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Abstract: In this paper we model competing risks, default and early settlement events, in the pres-
ence of long term survivors and compare survival and logistic methodologies. Cause specific Cox
regression models were fitted and adjustments were made to accommodate a proportion of long term
survivors. Methodologies were compared using ROC curves and area under the curves. The results
show that survival methods perform better than logistic regression methods when modelling lifetime
data in the presence of competing risks and in the presence of long term survivors.

1. Introduction

Conventional models of credit are often built on static variables obtained from application data. Lo-
gistic regression (LR) has been the cornerstone of credit models. It plays a very important role in
building scorecards, which determine whether an applicant should be granted a loan or not. Even
though LR methods have been in use for model building, Bellotti and Crook (2007) showed that
survival analysis methods are more competitive and often superior to the LR approach as they use
more information, including details of censoring as well as survival time. Consumer credit data is
analogous to lifetime data as it concerns the credit status of a cohort of customers with different loan
repayment behaviours over a given observation period. A single money lending product offering
instalment loans is considered in this case, whereby a customer repays vehicle finance loan in instal-
ments, over a predetermined repayment period. Survival methodology is applied to the prediction of
two mutually exclusive events, default and Early Settlement (ES). The occurrence of these two events
over the observation period impacts negatively on profitability (Stepanova and Thomas, 2002).
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2. Methods

In this paper survival analysis is used to model loan survival in the presence of competing risks. The
performance of the survival model is then compared to the more commonly used logistic regression.

The multinomial approach in the context of competing risks can be applied if the time points are
continuous (Jenkins, 2005). In this case (bank loan data), the time points are discrete. Thus, apply-
ing multinomial logistic regression requires making assumptions about the discrete time (interval)
hazard to relate the process to continuous time.

It was proven in Xue et al. (2013) that the proportional hazards model outperforms polytomous
logistic regression. This study also suggests that binary logistic regression too is weaker than the
proportional hazards model.

There is also one equation for predicting each outcome in multinomial regression. When consid-
ering competing risks, there is a different equation for each outcome in each time point, this means
the multinomial probabilities are the time-specific hazards of each outcome. Therefore, none of the
time point specific equations will provide a single predictive summary.

Treatment of long term survivors in the context of competing risks may also need a separate
study to establish an appropriate link function. Because of the issues raised above the multinomial
approach will not be considered at this stage.

2.1. Logistic Regression

Logistic regression is a type of generalised linear model used to predict an event based on a set of
predictors. It uses a logit transformation on the dependent variable expressed as follows (for a simple
logistic model):

logit(Y ) = loge(odds) = loge

(
p

1− p

)
= α +βX , (1)

where the response variable Y is coded 1 for event and 0 for non-event, and X is the indepen-
dent variable. The odds of an event is defined as p(events)

p(non-events) , p represents the probability of event

and is defined as number of events
total(events,non-events) , α is the intercept, β is the regression coefficient of X , and

e = 2.71828 is the base of the system of natural logarithms. The odds of a non-event is then
p(non-events)

p(events) . The probability of a non-event, p(non-event), is 1− p = number of non-events
total(events,non-events) , hence

p(event)+ p(non-event) = 1. The odds of an event, odds(event), is the reciprocal of the odds of a
non-event, and thus odds(event) multiplied by odds(non-event) is equal to 1. An odds ratio, which
is a measure of effect in LR, is a quotient of two odds and is used to compare the two odds. An
odds ratio greater than 1 indicates an increased likelihood of an event, while an odds ratio of less
than 1 indicates a decreased likelihood of an event (Lottes, DeMaris and Adler, 1996). Taking the
antilog on both sides of (1), the logistic regression equation to predict the probability of the outcome
of interest given x, a specific value of X , becomes a nonlinear relationship between the probability
of Y and X , i.e.,

p = P(Y = event of interest|X = x) =
eα+βx

1+ eα+βx .

Extending the above logic to multiple predictors, the expression for logistic regression given a
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vector of predictors X1 to Xk is thus,

p = P(Y = event of interest|X) =
eα+β1x1+β2x2+β3x3+···+βkxk

1+ eα+β1x1+β2x2+β3x3+···+βkxk
. (2)

The LR model (2) constrains the predicted probabilities to lie within the range [0,1] and it allows
the predictors to have a diminishing effect at extreme values of the dependent variable (Lottes et al.,
1996). Considering the right side of model (2), the exponential function is always non-negative and
always falls between 0 and 1. However, while LR tells us if the customer will default or settle early,
survival methods suggest not only if, but when customers will experience an event (Stepanova and
Thomas, 2002).

