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Abstract

A framework is developed for the implementation of an autonomous drone-based delivery

system. The concept stems from the need for more efficient methods of clinical transport

in underdeveloped regions.

A case study of a region in Mpumalanga investigates the requirements of the delivery

system and scale of the intended solution. The travelling salesman problem (TSP) is

used to determine that a region with 19 request points can be serviced by a single drone

with a 30 minute flight range and 2 - 4 kg payload capacity.

A notional region containing 20 clinics and one laboratory is used to simulate scenarios

with dynamic request points using a reward-based inspection algorithm. Delivery routes

are optimised based on global conditions.

An evaluation of the inspection algorithm resulted in the drones averaging 103.53 km in

139.21 minutes. A framework is thus developed which allows for a theoretical scenario

analysis for future implementations.

The specimen turnaround time from clinic to laboratory is assessed using 120 scenarios

of varying wind speed and request generation rates. In wind conditions similar to that

observed in Mpumalanga (5 - 25 km/h), the drone averaged 93.94 minutes per request.

At a request rate of two requests per hour the drone delivered an average of 180 samples

generated in the first nine hours of simulation. At a request rate of one request every

6 hours the drone averaged 29 samples.

Future work could include an in depth study of seasonal request rates and weather

pattern data in order to influence the path of the drone for a further optimised approach

as well as the development of more advanced optimisation algorithms.
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Chapter 1

METHODS OF CARE

1.1 INTRODUCTION

The rise in drone deployment has increased exponentially in the last decade as a result of

the introduction of multi-copters. As the use of drones has numerous benefits, one being

low risk to human life, drones can be used for situations such as storm data collection [1],

forest fire surveillance and battlefield reconnaissance [2]. Local uses include surveillance

of national parks to ward off poachers and gather information on wildlife ecology [3, 4].

This dissertation proposes the use of drones for the delivery and transportation of clinical

specimens, Point of Care (POC) devices and urgent medication in rural environments.

In South Africa, 45.5 % of people live below the poverty line according to the 2011

census [5]. This classification suggests that these people have limited access to housing,

transport and basic necessities. Due to a lack of investment in the region, the level of

education with regard to medical attention is poor. The regions also show a shortage

of educators who would otherwise provide preventative skills to the local population

which could help minimise the spread of illnesses such as HIV as well as facilitate the

treatment of the infection [6]. These underdeveloped regions could benefit greatly from

any supplementary methods that assist with patient care.

In addition, in rural and suburban environments it is not always possible to transport

specimens within the necessary time frame for the patient to be treated. Therefore a

question arises as to whether or not the use of drones for the delivery of medical or

clinical samples can improve on turnaround times. This will ultimately determine if

drone delivery is capable of being used in real life conditions in South Africa.

In order to quantify the capabilities of a drone delivery system within the context of a

rural environment, a case study of a suitable region must be performed, whereby a model

1



Chapter 1. METHODS OF CARE 2

of a drone delivery scenario can be established. This will allow for the development of a

framework for a feasibility analysis through an optimisation simulation. The framework

will grant the ability for future assessments of the proposed solution.

On a case by case basis however, monetary costs are not always the priority, but often

the delivery time and the ability to meet the clinical requirements of the patient is just

as important. For this reason an in depth study must be completed in order to determine

the optimum care approach to any given situation. This approach must factor in the

method of delivery and infrastructure of the given region.

This dissertation covers the various methods of clinical specimen and POC delivery,

such as airborne or drone-based delivery as well as courier or vehicular services. In

addition, the issue of limited laboratory access is addressed for the prospect of increasing

the accessibility in underdeveloped regions using the proposed delivery method. The

intention of the research is not to solve the problem of medical transport but rather to

build a framework whereby the possibility of drone delivery can be assessed.

A limited feasibility study is conducted in order to determine if the delivery concepts

discussed in this dissertation can be implemented in real life scenarios should the frame-

work prove effective.

1.2 PROBLEM STATEMENT

The problem presented in this dissertation is the limited access to laboratories and clinics

in underdeveloped regions in South Africa. This dissertation proposes the use of drones

to replace the current method of specimen and POC device delivery for specimen testing.

This proposal discusses using drones to deliver packages to and from laboratories and

clinics in order to increase accessibility and improve on turnaround times. The proposal

claims to improve on efficiency while reducing overall cost to the patient and stakeholders.

This method has never been used before in a commercial environment and it is therefore

difficult to assess the full capabilities and limitations of such a system. For this reason,

a study must be undertaken in order to develop a framework that is required for the

simulation and further implementation of a system which will aid in assessing a real

world outcome, should the system be feasible.
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1.3 PURPOSE OF RESEARCH

Clinical specimen delivery is important as the outcome can be a matter of life or death.

Clinical specimens from laboratory tests can determine the treatment required for an ill

patient and the sooner the results are determined the sooner treatment can begin.

The handling and delivery of clinical specimens and POC devices is generally performed

by a trained individual who has knowledge of safety and handling procedures. Motorcycles

or passenger vehicles are commonly used as the mode of transport and the vehicle in use is

marked with the necessary pictogram to represent the contents of the cargo. The delivery

method is much like a hand-to-hand courier where the parcel is never left unattended

and is signed off by the recipient.

The specimens in transit may be but are not limited to, excreta, secreta, tissue samples

and fluids, blood and pharmaceutical medication such as antiretrovirals or point of care

devices [7]. These specimens may be harmful if they come into contact with the handler

or the environment. The transport of a vial of blood of a patient suspected of contracting

a contagious disease such as Ebola could cause dire effects if not treated with the correct

procedures. This is why it is necessary that the packaging containing these samples is

secure and sheltered from the elements. If the parcel were to detach before arrival the

packaging is required to contain any spills in order to be disposed of with minimal effect.

The use of drones to transport these samples and POC devices may aid in response time

between the laboratories and doctors. Another advantage of this proposed method is

the ability to transport medical samples for a patient in critical condition in inaccessible

locations. Whereas previously a motor vehicle hindered by traffic and road accessibility

would be required to transport the samples, a drone can now be used which does not

have to follow geographical routes. This method may reduce the price of testing for

patients as the testing fee covers transportation of the samples [8]. This method may

also improve the overall efficiency of the small parcel delivery system.
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1.4 LABORATORY PROCEDURES

The Laboratory procedure requires a series of well-coordinated events in order to success-

fully treat patients in a timely manner. The inclusion of a drone in this process would

require the adherence to the already established laboratory procedures.

The laboratory diagnostic procedure is made up of 6 stages [9]:

Stage 1: When a healthcare professional requires the laboratories assistance for clinical

diagnostics, a collection request is placed for delivery to the nearest lab. In general, a

doctor would use the same lab for all their specimens.

Stage 2: The healthcare professional begins by drawing the sample from the patient. The

medical personnel then decide if the sample is urgent or routine. The lab then complies

with the request and activates the appropriate collection methods.

Stage 3: The courier collects the sample and it is placed in a collapsible courier bag that

is intended to protect the integrity of the samples. The courier often carries an ice pack

as well. The samples are packed into small individual sleeves which contain both the

sample and the request form. Samples are then transported either by foot, hospital ward

to sample lab, or by vehicle.

Stage 4: Once received by the lab, the samples are processed. The receiving department

opens the package and the request form is logged. The samples are then sent to the

relevant section for processing.

Stage 5: Once the samples have been processed, the equipment which is interfaced with

the electronic records company [10] publishes the results in order to print.

The printed report is used to notify the doctor, either via email or retrieved on the Labo-

ratories smartphone application. Urgent or highly unusual results will be telephonically

communicated to the doctor.

Stage 6: Serum samples are stored for a further seven days; histology samples however

are stored for several years. The samples are then disposed of through a medical waste

company.

Drone delivery is required to fit into the daily operation of the laboratory and intends to

replace stage 3 of the specimen diagnostics system.

In order to achieve the desired results, the delivery method must be able to keep up with

the current demand of samples that are delivered daily. A drone system must operate

with either reduced staff, funds or time required to make the deliveries thus proving more

efficient than the current method.
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A unified modelling language (UML) diagram of the laboratory process is represented in

figure 1.1.

Figure 1.1: UML Diagram of Laboratory Process.

1.5 RESEARCH QUESTION

The primary objective of this research is to determine if it is possible to develop a

framework for how future analysis of the feasibility of drone-based transport can be

achieved, in the context of a rural environment. The reason for this, much like in many

other fields, is that as technology improves, alternative methods are introduced and may

prove more effective. In particular, the introduction of autonomous drones has opened up

an abundant area of potential from photography to surveillance and now to the potential

for package delivery. The research question thus comes to light, can a simulation model

be developed which will allow for the testing of delivery scenarios so that future work can

determine if this new found potential can be utilised to provide a more efficient means of

delivery in the field of patient care?

This broader question is broken down into three sub questions:

• Do the physical characteristics of an autonomous drone in the form of a multi-copter

allow for the transportation of specimens and POC devices?

• If so, can a simulation be developed in order to assess the capabilities of a drone

delivery system in a rural environment? This system is to be used to compare

drone delivery to current methods of delivery with regard to speed, efficiency and

cost.

• Can this model be optimised, in turn providing the foundation for the development

of a cheaper, more efficient method of delivery, that is scalable?
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1.6 HYPOTHESIS

The review of current drone systems may indicate that the concept of drone delivery is

not only possible, but potentially profitable as the method of airborne delivery may prove

more efficient and economical. With the aid of optimisation algorithms and simulations,

the proposed solution may improve greatly on turnaround times compared to current

methods which may persuade stakeholders in the laboratory industry to develop such a

system in the near future.

1.7 ASSUMPTIONS AND LIMITATIONS

The drone’s physical characteristics will limit the overall system’s turnaround time by

the drone’s maximum flight speed and carrying capacity. The drone’s maximum payload

capacity is set at 4 kg per drone with a maximum flight time of 30 minutes, this allows

for a 10 km range in ideal wind conditions. This is a great deal lower than the range or

capacity of current methods considering a road vehicle has in excess of 500 km range

and 100 kg carrying capacity.

The drone is also at risk of collision or malfunction which could lead to specimen or

package contamination. A courier company like FedEx produces a clinical pack that is

secure for non-infectious clinical samples [11], but states that the outer packaging that

is open to the elements must be constructed from a rigid material such as corrugated

fibreboard, wood, metal or plastic. The primary inner receptacle must be water tight as

to contain any spillage. Absorbent material must be placed around this packaging and

a secondary watertight receptacle must be placed around that. Each sample must be

individually wrapped as to not contaminate one another. These packaging regulations

may make the transportation of infectious substances more difficult. The list below

further illustrates the restrictions with regard to an overall solution.

• Implementing a drone delivery system requires initial outlay of monetary funds in

order to purchase the components required to make up the drone. The system size

is limited by the amount allocated. Purchasing larger drones or higher quantities

of drones can expand the delivery system. The framework must therefore address

scalability.

• Civil Aviation Authority (CAA) regulations limit the way in which the drones

are operated and may reduce the maximum payload that the system is capable of

transporting.
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• Weather effects hinder the operation of flying units depending on the humidity and

wind conditions. The simulation must therefore take wind conditions into account.

• Operation of the system relies on trained personnel to coordinate the transfers.

The more operators available, the more drones can be operated.

• The technology requires sufficient facilities to operate. The functionality of the

drones is constrained by the ground stations ability and the software and optimisa-

tion algorithms that accompany it.

1.7.1 Drone System Validation

A multi-copter delivery system can be a stand-alone operation that is outsourced by

several laboratories or maintained in-house by an individual laboratory. The laboratory

can designate staff to be the ‘pilots’ of these aircraft’s and they can load the attachment

parcel as well as complete all pre-flight and in-flight checks in order to maintain the

system in a safe manner.

The operator can maintain a permanent ground station located in an office that can include

a transmitter tower to increase the range of flight control and flight data acquisition. The

multi-copters fly a predetermined route mapped out to avoid public roads, crowds and

restricted fly zones. The flight radius limit is set based on the location of the laboratory

using the system.

1.7.2 Risk Assessment

The Federal Aviation Administration (FAA) regulation pose a risk for South African

companies who wish to operate drones commercially as there is a possibility that the

CAA may follow suit. This can result in the need to apply for clearance when testing

autonomous drones in public air space.

The regulations imposed are for public safety and as with any vehicle there is a risk of

collisions; especially those that are aerial. Collisions may be with structures or individuals

and may cause harm to the environment. This project hopes to transport medical test

specimens at a rapid rate and has the potential to save lives. In order to alleviate the

risk as much as possible so that it is outweighed by the potential virtue, rigorous flight

tests must be carried out in different scenarios.

In-flight malfunctions are a reality and often result in damage to the aircraft when

colliding with the earth. Components may need to be replaced and the budget must

accommodate for backup materials such as propellers, motors and ESC’s.
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1.7.3 Legal and Ethical Issues

The Code of practice of south African Bureau of Standards, regulation SABS 0265:1999,

clause 5, states with regard to hazard identification and hazard classification that the

requirement of substances which are to be transported and classified as “harmful to

health” and are identified as properties of substances that constitute as a risk from

normal handling must be labelled accordingly. This is to protect the handler, general

public and the environment. Clause 7 through 10 of regulation SABS 0265:1999 indicates

the necessary pictogram and risk and safety phrases required when transporting these

potentially harmful samples [12].

Should this mode of transport be used to traverse national borders the procedure would

have to abide by the rules stated in the National Health Act, 2003 [13].

Drones or autonomous multi-copters not intended for recreational, sport or completion

purposes are classified by the Civil Aviation Authority as Unmanned Aircraft System

(UAS) and must adhere to the regulations set in place for flight in South African

airspace [14].

The U.S. FAA recently proposed regulations concerning UAS’s. For civilian operation,

the drone must weigh less than 25kg to be classified as a small UAS/UAV. However,

during operation the aircraft must remain in visual line of sight, which poses a problem

for deliveries that are intended to be tens of kilometres away. Another concern is that

the drones cannot be operated over persons not involved in the operation. In a suburban

environment, this is near impossible to avoid.

