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A time dependent nonlinear partial differential equationmodelling heat transfer in a porous radial fin is considered.TheDifferential
Transformation Method is employed in order to account for the steady state case. These solutions are then used as a means of
assessing the validity of the numerical solutions obtained via the Crank-Nicolson finite difference method. In order to engage in
the stability of this schemewe conduct a stability and dynamical systems analysis.These provide us with an assessment of the impact
of the nonlinear sink terms on the stability of the numerical scheme employed and on the dynamics of the solutions.

1. Introduction

Circular annular fins are extensively used to increase the rate
of heat transfer from a heat source for a given temperature
difference in heat exchange devices or to reduce the temper-
ature difference between the heat source and the given heat
flow rate of heat sink [1]. The use of fins is widely ranging
in engineering applications where it is necessary to enhance
the heat transfer from a surface to an adjacent coolant so that
the fin can perform within the acceptable temperature limits.
These engineering applications range from considerably large
systems such as industrial heat exchangers to smaller systems
such as transistors. Radial fins have been conventionally used
as a coolant for internal combustion engines, heat exchanges,
compressors, and so forth. Due to these extensive practical
applications this is considered a vibrant field of research; this
is true even more so since the problems that arise are nonlin-
ear and hence not always solvable via analytical techniques.

Many research articles have investigated the use of porous
fins [2]. Even though a porous material fin has low thermal
conductivity, a vast area of the material comes into contact
with the cooling agent enabling the porous fin to give superior
performance [2]. Over the past decades, numerous studies
have been conducted on the performance of annular fins
[3–7]. Aziz and Rahman [8] examined a fin comprising

functionally graded material and analysed the performance
on the radial fin with a continuously increasing thermal con-
ductivity in the radial direction.They discovered that the heat
transfer as well as the fin efficiency and effectiveness are at
their highestmaximumvalueswhen the thermal conductivity
of the fin varies inversely with the square of the radius.
Furthermore, they found that the use of a spatially averaged
thermal conductivitymodel is not recommended due to large
errors occurring in some cases. Kiwan [9] conducted a ther-
mal analysis of natural convection porous fins by introducing
Darcy’smodel to construct the energy equation governing the
distribution of temperature. He further discovered that, by
choosing a precise value for the thermal conductivity ratio
and the fin length to thickness ratio, the performance of
the porous fin exceeded the performance of the solid fin.
A study was conducted by Kiwan and Zeitoun [10] to test
the performance of rectangular porous fins mounted around
the inner cylinder of a cylindrical annulus by performing a
finite volume type numerical study. It was concluded that, in
comparison to solid fins, porous fins provided higher transfer
rates for similar configurations and that the heat transfer rate
from the cylinder equipped with porous fins decreased as the
fin inclination increased. Gorla and Bakier [11] investigated
natural convection and radiation in porous fins. They found
that the radiation transfers more heat in comparison to
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a similar model without radiation. Abu-Hijleh [12] analysed
the effects of using permeable fins on the forced convection
heat transfer from a horizontal cylinder. The results obtained
were similar to results obtained as per Kiwan and Zeitoun
[10] in terms of the permeable fins providing much higher
heat transfer rates. To study radial fins, a combination of the
Taylor transformation and finite difference approximation
was implemented by Yu and Chen [13, 14]. They further per-
formed a study on the optimization of a circular fin with vari-
able thermal parameters. Naidu et al. [15] set forth a numer-
ical study of natural convection from a cylindrical fin placed
in a cylindrical porous enclosure. Hence, they conducted a
conjugate conduction-convection analysis by solving the heat
conduction equation. Moitsheki and Harley [16] studied the
transient heat transfer through a longitudinal fin of various
profiles by employing classical Lie point symmetry methods.
They observed that for long periods of time the temperature
profile becomes unusual for the heat transfer in longitudinal
triangular and concave parabolic fins. This, however, was
corrected by increasing the thermogeometric fin parameter.
In recent studies, Darvishi et al. [17] accounted for the effects
of radiation and convection heat transfer in a rectangular
radial porous fin. This allowed for the heat flow to infiltrate
the porous fin enabling a solid-fluid interaction to occur.They
concluded that in a model containing radiation more heat is
present than in a similarmodel without radiation. In a similar
context, our model takes into account the time rate of change
of internal energy and the heat flow due to conduction as well
as the heat due to radiation and convection.

Extensive analytical studies have been done via the
Differential Transformation Method (DTM) for the solution
of problems such as the one under discussion. The DTM,
which was first proposed by Zhou [18], is a seminumerical-
analytical method applied to linear and nonlinear systems
of ordinary differential equations. The method captures the
exact solution in terms of a Taylor series expansion. This
method has been successfully implemented in engineering
applications [19–25]. Ndlovu and Moitsheki [26] derived
approximate analytical solutions for the temperature distri-
bution in a longitudinal rectangular and convex parabolic fin
with temperature dependent thermal conductivity and heat
transfer coefficients. These authors, for the first time, used
a two-dimensional DTM for the transient heat conduction
problem. Ertürk [27] constructed seminumerical-analytical
solutions for a linear sixth-order boundary value problem
using the DTM. It was observed that the method served as an
effective and reliable tool for such problems. Recently, Torabi
et al. [28] analysed the radiative radial fin with temperature
dependent thermal conductivity by implementing the DTM
as well as the Boubaker polynomials expansion scheme
(BPES). Similar to the results obtained byErtürk [27], suitable
results were obtained in predicting the solution for both
BPES and DTM. A study of a radial fin in terms of the
fin’s thickness with convection heating at the base and the
convection-radiative cooling at the tip was conducted byAziz
et al. [29]. Furthermore, they conducted an analysis using
DTM and verified the results by comparing it to an exact
analytical solution.Thepreceding literature clearly shows that
the Differential Transformation Method has been applied to

problems relating to many different fins, but no attempt has
been made to apply it when investigating the heat transfer in
a porous radial fin.

In terms of numerical investigations, an efficient,
accurate, extensively validated, and unconditionally stable
method was developed in the mid-20th century by Crank
and Nicolson [30] in order to evaluate numerical solutions
for nonlinear partial differential equations. Rani et al. [31]
obtained a solution for the time dependent nonlinear coupled
governing equations with the help of an unconditionally
stable Crank-Nicolson scheme for the transient couple stress
fluid flowing over a vertical cylinder. They observed that
the time taken for the flow to reach steady state increases
as the Schmidt and Prandtl values increase and decreases
with respect to the buoyancy ratio parameter. Furthermore,
Ahmed et al. [32] employed the Crank-Nicolson finite
difference scheme to the conservative equations in modelling
porous media transport for magnetohydrodynamic unsteady
flow. They found that the flow velocity and temperature
decrease with an increase in the Darcian drag force. The
concept of the Crank-Nicolson scheme combined with
the Newton-Raphson method was used by Qin et al. [33]
to model the heat flux and to estimate the evaporation in
applied hydrology and meteorology. The Crank-Nicolson
method was used to expand the differential equations
whereas the iterative Newton-Raphson method was used
to approximate latent heat flux and surface temperatures.
Both these methods proved to be successful. In a similar
context, Janssen et al. [34] implemented the Crank-Nicolson
scheme to transform a system of differential equations into
algebraic equations. The Newton-Raphson method is used
to implicitly enhance the model’s efficiency by improving the
poor convergence rate. Once again, it can be seen that the
Crank-Nicolson scheme with the Newton-Raphson method
has not been implemented for heat transfer in a porous radial
fin.

