmod.griddata['Gravity Residual'].dataid = 'Gravity Residual'

 if parent is not None:

 tmp = [i for i in set(lmod.griddata.values())]

 parent.outdata['Raster'] = tmp

 showtext('Calculation Finished')

 if pbars is not None:

 pbars.maxall()

 lmod.lith_index_old = np.copy(lmod.lith_index)

 return lmod.griddata

@jit(nopython=True)

def sum_fields(k, mgval, numx, numy, modind, aaa0, aaa1, mlayers, hcorflat,

 mijk, jj, ii):

 """

 Sum Calculated magnetic or gravity data

 Parameters

 ii : list

 list of x indices

 jj : list

 list of y indices

 k : int

 z index

 mgval : numpy array

 magnetic grid

 numx : int

 number of columns

 numy : int

 number of rows

 modind : numpy array

 modex indices

 aaa0 : numpy array

 relative x offset

 aaa1 : numpy array

 relative y offset

 hcorflat : numpy array

 relatrive z offset - height correction

 mlayers : numpy array

 multiple grids for each calculated layer

 mijk : int

 current lithology index

 Returns

 mgval : numpy array

 """

 b = numx*numy

 for j in range(b):

 mgval[j] = 0.

 for i in ii:

 xoff = numx-i

 for j in jj:

 yoff = numy-j

 if (modind[i, j, k] != mijk):

 continue

 for ijk in range(b):

 xoff2 = xoff + aaa0[ijk]

 yoff2 = aaa1[ijk]+yoff

 hcor2 = hcorflat[ijk]+k

 mgval[ijk] += mlayers[hcor2, xoff2, yoff2]

 return mgval

260

def gradientO4(f, *varargs):

 """

 Calculate the fourth-order-accurate gradient of an N-dimensional scalar

 function. Uses central differences on the interior and first differences

 on boundaries to give the same shape.

 Inputs:

 f -- An N-dimensional array giving samples of a scalar function

 varargs -- 0, 1, or N scalars giving the sample distances in each

 direction

 Outputs:

 N arrays of the same shape as f giving the derivative of f with respect

 to each dimension.

 from https://gist.github.com/deeplycloudy/1b9fa46d5290314d9be02a5156b48741

 """

 N = len(f.shape) # number of dimensions

 n = len(varargs)

 if n == 0:

 dx = [1.0]*N

 elif n == 1:

 dx = [varargs[0]]*N

 elif n == N:

 dx = list(varargs)

 else:

 raise SyntaxError("invalid number of arguments")

 # use central differences on interior and first differences on endpoints

 outvals = []

 # create slice objects --- initially all are [:, :, ..., :]

 slice0 = [slice(None)]*N

 slice1 = [slice(None)]*N

 slice2 = [slice(None)]*N

 slice3 = [slice(None)]*N

 slice4 = [slice(None)]*N

 otype = f.dtype.char

 if otype not in ['f', 'd', 'F', 'D']:

 otype = 'd'

 for axis in range(N):

 # select out appropriate parts for this dimension

 out = np.zeros(f.shape, f.dtype.char)

 slice0[axis] = slice(2, -2)

 slice1[axis] = slice(None, -4)

 slice2[axis] = slice(1, -3)

 slice3[axis] = slice(3, -1)

 slice4[axis] = slice(4, None)

 # 1D equivalent -- out[2:-2] = (f[:4]-8*f[1:-3]+8*f[3:-1]-f[4:])/12.0

 out[slice0] = (f[slice1]-8.0*f[slice2]+8.0*f[slice3]-f[slice4])/12.0

 slice0[axis] = slice(None, 2)

 slice1[axis] = slice(1, 3)

 slice2[axis] = slice(None, 2)

 # 1D equivalent -- out[0:2] = (f[1:3] - f[0:2])

 out[slice0] = (f[slice1] - f[slice2])

 slice0[axis] = slice(-2, None)

 slice1[axis] = slice(-2, None)

 slice2[axis] = slice(-3, -1)

 # 1D equivalent -- out[-2:] = (f[-2:] - f[-3:-1])

 out[slice0] = (f[slice1] - f[slice2])

 # divide by step size

 outvals.append(out / dx[axis])

 # reset the slice object in this dimension to ":"

 slice0[axis] = slice(None)

 slice1[axis] = slice(None)

261

 slice2[axis] = slice(None)

 slice3[axis] = slice(None)

 slice4[axis] = slice(None)

 if N == 1:

 return outvals[0]

 return outvals

@jit(nopython=True)

def gbox(gval, xobs, yobs, numx, numy, z_0, x_1, y_1, z_1, x_2, y_2, z_2,

 x, y, z, isign):

 """

 GBOX routine by Blakely

 Subroutine GBOX computes the vertical attraction of a

 rectangular prism. Sides of prism are parallel to x,y,z axes,

 and z axis is vertical down.

 Input parameters:

 Observation point is (x0,y0,z0). The prism extends from x1

 to x2, from y1 to y2, and from z1 to z2 in the x, y, and z

 directions, respectively. Density of prism is rho. All

 distance parameters in units of m;

 Output parameters:

 Vertical attraction of gravity, g, in mGal/rho.

 Must still be multiplied by rho outside routine.

 Done this way for speed.

 Parameters

 gval : numpy array

 gravity grid

 xobs : numpy array

 x observations

 yobs : numpy array

 y observations

 numx : int

 number of columns

 numy : int

 number of rows

 z_0 : float

 z observation point

 x_1 : float

 west side of cube

 y_1 : float

 south side of cube

 z_1 : float

 top of cube

 x_2 : float

 east side of cube

 y_2 : float

 north side of cube

 z_2 : float

 bottom of cube

 x : numpy array

 distance to x sides

 y : numpy array

 distance to y sides

 z : numpy array

 distance to z sides

 isign : numpy array

 calculation constants

 Returns

 gval : numpy array

 output gravity grid

 """

262

 z[0] = z_0-z_1

 z[1] = z_0-z_2

 for ii in range(numx):

 x[0] = xobs[ii]-x_1

 x[1] = xobs[ii]-x_2

 for jj in range(numy):

 y[0] = yobs[jj]-y_1

 y[1] = yobs[jj]-y_2

 sumi = 0.

 for i in range(2):

 for j in range(2):

 for k in range(2):

 rijk = np.sqrt(x[i]*x[i]+y[j]*y[j]+z[k]*z[k])

 ijk = isign[i]*isign[j]*isign[k]

 arg1 = np.arctan2(x[i]*y[j], z[k]*rijk)

 if arg1 < 0.:

 arg1 = arg1 + 2 * np.pi

 arg2 = rijk+y[j]

 arg3 = rijk+x[i]

 arg2 = np.log(arg2)

 arg3 = np.log(arg3)

 sumi += ijk*(z[k]*arg1-x[i]*arg2-y[j]*arg3)

 gval[ii, jj] = sumi

 return gval

@jit(nopython=True)

def mbox(mval, xobs, yobs, numx, numy, z0, x1, y1, z1, x2, y2, fm1, fm2, fm3,

 fm4, fm5, fm6, alpha, beta):

 """

 MBOX routine by Blakely

 Subroutine MBOX computes the total field anomaly of an infinitely

 extended rectangular prism. Sides of prism are parallel to x,y,z

 axes, and z is vertical down. Bottom of prism extends to infinity.

 Two calls to mbox can provide the anomaly of a prism with finite

 thickness; e.g.,

 call mbox(x0,y0,z0,x1,y1,z1,x2,y2,mi,md,fi,fd,m,theta,t1)

 call mbox(x0,y0,z0,x1,y1,z2,x2,y2,mi,md,fi,fd,m,theta,t2)

 t=t1-t2

 Requires subroutine DIRCOS. Method from Bhattacharyya (1964).

 Input parameters:

 Observation point is (x0,y0,z0). Prism extends from x1 to

 x2, y1 to y2, and z1 to infinity in x, y, and z directions,

 respectively. Magnetization defined by inclination mi,

 declination md, intensity m. Ambient field defined by

 inclination fi and declination fd. X axis has declination

 theta. Distance units are irrelevant but must be consistent.

 Angles are in degrees, with inclinations positive below

 horizontal and declinations positive east of true north.

 Magnetization in A/m.

 Output paramters:

 Total field anomaly t, in nT.

 Parameters

 mval : numpy array

 gravity grid

 xobs : numpy array

 x observations

 yobs : numpy array

 y observations

 numx : int

 number of columns

 numy : int

 number of rows

263

 z_0 : float

 z observation point

 x_1 : float

 west side of cube

 y_1 : float

 south side of cube

 z_1 : float

 top of cube

 x_2 : float

 east side of cube

 y_2 : float

 north side of cube

 fm1 : float

 calculation constants

 fm2 : float

 calculation constants

 fm3 : float

 calculation constants

 fm4 : float

 calculation constants

 fm5 : float

 calculation constants

 fm6 : float

 calculation constants

 alpha : numpy array

 calculation constants

 beta : numpy array

 calculation constants

 Returns

 mval : numpy array

 output magnetic grid

 """

 h = z1-z0

 hsq = h**2

 for ii in range(numx):

 alpha[0] = x1-xobs[ii]

 alpha[1] = x2-xobs[ii]

 for jj in range(numy):

 beta[0] = y1-yobs[jj]

 beta[1] = y2-yobs[jj]

 t = 0.

 for i in range(2):

 alphasq = alpha[i]**2

 for j in range(2):

 sign = 1.

 if i != j:

 sign = -1.

 r0sq = alphasq+beta[j]**2+hsq

 r0 = np.sqrt(r0sq)

 r0h = r0*h

 alphabeta = alpha[i]*beta[j]

 arg1 = (r0-alpha[i])/(r0+alpha[i])

 arg2 = (r0-beta[j])/(r0+beta[j])

 arg3 = alphasq+r0h+hsq

 arg4 = r0sq+r0h-alphasq

 tlog = (fm3*np.log(arg1)/2.+fm2*np.log(arg2)/2. -

 fm1*np.log(r0+h))

 tatan = (-fm4*np.arctan2(alphabeta, arg3) -

 fm5*np.arctan2(alphabeta, arg4) +

 fm6*np.arctan2(alphabeta, r0h))

 t = t+sign*(tlog+tatan)

 mval[ii, jj] = t

 return mval

def dircos(inc, dec, azim=90):

264

 """

 Calculate direction cosines from inclination and declination

 Parameters

 inc : float

 inclination in degrees positive below horizontal.

 dec : float

 declination in degrees positive east of true north.

 azim : float

 azimuth of x axis in degrees positive east of north.

 Returns

 a, b, c : direction cosines

 """

 Inc = np.deg2rad(inc)

 Dec = np.deg2rad(dec-azim)

 a = np.cos(Inc)*np.cos(Dec)

 b = np.cos(Inc)*np.sin(Dec)

 g = np.sin(Inc)

 return a, b, g

def polyfit2d(x, y, f, deg):

 """

 This fits a polynomial surface through a set of data.

