CHAPTER 1: LITERATURE REVIEW

1.1 Introduction

The involvement of the spleen within the haematopoietic system was first conceived by van Leeuwenhoek (c. 1632-1723) who proposed that the spleen played a role as a filter for the blood (Bowdler 2001). In the 1780’s, Hewson proposed an additional function of the spleen which involved the maturation and regulation of cell populations (with specific emphasis on lymphocyte maturation) (Doyle 2006). It was initially postulated in Hewson’s theory that the spleen was responsible for the transformation of white to red blood corpuscles. The clinical association between splenomegaly and leucocytosis was subsequently demonstrated (this association was presumably encountered in the setting of leukaemias). Osler proposed in 1904 that the role of the spleen extended to functions beyond those of the haematological system alone and into the realms of both metabolic functions and infectious disorders (Osler 1904). It also became widely accepted that the spleen was involved in both the production and regulation of white blood cells. The advent of surgical techniques in which the spleen could be successfully removed strengthened the argument that the spleen played a vital role in the immunological system. This link became more apparent as splenectomised individuals were found to have higher mortality rated postoperatively due to overwhelming sepsis. The first account of the association between splenectomised individuals and sepsis was published by King and Schumaker in 1952 (King and Shumacker 1952).

The current understanding is that the spleen is involved in multiple roles such as supporting the erythroid and lymphoid cell lines, as well as forming a constituent of the reticuloendothelial system (where it functions in the removal of senescent red blood cells, as well as in the removal of circulating bacteria).

1.2 Aetiology of Splenomegaly

1.2.1 Classification of the pathophysiological mechanisms of splenomegaly

There are many disease processes which result in splenomegaly. Splenomegaly is therefore most often associated with disease in a secondary nature. It is less common to develop splenomegaly in the setting of a primary pathology of the spleen.

Although the disorders leading to splenomegaly are protean, the common pathophysiological mechanisms for splenic enlargement include the following (Kasper, Braunwald et al. 2005):

1) Splenic hyperplasia
 a) Intrahepatic (e.g. haemochromatosis)
 b) Extrahepatic (e.g. massively enlarged intra-abdominal lymph nodes secondary to underlying haematological processes)

2) Splenic work hypertrophy
 Hyperplasia that occurs in response to stimuli, which results in both increased vascularity and cellularity of the spleen. The increased workload may be as a result of either an immunological or a haemolytic process.
 a) Immunological hyperplasia may result from either a response to infection (e.g. HIV/AIDS, malaria) or from an immune dysregulation disorder (e.g. immune thrombocytopenia)
 b) Haemolytic processes cause activation and hyperplasia of the reticuloendothelial system as the defective erythrocytes are removed from the circulation. The major haematological settings in which this is encountered are in membranopathies (e.g. spherocytosis), haemoglobinopathies (e.g. thalassemia major) and in other haemolytic anaemias.

3) Deposition of products of metabolism result in splenomegaly in diseases such as Gaucher’s disease and in amyloidosis.
4) Infiltration of the spleen, either by malignant or non-malignant processes, resulting in splenomegaly.
 a) Haematological causes of infiltration of the spleen include the leukaemias, the lymphomas (Hodgkin Lymphoma and non-Hodgkin’s Lymphoma) and the myeloproliferative syndromes.
 b) Non-haematological diseases with cellular proliferation associated with splenomegaly include splenic hamartomas and secondary metastatic spread to the spleen via contiguous, haematological or lymphatic channels.

Massive splenomegaly is defined as a spleen extending well into the left lower quadrant of the abdomen (or into the pelvis), or a spleen which may be palpated crossing the midline of the abdomen. Massive spleens weigh at least 500g (and may weigh as much as 1000g).

Haematological conditions that commonly result in massive splenomegaly may be either myeloproliferative or lymphoproliferative in nature:
 a) Myeloproliferative neoplasms commonly implicated in massive splenomegaly include chronic myeloid leukaemia, primary myelofibrosis and polycythemia vera.
 b) Lymphoproliferative disorders include mantle cell lymphoma, hairy cell leukaemia, extranodal marginal zone lymphoma, T-cell lymphoma and the prolymphocytic leukaemias.

Non-haematological conditions that result in massive splenomegaly may be of either an infectious or miscellaneous cause:
 a) Infections resulting in massive splenomegaly include schistosomiasis, hyper-reactive malarial splenomegaly syndrome and leishmaniasis.
 b) Portal hypertension should also be considered in the differential as a cause of massive splenomegaly.
1.2.2 Classification of the aetiological mechanisms of splenomegaly

Splenomegaly rarely presents as a manifestation of a primary disorder within the spleen. It is most often encountered as a manifestation of an underlying disorder. The primary disease states that result in splenomegaly may be broadly classified as being of either an infectious, haematological, malignant and non-malignant aetiology (Pozo, Godfrey et al. 2009).

Table 1: The aetiology of splenomegaly

<table>
<thead>
<tr>
<th>Aetiology</th>
<th>Subgroup</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections</td>
<td>Acute</td>
<td>Viral hepatitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cytomegalovirus infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Splenic abscess</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toxoplasmosis</td>
</tr>
<tr>
<td></td>
<td>Subacute and chronic</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infective endocarditis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brucellosis</td>
</tr>
<tr>
<td></td>
<td>Tropical/ parasitic</td>
<td>Malaria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leishmaniasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Haematological disorders</td>
<td>Myeloproliferative disorders</td>
<td>Myelofibrosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chronic myeloid leukaemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polycythaemia vera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Essential thrombocytosis</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous</td>
<td>Megaloblastic anaemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iron deficiency anaemia</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>Haemato-lymphoid</td>
<td>Acute leukaemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chronic leukaemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prolymphocytic leukaemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hairy cell leukaemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lymphoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plasma cell dyscrasias</td>
</tr>
<tr>
<td></td>
<td>Metastatic</td>
<td>Carcinoma (lung and breast)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melanoma</td>
</tr>
<tr>
<td></td>
<td>Benign</td>
<td>Hamartoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haemangioma</td>
</tr>
<tr>
<td>Non-malignant processes</td>
<td>Immune proliferations and non-</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td></td>
<td>infectious granulomatous</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td></td>
<td>disorders</td>
<td>Rheumatic fever</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarcoidosis</td>
</tr>
</tbody>
</table>
1.2.3 Haematological pathophysiological mechanisms of splenomegaly

The haematological system comprises both the blood and the organs related to the homeostasis of the formation and destruction of blood within the human body. These organs comprise what is known as the reticuloendothelial system. Components of this system include the lymphatics, the liver, the spleen and the bone marrow.

The incidence of splenomegaly and disorders of the haematological system have long been associated. This association between the various disorders of the haematological system (and the spleen particularly) are due to the intricate role that the spleen plays in the regulation of, and the response to, changes within the haematological system. Splenomegaly occurs in the setting of haematological disease due to several mechanisms. The different pathophysiological mechanisms that lead to splenomegaly may be broadly classified as follows (Kasper, Braunwald et al. 2005):

Table 2: The haematological physiological causes of splenomegaly

<table>
<thead>
<tr>
<th>Aetiology</th>
<th>Subgroup</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enlargement due to increased demand for splenic function</td>
<td>Reticuloendothelial system hyperplasia</td>
<td>Spherocytosis, ovalocytosis, sickle cell anaemia, thalassaemia, haemoglobinopathies, paroxysmal nocturnal haemoglobinuria, nutritional anaemias</td>
</tr>
<tr>
<td></td>
<td>Immune hyperplasia</td>
<td>Infectious mononucleosis, AIDS, viral hepatitis, cytomegalovirus, infective endocarditis, tuberculosis, histoplasmosis, malaria Rheumatoid arthritis, systemic lupus erythematosus, immune haemolytic anaemia, immune thrombocytopenia</td>
</tr>
<tr>
<td>Condition</td>
<td>Causes</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Extramedullary haematopoiesis</td>
<td>Myelofibrosis, marrow infiltration (tumours, leukaemias, Gaucher’s disease)</td>
<td></td>
</tr>
<tr>
<td>Enlargement due to abnormal splenic or portal blood flow</td>
<td>Cirrhosis, hepatic vein obstruction, splenic vein obstruction, portal hypertension</td>
<td></td>
</tr>
<tr>
<td>Infiltration of the spleen</td>
<td>Gaucher’s disease, amyloidosis, Leukaemia, lymphoma, myeloproliferative disorders</td>
<td></td>
</tr>
<tr>
<td>Unknown aetiology</td>
<td>Idiopathic splenomegaly, iron deficiency anaemia</td>
<td></td>
</tr>
</tbody>
</table>

1.3 Signs and Symptoms of Splenomegaly

The signs and symptoms of splenomegaly depend on the size of the spleen, as well as the aetiology of the underlying disorder (acute vs chronic). An acute aetiology may result in tenderness on palpation of the left upper quadrant, due to the rapid splenic enlargement and subsequent stretching of the capsule of the spleen. If the aetiology of the splenomegaly is more chronic in nature, symptoms may be more subtle and include early satiety, weight loss, referred pain to the left shoulder, and pain while lying on the side.

A study by Gielchinsky et al. attempted to correlate spleen size and symptoms of an enlarged spleen (i.e. abdominal pain, abdominal discomfort, early satiety, pain on lying on the side and colicky pain). In this study, there was no statistically significant correlation between the size of the spleen and any one of the five symptoms studied (Gielchinsky, Elstein et al. 1999).

It is therefore reasonable to surmise that the clinical features associated with an enlarged spleen may not always be present and may not correlate with the degree of splenic enlargement.

1.4 Clinical Assessment of Splenomegaly

The clinical assessment of splenomegaly relies on both palpation and percussion techniques. Studies have concluded that a clinically palpable spleen is present in the setting of a significant splenomegaly (Schloesser 1963).
As a rule, a spleen has increased in size by at least 40% before it becomes clinically palpable (Blackburn 1953). This is because the spleen enlarges initially in a posterior-superior direction before enlarging antero-inferiorly.

Palpation of the spleen may be performed using various techniques ranging from bimanual palpation, ballottement of the spleen and palpation of the spleen while the examiner stands at the side of the patient. It has been shown that a combination of manoeuvres yields the highest sensitivity and specificity for the detection of splenomegaly (Yang, Rickman et al. 1991). A combination of palpation of the spleen standing at the side of the patient and Castell’s method of percussing the spleen (the examiner percusses at the intersection of the left anterior axillary line and 9th intercostal space) was shown to have the highest likelihood ratios (Tamayo, Rickman et al. 1993).

False positive and false negative findings in the palpation of an enlarged spleen are possible. The accuracy with which an enlarged spleen may be palpated relies on the experience of the examining clinician, the body habitus of the patient, the size of the spleen and the presence of ascites (Barkun, Camus et al. 1989).

There are numerous clinical grading systems of splenomegaly. These systems rely on measurement of the spleen by either clinical or radiological methods, or by specimen weight and size (as determined at the time of splenectomy).

Clinical methods of grading splenomegaly rely on the palpation of the spleen below the border of the left costal margin, as the spleen enlarges in a downward and contralateral direction. Hackett’s grading system for splenomegaly is based solely on the clinical examination (Hackett 1945). Massive splenomegaly is defined according to Hackett’s grading system as \(\geq 3 \).
Table 3: Clinical grading of splenomegaly according to Hackett’s grading system

<table>
<thead>
<tr>
<th>Grade</th>
<th>Clinical finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal, impalpable spleen</td>
</tr>
<tr>
<td>1</td>
<td>Spleen palpable only on deep inspiration</td>
</tr>
<tr>
<td>2</td>
<td>Spleen palpable on the mid-clavicular line halfway between the umbilicus and the costal margin</td>
</tr>
<tr>
<td>3</td>
<td>Spleen expands towards the umbilicus</td>
</tr>
<tr>
<td>4</td>
<td>Spleen extends past the umbilicus</td>
</tr>
<tr>
<td>5</td>
<td>Spleen extends towards the symphysis pubis</td>
</tr>
</tbody>
</table>

There are many techniques to determine enlargement of the spleen by percussion. The best known is by percussion of Traube’s semilunar space, as described by Ludwig Traube in 1868 (Talbott 1970). The borders of this space are the left sixth rib superiorly, the mid-axillary line laterally and the left costal margin inferiorly. This area is usually resonant, even during full inspiration. If the spleen is enlarged, the note which is usually resonant (owing to the underlying gastric bubble), becomes dull or is noted to be dull during full inspiration.