Other regulations were also proposed such as maximum flying height of 500 feet (152.4 m)

and maximum air speed of 100 mph (160.9 km/h). A full list can be found on the FAA

web page [15].

South African CAA regulations released in June 2015 require a Remote Pilot License

(RPL) when flying commercially. This can be obtained through flight school training,

theory exam and practical demonstration test. An RPA Letter of Approval (RLA) and a

certificate of registration with number displayed on each aircraft are also required. This

is granted after an inspection and registration of the aircraft by the CAA has taken

place. Each pilot must also obtain an RPAS Operators Certificate (ROC) that details

the limitations exclusions for that specific pilot, RPAS and field of operation, acquired

after applying for an RPL and RLA, along with an operator’s manual detailing all tasks

and safety measures. Finally a Restricted Certificate of Proficiency in Radio Telephony -

Aeronautical must be obtained; this is a radio license to talk to full sized aircraft and air

traffic control towers using a handheld air radio [16].
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CAA Restrictions for commercial RPAS:

• The operator must carry a radio to communicate with aircrafts and ATC control

tower

• The drone must operate below 121 meters roughly equivalent to a 40 story building.

• Operate up to 500 meters away from pilot, with unobstructed line of sight.

• Operate at least 50 meters away from buildings (unless special permission obtained).

• Operate at least 50 meters away from people (unless special permission obtained).

• No operation within 10km of an aerodrome / airport (unless special permission

obtained).

• No operation within restricted or prohibited airspace (unless special permission

obtained).

• No releasing of any payloads (unless special permission obtained).

• Always carry a fire extinguisher and first aid kit.

However, these regulations are the first implementation of its kind and are bound to

change based on public pressure. The list of hurdles in order to fly commercially is long

but can be overcome. The major concern is operation in line of site which restricts

autonomy to some degree but the testing of a prototype for the time being does fit in

line with the above regulations.

1.7.3.1 Ethics in Drone Flight

A multi-copter is an extension of the operator. So it is simple to say that anything socially

or legally unacceptable when performed by a person is also unethical when accomplished

with the aid of a drone. This is inclusive of recreational and commercial drone flights

whether or not the operator has the intention of performing an unethical act.

A possible socially unacceptable operation of drone flight is the recreational operation

in public spaces. This can result in the disturbance of public members who are within

earshot and are affected by the noise pollution generated by the drone. A higher flight

altitude may remedy this concern to some extent.

Multi-copters are often fitted with high-resolution cameras for surveillance or aerial

photography. This poses major concerns with regard to invasion of privacy [17]. Operating
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drones over suburban areas can result in inadvertently capturing images of people without

their consent. In order to reduce the chance of this occurring, the camera should be

powered off when it is not required for a specific flight path and if not required at all, a

camera should not be fitted.

Commercial drone uses are becoming more common and as the number of companies

that use drones increases. One such company is Amazon, whose primary objective is to

deliver packages as quickly as possible to their clients. This poses a problem as the more

drones there are in the air, the more chance of a collision or malfunction. This can be a

danger to the public below. This is why autonomy may benefit the company in question

as the operator would allow the drone to make altitude and flight path decisions based

on available air space. The drones however would have to be equipped with wireless

telemetry and communicate with one another.

1.8 SUMMARY

This chapter proposes a new form of specimen and POC delivery that utilises autonomous

drones as the transportation method. The proposed solution is to replace motorised

vehicle delivery as this may improve the turnaround times and reduce the cost to the

patient and stakeholders.

The proposed solution has never been used before in a commercial environment and it is

therefore difficult to assess the full capabilities and limitations of the given solution. For

this reason, a study must be undertaken in order to develop a framework that can be

used for the simulation and future implementation of a system; this will aid in assessing

a real world outcome, should the system prove feasible.



Chapter 2

BACKGROUND

2.1 INTRODUCTION

In recent years, Multi-copters have assisted in aid-and-relief for natural disasters such as

the 7.8 magnitude earthquake in Nepal in 2015 [18]. The company, Global Medic, provided

medical assistance in the form of drone surveillance in order to map the effected region

and relay information to rescue workers [19]. This comes after the use of multi-copters

for medical payload delivery in Papua New Guinea by Médecins Sans Frontières (MSF)

in 2014 [20].

The inaccessibility of the clinic in the town of Malalaua, roughly 63 km from the Kerema

hospital, led MSF to the trial use of drones for clinical sample delivery as kerema has

the only functional microscopy equipment to sample these specimens [21]. The flight

between Malalaua clinic and Kerema hospital took 55 minutes and required a battery

change half way in the town of Tora. The journey would have taken four hours had a car

been used to deliver the samples.

Global Medic and Médecins Sans Frontières have proven to the world that the inclusion

of drones in delivery and surveillance can positively affect the lives of many people in

underdeveloped regions and the like. It is thus necessary to investigate the impact that

drones have on society, with medical delivery at the focal point.

This chapter introduces the attributes of multi-copters and other Unmanned Ariel

Vehicles (UAV). Through the review of several implementations and drone system

arrangements, a unique prospect can be obtained for the concept of medical specimen

and POC device delivery.

11
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2.1.1 Multi-copters

A multi-copter is a radio controlled aerial vehicle or rotary flying unit that contains

multiple horizontal propellers on the frame’s extremities.

Thrust of the unit is controlled by increasing or decreasing the speed of the rotors

independently. The most common form of a multi-copter is the quad-copter whereby

rotors on opposite corners of the frame spin in the same direction in order to provide

stability during lift.

Pitch of a quad-copter is controlled by increasing the speed of the two rear motors

relative to the speed of the two front motors. This allows the vehicle to move forwards

or backwards. The greater the pitch angle the greater the speed in the given direction.

Yaw of the vehicle can be altered by increasing the speed of the two opposite motors

which destabilises the unit’s horizontal rotation enabling it to rotate about its centre.

By increasing the speed of two adjacent motors one can alter the angle of the aircraft to

its lateral axis and produce roll of the aircraft [22].

Increasing or decreasing all four motors simultaneously controls the altitude as depicted

in figure 2.1.

Figure 2.1: Flight orientation of quad-copter where arrows over the motors indicate the
increase or decrease of the speed of the motors. All other arrows indicate the direction

of motion of the quad-copter.

An on board computer is required to provide motor control for speed and direction

as well as stability during flight. Additionally, peripherals such as GPS, gyroscopes,
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accelerometers and sonar sensors are added to relay information such as position, altitude,

speed and route mapping.

A multi-copter can be equipped with a payload in order to transport small objects

autonomously. With regards to healthcare, the package can contain urgent specimens

which may increase the rate of specimen delivery.

2.1.2 Unmanned Aerial Vehicles

One of the early uses for the gyroscope, invented by Elmer Sperry, was to be used in

World War I in an airborne drone for the U.S Navy [23]. The drone would be piloted

remotely using ‘radio waves’ popularised by Nikola Tesla’s first remote controlled boat in

1898. The drone would be catapulted 1000 yards before crash landing into a designated

target in order to trigger the equipped warhead. This was one of the first unmanned

aerial systems.

In today’s time an Unmanned Aerial Vehicle (UAV) or a Remote Piloted Aircraft (RPA)

is a flying unit often used by the military for battlefield surveillance. The aircraft is

either completely autonomous or is given waypoint flight paths via a ground station.

UAV’s vary greatly with respect to structure and overall size. A multi-copter can be

referred to as a UAV when its hardware allows for autonomous flight [24]. The flight

controller combines data obtained from the barometer, GPS, gyroscope and accelerometer

to calculate its position and orientation during flight. It then follows a predetermined

path set via a ground station.

2.2 REVIEWS OF CURRENT DRONE SYSTEMS

Reviews of similar systems to the one proposed in this dissertation allow for an investiga-

tion into possible solutions as well as an indication of the capabilities of a drone delivery

system. This will aid in justifying the framework’s development.

2.2.1 Drones in Medical Delivery and Aid Relief

Zipline, a company associated with robotics based in Northern California [25] partnered

up with UPS, a shipping and parcel service [26], and Gavi Vaccine Alliance, a non-profit

organisation based in Rwanda [27], to develop a delivery drone called ’Zip’.

The drone is a small fixed wing aircraft that carries up to 1.5 kg of payload in its fuselage

and travels at a speed of 100 km/h [28]. The payload is focused on medical supplies such
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as vaccines, medication and blood. The drone system can also be extended to disaster

and humanitarian relief projects.

Zipline favours fixed wing drones over rotary flying units [29]. Rotary units only function

in fair weather and the damage caused by a malfunction could be minimised by the

aircraft’s ability to glide. This is a major factor to consider when designing a system

based on multi-copters.

The reason behind the development of Zip is the lack of adequate access to essential

medical products in various locations around the world. Over 2.9 million children under

the age of five die each year as a result of lack of treatment [25]. In addition 150,000

pregnancy related deaths could have been mitigated if the patients had access to blood

according to Zipline [25].

A health worker places a text message which is used to ready the drone for delivery. The

medical supplies are secured in a cardboard box within a compartment in the drone.

Upon reaching the coordinates of the delivery point, the drone measures the wind and

jettisons the package. The package is fixed with a parachute which deploys upon release.

The drone then lands at the health facility in an open space.

The speed of the drone allows for a large supply radius and Zipline claims to be able to

provide a national-scale coverage from a single home base. This also reduces the cost

of the initial set up and any additional units as they can operate out of a single base

station. The first location set for delivery is Rwanda where the government will pay for

each delivery that Zipline makes [30].

Zipline intends on executing up to 150 deliveries per day to 21 health facilities across

the western portion of Rwanda [28]. Currently there are less restrictions with regard

to Rwanda’s aviation regulations compared to that of the United States of America or

South Africa which thus allows for real life field testing and eventual deployment in the

region.

Another reason for Rwanda being the location of choice is the lack of supporting

infrastructure for medication delivery. A large number of the roads in Rwanda are

washed out annually by storms. In addition to this, the current percentage of the

population living in urban settlements is only 15 % [31], which makes Rwanda one of the

poorest countries in Africa [32]. This puts Rwanda into the category of ‘underdeveloped’

which indicates that it can benefit greatly from a system such as drone delivery where

the Zipline concept excels.

In remote rural areas there are limited resources available to diagnose laboratory-intensive

diseases. E-Juba [33], much like Zipline, is a UAV design from the National Health
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Laboratory Service of Johannesburg that plans to transport a 500 g payload over a

distance of up to 40 km using a fixed wing drone. E-Juba is also intended to transport

urgently required medicine such as snakebite serum or packed red blood cells [33]. The

issue of environment contamination as a result of collision is avoided by transporting the

samples in dried spot format. The drone uses Global System for Mobile Communication

(GSM) to communicate with its operator. The unit is battery operated and uses the

‘MicroPilot’ ground station. Successful autonomous take-off, guided flight and landing

were accomplished.

The E-Juba is the first attempt at using drones to transport specimens in South Africa

[34]. Prior to this drones were only used for military applications. Of the 300 audited

test flights, only 2 were unsuccessful. No cargo or equipment was lost or damaged during

the test flights [34]. The testing of the drone was possible after permission to fly from the

CAA was granted. However, the drone had to be followed by a road vehicle at all times.

This proved difficult as the drones flying altitude reduced visibility from the ground. The

flying altitude had to be altered to accommodate for this. The team then employed local

school children to collect the samples once the drone had landed and deliver them to

the necessary clinic [34]. This provided additional jobs in an area where unemployment

levels are high.

E-juba is a prime example of the drone delivery system that this dissertation proposes.

However, the e-juba system is limited in some respects. Improvements to this design

begin with the increase in payload. 500 g is very limited if multiple samples are required.

Therefore, this dissertation focuses on the delivery using rotary flying units as opposed

to fix wing. This can result in up to 5 kgs in payload capacity. Another advantage

of rotary flying units is that the take-off and landing can be on a point and does not

require a runway, hence a more accurate positioning overall. Since published in 2007,

improvements in the technologies used in e-Juba have been made and enhanced ground

stations and flight controllers can be added for increased accuracy.

A paper titled ‘Autonomous Drones for Assisting Rescue Services within the context of

Natural Disasters’ [35], discusses the use of drones to aid in rescue missions to locate

survivors or assess the magnitude of a situation . The drone is required to autonomously

navigate buildings inside and out using a mounted camera. A camera is used as opposed

to sensors because the drone is limited with its payload. The drone makes use of ’sparse3D’

in order to compute distances and spatial locations [35]. Using regions of interest, the

drone can also detect people. In this paper, Sensor weight is not a major concern as the

drone is designed with sensors in mind. Therefore, sparce3D is not necessary and the

guidance will be based on the sensors that are equipped.
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The use of a fixed wing drone is not possible within this context as a fixed wing drone

could not navigate within structures or hover above an inspection zone.

The MedizDroid project makes use of drones for mosquito vector control in the man-

agement of Malaria [36]. A hybrid system has been conceptualised in order to carry

large payloads. The use of green energy could also improve flight time. Multiple drones

conducting a single command may also reduce the need to transport heavy payloads.

However this would require increased autonomy and drone-to-drone awareness for col-

lision avoidance. The drone uses Service Orientated Architecture (SOA) which can

communicate with MAVlink based ground stations [36]. The drones are still to be flight

tested.

As flight time is a major concern, and the addition of batteries leads to a decrease

in payload capacity, green energy such as solar may need to be considered in future

developments of multi-copter designs.

2.2.2 Drones in Goods Delivery

Amazon, a large internet-based reseller of commercial products has developed an au-

tonomous delivery system using a hexa-copter called PrimeAir [37]. The intention of the

company is to enhance their delivery service which is already provided to millions of

customers by means of vehicle couriers. The service is not in operation as the aviation

regulations in the USA do not permit autonomous beyond line of site (BLOS) drone

operation [37].