As far as we know, there has been no or very little
work that has been done on obtaining asymptotic solutions
or employing a dynamical systems analysis to the problem
presented in this research. The purpose of the asymptotic
solution is to reveal the dominant physical mechanisms of
the model. It can be seen in Moitsheki and Harley [16, 35]
that the impact of the thermogeometric parameter (M) in
terms of its proportionality to the length of the fin (𝐿)
was observed. They found that the heat transfer in the fin
seemed to be unstable for small values of (M) due to the
fact that M ∝ 𝐿. By investigating the asymptotic solution
to the steady state heat transfer in a rectangular longitudinal
fin, they were able to validate the above relationship and
establish the importance of the fin length. Furthermore, the
same authors [16, 35] conducted a small scale dynamical
analysis. In order to expand the analysis in [35], Harley [36]
employed an in-depth dynamical analysis to monitor the
behaviour especially at the fin tip. This dynamical analysis
also served as a means of investigating the role and effect
of the thermogeometric parameter. In this work we do not
derive an asymptotic solution; such a solution was derived
for the problem but we did not deem it useful in terms of
providing deeper insight into the dynamics observed. We
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will however employ a dynamical systems analysis, which
we find to be of immense use in classifying the dynamics of
specific points of the solution and the engagement between
parameters.

A vast amount of work has been conducted on the
steady state case of problems in this field since analytical
methods lend themselves more easily to the solution of
these equations. In this research, a time dependent par-
tial differential equation modelling the heat transfer in a
porous radial fin will be considered. The equation will be
derived and nondimensionalised appropriately in Section 2.
As a means of comparison to the computational methods
employed we structure a semianalytical solution via the
Differential Transformation Method in Section 3. In the
sections to follow, Sections 4 and 5, the partial differential
equation is solved numerically using the Crank-Nicolson
scheme combined with the Newton-Raphson method as a
predictor-corrector. In order to assess the effectiveness of this
scheme and its limitations we employ a dynamical systems
analysis in Section 6; in this manner we are able to engage
with the limitations placed on parameter values with regard
to obtaining solutions. Section 7 provides insight into the
comparative dynamics and stability of the equation obtained
via an alternatemeans of nondimensionalisation. Concluding
remarks are made in Section 8.

The importance of this work relates to the detailed
analysis of the dynamics of the temperature at the fin tip.
Furthermore, we are able to investigate the impact of the non-
linear source terms on the stability of the schemes employed
and the solutions that can be obtained. This highlights the
care than needs to be taken when choosing to solve equations
of this nature, particularly when solving via numerical tools.
Parameters of physical importance are shown to have value
limitations due to stability requirements. Consequently, while
numerical solutions may have been obtained here and by
other authors noting that these do not indicate an ability to
obtain solutions for all relevant parameter values or that it
may be assumed that solutions that seemed to have converged
are indeed dynamically stable and physically accurate is
needed.

2. Model Derivation

Consider a cylindrical porous radial fin with base radius 𝑟𝑏,
tip radius 𝑟𝑡, and thickness 𝑠 as shown in Figure 1. The fin
comprises an effective thermal conductivity porous material𝑘eff and permeability 𝐾. It is assumed that the tip of the fin
is adiabatic (i.e., a process that occurs without the transfer
of heat/matter between the system and its surroundings) and
the base of the fin is maintained at a constant temperature𝑇𝑏. The internal energy per unit volume with the absolute
temperature 𝑇 is denoted by 𝜌𝐶V𝑇. In accordance with
Darcy’s law, the finmakes contactwith an ambient fluidwhich
infiltrates the fin. The ambient fluid comprises an effective
density of the porous fin 𝜌𝑓, a specific heat of the porous
fin 𝐶𝑝,𝑓, the kinematic viscosity of the ambient fluid ]𝑓,
the thermal conductivity of the ambient fluid 𝑘𝑓, and the
volumetric thermal expansion coefficient of the ambient fluid𝛽𝑓. The top and bottom surfaces are presumed to have
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Figure 1: Porous radial fin geometry incorporating the energy
balance of a cylindrical cross section.

a constant surface emissivity and emit radiation to the ambient
fluid at temperature 𝑇𝑏. This also serves as the radiation heat
sink.

Constructing the energy balance of a fin element (Fig-
ure 1) of thickness 𝑠, circumference 2𝜋𝑟, and radial width 𝑑𝑟
at position 𝑟, we obtain

𝑞𝑟 − 𝑞𝑟+𝑑𝑟 − 𝑞conv − 𝑞rad = 𝐼, (1)

where

𝐼 = 𝜌𝐶V2𝜋𝑟𝑠 𝑑𝑟𝑑𝑇𝑑𝑡 , (2)

𝑞𝑟 − 𝑞𝑟+𝑑𝑟 = 𝑑𝑑𝑟 (2𝜋𝑟𝑘𝑡𝑑𝑇𝑑𝑟 ) 𝑑𝑟, (3)

𝑞rad = 2𝜖𝜎𝐹𝑓−𝑎 (2𝜋𝑟 𝑑𝑟) (𝑇4 − 𝑇4𝑎) , (4)𝑞conv = 𝜌𝑓V (𝑟) (2𝜋𝑟 𝑑𝑟) 𝑐𝑝,𝑓 (𝑇 − 𝑇𝑎) , (5)

where (2) is the time rate of change of internal energy in the
volume element, (3) is a basis of the application of Fourier’s
law of heat conduction, (4) denotes the heat loss due to
radiation through the top and bottom surfaces of the fin, and
(5) denotes the heat loss due to convection due to Darcy’s
flow through a porous fin. At any radiation location 𝑟, the
velocity of the buoyancy driven flow V(𝑟) is obtained by the
implementation of Darcy’s as follows:

V (𝑟) = 𝑔𝛽𝑓 (𝑇 − 𝑇𝑎)
V𝑓

. (6)

The Darcy model stimulates the fluid-solid interaction
in the porous medium. By substituting (2)–(6) into (1), the
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following nonlinear partial differential equation governing
the temperature distribution in the fin is obtained:𝜌𝐶V𝑘eff 𝜕𝑇𝜕𝑡 = 1𝑟 𝜕𝜕𝑟 (𝑟𝜕𝑇𝜕𝑟 ) − 2𝜖𝜎𝐹𝑓−𝑎𝑘eff 𝑠 (𝑇4 − 𝑇4𝑎)

− 𝜌𝑓𝐶𝑝,𝑓𝐾𝑔𝛽𝑓𝑘eff 𝑠𝑉𝑓 (𝑇 − 𝑇𝑎)2 , (7)

𝑟𝑏 ≤ 𝑟 ≤ 𝑟𝑡, 𝑡 ≥ 0. (8)

The boundary conditions are given by𝜕𝑇𝜕𝑟 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟𝑏 = 0,
𝑇 (𝑟𝑡, 𝑡) = 𝑇𝑏. (9)

The fin is initially kept at the temperature of the fluid
(ambient temperature) which is given by𝑇 (0, 𝑟) = 𝑇𝑎. (10)

We introduce the following nondimensional quantities:

𝜃 = 𝑇 − 𝑇𝑎𝑇𝑏 − 𝑇𝑎 ,𝜃𝑎 = 𝑇𝑎𝑇𝑏 − 𝑇𝑎 ,𝑟 = 𝑟 − 𝑟𝑡𝑟𝑏 − 𝑟𝑡 ,𝑟∗ = 𝑟𝑏𝑟𝑡 ,
𝜏 = 𝑘eff 𝑡𝜌𝐶V𝑟2𝑡 ,

(11)

N𝑐 = 𝜌𝑓𝐶𝑝,𝑓𝐾𝑔𝛽𝑓𝑟2𝑡 (𝑇𝑏 − 𝑇𝑎)𝑉𝑓𝑘eff 𝑠 ,
N𝑟 = 2𝜖𝜎𝐹𝑓−𝑎𝑟2𝑡 (𝑇𝑏 − 𝑇𝑎)3𝑘eff 𝑠 . (12)

Upon appropriate substitution and rearrangement (8)
becomes𝜕𝜃𝜕𝜏

= 1[𝑟 (𝑟∗ − 1) + 1] (𝑟∗ − 1) 𝜕𝜕𝑟 (𝑟 (𝑟∗ − 1) + 1𝑟∗ − 1 𝜕𝜃𝜕𝑟 )
− N𝑐𝜃2 − N𝑟 ((𝜃 + 𝜃𝑎)4 − 𝜃4𝑎) ,

(13)

where 𝑟∗ is defined as 𝑟𝑏/𝑟𝑡 and the parameters N𝑐 and N𝑟
are stated as per (12).