False positive notes using percussion of Traube’s semilunar space are possible if the patient has a pleural effusion on the left, or if the patient is examined shortly after eating (Barkun, Camus et al. 1989). This method has a reported sensitivity of 62% and a specificity of 72% when compared to the gold standard of ultrasonography to determine the presence of splenomegaly (Chongtham, Singh et al. 1997).

The sensitivity and specificity of ultrasound in detecting an enlarged spleen is 95% and >90%, respectively (Petzoldt, Lutz et al. 1976).
1.5 Radiological Assessment of Splenomegaly

Radiological assessment of an enlarged spleen may make use of plain radiographs, ultrasonography, computed tomography (CT) and magnetic resonance imaging (MRI).

a) Plain radiographs: the spleen is normal in size if it is not seen in the abdominal plain film, if it is ≤ 5 cm in width, or if it is < 85% of the size of the normal kidney (Thipphavong, Duigenan et al. 2014). It is considered enlarged if it is ≥ 6 cm wide or 13.0 cm long, or if its surface area (length x width) is > 75 cm².

b) Ultrasound: the length of the spleen is measured as a cranio-caudal length when using ultrasound. In healthy individuals, mean spleen length by ultrasound is 10.8 cm. A normal spleen is defined as ≤ 13 cm in length. The normal cranio-caudal length on an ultrasound measurement ranges from 11 cm to 13 cm (Bezerra, D’Ippolito et al. 2005). The cranio-caudal length by ultrasound has been shown to correlate well with splenic volume (length x width x depth) by CT scan when the length is measured with the patient in the right lateral decubitus position (Lamb, Lund et al. 2002). A combination of clinical examination and point-of-care ultrasound has been shown to increase sensitivity from 40% to 100% when compared to clinical examination alone (Olson, Trappey et al. 2015).

c) CT scan: CT scans allow for a more accurate measurement as both splenic length and splenic index (length x depth x width) can be calculated (Robertson, Leander et al. 2001). Splenomegaly is defined on CT scan as a spleen length of greater than 10 cm (Bezerra, D’Ippolito et al. 2005).

The “gold standard” of splenomegaly measurement remains the weight of the spleen. On average, the weight of the normal spleen is between 100 g to 250 g. Spleen weight varies, depending on the age, gender and body habitus of the patient. The median splenic weight in adult patients is 150 g (Picardi, Martinelli et al. 2002).
1.6 Laboratory Disorders Associated with Splenomegaly

The major laboratory abnormalities associated with splenomegaly are determined by the underlying aetiology of the splenomegaly.

As an organ in which lymphopoeisis occurs, the spleen contains approximately 25% of the pool of circulating lymphocytes. Increased destruction or sequestration of leukocytes causes the leuocopenia that may be observed in splenomegaly. Leuocopenia is closely related to the degree of neutropenia, for similar reasons as stated above.

Neutropenia, which is defined as an absolute neutrophil count of $< 2 \times 10^9/l$, is the result of an increase in the marginated granulocyte pool, a proportion of which are in the spleen. Sequestration may also play a role in the genesis of neutropenia.

The anaemia observed in splenomegaly results from the sequestration of red blood cells from the circulating blood volume and haemodilution.

Approximately 30% of the total platelet mass exists as an interchangeable pool in the spleen. Increased splenic platelet pooling is the primary cause of the thrombocytopenia observed in the setting of hypersplenism, in patients with hypersplenism, as much as 90% of the total platelet mass may be sequestrated in the spleen. The platelet count in the setting of hypersplenism is usually between 50-150 x $10^9/l$ (Bashour, Teran et al. 2000).

Some studies have demonstrated that there is no predictable relationship between the degree of splenomegaly and the presence or degree of these cytopenias. However, this data is extrapolated from patients with massive splenomegaly due to Gaucher’s disease, and may not necessarily be applicable to other disease states (Gielchinsky, Elstein et al. 1999).
1.7 Current Understanding of Splenomegaly in Haematological Disorders

Large retrospective studies on the causes of splenomegaly in patients in the United States have been carried out to better understand the underlying disorders resulting in splenomegaly (O'Reilly 1998, Swaroop and O'Reilly 1999). The most common disorders in these studies that were associated with splenomegaly were (in decreasing order of occurrence): haematological, hepatic, infectious, congestive or inflammatory and primary splenic disease.

Among the haematological disorders associated with splenomegaly in these studies, the most prevalent were: lymphoma (16-44%), chronic myeloid leukaemia (8-29%), haemoglobinopathies (7-25%), chronic lymphocytic leukaemia (0-20%) and myelofibrosis (9-16%).

These large retrospective studies demonstrated that there were no significant differences in the causes of splenomegaly between rural and urban settings in the United States. Massive splenomegaly was associated with haematological abnormalities in 33% of the cases (the remaining 66% were accounted for by hepatic, infectious and “other” aetiologies) (Swaroop and O'Reilly 1999).

Marked differences are noted in the causes of splenomegaly between the developed and the developing world. In Africa, the most common causes of splenomegaly remain of an infectious aetiology. The two predominant aetiologies of massive splenomegaly in Africa are the tropical splenomegaly syndrome due to malarial infection, and schistosomiasis infection (Lowenthal, Hutt et al. 1980, Bedu-Addo and Bates 2002). In the Asian subcontinent, a similar picture is seen, with predominantly infective causes causing splenomegaly (Gazin 2004). This is in stark contrast to the developed world, where the cause of massive splenomegaly is usually of haematological (31%), hepatic (17%) and infectious causes (8%) (O'Reilly 1998).

The current knowledge base in the local setting on splenomegaly within the adult haematological setting is lacking. No studies have been done to define and describe the splenomegaly encountered specifically in association with haematological disorders in South Africa.
The proportion of South Africans infected with human immunodeficiency virus (HIV) has increased from 10.6% in 2008 to 12.2% in 2012, according to the Human Science Research Council’s National HIV Prevalence, Incidence and Behaviour Survey (Shisana, Rehle et al. 2014). The total number of infected South Africans is estimated at 6.4 million people. This is 1.2 million more people than in 2008.

This increased prevalence is thought to be in part due to the increased uptake of antiretroviral therapy (ART) by the population, with resultant increased longevity of the population.

Women aged between 30-34 years and men aged between 35-39 years had the highest rates of infection: 36% of females and 28.8% of males in urban settings in these respective age groups were HIV positive. Black Africans had the highest HIV infection rate compared to all other ethnic groups (15%), followed by coloured people (3.1%), Indians or Asians (0.8%) and whites (0.3%).

The association between HIV and haematological disorders is well documented (Patel, Philip et al. 2011, Patel, Philip et al. 2015). It is suggested that the underlying haematological aetiologies associated with HIV are those that are the high-grade, more aggressive subtypes of lymphoma (Ziegler, Bragg et al. 1984). The association between HIV and an incidental finding of splenomegaly has been studied in a Swiss cohort study. In this prospective cohort of 70 patients, splenomegaly was present by physical examination in 23% of patients and by radiological methods (ultrasonography) in 66%. During a 1-year follow up, splenomegaly at enrolment was not predictive of any clinical event, and splenomegaly was not associated with a higher risk of developing Acquired Immunodeficiency Syndrome (AIDS) during a median follow up of 6.1 years (Furrer 2000).

The period of this study is relevant, as it encompasses the transition in South Africa from a pre-ART to a post-ART era. Non-Hodgkin’s lymphoma is the most prevalent form of haematological malignancy in adult patients in South Africa. Hodgkin lymphoma is becoming increasingly prevalent in South Africa owing to its association with HIV/AIDS (Patel, Philip et al. 2011).

As well as the HIV-related haematological disorders, a large proportion of patients seen in the outpatient department of the Clinical Haematology Unit, have non-HIV related haematological
problems. This study aims to evaluate these patients, to gain a better understanding of the landscape of splenomegaly.
CHAPTER 2: PATIENTS AND METHODS

2.1 Rationale for the Study

Given the paucity of data surrounding the understanding of splenomegaly in South Africa, this study aims to shed some light on splenomegaly in haematological conditions in both HIV seropositive and HIV seronegative individuals. The added burden of HIV in our setting and the associated haematological conditions encountered provide an interesting opportunity to better define the clinical scenarios in which splenomegaly is encountered in a local setting.

2.2 Aim of the Study

The aim of this study is to describe the aetiologies and integrate the clinical, radiological and laboratory associations in which splenomegaly is encountered within a tertiary adult hospital haematological setting.

2.3 Objectives of the Study

- To determine the prevalence of splenomegaly in adult haematological disorders, in a tertiary referral hospital setting.
- To correlate the degree of splenomegaly with other clinical parameters such as hepatomegaly, cytopenias, as well as the underlying diagnosis.
- To determine the clinical accuracy of the measurement of spleen size, in relation to radiological assessments.
2.4 Study Design

A single centre retrospective, observational study conducted on all patients who attended the adult Clinical Haematology Unit in the Department of Medicine at Chris Hani Baragwanath Academic Hospital (CHBAH) between 01/01/2004 to 31/12/2013. This study contains both descriptive and comparative elements.

2.5 Sample Population

The records of all adult patients attending the outpatient Haematology clinic at CHBAH over a 10-year period between 01/01/2004 and 31/12/2013 were reviewed.

CHBAH is a tertiary level academic hospital situated in Soweto, Johannesburg, which has a predominantly black African demographic.

CHBAH serves a population of approximately 1,3 million people, as estimated in the census of 2011 (2012). This accounts for approximately one third of the total population of Johannesburg.

A total number of 2 343 patients were seen at the Clinical Haematology Unit in the 10-year period of the study. In total, 1 976 files were available for review from this period, as 367 files were unable to be located for assessment. From the 1 976 files that were reviewed, a total of 367 patients were eligible for inclusion in this study, based on a finding of splenomegaly.

2.5.1 Inclusion criteria

- All newly diagnosed adult patients presenting to the Clinical Haematology Unit in the Department of Medicine at Chris Hani Baragwanath Academic Hospital between 01/01/2004 and 31/12/2013.
- Documented splenomegaly on presentation, either by clinical clerking notes, or by initial radiological investigations.
2.5.2 Exclusion criteria

- Patients whose files could not be located in the clinic.
- Patients in whom no splenomegaly is noted, or in those in which the measurement of the splenomegaly is omitted in the file.
- Patients in whom treatment was started before the measurement of splenomegaly was carried out.

2.6 Data Extraction

All patient records at the Clinical Haematology Unit, Department of Medicine at Chris Hani Baragwanath Academic Hospital were evaluated for the presence of splenomegaly during the period 01/01/2004 to 31/12/2013. Clerking notes and radiological reports were used to identify patients with splenomegaly.

Once patients with documented splenomegaly were identified, the necessary data was extracted from the file and laboratory parameters were extracted from the National Health Laboratory Service (NHLS) database.