 Parameters

 x : numpy array

 x coordinates

 y : numpy array

 y coordinates

 f : numpy array

 z values to fit surface through

 deg : list

 list of maximum degrees

 Returns

 c : numpy array

 output surface

 """

 x = np.asarray(x)

 y = np.asarray(y)

 f = np.asarray(f)

 deg = np.asarray(deg)

 vander = polynomial.polyvander2d(x, y, deg)

 vander = vander.reshape((-1, vander.shape[-1]))

 f = f.reshape((vander.shape[0],))

 c = np.linalg.lstsq(vander, f, rcond=None)[0]

 return c.reshape(deg+1)

def plot2(pdat, title='', clabel='', minstd=2, maxstd=2, extent=None,

 cmap=None, notstd=False, show=True):

 """

 Plotting routine for convenience. Plots images

 Parameters

 pdat : numpy array

 grid to plot

 title : str

 title

 clabel: str

 colourbar label

265

 minstd : float

 minimum standard deviation or minimum value

 maxstd : float

 maximum standard deviation or maximum value

 extent : list

 coordinates of image extents

 cmap : matplotlib colour map

 colours to use in image

 notstd : bool

 flag for regular limits

 show : bool

 flag to show image immediately

 Returns

 None

 """

 if cmap is None:

 cmap = plt.cm.jet

 if notstd:

 vmin = minstd

 vmax = maxstd

 else:

 vmin = np.median(pdat)-np.std(pdat)*minstd

 vmax = np.median(pdat)+np.std(pdat)*maxstd

 if show is True:

 plt.figure(figsize=(9, 6))

 ax = plt.gca()

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 extent = [0, extent[1]-extent[0], 0, extent[3]-extent[2]]

 plt.xticks(extent[0:2], ha='center')

 plt.yticks(extent[2:4], rotation='vertical', va='center')

plt.xticks(ha='center')

plt.yticks(rotation='vertical', va='center')

 plt.title(title, loc='left')

 im = plt.imshow(pdat, extent=extent, cmap=cmap, vmin=vmin, vmax=vmax)

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

plt.title(clabel, size='medium')

 cbar = plt.colorbar(im, cax=cax)

 cbar.set_label(clabel)

 if show is True:

 plt.tight_layout()

 plt.show()

 return ax

def As_calcs(dx, dy, dz, dxy=1):

 """

 Calculates Analytic signals

 Parameters

 dx : numpy array

 dx grid

 dy : numpy array

 dy grid

 dz : numpy array

 dz grid

 dxy : float

 cube dimension

 Returns

266

 As : numpy array

 first order analytic signal

 As2 : numpy array

 second order analytic signal

 """

 deltax = dxy

 deltay = dxy

 As = np.sqrt(dx**2+dy**2+dz**2)

Order 2 gradients

dyz, dxz = np.gradient(dz, deltax)

dyy, _ = np.gradient(dy, deltay)

dxy, dxx = np.gradient(dx, deltax)

Order 4 gradients

 dyz, dxz = gradientO4(dz, deltax)

 dyy, _ = gradientO4(dy, deltay)

 dxy, dxx = gradientO4(dx, deltax)

 dzz = -(dxx+dyy)

 asxt = (dx*dxx + dy*dxy + dz*dxz)

 asyt = (dx*dxy + dy*dyy + dz*dyz)

 aszt = (dx*dxz + dy*dyz + dz*dzz)

 As2 = np.sqrt(asxt**2+asyt**2+aszt**2)/As

 return As, As2

def pseudo_tensor(magval, inc=-62, dec=-16, dxy=10, cx=None, cy=None, cz=None):

 """

 Pseudo tensor calculation

 Parameters

 magval : numpy array

 magnetic TMI values

 inc : float

 inclination

 dec : float

 inclination

 dxy : float

 cube dimension

 Returns

 ptensor : dictionary

 pseudo tensor values

 """

 if cx is None:

 cx, cy, cz = dircos(inc, dec)

 pwidth = max(magval.shape)

 magval2 = np.pad(magval, pwidth, 'linear_ramp')

 fft = np.fft.fft2(magval2)

 kx = np.fft.fftfreq(fft.shape[1], d=dxy)

 ky = np.fft.fftfreq(fft.shape[0], d=dxy)

 ptensor = {}

 kx, ky = np.meshgrid(kx, ky)

 k = np.sqrt(kx**2+ky**2)

 dterm = (1j*(cx*kx+cy*ky)+cz*k)

 dterm[dterm == 0] = -np.finfo(float).eps

 k[k == 0] = np.finfo(float).eps

 kx[kx == 0] = np.finfo(float).eps

 ky[ky == 0] = np.finfo(float).eps

267

 out1 = fft*kx*1j/dterm

 out1[np.isnan(out1)] = 0.

 out2 = np.fft.ifft2(out1)

 ptensor['x'] = out2[pwidth:-pwidth, pwidth:-pwidth].real

 out1 = fft*ky*1j/dterm

 out1[np.isnan(out1)] = 0.

 out2 = np.fft.ifft2(out1)

 ptensor['y'] = out2[pwidth:-pwidth, pwidth:-pwidth].real

 out1 = fft*k/dterm

 out1[np.isnan(out1)] = 0.

 out2 = np.fft.ifft2(out1)

 ptensor['z'] = out2[pwidth:-pwidth, pwidth:-pwidth].real

 FBz = out1

 out1 = -2*np.pi*kx**2/k*FBz

 out1[np.isnan(out1)] = 0.

 out2 = np.fft.ifft2(out1)

 ptensor['xx'] = out2[pwidth:-pwidth, pwidth:-pwidth].real

 out1 = -2*np.pi*ky**2/k*FBz

 out1[np.isnan(out1)] = 0.

 out2 = np.fft.ifft2(out1)

 ptensor['yy'] = out2[pwidth:-pwidth, pwidth:-pwidth].real

 out1 = 2*np.pi*k*FBz

 out1[np.isnan(out1)] = 0.

 out2 = np.fft.ifft2(out1)

 ptensor['zz'] = out2[pwidth:-pwidth, pwidth:-pwidth].real

 out1 = -2*np.pi*kx*ky/k*FBz

 out1[np.isnan(out1)] = 0.

 out2 = np.fft.ifft2(out1)

 ptensor['xy'] = out2[pwidth:-pwidth, pwidth:-pwidth].real

 out1 = 2*np.pi*1j*kx*FBz

 out1[np.isnan(out1)] = 0.

 out2 = np.fft.ifft2(out1)

 ptensor['xz'] = out2[pwidth:-pwidth, pwidth:-pwidth].real

 out1 = 2*np.pi*1j*ky*FBz

 out1[np.isnan(out1)] = 0.

 out2 = np.fft.ifft2(out1)

 ptensor['yz'] = out2[pwidth:-pwidth, pwidth:-pwidth].real

 return ptensor

def pseudo_limits():

 """

 Shows limits of pseudo tensor calculations, in that they cannot account

 for remanence.

 Parameters

 None

 Returns

 None

 """

 inc = 60

 dec = -30

 Tz = []

 oTz = []

 magval = []

 tcube = None

 for mstr in [0, 0.323]:

268

 del tcube

 tcube = TensorCube()

 tcube.inc = inc

 tcube.dec = dec

 tcube.mstrength = mstr

 tcube.minc = -40

 tcube.mdec = 20

 tcube.susc = 0.01

 tcube.hintn = 28000.

 tcube.azim = 90

tcube.dxy = 5

 tcube.calc_all()

 prof = int(tcube.magval.shape[0]//2)

 dxy = tcube.dxy

 magval.append(tcube.magval)

 Tz.append(tcube.bz)

 # calculate artificial tensor

 ptensor = pseudo_tensor(tcube.magval, inc, dec, dxy,

 tcube.cx, tcube.cy, tcube.cz)

 oTz.append(ptensor['z'])

 print(tcube.cx, tcube.cy, tcube.cz)

magval2 = tcube.cx*tcube.bx+tcube.cy*tcube.by+tcube.cz*tcube.bz

 xcoords = np.arange(0, tcube.rc, tcube.dxy)

 x1, x2 = tcube.u

 y1, y2 = 0, -20 # tcube.v

 plt.figure(figsize=(8, 4))

 plt.subplot(121)

 plt.title('(a) No remanence', loc='left')

 plt.ylim(-50, 200)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.plot(xcoords, magval[0][prof], '-.', label='B_{tmi}')

 plt.plot(xcoords, Tz[0][prof], '.', label='B_{z}')

 plt.plot(xcoords, oTz[0][prof], label='Derived B_{z}')

 plt.ylabel('(nT)')

 plt.xlabel('Distance (m)')

 plt.legend(loc='upper left')

 plt.subplot(122)

 plt.ylim(-50, 200.)

 plt.title('(b) Remanence', loc='left')

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.plot(xcoords, magval[1][prof], '-.', label='B_{tmi}')

 plt.plot(xcoords, Tz[1][prof], '.', label='B_{z}')

 plt.plot(xcoords, oTz[1][prof], label='Derived B_{z}')

 plt.ylabel('(nT)')

 plt.xlabel('Distance (m)')

 plt.legend(loc='upper left')

 plt.tight_layout()

 plt.show()

def tests():

 """

 Test program for calculation of tensor cube data.

 Parameters

 None

 Returns

269

 None

 """

 tcube = TensorCube()

 tcube.calc_all()

 tcube.plot_grav()

 tcube.plot_mag()

 pt = pseudo_tensor(tcube.magval)

 plt.figure(figsize=(8, 8))

 plt.subplot(4, 3, 1)

 plt.imshow(pt['x'], vmin=-500, vmax=500)

 plt.title('x')

 plt.subplot(4, 3, 2)

 plt.imshow(pt['y'], vmin=-500, vmax=500)

 plt.title('y')

 plt.subplot(4, 3, 3)

 plt.imshow(pt['z'], vmin=-500, vmax=500)

 plt.title('z')

 plt.subplot(4, 3, 4)

 plt.imshow(pt['xx'], vmin=-10, vmax=10)

 plt.title('xx')

 plt.subplot(4, 3, 8)

 plt.imshow(pt['yy'], vmin=-10, vmax=10)

 plt.title('yy')

 plt.subplot(4, 3, 12)

 plt.imshow(pt['zz'], vmin=-10, vmax=10)

 plt.title('zz')

 plt.subplot(4, 3, 5)

 plt.imshow(pt['xy'], vmin=-10, vmax=10)

 plt.title('xy')

 plt.subplot(4, 3, 9)

 plt.imshow(pt['yz'], vmin=-10, vmax=10)

 plt.title('yz')

 plt.subplot(4, 3, 6)

 plt.imshow(pt['xz'], vmin=-10, vmax=10)

 plt.title('xz')

 plt.subplot(4, 3, 10)

 a, b, g = dircos(-62., -16.)

 nmagval = a*pt['x']+b*pt['y']+g*pt['z']

 plt.imshow(nmagval, vmin=-500, vmax=500)

 plt.tight_layout()

 plt.show()

 dxy = tcube.dxy

 # Now we begin the tensor stuff

 Txx = np.ma.masked_invalid(tcube.bxx)

 Txy = np.ma.masked_invalid(tcube.bxy)

 Txz = np.ma.masked_invalid(tcube.bxz)

 Tyy = np.ma.masked_invalid(tcube.byy)

 Tyz = np.ma.masked_invalid(tcube.byz)

 Tzz = np.ma.masked_invalid(tcube.bzz)

 cx = tcube.cx

 cy = tcube.cy

 cz = tcube.cz

 Htmi_x = cx*Txx+cy*Txy+cz*Txz

 Htmi_y = cx*Txy+cy*Tyy+cz*Tyz

 Htmi_z = cx*Txz+cy*Tyz+cz*Tzz

 Asp = np.sqrt(Htmi_x**2 + Htmi_y**2 + Htmi_z**2)

 Txxy, Txxx = gradientO4(Txx, dxy)

270

 Tyyy, Tyyx = gradientO4(Tyy, dxy)

 Tzzy, Tzzx = gradientO4(Tzz, dxy)

 Txyy, Txyx = gradientO4(Txy, dxy)

 Txzy, Txzx = gradientO4(Txz, dxy)

 Tyzy, Tyzx = gradientO4(Tyz, dxy)

 Txxz = Txzx

 Tyyz = Tyzy

 Tzzz = -(Txxz+Tyyz)

 Txyz = Tyzx

 Txzz = Tzzx

 Tyzz = Tzzy

 As_x = (Htmi_x*(cx*Txxx + cy*Txyx + cz*Txzx) +

 Htmi_y*(cx*Txyx + cy*Tyyx + cz*Tyzx) +

 Htmi_z*(cx*Txzx + cy*Tyzx + cz*Tzzx))