Customers will be able to select the option of drone delivery on the Amazon website

after purchasing a product that fits the criteria. This increases the company’s autonomy

with regard to service delivery.

Amazon envisions a fleet of drones delivering all their parcels that fit the size and weight

restrictions in the near future. The weight limit has been set at 5 lb (2.26 kg) and the

flight time is estimated at 30 minutes [37]. The unit will fly at an altitude of below

400 feet (121.29 m) to avoid altitudes of larger manned aircrafts. The unit itself will

weigh 55 lb (24.94 kg) fully loaded and Amazon claim to be able to operate the drone

from up to 10 miles (16.09 km) away. The drone also has sensors mounted to avoid

collisions with other drones and structures.

A proposal outlined in Amazon’s safe integration document discusses the use of segregated

civil airspace below 500 feet [38]. Amazon suggests that the airspace available be

segregated into flight ‘levels’ based on the capability of the vehicle in transit. This will
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enable safe operations by providing a framework for airspace access based on the vehicles

capability. The levels are separated as listed below [38]:

• “Low-Speed Localised Traffic”- This level is reserved for non-transit operations

such as units operated for recreational, survey or inspection purposes. These units

lack sophisticated sense-and-avoid (SAA) technology.

• “High Speed Transit” – This is the air space between 200 and 400 feet which is

reserved for commercial high speed units that are well equipped with regard to

sensor and performance hardware.

• “No Fly Zone” – This level is delegated to emergency flight services only.

Amazon have already tested over a dozen prototypes in order to be able to accommodate

for different types of delivery environments. The development centres are located in the

United States of America, United Kingdom, Austria and Israel [38] and give a broad

perspective of various operating climates and weather conditions.

Unlike the drones previously mentioned in this paper, Amazon’s drone is purely a

commercial based project with the intention of increasing the efficiency of their delivery

department. Amazon will not be delivering medical specimens or blood and therefore do

not have to consider the regulations involving these substances. The research at Amazon

has proven that drone delivery is possible. However, the entire project is hinged on the

aviation authority providing them with the necessary permission to fly autonomously,

and carry a payload while doing so.

The well-known parcel delivery company DHL began using quad-copters in September

2014 for deliveries dubbed as “parcel-copters” [39]. The copters deliver small parcels

to the German island of Juist. Deliveries include medication to the pharmacy on the

island as well as other small items that are required urgently. This service is quicker

than the ferry service previously used. The drone is equipped with a specially designed

parcel housing that is weather- and waterproof [39]. The drone is monitored by a ground

station and lands in a designated area on the island. From there a DHL courier delivers

the parcel to the recipient.

An endurance test carried out by the company DJI, flew a tethered multi-copter for

a period of 72 hours in order to determine if the components can handle the length

of continuous flight [40]. This value was achieved and is regarded as the maximum

continuous flight time, beyond which is not recommended before component breakdown.

The drone’s maximum flight time between inspection and service is therefore 24 hours, a

safe value below the 72 hour DJI test flight.
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The reason behind the use of drones in these situations is the quick response time and

large area coverage. The components required to build a multi-copter are readily available

in large varieties and the inclusion and operation of a single drone within a system is

a relatively simple task. This allows for almost immediate implementation in a crisis

situation. However, the system does need to fit into the structures and guidelines already

established by clinics and laboratories.

2.3 REQUIREMENTS BASED ON LABORATORY PRO-

CEDURES

In a general case where a healthcare practitioner requires specimens to be tested, a drone

would be requested from the dispatch office. Once the request is processed, a drone is

sent on its way to collect the specimens. The drone lands in the dedicated area for the

healthcare professional to load the specimens into the package. The drone then returns

to the laboratory and the package is detached and processed by the laboratory. The

delivery request procedure takes place as in figure 2.2.

Figure 2.2: UML Diagram of Request for Delivery of Specimens.

Between the procedures of loading specimens onto the drone and offloading at a laboratory

certain checks occur. The drone determines if a package has been securely fitted to the

undercarriage, if a package is not secure, a warning indicator presents itself. Once secure,

the healthcare professional indicates that the area is clear for take-off and the package is
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ready for delivery. The drone then gathers GPS data and determines if it has a clear

return path to the laboratory. At this stage weather effects should also be determined as

well as battery percentage. Indicators must be equipped to notify the operator if either

of these values is inhibiting the drone’s operation. If all the above checks are passed the

drone can proceed with the delivery.

During the flight, weather and battery checks continue to run and the operator is

updated accordingly. On arrival the package is released and the sample is processed by

the laboratory. Once results are made available, the doctor is notified via email. The

procedure described is illustrated in figure 2.3.

Figure 2.3: Flight plan of drone delivery system.

2.4 SUMMARY

The review of drones, particularly multi-copters, suggests that the inclusion of such units

in a delivery system is possible within their context.

The preferred drone is a rotary drone over fixed-wing as it has the ability to land on

point and carry a greater payload. The disadvantage of rotary drones over their fixed

winged counterparts is the flight range, which can be overcome by using battery changes

and stop over points.
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In addition, aviation regulations pose restrictions which may limit the use of such a

system in various locations around the world. However, the system does abide by the

guidelines used in laboratories and clinics.

Furthermore, a drone delivery system can fit within the guidelines of the already estab-

lished laboratory procedures which indicates that a framework is necessary in order to

assess such systems should they be required in the near future.
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POINT OF CARE

3.1 INTRODUCTION

The introduction of a form of testing referred to as Point of Care (POC) may negate

the need for drone delivery as the results of the testing are almost immediate and

transportation to and from laboratories are no longer required. For this reason a full

investigation must be conducted into POC testing in order to determine if it can be a

viable replacement for general laboratory testing.

Limited access to laboratories in sub-Saharan Africa has led to the increase of POC

testing. POC testing is a form of laboratory testing that allows an individual to obtain

clinical results by means of patient self-management (PSM), patient self-testing (PST)

or general blood tests [41]. This decreases the turnaround time for tests such as blood

glucose, anticoagulation, cardiac markers, haematology or urine screening.

In order to reduce the risk of blood clots, patients will take anticoagulation therapy with

the aid of anticoagulants such as warfarin [42]. However, if the wrong dose of medication

is ingested it can result in excessive bleeding. In order to prevent this, the patient must

be monitored by a clinician who tests the International Normalised Ratio (INR) using

the POC device and adjusts the dose accordingly [43].

The POC method of testing has numerous benefits such as the ability to test on demand.

It would be near impossible for a diabetic to monitor their blood glucose level at the

predetermined intervals if there was a requirement to enter a laboratory for each and

every test. The monetary cost of the test can be lower as the supply costs are less than

what the laboratory would charge and the cost of transport is reduced. It is even possible

that in the case of glucose testing, the full POC test will take less time than collecting a

sample to transport it to the laboratory.

21
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One form of POC is where a patient can perform a blood test with a blood glucose meter

or urine strip test to obtain a result and alter their medication dosages at home.

Another assisted type of test [44] is where the clinician uses a POC device to determine the

outcome which requires trained personnel to operate the equipment. The test still takes

place at a location convenient to the patient, but specialised equipment is required such

as an Ultrasound monitor, an ECG machine, a pulse-oximeter monitor or a heart-rate

monitor .

Some hospitals and clinics contain a laboratory-like setup where a patient can walk in

and get a POC test done in the clinic. This allows trained nurses to monitor tests and

make sure the correct procedure takes place. This also provides an easier platform for

managing the POC results.

POC contrasts with centralised laboratory testing where the results are loaded into a

database and retrieved by the medical personnel who requested the testing. The results

can take up to a few days to be made available depending on the test. This may indicate

that POC testing has the potential to mitigate the need for laboratory testing, in turn

rendering the drone sample delivery system redundant.

3.2 RESEARCH UNDERPINNINGS

3.2.1 Costs Associated With POC Devices

As of 2015, low cost glucose monitors in South Africa retail for between R150.00 -

R200.00 per device with the requirement of purchasing test strips for between R110.00

and R130.00 per pack of 50 [45]. A patient monitoring their blood sugar levels on a

regular basis could easily use up to 100 strips per month. This is a minimum of R370.00

in the first month and R220.00 per month following.

Laboratory CD4 count tests range between R314.00 - R557.00, where 83 % of the overall

cost comes from the assisting products such as the consumables [46]. However, the cost

per test is reduced as the volume of tests carried out increases.

The delivery of POC devices to and from laboratories adds to the overall cost. The cost

per kilometre of a hatchback delivery vehicle is approximately R0.64, a scooter R0.24

and a drone R0.17 [47][48]. However, these costs are divided between the quantities of

devices that are delivered. In the case of a motor vehicle carrying large quantities of

devices it becomes more cost effective. This information limits the drone to urgent and

small quantities of equipment which are less than the specified package weight of 4 kg.
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However, for packages less than 4 kg, the drone is the favoured transportation method

as it adds minimal costs when transporting these devices.

The general perspective of laboratory professionals is that POC testing is more expensive

than centralised laboratory testing. This is partially due to the fact that each test

is conducted individually and that bulk tests are less frequent. Adding to this is the

high cost of labour. An estimated two-thirds of POC test cost is accredited to clinical

personnel necessary in administering the procedure or monitoring the outcome [49]. This

is obviously reduced when PSM is used.

An analytical cost of central laboratory glucose tests estimates the total cost of tests

performed in the U.S.A using the following equation [49]:

Cost per Test =
(EquipmentCost + Supplies + Labour)

(No. ofPatientGlucose Specimens)
(3.1)

Of the 445 institutions, the cost per test for glucose was lowest in central laboratories and

highest in low-volume bedside glucose testing, averaging $1.18 and $4.66 respectively [49].

This indicates that using drones to deliver POC devices may prove costlier than laboratory

testing.

However, POC cost comes with added benefits such as the possibility of an overall

improvement in the patient’s outcome as the patient is able to respond immediately to

the test results. In the instance of blood glucose tests, one can adjust one’s insulin dose

depending on the POC test with immediate effect and hence reduce the risk of permanent

or prolonged illness and avert an emergency or life threatening situation. For this reason,

it appears as though simply looking at costs to determine the preferred method of testing

is insufficient.

3.2.2 Laboratory Testing

The use of antiretroviral (ARV) in pregnant women is the key prevention of mother-

to-child transmission of human immunodeficiency virus (HIV) [50]. Even though the

mother is diagnosed to be HIV-positive, the unborn child does not necessarily share this

virus. Antiretroviral therapy can be used to prevent this if the condition allows for it.

The eligibility of the mother is determined by her CD4 cell count [50]; this is the number

of white blood cells per cubic millimetre of blood. If the cells that play a major role in

fighting off infection drop below 350 cells/mm3 [50], ARV therapy is recommended.
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In order to test for the CD4 count at clinic POC, an ‘Alere Pima Analyser’ may be

used [51]. The device is a bench-top unit which provides an absolute CD4 count in less

than 20 minutes.

521 women took part in a study [52] with an average gestation age of 23 weeks. Laboratory

devices recorded their median CD4 cell count at 388 cells/mm3 whereas the POC device

recorded a median CD4 cell count of 402 cells/mm3. In women of 36 weeks gestation

age the discrepancy was even higher.

Accurate results play a crucial and vital role when it comes to clinical tests such as

CD4 count. It is imperative that these tests are done at a clinic laboratory to obtain an

accurate clinical diagnosis upon which a trained clinician would immediately be able to

respond to the obtained result.

The timely and accurate administration of ARVs can mean the difference between a

mother passing on HIV to her unborn foetus or preventing the transmission of the virus.

3.2.3 Proportional Approach to Testing

When considering the various forms of testing, the evidence points towards the use of

both POC devices as well as laboratories for obtaining the necessary results. What needs

to be determined is when it is appropriate and cost effective to use the POC methods or

laboratory testing and whether or not they are interchangeable.

From what has been explored in this chapter, POC devices are highly beneficial when it

comes to frequent, on-the-go testing such as blood glucose tests for diabetics or cardiac

monitors for someone with a heart condition. Generally, POC testing often remains

inferior to laboratory testing when it comes to accuracy. Therefore, for tests such as

CD4 count and anticoagulation it is preferable, where possible, to obtain results via

laboratory testing and have a clinician oversee the procedure and advise the patient on

how to respond to the test results.

The publication, “From access to adherence: the challenges of antiretroviral treatment

Studies from Botswana, Tanzania and Uganda” [53], assessing the challenges that comes

with ARV treatment in Northern Africa, discusses the reasons for skipping medication

amongst patients with HIV. Beyond the common reasons such as forgetfulness and the

stigma associated with someone who has HIV, cost also plays a major role. Logistical cost

as well as the distance needed to travel in order to acquire medication accounts for 1.9 %

and 13 % of missed doses respectively [53]. ‘Cost and logistics’ is a summation of all the

costs accrued to the patient when collecting the medication. The following needs to be

taken into account - the cost of transport, wages lost due to the patient being absent
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from work in order to collect their medication from the clinic and other treatment related

outlays. On a logistic level, workers reported a lack of transport availability as well as the

lack of funds required for transport as the reasons behind missing clinical treatment [53].

The large distance the patient has to travel to the clinic also poses difficulties as the

patient must take off many hours from work resulting in lost wages.

One of the main reasons behind POC is to grant access to laboratory facilities in areas

that are not easily accessible due to lack of infrastructure. A case in point would be that

of a person living with HIV in an inaccessible rural area who has difficulty gaining access

to transport to and from a clinic on a regular monthly basis in order to collect their supply

of ARVs. Laboratory diagnostics may be the best form of accurate diagnosis, but when it

comes to ARV treatment, visiting a clinic once a month may not be possible. Therefore,

an alternative means of ARV delivery must be found for people in this predicament. A

faster more reliable alternative is needed that can access areas that are inaccessible for

various reasons.