The following parameters were evaluated:

- Demographics: age, gender, ethnic group
- Retroviral disease status, cluster of differentiation 4 (CD\textsubscript{4}) count, antiretroviral (ART) use, stratification of ART use per CD\textsubscript{4} subgroup and duration of ART use.
- Clinical parameters: pallor, jaundice, lymphadenopathy (extent, size), hepatomegaly (size, radiographic modality used to detect hepatomegaly) and splenomegaly (with relevant dates and radiographic modality used to detect splenomegaly).
- Laboratory parameters: haemoglobin, red cell count, white cell count, platelet count, differential count (neutrophils, basophils, eosinophils, monocytes and lymphocytes).
- Histological parameters: bone marrow aspirate and trephine biopsy, as well as any other histological specimens (e.g. lymph node biopsy)
2.7 Definitions

2.7.1 Definitions of clinical parameters

Splenomegaly: a palpable spleen on examination, or a cranio-caudal length of larger than 12 cm on ultrasonography or on computerised tomography.

Massive splenomegaly:

- A spleen that measures > 12 cm below the midpoint of its enlargement at the costal margin.
- A spleen that is palpated at or beyond the umbilicus, from a line drawn parallel to the costal margin.
- A spleen that is more than two thirds the distance from the costal margin to the umbilicus.
- A spleen that extends up to or beyond the umbilicus.
- A spleen that is palpable in one or both lower quadrants of the abdomen.
- A spleen that measures > 20 cm in cephalo-caudal length when measured radiologically.
- A spleen that weighs > 1 000 g at splenectomy.

Hepatomegaly:

- A liver that is palpable below the costal margin in the midclavicular line (MCL), provided that the upper border of the liver is in the normal anatomical site at between the 5th and 6th intercostal space.
- A liver span in the MCL that is > 13 cm.

Significant lymphadenopathy:

- A lymph node that is larger than 1 x 1 cm in diameter

To maintain uniformity and standardization across all measurements of splenomegaly, a standardized grading system were used across all conditions. The clinical grading of both splenomegaly and hepatomegaly were graded using the following parameters:
Table 4: Grading of organomegaly

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mild</th>
<th>Moderate</th>
<th>Moderate to massive</th>
<th>Massive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splenomegaly (cm below CM)</td>
<td>≤ 4,0 cm</td>
<td>4,1-8,0 cm</td>
<td>8,1-12,0 cm</td>
<td>> 12 cm</td>
</tr>
<tr>
<td>Hepatomegaly (cm below CM)</td>
<td>≤ 4,0 cm</td>
<td>4,1-8,0 cm</td>
<td>8,1-12,0 cm</td>
<td>> 12 cm or liver in the RIF and not pushed down</td>
</tr>
</tbody>
</table>

cm= centimeters; CM= Costal Margin; RIF= Right Iliac Fossa

2.7.2 Definition and grading of haematological parameters

The haematological parameters assessed in this study were graded as per WHO definitions:

Table 5: Grading of haematological parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Global Reference Range</th>
<th>Borderline / Grade 0</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemoglobin (g/dl)</td>
<td>M 14-18</td>
<td>M ≥ 11, <14</td>
<td>9,5-10,9</td>
<td>8,0-9,4</td>
<td>6,5-7,9</td>
<td>< 6,5</td>
</tr>
<tr>
<td></td>
<td>F 12-16</td>
<td>F ≥ 11, <12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White cell count (x10⁹/l)</td>
<td>4-11</td>
<td>3,0-3,9</td>
<td>2,0-2,9</td>
<td>1,0-1,9</td>
<td>< 1,0</td>
<td></td>
</tr>
<tr>
<td>Platelet count (x10⁹/l)</td>
<td>150-400</td>
<td>≥ 100</td>
<td>75-99</td>
<td>50-74</td>
<td>25-49</td>
<td>< 25</td>
</tr>
</tbody>
</table>

g/dl= grams per deciliter; M= male; F=female
2.8 Data Analysis

All data was collected on Microsoft Excel® 2013. Data analysis was then performed using GraphPad Instat™ Version 7. Descriptive statistical analysis (mean, median) were used for demographic statistics and the degree of variation of continuous variables were assessed using standard deviations. The Shapiro Wilk W test was used to test for normality of distribution. Because most variables were not normally distributed, medians and interquartile ranges (IQRs) were used to represent the central tendency and measure of statistical dispersion, respectively. Statistical significance was represented by a p-value of < 0.05.

A statistician was consulted to verify the statistical methods and results obtained.

2.9 Ethics

Ethics approval was granted unconditionally by the Human Research Ethics Committee (HREC) of the University of the Witwatersrand (clearance certificate number: M 150339). No informed consent was required from patients due to the retrospective nature of the analysis.
CHAPTER 3: RESULTS

A total number of 2 343 patients were seen at the adult Clinical Haematology Unit in the Department of Medicine at Chris Hani Baragwanath Academic Hospital (CHBAH) in the 10 years of the study from 01/01/2004 to 31/12/2013. In total, 1 976 files were available for review from this period. A total of 367 files were ineligible for assessment. From the 2 467 files that were reviewed, a total of 367 patients (15.6%) were eligible for inclusion in the study.

3.1 Demographic Results

3.1.1 Demographics: gender, age, ethnic group

Of the 367 patients included in the study, 194 (52.8%) were male, and 173 (47.2%) were female. The male to female ratio was 1.38:1.

Ethnic demographics were as follows: 331 (90.2%) of the patients who were included in this study were black Africans, 25 (6.8%) of White and Coloured (mixed race) ethnicity, and 11 (3.0%) of Indian descent.
Figure 1: Gender Breakdown of Included Patients by percentage

Figure 2: Ethnic Group Breakdown of Included Patients by percentage
The relative ages at initial presentation were divided across all aetiologies as follows: 14-20 years (22 patients- 6,0%), 21-30 years (49 patients- 13,3%), 31-40 years (90 patients- 24,6%), 41-50 years (63 patients- 17,1%), 51-60 years (65 patients- 17,7%), 61-70 years (45 patients- 12,5%), 71-80 years (26 patients- 7,1%), > 80 years (7 patients- 1,9%).

The youngest age at presentation was 14 years and the oldest age at presentation was 91 years (median age 44 years; IQR 34-58 years).

![Figure 3: Age variables by numbers of patients included](image)

3.1.2 Demographics: Human Immunodeficiency Virus (HIV) disease status, CD4 on presentation, antiretroviral (ARV) use and duration of antiretroviral use

One hundred and thirty-one (35,7%) of the patients enrolled in the study were HIV seropositive on enrolment. There were 239 patients (64,3%) who were HIV seronegative. None of the patients enrolled into the study had an unknown HIV serostatus.
Of the patients who were HIV seropositive, 38 (29.0%) had a CD4 count of ≤ 100 cells/µL, 42 (32.0%) had a CD4 count between 101-200 cells/µL, 19 (14.5%) had a CD4 count between 201-350 cells/µL, and 9 (6.9%) had a CD4 count that was between 351-500 cells/µL. A total number of 23 patients (17.6%) had a CD4 count that was ≥ 501 cells/µL.

Of those patients demonstrated to be HIV seropositive, 41 (31.3%) were noted to be taking ART at the time of the diagnosis of their haematological disorder. The remaining 90 (68.7%) were ART naïve at the time of the diagnosis of their haematological disorder.

Figure 4: HIV disease demographic variables by percentage
3.2 Results of Specific Haematological Conditions Included

Over the 10 years of the study, 367 patients met the criteria as defined (previously) were included in the study. In order to assess splenomegaly across a broad range of haematological disorders, the underlying disorders were grouped as follows: (see table 6).

Table 6: Classification of haematological conditions

<table>
<thead>
<tr>
<th>Haematological condition</th>
<th>Subgroups</th>
<th>Disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoplasms of the Myeloid lineage</td>
<td>Acute Myeloid Leukaemia</td>
<td>Chronic Myeloid Leukaemia, Primary myelofibrosis, Polycythaemia Rubra Vera, Essential thrombocythaemia</td>
</tr>
<tr>
<td>Neoplasms of the Myeloid lineage</td>
<td>Myeloproliferative Neoplasms</td>
<td>Chronic myelomonocytic leukaemia</td>
</tr>
<tr>
<td>Neoplasms of the Myeloid lineage</td>
<td>Myelodysplastic Syndrome/ Myeloproliferative Neoplasm Variant</td>
<td>Chronic myelomonocytic leukaemia</td>
</tr>
<tr>
<td>Neoplasms of the Lymphoid lineage</td>
<td>B cell Lymphomas</td>
<td>Precursor lymphomas, Precursor B acute lymphoblastic leukaemia/ lymphoma, Acute lymphoblastic leukaemia</td>
</tr>
<tr>
<td>Neoplasms of the Lymphoid lineage</td>
<td>Peripheral/ mature lymphomas</td>
<td>Chronic Lymphocytic Leukaemia, Waldenstrom’s macroglobulinaemia, Hairy Cell Leukaemia</td>
</tr>
<tr>
<td>T cell/ Natural Killer Cell Lymphomas</td>
<td>Hodgkin Lymphoma</td>
<td>Multiple myeloma, Monoclonal gammopathy of undetermined significance, Plasmacytoma, Amyloidosis</td>
</tr>
<tr>
<td>Bone marrow failure syndromes</td>
<td>Inherited</td>
<td>Fanconi’s anaemia</td>
</tr>
<tr>
<td>Nutritional anaemias</td>
<td>Acquired</td>
<td>Hypoplastic anaemia, Aplastic anaemia</td>
</tr>
<tr>
<td>Nutritional anaemias</td>
<td>Iron deficiency anaemia, Megaloblastic anaemia</td>
<td></td>
</tr>
</tbody>
</table>
| Haemolytic anaemias | Inherited | Membranopathies | Hereditary spherocytosis
Haemoglobinopathies | Sickle cell disease (trait and homozygous)
Hereditary persistence of foetal hemoglobin |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic derangements</td>
<td>Glucose-6-phosphate dehydrogenase deficiency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Acquired | Immune | Autoimmune haemolytic anaemia
Evans syndrome |
| Non-immune | Paroxysmal nocturnal haemoglobinuria | |
| Haemostatic abnormalities | Platelet disorders | Qualitative |
| | | Quantitative |
| Coagulation abnormalities | Inherited | Haemophilia
von Willebrand’s disease |
| | Acquired | Protein C or Protein S deficiency
Acquired factor inhibitors
Superwarfarin |
| Thrombosis | Venous thromboembolic disease
Arterial thromboembolic disease
Mixed venous and arterial thromboembolic disease |
| Miscellaneous conditions | Carcinoma, Castleman’s disease, Eosinophilia, Gaucher’s disease,
Haemochromatosis, Hypersplenism, Rheumatoid arthritis, Sarcoma, Sinus histiocytosis, Spinal cord compression, Systemic lupus erythematosus, Tuberculosis |
Using the classification system above, the 1,976 files that were initially assessed for inclusion were grouped as follows:

Figure 5: Number of files assessed and included per underlying Haematological condition over a 10 year period
This data may also be interpreted in terms of the overall makeup of the 367 patients who were included, as relative proportions of the total.

![Figure 6: Diagnoses by percentage included in the study](image)

3.2.1 Neoplasms of the myeloid lineage

A total of 307 files of patients with neoplasms of the myeloid lineage were assessed for inclusion over the 10 years of the study. In total, 133 patients (43.3%) with myeloid neoplasms were included in the study. The underlying haematological disorders encountered are described below (figure 7):
On clinical examination, 115 (86.4%) of the patients with myeloid neoplasms had clinical evidence of pallor, with 3 patients (2.3%) having evidence of clinical jaundice.

Of the 133 patients included, 123 were found to have splenomegaly clinically, while in 10 patients there were no clinical notes regarding the finding of splenomegaly. However, splenomegaly was documented on radiological studies. The median size of the spleen as palpated below the costal margin for the myeloid neoplasms was 14 cm. The smallest measurement was 2 cm and the largest measurement was 32 cm (IQR 10 cm-19 cm).
Figure 8: Breakdown of clinical splenomegaly within the Myeloid neoplasm group

Eighty-two patients (61.7%) met the criteria for massive splenomegaly, defined as a spleen length of greater than 12 cm measured below the costal margin.