 As_y = (Htmi_x*(cx*Txxy + cy*Txyy + cz*Txzy) +

 Htmi_y*(cx*Txyy + cy*Tyyy + cz*Tyzy) +

 Htmi_z*(cx*Txzy + cy*Tyzy + cz*Tzzy))

 As_z = (Htmi_x*(cx*Txxz + cy*Txyz + cz*Txzz) +

 Htmi_y*(cx*Txyz + cy*Tyyz + cz*Tyzz) +

 Htmi_z*(cx*Txzz + cy*Tyzz + cz*Tzzz))

 As2p = np.sqrt(As_x**2 + As_y**2 + As_z**2)/Asp

 N = 0.0

 distancep = (N+1)*Asp/As2p

 xcoords = np.arange(0, tcube.rc, tcube.dxy)

 x1, x2 = tcube.u

 y1, y2 = tcube.v

 z1, z2 = tcube.w

 z2 = -300

 extent = (0, tcube.rc, 0, tcube.rc)

 plt.figure(figsize=(6, 6))

 plt.subplot(2, 2, 1)

 ax = plt.gca()

 im = plt.imshow(Asp, extent=extent)

 divider = make_axes_locatable(ax)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.xticks([0, tcube.rc])

 plt.yticks([0, tcube.rc], rotation='vertical')

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 plt.title('(a)', loc='left')

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('As_{1} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax)

 plt.subplot(2, 2, 2)

 ax = plt.gca()

 im = plt.imshow(As2p, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

 plt.gca().add_line(ply)

 plt.xticks([0, tcube.rc])

 plt.yticks([0, tcube.rc], rotation='vertical')

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 plt.title('(b)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title(r'$As_{2} (\mathrm{nT/m}^2)$', size='medium')

 plt.colorbar(im, cax=cax)

 plt.subplot(2, 2, 3)

 ax = plt.gca()

 im = plt.imshow(-distancep, vmax=0, extent=extent)

 ply = plt.Line2D([x1, x1, x2, x2, x1], [y2, y1, y1, y2, y2], color='k')

271

 plt.gca().add_line(ply)

 ply = plt.Line2D([0, tcube.rc], [tcube.rc/2, tcube.rc/2], color='k',

 ls='dashed')

 plt.gca().add_line(ply)

 plt.xticks([0, tcube.rc])

 plt.yticks([0, tcube.rc], rotation='vertical')

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 plt.title('(c)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('Depth (m)', size='medium')

 plt.colorbar(im, cax=cax, ticks=[0, -50, -100, -150, -200])

 plt.subplot(2, 2, 4)

 plt.plot(xcoords, -distancep[20])

 ply = plt.Line2D([x1, x1, x2, x2], [z2, z1, z1, z2], color='k')

 plt.gca().add_line(ply)

 plt.xlabel('Distance (m)')

 plt.ylabel('Depth (m)', labelpad=-10)

 plt.yticks([0, -200])

 plt.title('(d)', loc='left')

 plt.tight_layout()

 plt.show()

def remanence():

 """

 Test program for calculation of remanence.

 Parameters

 None

 Returns

 None

 """

 cmap = plt.cm.jet

 inc = 60

 dec = -30

 minc = 50

 mdec = -20

 mstrength = 0.323

 lmstrength = 0.

 susc = 0.01

 hintn = 28000.

 print('inclination: ', inc)

 fa, fb, fc = dircos(inc, dec, 90)

 ma, mb, mc = dircos(minc, mdec, 90)

This is A/m

 mr = lmstrength*np.array([ma, mb, mc])

 mi = susc*hintn*np.array([fa, fb, fc])/(400*np.pi)

 m3 = mr+mi

 m = np.sqrt(m3 @ m3)

 m3 /= m

 cx1, cy1, cz1 = m3

 m1 = m

 mr = mstrength*np.array([ma, mb, mc])

 mi = susc*hintn*np.array([fa, fb, fc])/(400*np.pi)

 m3 = mr+mi

 m = np.sqrt(m3 @ m3)

 m3 /= m

 cx2, cy2, cz2 = m3

 m2 = m

###############################

272

 tcube1 = TensorCube()

 tcube1.inc = inc

 tcube1.dec = dec

 tcube1.mstrength = lmstrength

 tcube1.minc = minc

 tcube1.mdec = mdec

 tcube1.susc = susc

 tcube1.hintn = hintn

 tcube1.u = [90, 100]

 tcube1.v = [0, 400]

tcube1.v = [100, 300]

 tcube1.w = [-20, -3000]

 tcube1.rc = 400

 tcube1.init_grids()

 tcube1.calc_all()

 N = 1

 tcube2 = TensorCube()

 tcube2.inc = inc

 tcube2.dec = dec

 tcube2.mstrength = mstrength

 tcube2.minc = minc

 tcube2.mdec = mdec

 tcube2.susc = susc

 tcube2.hintn = hintn

 tcube2.u = [290, 300] # [250, 350]

 tcube2.v = tcube1.v # [150, 250]

 tcube2.w = tcube1.w

 tcube2.rc = 400

 tcube2.init_grids()

 tcube2.calc_all()

#################################

 print('rmi:', lmstrength*400*np.pi)

 print('kH:', tcube1.susc*tcube1.hintn)

 print('mi:', tcube1.susc*tcube1.hintn/(400*np.pi),

 'mr:', lmstrength,

 'mt:', m)

 #######################

 Tx = tcube1.bx

 Ty = tcube1.by

 Tz = tcube1.bz

 Txx = tcube1.bxx

 Txy = tcube1.bxy

 Txz = tcube1.bxz

 Tyy = tcube1.byy

 Tyz = tcube1.byz

 Tzz = tcube1.bzz

 magval = tcube1.magval

 dxy = tcube1.dxy

 cx, cy, cz = cx1, cy1, cz1

 Hx = (Txx*(Tx+cx*hintn)+Txy*(Ty+cy*hintn)+Txz*(Tz+cz*hintn))/(magval+hintn)

 Hy = (Txy*(Tx+cx*hintn)+Tyy*(Ty+cy*hintn)+Tyz*(Tz+cz*hintn))/(magval+hintn)

 Hz = (Txz*(Tx+cx*hintn)+Tyz*(Ty+cy*hintn)+Tzz*(Tz+cz*hintn))/(magval+hintn)

 Tx = tcube2.bx

 Ty = tcube2.by

 Tz = tcube2.bz

 Txx = tcube2.bxx

 Txy = tcube2.bxy

 Txz = tcube2.bxz

 Tyy = tcube2.byy

 Tyz = tcube2.byz

 Tzz = tcube2.bzz

 magval = tcube2.magval

 cx, cy, cz = cx2, cy2, cz2

273

 Hx += (Txx*(Tx+cx*hintn)+Txy*(Ty+cy*hintn)+Txz*(Tz+cz*hintn))/(magval+hintn)

 Hy += (Txy*(Tx+cx*hintn)+Tyy*(Ty+cy*hintn)+Tyz*(Tz+cz*hintn))/(magval+hintn)

 Hz += (Txz*(Tx+cx*hintn)+Tyz*(Ty+cy*hintn)+Tzz*(Tz+cz*hintn))/(magval+hintn)

 Tx = tcube1.bx+tcube2.bx

 Ty = tcube1.by+tcube2.by

 Tz = tcube1.bz+tcube2.bz

 Txx = tcube1.bxx+tcube2.bxx

 Txy = tcube1.bxy+tcube2.bxy

 Txz = tcube1.bxz+tcube2.bxz

 Tyy = tcube1.byy+tcube2.byy

 Tyz = tcube1.byz+tcube2.byz

 Tzz = tcube1.bzz+tcube2.bzz

 magval = tcube1.magval+tcube2.magval

 plt.imshow(magval)

 plt.show()

 cx2a, cy2a, cz2a = cx2, cy2, cz2

 cx2, cy2, cz2 = cosines_from_tensor3(Hx, Hy, Hz, magval, Txx, Tyy,

 Txy, Txz, Tyz, hintn, Tx, Ty, Tz)

 As, As2 = As_calcs(Hx, Hy, Hz, dxy)

 Hilbx = ss.hilbert(magval, axis=1).imag

 Hilby = ss.hilbert(magval, axis=0).imag

 As0 = np.sqrt(magval**2 + Hilbx**2 + Hilby**2)

 Hilbx = ss.hilbert(Tz, axis=1).imag

 Hilby = ss.hilbert(Tz, axis=0).imag

 Asz0 = np.sqrt(Tz**2 + Hilbx**2 + Hilby**2)

 Asx, Asx2 = As_calcs(Txx, Txy, Txz, dxy)

 Asy, Asy2 = As_calcs(Txy, Tyy, Tyz, dxy)

 Asz, Asz2 = As_calcs(Txz, Tyz, Tzz, dxy)

#######################

 r1 = -N*As0/As

 r2 = -N*Asz0/Asz

 print('###################')

 print('depth:', tcube1.w[0], r1[19, 9], r2[19, 9])

#######################

 width = tcube1.u[1]-tcube1.u[0]

 depth = tcube1.w[0]

 print('width:', width)

 mt = As0**2/(As*2*width*(1-cy2**2)*100)

 mt2 = Asz*depth**2/(width*200**np.sqrt(1-cy2**2))

 mt2a = Asz0**2/(Asz*width*200*np.sqrt(1-cy2**2))

 mt2b = Asz0**2/(As*width*200)

 mt2 = mt2b

 print('cx1:', cx1, cx2[19, 9])

 print('cy1:', cy1, cy2[19, 9])

 print('cz1:', cz1, cz2[19, 9])

 print('cx2:', cx2a, cx2[19, 29])

 print('cy2:', cy2a, cy2[19, 29])

 print('cz2:', cz2a, cz2[19, 29])

 susc = mt2*400*np.pi/tcube1.hintn

 print('inc:', inc, 'minc:', minc)

 print('dec:', dec, 'mdec:', mdec)

 print('mt (real):', m1, 'mt:', mt[19, 9], 'mt2a', mt2a[19, 9],

 'mt2', mt2[19, 9])

 print('2mt (real):', m2, 'mt:', mt[19, 29], 'mt2a', mt2a[19, 29],

 'mt2', mt2[19, 29])

 print('susc:', tcube1.susc, susc[19, 9])

274

 print('2susc:', tcube1.susc, susc[19, 29])

 mt[:, :] = mt2

 plt.figure(figsize=(9, 6))

 vmin = np.median(cx2)-np.std(cx2)*2

 vmax = np.median(cx2)+np.std(cx2)*2

 ax = plt.gca()

 plt.title(r'α_{t}')

 plt.imshow(cx2, extent=(0, 400, 0, 400), cmap=cmap, vmin=vmin, vmax=vmax)

 plt.colorbar()

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 x1, x2 = tcube1.u

 y1, y2 = tcube1.v

 ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k')

 ax.add_line(ply)

 x1, x2 = tcube2.u

 y1, y2 = tcube2.v

 ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k')

 ax.add_line(ply)

 plt.show()

 plt.figure(figsize=(9, 6))

 vmin = np.median(cy2)-np.std(cy2)*2

 vmax = np.median(cy2)+np.std(cy2)*2

 ax = plt.gca()

 plt.title(r'β_{t}')

 plt.imshow(cy2, extent=(0, 400, 0, 400), cmap=cmap, vmin=vmin, vmax=vmax)

 plt.colorbar()

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 x1, x2 = tcube1.u

 y1, y2 = tcube1.v

 ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k')

 ax.add_line(ply)

 x1, x2 = tcube2.u

 y1, y2 = tcube2.v

 ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k')

 ax.add_line(ply)

 plt.show()

 plt.figure(figsize=(9, 6))

 vmin = np.median(cz2)-np.std(cz2)*2

 vmax = np.median(cz2)+np.std(cz2)*2

 ax = plt.gca()

 plt.title(r'γ_{t}')

 plt.imshow(cz2, extent=(0, 400, 0, 400), cmap=cmap, vmin=vmin, vmax=vmax)

 plt.colorbar()