2.2. Survival Analysis

Survival analysis comprise a pool of specialised methods used to analyse lifetime data. The response
variable is time until an event occurs and/or time to censorship. Censorship is the unique feature of
survival analysis where survival experience is partly known. Survival analysis dates back to life and
mortality tables mainly used in actuarial science and demography from around the 17th century. It
led to the true meaning of “survival” through mortality rates. According to Odd et al. (2009), the
original life tables method was based on wide time intervals and large data sets. Around the 1950s
Kaplan and Meier proposed an estimator of survival curves (Odd et al., 2009). They developed a
method for short time intervals and smaller sample sizes as opposed to those used in the actuarial
and demographic studies. The 20th century saw further developments in handling survival data. The
survivor function, also referred to as the reliability function, denoted by S(t), is the probability that
a respondent survives beyond a specified time t. Survival probabilities at different time lags help in
summarizing survival data (Kleinbaum and Klein, 2005). The expression for the survivor function
is given by:

S(t) = P(T > t) = 1−F(t) =
∫

∞

t
f (x)dx.

Theoretically, S(t) is a monotone decreasing probability function, that is: at t = 0, S(t) = S(0) =
1 and at t = ∞, S(t) = S(∞) = 0. Thus, S(t) ∈ [0,1]. Therefore S(t) is essentially a probability of
surviving beyond time t. The hazard function, also called the mortality rate or conditional failure
rate, is the measure of potential failure at time t given that the respondent has survived up to some
time t. The hazard function h(t) is a rate expressed as the ratio of f (t) to S(t) and it is not a prob-
ability. Hence h(t) takes non-negative infinite values [0,∞). The hazard function is mathematically
expressed as follows:

h(t) = lim∆t→0+
P(t ≤ T < t +∆t | T ≥ t)

∆t
=

f (t)
S(t)

,

where ∆t represents a small time interval. The hazard rate gives the key/primary information in
survival analysis as it determines the occurrence and timing of events. The empirical Kaplan Meier
(KM) survival estimator considers ni, the number of observations in the risk set, and di, the number
of subjects failing at failure time t j. The KM survival estimator is expressed as follows:

Ŝ(t j) =
j

∏
i=1

(
ni − di

ni

)
.
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2.2.1. The Cox Proportional Hazards Regression Model

Cox (1972) developed a regression model which produces adjusted survival curves by including
covariates in the computation of survival estimates. The Cox proportional hazards (PH) regression
methodology has gained popularity because of its flexibility and use of a small number of assump-
tions to obtain the basic information required from survival analysis. The Cox model hazard function
calculates the hazard at time t of a subject, adjusted for possible explanatory variables. The formula
is expressed as the product of the baseline hazard function of time and an exponential function of
covariates. The baseline hazard is an unspecified form of the Cox model and the distribution of the
outcome (survival time) is unknown. This makes the Cox PH regression a semiparametric model.
The semiparametric property of the Cox PH model makes it a robust model which can closely ap-
proximate parametric models (Devarajan and Ebrahimi, 2011). The Cox PH model hazard function
is:

h(t,X) = h0(t)× exp

[
p

∑
i=1

βiXi

]
,

where X is a vector of predictor variables X1,X2, . . . ,Xp, h0(t) is the baseline hazard which involves
t only and no covariates, and exp

[
∑

p
i=1 βiXi

]
is an exponential component of the model that involves

time independent covariates X. Time independent variables do not change over time, for example
population group and nationality. In the absence of explanatory variables, the Cox PH model re-
duces to the baseline hazard h0(t). The Cox PH assumption states that the hazard for a subject is
proportional to the hazard for another subject in the same study where the proportionality constant,
say θ , is independent of time (Kleinbaum and Klein, 2005), i.e.,

θ = exp

[
p

∑
i=1

βi(X
′
i − Xi)

]
.

The Cox PH model is appropriate for use when the PH assumption is met. When the hazard
ratios vary with time, for example where hazards cross or when time varying confounding variables
are present, the PH assumption may be violated, making it inappropriate to use the Cox PH model.
If the Cox PH assumption is not met, variations of the Cox model can be used, for example the
extended Cox regression or the stratified Cox regression depending on the context.