The conditions that were associated with massive splenomegaly were CML (73/85 cases; 85.9% had massive splenomegaly) and PMF (9/11 cases; 81.8% had massive splenomegaly).

In these two conditions, the grading of splenomegaly was as follows: (table 7)

<table>
<thead>
<tr>
<th>Mild</th>
<th>Moderate</th>
<th>Moderate to massive</th>
<th>Massive</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>12</td>
<td>73</td>
</tr>
<tr>
<td>(85 Patients)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mild</th>
<th>Moderate</th>
<th>Moderate to massive</th>
<th>Massive</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>(11 patients)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ninety-eight patients (73.6%) had clinical evidence of hepatomegaly that was associated with the splenomegaly. Massive hepatomegaly was present in 23 patients (17.3%) within the myeloid neoplasm group.
Massive hepatomegaly was present in CML (17 / 23 cases), AML (2 / 11 cases), PMF (1 / 9 cases), PRV (1 / 8 cases), CMML (1 / 4 cases) and AUL (1 / 2 cases).

![Pie chart showing the breakdown of clinical hepatomegaly associated with clinical splenomegaly within the Myeloid neoplasm group.](image)

Figure 9: Breakdown of clinical hepatomegaly associated with clinical splenomegaly within the Myeloid neoplasm group

The accuracy with which splenomegaly was measured clinically versus ultrasound was assessed. The clinical measurement of splenomegaly ranged from 2 cm below the costal margin to 27 cm below the costal margin (median = 15 cm; IQR = 12-22 cm). Ultrasound measurements for the same group ranged from 9 cm to 32 cm (median = 17 cm; IQR = 14 cm).

Of the 65 patients that were eligible for the comparison between clinical and ultrasound measurements, 17 (26.2%) reported measurements that were accurate within 20% of each other. An almost equal amount of 20 patients (30.8%) had measurements that were disparate by over 50%. The figure below (figure 10) maps the levels of concordance of clinical and ultrasound measurements in terms of the percentage difference between the measurements.

A difference of <10% in this instance equated to a difference in measurement of 1 cm and a difference in this instance of >70% equated to 7 cm.
Figure 10: Comparison of the differences between clinical and ultrasound measurements of splenomegaly within the Myeloid neoplasm group

Only 2 patients were eligible for the comparison between the clinical and CT scan measurement of splenomegaly. This lack of data points prohibited the extrapolation of conclusions. Two patients had both ultrasound and CT scan measurements available, and similarly, this small data set precluded accurate analysis.

Haematological records for 2 of the 133 patients were unable to be located, therefore the results below represent the remaining 131 patients. The haematological findings associated with the myeloid neoplasms are depicted and graded in the figure below (figure 11):
Figure 11: Grading of haematological parameters within the Myeloid neoplasm group

Each haematological disorder within the myeloid neoplasm group was assessed for significant correlation with haematological results obtained. These are expressed as p-values and significant findings are highlighted in bold typeface in the table below (table 8):

Table 8: Significance of the degree of splenomegaly versus laboratory parameters within the Myeloid neoplasm group

<table>
<thead>
<tr>
<th>Myeloid neoplasms (n=140)</th>
<th>Haemoglobin</th>
<th>Red Cell Count</th>
<th>White Cell Count</th>
<th>Platelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML (n=11)</td>
<td>0,052</td>
<td>0,556</td>
<td>0,858</td>
<td>0,191</td>
</tr>
<tr>
<td>CML (n=85)</td>
<td>0,659</td>
<td>0,995</td>
<td>0,234</td>
<td>0,776</td>
</tr>
<tr>
<td>PMF (n=11)</td>
<td>0,980</td>
<td>0,202</td>
<td>0,721</td>
<td>0,640</td>
</tr>
<tr>
<td>PRV (n=8)</td>
<td>0,524</td>
<td>0,640</td>
<td>0,052</td>
<td>0,092</td>
</tr>
<tr>
<td>ET (n=8)</td>
<td>0,222</td>
<td>0,805</td>
<td>0,051</td>
<td>0,040</td>
</tr>
<tr>
<td>MDS (n=4)</td>
<td>Too few data</td>
<td>Too few data</td>
<td>Too few data</td>
<td>Too few data</td>
</tr>
<tr>
<td>CMML (n=4)</td>
<td>Too few data</td>
<td>Too few data</td>
<td>Too few data</td>
<td>Too few data</td>
</tr>
<tr>
<td>AUL (n=2)</td>
<td>Too few data</td>
<td>Too few data</td>
<td>Too few data</td>
<td>Too few data</td>
</tr>
</tbody>
</table>
Increasing spleen size was plotted against laboratory findings and p-values were calculated using regression analysis. Haematological parameters are plotted against increasing spleen sizes:

Figure 12: Association between spleen size and haematological values within the Myeloid neoplasm group

3.2.2 Neoplasms of the lymphoid lineage

A total of 1 175 files of patients with neoplasms of lymphoid origin were assessed. In total, 195 patients (16.6%) were eligible for inclusion in the study.
The patients included in the study with both Hodgkin lymphoma and non-Hodgkin’s lymphoma were further classified according to the underlying subtype of disease. Within the Hodgkin lymphoma group, 6 patients’ records were labelled as “classical”, and no further subtype was provided. In 1 patient record the Hodgkin lymphoma was unclassifiable. These 7 patients have been classified as “unidentifiable” in relation to a specific subtype. Similarly, the subtype of 4 patients included in the non-Hodgkin lymphoma group were unable to be classified histologically and were labelled as unidentifiable.
Figure 14: Subsets of Hodgkin Lymphoma included in the study

- Nodular sclerosis classical Hodgkin lymphoma: 17
- Mixed cellularity classical Hodgkin lymphoma: 10
- Unidentifiable: 7

Figure 15: Subsets of Non-Hodgkin Lymphoma included in the study

- Diffuse Large B Cell Lymphoma: 39
- Burkitt's Lymphoma: 23
- Plasmablastic Lymphoma: 7
- Follicular Lymphoma: 6
- Mantle Cell Lymphoma: 6
- Unidentifiable: 4
- Splenic Marginal Zone Lymphoma: 3
- Intermediate Burkitt’s / Diffuse Large B Cell Lymphoma: 3
Almost all the patients with lymphoid neoplasms had clinical evidence of pallor (180 patients; 92.3%), with 21 patients (10.8%) having jaundice detected clinically. Splenomegaly was detected in 186 patients (95.4%) clinically, and the remaining 9 patients (4.6%) having radiographic evidence of splenomegaly that was not documented clinically. The median size of the spleen overall as palpated below the costal margin for the lymphoid neoplasms was 4 cm. The smallest measurement was 1 cm and the largest measurement was 16 cm (IQR= 3 cm to 7 cm).

Twelve patients (6.5%) met the criteria for massive splenomegaly. These 12 patients comprised the following: ALL (6 / 7 patients); CLL (2 / 51 patients); NHL (2 / 91 – 1 Mantle cell lymphoma, 1 Diffuse large B cell lymphoma); TCL (2 / 3 patients).

Figure 16: Breakdown of clinical splenomegaly within the lymphoid neoplasms
The clinical detection of splenomegaly versus the corresponding measurement by ultrasound were compared. Of the 56 patients who were eligible for this comparison, 30 (53.6%) reported measurements that were accurate to within 20% (i.e. a discrepancy in measurement of <20%). This equated to a difference in measurement of within 2 cm.

![Figure 17: Comparison of the clinical measurement of splenomegaly versus the ultrasound measurement of splenomegaly within the lymphoid neoplasms](image)

The comparison between the clinical measurement of splenomegaly and CT scan measurements were possible in 34 patients. Of these 34 patients, 20 patients (58.8%) reported measurements that were accurate to within 20%. Ultrasound and CT scan measurements were available in 9 patients. Six (88.9%) had measurements that were within 20% of each other.
The clinical finding of hepatomegaly was present in 156 patients (80.0%). The grading of hepatomegaly encountered within the lymphoid group is depicted below:
Massive hepatomegaly was detected in 21 patients (10.8%) within the lymphoid neoplasm group. The breakdown of massive hepatomegaly was as follows: ALL (1 / 7 patients); NHL (10 / 91 patients: 7 Diffuse large B cell lymphoma, 1 Follicular lymphoma, 1 Burkitt’s lymphoma and 1 undetermined subtype); CLL (5 / 51 patients); HL (3 / 34 patients: 2 Nodular sclerosis and 1 unidentifiable subtype); TCL (1 / 3 patients) and WM (1 / 3 patients).

The haematological records for 6 of the 195 patients were unable to be located, thus the results below are for the remaining 189 patients. The haematological findings associated with the lymphoid neoplasms are depicted in the figure below:

Figure 20: Grading of haematological parameters within the lymphoid neoplasms
In attempting to ascertain a correlation between spleen size and possible haematological abnormalities, the results of laboratory findings were plotted against the clinical measurement of splenomegaly. Mean haematological values for platelet count, haemoglobin and white cell count were plotted against corresponding increasing splenic size:

![Figure 21: Association between spleen size and haematological values in patients with neoplasms of the lymphoid lineage](image)

Each haematological disorder within the lymphoid neoplasm group was assessed for possible significant correlations with the haematological results. The results are expressed as p-values and significant findings are highlighted in bold typeface in the table below:
Table 9: Significance of the degree of splenomegaly versus laboratory parameters within the Lymphoid neoplasm group

<table>
<thead>
<tr>
<th></th>
<th>Haemoglobin</th>
<th>Red Cell Count</th>
<th>White Cell Count</th>
<th>Platelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphoid neoplasms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=198)</td>
<td>0.615</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHL (n=91)</td>
<td>0.615</td>
<td>0.950</td>
<td>0.123</td>
<td>0.095</td>
</tr>
<tr>
<td>CLL (n=51)</td>
<td>0.087</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL (n=34)</td>
<td>0.525</td>
<td>0.830</td>
<td>0.179</td>
<td>0.383</td>
</tr>
<tr>
<td>ALL (n=7)</td>
<td>0.064</td>
<td>0.132</td>
<td>0.324</td>
<td>0.980</td>
</tr>
<tr>
<td>TCL (n=5)</td>
<td>0.063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM (n=4)</td>
<td>0.054</td>
<td>0.064</td>
<td>0.195</td>
<td>0.355</td>
</tr>
<tr>
<td>HCL (n=3)</td>
<td>0.410</td>
<td>0.345</td>
<td>0.761</td>
<td>0.902</td>
</tr>
<tr>
<td>WM (n=3)</td>
<td>0.791</td>
<td>0.454</td>
<td>0.895</td>
<td>0.290</td>
</tr>
</tbody>
</table>

The haematological parameters were assessed against the differing subtypes of both Hodgkin lymphoma and non-Hodgkin lymphoma and expressed as p-values in the tables below. Significant findings are highlighted in bold.