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 x1, x2 = tcube1.u

 y1, y2 = tcube1.v

 ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k')

 ax.add_line(ply)

 x1, x2 = tcube2.u

 y1, y2 = tcube2.v

 ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k')

 ax.add_line(ply)

 plt.show()

 rc = tcube1.rc

275

 extent = (0, rc, 0, rc)

 x1, x2 = tcube1.u

 y1, y2 = tcube1.v

 plt.figure(figsize=(8, 8))

 ax = plt.subplot(4, 3, 1)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(Tx, extent=extent)

 plt.xticks([0, rc])

 plt.yticks([0, rc], rotation='vertical')

 plt.title('(a)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{x} (nT)', size='medium')

 plt.colorbar(im, cax=cax)

 ax = plt.subplot(4, 3, 2)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(Ty, extent=extent)

 plt.xticks([0, rc])

 plt.yticks([0, rc], rotation='vertical')

 plt.title('(b)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{y} (nT)', size='medium')

 plt.colorbar(im, cax=cax)

 ax = plt.subplot(4, 3, 3)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(Tz, extent=extent)

 plt.xticks([0, rc])

 plt.yticks([0, rc], rotation='vertical')

 plt.title('(c)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{z} (nT)', size='medium')

 plt.colorbar(im, cax=cax)

 ax = plt.subplot(4, 3, 4)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(Txx, extent=extent)

 plt.xticks([0, rc])

 plt.yticks([0, rc], rotation='vertical')

 plt.title('(d)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{xx} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax)

 ax = plt.subplot(4, 3, 8)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(Tyy, extent=extent)

 plt.xticks([0, rc])

 plt.yticks([0, rc], rotation='vertical')

 plt.title('(g)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{yy} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax)

 ax = plt.subplot(4, 3, 12)

 plt.ylabel('Distance (m)')

276

 plt.xlabel('Distance (m)')

 im = plt.imshow(Tzz, extent=extent)

 plt.xticks([0, rc])

 plt.yticks([0, rc], rotation='vertical')

 plt.title('(j)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{zz} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax)

 ax = plt.subplot(4, 3, 5)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(Txy, extent=extent)

 plt.xticks([0, rc])

 plt.yticks([0, rc], rotation='vertical')

 plt.title('(e)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{xy} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax)

 ax = plt.subplot(4, 3, 9)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(Tyz, extent=extent)

 plt.xticks([0, rc])

 plt.yticks([0, rc], rotation='vertical')

 plt.title('(h)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{yz} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax)

 ax = plt.subplot(4, 3, 6)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 im = plt.imshow(Txz, extent=extent)

 plt.xticks([0, rc])

 plt.yticks([0, rc], rotation='vertical')

 plt.title('(f)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{xz} (nT/m)', size='medium')

 plt.colorbar(im, cax=cax)

 ax = plt.subplot(4, 3, 10)

 plt.ylabel('Distance (m)')

 plt.xlabel('Distance (m)')

 dtmp = magval

 im = plt.imshow(dtmp, extent=extent)

 plt.xticks([0, rc])

 plt.yticks([0, rc], rotation='vertical')

 plt.title('(i)', loc='left')

 divider = make_axes_locatable(ax)

 cax = divider.append_axes("right", size="5%", pad=0.05)

 plt.title('B_{tmi} (nT)', size='medium')

 plt.colorbar(im, cax=cax)

 plt.tight_layout()

 plt.show()

 azim = 90

 mr, minc, mdec = rem_from_cosines(cx2, cy2, cz2, mt, tcube1.susc, hintn,

 inc, dec, azim)

 print('inc:', tcube2.inc)

277

 print('dec:', tcube2.dec)

 print('minc:', tcube2.minc, minc[19, 29])

 print('mdec:', tcube2.mdec, mdec[19, 29])

 print('mr:', tcube2.mstrength, mr[19, 29])

 title = ['Total Magnetisation', 'Remanent Magnetisation']

 clabel = 'A/m'

 cmap = plt.cm.jet

 minstd = 1

 maxstd = 1

 extent = (0, 400, 0, 400)

 mask = np.ma.make_mask_none(mt.shape)+True

 mask[1:-1, 1:-1] = False

 mt = np.ma.array(mt, mask=mask)

 mr = np.ma.array(mr, mask=mask)

 for i, pdat in enumerate([mt, mr]):

 vmin = np.ma.median(pdat)-np.ma.std(pdat)*minstd

 vmax = np.ma.median(pdat)+2*np.ma.std(pdat)*maxstd

 plt.figure(figsize=(9, 6))

 plt.title(title[i])

 plt.imshow(pdat, extent=extent, cmap=cmap, vmin=vmin, vmax=vmax)

 plt.colorbar().set_label(clabel)

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 x1, x2 = tcube1.u

 y1, y2 = tcube1.v

 ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k')

 plt.gca().add_line(ply)

 x1, x2 = tcube2.u

 y1, y2 = tcube2.v

 ply = plt.Line2D([x1, x1, x2, x2], [y2, y1, y1, y2], color='k')

 plt.gca().add_line(ply)

 plt.tight_layout()

 plt.show()

def interp(filename):

 """

 Implementation of the interpretatin routine in PhD

 Parameters

 filename : string

 input PyGMI model filename. This contains all raster data in it.

 Returns

 None

 """

 N = 1 # dyke

 fht = 50 # flying height

 w = 100 # this is the dike width

 numclasses = 10

Import model file

 lmod = importmod3d(filename)

 maxdepth = lmod.numz*lmod.d_z

 maxdepth = 500

 inc = lmod.lith_list['Generic 1'].finc

 dec = lmod.lith_list['Generic 1'].fdec

 hintn = lmod.lith_list['Generic 1'].hintn

278

 magval = lmod.griddata['Magnetic Dataset'].data.data

 tmp = lmod.griddata['Magnetic Dataset']

 magextent = (tmp.tlx, tmp.tlx+tmp.cols*tmp.xdim, tmp.tly-tmp.rows*tmp.ydim,

 tmp.tly)

 dtmval = lmod.griddata['DTM Dataset'].data.data

 tmp = lmod.griddata['DTM Dataset']

 dxy = lmod.griddata['Magnetic Dataset'].xdim

subtract surface from dataset

 rows, cols = magval.shape

 y, x = np.mgrid[:rows, :cols]

 c = polyfit2d(x, y, magval, [2, 2])

 f = polynomial.polyval2d(x, y, c)

 magval -= f

calculate artificial tensor

 ptensor = pseudo_tensor(magval, inc, dec, dxy)

 Tx = ptensor['x']

 Ty = ptensor['y']

 Tz = ptensor['z']

 Txx = ptensor['xx']

 Tyy = ptensor['yy']

 Tzz = ptensor['zz']

 Txy = ptensor['xy']

 Txz = ptensor['xz']

 Tyz = ptensor['yz']

 plt.figure(figsize=(9, 6))

 ax = plt.gca()

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 plt.title('Total Magnetic Intensity')

 plt.imshow(magval+f, extent=magextent, vmin=-150,

 vmax=400)

 plt.colorbar().set_label('nT')

 ply = plt.Line2D([magextent[0]+15520, magextent[0]+15520],

 [magextent[2], magextent[3]], color='k', ls='dashed')

 ax.add_line(ply)

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(9, 6))

 plt.title('Polynomial Surface')

 plt.imshow(f, extent=magextent)

 plt.colorbar().set_label('nT')

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(9, 6))

 plt.title('Total Magnetic Intensity - Polynomial Surface')

 plt.imshow(magval, extent=magextent, vmin=-100, vmax=150)

 plt.colorbar().set_label('nT')

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(8, 8))

 ax = plt.subplot(4, 3, 10)

 plot2(magval, '(i) B_{tmi}', '(nT)', minstd=2.0, maxstd=2.5,

 extent=magextent, show=False)

 ply = plt.Line2D([15520, 15520], [0, 36705], color='k', ls='dashed')

 ax.add_line(ply)

279

 plt.subplot(4, 3, 1)

 plot2(Tx, '(a) B_{x}', '(nT)', minstd=1, maxstd=2.5,

 extent=magextent, show=False)

 plt.subplot(4, 3, 2)

 plot2(Ty, '(b) B_{y}', '(nT)', minstd=1, maxstd=2.5,

 extent=magextent, show=False)

 plt.subplot(4, 3, 3)

 plot2(Tz, '(c) B_{z}', '(nT)', minstd=1, maxstd=2.5,

 extent=magextent, show=False)

 plt.subplot(4, 3, 4)

 plot2(Txx, '(d) B_{xx}', '(nT/m)', minstd=1, maxstd=2.5,

 extent=magextent, show=False)

 plt.subplot(4, 3, 8)

 plot2(Tyy, '(g) B_{yy}', '(nT/m)', minstd=1, maxstd=2.5,

 extent=magextent, show=False)

 plt.subplot(4, 3, 12)

 plot2(Tzz, '(j) B_{zz}', '(nT/m)', minstd=1, maxstd=2.5,

 extent=magextent, show=False)

 plt.subplot(4, 3, 5)

 plot2(Txy, '(e) B_{xy}', '(nT/m)', minstd=1, maxstd=2.5,

 extent=magextent, show=False)

 plt.subplot(4, 3, 6)

 plot2(Txz, '(f) B_{xz}', '(nT/m)', minstd=1, maxstd=2.5,

 extent=magextent, show=False)

 plt.subplot(4, 3, 9)

 plot2(Tyz, '(h) B_{yz}', '(nT/m)', minstd=1, maxstd=2.5,

 extent=magextent, show=False)

 plt.tight_layout()

 plt.show()

 cx, cy, cz = dircos(inc, dec)

 Hx = (Txx*(Tx+cx*hintn)+Txy*(Ty+cy*hintn)+Txz*(Tz+cz*hintn))/(magval+hintn)

 Hy = (Txy*(Tx+cx*hintn)+Tyy*(Ty+cy*hintn)+Tyz*(Tz+cz*hintn))/(magval+hintn)

 Hz = (Txz*(Tx+cx*hintn)+Tyz*(Ty+cy*hintn)+Tzz*(Tz+cz*hintn))/(magval+hintn)

 As, As2 = As_calcs(Hx, Hy, Hz, dxy)

 Asz, Asz2 = As_calcs(Txz, Tyz, Tzz, dxy)

 Asy, Asy2 = As_calcs(Txy, Tyy, Tyz, dxy)

 Asx, Asx2 = As_calcs(Txx, Txy, Txz, dxy)

 As0 = As0_calc(magval)

 Asx0 = As0_calc(Tx)

 Asy0 = As0_calc(Ty)

 Asz0 = As0_calc(Tz)

 r1 = -N*As0/As + fht

 rx12 = -(N+1)*Asx/Asx2 + fht

 ry12 = -(N+1)*Asy/Asy2 + fht

 rz12 = -(N+1)*Asz/Asz2 + fht

 rx01 = -N*Asx0/Asx + fht

 ry01 = -N*Asy0/Asy + fht

 rz01 = -N*Asz0/Asz + fht

 r1[r1 < -maxdepth] = -maxdepth

 r1[r1 > 0] = 0

 idat = r1

 rp = ss.argrelmax(idat, order=16, axis=0)

 F = lmod.lith_list['Generic 1'].hintn

 c = np.sin(np.deg2rad(lmod.lith_list['Generic 1'].finc))**2

 k = 4*np.pi*As0**2/(As*2*F*c*w)

 plt.figure(figsize=(9, 6))

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 plt.title('As_{0}')

 plt.imshow(As0, extent=magextent, vmin=-30, vmax=280)

 plt.colorbar().set_label('nT')

 plt.tight_layout()

 plt.show()

280

 plt.figure(figsize=(9, 6))

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 plt.title('As_{1}')

 plt.imshow(As, extent=magextent, vmin=-0.2, vmax=1.3)

 plt.colorbar().set_label('nT/m')

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(9, 6))