Employing the nondimensional transformations given by
(12) we find that at 𝑟 = 𝑟𝑏 we obtain 𝑟 = 0 and at 𝑟𝑡 we obtain

𝑟 = 1. Thus, we now work on the interval 0 ≤ 𝑟 ≤ 1 with𝜏 ≥ 0. As such the nondimensional boundary conditions are
given by 𝜕𝜃𝜕𝑟 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=0 = 0,

𝜃 (1, 𝜏) = 1, (14)

with the initial condition𝜃 (𝑟, 0) = 0. (15)

Equation (13) is a nonlinear partial differential equation
comprising two nonlinear terms. The first nonlinear term
N𝑐 refers to the buoyancy or natural convection transport of
energy by the infiltrate whereas the second nonlinear term
N𝑟 refers to the surface radiative heat transfer from the fin
to the ambient fluid. The parameter N𝑐 is a combination
of Rayleigh number 𝑅𝑎, Darcy’s number 𝐷𝑎, the thermal
conductivity ratio 𝐾𝑟, and the ratio of the fin tip radius to
fin thickness. The parameterN𝑟 indicates the role of surface
radiation to conduction in the fin. The parameter 𝜃𝑎 is the
ratio of the ambient fluid temperature and the difference
between the base temperature and the fluid temperature (𝑇𝑏−𝑇𝑎).

For the rest of this research we drop the hat on the
independent variable 𝑟 for simplicity. Furthermore, themodel
employed closely follows the work by Darvishi et al. [2]; in
order to be able to compare the results obtained by those
authors we use similar parameter values for 𝑟∗,N𝑐,N𝑟, and𝜃𝑎. The value of 𝑟∗ = 𝑟𝑏/𝑟𝑡 is however defined as the inverse
of 𝑟∗ in the investigations of Darvishi et al. [2] (in their work
they define this parameter as 𝑅∗ = 𝑟𝑡/𝑟𝑏 > 1). To allow for a
means of comparison we prescribe values for 𝑟∗ as 1/𝑅∗.
Remark 1. The nondimensional ambient temperature 𝜃𝑎 is
defined as 𝑇𝑎/𝑇𝑏 in the work of Darvishi et al. [2]. Their
nondimensionalisation has also been implemented in this
research (see Section 7); however a dynamical systems anal-
ysis led to the conclusion that there are limitations on certain
parameters when obtaining solutions. As such, we altered our
nondimensionalisation to define 𝜃𝑎 as 𝑇𝑎/(𝑇𝑏 − 𝑇𝑎), as above,
as ameans of comparison.This change in ratio impacts on the
behaviour observed by the solution with regard to changes in
the value of 𝜃𝑎. Instead of a linear relationship between𝑇𝑎 and𝜃𝑎 we have a nonlinear one given by 𝑇𝑎 = 𝜃𝑎𝑇𝑏/(1 + 𝜃𝑎), such
that the behaviour inversely corresponds to that of Darvishi
et al. [2]. As a means of checking the method and analysis
conducted in this research, we compared solutions and the
dynamics of these solutions to those obtained via the alternate
nondimensionalisation employed in [2]; in Section 7 we will
briefly comment on the results.

3. Differential Transformation Method

The DTM is an approximation method based on the Taylor
series expansion that can easily be applied to several linear
and nonlinear problems. It constructs an analytical solution
in terms of a polynomial and is capable of reducing the
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size of the computational work required for solution of
the equation. The predominant advantage of this method
is that it can be applied directly to linear and nonlinear
ordinary differential equations without requiring linearisa-
tion, discretisation, or perturbation [37]. This method has
been used in a similar manner by Ghasemi et al. [38] to
solve the nonlinear temperature distribution equation with
temperature dependent internal heat generation in porous
and solid longitudinal fins. Furthermore, Fidanoglu et al. [39]
used the method to construct a general expression for the
heat distribution profile of a fin with spine geometry. Based
on the fin effectiveness, entropy values, and efficiency, it was
found that the cylindrical fin had the highest rate of heat
transfer.

An arbitrary analytical function 𝑓(𝑥) in the domain 𝐷
can be expanded via the Taylor series about a point 𝑥 = 0
as

𝑓 (𝑥) = ∞∑
𝑘=0

𝑥𝑘𝑘! [𝑑𝑘𝑓 (𝑥)𝑑𝑥𝑘 ]
𝑥=0

. (16)

The differential transform of 𝑓(𝑥) can thus be defined as

𝐹 (𝑘) = 1𝑘! [𝑑𝑘𝑓 (𝑥)𝑑𝑥𝑘 ]
𝑥=0

, (17)

with the inverse differential transform as

𝑓 (𝑥) = ∞∑
𝑘=0

𝑥𝑘𝐹 (𝑘) . (18)

The fundamental theorems of the one-dimensionalDTM,
some of which will be implemented in this paper, are given as
follows.

Theorem 2. If 𝑓(𝑥) = 𝑔(𝑥) ± ℎ(𝑥), then 𝐹(𝑘) = 𝐺(𝑘) ± 𝐻(𝑘).
Theorem 3. If 𝑓(𝑥) = 𝑐𝑔(𝑥), then 𝐹(𝑘) = 𝑐𝐺(𝑘), where 𝑐 is a
constant.

Theorem 4. If 𝑓(𝑥) = 𝑑𝑛𝑔(𝑥)/𝑑𝑥𝑛, then 𝐹(𝑘) = ((𝑘 +𝑛)!/𝑘)𝐺(𝑘 + 𝑛).
Theorem 5. If 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥), then 𝐹(𝑘) = ∑𝑘𝑘1=0𝐺(𝑘1)𝐻(𝑘−𝑘1).
Theorem 6. If 𝑓(𝑥) = 𝑥𝑛, then 𝐹(𝑘) = 𝛿(𝑘 − 𝑛), where

𝛿 (𝑘 − 𝑛) = {{{
1, 𝑘 = 𝑛,0, 𝑘 ̸= 𝑛. (19)

Theorem 7. If 𝑓(𝑥) = 𝑔1(𝑥)𝑔2(𝑥) ⋅ ⋅ ⋅ 𝑔𝑛−1(𝑥)𝑔𝑛(𝑥), then
𝐹 (𝑘) = 𝑘∑

𝑘𝑛−1=0

𝑘𝑛−1∑
𝑘𝑛−2=0

⋅ ⋅ ⋅ 𝑘3∑
𝑘2=0

𝑘2∑
𝑘1=0

𝐺2 (𝑘1) 𝐺1 (𝑘2 − 𝑘1)
× ⋅ ⋅ ⋅ × 𝐺𝑛−1 (𝑘𝑛−1 − 𝑘𝑛−2) 𝐺𝑛 (𝑘𝑛 − 𝑘𝑛−1) . (20)

Through the use of these properties of the one-
dimensional DTM, we obtain the following iterative proce-
dure for the steady state case of (13):

Θ [𝑘 + 2] = ( − (𝑟∗ − 1)2(𝑘 + 1) (𝑘 + 2)) ( (𝑘 + 1) Θ [𝑘 + 1](𝑟∗ − 1) ((𝑟∗ − 1) + 1) 𝛿 [𝑘 − 1] − N𝑐 ∗ 𝑘∑
𝑘1=0

Θ [𝑘1] Θ [𝑘 − 𝑘1] − N𝑟

∗ (( 𝑘∑
𝑘4=0

𝑘4∑
𝑘3=0

𝑘3∑
𝑘2=0

𝑘2∑
𝑘1=0

Θ [𝑘1] Θ [𝑘2 − 𝑘1] Θ [𝑘3 − 𝑘2] Θ [𝑘4 − 𝑘3] Θ [𝑘 − 𝑘4])
+ 4𝜃𝑎( 𝑘∑

𝑘3=0

𝑘3∑
𝑘2=0

𝑘2∑
𝑘1=0

Θ [𝑘1] Θ [𝑘2 − 𝑘1] Θ [𝑘3 − 𝑘2] Θ [𝑘 − 𝑘3] Θ [𝑘 − 𝑘4])
+ 6𝜃2𝑎( 𝑘∑

𝑘2=0

𝑘2∑
𝑘1=0

Θ [𝑘1] Θ [𝑘2 − 𝑘1] Θ [𝑘 − 𝑘2]) + 4𝜃3𝑎Θ [𝑘] − 𝜃4𝑎)) .