Table 10: Significance of the degree of splenomegaly versus laboratory parameters within the Non-Hodgkin Lymphoma group

<table>
<thead>
<tr>
<th></th>
<th>Haemoglobin</th>
<th>Red Cell Count</th>
<th>White Cell Count</th>
<th>Platelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Hodgkin’s lymphoma (n=91)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffuse large B cell lymphoma (n=39)</td>
<td>0.615</td>
<td>0.946</td>
<td>0.123</td>
<td>0.096</td>
</tr>
<tr>
<td>Burkitt’s lymphoma (n=22)</td>
<td>0.432</td>
<td>0.842</td>
<td>0.624</td>
<td>0.754</td>
</tr>
<tr>
<td>Plasmablastic lymphoma (n=7)</td>
<td>0.146</td>
<td>0.194</td>
<td>0.924</td>
<td>0.310</td>
</tr>
<tr>
<td>Follicular lymphoma (n=6)</td>
<td>0.566</td>
<td>0.636</td>
<td>0.167</td>
<td>0.756</td>
</tr>
<tr>
<td>Mantle cell lymphoma (n=6)</td>
<td>0.883</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undetermined (n=4)</td>
<td>0.490</td>
<td>0.676</td>
<td>0.651</td>
<td>0.882</td>
</tr>
<tr>
<td>Splenic marginal zone lymphoma (n=3)</td>
<td>0.932</td>
<td>0.040</td>
<td>0.761</td>
<td>0.901</td>
</tr>
<tr>
<td>Intermediate Burkitt’s / Diffuse large B cell lymphoma (n=3)</td>
<td>0.746</td>
<td>0.541</td>
<td>0.060</td>
<td>0.345</td>
</tr>
<tr>
<td>Hodgkin lymphoma (n=34)</td>
<td>0.525</td>
<td>0.829</td>
<td>0.179</td>
<td>0.383</td>
</tr>
<tr>
<td>Nodular sclerosis classical Hodgkin lymphoma (n=17)</td>
<td>0.271</td>
<td>0.774</td>
<td>0.472</td>
<td>0.267</td>
</tr>
<tr>
<td>Mixed cellularity classical Hodgkin lymphoma (n=10)</td>
<td>0.599</td>
<td>0.612</td>
<td>0.386</td>
<td>0.831</td>
</tr>
<tr>
<td>Unidentifiable (n=7)</td>
<td>0.536</td>
<td>0.537</td>
<td>0.298</td>
<td>0.340</td>
</tr>
</tbody>
</table>
3.2.3 Bone marrow failure syndromes

A total of 67 files of patients with bone marrow failure syndromes were assessed. In total, 5 patients (7.5%) were included in the study.

![Figure 22: Numbers of files seen and included within the bone marrow failure syndromes](image)

In the 4 patients with hypoplastic anaemia, all 4 had clinical evidence of pallor and all were jaundiced. The patient with aplastic anaemia had pallor and was not jaundiced.

Splenomegaly was detected clinically in all 5 patients. The median size of the spleen as palpated below the costal margin for the bone marrow failure syndromes was 4 cm. The smallest measurement was 4 cm and the largest measurement was 8 cm (IQR= 4 cm-6 cm).

None of the patients in the bone marrow failure group met the criteria for massive splenomegaly. The small numbers in this group preclude the comparison of the different methods to detect splenomegaly.
All the patients with Hypoplastic anaemia had hepatomegaly clinically. None of the patients had measurements fulfilling the criteria for massive hepatomegaly.

The patient with aplastic anaemia did not have hepatomegaly. The relative grading of both splenomegaly and hepatomegaly encountered within the bone marrow failure group is depicted below:

![Figure 23: Breakdown of clinical splenomegaly and hepatomegaly within the bone marrow failure syndromes](image)

The small sample size rendered data analysis of splenomegaly and the associated cytopaenias inconclusive. The haematological finding associated with the bone marrow failure syndromes are depicted in the figure below:
3.2.4 Nutritional anaemias

In total, 10 patients were assessed that had nutritional anaemias. There were 9 patients with iron deficiency anaemia, and 1 patient with megaloblastic anaemia. None of the 10 patients reviewed had either clinical or radiological evidence of splenomegaly.

3.2.5 Haemolytic anaemias

Over the 10 years, 53 files of patients with haemolytic anaemias were assessed. In total, 7 patients (13.2 %) were found to have splenomegaly and were included in the study.
In patients with haemolytic anaemia, 6 of the 7 patients had clinical evidence of pallor. Jaundice was detected clinically in 4 of the 7 patients.

Splenomegaly was detected clinically in all 7 patients. The median size of the spleen as palpated below the costal margin was 8 cm. The smallest measurement was 2 cm and the largest measurement was 11 cm (IQR=4 cm- 10 cm).

None of the patients with haemolytic anaemia met the criteria for massive splenomegaly. The low numbers of patients in this group were not statistically significant for analysis.

Five of the 7 patients with haemolytic anaemia had hepatomegaly clinically (none had massive hepatomegaly).

The grading of both splenomegaly and hepatomegaly encountered within the bone marrow failure group is depicted below:
Figure 26: Breakdown of clinical splenomegaly and hepatomegaly within the haemolytic anaemia syndromes

One patient’s haematological record could not be found. Thus, the results depicted below are for the 6 remaining patients. The haematological findings associated with the bone marrow failure syndromes are shown below:

Figure 27: Grading of haematological parameters within the haemolytic anaemia syndromes
3.2.6 Haemostatic abnormalities

A total of 307 files with disorders relating to haemostasis were assessed. In total, 5 patients (1.6%) met the inclusion criteria for the study.

![Figure 28: Numbers of files seen and included with disorders of haemostasis group]

All 5 patients included had clinical evidence of pallor, with both of the patients with TTP having jaundice clinically.

Splenomegaly was detected clinically in all 5 patients. The median size of the spleen palpated below the costal margin was 9 cm. The smallest measurement was 1 cm and the largest measurement was 13 cm (IQR=2 cm to 7 cm). Only the patient with venous thromboembolic disease met the criteria for massive splenomegaly. The cause of the massive splenomegaly on the background of VTED was found to include concomitant portal vein thrombosis, as part of a background pro-thrombotic state.

Four of the 5 patients with haemostatic disorders had hepatomegaly clinically. The patient with VTED did not have hepatomegaly. One of the patients with TTP had massive hepatomegaly. The grading of both splenomegaly and hepatomegaly are shown below:
Figure 29: Breakdown of clinical splenomegaly and hepatomegaly within the disorders of haemostasis group

The haematological findings for this group are depicted below:

Figure 30: Grading of haematological parameters within the disorders of haemostasis group
3.2.7 Miscellaneous conditions

The miscellaneous conditions comprise the following conditions: carcinoma, Castleman’s disease, eosinophilia, Gaucher’s disease, haemochromatosis, hypersplenism, retroviral disease, rheumatoid arthritis, sarcoma, sinus histiocytosis, spinal cord compression, systemic lupus erythematosus and tuberculosis.

Fifty-seven files meeting the above diagnoses were assessed, and 22 patients (38.5%) were eligible for inclusion.

![Figure 31: Numbers of files seen and included with miscellaneous haematological conditions](image)

All 22 patients included had clinical evidence of pallor; clinical jaundice was detected in 3 patients (13.6%). Splenomegaly was detected clinically in all 22 patients. The median size of the spleen as palpated below the costal margin was 4 cm. The smallest measurement was 1 cm and the largest measurement was 21 cm (IQR = 1 cm to 11.5 cm).
Six of the patients included met the criteria for massive splenomegaly, as previously defined. The underlying conditions in these 6 patients were: CD (3 patients), HPSM (1 patient), EMHP (1 patient) and GD (1 patient). Hepatomegaly was detected in 16 patients, of which none had massive hepatomegaly.

Figure 32: Breakdown of clinical splenomegaly and hepatomegaly within the miscellaneous haematological conditions group

The haematological findings for the miscellaneous conditions are shown below:

Figure 33: Grading of haematological parameters within the miscellaneous haematological conditions group
3.3 Overall Results of Clinical Parameters

Of the 367 patients included in the study, 10 patients had no laboratory information that could be found. Thus, the data below represents the laboratory findings for the remaining 357 patients.

3.3.1 Presence of haematological abnormalities

The overall number of patients assessed as having pallor was 336 (94.1%). The laboratory findings of a haemoglobin of < 12 g/dl in females and < 13 g/dl in males were able to corroborate this finding in 305 patients (85.4%) of cases overall. The data collected is further stratified and represented in the figure below:

![Figure 34: Grading of haematological parameters overall](image-url)
3.3.2 Presence of clinical jaundice

Clinical jaundice was evident in 36 patients (9.8%) on presentation. The laboratory correlation in keeping with clinical jaundice was seen in 33 patients (9.0%).

3.3.3 Presence of lymphadenopathy

The presence of significant lymphadenopathy was present in 166 patients (45.2%); localised lymphadenopathy was present in 44 patients (26.5%) and generalized lymphadenopathy was present in 122 patients (73.5%).

3.3.4 Presence of splenomegaly

Splenomegaly was detected clinically in 345 patients (94.0%) and by radiological methods (ultrasonography and CT scan) in 22 patients (6.0%). In the 22 patients in whom splenomegaly was diagnosed on radiological methods, 5 patients had a normal size spleen according to initial clerking notes, and in 17 patients, no mention of spleen size was made on initial clerking.

The median spleen length below the costal margin was 6 cm for all conditions. The range of splenomegaly in all conditions ranged from 1 cm to 32 cm (IQR= 3 cm to 13 cm).

Figure 35: Box and Whisker plot of clinical splenomegaly in all conditions
3.3.5 Presence of hepatosplenomegaly

A total of 281 patients (76.6%) in the study were found to have hepatomegaly in association with a documented splenomegaly. Hepatomegaly was found clinically in 277 patients (98.6%). In 4 of the patients (1.4%), the diagnosis of hepatomegaly was made on ultrasound findings alone.

The median hepatic length below the costal margin measured across all conditions was 6 cm (IQR= 4 cm - 10 cm). The range of splenomegaly across all conditions was from 1 cm to 27 cm below the costal margin.

Of the 4 patients in whom hepatomegaly was detected by radiographic methods alone, the ultrasonography measurements (in 3 patients) were from 16 cm to 19 cm, and the single CT scan measurement had a liver span of 19 cm.
Figure 37: Box and Whisker plot of clinical hepatomegaly in all conditions

Figure 38: Breakdown of hepatomegaly associated with clinical splenomegaly in all conditions
3.4 **Overall Results of Laboratory Parameters**

The laboratory parameters that were investigated in the study included: haemoglobin, red cell count, white cell count and platelet count.

The aim was to correlate any abnormalities in laboratory findings with associated splenomegaly, and to investigate whether the degree of splenomegaly influenced the degree of laboratory abnormality. Increasing spleen sizes are plotted below against the average of the haematological parameter associated with the corresponding spleen size.

![Figure 39: Degree of splenomegaly versus corresponding cell counts for all conditions](image)

A similar study was taken to determine if the degree of hepatomegaly was associated with any significant laboratory abnormalities. Again, increasing hepatic sizes are plotted below against the average of the haematological parameter associated with the corresponding liver size.
p-values were calculated from the above data by multiple regression analysis to investigate whether there was any independent association between laboratory investigations and all haematological conditions that were encountered. The results are displayed below (as p-values):

Table 11: Significance of laboratory findings for all conditions

<table>
<thead>
<tr>
<th></th>
<th>Haemoglobin</th>
<th>Red cell count</th>
<th>White cell count</th>
<th>Platelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>All conditions</td>
<td>0.146</td>
<td>< 0.0001</td>
<td>0.270</td>
<td>0.519</td>
</tr>
<tr>
<td>(372 patients)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5 Overall Results of Imaging Parameters

3.5.1 Comparison of the clinical and ultrasound measurement of splenomegaly

Of the 127 patients (34.6% of the total number in the study) in which data for both clinical and ultrasonography measurements existed for the same patient, 52 (40.9%) had measurements that were accurate to within 20% (this equated to a difference in measurement of less than 2 cm).

![Figure 41: Accuracy of measurements between clinical and ultrasound measurements of splenomegaly](image)

3.5.2 Comparison of the clinical and CT scan measurement of splenomegaly

Of the 89 patients (24.2% of the total number in the study) that were eligible for this comparison, 52 (58.4%) had measurements that were accurate to within 20% (this equated to a difference in measurement of less than 2 cm).
3.5.3 Comparison of the ultrasound and CT scan measurement of splenomegaly

Thirteen patients (3.5% of the total number in the study) were eligible for this comparison. Seven (53.8%) had measurements that were accurate to within 20% (this equated to a difference in measurement of less than 1 cm). No measurements showed differences greater than 49.9% (measurements of greater than 2.5 cm).
Figure 43: Accuracy of measurements between ultrasound and CT scan measurements of splenomegaly
CHAPTER 4: DISCUSSION

“Is it not a little remarkable that the ductless gland, to which for several centuries the attention of the profession has been specially directed, is the one of whose functions we are mostly ignorant” – W. Osler 1904 (Osler 1904).