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 plt.title('$-r$')

 plt.imshow(r1, extent=magextent, vmin=-500, vmax=0, cmap=plt.cm.jet_r)

 plt.colorbar().set_label('m')

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(9, 6))

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 plt.title('$-r$')

 plt.imshow(rz12, extent=magextent, vmin=-500, vmax=0, cmap=plt.cm.jet_r)

 plt.colorbar().set_label('m')

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(9, 6))

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 plt.title('k')

 plt.imshow(k, extent=magextent, vmin=-0.1, vmax=0.9)

 plt.colorbar().set_label('SI Units')

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(8, 8))

 plt.subplot(3, 3, 1)

 plot2(rx12, '(a)', 'Depth (m)', minstd=-400, maxstd=0,

 extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False)

 plt.subplot(3, 3, 2)

 plot2(ry12, '(b)', 'Depth (m)', minstd=-400, maxstd=0,

 extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False)

 plt.subplot(3, 3, 3)

 plot2(rz12, '(c)', 'Depth (m)', minstd=-400, maxstd=0,

 extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False)

 plt.subplot(3, 3, 4)

 plot2(rx01, '(d)', 'Depth (m)', minstd=-400, maxstd=0,

 extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False)

 plt.subplot(3, 3, 5)

 plot2(ry01, '(e)', 'Depth (m)', minstd=-400, maxstd=0,

 extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False)

 plt.subplot(3, 3, 6)

 plot2(rz01, '(f)', 'Depth (m)', minstd=-400, maxstd=0,

 extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False)

 plt.subplot(3, 3, 7)

 plot2(r1, '(g)', 'Depth (m)', minstd=-400, maxstd=0.,

 extent=magextent, cmap=plt.cm.jet_r, notstd=True, show=False)

 plt.subplot(3, 3, 9)

 plot2(k, '(h)', 'SI units', minstd=1, maxstd=2.5,

 extent=magextent, show=False)

 plt.tight_layout()

 plt.show()

 tmp = lmod.griddata['Magnetic Dataset']

 plt.figure(figsize=(7, 6))

 plt.title('Peak Locations')

 plt.plot(tmp.tlx+rp[1]*tmp.xdim, tmp.tly-rp[0]*tmp.ydim, 'k.')

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 plt.axis('equal')

 plt.xlim([magextent[0], magextent[1]])

 plt.ylim([magextent[2], magextent[3]])

281

 plt.tight_layout()

 plt.show()

 db = DBSCAN(eps=7, algorithm='brute').fit(np.transpose(rp))

 labels = db.labels_

 newlabels = (labels != -1)

 for i in np.unique(labels):

 if i == -1:

 continue

 elif np.sum(labels == i) < 10:

 newlabels[labels == i] = False

 else:

 newlabels[labels == i] = True

 labels = labels[newlabels]

 rp = (rp[0][newlabels], rp[1][newlabels])

 k = k[rp]

 rall = depth_from_tensor(Tx, Ty, Tz, Txx, Tyy, Tzz, Txy, Txz, Tyz, N,

 fht, magval, dxy, Hx, Hy, Hz)

 means = []

 meds = []

 for i in rall:

 plt.title('depths:'+i)

 depth = rall[i]

 w1 = depth[rp]

 w1 = np.ma.masked_invalid(w1)

 w1 = w1[~w1.mask]

 w1 = w1.flatten()

 width, A0, A1 = width_from_tensor(Hx, Hy, Hz, Txx, Tyy, Tzz, Txy, Txz,

 Tyz, fht, dxy, depth, magval, hintn,

 Tx, Ty, Tz, cx, cy, cz)

 plt.title('widths:'+i)

 w1 = width[rp]

 w1 = np.ma.masked_invalid(w1)

 w1 = w1[~w1.mask]

 w1 = w1.flatten()

 print('widths:'+i+' mean:', w1.mean(), 'std:', w1.std())

 print('widths:'+i+' median:', np.median(w1))

 means.append(w1.mean())

 meds.append(np.median(w1.std()))

 print('width std', np.mean(meds))

 print('width mean', np.mean(means))

 plt.figure(figsize=(7, 6))

 plt.title('Peak Locations')

 plt.plot(tmp.tlx+rp[1]*tmp.xdim, tmp.tly-rp[0]*tmp.ydim, 'k.')

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 plt.axis('equal')

 plt.xlim([magextent[0], magextent[1]])

 plt.ylim([magextent[2], magextent[3]])

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(9, 6))

 plt.title('Peak Locations with Susceptibility')

 plt.scatter(tmp.tlx+rp[1]*tmp.xdim, tmp.tly-rp[0]*tmp.ydim, c=k,

 cmap=plt.cm.jet)

 plt.ylabel('Northings (m)')

 plt.xlabel('Eastings (m)')

 plt.axis('equal')

 plt.colorbar().set_label('SI units')

 plt.xlim([magextent[0], magextent[1]])

 plt.ylim([magextent[2], magextent[3]])

282

 plt.tight_layout()

 plt.show()

 km = KMeans(n_clusters=numclasses).fit(np.expand_dims(k, 1))

 klabels = km.labels_

 kmc = km.cluster_centers_

 plt.figure(figsize=(7, 5))

 plt.title('Susceptibility Distribution')

 N, bins, patches = plt.hist(k, 100)

 fracs = np.zeros_like(N)

 for i in np.unique(klabels):

 kmin = k[klabels == i].min()

 kmax = k[klabels == i].max()

 filt = np.logical_and(bins >= kmin, bins <= kmax)

 fracs[filt[:-1]] = i

 norm = colors.Normalize(fracs.min(), fracs.max())

 for thisfrac, thispatch in zip(fracs, patches):

 color = plt.cm.jet(norm(thisfrac))

 thispatch.set_facecolor(color)

 plt.ylabel('counts')

 plt.xlabel('k (SI units)')

 sm = plt.cm.ScalarMappable(cmap=plt.cm.jet, norm=norm)

 sm._A = []

 cbar = plt.colorbar(sm, ticks=np.unique(klabels))

 cbar.ax.set_yticklabels((np.unique(klabels)+1).astype(str).tolist())

 cbar.set_label('Class Number')

 plt.tight_layout()

 plt.show()

 print('Susceptibilities: ', kmc)

remember that r1 is negative below

 depths = ((dtmval.max()-(dtmval[rp]+r1[rp]))/lmod.d_z).astype(int)

 depths[depths >= lmod.numz] = -1

 for i, dep in enumerate(depths):

 yy = int(lmod.numy-rp[0][i]*lmod.numy/dtmval.shape[0])

 xx = int(rp[1][i]*lmod.numx/dtmval.shape[1])

 if dep != -1:

 lmod.lith_index[xx, yy, dep:] = klabels[i]+1

 for i, _ in enumerate(kmc):

 lmod.lith_list['Generic '+str(i+1)] = \

 copy.deepcopy(lmod.lith_list['Generic 1'])

 lmod.lith_list['Generic '+str(i+1)].lith_index = i+1

 lmod.lith_list['Generic '+str(i+1)].susc = kmc[i]

Save model

 lmod.mlut = {0: [170, 125, 90], 2: [255, 0, 0], 1: [0, 0, 255],

 3: [0, 255, 0]}

 filename = filename[:-4]+'_out.npz'

 emod = ExportMod3D(None)

 emod.ifile = filename

 emod.indata['Model3D'] = [lmod]

 emod.lmod = lmod

 emod.ifile = str(filename)

 emod.ext = filename[-3:]

 emod.savemodel()

 newmag = calc_field(lmod, magcalc=True)

 ztmp = gridmatch(lmod, 'Magnetic Dataset', 'Calculated Magnetics')

283

 dtmp = newmag['Magnetic Dataset']

 xcoords = np.arange(0, dtmp.ydim*dtmp.rows, dtmp.ydim)+dtmp.ydim/2

 plt.figure(figsize=(8, 8))

 plt.subplot(2, 1, 1)

 plt.title('(a)', loc='left')

 plt.ylabel('B_{tmi} (nT)')

 plt.xlabel('Distance (m)')

 col = int(15520/40)

 plt.plot(xcoords, ztmp.data[::-1, col])

 plt.plot(xcoords, dtmp.data[::-1, col], '.')

 plt.subplot(2, 1, 2)

 plt.title('(b)', loc='left')

 plt.ylabel('Depth (m)')

 plt.xlabel('Distance (m)')

 plt.ylim([-500, 0])

 depths = r1[::-1, col]

 # Suspicious depths can be further filtered out here

 depths[73:90] = -500

 depths[584:595] = -500

 rp = ss.argrelmax(depths, order=4)[0]

 plt.plot(xcoords, np.ma.masked_equal(depths, -500))

 for i in rp:

 plt.plot([xcoords[i], xcoords[i]], [-500, depths[i]], 'r')

 plt.show()

def As0_calc(idata):

 """

 Calculates the 0 order analytic signal using hilbert transforms

 Parameters

 idata : numpy array

 grid of magnetic data

 Returns

 As0 : numpy array

 zero order analytic signal

 """

 Hilbx = ss.hilbert(idata, axis=1).imag

 Hilby = ss.hilbert(idata, axis=0).imag

 As0 = np.sqrt(idata**2 + Hilbx**2 + Hilby**2)

 return As0

def depth_from_tensor(Tx, Ty, Tz, Txx, Tyy, Tzz, Txy, Txz, Tyz, N,

 fht, magval, dxy, Hx, Hy, Hz):

 """

 Calculates depth to source from tensor values

 Parameters

 Tx : numpy array

 Tx component

 Ty : numpy array

 Ty component

 Tz : numpy array

 Tz component

 Txx : numpy array

 Txx component

284

 Tyy : numpy array

 Tyy component

 Tzz : numpy array

 Tzz component

 Txy : numpy array

 Txy component

 Txz : numpy array

 Txz component

 Tyz : numpy array

 Tyz component

 N : integer

 N value for depth, 0 for steps and 1 for dykes

 fht : float

 flying height

 magval : numpy array

 TMI array

 dxy : float

 grid cell size

 Hx : numpy array

 x derivative of TMI

 Hy : numpy array

 y derivative of TMI

 Hz : numpy array

 z derivative of TMI

 Returns

 r : python dictionary

 dictionary of different calculated depths

 """

 As0 = As0_calc(magval)

 Asx0 = As0_calc(Tx)

 Asy0 = As0_calc(Ty)

 Asz0 = As0_calc(Tz)

 As, As2 = As_calcs(Hx, Hy, Hz, dxy)

 Asx, Asx2 = As_calcs(Txx, Txy, Txz, dxy)

 Asy, Asy2 = As_calcs(Txy, Tyy, Tyz, dxy)

 Asz, Asz2 = As_calcs(Txz, Tyz, Tzz, dxy)

 Asall0 = np.sqrt(Asx0**2+Asy0**2+Asz0**2)

 Asall1 = np.sqrt(Asx**2+Asy**2+Asz**2)

 Asall2 = np.sqrt(Asx2**2+Asy2**2+Asz2**2)

 r = {}

 r['1'] = -N*As0/As+fht

 r['12'] = -(N+1)*As/As2+fht

 r['a01'] = -N*Asall0/Asall1+fht

 r['a12'] = -(N+1)*Asall1/Asall2+fht

 r['x12'] = -(N+1)*Asx/Asx2+fht

 r['y12'] = -(N+1)*Asy/Asy2+fht

 r['z12'] = -(N+1)*Asz/Asz2+fht

 r['x01'] = -N*Asx0/Asx+fht

 r['y01'] = -N*Asy0/Asy+fht

 r['z01'] = -N*Asz0/Asz+fht

 return r

def width_from_tensor(Hx, Hy, Hz, Txx, Tyy, Tzz, Txy, Txz, Tyz, fht,

 dxy, depth, TMI, Ba, Tx, Ty, Tz, cx, cy, cz):

 """

 Calculates dyke width from tensor values.