(21)

Thismethod requires initial conditions; that is, we require
the values of 𝜃(0, 𝜏) and 𝜕𝜃(0, 𝜏)/𝜕𝑟 since the equation is of
second order. We notice that even though we have an initial
value for the first derivative, we do not have a value for 𝜃 at𝑟 = 0. Therefore we specify our initial conditions for iterative
procedure equation (4) as follows:

Θ (0) = Θ0,Θ (1) = 0, (22)

where the initial condition for 𝜃 is given an assumed value
while the first derivative condition becomes Θ(1) = 0.
Through the use of (21) and the conditions given by (22) we
are able to obtain
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Θ (0) = − (12) (−1 + 𝑟∗)2 (−Θ20N𝑐 − N𝑟 (Θ50 + 4Θ40𝜃𝑎 + 6Θ30𝜃2𝑎 + 4Θ0𝜃3𝑎 − 𝜃4𝑎)) ,
Θ (1) = − (16) (−1 + 𝑟∗)2 (N𝑟𝜃4𝑎 − (−1 + 𝑟∗) (−Θ20N𝑐 − N𝑟 (Θ50 + 4𝑎4𝜃𝑎 + 6Θ30𝜃2𝑎 + 4Θ0𝜃3𝑎 − 𝜃4𝑎))) ,
Θ (2) = − ( 112) (−1 + 𝑟∗)2 (Θ0N𝑐 (−1 + 𝑟∗)2 (−Θ20N𝑐 − N𝑟 (Θ50 + 4Θ40𝜃𝑎 + 6Θ30𝜃2𝑎 + 4Θ0𝜃3𝑎 − 𝜃4𝑎))

− 12𝑟∗ ((−1 + 𝑟∗) (N𝑟𝜃4𝑎 − (−1 + 𝑟∗) (−Θ20N𝑐 − N𝑟 (Θ50 + 4Θ40𝜃𝑎 + 6Θ30𝜃2𝑎 + 4Θ0𝜃3𝑎 − 𝜃4𝑎)))) − N𝑟 (−𝜃4𝑎
− 52Θ40 (−1 + 𝑟∗)2 (−Θ20N𝑐 − N𝑟 (Θ50 + 4Θ40𝜃𝑎 + 6Θ30𝜃2𝑎 + 4Θ0𝜃3𝑎 − 𝜃4𝑎))− 8Θ30 (−1 + 𝑟∗)2 𝜃𝑎 (−Θ20N𝑐 − N𝑟 (Θ50 + 4Θ40𝜃𝑎 + 6Θ30𝜃2𝑎 + 4Θ0𝜃3𝑎 − 𝜃4𝑎))
− 9Θ20 (−1 + 𝑟∗)2 𝜃2𝑎 (−Θ20N𝑐 − N𝑟 (Θ50 + 4Θ40𝜃𝑎 + 6Θ30𝜃2𝑎 + 4Θ0𝜃3𝑎 − 𝜃4𝑎))
− 2 (−1 + 𝑟∗)2 𝜃3𝑎 (−Θ20N𝑐 − N𝑟 (Θ50 + 4Θ40𝜃𝑎 + 6Θ30𝜃2𝑎 + 4Θ0𝜃3𝑎 − 𝜃4𝑎)))) ,

(23)

which allows us upon substitution into (18) to obtain

𝜃 (𝑟) = 𝑛∑
𝑘=0

(𝑟 − 𝑟0)𝑘Θ (𝑘) , (24)

where 𝑟0 = 0. However, in order to determine the solution
given by (24) we need to first find the value of Θ0. In
order to determine a value for Θ0, we could use the false
position method. The boundary condition which has not yet
been employed is 𝜃(1) = 1. Thus we substitute the values
obtained as per (23) into (24) for 𝑟 = 1. This provides us
with the equality 𝑊(Θ0) = 1, where 𝑊(Θ0) can be written
as V(Θ0)/𝑢(Θ0) and hence we need to solve the equation𝑍(Θ0) = V(Θ0) − 𝑢(Θ0) = 0. By plotting V(Θ0) and 𝑢(Θ0) we
are able to obtain an interval [Θ𝑎0 , Θ𝑏0], where Θ𝑎0 and Θ𝑏0 are
two guesses to Θ0, within which the two functions are equal.
Using these values we are able to obtain an improved value
which satisfies 𝑍(Θ0) = 0 as follows:

Θnew
0 = Θ𝑏0𝑍 (Θ𝑏0) − Θ𝑎0𝑍 (Θ𝑎0)𝑍 (Θ𝑏0) − 𝑍 (Θ𝑎0) . (25)

This procedure iterates until a chosen error tolerance is
reached such that 𝑍(Θnew

0 ) ≪ 𝜖. We employed this method
as well as NSolve in Mathematica as a means of verifying the
accuracy of the value. As a brief example, we consider a case
whereN𝑐 = 10,N𝑟 = 1, 𝑟∗ = 1/1.75, 𝜃𝑎 = 0.2, and 𝑛 = 3 to
obtain Θ0 = 0.564821 resulting in𝜃 (𝑟) = 0.564821 + 0.311221𝑟2 + 0.0444111𝑟3+ 0.0685314𝑟4 + 0.0110162𝑟5. (26)

In this work however, we have employed a polynomial
of order 𝑛 = 10 as our steady state solution; see Section 5.2

for discussions on solutions obtained. We are able to obtain a
polynomial of degree 𝑛 = 16 via this methodology; however
for any degree larger we find that limited memory becomes
a stumbling block for Mathematica. Furthermore, for 𝑛 = 10
we find that our tip temperature 𝜃0 = 0.55725 whereas for𝑛 = 16, 𝜃0 = 0.55678; thus increasing the degree of the poly-
nomial does not addmuch in terms of accuracy.This discrep-
ancy is also not of extreme concern since this semianalytical
solution is not our only means of comparison for the numer-
ical solutions obtained below (we also consider the work by
Darvishi et al. [2]). We can remark here that many terms are
likely to be needed in order for the series solution to match
solutions obtained in [2]; however it may still be used as a
reasonable measure for the numerical solutions we obtain.

4. Numerical Investigation

4.1. Crank-Nicolson Scheme. The Crank-Nicolson method
[40] is a finite difference method which is implicit in time,
often provides unconditional stability, and has a high order of
accuracy. Given the method’s advantages we will implement
the scheme for the equation under consideration. The com-
plexity of our problem lies in the nonlinear sink terms which
are likely to influence not only the stability of the scheme,
but also the order of accuracy it is able to obtain. We will at
first employ the scheme with an explicit consideration of the
nonlinear terms. In the subsection to follow we will develop
the method further as a means of comparison.