4.1 Demographics of Included Patients

This study represents the largest cohort of patients with a clinical or radiological finding of splenomegaly in adult haematology patients carried out in South Africa to date. Previous similarly designed studies in the United States have evaluated splenomegaly in the setting of a referral hospital, and have not restricted their findings to the sub-speciality of Haematology alone (O'Reilly 1996, O'Reilly 1998).

Gender demographics across all conditions were evenly spread. Chris Hani Baragwanath Academic Hospital is a large, tertiary, public sector, University-associated hospital that is based in Soweto, Johannesburg. Because the hospital is based in the township of Soweto, Johannesburg, most patients who were included in this study were of black African descent. The predominantly black African population included in the study explains why the more traditional aetiologies of splenomegaly such as Thalassaemia and hereditary haemochromatosis were infrequently encountered.

The adult population at Chris Hani Baragwanath Academic Hospital include those individuals who are older than 14 years of age. Thus, all patients over the age of 14 years were included in this study. The distribution of ages seen over the 10-year period is skewed towards the 31 to 40-year age group (median age of presentation 44 years of age; IQR= 34-58 years)
This relatively younger age demographic possibly reflects the association between the relatively higher burden of HIV in this younger population, coupled with the association that exists between HIV and haematological abnormalities in the South African setting (Patel, Philip et al. 2011) (Patel, Philip et al. 2015).

The number of people who were HIV seropositive at enrolment into the study agrees with national statistics which show a similar prevalence rate for this period. Two thirds of patients enrolled in this study had a CD\textsubscript{4} count that was below 200 cells/µL, indicative of a state of severe immunocompromise at presentation. The relatively high proportion of patients with CD\textsubscript{4} counts above 500 cells/µL may be partially explained by the fact that patients with underlying lymphoproliferative diseases (specifically CLL) and concomitant HIV disease had a median CD\textsubscript{4} count of 961 cells/µL at presentation. The timing of the retrospective review encompassed a period when access to antiretroviral drugs was initially not legislated, to a period where individuals with a CD\textsubscript{4} count below 200 cells/µL (and eventually 350 cells/µL) were granted access to antiretroviral drugs. This shift in policy may account for the low numbers of patients on antiretroviral therapy at the time of the diagnosis of their haematological abnormality.

4.2 Underlying Aetiologies of Included Patients

Over half of the patients included in this study had neoplasms of the lymphoid lineage. Together with the myeloid neoplasms, these two groups of conditions constitute a total of 89 % of the underlying aetiologies of all patients included in the study. This is in accordance with previous studies which have demonstrated a similar overall picture of the lymphoid and myeloid neoplasms which dominated the list of causes of splenomegaly (Swaroop and O'Reilly 1999).

Within this study, the most common lymphoid malignancies were Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). The most common subtypes of HL were the nodular sclerosis and mixed cellularity subtype. Within the NHL group, diffuse large B cell lymphoma and Burkitt’s lymphoma together accounted for 67 % of cases.
The association with underlying retroviral disease in these specific conditions remained stronger for NHL with 71% of patients having underlying retroviral disease; in the HL group, the percentage of patients who were found to be HIV seropositive was 41%. Further discussion of splenomegaly with respect to lymphoid neoplasms appears later.

4.2.1 Myeloid neoplasms

Within the group comprising the myeloid neoplasms, the single largest entity of haematological disorders encountered was Chronic Myeloid Leukaemia (CML) which made up 64% of included patients in this group. When combined with Acute Myeloid Leukaemia (AML) and Primary Myelofibrosis (PMF), this proportion increased to 80% overall.

The prevalence of retroviral disease in the myeloid neoplasm group overall remained low at 14%. It is well known that the association of the myeloid neoplasms with HIV is only coincidental, and this is borne out by the low association in this study.

The mechanism of splenomegaly in the acute and chronic myeloid leukaemias is due to the infiltration of the spleen by leukaemic cells. The pathogenesis of splenomegaly in CML and Primary Myelofibrosis (PMF) is also thought to be due to extramedullary hematopoiesis.

Acute Myeloid Leukemia

Splenomegaly, per se, is not considered a poor prognostic indicator in AML (Ferrara and Schiffer 2013). Splenomegaly has been associated with the t (9;22) subtype of AML, which is rare (approximately 1% of all AML cases) and is postulated to arise from the transformation of unrecognized CML (Hassan, Qureshi et al. 1993, Lowenberg, Downing et al. 1999).

In a study by Sultan et al conducted in Pakistan in a cohort of 125 patients with AML, splenomegaly and hepatomegaly were detected in 16% and 12% of patients, respectively (Sultan, Zaheer et al. 2016). In the current study, 7.8% of patients with AML had evidence of splenomegaly.
The reason for the relatively lower number of patients presenting with splenomegaly in our cohort compared to cohorts in the developed countries may be because very few patients in our setting have a prior myelodysplastic syndrome (MDS).

Chronic Myeloid Leukaemia

In contrast to AML, 89.4% of patients with CML had splenomegaly and 100% of the patients with PMF had splenomegaly. The presence of an enlarged spleen remains the most common clinical abnormality detected in CML patients (Savage, Szydlo et al. 1997). Splenomegaly occurs traditionally in 50-70% of cases of CML in the chronic phase, and hepatomegaly is typically present in 10-20% of cases (Savage, Szydlo et al. 1997). In a retrospective study by Jonte et al, of 134 patients diagnosed with CML, splenomegaly was present in 73.8% of patients, and hepatomegaly in 37.6% at the time of diagnosis (Jonte, Barez et al. 1992).

Splenomegaly in the setting of CML is commonplace, as was documented in a cohort of 430 patients who were undergoing allogeneic bone marrow transplants at the Hammersmith Hospital. Symptoms attributable to an enlarged spleen were present in 18.6% of patients on questioning. A palpable spleen was present in 75.8% of patients, with 36.9% of those having a spleen that was >10 cm, with a median length of 15 cm (range 0 cm to 28 cm) below the costal margin (Savage, Szydlo et al. 1997). Massive splenomegaly has been quoted as being present in 61% of patients with CML (Yang, Rickman et al. 1991). In an earlier study of 40 patients with CML at CHBAH, splenomegaly was present in 93% of patients at presentation, with over half of the patients having massive splenomegaly (Patel 1994).

The findings from the current study revealed a much higher proportion of patients with massive splenomegaly, with 84.7% of patients with splenomegaly in the setting of CML meeting the criteria for massive splenomegaly (range 1 cm to 32 cm, median length of 16 cm). This discrepancy may be due to the late presentation of patients at Chris Hani Baragwanath Academic Hospital. This finding was echoed by the significantly higher proportion of patients with CML who presented with hepatomegaly (72.9% of patients, median size 6.25 cm below the costal margin, IQR 5 cm to 13.5 cm).
The presence of splenomegaly constitutes a criterion for patients who have a poorer prognosis in some classification systems (Hasford, Pfirrmann et al. 2003, Jabbour and Kantarjian 2012, Pfirrmann, Baccarani et al. 2016).

Primary Myelofibrosis

The presence of splenomegaly constitutes a cardinal clinical finding in underlying Primary Myelofibrosis (PMF) (Rupoli, Da Lio et al. 1994). The finding of splenomegaly has been postulated to confer a poorer prognosis (Wang, Xu et al. 2014). Splenomegaly accounts for severe disability, irrespective of the underlying cause (whether primary myelofibrosis or secondary myelofibrosis due to Polycythemia Rubra Vera or Essential Thrombocytosis). Splenomegaly in the setting of PMF is associated with poorer prognosis and survival (Randhawa, Ostojic et al. 2012). In a study of 72 patients with PMF, the incidence of splenomegaly was 97.1% and that of massive splenomegaly was 26.4% (Borosi 2011). In the data collected in this study, 100% of patients with PMF had splenomegaly and 81.8% of included patients met the criteria for massive splenomegaly. Again, this discrepancy in splenomegaly recorded at diagnosis between previous studies and this study may be accounted for by the late presentation and subsequent advanced disease of patients on presentation.

Polycythemia Rubra Vera

Splenomegaly constitutes a minor criterion for the diagnostic criteria of Polycythemia Rubra Vera (PRV) (Pearson and Messinezy 1996). In a retrospective review of 70 patients with confirmed PRV, splenomegaly was found in 48 patients (68.6%) (Ren, Fu et al. 2015).

Massive splenomegaly was found in 23% of patients with PRV in previous series (O'Reilly 1996, O'Reilly 1998). In the current study, 61.5% of patients with PRV (a total number of 8 patients) had splenomegaly and were included. The small number of patients with PRV and splenomegaly obviated any possible statistical analysis in this study.
Essential Thrombocytosis

Splenomegaly (usually not exceeding >3 cm below the left costal margin) occurs in 10-20% of patients at diagnosis (Andriani, Latagliata et al. 2016). This finding was confirmed in the retrospective review by Mayet done at Chris Hani Baragwanath Academic Hospital, where the median spleen size of the spleen was under 4cm (Mayet 2015). Splenomegaly confers a poor prognosis, thought to be due to the increased risk of thrombosis (Andriani, Latagliata et al. 2016, Haider, Gangat et al. 2016). In this study, 32.3% of the patients with ET had evidence of splenomegaly, with a median spleen size of 4 cm (IQR= 2cm to 6.5 cm). A correlation between spleen size and platelet number was significant (p=0.04), however the small numbers of patients included with ET may confound any positive findings.

In a retrospective review of Philadelphia chromosome negative myeloproliferative neoplasms done over a 10-year period at Chris Hani Baragwanath Academic Hospital’s Clinical Haematology Unit, PMF was found to be the most common subtype (42 patients), followed by ET (35 patients) and PV (17 patients) (Mayet 2015). Splenomegaly in this setting was present in 80% of patients overall. Ninety-eight percent of patients with PMF had splenomegaly clinically. The size of the spleen was as follows: <4cm below the costal margin 27%, 4-8cm below the costal margin 34%, and >8cm below the costal margin 39%. In patients with ET, 80% of patients had splenomegaly and in PV this proportion was 76%.

Myelodysplastic Syndromes

Myelodysplastic syndromes (MDS) encompass a wide variety of clinical processes which are classified according to the French-American-British (FAB) criteria introduced in 1982 as 5 distinct morphological categories: refractory anaemia (RA), refractory anaemia with excess of blasts (RAEB), refractory anaemia with excess of blasts in transformation (RAEB-t), refractory anaemia with ringed sideroblasts and chronic myelomonocytic leukaemias (Bennett, Catovsky et al. 1982). Splenomegaly in the setting of MDS is an uncommon finding (around 11%) and does not confer a survival prognosis (van der Weide, Sizoo et al. 1988, Mereuta and Turtureanu-Hanganu 1990, Takahashi, Koike et al. 1990). Four patients out of 20 with MDS were included in the study. This small number of patients precludes any statistical analysis.
4.2.2 Lymphoid neoplasms

The spleen is involved in one-third of HL and in 30-40% of NHL at presentation. Splenic infiltration is considered nodal in HL and extranodal in NHL (Paes, Kalkanis et al. 2010).

Acute Lymphocytic Leukaemia

Acute lymphocytic leukaemia is the most common leukaemia in childhood. Forty-one patients aged 15-44 years (mean age of 32 years) with ALL were noted in this adult haematology cohort, of whom 7 had splenomegaly (7/41=17%). Interestingly, 6/7 patients (85.7%) with splenomegaly, presented with massive splenomegaly.

Chronic Lymphocytic Leukaemia

CLL accounts for approximately 30% of adult leukaemias and remains the most common form of leukaemia in the Western hemisphere (Maurer and Hallek 2013). The pathogenesis of splenomegaly in CLL is thought to be due to infiltration of the spleen by malignant cells.