An Unmanned ARV carrier (U-ARV) may be a possible solution to urgent medication

delivery. This can reduce the number of patients that skip medication as a result of

not having regular access to the clinic due to their socio-economic situation and rural

location, such as in the cases of Tanzania and Uganda. Not only will this U-ARV deliver

medication, but also deliver the POC devices needed by the patients that are easily

transportable and do not require technical over-site.

The aspects that inhibit the delivery of medication such as ARVs are the drone system’s

limitations, such as the amount of medication that the drone can carry. A common combi-

nation of ARV treatment is 300 mg of zidovudine (AZT) and 300 mg of lamivudine (3TC)

every 24 hours. Other dosages such as Saquinavir (SQV) can be as much as 1600 mg

combined with 100 mg of Ritonavir [54]. This can equate to 52.7 g for every 30 days

of treatment. If it is assumed that packaging weighs an additional 50 g a single drone

with the ability to carry 4 kg per trip would be able to transport roughly 30 days of

treatment for 38 patients. If the drone is packed to capacity, it will not be able to carry

any additional samples and a more sensible loading limit for medication would be half

the maximum limit; 30 days of treatment for 19 patients.

It must be emphasised however that the delivery of medication is restricted to urgent

supplies where clinic stock has run low. This would be the case in a region that lacks

storage facilities or if the short shelf life of the drug is accompanied by a low rate of

demand.
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3.3 SUMMARY

POC testing proves costlier than laboratory testing and the latter is preferable with

regard to result accuracy. This indicates that in order to improve on efficiency, it is not

always monetary costs that must be reduced, but also turnaround times and accessibility

to patient care. Therefore, a proportional approach to clinical testing and POC must be

achieved. For this reason, it is necessary to include within the framework, a simulation

that takes multiple variables into account.

Now that it has been established that the current methods of sample delivery can benefit

from supplementary methods, it is essential to evaluate the type of regions where this

method would be most beneficial.



Chapter 4

MPUMALANGA CASE STUDY

4.1 RESEARCH DESIGN AND METHODOLOGY

In order to assess the capabilities of a drone system, if it were to be implemented in the

future, a consideration must be given to the development of the system in a theoretical

scenario. In order to accomplish this, a sample population must be selected based on

their residing region; this will allow for the demarcation of a test region for the case

study. The criteria and infrastructure of the region plays a vital role in its selection.

Once the region location is determined, the established laboratories and clinics must be

indicated on a map in order to measure their distances from one another. This will grant

a direct comparison between delivery requirements and the drone’s capabilities.

As cost and turnaround times are presented as the initial considerations; they must then

be minimised. This can be done by finding the shortest path between all the laboratories

and clinics. In this way, if all the points on the map are to be visited on a daily basis, the

system has a predefined route. The route optimisation will be developed in MATLAB

which will allow for an overall time frame of the visits in the region and ultimately

quantify the number of locations that a drone can visit per time frame selected.

4.2 PROBLEM AND PURPOSE OVERVIEW

The aim of this chapter is to classify the people that would otherwise go without

patient care if not presented with alternate methods of delivery. This can be achieved

by investigating various demographics and applying a theoretical framework to the

appropriate data set.

27
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A limited case study of a particular region can assess the detailed considerations of the

developing delivery process. Given the regions infrastructure, a case can be presented

whereby an aerial delivery vehicle transporting clinical samples in the region can be

simulated. From the analysis one can determine if the region has the potential to adopt

the system in question and further expand the process to alternate terrains.

4.3 POPULATION AND SAMPLE

4.3.1 Optimum Demographic

A U-ARV may be used to deliver medical samples under certain strict conditions where

safe transport methods have been adhered to, from the patient to the clinic. This would

be an ideal method of transport and interaction between the clinic and patient in low

socio-economic areas and remote inaccessible locations or regions where transport and

other conventional delivery methods are cumbersome.

Maslow’s hierarchy of needs states that a person’s physiological and biological needs

must be fulfilled in order to be self-motivated [55]. If one lacks the basic necessities or

one’s health is poor the potential for growth is suppressed. This applies to the 45.5 % of

people living in poverty in rural areas in South Africa [56]. Easy access to medication

grants a population the ability to thrive in a case where their health would otherwise

stagnate or decline. A much greater impact can be achieved in lower socio-economic

regions as compared to middle or upper class sectors and thus a system implementation

such as the drone delivery could have a larger impact on rural areas.

Due to the lack of investment in a specific region, the transportation infrastructure is

often lacking. This hinders the ability to trade with the region as would be the opposite

in an affluent society. The lack of trade lowers the diversity of supplies and medication.

Because of the reduced influx of trade or access to the region, it can be considered

as ‘remote’. A remote location thus lacks the supporting architecture to facilitate the

treatment of major diseases. From this one can see the importance of selecting a region

that is underdeveloped in order to meet a delivery systems full potential.

4.3.2 Region Selection

Mpumalanga has one of the lowest incomes of all South African provinces and has an

estimated 7 % of its total population [57]. None of the areas in Mpumalanga have the

status of metropolitan areas and therefore all the urban areas are considered small towns.
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59.6 % of people in Mpumalanga live in rural areas compared to the national average of

37 % [57]. This makes Mpumalanga a good choice when considering case study regions

in South Africa. The low population density of 53 people/km2, compared to Gauteng

of 675.1 people/km2 [58], is also favourable as densely populated areas would cause

concerns to arise such as the increased probability of injuring of a bystander during a

flight malfunction.

4.3.3 Region’s Supporting Infrastructure

The area selected has supporting roads and some regions are accessible by railway lines

but limited public transport is available [59]. Independent minibus taxis service some

areas but do not run on a set schedule. The times and routes of the minibus taxi service

are based on the area congestion at certain times of the day [60]. If it is not profitable to

travel along a route, it may be avoided in which case the client must make their way to

a taxi rank in order to gain transport to a clinic or laboratory.

The area is fully covered by the MTN, Vodacom and Telkom 2G and 3G networks which

allows for the transmission of results via email or SMS from a laboratory to a clinic in

the surrounding area [61]. If need be the SMS can be directed to the patient directly if

the patient has access to a mobile device.

4.4 ASSUMPTIONS AND VARIABLES

The MATLAB algorithm simulates an ideal scenario in order to determine a base value

for the number of delivery points a drone could potentially service within a given time

frame. Therefore, external elements such as changes in weather conditions and drone

malfunctions are assumed to be a non-occurrence.

The request points are also assumed to be in fixed positions on the map and contain a

fixed number of specimens. Each specimen has the same weight and the drone is assumed

to be able to visit all locations without overloading its payload capacity. Table 4.1 lists

the simulation variables.
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Table 4.1: Case Study Variables.

Object Variable

Clinics Clinic Number, Location
Laboratories Laboratory Number, Location
Drones Position, Maximum Range, Total Travel Dis-

tance (Route Cost)
Region Border Locations
Distances Distances Between Laboratories and Clinics, Dis-

tances between Drone and Clinics , Distances
between Drone and Laboratory

4.5 DATA COLLECTION AND INSTRUMENTATION

4.5.1 Mapping the Region

The towns surrounding Whiteriver, roughly 100 km South West of the Kruger National

Park, are the centre-point for this Mpumalanga case study as they are less populated

than their neighbouring towns. The region borders the towns of Dullstroom, Amanda,

Komatipoort and Swaziland and has limited transport infrastructure between them.

The neighbouring towns have laboratories and clinics and the necessary infrastructure

for their requirements. However, they are few and far between and the limited public

transport poses major difficulties to people in need of clinical diagnostics. It is not a

random selection of an area that determines the case study route location, but rather

the area’s infrastructure that allows for the possibility of the systems implementation

which makes this region favourable for investigation.

A basic laboratory search is done using Google Maps. This allows for pinpointing the

laboratories and clinics within the region. The outlined area in figure 4.1 illustrates the

search results of 6 Lancet Private Laboratories and 13 general clinic locations in the

area specified above. From the figure it is apparent that there are fewer laboratories

than clinics and the distance between them are relatively large. The coordinates of the

enclosed case study region as well as the Laboratory and clinic coordinates are tabulated

in table 4.2.

Clinics are not always able to collect as well as process samples and must forward samples

to a laboratory to be processed. It is therefore necessary to map out a travel route for the

delivery vehicle that would allow for transportation between clinics and laboratories. The

route must be optimised for the shortest path which will provide the shortest turnaround

time. This will reduce the overall monetary costs involved in delivery. The results of the

tests can be telecommunicated or delivered on the return route of the delivery vehicle.
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Figure 4.1: Map of area selected for research case study. Laboratories represented by
glass flasks and clinics are represented by houses [62].

4.5.2 Optimisation Objectives

As the system would need to be sustained, the costs involved in operating the drones

must be reduced as much as possible. This means that non-essential delivery routes

cannot take place in order to avoid unnecessary wear and tear on the units. Therefore,

the flight routes must be optimised for shortest time between two points. This will

provide the shortest delivery time and the fastest potential turnaround time.

The coordinates of the laboratory and clinics in the outlined region are extracted from

the map and presented in table 4.2. The Laboratories latitudes and longitudes are placed

in adjacent columns one beneath the other followed by those of the clinics. Using the

distance formula, the distance between two coordinates can be found. This is done

between every laboratory and clinic resulting in a total of 156 values. Duplicate paths

are immediately eliminated such as the distance between laboratory ‘A’ to clinic ‘1’ and

clinic ‘1’ to laboratory ‘A’.

The average distance between laboratories and clinics is 54.48 km and between clinics

and other clinics is 43.05 km. The resultant mean value is 48.76 km. This value is higher

than the maximum flight range of 22.5 km based on an estimated half hour flight [63] at
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Table 4.2: Coordinates of points in case study region.

Enclosed Area Coordinates Laboratory Coordinates Clinic Coordinates

-25.47390, 30.14989 25.04645, 31.12774 -24.75728, 30.97617
-25.03651, 30.15542 25.33277, 31.01451 -24.83333, 31.06666
-24.60260, 31.09519 25.47057, 30.97811 -24.91666, 30.91666
-24.95936, 31.60077 25.47581, 30.97763 -24.93333, 30.83333
-25.39207, 31.80959 25.48333, 31.51666 -24.89785, 30.75342
-26.02586, 31.11436 25.49355, 30.96188 -24.93689, 30.84500

-25.01844, 30.76085
-25.08174, 30.77730
-25.08632, 30.78228
-25.09013, 30.45857
-25.22802, 31.07718
-25.46815, 30.98132
-25.76227, 31.05040

45 km/h and hence only distances smaller than 22.5 km can be considered. This leaves

27 out of a possible 156 flight paths (17 %) and reduces the potential operating points

to 5 laboratories and 11 clinics. The laboratory to clinic distances and clinic to clinic

distances are tabulated in figure 4.2 and figure 4.3 respectively, where all unreachable

flight distances are highlighted in red.

Figure 4.2: Distances between laboratories and clinics with highlighted cells indicating
distances that are too large to travel.

By using the laboratories as central hubs and the clinics as access points, it is possible

to use the points on the map as a network and reduce the overall travel expense. A

flight path is chosen by taking the shortest route between two points. It is assumed that

stop overs are allowed at any point specified on the map; in reality this stop-over would
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Figure 4.3: Distances between clinics with highlighted cells indicating distances that
are too large to travel.

mean the hub or access point would contain the necessary facilities to support the use of

the drones in their operation. These facilities include battery changes, battery chargers,

spare parts and general maintenance. Trained personnel to load and offload packages

are also required. The resultant possible flight ranges are shown in figure 4.4. If the

resulting flight ranges are overlaid with a mapped network it is reduced to the diagram

shown in figure 4.5. As expected, fewer points are visible as fewer paths are applicable.

In this case the mean value of the combination selected is 11.8 km.

Figure 4.4: Point to point distances between Laboratories and Clinics irrespective of
path.

From this network the best travel path between two points can be derived, allowing

for the shortest turnaround time. This can be achieved by applying route optimisation

methods.
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Figure 4.5: Representation of reduced laboratory-clinic network. Blue markers indicate
Laboratories, Red markers indicate Clinics.

4.5.3 Classifying the Type of Routing Required for Optimisation

Vehicle delivery such as waste disposal or paper routes, use routing algorithms. There

are three main routing algorithms used by these companies based on the type of delivery

[64]. High density routing, point to point routing and paired routing are some of the

methods used.

Examples of routing that use high density routing algorithms are paper delivery, waste

disposal, postal delivery and meter reading [64]. These routes are common in that there

are a large number of stops on the same schedule over a contiguous route. Point to point

delivery however is more significant for smaller numbers of stops where boundary is of

less importance than schedule and sequence.

Paired routing is similar to point-to-point routing but requires an additional point to be

paired with the original collection. An example of this is a shuttle service that collects a

person and transports them to their desired location but then returns the passenger to

their original point. Until now the assumption has been made that a route optimisation

method is needed in order to determine the shortest possible delivery route. However,

not all route optimisations problems can be solved using the same optimisation algorithm

and the required algorithm must be identified. The algorithm for the optimisation of



Chapter 4. MPUMALANGA CASE STUDY 35

routes must be designed based on the systems attributes. The attributes of a general

optimisation route are Schedule, Boundary and Sequence [65].

4.5.3.1 Identifying the Schedule

The schedule is the time frame of delivery. With most deliveries taking place between

the hours of 8:00 am and 5:00 pm where visibility is at its finest, this seems to be the

preferred window of delivery. However, the collection of samples should be done earlier

in the day in order to make it in time to the laboratory to be processed that same day.

Additionally, the issue of public safety can be reduced when flying in the early hours of

the morning or even at night when less activity is taking place in public areas. Most

major clinics and hospitals run a 24-hour facility or emergency unit that can attend to

these deliveries at any given time.

4.5.3.2 Identifying the Boundary

The route boundary is the geographical extent of the route and is a major factor in

determining the range of delivery. A boundary can be in the form of country, region or

even a complex of dwellings. In the Mpumalanga case study, this boundary has been

clearly marked to include the towns where the laboratories necessary for the processing

of the medical samples are located.