In terms of the finite difference schemes, we approximate𝜕𝜃/𝜕𝜏 using the forward time difference approximation at 𝜏𝑚
which gives

𝜕𝜃𝜕𝜏 ≈ 𝜃𝑚+1𝑛 − 𝜃𝑚𝑛Δ𝜏 , (27)
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where Δ𝜏 is the step size in the time domain 𝜏 ≥ 0.
Furthermore we approximate the spatial terms 𝜕𝜃/𝜕𝑟 and𝜕2𝜃/𝜕𝑟2 using the central difference approximations at 𝑟𝑛
giving 𝜕𝜃𝜕𝑟 ≈ 𝜃𝑚𝑛+1 − 𝜃𝑚𝑛−12Δ𝑟 ,

𝜕2𝜃𝜕𝑟2 ≈ 𝜃𝑚𝑛+1 − 2𝜃𝑚𝑛 + 𝜃𝑚𝑛−1Δ𝑟2 , (28)

respectively, where Δ𝑟 is the step size in the spatial domain𝑟 ∈ [0, 1].
The Crank-Nicolson scheme makes use of approxima-

tions to values halfway between nodes by taking averages over
two time points.Thus the finite difference approximations on
the spatial terms are given by𝜕𝜃𝜕𝑟 ≈ 𝜃𝑚+1𝑛+1 − 𝜃𝑚+1𝑛−14Δ𝑟 + 𝜃𝑚𝑛+1 − 𝜃𝑚𝑛−14Δ𝑟 ,

𝜕2𝜃𝜕𝑟2 ≈ 𝜃𝑚+1𝑛+1 − 2𝜃𝑚+1𝑛 + 𝜃𝑚+1𝑛−12Δ𝑟2 + 𝜃𝑚𝑛+1 − 2𝜃𝑚𝑛 + 𝜃𝑚𝑛−12Δ𝑟2 . (29)

Given our nondimensional boundary conditions (14)-(15)
and the finite difference approximation given by (27) we find
that 𝜕𝜃𝜕𝑟 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟0=0 󳨐⇒

𝜃𝑚1 = 𝜃𝑚−1 ∀𝑚,𝜃 (1, 𝜏) = 1 󳨐⇒𝜃𝑚𝑁 = 1 ∀𝑚, where 𝑟𝑁 = 1.
(30)

The initial condition is given as𝜃0𝑛 = 0 ∀𝑛. (31)

Having employed the Crank-Nicolson scheme on spatial
terms and a forward difference approximation for the time
derivative on (13), we have𝜃𝑚+1𝑛 − 𝜃𝑚𝑛Δ𝜏

= 1(𝑟𝑛 (𝑟∗ − 1) + 1) (𝑟∗ − 1) [𝜃𝑚+1𝑛+1 − 𝜃𝑚+1𝑛−14Δ𝑟
+ 𝜃𝑚𝑛+1 − 𝜃𝑚𝑛−14Δ𝑟 ]
+ 1(𝑟∗ − 1)2 [𝜃𝑚+1𝑛+1 − 2𝜃𝑚+1𝑛 + 𝜃𝑚+1𝑛−12Δ𝑟2
+ 𝜃𝑚𝑛+1 − 2𝜃𝑚𝑛 + 𝜃𝑚𝑛−12Δ𝑟2 ] − N𝑐 (𝜃𝑚𝑛 )2
− N𝑟 ((𝜃𝑚𝑛 + 𝜃𝑎)4 − 𝜃4𝑎) .

(32)

It should be noticed that we have not applied the Crank-
Nicolsonmethod to the nonlinear terms.This is for simplicity
at present; however this will be revisited in the next subsec-
tion. From (32) we thus obtain− 𝛼𝑛𝜃𝑚+1𝑛+1 + (1 + 𝛿) 𝜃𝑚+1𝑛 − 𝛽𝑛𝜃𝑚+1𝑛−1= 𝛼𝑛𝜃𝑚𝑛+1 + (1 − 𝛿) 𝜃𝑚𝑛 + 𝛽𝑛𝜃𝑚𝑛−1 − Δ𝜏N𝑐 (𝜃𝑚𝑛 )2− Δ𝜏N𝑟 ((𝜃𝑚𝑛 + 𝜃𝑎)4 − 𝜃4𝑎) , (33)

where we have defined

𝛾𝑛 = 1(𝑟𝑛 (𝑟∗ − 1) + 1) (𝑟∗ − 1) , (34)

such that

𝛼𝑛 = Δ𝜏𝛾𝑛4Δ𝑟 + Δ𝜏2Δ𝑟2 (𝑟∗ − 1)2 ,
𝛿 = Δ𝜏Δ𝑟2 (𝑟∗ − 1)2 ,

𝛽𝑛 = −Δ𝜏𝛾𝑛4Δ𝑟 + Δ𝜏2Δ𝑟2 (𝑟∗ − 1)2 ,
(35)

for the sake of simplicity. This equation can be given in the
following matrix notation:

A𝜃𝑚+1 = B𝜃𝑚 + G (𝜃𝑚) , (36)

whereA andB are the relevant coefficientmatrices andG(𝜃𝑚)
is defined as the vector of nonlinear terms only.

4.2. Crank-Nicolson Scheme: Newton-Raphson Implemen-
tation. In numerical computation, a predictor-corrector
method is an algorithm that implements two steps. First,
the prediction step calculates a rough approximation of the
desired quantity (in this case the nonlinear term on the 𝑚 +1th time level) whereas the second step refines the initial
approximation using other means. In this research we will
require such a technique, known as the Newton-Raphson
method, given the presence of the nonlinear sink terms.
The Crank-Nicolson method incorporating the Newton-
Raphson method has been used to determine the solution of
a nonlinear diffusion equation (see Kouhia [41] and Habibi et
al. [42]) to model the electron heat transfer process in laser
inertial fusion for the energy transport mechanism from the
region of energy decomposition into the ablation surface.The
method proved to be efficient as per the numerical results
obtained and hence is a natural extension of the method
employed in the previous subsection. We implement the
Newton-Raphson method [43] as done by Britz et al. [44]
and discussed in [45]. This method is iterative and has been
known for its fast convergence to the root as well as its
dependence on the initial condition. Furthermore, in order
to find the explicit inverse of a general tridiagonal matrix, we
shall implement Usmani’s method [46]; the reasoning behind
this decision will be discussed at a later stage.
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In this subsection we will now employ the Crank-
Nicolsonmethod for the nonlinear sink terms aswell. As such
we rewrite our scheme (33) as follows:− 𝛼𝑛𝜃𝑚+1𝑛+1 + (1 + 𝛿) 𝜃𝑚+1𝑛 − 𝛽𝑛𝜃𝑚+1𝑛−1

+ Δ𝜏N𝑐2 ((𝜃𝑚+1𝑛 )2)
+ Δ𝜏N𝑟2 ((𝜃𝑚+1𝑛 + 𝜃𝑎)4 − 𝜃4𝑎)

= 𝛼𝑛𝜃𝑚𝑛+1 + (1 − 𝛿) 𝜃𝑚𝑛 + 𝛽𝑛𝜃𝑚𝑛−1 − Δ𝜏N𝑐2 ((𝜃𝑚𝑛 )2)
− Δ𝜏N𝑟2 ((𝜃𝑚𝑛 + 𝜃𝑎)4 − 𝜃4𝑎) ,

(37)

where we again use the definitions given by (34)-(35). In
matrix notation,

A𝜃𝑚+1 − 12G (𝜃𝑚+1) = B𝜃𝑚 + 12G (𝜃𝑚) , (38)

where, once again, A and B are the relevant coefficient
matrices and G(𝜃𝑚) and G(𝜃𝑚+1) are defined as the vectors
of nonlinear terms only.

We obtain an approximation for the nonlinear vector at
the (𝑚+1)th time level in an iterative fashion as done by Britz
et al. [44]. The system

J (𝜃) 𝛿𝜃 = −F (𝜃) (39)

is solved where F is the set of difference equations created as
per the right hand side of (37) and J is the Jacobian of the left
hand side of (37). The starting vector at 𝜏 = 0 is chosen as
per initial condition (15) such that 𝜃(0) = 0. We solve for 𝛿𝜃(𝑘)
using (39) and then iterate as follows:𝜃(𝑘+1) = 𝜃(𝑘) + 𝛿𝜃(𝑘), (40)

until convergence is reached which provides us with an
approximation to 𝜃𝑚+1. The Newton-Raphson iteration con-
verges within 2-3 steps given that changes are usually rela-
tively small.