The associated clinical finding of splenomegaly is incorporated into the staging system for CLL (Rai classification), and the finding of a palpable spleen classifies the patient as having intermediate-risk disease (Rai stage II) (Rai, Sawitsky et al. 1975). Previous studies indicate that approximately 30-54% of patients have splenomegaly at diagnosis of CLL, and that 10-20% of cases have hepatomegaly at diagnosis (Zwiebel and Cheson 1998). The Binet scoring system also takes the presence of splenomegaly into account, which classifies the patient as a Binet “B” stage (intermediate prognosis) (Binet, Auquier et al. 1981).

Almost half (45.9%) of the 111 patients assessed with CLL had splenomegaly, and 90.2% had hepatomegaly on presentation. The significantly increased number of people with hepatomegaly may be explained by a possible later presentation of underlying disease (as hepatomegaly also forms part of the scoring systems) and is then associated with an intermediate outcome.
Hairy cell leukaemia

Hairy cell leukaemia is an uncommon B-cell lymphoproliferative disorder that involves the blood, bone marrow and the spleen. In the spleen, it characteristically involves the red pulp (Wotherspoon, Attygalle et al. 2015). Because of the relative rarity of this condition, retrospective analyses in the literature are limited by small patient numbers.

The incidence of splenomegaly in these analyses at the time of diagnosis is quoted at between 45% and 93.5% (Konkay, Uppin et al. 2014, Venkatesan, Purohit et al. 2014, Hacioglu, Bilen et al. 2015, Payandeh, Sadeghi et al. 2015). Five percent of patients with HCL had massive splenomegaly in the largest cohort of 71 patients (Golomb, Catovsky et al. 1978).

The rarity of this entity was echoed in our study by the small number of included patients (3 patients seen with HCL in a 10-year period, 3 with clinical splenomegaly, i.e. 100% at the time of diagnosis).

Hodgkin lymphoma

The background picture of Hodgkin lymphoma (HL) suggests an increasing association with HIV/AIDS (Patel, Philip et al. 2011, Spina, Carbone et al. 2011). In our study, 21.1% of patients with HL had splenomegaly on presentation, and there were no patients with massive splenomegaly. Half (50%) of the patients included had nodular sclerosis subtype of HL.

It is understood that HIV is an independent risk factor for the development of HL, with an estimated risk that is 10-fold higher than in the general population (Hessol, Katz et al. 1992, Carbone, Gloghini et al. 2009).

In a retrospective review at Chris Hani Baragwanath Academic Hospital that assessed HIV seroprevalence and HL, the HIV seroprevalence rate in a 2-year period (43 consecutive patients) was 67% (Patel, Philip et al. 2015). In the same study, 28% of patients had splenic involvement. Interestingly, the mixed cellularity subtype was most frequently encountered in the HIV seropositive population (in contrast to the HIV seronegative population), followed by the nodular sclerosis subtype (Thompson, Fisher et al. 2004).
Non-Hodgkin’s Lymphoma

The incidence rate for NHL among people with HIV is increased by 113-fold (Goedert, Cote et al. 1998). NHL is the commonest haematological malignancy seen in adults at CHBAH (40% of the total number of patients with haematological malignancies). The impact of the HIV/AIDS pandemic is clearly illustrated by the relative increase in cases from 24% 10 years previously. This increase in prevalence coincided with an increase in HIV seropositivity of 34% to 74% in the same cohort (Patel, Philip et al. 2015).

Splenic marginal zone lymphoma

Splenic marginal zone lymphoma is an exceedingly rare variant of NHL, accounting for approximately 2% of NHL, and is almost universally characterized by splenomegaly (Thieblemont, Felman et al. 2002, Xing, Kahlon et al. 2015). The splenomegaly results from the progressive replacement within the spleen’s red and white pulp by small lymphocytes (Thieblemont, Felman et al. 2002). Massive splenomegaly is common in the setting of splenic marginal zone lymphoma and splenectomy is often required for remediation of the associated cytopaenias. Only 3 patients (75% of all splenic marginal zone lymphomas – 1 patient was excluded due to lack of initial spleen measurement) with this condition were included in this study. The median spleen size was 22 cm in these 3 patients.

Mantle cell lymphoma

Mantle cell lymphoma is a subset of B-cell NHL with a distinctive morphological, immunophenotypic and characteristic cytogenetic abnormality, the t (11;14) (q13; q32). This is associated with overexpression of cyclin D1. Splenomegaly has been reported in 53,8% to 81% of patients (Duggan, Weisenburger et al. 1990, Bosch, Lopez-Guillermo et al. 1998, Papajik, Raida et al. 1999, Roy, Kar et al. 2013). It accounts for 6% of all NHL in the United States. However, data in South Africa is lacking (Rosen, Link et al. 2013). Splenomegaly is associated with a poorer outcome in patients with mantle cell lymphoma (Norton, Matthews et al. 1995, Bosch, Lopez-Guillermo et al. 1998).
Six patients (from a total of 15 patients seen over the 10-year period with mantle cell lymphoma) were included in the study. The median spleen size in the patients who were included was 19cm.

T-cell lymphoma

Splenomegaly has been noted to be present in 12% to 43% of the patients with an underlying T-cell lymphoma (Greer, York et al. 1984, Weisenburger, Linder et al. 1987). In our cohort, splenomegaly was detected in 3 of 16 files assessed (18.75%), with a median length of 19 cm.

Multiple myeloma

The presence of splenomegaly in the setting of multiple myeloma is an uncommon finding. In a case series of 2 patients who presented with massive splenomegaly as the presenting complaint and were subsequently diagnosed with multiple myeloma, splenectomy failed to reveal infiltration by lymphoid cells, as might have been expected (Jacobs, Wood et al. 1998). The possibility that the 3 patients in our series may have had alternative or concomitant diagnoses such as amyloidosis or Waldenstrom’s macroglobulinaemia, or have been a component of the POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy and skin changes) syndrome remains a consideration.

Another possible confounder is the fact that all 3 patients who had multiple myeloma associated with splenomegaly were HIV seropositive. The possibility therefore exists that there may be a secondary pathology (such as concomitant tuberculosis, for example).

Waldenstrom’s macroglobulinaemia

Waldenstrom’s macroglobulinaemia is a rare immunoproliferative disorder. The common clinical features encountered in Waldenstrom’s macroglobulinaemia include: anaemia, abnormal bleeding and hyperviscosity (due to an IgM paraprotein-macroglobulin). 20%-40% of patients are reported in the literature to present with lymphadenopathy or splenomegaly (McDermott and Bell 1999).
In a retrospective review of 22 patients with WM, the presence of splenomegaly has been postulated to confer a poorer prognosis (Andriko, Aguilera et al. 1997). Four patients were seen at Chris Hani Baragwanath Academic Hospital over a 10-year period, of which 3 had splenomegaly.

4.2.3 Bone marrow failure syndromes, haemolytic anaemias and haemostatic abnormalities

Hypoplastic and aplastic anaemia: In our study, splenomegaly was encountered in 4 out of 15 cases (26.7%) of patients with hypoplastic anaemia, and in 1 out of 52 cases (1.9%) of patients with aplastic anaemia.

Aplastic anaemia associated with splenomegaly is a rare presentation, but has been described in a case series (Kaito, Otsubo et al. 1995). Aplastic anemia is the result of a lack of precursors to produce the constituents of blood. Therefore, no extramedullary haematopoiesis occurs, as these precursors are globally lacking. Splenomegaly encountered in the setting of an aplastic anaemia may allude to a second pathological process (Kaito, Otsubo et al. 1995, Yoshioka, Kawamata et al. 1999). In keeping with this, is the higher proportion of splenomegaly seen in this study with hypoplastic anaemia, which is likely due to a secondary cause.

Haemolytic anaemia: hereditary spherocytosis (HS) was encountered in 2 out of 5 patients seen over a 10-year period. These low numbers reflect the ethnic population served by the hospital (over 90% of patients in this study were black Africans). HS remains an important cause of splenomegaly, and an indication for a possible splenectomy (Sandusky, Leavell et al. 1964, Jankulovski, Antovic et al. 2014, Comite Nacional de, Donato et al. 2015). The reported rate of splenomegaly in a cohort of 68 children with HS was 72.5% (Konca, Soker et al. 2015).

Thalassaemia was diagnosed in 5 patients in total, over a 10-year period. The low numbers correlate with the sample population, as described above. One of the 5 patients had splenomegaly clinically.
This figure is lower than figures reported in the literature, but is difficult to extrapolate due to the small numbers of patients. In heterozygote beta thalassaemia, a palpable spleen is found in 17.8% of patients (Tassiopoulos, Rombos et al. 1995). Both patients with persistence of foetal haemoglobin and sickle cell haemoglobin had splenomegaly clinically. Two of the 37 patients with autoimmune haemolytic anaemia

4.2.4 Miscellaneous conditions

Castleman’s disease

The relatively high numbers of miscellaneous conditions included in this study are explained by the high number of patients with Castleman’s disease (15/23 patients, 65.2% of the total number of miscellaneous conditions) that were included. Again, this may be a by-product of associated HIV infection, as all the patients with the multicentric variety of Castleman’s disease were found to be HIV seropositive. In a study done at Chris Hani Baragwanath Academic Hospital, multicentric Castleman’s disease was the most frequently encountered subtype of Castleman’s disease (92.1% of all cases) (Patel, Philip et al. 2015). In a cohort of 38 patients in this study, 57% had splenomegaly. The splenomegaly encountered in Castleman’s disease is thought to be associated with high levels of circulating IL-6 (Polizzotto, Uldrick et al. 2013).

The other miscellaneous conditions that were included were too small in number to be assessed.

4.3 Spleen Measurement of Included Patients

The clinical measurement of splenomegaly was documented on initial assessment of the patient by the attending doctor from the Clinical Haematology Unit. The attending doctors who completed the initial assessment of the patients ranged in expertise from community service medical officers to clinical haematology consultants. There was therefore a wide range of clinical experience of the attending doctors. Inter-observer reliability, although significant, has interestingly not been found to correlate with the clinical experience of the attending physician (Tamayo, Rickman et al. 1993).
The date on which the initial assessment of the patient was carried out as well as the date of any radiological assessments of splenomegaly were recorded in conjunction with the day of initiation of therapy for the underlying haematological condition. This was done to exclude the possibility of prior treatment resulting in a factitiously smaller spleen than initially encountered on presentation. There were no cases in which the clinical and radiological assessment of the size of the spleen were undertaken before the initiation of treatment for the underlying condition was commenced.

Within the myeloid group, the condition with the largest median spleen size was PMF (18cm clinically, 18.5cm radiologically), followed by CML (16.5cm clinically, 18cm radiologically) and then CMML (10.5cm clinically, 16.5cm radiologically). AML, PRV, ET, MDS and AUL had median spleen sizes that ranged from 12.5cm to 17cm clinically (and 13cm to 18.5cm radiologically). The numbers of included patients in these groups remained low, and so these results may not accurately reflect the degree of splenomegaly associated with them as the sample size was small. The population sampled may have had an effect on the incidence of these conditions, as mentioned previously.

The conditions in the lymphoid neoplasm group with the clinically largest median splenic sizes with enough data points so as to be statistically significant were: CLL (14cm clinically, 15cm radiologically), followed by NHL as a group (13cm clinically, 15cm radiologically), HL (12cm clinically, 14cm radiologically).

Although larger spleen measurements were found in other conditions in this group, the relatively small numbers within these groups preclude any extrapolation of the data. Within the HL group, patients with the nodular sclerosis subtype had the largest median spleen size (12cm clinically, 14cm radiologically). This was followed by the mixed cellularity subtype (11.5cm clinically, 14cm radiologically) and then by the unclassifiable (11cm clinically, 14cm radiologically).