4.5.3.3 Identifying the Sequence

The stop sequence focuses on the order of importance for delivery and/or collection. In

the case of high density routing the order of the sequence can affect the travel time

greatly. For the Mpumalanga clinics and laboratories, point priority is not the main

concern as the starting point can be any point with the available drone facilities.

For the Mpumalanga case study, the boundary conditions and the number of points along

the path are known. In addition, the points are not paired with a delivery and collection

point but rather any specimen collected can be delivered to a laboratory further along

the predetermined route. This classifies the drone delivery routing problem as a high

density route even though the number of points in this situation is relatively low.
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4.5.4 Classifying the Optimisation Method

A special case of the vehicle routing problem is the ‘Travelling Salesman

Problem’ (TSP) [66]. Much like the Mpumalanga case study, the TSP is used to

determine the shortest possible route in a situation where a graph of specified points is

given.

The algorithm computes the route between ‘N’ points regardless of point priority as

long as every point is accessed along the route at least once. The ‘cost’ involved can

now be calculated based on how difficult it is to traverse the region between two points

or simply the distance or time it takes to get there. This ‘cost’ or expense must be

minimised throughout the route. So simply moving to the next closest point may result

in an extended overall route.

This is referred to as an NP-hard problem [67]. The difficulty of obtaining the lowest

cost increases exponentially as more points are added to the route. The most expensive

solution would be to try every possibility, but in the case of ‘N’ points the possibilities

are (N-1) factorial. For 100 stops on a map there would be 9.3x10157 possible solutions.

The computational cost would outweigh the delivery cost.

For smaller solutions of 40-60 points, a branch and bound approach can be used [68].

This is for a more real world solution where a state space search can determine the

optimum state using a routed tree. A tree is an undirected graph with a single vertex

between two points, but can have multiple vertices extending from each node. The

algorithm finds the shortest path between two points and then expands to find the next

shortest path between the remaining points.

A heuristic approach can be used to approximate larger sets by making certain assump-

tions. One heuristic approach is by gathering information on the surrounding nodes such

as the quantity or density of points and choosing the higher value even though the other

node may contain a shorter vertex. This way, more points can be visited in a smaller

region. This encourages cluster visits as opposed to lowest cost routes.

Since the number of points in the Mpumalanga case study is fixed at the relatively

small value of 17, the branch and bound approach or nearest neighbour (NN) of similar

attributes can be used over multiple iterations to approximate a low cost solution. The

variable that can be changed in order to alter the data set is the starting point which

may provide a shorter route based on its location.
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4.5.5 Link Between TSP and Drone Delivery

Applying a TSP approach to the Mpumalanga case study may answer the second question

of the dissertation as to whether or not a simulation can be developed in order to assess

the capabilities of a drone delivery system in a rural environment.

A TSP simulation could potentially formulate the shortest route between delivery points,

whereby providing a baseline for delivery turnaround times. In addition, a TSP simulation

may quantify the number of points and area size that a drone can service per time period.

This is once step closer to assessing the feasibility of the drone delivery system.

Once these values are determined, an optimised approach can be taken in order to

minimise the costs involved in drone delivery through an optimisation simulation.

4.6 SUMMARY

The Mpumalanga case study presented new information on clinics and laboratories in

rural and urban areas. The distances between the testing stations and the infrastructure

connecting them allow for the direct comparison between traditional methods of delivery

and autonomous methods. Given the current data on the required region and the

classification of delivery method falling under high density routing, a simulation can now

be completed in order to optimise the delivery route using the chosen TSP algorithm.
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TSP SIMULATION

5.1 INTRODUCTION

Chapter 4 outlined the type of region and demographic that would predominantly

benefit from supplementary medical care systems. If a drone delivery system were to

be implemented in the Mpumalanga region outlined in the case study, the flight route

would need to be optimised based on the classification of the routing. Optimising the

route will estimate the turnaround times expected from a region of similar scale and

laboratory density.

It was established that a drone delivery system would fall into the category of high

density routing and therefore the TSP algorithm is recommended as the optimisation

method. From here a MATLAB simulation can be developed using the TSP algorithm

within the Mpumalanga region.

5.2 SIMULATION

5.2.1 Applying TSP to the Case Study

In order to determine the optimum route of travel between laboratories and clinics using

the travelling salesman algorithm a few steps are needed.

The data required for the algorithm to run effectively is the precise locations of the

delivery points. This is obtained in coordinate format using Google maps. The starting

point can be any point on the map and is chosen as the furthest West point with the

starting direction facing north.
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From there the ‘cost’ can be calculated between points. In this case the cost is the

distance between points as it is directly proportional to the delivery flight time. The flow

diagram in figure 5.1 adapted from a general TSP algorithm [69] represents the basic

flow model of the TSP using the branch and bound approach where the selection of the

next location is based on the distance between the two points only. Satisfactory route

costs are determined by comparing the drone’s physical capabilities, such as maximum

flight time and operating range, to the algorithms route cost output.

Figure 5.1: Flow diagram of the Travelling Salesman Problem using the branch and
bound approach.

5.2.2 MATLAB Configuration

• Firstly the demarcated area in Mpumalanga is outlined using its coordinates from

Google maps. This is done by loading the boundary coordinates into a matrix in

MATLAB.

• An additional matrix is created in order to contain all the laboratory and clinic

coordinates within the boundary. These coordinates are displayed within the

boundary as in figure 5.2.



Chapter 5. TSP SIMULATION 40

• All distinct routes between laboratories and clinic coordinates are then generated.

For example the route from point ‘A’ to point ‘B’ must be drawn but route ‘B’ to

‘A’ can be ignored as it is duplicate information.

• The distance of each route is then calculated by using the distance formula between

two coordinates.

• The distance values larger than 22.5, with no clinics or laboratories closer than

that value are removed from the matrix and excluded as the drone cannot travel

further without stopping over to recharge. Conventional forms of delivery must be

used in these circumstances.

• The cost function used to minimise the total route is calculated as the sum of all

route distances along the tour. This cost function must be reduced to the minimum

possible value.

• Each path between two points is given a binary value. Where 1 represents a path

added to the route and 0 represents one that was removed from the route.

• In order to ensure that the final route includes all necessary stops, the number of

paths must be the same as the number of points on the map and each point is

limited to a single arrival path and a single departure path.

• The problem is then optimised using the ‘optimoptions()’ function which returns a

set of default options for the TSP algorithm, displayed in figure 5.2-A.

Figure 5.2: A) Graph representation of demarcated area with laboratory and clinic
coordinates. B) Solution of routes with sub-tours. C)Final route solution with sub-tours

eliminated.

What can be observed from figure 5.2-A is that there are multiple sub-tours as they

provide the lowest distance value. This can be a solution in itself for using multiple

drones for different sub-tours. But if the system is limited to a single drone as in the
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case of an initial start-up phase, all the points on the map would need to be included in

a single route.

In order to do this the ‘detectSubtours()’ function is used to return a cell array of vectors

containing all the stops in each sub-tour. The sub-tours are then eliminated using the

linear inequality constraints mentioned earlier with the function ‘spalloc()’.This function

creates an all zero sparse matrix which clears the sub-tours. This is repeated until only

one sub-tour remains. This final sub-tour is the optimised route for delivery shown in

figure 5.2-B.

The route displayed in figure 5.2-C allows the drone to begin its flight at any point on the

map and follow the route until it returns to the same point. This way every clinic will be

visited and the samples can be offloaded on-route at a laboratory for processing. Once

results are made available the drone can collect them on its next trip. The estimated

route length is 198 km.

For urgent delivery of samples or medication to a specific clinic, the shortest route can

be calculated using these methods. The drone would avoid unnecessary stops but would

often require at least one stop for a battery change at distances higher than 22.5 km.

An additional “urgency” drone can be deployed for this type of scenario. The full TSP

MATLAB code can be found on the accompanying disk in the folder Traveling Salesman

Problem.

5.3 DATA ANALYSIS

5.3.1 Efficiency and Turnaround Times

A blood-result turn-around time survey highlighting the turn-around times between

clinics and laboratories [70] delves into the reason behind the hospitals not being able to

treat patients in a timely manner. Nkomazi Health Ward in the Eastern Transvaal has 19

surrounding clinics between 5 km and 70 km away [70]. The clinics are in radio contact

with the Shongwe hospital which has a laboratory facility that services the clinics. It was

identified that blood test turnaround time was the leading cause of untreated woman

with positive syphilis serology. Of the 220 batches that were tested, 41 % took up to 13

days for the results to be obtained by the clinic. The turnaround time was broken down

to 17 % retrieving the specimens, 47 % laboratory procedures, 13 % obtaining results for

distribution and 23 % returning results [70]. However, no direct correlation was found

between clinics of further distances to longer turnaround times as the transportation of

specimens contributes to less than 1 day (21.6 hours) of the 13 days in most cases .
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From these results, 21.6 hours is obtained as the base value for specimen, ARV or POC

device delivery. From the point of collection from clinic 1 to clinic 11, then delivery to a

laboratory thereafter, the total hours of delivery should not exceed 21.6 but the upper

maximum limit is set at 24 hours to account for minor delays.

The total route of the calculated flight path accumulates to approximately 198 km. If

it is assumed that there is minimal headwind then we can use the aerial velocity from

of 45 km/h discussed in chapter 4. At this speed it would take 4.4 hours of continuous

flight to circle the entire route. Time for loading specimens, take-off, landing, offloading

specimens and battery changes can be taken into account and a fair estimate is 5 minutes

per stop over. As there are 5 laboratories and 11 clinics the leeway time for stopovers

is 80 minutes. The total time assumed for an entire route is approximately 5.7 hours,

below our base value of 21.6 hours. If it is only necessary to visit a single laboratory for

the flight duration, this value can be reduced further. Additionally if more drones are

used the total flight time is divided between them and the method of multiple sub-tours

can be considered.

These results indicate that the method of drone delivery is within the boundaries of

current delivery methods and has the potential to improve on turnaround times. This

model provides a foundation for a drone delivery simulation.

5.3.2 Deliveries Exceeding the System’s Capabilities

The Mpumalanga case study presented flight optimisation routes for clinics and labora-

tories that are within the flight range of the delivery drones. However, three delivery

locations were beyond this range and had to be excluded. This left these locations inac-

cessible to the surrounding areas that they currently service. Therefore, an alternative

for these three locations must be presented.

Motorised delivery presents itself as the fall-back option when drone delivery is unavailable.

However the investigation into POC devices in comparison to laboratory testing in

chapter 3 would lead to the use of POC devices for testing when available. This is due

to the inaccessibility of these locations and the high cost involved in the transportation

of specimens in low volume.

5.4 SUMMARY

The region mapped out in chapter 4 was optimised in a MATLAB simulation using

the travelling salesman algorithm. A path was mapped out for the delivery route of a
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single drone over a time frame of 24 hours with an upper limit set at 21.6 hours. This

simulation allowed for assessing various scenarios with different flight distances. Three of

the 19 points on the map were too far to be accessed by the drone and would require

conventional means of delivery.

The optimisation methods that were used determined that the flight range of the designed

multi-copter was within the boundaries of the routes mapped out in the case study. The

calculated delivery time of 5.7 hours was also below the mean value of current methods.

This model indicates that the autonomous method can be a viable replacement for land

based delivery with probable improvement on laboratory turnaround times; resulting in

enhanced quality of patient care.

From here, a framework can be constructed which will facilitate future analysis of drone

systems; in turn, identifying the problems that will need to be taken into account in

future development of analytical approaches.
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SIMULATION DEVELOPMENT

6.1 INTRODUCTION

In order to facilitate the development and testing of a drone delivery system, a simulation

is constructed that fits within the framework. The aim of the simulation is to find the

global minimum of a systems cost function; this entails using the appropriate algorithm

that satisfies the overall objective. The global objective is defined as the weighted

combination of the overall cost, urgency, minimisation of losses and shortest delivery

time. The algorithm is able to determine the next best move of the drone given the global

considerations and ground conditions. A full consideration of the systems limitations is

required in order to simulate a request process comparable to the real world state space.

In order to maximise the various scenarios, all key factors are established and the

simulation is run over a number of iterations. Each iteration is based on the initial

number of requests generated.

The simulation results provide the necessary information for the planning of real life

implementation. The scenario results quantify the most effective implementation values

such as number of drones per location and maximum distribution potential per region.

6.2 PROBLEM AND PURPOSE OVERVIEW

The Mpumalanga case study highlighted the key values when implementing a system

in an isolated region with a fixed number of request points and drones. The case study

was an ideal situation where all specimens were of equal weighting. In addition, the

delivery times between collections were not of major concern. However, in reality this is

not the case and often clinics will request urgent collections where the delivery time is

44
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Figure 6.1: Left: Map of the region used in the Mpumalanga case study. Right: Map
of the modified region used for the optimisation simulation.

the primary concern. Therefore, the request must take priority even though it may be

further from the destination point. For this reason an optimisation simulation must be

developed based on global minima that include delivery time.

In addition, the Mpumalagna case study is used to get a lay of the land. However,

a notional region containing 20 clinics and one laboratory is better suited in order

to provide a more extensive approach to the problem. A Set of clinics spread more

uniformly throughout the plane will provide a more widespread framework while only a

single laboratory is necessary for a drop off point. The modified region, based off of the

Mpumalanga case study values can be seen in the figure 6.1.

6.3 SIMULATION FRAMEWORK

A software platform is developed in order to simulate a given situation where each clinic or

laboratory can generate requests. Each request has specific properties. These properties

are weighted and a priority is assigned to the request based on these weightings. Each

drone in the scenario is assigned a request based on the drone’s own properties and the

requests are then queued for collection.