The convergence rate of the Crank-Nicolson method
incorporating the Newton-Raphson method was found to be
extremely slow,making themethod infeasible.We discovered
that this was due to the fact that the Jacobian J is either close
to being singular or badly scaled. As such, we decided to
implement Usmani’s method, which is a simple algorithm
for finding the explicit inverse of a general Jacobi tridiagonal
matrix [46]. This implementation provided the expected
results in terms of obtaining the inverse of the Jacobian.
Nonetheless, the computational time taken by the method to
reach convergence proved inefficient.

5. Remarks

5.1. Comparison of Numerical Schemes. In this subsection
we compare the results we obtained via our two numerical
methods, that is, the Crank-Nicolson scheme (CN) and the

Table 1: Temperature at 𝑟 = 0 for varied values of 𝜃𝑎.𝜃𝑎 𝜃CN
0 𝜃NR

0 𝜃DTM
0

0.2 0.54482 0.67327 0.55725
0.4 0.51953 0.64956 0.54037
0.6 0.48191 0.61510 0.51752
0.8 0.43321 0.57044 0.49348
Parameter values:N𝑐 = 10, N𝑟 = 1, 𝑟

∗ = 1/1.75, and 𝑇 = 1.

Table 2: Maximum error computed between the respective numer-
ical solutions obtained, where E = max |CNsol − CNNR

sol |, and their
respective temperatures at the tip of the fin for varied values ofN𝑐.

N𝑐 E 𝜃CN
0 𝜃NR

0

1 0.07624 0.79980 0.87604
10 0.12845 0.54482 0.67327
50 0.11464 0.27244 0.38697
Parameter values: 𝜃𝑎 = 0.2, N𝑟 = 1, 𝑟

∗ = 1/1.75, and 𝑇 = 1.

Crank-Nicolson scheme with Newton-Raphson predictor-
corrector and Usmani method (CNNR). It is important to
note that only the first scheme matches the results and
behaviour obtained and observed in Darvishi et al. [2].
While the second scheme provides appropriate behaviour,
the values at the origin indicate clear discrepancies with the
work conducted in [2] even for large values of 𝑇, where𝜏 ∈ [0, 𝑇]. Furthermore, the length of computational time
required for near convergence exceeds that required when
the CN scheme is implemented which converges swiftly. As
such, aside from the discrepancies in terms of the solutions
obtained, we conclude that the CNNR method is not efficient
in terms of running time.

In order to make a comparison between the two numer-
ical schemes we have employed, we allow our numerical
schemes to iterate for large time, termed 𝑇, so that we allow
for convergence to a steady state. In this instance we find that
convergence has occurred for the Crank-Nicolson scheme
at 𝑇 = 1; however this is not the case for the Crank-
Nicolson method with the predictor-corrector. To maintain
our CFL number as less than one for stability purposes, we
choose Δ𝑟 = 0.1 and Δ𝜏 = 0.0001. As can be surmised,
the consequence of this is that the Crank-Nicolson scheme
which employs the Newton-Raphson method as a means of
updating the nonlinear terms requires a lot of computational
time.

We find that while the two numerical schemes produce
solutions similar in shape and behaviour, there are discrep-
ancies when we consider the errors between the methods.
The temperature at the origin, that is, 𝜃0, is not the same
across the twomethods; see Tables 1–4. From a consideration
of the temperature at the fin tip we find that the solutions
do not converge to the same value of 𝜃0 for set parameter
values and furthermore do not converge at the same rate.
At 𝑇 = 100 the difference in the values of 𝜃0 across the
schemes and the maximum error (obtained via comparisons
between the numerical schemes) diminish, however not to
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Table 3: Maximum error computed between the respective numer-
ical solutions obtained, where E = max |CNsol − CNNR

sol |, and their
respective temperatures at the tip of the fin for varied values ofN𝑐.

N𝑟 E 𝜃CN
0 𝜃NR

0

5 0.10318 0.62343 0.72661
10 0.10698 0.52686 0.63384
50 0.09496 0.30490 0.39982
Parameter values: 𝜃𝑎 = 0.2, 𝑟

∗ = 1/1.75, N𝑐 = 1, and 𝑇 = 100.

Table 4: Maximum error computed between the respective numer-
ical solutions obtained, where E = max |CNCN

sol − CNNR
sol |, and their

respective temperatures at the tip of the fin, given as 𝜃0, for varied
values of 𝑟∗.𝑟∗ E 𝜃CN

0 𝜃NR
0

0.2 0.10849 0.27903 0.38752
0.4 0.12751 0.40088 0.52840
0.6 0.12615 0.57382 0.69998
0.8 0.07434 0.81944 0.89379
Parameter values: 𝜃𝑎 = 0.2, N𝑟 = 1, N𝑐 = 10, and 𝑇 = 1.

the extent that the difference is numerically inconsequential.
The convergence rate we suspect is heavily influenced by the
fact that the Jacobian required for the predictor-corrector
method is close to singular or badly scaled. In Figures 2
to 4 we employ the Crank-Nicolson method without the
predictor-corrector method due to the speed with which it is
able to reach convergence and its accuracy upon comparison
with the work by Darvishi et al. [2].

While there are discrepancies we can see behaviour
patterns emerging from the different solutions. In Figure 2
as well as Table 1 we observe that an increase in the
dimensionless ambient temperature leads to a decrease in the
tip temperature; however this can be misleading. We note,
as before, that the dimensionless ambient temperature 𝜃𝑎 is
defined as 𝑇𝑎/𝑇𝑏 in the work of Darvishi et al. [2]. In this
work we altered our nondimensionalisation to define 𝜃𝑎 as𝑇𝑎/(𝑇𝑏 − 𝑇𝑎), as above. This change in ratio impacts on the
behaviour observed by the solution with regard to changes in
the value of 𝜃𝑎. Instead of a linear relationship between𝑇𝑎 and𝜃𝑎 we have a nonlinear one given by 𝑇𝑎 = 𝜃𝑎𝑇𝑏/(1 + 𝜃𝑎), such
that the behaviour inversely corresponds to that of Darvishi
et al. [2]. Hence, our results are consistent with the physical
dynamics of the problem.

A consideration of Figure 3 and Table 2 shows the effect of
the natural convection heat loss (N𝑐) on the temperature dis-
tribution in the fin for set parameter values. As the buoyancy
effect increases, that is, N𝑐, the local temperature in the fin
decreases.This is indicative of the effect of natural convective
heat loss on the temperature distribution in the fin when the
radiation heat loss, the ambient temperature, and the ratio
of inner to outer radius are kept fixed. Since buoyancy is
principally a macroscale effect we see that the buoyancy force
(N𝑐) influences the velocity and temperature fields. Similarly,
for Figure 4 and Table 3 the increasing surface radiative heat
transfer from the fin to the ambient fluid, that is, N𝑟, leads
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Figure 2: Plot of the temperature withN𝑟 = 1,N𝑐 = 10, and 𝑟∗ =1/1.75 for 𝑇 = 1 and varied values of 𝜃𝑎.
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Figure 3: Plot of the temperature with 𝜃𝑎 = 0.2, 𝑟∗ = 1/1.75, and
N𝑟 = 1 for 𝑇 = 1 and varied values ofN𝑐.

to a decrease in the local fin temperature. Furthermore, the
impact of radiation (N𝑟) influences the temperature field by
increasing the heat transfer rates from the surface. We find
that when the convection parameter (N𝑐) and the radiation
parameter (N𝑟) are allowed to vary, the local fin temperature
decreases because of the increasing strength of radiative heat
exchange between the exposed surface of the fin and the
ambient [2].

5.2. Comparison of Numerical Results to Semianalytical Solu-
tion. We will now compare the results we obtained via our
two numerical methods against the series solution obtained
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Figure 4: Plot of the temperature with 𝜃𝑎 = 0.2, 𝑟∗ = 1/1.75, and
N𝑐 = 1 for 𝑇 = 100 and varied values ofN𝑟.

via our steady state DTM. We calculate a polynomial of
degree 𝑛 = 10 via the DTM and also consider the work in [2]
to be a benchmark. We find that all three solutions perform
well; however only the Crank-Nicolson scheme performs as
accurately and efficiently as required.