There are various approaches used to evaluate the reasonableness of Cox PH assumption. These
include, inter alia, the graphical approach, goodness of fit tests as well as the time dependant vari-
ables assessment. The graphical approach is the most widely used technique to evaluate the Cox
PH assumption. Given a set of categorised or coarse classified covariates as the predictors in a
Cox PH model, the estimated − loge(− loge(S(t))) survivor curves over different categories of co-
variates are compared over time t. The PH assumption is satisfied when parallel curves are ob-
tained for − loge(− loge(S(t))) survivor curves of different categories of the same covariate. The
− loge(− loge) survivor curves are popularly known as the log-log plots. A log-log survival curve
is a transformation that results from taking the natural logarithm of an estimated probability curve
twice. That is,

− loge(− loge(S)) =− loge

(
− loge

(
exp
[
−
∫ t

0
h(u)du

]))
,
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where
∫ t

0 h(u)du is the cumulative hazard function resulting from the formula for the relationship
between survival curves and hazard function, that is, S(t) = exp

[
−
∫ t

0 h(u)du
]
.

2.2.2. Competing Risks Analysis

Analysis of more than one event in the same study is a variation of survival analysis known as
competing risks analysis. A single customer can only experience one of the events and not both or
gets censored. In this case, censorship occurs when a customer neither defaults nor pays off early
such that the event of interest is never observed (Stepanova and Thomas, 2002). Censored subjects
in this case are “good” customers. The KM approach may not be used in the presence of competing
risks as it becomes very sensitive and may produce biased results. The modelling methodologies
ideal for competing risks include the Cox PH model, parametric survival models and the Cumulative
Incidence Curve (CIC). The Cox PH regression is widely used to model competing risks. Where
each event type is modelled separately and other event types are treated as censored categories, the
approach is called the “cause specific” method, this can be seen in Stepanova and Thomas (2002).
Consider default as event type 1 and ES as event type 2. The cause specific approach fits 2 separate
Cox regression models, one for each failure type. Time until default T1 is determined, and the rest
of the observed lifetimes are assumed to be censored, including the subjects who entered into the ES
group. An ES model, analogous to the default model, is based on the estimated time until ES, T2.
A Cox PH model is fit in each case on T1 and T2. From literature, the predicted lifetime of a loan
is thus T = min(T1,T2, term of the loan). In this analysis the cause specific hazard functions of the
two events are

h1(t) = lim
∆t→0

P(t ≤ T1 < t +∆t|T1 ≥ t)/∆t,

and
h2(t) = lim

∆t→0
P(t ≤ T2 < t +∆t|T2 ≥ t)/∆t,

where the random variable T1 denotes time to failure from default, T2 denotes time to failure due
to early repayment. h1(t) and h2(t) give the instantaneous failure rates at t for default and early
repayment respectively. In general, given c events in an analysis, the Cox PH cause specific model
is given by:

hc(t,X) = h0c(t)exp

[
p

∑
i=1

βicXi

]
.

In this analysis when c = 1 a default event is modelled, and c = 2, a model for early repayment is
obtained. X = (X1,X2, ...,Xp) is a vector of explanatory variables included in the study. The βic’s
are event specific regressions parameters. Furthermore, in cause specific models, the probabilities
are calculated using the CIC. It estimates the “marginal probability” of each event where competing
risks operate together in the same study. The marginal probability for each event type c at failure
time ti is computed as follows:

CICc(ti) =
i

∑
i=1

Ŝ(ti−1)ĥc(ti),

where Ŝ(ti−1) is the overall survival probability estimate of surviving previous time ti−1. This com-
putes subjects surviving all competing risks. The hazard estimate ĥc(ti) for event type c is the
proportion of subjects failing from event c at time ti.
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2.2.3. Mixture Models of Survival

Standard survival methods assume the empirical survival curve levels off at zero as time goes to
+∞. If the survival curve levels off to non-zero proportions, then the standard methodologies may
be inappropriate. Empirical survival curves may level off to non-zero proportions in cases where
some subjects in a study are not susceptible to the event(s) of interest. That is, given an extended
observation period, the bulk of accounts may never default nor settle early. These are called long
term survivors. Approaches to modelling lifetime data in the presence of long-term survivors are
called cure models or mixture models.