The platform used for the simulation is MATLAB and the scenarios are plotted on a

graph for a visual representation of the optimisation process. This ensures that given

any scenario, the outcome can be determined; limited by the simulation variables. The

MATLAB code can be found on the accompanying disk in the folder Inspection Algorithm.
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6.4 SIMULATION ALGORITHM

This dissertation solves a global solution based on maximizing a reward function, in turn

minimising cost. The Inspection based optimisation algorithm uses a number of drones,

each performing their own task in a search space in order to achieve an overall solution.

The drones make use of an exploration factor that enables them to explore distant areas

of the landscape [71]. The units then use exploitation to optimise the already visited

areas by re-sampling the points and improving the solution.

The drone delivery network uses a combination of tasks to perform a structured event.

A drone delivery system is based on multiple units, which are required to collect and

deliver specimens to their destinations in the most efficient manner.

The methods used in this dissertation is a reward based selection and elimination process

used to find the next best move for the drone. The algorithm leans heavily towards the

exploitation factor and less towards the exploration factor as the drones are required

to collect as many samples as possible within the shortest range while taking priority

into account. The velocity and inertia of the drones remain constant throughout the

simulation.

6.4.1 Future Scenario Impact of Optimisation Approach

All the static scenario variables are recorded in a history table containing a corresponding

scenario number. The scenario number is incremented for every simulation that is

completed.

On completion of the simulation, the optimised approach with corresponding scenario

number is saved in a results table. The results table is then used for future simulations.

When a simulation is initiated, the history table is scanned for a matching scenario. If a

scenario with identical static variables is found, the corresponding results table is used

to populate the route of the drone. Hence, the optimisation algorithm is not required.

As the scenario has been calculated previously, there is no need to recalculate as the

simulation is already aware of the optimum route. In both cases, the resulting routes

will be identical. However, if the scenario has previously been explored, the optimisation

algorithm will not be triggered.
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6.5 ASSUMPTIONS AND VARIABLES

The conditions for selecting a request point for delivery are outlined in equations 6.1, 6.2,

6.3 and 6.4. These conditions must be met in order for a route to be considered possible.

Once the route’s possibility is determined, the cost factor must be minimised in order to

select that route as primary. Once the route is selected the drones transition into their

next state. This allows the simulation to act as a state machine.

Ri − di ≥ 0 (6.1)

Si + Ci ≤ 100 (6.2)

Pi ≥ P1, P2, P3...PN (6.3)

Ti = (Tcurrent − Tgenerated).e2 (6.4)

Where:

Ri = Range of drone.

di = Distance between drone and request point.

Si = Number of specimens.

Ci = Current payload capacity of drone (max. 100).

Pi = Priority of specimens.

Ti = Time elapsed.

Tcurrent = Current simulation time.

Tgenerated = Time of specimen generation.

If the above conditions are met, then the cost factor must be minimised. This is in a

case where:

• The drone has enough battery charge to fly the distance between its current position

and a request point.
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• The drone’s payload capacity is not full and is able to collect the specimens at the

request point.

• The priority of the request point is higher than the surrounding requests.

6.5.1 Routing Rewards

Equation 6.5 calculates the reward that a request point is assigned based on the number

of specimens it contains, the specimen priority as well as the delivery distance. The ‘cost’

remains to be the monetary cost of charging and replacing the battery as well as the

flight time which is a parallel factor to the aforementioned. The drone therefore receives

a penalty for longer delivery times and specimens that remain uncollected. The reward

value aims at reducing the penalty value or cost function and is therefore used to guide

the drone to the best possible route. The drone’s decision is now based on the maximum

reward it can achieve in the given scenario.

r = Ti + Pi + Si; (6.5)

r = Reward Value.

6.5.2 Penalty Values

When a drone’s primary concern is the priority of the specimens, it does not weigh up

the consequences of travelling a far distance or of collecting minimal samples. Similarly

when a drone’s objective is to minimise distance or maximise specimen collection, the

priority of the specimens may be neglected.

For this reason, a penalty must be issued on the drone whenever a compromise is made.

The penalty value takes into account the above mentioned as well as the request points

that were not visited as a result of the drone’s decision.

A penalty function is introduced in order to validate the optimisation algorithm. This

will allow the simulation results to be compared with other policies. The total penalty

value is the sum of the penalties accrued by a drone throughout the simulation. This can

be seen in equation 6.9. The penalty equation for priority of request points over distance

and number of specimens can be seen in equation 6.6.
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PP =
T 2∑n
i=1 Pi

(6.6)

PP = Penalty based on priority.

T = Delivery Time.

n = Number of visited delivery points.

The penalty equation for maximum number of specimens over distance and specimen

priority can be seen in equation 6.7.

PS =
T 2∑n
i=1 Si

(6.7)

PS = Penalty based on number of specimens.

The penalty equation for minimising the distance between the drone and request point

over priority of specimens and number of specimens can be seen in equation 6.8.

PD =

∑n
i=1 di
T 2

(6.8)

PD = Penalty based on distance.

PT = PP + PD + PS (6.9)

The penalty values are based heavily on the reward function. A penalty is issued if a

possible reward was not obtained. For example, in response to the drone not selecting

the shorter travel distance, the penalty equation 6.2 would result in a higher value. This

penalty value is then used to gauge the efficiency of the optimisation method.
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A flow diagram illustrating the reward based inspection algorithm for the drone delivery

system can be seen in figure 6.2.

6.6 DATA COLLECTION AND INSTRUMENTATION

A scenario is compiled where an initial ‘N’ number of requests are defined and allocated

a properties matrix. This matrix consists of the coordinates of the location, the number

of specimens per location and a priority of the specimens. The coordinates lie within the

radius defined on start up. The number of specimens and priority of the specimens is

defined between the values of 1 and 10. The priority scale is descending where 10 is high

and 1 is low.

The number of drones, ‘K’, is defined and the drone criteria matrix is generated. Each

drone in the scenario is given an initial position within the defined radius. The drone’s

states are set at zero. The maximum distance the drone can travel is 22.5 km. In order

for the battery to never be fully depleted this value is reduced to 22 km. The generated

drones are given their initial range of 22 km and an initial payload of 0 %. If the drone

is unable to reach the destination based on its range it must locate the nearest charge

point which may be the nearest clinic. If the drone has no clinics or charge points within

the range it is considered to be out of commission.

Once the drone is assigned its respective request, it must make its way to the location

to collect the samples. Upon reaching the location the drones range is considered to be

reduced by the distance between the request point and the drone’s initial position. The

battery is then replenished as a battery change is scheduled and the range of the drone

is now set to its maximum of 22 km or a flight time of just under 30 minutes. However,

upon collection of the specimens, the drone’s payload is increased as it has now collected

a number of specimens. This affects the next possible route as the drone must complete

its delivery before the payload capacity limit is reached.

Once the drone reaches the request point it ‘loads’ up the specimens by adding the

number of specimens at the request point to the drone’s payload capacity value. If the

drone capacity is verging on maximum with no request points within range containing

low numbers of specimens i.e. no possible routes, the drone must travel to its delivery

point and offload. When the drone offloads at the delivery point the payload is reset to

0 % and the range is reset to 22 km.

The initial scenario is plotted on a graph with red stars indicating the initial request

locations and blue X’s defining the drone’s initial position. The properties matrices are

assigned and the requests as well as drones are given a defining value from 1 to N and 1
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Figure 6.2: Flow diagram of Inspection Algorithm for a Drone Delivery Service.
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to K respectively for reference purposes. The drone’s velocities are constant at a rate of

1 km per time period which is defined at start up as 1 minute and 20 seconds equating

to a speed of 45 km/h. All points plotted on the graph are overlaid with text labelling

their properties. The object properties are listed in table 6.1.

Table 6.1: Object properties.

Object Assigned Properties

Requests Location, Number of Specimens, Urgency Rating
Drones Position, Range , Payload Capacity
Region Radius, Specified number of Drones, Specified

number of initial request points



Chapter 7

SIMULATION OPTIMISATION

7.1 SIMULATION

The following scenarios are used to assess the simulation algorithm. The system’s ability

to produce accurate results are evaluated based on the input variables reflecting real life

scenarios.

The variables can be configured according to the criteria of a region under assessment.

The input variables are based on the known values of the region under question. The sim-

ulation automates the properties of the drones and request points while running through

each iteration. Once the simulation is complete, the output variables are presented on a

graph depicting as a map of the region as well as a log file of the output variables. The

simulation variables can be found in table 7.1.

Table 7.1: Key Variables.

Input Variables Automated Values Output Variables

No. of Request Points Initial Payload Capacity No. of Specimens Collected
No. of Drones Initial Flight Range No. of Points Visited
Radius of Search Space Request Rewards Total Distance covered
No. of Iterations Penalty Values Total Flight Time
No. Specimens per location
Specimen Urgency

53
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An example of the log output, found in the accompanying disk, labelled “Log Files.PDF”,

is as follows:

“RequestXY = (23,6) DroneXY = (27,6) Coordinate = 10 Drone = 1 Distance = 4.00

No.Specimens = 2 Req.Priority = 3 Drone Range = 22 Drone Capacity = 85 Route

Possible = 1 Reward = 37.72 ”

“Accumulated Distance Travelled = 103.53 Kilometers , Time Elapsed = 139.21 minutes,

No.Point Visited = 19 No.Specimens Collected = 87”

7.2 OPTIMISATION CONFIGURATION

The simulations below assess the optimisation method devised in this dissertation. Once

the optimisation method is validated based on it’s overall solution, a series of scenarios

can be simulated in order to compare specimen delivery times in various conditions.

7.2.1 Scenario 1: Case Study Comparison

In order to test a sample scenario similar to that of the Mpumalanga case study, the

parameters are configured in scenario 1, according to table 7.2. The initial request-point

value is set to 20. The number of drones is set to 1 for the initial run, however this value

will be varied in order to compare the effects of additional drones on the delivery routes.

The drone’s starting positions as well as the request coordinates remain constant in order

to fix parameters across the various simulations.

The radius is set to 15 km in order to allow for circumstances where the request points

are out of range of the drone’s 22 km flight range.

Table 7.2: Input Variables.

Input Variables Value

No. of Request Points 20
No. of Drones 1
Radius of Search Space 15 km

In scenario 1, the drone was able to collect all the samples in the search space. A full

flight breakdown and collection log can be found on the accompanying disk, labelled

“Log Files.PDF” - log file 1. The output variables can be found in table 7.3 which is

depicted graphically in figure 7.1.
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Table 7.3: Output Variables.

Output Variables Value

No. of Specimens Collected 87
No. of Points Visited 20
Total Distance covered 103.53 km
Total Flight Time 139.21 Minutes
Penalty Value 855.07

Figure 7.1: Plot of request search space with 1 drone and 20 request points within a
radius of 15 km.

7.2.2 Scenario 2: Inclusion of a Second Drone

Scenario 2 simulates two drones in an environment similar to that of the case study. This

allows one to compare the effects of multiple drones on a search space.

The simulation is run for two drones and 20 initial request points as shown in table 7.4.

The radius is also set at 15 km as in scenario 1.

Table 7.4: Input Variables.

Input Variables Value

No. of Request Points 20
No. of Drones 2
Radius of Search Space 15 km
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In this instance all request points were visited as can be seen in figure 7.2. The output

values for drone 1 and 2 can be found in tables 7.5 and 7.6 respectively. The graphical

representation can be seen in figure 7.2.

Table 7.5: Output Variables: Drone 1.

Output Variables Value

No. of Specimens Collected 45
No. of Points Visited 10
Total Distance covered 41.55 km
Total Flight Time 56.38 Minutes

Table 7.6: Output Variables: Drone 2.

Output Variables Value

No. of Specimens Collected 42
No. of Points Visited 10
Total Distance covered 67.19 km
Total Flight Time 94.49 Minutes

Figure 7.2: Plot of request search space with 2 drones and 20 request points within a
radius of 15 km.

This scenario has given a base value for the optimum drone system implementation in

order for all samples to be collected. Scenario 2 has indicated that in order to improve on

collection time, additional drones can be deployed. A full flight breakdown and collection

log can be found on the accompanying disk, labelled “Log Files.PDF” - log file2.
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7.2.3 Scenario 3: Inclusion of a Third Drone

As the previous scenario was successful in terms of all the request points being visited

with multiple drones, the scenario can now test an additional drone to confirm the

findings. The input variables for scenario 3 are tabulated in table 7.7.

Table 7.7: Input Variables.

Input Variables Value

No. of Request Points 20
No. of Drones 3
Radius of Search Space 15 km

A full flight breakdown and collection log can be found on the accompanying disk, labelled

“Log Files.PDF” - log file 3. The output values for drones 1, 2 and 3 can be found in

tables 7.8, 7.9 and 7.10 respectively. The graphical representation can be seen in figure

7.3.

Table 7.8: Output Variables: Drone 1.

Output Variables Value

No. of Specimens Collected 33
No. of Points Visited 7
Total Distance covered 35.75 km
Total Flight Time 51.36 Minutes

Table 7.9: Output Variables: Drone 2.

Output Variables Value

No. of Specimens Collected 25
No. of Points Visited 6
Total Distance covered 36.70 km
Total Flight Time 51.63 Minutes

Table 7.10: Output Variables: Drone 3.

Output Variables Value

No. of Specimens Collected 31
No. of Points Visited 6
Total Distance covered 48.81 km
Total Flight Time 64.65 Minutes
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Figure 7.3: Plot of request search space with 3 drones and 20 request points within a
radius of 15 km.

From what can be observed from the figures above is that when multiple drones are used,

more path options are available and the shorter the total collection time per specimen.

This is as a result of the delivery routes being split between the drones.

The simulation prioritises urgency and does not take into account the possibility of

collecting samples that already lie on the path of collection. For example, if three points

A, B and C existed in a straight line and point C was highest priority, the initial route

suggestion would ignore points A and B and head straight for C.

This solution does give a desired result as the point designated for collection is visited.

However, it is not the most efficient method as the points A and B could have been

visited at minimal cost and the overall solution would be of greater proportion. This can

be altered by increasing the weighting of ‘distance’ in the reward function.