 Parameters

 Hx : numpy array

 x derivative of TMI

285

 Hy : numpy array

 y derivative of TMI

 Hz : numpy array

 z derivative of TMI

 Txx : numpy array

 Txx component

 Tyy : numpy array

 Tyy component

 Tzz : numpy array

 Tzz component

 Txy : numpy array

 Txy component

 Txz : numpy array

 Txz component

 Tyz : numpy array

 Tyz component

 fht : float

 flying height

 depth : numpy array

 depth grid or value

 TMI : numpy array

 TMI data

 Tx : numpy array

 Tx component

 Ty : numpy array

 Ty component

 Tz : numpy array

 Tz component

 cx : numpy array

 alpha direction cosine

 cy : numpy array

 beta direction cosine

 cz : numpy array

 gamma direction cosine

 Returns

 width : numpy array

 grid of widths

 A0 : numpy array

 A0 analytic signal

 A1 : numpy array

 A1 analytic signal

 """

 depth2 = np.abs(depth)+np.abs(fht)

 Txxy, Txxx = gradientO4(Txx, dxy)

 Tyyy, Tyyx = gradientO4(Tyy, dxy)

 Tzzy, Tzzx = gradientO4(Tzz, dxy)

 Txyy, Txyx = gradientO4(Txy, dxy)

 Txzy, Txzx = gradientO4(Txz, dxy)

 Tyzy, Tyzx = gradientO4(Tyz, dxy)

 Txxz = Txzx

 Tyyz = Tyzy

 Tzzz = -(Txxz+Tyyz)

 Txyz = Tyzx

 Txzz = Tzzx

 D = Tx+cx*Ba

 E = Ty+cy*Ba

 F = Tz+cz*Ba

 Htmi_zz = ((Txzz*D+Tzzy*E+Tzzz*F+Txz**2+Tyz**2+Tzz**2)/(TMI+Ba) -

 (Txz*D+Tyz*E+Tzz*F)**2/(TMI+Ba)**3)

 Htmi_yz = ((Txyz*D+Tyyz*E+Tzzy*F+Txz*Txy+Tyz*Tyy+Tzz*Tyz)/(TMI+Ba) -

 (Txz*D+Tyz*E+Tzz*F)*(Txy*D+Tyy*E+Tyz*F)/(TMI+Ba)**3)

 Htmi_xz = ((Txxz*D+Txyz*E+Tzzx*F+Txz*Txx+Tyz*Txy+Tzz*Txz)/(TMI+Ba) -

 (Txz*D+Tyz*E+Tzz*F)*(Txx*D+Txy*E+Txz*F)/(TMI+Ba)**3)

286

 A0 = np.sqrt(Hx**2+Hy**2+Hz**2)

 A1 = np.sqrt(Htmi_xz**2+Htmi_yz**2+Htmi_zz**2)

 c1 = A1/A0

 width = 2*np.sqrt((2*depth2/c1-depth2**2))

 return width, A0, A1

def susc_from_tensor(Tx, Ty, Tz, Txx, Tyy, Tzz, Txz, Tyz, magval, hintn,

 width, depth1, fht, Hx, Hy, Hz, cy, dxy, Txy):

 """

 Calculates susceptibility and magnetisation from tensor values

 Parameters

 Tx : numpy array

 Tx component

 Ty : numpy array

 Ty component

 Tz : numpy array

 Tz component

 Txx : numpy array

 Txx component

 Tyy : numpy array

 Tyy component

 Tzz : numpy array

 Tzz component

 Txz : numpy array

 Txz component

 Tyz : numpy array

 Tyz component

 magval : numpy array

 TMI array

 hintn : float

 ambient field strength in nT

 width : numpy array or float

 dyke width

 depth1 : numpy array

 dyke depth

 fht : float

 flying height

 Hx : numpy array

 x derivative of TMI

 Hy : numpy array

 y derivative of TMI

 Hz : numpy array

 z derivative of TMI

 cy : numpy array

 direction cosine - alpha for ENU/END or beta for NED

 dxy : float

 grid cell size

 Txy : numpy array

 Txy component

 Returns

 k : python dictionary

 dictionary of different calculated magnetisations and susceptibilities

 """

 depth = np.abs(depth1)+np.abs(fht)

 As0 = As0_calc(magval)

 Asx0 = As0_calc(Tx)

 Asy0 = As0_calc(Ty)

 Asz0 = As0_calc(Tz)

 As, As2 = As_calcs(Hx, Hy, Hz, dxy)

 Asx, Asx2 = As_calcs(Txx, Txy, Txz, dxy)

 Asy, Asy2 = As_calcs(Txy, Tyy, Tyz, dxy)

 Asz, Asz2 = As_calcs(Txz, Tyz, Tzz, dxy)

287

 Asall0 = np.sqrt(Asx0**2+Asy0**2+Asz0**2)

 Asall1 = np.sqrt(Asx**2+Asy**2+Asz**2)

 F = hintn

 c = 1-cy**2

 k = {}

 k['mt01'] = As0**2/(200*As*width*c)

 k['mtz1d'] = Asz*depth**2/(width*200*np.sqrt(c))

 k['mtz01'] = Asz0**2/(200*Asz*width*np.sqrt(c))

 k['mtz0d'] = Asz0*depth/(width*200*np.sqrt(c))

 k['mtall'] = Asall0**2/(200*Asall1*width*c)

 k['k01'] = k['mt01']*4*np.pi*100/F

 k['kz1d'] = k['mtz1d']*4*np.pi*100/F

 k['kz01'] = k['mtz01']*4*np.pi*100/F

 k['kz0d'] = k['mtz0d']*4*np.pi*100/F

 k['kall'] = k['mtall']*4*np.pi*100/F

 return k

def cosines_from_tensor(Hx, Hy, Hz, Txx, Tyy, Tzz, Txy, Txz, Tyz):

 """

 Direction cosines from tensor, first approx equation.

 Parameters

 Hx : numpy array

 x derivative of TMI

 Hy : numpy array

 y derivative of TMI

 Hz : numpy array

 z derivative of TMI

 Txx : numpy array

 Txx component

 Tyy : numpy array

 Tyy component

 Tzz : numpy array

 Tzz component

 Txy : numpy array

 Txy component

 Txz : numpy array

 Txz component

 Tyz : numpy array

 Tyz component

 Returns

 cx : numpy array

 alpha direction cosine

 cy : numpy array

 beta direction cosine

 cz : numpy array

 gamma direction cosine

 """

 warnings.filterwarnings('ignore')

 cx2 = (Hx*(Tyz**2 - Tyy*Tzz) +

 Hy*(Txy*Tzz - Txz*Tyz) +

 Hz*(Txz*Tyy - Txy*Tyz))/(Txx*Tyz**2 - Txx*Tyy*Tzz + Txy**2*Tzz -

 2*Txy*Txz*Tyz + Txz**2*Tyy)

 cy2 = (Hx*(Txz*Tyz - Txy*Tzz) +

 Hy*(Txx*Tzz - Txz**2) +

 Hz*(Txy*Txz - Txx*Tyz))/(Txx*Tyy*Tzz - Txx*Tyz**2 - Txy**2*Tzz +

 2*Txy*Txz*Tyz - Txz**2*Tyy)

 cz2 = (Hx*(Txy*Tyz - Txz*Tyy) +

 Hy*(Txy*Txz - Txx*Tyz) +

 Hz*(Txx*Tyy - Txy**2))/(Txx*Tyy*Tzz - Txx*Tyz**2 - Txy**2*Tzz +

 2*Txy*Txz*Tyz - Txz**2*Tyy)

288

 return (cx2, cy2, cz2)

def cosines_from_tensor2(tx, ty, f, bxx, byy, bxy, bxz, byz, bx, by, bz):

 """

 Direction cosines from tensor, second approx equation.

 Parameters

 tx : numpy array

 x derivative of TMI

 ty : numpy array

 y derivative of TMI

 f : numpy array

 TMI data

 bxx : numpy array

 Txx component

 byy : numpy array

 Tyy component

 bzz : numpy array

 Tzz component

 bxy : numpy array

 Txy component

 bxz : numpy array

 Txz component

 byz : numpy array

 Tyz component

 bx : numpy array

 Tx component

 by : numpy array

 Ty component

 bz : numpy array

 Tz component

 Returns

 cx : numpy array

 alpha direction cosine

 cy : numpy array

 beta direction cosine

 cz : numpy array

 gamma direction cosine

 """

 warnings.filterwarnings('ignore')

 cx2 = (bxy*byz*f - bxy*bz*ty + bxz*by*ty - bxz*byy*f - by*byz*tx +

 byy*bz*tx)/(bx*bxy*byz - bx*bxz*byy - bxx*by*byz + bxx*byy*bz -

 bxy**2*bz + bxy*bxz*by)

 cy2 = (-bx*bxz*ty + bx*byz*tx - bxx*byz*f + bxx*bz*ty + bxy*bxz*f -

 bxy*bz*tx)/(bx*bxy*byz - bx*bxz*byy - bxx*by*byz + bxx*byy*bz -

 bxy**2*bz + bxy*bxz*by)

 cz2 = (bx*bxy*ty - bx*byy*tx - bxx*by*ty + bxx*byy*f - bxy**2*f +

 bxy*by*tx)/(bx*bxy*byz - bx*bxz*byy - bxx*by*byz + bxx*byy*bz -

 bxy**2*bz + bxy*bxz*by)

 return (cx2, cy2, cz2)

def cosines_from_tensor3(tx, ty, tz, f, bxx, byy, bxy, bxz, byz, B, bx, by,

 bz):

 """

 Direction cosines from tensor, full equation.

 Parameters

 tx : numpy array

 x derivative of TMI

 ty : numpy array

 y derivative of TMI

 tz : numpy array

 z derivative of TMI

 f : numpy array

 TMI data

289

 bxx : numpy array

 Txx component

 byy : numpy array

 Tyy component

 bzz : numpy array

 Tzz component

 bxy : numpy array

 Txy component

 bxz : numpy array

 Txz component

 byz : numpy array

 Tyz component

 B : float

 ambient field strength

 bx : numpy array

 Tx component

 by : numpy array

 Ty component

 bz : numpy array

 Tz component

 Returns

 cx : numpy array

 alpha direction cosine

 cy : numpy array

 beta direction cosine

 cz : numpy array

 gamma direction cosine

 """

 warnings.filterwarnings('ignore')

 cx2 = (-B*bxx*bxy*ty + B*bxx*byy*tx - B*bxy*byy*ty - B*bxy*byz*tz +

 B*bxz*byy*tz - B*bxz*byz*ty + B*byy**2*tx + B*byz**2*tx -

 bx*bxx**2*byy + bx*bxx*bxy**2 - bx*bxx*byy**2 - bx*bxx*byz**2 +

 bx*bxy**2*byy + 2*bx*bxy*bxz*byz - bx*bxz**2*byy - bxx*bxy*f*ty +

 bxx*byy*f*tx - bxy*byy*f*ty - bxy*byz*f*tz + bxz*byy*f*tz -

 bxz*byz*f*ty + byy**2*f*tx +

 byz**2*f*tx)/(B*(bxx**2*byy - bxx*bxy**2 + bxx*byy**2 +

 bxx*byz**2 - bxy**2*byy - 2*bxy*bxz*byz +

 bxz**2*byy))

 cy2 = (B*bxx**2*ty - B*bxx*bxy*tx + B*bxx*byy*ty + B*bxx*byz*tz -

 B*bxy*bxz*tz - B*bxy*byy*tx + B*bxz**2*ty - B*bxz*byz*tx -

 bxx**2*by*byy + bxx**2*f*ty + bxx*bxy**2*by - bxx*bxy*f*tx -

 bxx*by*byy**2 - bxx*by*byz**2 + bxx*byy*f*ty + bxx*byz*f*tz +

 bxy**2*by*byy + 2*bxy*bxz*by*byz - bxy*bxz*f*tz - bxy*byy*f*tx -

 bxz**2*by*byy + bxz**2*f*ty -

 bxz*byz*f*tx)/(B*(bxx**2*byy - bxx*bxy**2 + bxx*byy**2 +

 bxx*byz**2 - bxy**2*byy - 2*bxy*bxz*byz +

 bxz**2*byy))

 cz2 = (-B*bxx*byy*tz + B*bxx*byz*ty + B*bxy**2*tz - B*bxy*bxz*ty -

 B*bxy*byz*tx + B*bxz*byy*tx - bxx**2*byy*bz + bxx*bxy**2*bz -

 bxx*byy**2*bz - bxx*byy*f*tz - bxx*byz**2*bz + bxx*byz*f*ty +

 bxy**2*byy*bz + bxy**2*f*tz + 2*bxy*bxz*byz*bz - bxy*bxz*f*ty -

 bxy*byz*f*tx - bxz**2*byy*bz +

 bxz*byy*f*tx)/(B*(bxx**2*byy - bxx*bxy**2 + bxx*byy**2 +

 bxx*byz**2 - bxy**2*byy - 2*bxy*bxz*byz +

 bxz**2*byy))

 return (cx2, cy2, cz2)

def rem_from_cosines(cx2, cy2, cz2, mt, susc, hintn, inc, dec, azim):

 """

 Remanence calculations

 Parameters

 cx2 : numpy array

 alpha direction cosine

 cy2 : numpy array

 beta direction cosine

290

 cz2 : numpy array

 gamma direction cosine

 mt : numpy array

 total magnetisation

 susc : numpy array

 susceptibility

 hintn : float

 ambient field strength in nT

 inc : float

 inclination of inducing field

 dec : float

 declination of inducing field

 azim : float

 angle between x direction and North.