Literature on mixture models is found in the works of Farewell (1982) as well as Sy and Taylor
(2000). Mixture or cure models are designed to cater for a sizeable proportion of subjects who do
not experience the event of interest at the end of the observation period. “A KM survival curve that
shows a long and stable plateau with heavy censoring at the tail maybe taken as empirical evidence
of a cured fraction” (Sy and Taylor, 2000, p. 228). A mixture of two populations is considered,
the susceptible, denoted population A and the non-susceptible (long-term survivors) population B.
A binary indicator is added to distinguish between subjects falling in the two populations. Let Y = 1
if the account defaults/pay-off early eventually and Y = 0 otherwise. Define p = Pr(Y = 1), t = time
to an event of subjects only in population A. The proportion of B = 1− p. The survivor function of
the entire population (A + B) is given by:

S(t) = (1− p)+ pSA(t),

where SA(t) is the survivor function of population A. As evidenced by the empirical KM curve
in Figure 1, the overall survival plot levels off at non-zero values. This indicates that the bulk
of accounts are not susceptible to the events of interest. It makes business sense as most of the
customers on the vehicle finance book are good customers and statistically, that prompts heavy
censoring at the end of the study. A proportion (p) of good customers is chosen such that the overall
survival curve levels of to p. In this case the minimum value of the survival curve was selected
as p = 0.49179045. For each model, the hazard function was derived from the survivor function,
adjusted for p and the corresponding CICs were calculated.

3. Data Structure

The aim of this paper is to analyse competing risks and long-term survivors in a consumer credit con-
text. Loan data were obtained from a leading South African financial institution. All the information
required was extracted for the period 01 April 2009 to 31 March 2014. The information includes
details from the applicants and vehicle manufacturers. A total of 293 807 accounts were considered,
with repayment terms ranging from 48 to 72 months. The available data set was randomly split using
simple random sampling into a development and a validation data set in the ratio 80:20 respectively
(Migut, Jakubowski and Stout, 2013).
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Figure 1: Kaplan Meier survival curve.

3.1. Univariate Analysis

Candidate covariates were selected and binned to ensure robustness of the models. The Weight of
Evidence (WoE) transformation converts any variable into a numeric interval variable. Groups were
assigned according to the risk of the group expressed by the logarithm of likelihood ratios, that is, a
logarithm of a portion of, say, defaulted versus non-defaulted subjects (Jilek, 2008). WoE refers to
the set of “goods” (customers who do not default), and the “bads” (customers who default or settle
accounts early). The WoE (wi j) is calculated as follows:

wi j = loge

(
pi j

qi j

)
,

where pi j is the number of good risks in level/attribute j of variable/characteristic i divided by the
total number of good risks who responded to i and qi j is the number of bad risks in attribute j of
characteristic i divided by the number of bad risks in attribute j who responded to characteristic i.
The WoE curve should be a monotonic function across the categories of a covariate.

Gini Statistic (GS), also known as the Somer’s D, measures a variable’s ability to differentiate
risk when fitting a univariate (single input variable) logistic model. It measures uniformity of a
distribution. The lower the GS, the more uniformly distributed the variable (Jilek, 2008). In the
consumer credit context the GS statistic is used to measure how equal the event rates are across the
attributes of a variable. The higher the GS, the higher the ability of the characteristic to differentiate
risk. To be consistent with the bank model building standards, all variables with a GS of less than
4 percent were excluded in the model development. In the calculation of the GS, the attributes
i = 1,2, . . . ,m are sorted in ascending order of their event rates. For each of the attributes the number
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of events is given by nevent
i , and the number of non-event by nnon-event

i . The total number of events is
denoted Nevent and the total number of non-events is given by Nnon-event. Then the GS is calculated
as follows:

GS =

1−
2×∑

m
i=2

(
nevent

i ×∑
i−1
j=1 nnon-event

j

)
+∑

m
k=1
(
nevent

k ×nnon-event
k

)
Nevent×Nnon-event

×100.

Individual covariates were then assessed for PH assumption for each event type. All covariates
satisfying the univariate conditions outlined above were considered for further analysis. An example
is given in Figure 2.

Figure 2: Univariate assessment plots – Default model.