7.3 Manipulating the Reward Function

In order to collect samples along routes which may increase efficiency, the reward function

can be manipulated. As stated in section 6.5.1, the reward function takes into account

distance, priority, and number of specimens. By increasing the weighting of one of these

variables, the drones approach can be altered.
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7.3.1 Scenario 4: Manipulating Reward Function with Distance as

Primary

The primary objective in scenario 4 is to reduce the overall travel distance, in turn

reducing the delivery time. This is done by assigning the distance variable in the reward

function as the primary objective. In order to assess the outcome, the scenario is

configured in the same way as scenario 1, as in table 7.11.

Table 7.11: Input Variables.

Input Variables Value

No. of Request Points 20
No. of Drones 1
Radius of Search Space 15 km
Reward Function Primary Distance

The results are tabulated in table 7.12. The total path distance, compared to the initial

reward function used in scenario 1, was reduced by 16.02 %. The graph can be seen in

figure 7.4.

Figure 7.4: Plot of request search space with 1 drone and 20 request points within a
radius of 15 km and ’distance’ as primary value in reward function.
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Table 7.12: Output Variables: Drone 1.

Output Variables Value

No. of Specimens Collected 87
No. of Points Visited 20
Total Distance covered 86.94 km
Total Flight Time 115.92 Minutes
Penalty Value 281.21

7.3.2 Scenario 5: Manipulating Reward Function with Priority as Pri-

mary

The objective in scenario 5 is to navigate the delivery schedule based on the priority of

the request point. This is done by assigning the priority variable in the reward function

as the primary objective. In order to assess the outcome, the scenario is configured in

the same way as scenario 1, as in table 7.13.

Table 7.13: Input Variables.

Input Variables Value

No. of Request Points 20
No. of Drones 1
Radius of Search Space 15 km
Reward Function Primary Priority

The results are tabulated in table 7.12. The total path distance, compared to the initial

reward function used in scenario 1, increased by 107.06 %. The graph can be seen in

figure 7.5.

Table 7.14: Output Variables: Drone 1.

Output Variables Value

No. of Specimens Collected 87
No. of Points Visited 20
Total Distance covered 214.37 km
Total Flight Time 285.82 Minutes
Penalty Value 2154.71
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Figure 7.5: Plot of request search space with 1 drone and 20 request points within a
radius of 15 km and ’priority’ as primary value in reward function.

7.3.3 Scenario 6: Manipulating Reward Function with Specimens as

Primary

The objective of scenario 6 is to navigate the delivery schedule based in the the number of

specimens located at the request point. This is done by assigning the specimen variable

in the reward function as the primary objective. In order to assess the outcome, the

scenario is configured in the same way as scenario 1, as in table 7.15.

Table 7.15: Input Variables.

Input Variables Value

No. of Request Points 20
No. of Drones 1
Radius of Search Space 15 km
Reward Function Primary Specimens

The results are tabulated in table 7.16. The total path distance, compared to the initial

reward function used in scenario 1, increased by 168.68 %. The graph can be seen in

figure 7.6.

Scenario 4 indicates that in order to decrease the total turnaround time, the distance

variable must have a large weighting in the reward function. In addition, scenario 5 and

6 indicate that using a single variable as primary, such as priority or specimens does
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Table 7.16: Output Variables: Drone 1.

Output Variables Value

No. of Specimens Collected 87
No. of Points Visited 20
Total Distance covered 278.17 km
Total Flight Time 370.89 Minutes
Penalty Value 1946.10

Figure 7.6: Plot of request search space with 1 drones and 20 request points within a
radius of 15 km and ’specimens’ as primary value in reward function.

not result in an optimum solution and therefore a combination of the three will give the

greatest overall solution.

7.3.4 Scenario 7: Random Walk

This scenario tests the reward functions optimisation efficiency by comparing it to a

random selection of request points. This is done by assigning a random reward to each

request point. In order to assess the outcome, the scenario variables are configured as in

scenario 1, table 7.17. The overall travel distance and time can then be assessed.

The results are tabulated in table 7.18. The total path distance, compared to the initial

reward function used in scenario 1, increased by 189.51 %. The graph can be seen in

figure 7.7.
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Table 7.17: Input Variables.

Input Variables Value

No. of Request Points 20
No. of Drones 1
Radius of Search Space 15 km
Reward Function Primary Random

Table 7.18: Output Variables: Drone 1.

Output Variables Value

No. of Specimens Collected 87
No. of Points Visited 20
Total Distance covered 299.74 km
Total Flight Time 399.65 Minutes
Penalty Value 3428.12

Figure 7.7: Random Walk Plot of request search space with 1 drones and 20 request
points within a radius of 15 km.

Scenario 7 illustrates that a random selection of flight paths has the lowest optimisation

value when compared to previous scenarios. This result is expected as the scenario has

no optimisation applied and is therefore assumed to be the least efficient method.
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7.3.5 Inclusion of Wind Effects

For increased simulation accuracy simplified wind effects are taken into account with

the inclusion of a wind speed function, which can be found in MATLAB code on the

accompanying disk in the folder labelled Inspection Algorithm.

The wind speed vector can be altered and its units are in km/h. The heading can

therefore be calculated with equation 7.1. The ground speed can then be calculated using

the equation 7.2 and finally the flight time can be calculated using the equation 7.3.

ΘHeading = ΘTrack + arcsin(
WS.(sin(ΘTrack − ΘWind))

TAS
) (7.1)

GS = TAS.cos(ΘHeading − ΘTrack) + WS.cos(ΘTrack − ΘWind) (7.2)

T =
D

GS
(7.3)

D = Distance between two points.

T = Travel Time.

GS = Ground Speed.

ΘTrack = Bearing of destination from starting point e.g. Bearing of clinic B from A.

TAS = True Air Speed. (45 km/h)

ΘHeading = True Heading Angle.

WS = Wind Speed.

Θwind = Wind Angle.

The flight range is reduced based on the headwind. If a specific headwind value is known,

the simulation can act as a worst case scenario by providing the maximum headwind

effects with that value. The maximum headwind accepted as an input is 45 km/h at a

0◦ relative to the ground in which case the drone remains stationary and does not reach

any collection points. The average windspeed throughout the year in Mpumalanga is

4 km/h with a maximum value ever recorded of 35 km/h [72]. This will be the wind

speed range for the simulation.

Future work could include the use of weather pattern data to guide the flight paths and

minimise potential accidents. Thus pre-empting the need for a backup delivery service in

cases of higher projected wind speed. For the simulation however, live weather pattern

data is not used as the simulation is developed to illustrate the principle of drone delivery.
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7.3.6 Scenario 8: 10 km/h Wind Speed

In order to test the effects of wind on the drones in the simulation, scenario 1 is repeated

as in table 7.19 with an inclusion of a wind speed of 10 km/h at a bearing of 30 degrees.

Table 7.19: Input Variables.

Input Variables Value

No. of Request Points 20
No. of Drones 1
Radius of Search Space 15 km
Wind Speed 10 km/h
Wind Angle 30 degrees

Figure 7.8: Single drone, 20 Request points - 10 km/h wind speed at 30 degree bearing.

The drone manages to complete all 20 collections and all available samples. The entire

route takes 169.71 minutes and covers 120.87 Kilometers. This is a similar time-frame to

scenario one.



Chapter 7. SIMULATION RESULTS 66

7.3.7 Scenario 9: 25 km/h Wind Speed

Increasing the wind speed to 25 km/h at a bearing of 120 degrees as in table 7.20 results

in an extended flight path as the optimum route is no longer available.

Table 7.20: Input Variables.

Input Variables Value

No. of Request Points 20
No. of Drones 1
Radius of Search Space 15 km
Wind Speed 25 km/h
Wind Angle 120 degrees

The drone manages to complete the entire route as in scenario 1. However, a different

approach is taken by the drone as seen in figure 7.9. Some paths are not available as

a result of the headwind. The drone travels 140.51 Kilometers in 296.61 minutes, in

contrast to the 139.21 minutes in ideal conditions.

Figure 7.9: Single drone, 20 Request points - 25 km/h wind speed at 120 degree
bearing.

7.3.8 Scenario 10: 40 km/h Wind Speed

Increasing the wind speed to 40 km/h at a bearing of 90 degrees as in table 7.21 results

in an extended flight path as the optimum route is no longer available.
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Table 7.21: Input Variables.

Input Variables Value

No. of Request Points 20
No. of Drones 1
Radius of Search Space 15 km
Wind Speed 40 km/h
Wind Angle 90 degrees

The drone manages to complete the entire route as in scenario 1. A different approach is

taken by the drone as seen in figure 7.10. Most initial paths are not available as a result

of the headwind. The drone travels 134.45 Kilometers in 598.81 minutes, in contrast to

the 139.21 minutes in ideal conditions.

Figure 7.10: Single drone, 20 Request points - 40 km/h wind speed at 90 degree
bearing.

7.3.9 Scenario Outcome Summary

Table 7.22 summarises simulation scenarios 1 through 10, carried out using the inspection

algorithm developed in this dissertation.
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Table 7.22: Simulation Results.

Scenario No.
of
Drones

Wind
Speed
(km/h)

Total Route
Distance

Route
Time
(min)

Penalty
Value

1: Case Study Comparison 1 0 103.53 km 139.21 855.07
2: Multiple Drones 2 0 108.74 km 150.87 -
3: Multiple Drones 3 0 121.26 km 167.647 -
4: Distance As Primary 1 0 86.94 km 115.92 281.21
5: Piority As Primary 1 0 214.37 km 285.82 2154.71
6: Specimen As Primary 1 0 278.17 km 370.89 1946.10
7: Random Walk 1 0 299.74 km 399.65 3428.12
8: Inclusion of Wind Speed 1 10 ∠ 30◦ 120.87 km 169.71 -
9: Inclusion of Wind Speed 1 25 ∠ 120◦ 140.51 km 296.61 -
10: Inclusion of Wind Speed 1 40 ∠ 90◦ 134.45 km 598.81 -

7.4 CONCLUSION

Scenario 1, 2 and 3 produce optimised routes that can be used for regions similar to that

of the case study. However, when prioritising ‘priority’ or ‘number of specimens’ the

total flight time is considerably greater.

The results of table 7.22 indicate that the optimum algorithm configuration occurs when

the distance of the drone’s route is prioritised, thus leading to a reduced delivery time.

The penalty value of prioritising distance confirms this conclusion.

The algorithm fairs well in various wind conditions and a full turnaround time comparison

using the optimisation algorithm can be developed.
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TURNAROUND TIMES

8.1 INTRODUCTION

Clinicians suggest that turnaround time is one of most important factors to take into

account when considering adequate health care [73]. A rapid and reliable delivery method

can improve the speed and quality of laboratory services.

The quality of the drone delivery system is defined by its ability to service a cluster

of clinics in an acceptable measure of timeliness. The operational cost of the system

is weighed up against its ability to satisfy the needs of the patient and improve on

laboratory turnaround times.

The needs of the patients encompass impact and urgency. The patients are to receive

their results in a timely manner in order to benefit from the outcome. Therefore, the

delivery of the specimens must be within an acceptable time frame. In addition, the

system must provide a service that can manage large volumes of requests in a consistent

manner.

The aim of this chapter is to provide a consolidated source of data in order to benchmark

the system’s delivery times, thereby validating the quality of the delivery system.

8.2 SIMULATION

The effects of wind speed, wind angle and dynamic request point generation can be

compared using a series of histograms formed from the simulation results. The delivery

time or turnaround time is the interval between a request generation and specimen

drop-off.
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The simulation scenarios are run for a period of 12 hours. Each clinic can generate a

request, with a number of samples, based on a Poisson probability distribution. The

Poisson probability distribution occurs during the fixed time period and actions at every

5 minute interval.

The wind speed is increased from 5 - 25 km/h in steps of 5km/h intervals. For each wind

speed scenario, the wind angle increments from 90 - 360◦ in 90◦ intervals.

These simulations are repeated for a request point generation rate of 2 requests per hour,

3 requests per 2 hours, 1 request per hour, 1 request per 2 hours, 1 request per 4 hours

and 1 request per 6 hours. Over a 12 hour time period, these values equate to 2, 1.5, 1,

0.5, 0.25 and 0.166 requests per hour respectively. This combination of wind and average

request rates result in 120 different scenarios. A full delivery time table for all scenarios

can be found on the accompanying disk, labelled “Delivery-times.xlsx”.

As per section 7.3.9, table 7.22, the most effective reward function for this application

prioritises delivery time. The algorithm ensures this by calculating the flight path of

each request point while taking into account distance, drone speed and wind conditions.

8.2.1 Assumptions and Variables

All the clinics in the search space have the same fixed average rate of request generation

during a scenario. However, in reality, the geographical region as well as the facilities,

time of day and seasonal change would often determine this distribution. Future research

could include an in depth study of seasonal request rates and weather patterns that can

be applied to the simulation. In this way, wind speeds and directions could be more

realistic as it would be based on actual weather data for the region rather than a flat

distribution as assumed during the simulations in this study.

The topology of the region in question is assumed to be relatively flat with no steep

projections that may obstruct the drone’s flight path. In future work, a more realistic

simulation would include the topology so that potential collisions could be circumvented.

As turnaround time is the main concern for patient care in rural environments, the

delivery reward value increases exponentially as the time delay of the generated request

increases. A limit of 3 hours is placed on requests that remain uncollected or in transit

in order for the delayed samples to be given priority. This ensures a turnaround time

within an acceptable range should a patient have to remain at a clinic to obtain their

results. An internal 60 minute [73] laboratory turnaround time is assumed, resulting in a

maximum of 4 hours waiting period.
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The loading time as well as the time for the drone to reach it’s designated flying altitude

is incorporated in the handling time of the clinic. The turnaround time to re-launch

the drone after each stop is likely to be relatively short as it simply involves changing

the battery and loading or unloading specimens, To retain simplicity, this has not been

taken into account in this study, however this should be included in future work.