 Returns

 mstr : numpy array

 remanent magnetisation

 minc : numpy array

 remanent inclination

 mdec : numpy array

 remanent declination

 """

 f1 = susc*hintn

 fa, fb, fc = dircos(inc, dec, azim)

 A = cx2*mt - f1*fa/(400*np.pi)

 B = cy2*mt - f1*fb/(400*np.pi)

 C = cz2*mt - f1*fc/(400*np.pi)

 mdec = -2*np.arctan2((A + np.sqrt(A**2 + B**2)), B)

 mdec = np.rad2deg(mdec)-180+azim

 mdec[mdec > 180] -= 360

 mdec[mdec < -180] += 360

 tmp1 = -np.sqrt(A**2+B**2+C**2)+np.sqrt(A**2+B**2)

 tmp2 = C

 minc = -2*np.arctan2(tmp1, tmp2)

 minc = np.rad2deg(minc)

 minc[minc > 90] -= 360

 minc[minc < -90] += 360

 ma, mb, mc = dircos(minc, mdec, azim)

 mstr = np.sqrt(A**2+B**2+C**2)

 return (mstr, minc, mdec)

def tallafwd():

 """

 Simple forward model for simulating tallawang anomaly. See section 6.3.2

 Parameters

 None

 Returns

 None

 """

 hintn = 56701.6

 inc = -63.0575

 dec = 11.47

 susc = 2.5

 mstr = 30

 minc = -70

 mdec = -60

 dxy = 5

 fht = 0

291

 depth = 20

 width = 10

 tcube = TensorCube()

 tcube.susc = susc

 tcube.mstrength = mstr

 tcube.inc = inc

 tcube.dec = dec

 tcube.minc = minc

 tcube.mdec = mdec

 tcube.hintn = hintn

 tcube.height = 0

 tcube.dxy = dxy

 tcube.u = [100-width, 100]

 cpnt = int(np.mean(tcube.u)/dxy)

 azim = tcube.azim

 xblocks = []

 yblocks = []

 for offset in np.arange(depth, 150, dxy):

 print('offset', offset)

 xoff = (offset-depth)*20/(150-depth)

 tcube.u = [102-width-xoff, 102-xoff]

 tcube.v = [0, 150]

 tcube.w = [-offset, -(offset+dxy)]

 tcube.rc = 150

 xblocks.append(tcube.u)

 yblocks.append(tcube.w)

 tcube.calc_all()

 coords = tcube.xyall

 if offset == depth:

 Txx = tcube.bxx

 Txy = tcube.bxy

 Txz = tcube.bxz

 Tyy = tcube.byy

 Tyz = tcube.byz

 Tzz = tcube.bzz

 Tx = tcube.bx

 Ty = tcube.by

 Tz = tcube.bz

 magval = tcube.magval

 else:

 Txx = Txx + tcube.bxx

 Txy = Txy + tcube.bxy

 Txz = Txz + tcube.bxz

 Tyy = Tyy + tcube.byy

 Tyz = Tyz + tcube.byz

 Tzz = Tzz + tcube.bzz

 Tx = Tx + tcube.bx

 Ty = Ty + tcube.by

 Tz = Tz + tcube.bz

 magval = magval + tcube.magval

 print('mt (tcube)', tcube.mt/100)

 cx = tcube.cx

 cy = tcube.cy

 cz = tcube.cz

 Hx = (Txx*(Tx+cx*hintn)+Txy*(Ty+cy*hintn)+Txz*(Tz+cz*hintn))/(magval+hintn)

 Hy = (Txy*(Tx+cx*hintn)+Tyy*(Ty+cy*hintn)+Tyz*(Tz+cz*hintn))/(magval+hintn)

 Hz = (Txz*(Tx+cx*hintn)+Tyz*(Ty+cy*hintn)+Tzz*(Tz+cz*hintn))/(magval+hintn)

 As, As2 = As_calcs(Hx, Hy, Hz, dxy)

 Asz, Asz2 = As_calcs(Txz, Tyz, Tzz, dxy)

 Asy, Asy2 = As_calcs(Txy, Tyy, Tyz, dxy)

 Asx, Asx2 = As_calcs(Txx, Txy, Txz, dxy)

 As0 = As0_calc(magval)

 Asx0 = As0_calc(Tx)

292

 Asy0 = As0_calc(Ty)

 Asz0 = As0_calc(Tz)

 plt.figure(figsize=(8, 6))

 plt.subplot(2, 1, 1)

 plt.plot(coords, magval[8], label='TMI calculated')

 plt.xlim(0, 150)

 plt.ylabel('(nT)')

 plt.xlabel('Distance (m)')

 plt.yticks(rotation='vertical', va='center')

 plt.axvline(x=97, c='r', ls='dashed')

 plt.legend()

 plt.subplot(2, 1, 2)

 plt.xlim(0, 150)

 plt.ylabel('Depth (m)')

 plt.xlabel('Distance (m)')

 for i, _ in enumerate(xblocks):

 x1, x2 = xblocks[i]

 y1, y2 = yblocks[i]

 plt.plot([x1, x2, x2, x1, x1], [y1, y1, y2, y2, y1], 'k')

 plt.tight_layout()

 plt.show()

 N = 1

 depths = depth_from_tensor(Tx, Ty, Tz, Txx, Tyy, Tzz, Txy, Txz, Tyz, N,

 fht, magval, dxy, Hx, Hy, Hz)

 print('depth fixed')

 depth = abs(depth)

 tmp = width_from_tensor(Hx, Hy, Hz, Txx, Tyy, Tzz, Txy, Txz, Tyz, fht,

 dxy, depth, magval, hintn, Tx, Ty, Tz, cx, cy,

 cz)

 widths, A0, A1 = tmp

print('width fixed')

 width = np.zeros_like(widths)+widths[15].min()

 tmp = cosines_from_tensor3(Hx, Hy, Hz, magval, Txx, Tyy, Txy, Txz,

 Tyz, hintn, Tx, Ty, Tz)

 cx2, cy2, cz2 = tmp

 k = susc_from_tensor(Tx, Ty, Tz, Txx, Tyy, Tzz, Txz, Tyz, magval, hintn,

 width, depth, fht, Hx, Hy, Hz, cy2, dxy, Txy)

 mt1 = tcube.mt/100

 # Susceptibility and magnetisation can be fixed for the remanence

 # calculations.

 susc1 = susc

 mt1 = 114 # 140 is the accurate value, and 114 is the innacurate value

 tmp = rem_from_cosines(cx2, cy2, cz2, mt1, susc1, hintn, inc, dec, azim)

 mstr, minc2, mdec2 = tmp

 print('Center point', cpnt*dxy)

 print('Width', width[cpnt, cpnt])

 print('cx', cx, cx2[cpnt, cpnt])

 print('cy', cy, cy2[cpnt, cpnt])

 print('cz', cz, cz2[cpnt, cpnt])

 print('mdec2', mdec, mdec2[cpnt, cpnt])

 print('minc2', minc, minc2[cpnt, cpnt])

 print('mstr2', mstr[cpnt, cpnt])

 coords = tcube.xyall

 cpnt = magval.shape[0]//2

Convert the EN to NE axes.

 Asx, Asy = Asy, Asx

 Asx0, Asy0 = Asy0, Asx0

 Asx2, Asy2 = Asy2, Asx2

 Txx, Tyy = Tyy, Txx

293

 Tyz, Txz = Txz, Tyz

 r = depths

 r['x01'], r['y01'] = r['y01'], r['x01']

 r['x12'], r['y12'] = r['y12'], r['x12']

Plot data

 i = cpnt

 cpnt = 97 # black dashed line on plots

 minc = minc2

 mdec = mdec2

 r = depths

 dxy = coords[1]-coords[0]

 icpnt = int(round(cpnt/dxy))

 s = slice(icpnt-1, icpnt+1)

 s2 = slice(icpnt-2, icpnt+2)

 s3 = slice(int(60/dxy), int(130/dxy))

 s4 = slice(5, -1)

 s = s4

 s2 = s4

 # Plot the tensor components

 plt.figure(figsize=(8, 8))

 plt.subplot(331)

 plt.title('(a) T_{xx}', loc='left')

 plt.ylabel('(nT/m)')

 plt.xlabel('Distance (m)')

 plt.plot(coords, Txx[i])

 plt.yticks(rotation='vertical', va='center')

 plt.subplot(332)

 plt.title('(b) T_{xy}', loc='left')

 plt.ylabel('(nT/m)')

 plt.xlabel('Distance (m)')

 plt.plot(coords, Txy[i])

 plt.yticks(rotation='vertical', va='center')

 plt.subplot(333)

 plt.title('(c) T_{xz}', loc='left')

 plt.ylabel('(nT/m)')

 plt.xlabel('Distance (m)')

 plt.plot(coords, Txz[i])

 plt.yticks(rotation='vertical', va='center')

 plt.subplot(335)

 plt.title('(d) T_{yy}', loc='left')

 plt.ylabel('(nT/m)')

 plt.xlabel('Distance (m)')

 plt.plot(coords, Tyy[i])

 plt.yticks(rotation='vertical', va='center')

 plt.subplot(336)

 plt.title('(e) T_{yz}', loc='left')

 plt.ylabel('(nT/m)')

 plt.xlabel('Distance (m)')

 plt.plot(coords, Tyz[i])

 plt.yticks(rotation='vertical', va='center')

 plt.subplot(339)

 plt.title('(f) T_{zz}', loc='left')

 plt.ylabel('(nT/m)')

 plt.xlabel('Distance (m)')

 plt.plot(coords, Tzz[i])

 plt.yticks(rotation='vertical', va='center')

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(8, 8))

 plt.subplot(221)

 plt.title('(a)', loc='left')

 plt.plot(coords[s4], As0[i][s4], label='As_{0}')

294

 plt.plot(coords[s4], Asy0[i][s4], label='As_{y0}')

 plt.plot(coords[s4], Asz0[i][s4], label='As_{z0}')

 plt.xlabel('Distance (m)')

 plt.ylabel('(nT)')

 plt.legend()

 plt.yticks(rotation='vertical', va='center')