The covariate Debit Interest Rate was assessed for all the univariate requirements discussed
above. There is no evidence of crossing or overlapping hazards in the PH assumption plot. The lines
are almost parallel, indicating that Debit Interest Rate satisfies the PH assumption. The population
and event rate plot is satisfactory as each category has a population greater than 5 percent. The
monotonic event rate and the WoE curves show that the variable has the ability to rank order. The
population stability plot gives an intuitive assessment to show that there are no unreasonable trends
in categories across the observation period. With all the conditions satisfied, Debit Interest Rate
qualifies in the multivariate analysis stage for the default model.
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3.2. Multivariate Data Analysis

This study uses stepwise regression to identify subsets of covariates befitting plausible models. Co-
variates are assessed in order to detect any multicollinearity that might be present using the Variance
Inflation Factor (VIF) (Belsley, Kuh and Welsch, 2005), as well as correlation analysis to identify
variables exhibiting pairwise correlation. It is imperative to assess multicollinearity among covari-
ates before analysts conduct a multiple regression analysis (Mansfield and Helms, 1982). Highly
correlated variables manifest in high VIF values. It is recommended that VIF values should lie be-
low 3, if covariates are to be considered for model development. Any candidate covariates with a
VIF greater than 3 were excluded from further analysis.

The final covariates selected for the default and ES models are detailed in Table 1 and Table 2
respectively.

Table 1: Final covariates – Default model.

Variable Category Description

Debit Interest Rate
1 Less than 11
2 [11,14.2)
3 ≥ 14.2

Deposit to Loan
1 No deposit paid
2 Deposit paid

Dwelling Type Code
1 Customer is a tenant
2 Customer living with parents
3 Customer owns a residential property

Equipment Category Code
1 Demo and Pre-owned vehicles
2 Brand new Vehicles

Marital Status Code
1 The customer is married
2 Single, Divorced, Widowed, Other

3.3. Empirical Hazard Functions

Survival analysis assumes that neither of the events can happen at the point of entry. Thus, the
survival probability at time 0 is equal to 1 and conversely, the hazard function at time 0 is equal to
0. As the survival time in this study is discrete, we expect the events to start occurring at month 1
onwards. Figures 3 and 4 show the empirical probability mass (a) and hazard (b) functions for ES
and default events respectively. For both events, the functions start at zero as there are no events
recorded at the entry points. The probability mass function of ES is the number of accounts settling
early at any t, from 0 to 48, relative to the total number of early settlements in the book. It is
a function of the total number of ES events which shows the probability distribution of the early
settlement event over time. The probability distribution functions were determined for both events.
The hazard function is the instantaneous rate of occurrence of an event. This is a function of the
accounts at risk at any t. The hazard functions were calculated and plotted for each event as well.
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Table 2: Final covariates – Early settlement model.

Variable Category Description

Debit Interest Rate
1 Less than 12.55
2 ≥ 12.55

Deposit to Loan Ratio
1 Less than 0.45
2 ≥ 45

Dwelling Type Code
1 Customer is a tenant
2 Owner or lives with parents

Equipment Category Code
1 Vehicle older than 5 years
2 Demo vehicles or less than 5 years
3 New and Light Utility Vehicles

Original Term
1 Tenure less than 60 months
2 Tenure ≥ 60 months

The probability mass function in Figure 3 (a) increases steadily in the first 18 months, decreases
at a steady rate beyond 18 months and diminishes towards 48 months.

Figure 3: Early settlement event – Hazard function.

This is also reflected in the hazard function in Figure 3 (b) that is on an increasing trend for the
first 24 months and stabilizes thereafter, at around 0.07. For the first year from the entry point, the
risk of early settlement increases with increasing time then more or less stabilises for the next year,
then starts decreasing thereafter. As the vehicle ages, the chances of early settlement increases as
customers upgrade to new vehicle models. However, as the accounts approach maturity, the risk of
early settlement lessens as it becomes easier to complete the originally agreed term of repayment
and customers opt to complete the repayment normally instead of settling early, to avoid penalty
charges associated with the event.

With reference to Figure 4 (a), the probability mass function of the default event increases sharply
in the first 18 months of the loans.
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Figure 4: Default event – Hazard function.

The same trend is reflected in the corresponding hazard function in Figure 4 (b) which increases
sharply up to 18 months and generally stabilises beyond the 18-month point of 0.004. This is due to
the fact that at the point of application, the selected customers have low risk of default but, as time
goes on, customers experience various social and economic events leading to default and the risk of
default increases. This trend is experienced in the first one and half years of loans for the vehicle
finance product. As the accounts grow older than 18 months, the rate of default decreases, accounts
passing this point have a lower chance of default. This is attributable to the fact that most customers
improve their financial status with time and the original repayment amount becomes insignificant
with time and hence the chance of default diminishes as time approaches 48 months. Also note
that the trajectory is different between ES and default. For ES, the probability of early settlement
starts high at 0.023 in month 2 while for default it gradually increasing starting from around 0.003
in month 2.