On further assessment of the patients presenting with NHL, the subtype with the largest spleen size clinically was the mantle cell subtype (18cm clinically, 19cm radiologically). This was followed by the follicular subtype (15.5cm clinically, 19cm radiologically) and the Plasmablastic subtype (15cm clinically).
The numbers within these subtypes remain small and therefore data extrapolation remains problematic. The most common subtype encountered was the diffuse large B-cell lymphoma (13cm clinically, 14cm radiologically), and the median clinical size of splenomegaly overall in the NHL group was 13cm.

An interesting finding that was highlighted in this study was the pattern of discordant measurements between the clinical and ultrasound findings overall. As the spleen increased in size, so the proportion of discrepant results between the clinical and radiological measurements increased, such that 20.5% of patients had results that were over 50% discrepant between clinical and ultrasound measurement of the spleen. This equated to a measurement of approximately 4.5cm difference. Interestingly, this trend increased as the size of the spleen increased.

A possible explanation for this is that the spleen may be non-uniformly measured as it becomes massive. In previous studies, up to 20% of spleens with an estimated weight of 900g were not palpated at all.

The suggested correct measurement of an enlarged spleen is from the midpoint of the spleen, as it is palpated at the costal margin, to the edge of the spleen’s furthest point in an oblique/inferolateral direction, as shown below:

Figure 44: Suggested measurement of splenomegaly
If the spleen is massively enlarged, multiple non-uniform techniques may be used to measure the spleen:

- The clinician may measure the spleen from the mid-clavicular line (green line)
- The measurement may not be made in a line parallel to the midpoint of the spleen (red cross)

![Figure 45: Measurement of splenomegaly](image)

If the spleen is only mildly enlarged, these errors may be obviated, and thus clinical and radiological methods correlate more accurately.

The measurement of spleen sizes between ultrasound and CT scan correlated with a high degree of certainty.
4.4 Laboratory Findings of Included Patients

Radio-labelled studies show that the spleen contains approximately 25% of the exchangeable pool of B lymphocytes, and 10% of the exchangeable pool of T lymphocytes (Brox and Shustik 1993). Approximately one third of platelets are sequestered to the spleen in healthy states. These numbers may increase dramatically in the setting of an enlarged spleen, as sequestration within the spleen increases.

Laboratory variables were recorded for all conditions and assessed using a linear regression model to identify any possible associations between the degree of splenomegaly and baseline laboratory values.

Overall, white cell counts remained significantly associated with an enlarged spleen size (p < 0.001) for all conditions. The strongest association across all groups was that between the white cell count which was significantly associated with increasing spleen size within the myeloid neoplasms as a group (p <0.0001). There was no inversely proportional association between increasing spleen size and cell counts (i.e. a positive correlation between spleen size and the degree of sequestration could not be proven) in any of the conditions assessed in our study. In the study by Savage et al, in the setting of CML in particular, the white cell count correlated significantly with spleen size (p <0.001); neither white cell count nor spleen size correlated with platelet count (Jabbour and Kantarjian 2012). This finding was not corroborated in our study with regard to CML, with a p value that did not reach significance for an association between spleen size and either white cell count or platelet count (p=0.237 and p=0.364, respectively).

There were no statistically significant findings with regard to the degree of splenomegaly and laboratory abnormalities encountered within the PMF group (although the small sample set may obscure any possible associations).

In the lymphoid neoplasm group, the platelet count was significantly associated with increasing spleen size (p=0.01).

Hepatomegaly in the presence of an enlarged spleen was significantly associated with the haemoglobin (p=0.03) and more so with the white cell count (p=0.002). The association with platelet count did not reach statistical significance.
CHAPTER 5: CONCLUSION

5.1 Background

There remains a large, unknown element in the quantification of splenomegaly and the association with haematological disorders in South Africa. While the epidemiology in South Africa reflects both developed and developing problems, South Africa has an added burden of HIV/AIDS which influences the local picture. The current haematological aetiologies which result in splenomegaly may not be an accurate representation of the complete picture in South Africa, as this study shows.

While the majority of haematological aetiologies resulting in splenomegaly comprise myeloid and lymphoid neoplasms, aetiologies associated with HIV seropositivity such as multicentric Castleman’s disease is becoming more prevalent in the South African setting.

The South African setting provides a unique opportunity to explore the clinical manifestation of haematological disorders for a number of reasons:

There is a paucity of data of similar studies conducted in other countries, and those studies that have been done were done in the developed world.

5.2 Findings

Splenomegaly was present in (15.6%) of patients presenting to the Clinical Haematology Unit, Department of Medicine, Chris Hani Baragwanath Hospital over a 10-year period. Almost (89.3%) of these patients had underlying neoplasms of the myeloid and lymphoid lineage. The most common neoplasm of the myeloid lineage was CML (63.9%) of all myeloid neoplasms. The most common neoplasms of the lymphoid lineage were non-Hodgkin lymphoma (47%), CLL (26%) and Hodgkin lymphoma (17%).
The remaining 10% comprised of miscellaneous causes such as Castleman’s disease, haemolytic anaemias, haemostatic abnormalities, and bone marrow failure syndromes.

HIV seropositivity was associated most frequently with multicentric Castleman’s disease (100% seropositivity), followed by the non-Hodgkin lymphoma group (71% seropositivity) and then by the Hodgkin lymphoma group (41% seropositivity).

The findings of these studies can clearly not be extrapolated to the developing world, as the aetiology of splenomegaly that is encountered, although similar in some respects, remains distinctive due to the added burden of infectious diseases. This aetiological pattern was clearly shown in this study, with the most common aetiologies being myeloid and lymphoid neoplasms, with a definite slant towards the HIV seropositive-associated malignancies (Hodgkin lymphoma and non-Hodgkin lymphoma, as well as Castleman’s disease). Traditional developing world aetiologies of splenomegaly such as thalassaemia and sickle cell anaemia were encountered infrequently, due to the setting of the study in Soweto, Johannesburg, and the infrequency of these conditions in the local setting.

The late presentation of many of the patients included in this study with advanced stage disease, was also shown to impact the degree of splenomegaly encountered at presentation locally versus in international studies. The results from this study suggest that the approach to splenomegaly in the South African setting may be unique, and that the traditional haematological aetiologies of splenomegaly may need to be rethought and that a local classification system may prove to be more relevant.

As this retrospective study was conducted in a Clinical Haematology setting, the conditions causing splenomegaly were predominantly of a haematological nature. Other causes of splenomegaly such as TB, schistosomiasis, portal hypertension, infiltrative disorders, storage diseases etc. that are encountered in a non-haematological setting were therefore, not seen in this study.
CHAPTER 6: LIMITATIONS OF THE STUDY

Files lost to follow up:

- Due to the large time period covered in this study, a proportion of files were unable to be located in the Clinical Haematology Unit.
- Files not opened for patients seen as consultations in the ward: a proportion of patients may have been seen in the ward without files being opened for long term follow up.
- Patients consulted on in the ward by the Clinical Haematology Unit may have demised before files were opened for them.

Files with incomplete information

- Some patient records (in particular the initial clinical assessment of splenomegaly) were incomplete and were thus unable to be included in the study.
- Because of the retrospective nature of the study, some blood results were unable to be found on the laboratory system.

Small sample size in some haematological disorders

- Small groups of specific haematological aetiologies: in some groups, small numbers of included patients precluded the derivation of meaningful data outcomes without incurring bias.

Histological reporting

- The classification of histological findings of the underlying haematological disorders are dependent on inter-observer variability between pathologists and this may have affected the final histological diagnosis.
Limitations of a retrospective study

- Due to the retrospective nature of this study, selection and information bias may have negatively impacted on the validity of certain elements of the study.
- Patients with a primary diagnosis that was not haematological, may not have been included in the records of the Clinical Haematology Unit, even though the patients may have had an underlying secondary haematological disorder.

APPENDICES

Appendix A: Data Collection Sheet

ALLOCATED STUDY NUMBER: _____________

A) Demographic Information:
 a. Age: _______
 b. Gender: Male □ Female □
 c. Ethnic Group: African □ Caucasian □ Indian □ Coloured □
 d. Retroviral Status:
 i. Positive □ Negative □ Unknown □
 ii. CD4 count if known: ____________
 iii. Antiretroviral therapy: Yes □ No □ Unknown □
 iv. Duration of therapy: 0-1 years □ 1-5 years □ > 5years □ Unknown □

B) Clinical Information
 a. General: Pallor □ Jaundice □
 b. Splenomegaly Confirmed:
 i. Clinically: Size:_____ cm
 ii. Radiologically: Ultrasound □ Size:_____ cm
 CT Scan □ Size:_____ cm
 c. Lymphadenopathy:
 i. Extent: Localised □ Generalised □
 ii. Sites:
 __
 d. Hepatomegaly
 i. Clinically: Size:_____ cm
 ii. Radiologically: Ultrasound □ Size:_____ cm
 CT Scan □ Size:_____ cm
C) Laboratory Information

a. Initial Blood Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Parameter</th>
<th>Patient Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Blood Count</td>
<td>Haemoglobin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Red Cell Count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>White Cell Count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Platelets</td>
<td></td>
</tr>
<tr>
<td>Differential Count (%)</td>
<td>Neutrophils</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basophils</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eosinophils</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monocytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lymphocytes</td>
<td></td>
</tr>
<tr>
<td>Liver Function Tests</td>
<td>Direct Bilirubin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conjugated Bilirubin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GGT</td>
<td></td>
</tr>
</tbody>
</table>

b. Bone Marrow Aspirate and Trephine Biopsy

Conclusion:

c. Other Histological Findings:
 i. Biopsy Site___
 ii. Disease Stage:__

d. Final Diagnosis (including histological subtype)

Appendix B: Ethics Clearance Certificate

HUMAN RESEARCH ETHICS COMMITTEE (MEDICAL)

CLEARANCE CERTIFICATE NO. M150339

NAME: Dr Michelle Venter
(Principal Investigator)

DEPARTMENT: Internal Medicine
Chris Hani Baragwanath Academic Hospital

PROJECT TITLE: A Description of Splenomegaly in a Hospital Haematology Setting

DATE CONSIDERED: 27/03/2015

DECISION: Approved unconditionally

CONDITIONS:

SUPERVISOR: Prof M Patel

APPROVED BY: Professor P Cleaton-Jones, Chairperson, HREC (Medical)

DATE OF APPROVAL: 20/04/2015

This clearance certificate is valid for 5 years from date of approval. Extension may be applied for.

DECLARATION OF INVESTIGATORS

To be completed in duplicate and ONE COPY returned to the Secretary in Room 10004, 10th floor, Senate House, University.

I/we fully understand the conditions under which I am/we are authorized to carry out the above-mentioned research and I/we undertake to ensure compliance with these conditions. Should any departure be contemplated, from the research protocol as approved, I/we undertake to resubmit the application to the Committee. I agree to submit a yearly progress report.

Principal Investigator Signature: ____________________________ Date: 09/06/2015

PLEASE QUOTE THE PROTOCOL NUMBER IN ALL ENQUIRIES
Appendix C: Turn-it-in Letter from Supervisor

15 March 2017

The Chair
Postgraduate Studies Committee
Faculty of Health Sciences
University of the Witwatersrand

Re: Turn-it-in report: Dr Michelle Venter – 0102016D. ‘A description of splenomegaly in hospital haematology setting’

As the supervisor of Dr Venter’s MMed, I have reviewed the Turn-it-in report of her MMed research report. The Turn-it-in report identifies a similarity index of 21%. Much of this similarity relates to definitions and terminology, which is standardized. The other information which bears a similarity has been appropriately referenced.

Thank you

Yours sincerely

Moosa Patel MBChB, FCP(SA), MMed(Wits), FRCP(Lond.), PhD(Wits)

Professor and Head of Clinical Haematology, Department of Medicine, Chris Hani Baragwanath Academic Hospital and the Faculty of Health Sciences, University of the Witwatersrand,