8.3 RESULTS

8.3.1 Delivery Time Distribution

Simulations are run for 12 hours, however only deliveries where the requests were

generated during the first 9 hours are included in the analysis, even though these requests

may still be delivered up to 12 hours. The reason for this is to ensure that requests that

are generated just before the end of the simulation are not erroneously recorded as not

delivered simply because the simulation ended. The following histograms display a clear

comparison between high and low rates of request over the first 9 hours of the 12 hour

period.

Figure 8.1 displays delivery times for 5 km/h wind speeds at wind angles of 90◦ to 360◦

and request generation rate of 2 requests per hour. Figure 8.2 depicts delivery times

for 25 km/h wind speeds at wind angles of 90◦ to 360◦ and request generation rate of 2

requests per hour.

Figure 8.3 represents delivery times for 5 km/h wind speeds at wind angles of 90◦ to 360◦

and request generation rate of 1 request per 6 hours, while figure 8.4 represents delivery

times for 25 km/h wind speeds at wind angles of 90◦ to 360◦ and a request generation

rate of 1 request per 6 hours.

8.3.2 Delivery Times

Table 8.1 indicates that as the wind speed increases and the average request rate decreases,

the number of possible deliveries decrease, resulting in a lower number of samples delivered.

However, the delivery times for these samples are reduced as less points are visited.

It is also evident from table 8.1 that an increase in wind velocity does not have a

proportionate affect on delivery times. This may be in relation to the fact that the wind

direction is randomised and in certain scenarios the tailwind improves on turnaround

time as opposed to the assumption that an increased wind speed would hamper delivery

times.
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Figure 8.1: Histogram of delivery time frequency for 5 km/h wind speeds at wind
angles of 90◦ to 360◦ and a request generation rate of 2 requests per hour.

Figure 8.2: Histogram of delivery time frequency for 25 km/h wind speeds at wind
angles of 90◦ to 360◦ and a request generation rate of 2 requests per hour.
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Figure 8.3: Histogram of delivery time frequency for 5 km/h wind speeds at wind
angles of 90◦ to 360◦ and a request generation rate of 1 request per 6 hours.

In addition, table 8.1 indicates that less than 30 % of the total requests are those that

take longer than 3 hours for delivery. However, the table does present a larger value in a

case with a generation rate of one request per 4 hours. Future work could incorporate

previous scenario data in order to flag irregular values in order to reinstate the scenario.

The average scenario delivery time of 93.94 minutes is well under the 3 hours (180 minutes)

suggested for processing a patient’s results. therefore one can conclude that for a drone

system consisting of a single drone or multiple drones in regular wind conditions, similar

to those observed throughout the year in Mpumamalanga, the system proves feasible

for implementation with regard to turnaround times and resilience to external wind

conditions. However, one must include a minimal handling time in the final estimate.

8.4 DATA ANALYSIS

8.4.1 Limitations and Future Work

In the first implementation of the algorithm, the path searching method re-initiated for

every step that the drone made between its initial position and the request point. Each
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Figure 8.4: Histogram of delivery time frequency for 25 km/h wind speeds at wind
angles of 90◦ to 360◦ and a request generation rate of 1 request per 6 hours.

step was considered to be a 1 km interval, but after much consideration, the algorithm

initiates after the drone has moved to its desired position. The reason behind this is that

the drone’s path changes too often resulting in a ‘zig-zag’ configuration. This proves very

inefficient. The system is also required to simulate real world conditions and if a request

is sent for collection and a response is made then it is expected that the delivery will take

place within the allocated time period. However, if the drone were to re-evaluate the

next best move and land up selecting a new destination then the previous stakeholder

who initiated the request would be dissatisfied with the service. Therefore if the request

is accepted it must follow through with the service.

Collisions and target misses, such as a drone blown off course, are not taken into account

as a collision would simply constitute as a drone out of commission and a target miss is

assumed to be unlikely when simulating in ideal conditions.

The simulation does not allow for backtracking and if a drone wandered too far from its

drop off point it could cause the simulation to fail. This can be overcome by reducing

the search space radius or adding additional drop off points. Future work can include

backtracking but this would reduce efficiency as the drone could cover the same route

multiple times without making a collection.
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Table 8.1: Delivery times for a single drone at varying wind speeds and average request
generation rates. Wind Angle range: 90◦ - 360◦.

Average Wind Average Number of Percentage of Percentage of
Request Speed Request Requests Requests Requests with
Generation (km/h) Delivery Time Generated Delivered delivery
Rate (min) (First 9 Hours) within 1, 2 and longer than

3 hours (%) 3 hours (%)

5 113,50 210 28, 60, 83 17
10 104,34 198 30, 68, 87 13

2 Requests 15 122,53 194 17, 60, 79 21
per hour 20 113,25 190 27, 62, 81 19

25 119,87 175 24, 58, 81 19

5 97,70 200 32, 74, 91 11
10 103,26 189 36, 68, 91 9

3 Requests 15 93,94 175 35, 73, 92 8
per 2 hours 20 105,80 151 35, 67, 85 15

25 129,85 137 24, 60, 75 25

5 81,74 192 47, 80, 93 7
10 86,72 168 44, 76, 90 10

1 Request 15 83,19 172 42, 80, 95 5
per hour 20 102,09 169 31, 73, 86 14

25 90,80 125 39, 74, 90 10

5 77,13 75 53, 78, 90 10
10 70,45 106 51, 90, 97 3

1 Request 15 81,44 118 53, 80, 91 9
per 2 hours 20 85,27 68 47, 73, 92 8

25 99,08 77 46, 70, 79 21

5 73,18 36 56, 76, 87 13
10 74,73 62 56, 77, 86 14

1 Request 15 76,29 44 57, 78, 93 7
per 4 hours 20 89,51 47 35, 68, 85 15

25 117,04 39 31, 46, 57 43

5 72,50 33 62, 74, 86 14
10 82,28 37 52, 71, 88 12

1 Request 15 81,24 25 46, 66, 89 11
per 6 hours 20 86,35 24 58, 66, 82 18

25 103,15 27 39, 59, 78 22

The simulation also falls short in cases where the request point’s specimen quantity is too

high and the drone does not have the available payload capacity. On occasion requests

are not visited at all in high request volume scenarios. In these circumstances the solution

to the delivery system would be additional drones or a combination of drone delivery and

on the road vehicle delivery. Future research into the algorithm could include scenarios

of system breakdown where the limits of the drones and clinics are reached and further

assessed.
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Future work could also include an investigation into the handling and loading times

of the specimens in question, which would allow for a more accurate representation of

turnaround times.

8.5 SUMMARY

The resulting case study values were used for the input of a dynamic simulation based on

a reward system. Request points were generated in MATLAB and a number of drones

were given a location and flight properties. The drone’s delivery routes were optimised to

minimise a cost function in order to find a global objective. This was done by prioritising

routes based on factors such as time, cost, number of specimens and urgency.

The simulation was able to quantify a search space area for different numbers of drones

as well as determine their most efficient routes, which can be used to coordinate a swarm

of drones that communicate with one another in a real life scenario.

This simulations concluded that a small drone system is feasible as long as wind conditions

are within the normal range of between 0 km/h to 25 km/h, however this does decrease

the number of specimens that can be delivered in a given time period. The simulation can

be used in various optimisation scenarios for future development and can be expanded to

larger regions and increased number of drones.



Chapter 9

CONCLUSION

9.1 INTRODUCTION

The concept of drone-based specimen and urgent medication transport was introduced

as a result of the need for increased laboratory access in underdeveloped regions. New

prospects and alternate forms of deliveries were investigated in order to build a framework

which will aid in the assessment of future implementations of similar solutions. The

proposed concept of using drones to transport specimens, ARV’s and POC devices has

the potential to increase the service range of laboratories and clinics and has a major

impact on laboratory turnaround times.

9.2 FINDINGS

The investigation into current laboratory delivery procedures uncovered the need for

alternate methods of transport for urgent medication such as ARV’s and POC devices in

developing regions. The proposed delivery method proved more effective with regard to

efficiency and cost as a drone system is not limited by geographical routes and roadway

congestion.

The consideration that POC devices may be a viable alternative to laboratory testing,

on the assumption that POC may mitigate the need for drone delivery, proved otherwise

as the results achieved through laboratory testing is more accurate. With the new

found information on POC testing, the inclusion of these devices in the drone delivery

system further improves on turnaround times but runs the risk of reduced accuracy when

compared to specimen-to-laboratory transport.
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The focus on developing areas led to a case study analysis that was conducted over

a relatively isolated region in Mpumalanga. Clinics and laboratories in the area were

selected and a theoretical flight route was optimised between them using a the Travelling

Salesman Algorithm. It was determined that drone delivery can be more cost effective

when servicing up to 14 laboratory locations per region for a single drone. However, the

system is limited by the travel distance of the drone (22.5 km) as well as the maximum

load capacity (2-4 kg).

A limited number of laboratories or clinics can be serviced per day by a single drone in a

single region. The case study quantified this number and the results can be expanded to

regions of similar topography and laboratory density. Larger regions can be serviced by

increasing the number of drones used in the delivery system, but as the TSP algorithm

used in the case study was developed for a single drone, the analysis lacked this capability

and required the reward based inspection algorithm that followed. Other regions to

consider for implementation are the Eastern Cape and the Limpopo Province as they are

similar in nature with regard to population density, infrastructure and vehicle accessibility.

As the case study was limited with regard to the number of laboratories on the map as

well as their predetermined locations, the need for dynamic route optimisation methods

was presented. A simulation was developed to find the global minimum of the system’s

cost function by maximising the reward of the given scenarios. This entailed using an

inspection algorithm to perform an overall objective. The global minimum was defined as

the weighted combination of the overall cost, urgency, minimisation of losses and shortest

delivery time.

The simulation was able to determine the next best move of the drone given the search

space conditions. The drone managed to visit all 20 request points in the scenario and

reduced the travel distance to 103.53 km.

Further scenarios were presented whereby the number of drones were increased. The

algorithm handled the increased number of variables with ease and the delivery time

improved in proportion to the number of drones that were added. This was the expected

result.

The reward function was assessed by manipulating the terms such as distance, priority

and number of specimens. In each scenario, a single term was prioritised and the resulting

delivery route was sub optimal. A random walk scenario was introduced as a baseline

comparison which proved inefficient based on the large penalty value of 3428.12, in

contrast, prioritising distance resulted in the relatively low penalty value of 281.21.

Prioritising distance is a viable substitute for situations where the shortest delivery route

is required.
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Wind speed variables were included in the simulation and it was observed that the

delivery time of the drone increased from 139.21 minutes to 296.61 minutes with a wind

speed of 25 km/h at a 120◦ angle to the drone’s heading.

For the algorithm validation, the random walk scenario route of 299.74 km was compared

to the optimised route of 103.53 km. The results confirmed the findings of the case study

and a framework was thus established for any given drone delivery scenario.

The penalty values achieved by the inspection algorithm was 855.07 for the final solution,

1946.10 when prioritising number-of-specimens, 2154.71 when prioritising specimen-

priority and 281.21 when distance was the primary concern. This policy comparison

validated the modified inspection algorithm but showed that prioritising distance, when

travelling along one long route with no stop overs, is a viable alternative.

The specimen turnaround times were then assessed using 120 scenarios of varying wind

speed and rate of request generation. The delivery times were then plotted on histograms

for wind speeds of 5 km/h and 25 km/h and rate of requests of 2 requests per hour and 1

request per 6 hours. In conditions similar to those observed in Mpumalanga, the average

delivery time was 93.94 minutes which is well below the 3 hour limit previously discussed.

The results indicate that as less requests are generated or become available due to high

wind conditions, less clinics are visited resulting in reduced turnaround times.

9.3 IMPLICATIONS AND FUTURE RESEARCH

The inspection algorithm simulation can be scaled up to any number of drones or request

points which allow for the testing of various landscapes. The simulations are used to

determine the most efficient drone-to-request ratio in order to minimise the cost of

implementation of a system. Limited scenarios were simulated in this dissertation and

future work includes increasing the number of iterations in order to determine the average

point of failure over a set time period. The maximum size limit of the service area can

also be determined by increasing the number of request points until system breakdown.

Live weather pattern data can be be use to determine the safest route for delivery. This

will further prevent specimens from not reaching their destination.

The reward based inspection algorithm fairs well for the current task at hand but

improvements to the algorithm could include the use of particle swarm optimisation

(PSO) or reinforcement learning (RL).

Particle Swarm Optimisation (PSO) [74] is an optimisation method used to solve a global

solution based on minimising a cost function. The PSO algorithm uses a swarm of
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‘particles’ each performing their own task in a search space in order to achieve an overall

solution.

Much like a drone delivery network, PSO uses a combination of tasks to perform a

structured event. A drone delivery system could include multiple units, comparable to

particles, which are required to collect and deliver specimens to their destinations. This

dynamic solution could be a viable alternative to the inspection algorithm.

The research paper by Janusz A. Starzyk et al. discusses optimising a particle’s route

using a reinforcement learning (RL) approach [75]. The principles of reinforcement

learning are used to control the particle’s steps in order to explore the search space. The

algorithm does not require prior knowledge of the optimum solution and may potentially

improve on delivery routes when run over multiple iterations.

9.3.1 Summary

Through case study analysis and optimization algorithms a proportional approach to

patient care was determined whereby POC and clinical specimens can be transported

via drones and conventional methods remain as a fall-back in cases where larger delivery

distances are required. A feasibility study aided by a system implementation model

highlighted the most cost effective and safest method of specimen delivery and patient

care in the most efficient manner. The problem presented in this paper is not solved,

but rather a way forward is presented whereby realistic scenarios can be simulated. The

system outlined in this paper can thus be used to implement a real-world prototype of a

drone delivery system.
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