4. Model Fitting

The baseline categories were manually selected as opposed to automatic selection. This was done
to optimise the volumes in the baseline to ensure maximum statistical significance for as many
variables as possible. For LR, in each case, accounts used for model development were allowed at
least 48 months to perform. This is the “waiting” performance period to maturity. The account-level
probabilities were calculated based on the event observed at month 48. Both LR models were fitted
satisfactorily.

Unlike the LR development data selection process, the Cox regression model does not consider
a “waiting” period. All accounts are eligible for inclusion in the development. Accounts recently
entered into the study also play a very important role. If not absorbed into any of the events then
they can be classified as censored and form part of the risk set according to time spent in study.
Two cause specific PH models were fitted separately for each event (ES and default). A CIC was
calculated in each case to determine the marginal probabilities of an event at a fixed workout period
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of 48 months in the presence of competing risks and long term survivors.

4.1. Goodness of Fit Measures

Following the model fitting process, the LR models were tested for goodness of fit using the Hosmer
and Lemeshow test. It measures how well predicted events align with the observed events. The
population is subdivided into decile groups according to the probabilities. Each decile group is
compared on the expected versus observed events. Low values of the Hosmer and Lemeshow statistic
and high p-values (greater than 0.05) indicate a good fit of the observed versus predicted event rates.
For the default model, the Chi-square statistic of 15.2447 was obtained, with a corresponding p-
value of 0.0546 see Table 3. This indicates that this model does fit the data.

Table 3: Default model: Hosmer and Lemeshow Goodness-of-Fit test.

Chi-Square DF Pr > ChiSq
15.2447 8 0.0546

For the ES Logistic regression model, a Chi-square statistic of 3.0120 was obtained, associated
with a high p-value of 0.9336, see Table 4.

Table 4: ES model: Hosmer and Lemeshow Goodness-of-Fit test.

Chi-Square DF Pr > ChiSq
3.0120 7 0.9336

This indicates that the observed and expected ES rates are similar by population deciles and the
model fits very well. The Hosmer and Lemeshow test partitions data into decile groups according
to risk levels. For each risk group, the actual versus observed event rates were calculated based on
the total population. This was done to determine the ability of the model to rank order risk and to
establish how accurate the model is in predicting risk.

Thus, the values of actual and expected event rates were plotted across the range of risk. For
the models to be accurate, the actual versus expected plots should not deviate significantly from the
45 degree diagonal. To check the ability of the model to rank order risk, the points should lie in
increasing order of the risk group. Accuracy and rank ordering metrics were determined for both
development and validation data sets. The accuracy plots are provided in Figure 5 (a) and (b). All
the points in both data sets are satisfactorily rank ordered and they all lie close to the 45 degree
diagonal.

The accuracy measures were developed for the Cox PH models per event type. This was per-
formed on both the development and validation data sets. Accounts were ranked separately for each
data set into deciles based on their default cumulative probabilities at month 48. For each decile
group the actual and expected observations were determined. The default rate in each group was
determined based on the total volumes. For the models to be accurate, the actual versus expected
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Figure 5: Accuracy plots – Logistic models.

plots should not deviate significantly from the 45 degree diagonal. The accuracy plots for the default
and ES models are provided in Figure 6 (a) and (b) respectively. Both of the models predicted the
events well over the range.

Figure 6: Accuracy plots – Cox PH models.

4.2. The Competing Risk Approach

The default model was constructed independently with the ES event treated as a censored event.
Similarly the ES model was constructed with the default treated as a censored event. In the consumer
credit risk context, these events co-exist based on which event occurs first. At the portfolio level these
two risk events “compete” to absorb accounts.

With the logistic regression methodology fitted above, the (ES/default) models remain indepen-
dent as they directly produce the probability of an event. The proportional hazards model on the
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other hand produces the hazard functions first, then makes use of the CIC to accommodate or to
allow for the presence of the other event in a competing risks scenario.