It can be seen in Table 5, for increasing 𝜃𝑎, that both
the value of 𝜃0 for the DTM and the maximum error
produced between the DTM and the CN scheme increase,
whereas the error between the DTM and the CNNR scheme
decreases. Table 6 indicates that the maximum difference
in the temperature between the DTM and the CN scheme
with and without the Newton-Raphsonmethod, respectively,
agrees to the first decimal place only for N𝑐 = 1; the
CN method performs well across the various values of this
parameter. Furthermore, this table shows that for increasing
values ofNc the error between the DTM and the CNmethod
decreases when 𝑇 = 5; in turn Table 7 indicates that for
increasing values of N𝑟 at 𝑇 = 100 we obtain an increase in
the error. These relationships are inverted when considering
the comparison between the semianalytical solution and the
CNNR scheme: the error increases for increasing values of
N𝑐 at 𝑇 = 5 and decreases for increasing values of N𝑟 at𝑇 = 100. These occurrences could be indicative of the impact
of the parametersN𝑟 andN𝑐 on the CN and CNNR methods,
respectively. For the CN scheme an increase in the values of𝜃𝑎 also leads to an increase in the error, while for the CNNR

scheme the inverse is true.We thus observe that an increase in
the values ofN𝑟 and 𝜃𝑎 (which are both contained in only one
of the sink terms) leads to an increase in the error between the
DTM and the CN scheme. In turn, an increase in the value
ofN𝑐, which is the coefficient of the second sink term, leads
to an increase in the error between the DTM and the CNNR

method.

Table 5: Numerical solutions obtained for DTM and the maximum
error computed between the DTM solution and the respective
numerical solutions obtained, where ECN = max |CNsol − DTMsol|
and ENR = max |CNNR

sol − DTMsol|, for varied values ofN𝑐.𝜃𝑎 𝜃DTM
0 ECN ENR

0.2 0.55725 0.01284 0.11602
0.4 0.54037 0.02087 0.10919
0.6 0.51752 0.03561 0.09758
0.8 0.49348 0.06028 0.07696
Parameter values:N𝑐 = 10, N𝑟 = 1, 𝑟

∗ = 1/1.75, and 𝑇 = 5.

Table 6: Numerical solutions obtained for DTM and the maxi-
mum error computed between the respective numerical solutions
obtained, where ECN = max |CNsol − DTMsol| and ENR =
max |CNNR

sol − DTMsol|, and their respective temperatures at the tip
of the fin for varied values ofN𝑐.

N𝑐 𝜃DTM
0 ECN ENR

1 0.81615 0.01635 0.05989
10 0.55725 0.01284 0.11602
50 0.27747 0.01177 0.10950
Parameter values: 𝜃𝑎 = 0.2, N𝑟 = 1, 𝑟

∗ = 1/1.75, and 𝑇 = 5.

Table 7: Numerical solutions obtained for DTM and the maxi-
mum error computed between the respective numerical solutions
obtained, where ECN = max |CNsol − DTMsol| and ENR =
max |CNNR

sol − DTMsol|, and their respective temperatures at the tip
of the fin for varied values ofN𝑐.

N𝑟 𝜃DTM
0 ECN ENR

1 0.81615 0.01672 0.04911
5 0.66993 0.047281 0.03450
10 0.59043 0.06465 0.01524
Parameter values: 𝜃𝑎 = 0.2, 𝑟

∗ = 1/1.75, N𝑐 = 1, and 𝑇 = 100.

Table 8: Numerical solutions obtained for DTM and the maxi-
mum error computed between the respective numerical solutions
obtained, where ECN = max |CNsol − DTMsol| and ENR =
max |CNNR

sol − DTMsol|, and their respective temperatures at the tip
of the fin, given as 𝜃0, for varied values of 𝑟∗.𝑟∗ 𝜃DTM

0 ECN ENR

0.2 0.30038 0.05459 0.07799
0.4 0.41843 0.02504 0.09325
0.6 0.58528 0.01230 0.08572
0.8 0.82286 0.00361 0.02814
Parameter values: 𝜃𝑎 = 0.2, N𝑟 = 1, N𝑐 = 10, and 𝑇 = 100.

The impact of a change in the value of 𝑟∗ provides
behaviour which is quite stable; see Table 8. The error
decreases in both instances; however the error for the CN
scheme is much less than that obtained with the introduction
of the Newton-Raphson predictor-corrector.

The solutions obtained in Darvishi et al. [2] indicate that
the CN scheme provides excellent numerical solutions for
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the problem under consideration. As such, the errors we
obtained when comparing our numerical solutions to the
DTM are in part due to a poor approximation of this series
solution. Due to computational limitations we are able to
obtain a limited number of terms before a lack of memory
becomes an issue; 𝑛 = 10 are very few terms if one considers
the work of other authors such as Darvishi et al. [2] and
Aziz et al. [29], for instance. A comparison with the results
obtained by Darvishi et al. [2] confirms that the CN scheme
produces accurate solutions quickly and efficiently, without
the requirement of an excessive amount of terms to be
calculated and evaluated as per the semianalytical methods
which have been employed in the literature. Unfortunately
the addition of a Newton-Raphson predictor-corrector slows
the scheme down excessively. By increasing 𝑇 one can see
that the scheme does tend to the values obtained by the CN
method; however in terms of computational time the CNNR

scheme has shown itself to be inefficient.

6. Dynamical Systems Analysis

6.1. StabilityAnalysis on the Linear System. Astability analysis
of a system allows us to determine whether or not a system
is stable or will be stable if perturbed. In this subsection,
we implement a von Neumann stability analysis which is a
procedure used to analyse the stability of finite difference
schemes by Fourier methods as applied to linear differential
equations [47]. It can be noted that the method requires
the solution to be periodic and a constant spacing Δ𝜏. The
method does not account for the boundary conditions.

The structure of the equation incorporates nonlinear sink
terms; these do not allow for the use of a von Neumann
stability analysis as a means of investigating the numerical
scheme. As such we consider the equation without these
terms; that is, we consider the linear scheme excluding sink
terms.The purpose of this is to determine the extent to which
the sink terms may impact on the stability of the schemes
we have implemented. We have already noted the impact of
the parameters N𝑟 and N𝑐 on the relevant schemes with
regard to the maximum error obtained when comparing to
the DTM. We will now continue to investigate this phenom-
enon.

Consider the linearised structure of (33) for the Crank-
Nicolson scheme:− 𝛼𝑛𝜃𝑚+1𝑛+1 + (1 + 𝛿) 𝜃𝑚+1𝑛 − 𝛽𝑛𝜃𝑚+1𝑛−1= 𝛼𝑛𝜃𝑚𝑛+1 + (1 − 𝛿) 𝜃𝑚𝑛 + 𝛽𝑛𝜃𝑚𝑛−1, (41)

where we define

𝛼𝑛 = Δ𝜏𝛾𝑛4Δ𝑟 + Δ𝜏2Δ𝑟2 (𝑟∗ − 1)2 ,
𝛽𝑛 = −Δ𝜏𝛾𝑛4Δ𝑟 + Δ𝜏2Δ𝑟2 (𝑟∗ − 1)2 , (42)

with 𝛾𝑛 and 𝛿 are defined as before (34) and (35), respectively.
Upon substitution of 𝜃𝑚𝑛 = 𝜉𝑚𝑒𝑖𝑛Δ𝑟𝜔, where 𝑖2 = −1, into (41)
we obtain − 𝛼𝑛𝜉𝑚+1𝑒𝑖(𝑛+1)Δ𝑟𝜔 + (1 + 𝛿) 𝜉𝑚+1𝑒𝑖𝑛Δ𝑟𝜔− 𝛽𝑛𝜉𝑚+1𝑒𝑖(𝑛−1)Δ𝑟𝜔= 𝛼𝑛𝜉𝑚𝑒𝑖(𝑛+1)Δ𝑟𝜔 + (1 − 𝛿) 𝜉𝑚𝑒𝑖𝑛Δ𝑟𝜔+ 𝛽𝑛𝜉𝑚𝑒𝑖(𝑛−1)Δ𝑟𝜔.