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.xlim(coords[0], coords[-1])

 plt.subplot(222)

 plt.title('(b)', loc='left')

 plt.plot(coords[s4], As[i][s4], label='As_{1}')

 plt.plot(coords[s4], Asy[i][s4], label='As_{y1}')

 plt.plot(coords[s4], Asz[i][s4], label='As_{z1}')

 plt.xlabel('Distance (m)')

 plt.ylabel('(nT/m)')

 plt.legend()

 plt.yticks(rotation='vertical', va='center')

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.xlim(coords[0], coords[-1])

 plt.subplot(223)

 plt.title('(c)', loc='left')

 plt.plot(coords[s], r['1'][i][s], label=r'$\frac{N As_{0}}{As_{1}}$')

 plt.plot(coords[s], r['y01'][i][s], label=r'$\frac{N As_{y0}}{As_{y1}}$')

 plt.plot(coords[s], r['z01'][i][s], label=r'$\frac{N As_{z0}}{As_{z1}}$')

 plt.plot(coords[s], r['a01'][i][s], label=r'$\frac{N As_{xyz0}}{As_{xyz1}}$')

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.xlabel('Distance (m)')

 plt.ylabel('Depth (m)')

 plt.xlim(coords[0], coords[-1])

 plt.ylim(-25, 0)

 plt.legend(loc=2, prop={'size': 12})

 plt.yticks(rotation='vertical', va='center')

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(8, 8))

 plt.subplot(221)

 plt.title('(a)', loc='left')

 plt.plot(coords[s4], As[i][s4], label='As_{1}')

 plt.plot(coords[s4], Asy[i][s4], label='As_{y1}')

 plt.plot(coords[s4], Asz[i][s4], label='As_{z1}')

 plt.xlabel('Distance (m)')

 plt.ylabel('(nT/m)')

 plt.legend()

 plt.yticks(rotation='vertical', va='center')

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.xlim(coords[0], coords[-1])

 plt.subplot(222)

 plt.title('(b)', loc='left')

 plt.plot(coords[s4], As2[i][s4], label='As_{2}')

 plt.plot(coords[s4], Asy2[i][s4], label='As_{y2}')

 plt.plot(coords[s4], Asz2[i][s4], label='As_{z2}')

 plt.xlabel('Distance (m)')

 plt.ylabel('(nT/m2)')

 plt.legend()

 plt.yticks(rotation='vertical', va='center')

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.xlim(coords[0], coords[-1])

 plt.subplot(223)

 plt.title('(c)', loc='left')

 plt.plot(coords[s], r['12'][i][s],

 label=r'$\frac{(N+1) As_{1}}{As_{2}}$')

 plt.plot(coords[s], r['y12'][i][s],

 label=r'$\frac{(N+1) As_{y1}}{As_{y2}}$')

 plt.plot(coords[s], r['z12'][i][s],

 label=r'$\frac{(N+1) As_{z1}}{As_{z2}}$')

 plt.plot(coords[s], r['a12'][i][s],

 label=r'$\frac{(N+1) As_{xyz1}}{As_{xyz2}}$')

295

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.xlabel('Distance (m)')

 plt.ylabel('Depth (m)')

 plt.xlim(coords[0], coords[-1])

 plt.ylim(-30, 0)

 plt.legend(loc=2, prop={'size': 12})

 plt.yticks(rotation='vertical', va='center')

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(8, 8))

 plt.subplot(221)

 plt.title('(a)', loc='left')

 plt.plot(coords[s4], A0[i][s4], label='A_{0}')

 plt.xlabel('Distance (m)')

 plt.ylabel('(nT/m)')

 plt.legend()

 plt.yticks(rotation='vertical', va='center')

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.xlim(coords[0], coords[-1])

 plt.subplot(222)

 plt.title('(b)', loc='left')

 plt.plot(coords[s4], A1[i][s4], label='A_{1}')

 plt.xlabel('Distance (m)')

 plt.ylabel('(nT/m2)')

 plt.legend()

 plt.yticks(rotation='vertical', va='center')

 plt.xlim(coords[0], coords[-1])

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.xlim(coords[0], coords[-1])

 plt.subplot(223)

 plt.title('(c)', loc='left')

 plt.plot(coords[s4], widths[i][s4],

 label=r'$2 \sqrt{\frac{2d}{c}-d^2}$')

 plt.xlabel('Distance (m)')

 plt.ylabel('Width (m)')

 plt.xlim(coords[0], coords[-1])

 plt.legend(prop={'size': 12})

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.yticks(rotation='vertical', va='center')

 plt.tight_layout()

 plt.show()

 lmt01 = r'$\frac{As_{0}^2}{As_{1} 200 w c}$'

 lmtz1d = r'$\frac{As_{z1}d^2}{As_{1} 200 w \sqrt{c}}$'

 lmtz01 = r'$\frac{As_{z0}^2}{As_{z1} 200 w \sqrt{c}}$'

 lmtz0d = r'$\frac{As_{z0}d}{200 w \sqrt{c}}$'

 lmtall = r'$\frac{As_{xyz0}^2}{As_{xyz1} 200 w \sqrt{c}}$'

 lk01 = r'$\frac{4 \pi As_{0}^2}{As_{1} 2 B_{a} w c}$'

 lkz1d = r'$\frac{4 \pi As_{z1}d^2}{As_{1} 2 B_{a} w \sqrt{c}}$'

 lkz01 = r'$\frac{4 \pi As_{z0}^2}{As_{z1} 2 B_{a} w \sqrt{c}}$'

 lkz0d = r'$\frac{4 \pi As_{z0}d}{2 B_{a} w \sqrt{c}}$'

 lkall = r'$\frac{4 \pi As_{xyz0}^2}{As_{xyz1} 2 B_{a} w \sqrt{c}}$'

 plt.figure(figsize=(8, 4))

 plt.subplot(121)

 plt.title('(a) $Susceptibility$', loc='left')

 plt.ylabel('(SI)')

 plt.xlabel('Distance (m)')

 plt.plot(coords[s3], k['k01'][i][s3], label=lk01)

 plt.plot(coords[s3], k['kz1d'][i][s3], label=lkz1d)

 plt.plot(coords[s3], k['kz01'][i][s3], label=lkz01)

 plt.plot(coords[s3], k['kz0d'][i][s3], label=lkz0d)

 plt.plot(coords[s3], k['kall'][i][s3], label=lkall)

 plt.xlim(coords[0], coords[-1])

 plt.legend(loc=2, prop={'size': 13})

 plt.yticks(rotation='vertical', va='center')

 plt.axvline(x=cpnt, c='k', ls='dashed')

296

 plt.subplot(122)

 plt.title('(b) $Magnetisation$', loc='left')

 plt.ylabel('(A/m)')

 plt.xlabel('Distance (m)')

 plt.plot(coords[s3], k['mt01'][i][s3], label=lmt01)

 plt.plot(coords[s3], k['mtz1d'][i][s3], label=lmtz1d)

 plt.plot(coords[s3], k['mtz01'][i][s3], label=lmtz01)

 plt.plot(coords[s3], k['mtz0d'][i][s3], label=lmtz0d)

 plt.plot(coords[s3], k['mtall'][i][s3], label=lmtall)

 plt.xlim(coords[0], coords[-1])

 plt.legend(loc=2, prop={'size': 13})

 plt.yticks(rotation='vertical', va='center')

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.tight_layout()

 plt.show()

 plt.figure(figsize=(8, 5))

 plt.subplot(121)

 plt.title('(a)', loc='left')

 plt.plot(coords[s4], cx2[i][s4], label=r'α')

 plt.plot(coords[s4], cy2[i][s4], label=r'β')

 plt.plot(coords[s4], cz2[i][s4], label=r'γ')

 plt.xlabel('Distance (m)')

 plt.ylabel('(direction cosine)')

 plt.ylim(-1.2, 1.)

 plt.legend()

 plt.yticks(rotation='vertical', va='center')

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.xlim(coords[0], coords[-1])

 plt.subplot(122)

 plt.title('(b)', loc='left')

 plt.plot(coords[s2], minc[i][s2], label='inc')

 plt.plot(coords[s2], mdec[i][s2], label='dec')

 plt.xlabel('Distance (m)')

 plt.ylabel('(degrees)')

 plt.yticks(rotation='vertical', va='center')

 plt.axvline(x=cpnt, c='k', ls='dashed')

 plt.xlim(coords[0], coords[-1])

 plt.legend()

 plt.tight_layout()

 plt.show()

 # First do inclination

 cx1, cy1, cz1 = dircos(inc, dec, azim)

 xvals = coords

 yvals = magval[i]

 plt.figure(figsize=(8, 4))

 plt.subplot(121)

 plt.title('(a)', loc='left')

 plt.ylabel('(nT)')

 plt.xlabel('Distance (m)')

 plt.yticks(rotation='vertical', va='center')

 cmagn1 = np.sqrt(cx1**2+cy1**2+cz1**2)

 uvals = np.zeros_like(coords) + np.sqrt(cx1**2+cy1**2)/cmagn1

 vvals = np.zeros_like(coords) + cz1/cmagn1

 Q1 = plt.quiver(xvals, yvals, uvals, vvals, color='r', headwidth=5)

 cmagn2 = np.sqrt(cx2[i]**2+cy2[i]**2+cz2[i]**2)

 uvals = np.zeros_like(coords) + np.sqrt(cx2[i]**2+cy2[i]**2)/cmagn2

 vvals = np.zeros_like(coords) + cz2[i]/cmagn2

 Q2 = plt.quiver(xvals, yvals, uvals, vvals, color='y', headwidth=5)

297

 plt.quiverkey(Q1, 0.1, .9, 1, 'I (ambient field)', labelpos='E')

 plt.quiverkey(Q2, 0.1, .8, 1, 'I (resultant)', labelpos='E')

 # Now declination

 plt.subplot(122)

 plt.ylabel('(nT)')

 plt.xlabel('Distance (m)')

 plt.yticks(rotation='vertical', va='center')

 plt.title('(b)', loc='left')

 cmagn1 = np.sqrt(cx1**2+cy1**2)

 cmagn2 = np.sqrt(cx2[i]**2+cy2[i]**2)

 if azim == 90:

 uvals = np.zeros_like(coords) + cx1/cmagn1

 vvals = np.zeros_like(coords) - cy1/cmagn1

 else:

 uvals = np.zeros_like(coords) + cy1/cmagn1

 vvals = np.zeros_like(coords) + cx1/cmagn1

 Q1 = plt.quiver(xvals, yvals, uvals, vvals, color='r', headwidth=5)

 if azim == 90:

 uvals = np.zeros_like(coords) + cx2[i]/cmagn2

 vvals = np.zeros_like(coords) - cy2[i]/cmagn2

 else:

 uvals = np.zeros_like(coords) + cy2[i]/cmagn2

 vvals = np.zeros_like(coords) + cx2[i]/cmagn2

 Q2 = plt.quiver(xvals, yvals, uvals, vvals, color='y', headwidth=5)

 plt.quiverkey(Q1, 0.1, 0.9, 1, 'D (ambient field)', labelpos='E')

 plt.quiverkey(Q2, 0.1, 0.8, 1, 'D (resultant)', labelpos='E')

 plt.tight_layout()

 plt.show()

 inc = np.rad2deg(np.arctan(cz2[i][icpnt] /

 np.sqrt(cx2[i][icpnt]**2+cy2[i][icpnt]**2)))

 dec = np.rad2deg(np.arctan(cy2[i][icpnt]/cx2[i][icpnt]))+azim

 print('field inc', inc)

 print('field dec', dec)

This section calls the program. You can use either of the two routines below.

if __name__ == "__main__":

 try:

 sys.path.index(PyGMIPATH)

 except ValueError:

 sys.path.append(PyGMIPATH)

tests()

remanence()

interp(r'.\data2\licht1.npz')

 tallafwd()

 print('Finished!')

 winsound.PlaySound('SystemQuestion', winsound.SND_ALIAS)