5. Model Comparison and Validation Metrics

Survival analysis methods highlight the evolution of the target variable (default, early settlement)
over time. This is reflected in Figures 3 and 4 wherein the hazard curve is plotted against each
survival time point. This is not obtainable from a logistic approach. Logistic regression, as used in
this study, enforces subjects to be observed in a fixed horizon before inclusion in the analysis and
therefore the evolution of events is not clearly defined over time.

For any subjects whose maximum observation period falls short of the workout period, the sub-
ject is disqualified and discarded in logistic regression but included in survival methods as a censored
observation. This implies that proportional hazards method uses more information and thus more
stable estimates are obtained.

In the South African consumer credit context survival methods have only been recently intro-
duced. The conventional modelling methodologies which include empirical roll rates and logistic
regression fell short by failing to detect early warning signs and symptoms prior to recession and
under-performance in the global banking system in 2008/2009 leading to national distress and disori-
entation. Babajide, Olokoyo and Adegboye (2015) successfully used a proportional hazards model
on Nigerian bank data to determine how bank failure can be predicted far ahead of its occurrence.
This helps financial institutions with more vigilant lending strategies and meet financial obligations
accordingly, as they fall due.

Logistic regression with a logit link function has been the cornerstone in financial models. How-
ever, the symmetrical sigmoidal logistic function may not be achieved with heavy censoring due to
the presence of long term survivors. Because of the asymmetrical shape of the logistic function,
the use of the logit function is potentially compromised. The introduction of survival models with
cure/mixture models corrects for the presence of long term survivors.

Due to its ability to incorporate censored observations, survival methods make use of the most
recent information, there is no need to enforce subjects to a specific horizon period to perform before
inclusion in the study. To this effect, survival methods are reactive to changes in the book construct
as the models capture real time changes as they occur.

The Receiver Operating Characteristic (ROC) curves and area under the ROC curve (AUC), met-
rics were used to compare performance of Logistic versus Cox PH regression models in a consumer
credit setting. A discussion of each model variant under Section 4.1. With particular reference to
Figures 5 and 6, reflecting accuracy of the default Logistic, ES Logistic, default Cox and ES Cox
models respectively, it is evident that all models were satisfactorily accurate with each having the
ability to rank order risk. Table 5 supports the notion. This is detailed in Section 5.1 and Section 5.2.

5.1. The ROC Curves

The ROC curve plots the sensitivity (true positive rate) against 1-specificity (true negative rates) of
the models at various cut-off values of risk. For the default event, sensitivity refers to a fraction of
accounts in default that the model correctly identifies as defaulted. The same goes for the ES event.
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Specificity refers to a fraction of accounts not in default that the model correctly identifies as not in
default. The ROC curves for the LR and Cox PH regression models are provided in Figure 7.

Figure 7: ROC curves.

The vertical axis represents sensitivity and the horizontal axis represents 1- specificity values at
each cut-off point. Both axes range from 0 to 1. The diagonal divides the ROC Cartesian plane.
Curves above the diagonal line represent good classification model whereas points below the line
represent poor results. Points along the diagonal represent a random model. In this case all the
curves lie above the diagonal indicating that good classification models were developed in this study.
When comparing models, a better model is the one whose ROC curve lie closer to the upper end of
the ROC space. In both models, it is clearly seen that Cox PH models perform better than the LR
models in the development and validation data. For this particular sample and bank, the data suggest
that it is better to use Cox regression than LR in a lifetime data analysis. The Cox PH model also
has the advantage of describing the evolution of the hazards over time.

5.2. The Gini Statistic and the Area Under the ROC Curve

The overall model Gini Statistics (GS) as well as the corresponding overall Area Under the Curves
(AUC) were calculated for each model as a generalised measure to quantify the ability of the models
to differentiate risk. The results are given in Table 5 for each model.

The lower GSs for LR models are attributable to the use of older vintages for development as the
accounts should be allowed a sufficient performance period (48 months in this case) before they can
be considered for modelling. The fact that the overall GS for the Cox PH models are higher, suggest
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Table 5: Area under ROC curves and Gini statistic.

Model Default Early Settlement
Statistic AUC GS AUC GS
Cox Development 72.40 44.78 75.60 51.27
Cox Validation 72.30 44.50 75.59 51.17
Logistic Development 65.60 31.10 61.20 22.40
Logistic Validation 65.50 30.90 60.20 20.40

that Cox PH performs better than LR. The Cox PH model strength is enhanced by the inclusion of
censored observations and the use of the most recent data in Cox PH regression.

The lower AUCs for LR models are also attributable to the use of older vintages and are in
agreement with the Gini statistic. The closer the area is to the perfect model of area = 1, the better
the model. The AUC can be represented by the overall model GS values and it has been stated that
the Cox models have higher GS and subsequently higher AUC compared to LR models. Comparing
the logistic model AUCs in Table 5, the default model is estimated better using Logistic regression
than the ES model. This is also reflected in the ROC plots in Figure 7. The Early Settlement ROC
plots lie closer to the diagonal line as compared to the default model curves.

For completeness the standard errors of GSs were calculated for each model, as it may be useful
for assessing the reliability of models (Greene and Milne, 2010). The standard deviations were
calculated by re-sampling 100 samples and calculating the GS standard errors. The means and
standard deviations as well as the 95% confidence intervals of the GSs are shown in Table 6. Greene
and Milne (2010) showed that a 30 sample resampling approach produced estimates of the Gini
statistic and standard deviation which were similar to the more complicated ordinary Least squares
based estimates, which means the 100 samples should give reasonable results.

Table 6: Re-sampled Gini statistic 95 % confidence intervals.

Model Default Early Settlement
Statistic GS std dev 95% CI GS std dev 95% CI
Cox Development 44.76 2.12 (44.34, 45.18) 51.26 1.65 (50.94, 51.58)
Cox Validation 44.43 2.74 (43.89, 44.97) 51.15 1.81 (50.80, 51.50)
Logistic Development 31.11 5.26 (30.08, 32.14) 22.41 6.13 (21.21, 23.61)
Logistic Validation 30.88 5.78 (29.75, 32.01) 20.39 7.21 (18.98, 21.80)

The 100 sample estimates of the GS 95% confidence intervals for the Cox models do not overlap
with the logistic models suggesting the two models differ significantly. The fact that the overall GS
for the Cox PH models are higher with lower standard errors, suggest that Cox PH performs better
than LR. The Cox PH model strength is enhanced by the inclusion of censored observations and the
use of the most recent data in Cox PH regression.
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6. Summary and Conclusion

In this paper we analysed competing risks in a consumer credit context with two events of interest,
default and early settlement. These events were modelled using statistically sound techniques. The
bulk of accounts under investigation were not susceptible to the events of interest. The data typically
had long term survivors with heavy censoring at the end of the observation period. The data structure
is analogous to lifetime data in other domains of study such as engineering and biomedical research,
making the statistical methodologies versatile. Models were adjusted to accommodate long term
survivors. The performance of the models was compared using overall model receiver operating
characteristic curves. Clearly Cox regression outperforms Logistic regression as evidenced by higher
Gini statistics and better receiver operating characteristic curves in both default and early settlement
models for this dataset. This analysis was conducted in SAS R©.

In all models, there is strong empirical support for the results as evidenced by the actual versus
predicted analyses. The models predicted and correctly classified events in the validation set. The
models can be used to determine and compare survival prognosis of different risk groups in a con-
sumer credit context. However, LR uses older vintages in model building, therefore it becomes more
difficult to capture the most recent activities as the dependant variable in LR is binary and does not
consider time. The use of survival methods to model credit risk data is motivated by the existence
of lifetime loans which can be observed from the point of origin to an event of interest. Survival
methods thus, estimate not only if, as in Logistic regression, but also when borrowers will default.
This enhances flexibility as the model generates probabilities of each event happening at various
points in time. For any given observation period, some customers default and some pay-off earlier
than the originally agreed term. Where the event occurs before the end of the observation period, the
lifetime of such credits are observable. For customers who do not default or pay-off early, before the
end of the observation period, it is not possible to observe the time instant when the event occurs.

Censoring allows the response variable to be incompletely determined for some accounts. Unlike
in conventional statistical methodologies, censored accounts are not discarded in survival analysis,
but contribute information to the study. Censoring is the defining feature of survival analysis, mak-
ing it distinct from other kinds of analysis. Logistic regression in particular tends to ignore censoring
information. The response variable is binary and it should be fully observable. Although in terms of
predictive performances the models are substantially similar, survival analysis gives more valuable
information such as a whole predicted survival function rather than a single predicted survival prob-
ability. Survival analysis is superior to Logistic regression in that, a better credit granting decision is
made if supported by the estimated survival times.
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