(43)

Introducing Euler’s identities into (43) and simplifying
provide

𝜉 (Δ𝜏𝛾𝑛4Δ𝑟 (−2𝑖 sin (𝜔Δ𝑟))
+ Δ𝜏2Δ𝑟2 (𝑟∗ − 1)2 (−2 cos (𝜔Δ𝑟)) + 1 + 𝛿)
= Δ𝜏𝛾𝑛4Δ𝑟 (2𝑖 sin (𝜔Δ𝑟))
+ Δ𝜏2Δ𝑟2 (𝑟∗ − 1)2 (2 cos (𝜔Δ𝑟)) + 1 − 𝛿.

(44)

Further simplification allows us to find the amplification
factor

𝜉 = 1 − 𝛿 + (Δ𝜏𝛾𝑛/2Δ𝑟) 𝑖 sin (𝜔Δ𝑟) + (Δ𝜏/Δ𝑟2 (𝑟∗ − 1)2) cos (𝜔Δ𝑟)1 + 𝛿 − (Δ𝜏𝛾𝑛/2Δ𝑟) 𝑖 sin (𝜔Δ𝑟) − (Δ𝜏/Δ𝑟2 (𝑟∗ − 1)2) cos (𝜔Δ𝑟) . (45)

We note at this point that the von Neumann stability
analysis is applicable to problems with constant coefficients,
and yet 𝛾𝑛 is dependent on 𝑟𝑛. However, wemay still deem the
matrix to be a matrix of constant coefficients since we know
the domain of 𝑟𝑛 (i.e., 𝑟𝑛 ∈ [0, 1]). Hence, upon substitution
of 𝑟𝑛 for 𝑛 = 0, 1, . . . , 𝑁 we obtain constant coefficients as
required. We also note that 0 < 𝛿 < 1.

Given that 𝑟∗ = 𝑟𝑏/𝑟𝑡 < 1 for 𝑟𝑛 ∈ [0, 1] and having
defined 𝛾𝑛 = 1(𝑟𝑛 (𝑟∗ − 1) + 1) (𝑟∗ − 1) , (46)

we find that since 𝑟∗ − 1 < 0 and (𝑟𝑛(𝑟∗ − 1) + 1) > 0, 𝛾𝑛 < 0.
We also note that at 𝑟 = 0 we obtain 𝛾𝑛 = 1/(𝑟∗ − 1) < 0
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and when 𝑟 = 1 similarly 𝛾𝑛 = 1/𝑟∗(𝑟∗ − 1) < 0. Now we let𝛾𝑛 = −𝛾𝑛 > 0, providing the amplification factor

󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1 − 𝛿 − (Δ𝜏𝛾𝑛/2Δ𝑟) 𝑖 sin (𝜔Δ𝑥) + (Δ𝜏/Δ𝑟2 (𝑟∗ − 1)2) cos (𝜔Δ𝑥)1 + 𝛿 + (Δ𝜏𝛾𝑛/2Δ𝑟) 𝑖 sin (𝜔Δ𝑥) − (Δ𝜏/Δ𝑟2 (𝑟∗ − 1)2) cos (𝜔Δ𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (47)

We may conclude that since |𝜉| < 1, without any required
conditions on the relevant step sizes or parameters, the linear
system is unconditionally stable.

This conclusion indicates that the structures of the coeffi-
cient matrices employed should not impact on the stability
of the numerical solutions obtained once the nonlinear
terms have been incorporated; rather we need to engage
with the impact of the sink terms on the stability of the
schemes considered. Thus, to fully investigate the stability of
the dynamics of the equation, we now turn to a nonlinear
dynamical systems analysis. In this manner we aim to gain
insight into the impact of the nonlinear terms on the stability
of the relevant schemes.

6.2. Nonlinear Dynamical Systems Analysis. Before we are
able to ascertain whether a simple linearisation of the steady
state equation may be used as a means of analysing the
dynamics of the nonlinear system,we need to determinewhat
this linearised system and the relevant equilibriumpoints are.
It must be noted that we consider the case where 𝑟 = 0; this
is due to the physical relevance placed on the dynamics at the
fin tip.

Firstly, as per [48], we restructure our steady state second-
order ordinary differential equation into a system of first-
order ordinary differential equations as follows:

𝜃̇ = F (𝜃, 𝑟) , (48)

so that

̇𝜃1 = 𝜃2, (49)

̇𝜃2 = (1 − 𝑟∗) 𝜃2𝑟 (𝑟∗ − 1) + 1 + N𝑟 (𝑟∗ − 1)2 ((𝜃1 + 𝜃𝑎)4 − 𝜃4𝑎)
+ N𝑐 (𝑟∗ − 1)2 𝜃21 . (50)

We now turn to fixed point solutions or equilibrium
solutions with the intention of investigating the dynamics of
the system [49]. In the case of this nonlinear, nonautonomous
system the fixed points (or equilibrium points) are defined by
the vanishing of the vector field; that is,

F (𝜃, 𝑟) = 0. (51)

Theorems for the stability of fixed points of the system

𝜃̇ = 𝐴𝜃 + f (𝜃, 𝑟) (52)

are presented by Coddington and Levinson [50], where 𝐴 is
the autonomous part of the Jacobian𝐷𝜃F(𝜃, 𝑟) and a constant
matrix (upon substitution of the relevant equilibrium points
and parameter values) and the vector function f is continuous
in 𝜃 and 𝑟. In order to employ these theorems we write our
system of equations (50) in the form (52):

𝜃̇
= [ 0 14N𝑟 (𝑟∗ − 1)2 (𝜃1 + 𝜃𝑎)3 + 2N𝑐 (𝑟∗ − 1)2 𝜃1 0] 𝜃

+ [[[
01 − 𝑟∗𝑟 (𝑟∗ − 1) + 1𝜃2]]] .

(53)

As per (51) we obtain the equilibrium points (𝜃1, 𝜃2):
(0, 0) , (54)

( 3√18N𝑐N2𝑟𝜃𝑎 − 10N3𝑟𝜃3𝑎 + 5.19615√N3𝑐N
3
𝑟 + 14N2𝑐N4𝑟𝜃2𝑎 − 12N𝑐N5𝑟𝜃4𝑎 + 4N6𝑟𝜃6𝑎3N𝑟

− 3N𝑐N𝑟 + 2N2𝑟𝜃2𝑎3N𝑟 3√18N𝑐N2𝑟𝜃𝑎 − 10N3𝑟𝜃3𝑎 + 5.19615√N3𝑐N
3
𝑟 + 14N2𝑐N4𝑟𝜃2𝑎 − 12N𝑐N5𝑟𝜃4𝑎 + 4N6𝑟𝜃6𝑎 − 4𝜃𝑎3 , 0) .

(55)
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Figure 5: Phase plots indicating the trajectories around the equilibrium points (54) and (55) for 𝜃𝑎 = 0.2, 𝑟∗ = 1/1.75, andN𝑟 = 1. (a) has
N𝑐 = 0.1 whereas (b) hasN𝑐 = 0.01. (a) is a closer view of the second equilibrium point.

We follow the work of Coddington and Levinson [50] as
discussed inNayfeh and Balachandran [48]. As such, we need
only consider the eigenvalues of thematrix𝐴 from (53)which
we can write with general parameter values as follows:𝜆1 = −√2 (𝑟∗ − 1)

⋅ √N𝑐𝜃1 + 2N𝑟𝜃31 + 6N𝑟𝜃21𝜃𝑎 + 6N𝑟𝜃1𝜃2𝑎 + 2N𝑟𝜃3𝑎,𝜆2 = √2 (𝑟∗ − 1)
⋅ √N𝑐𝜃1 + 2N𝑟𝜃31 + 6N𝑟𝜃21𝜃𝑎 + 6N𝑟𝜃1𝜃2𝑎 + 2N𝑟𝜃3𝑎,

(56)

to be evaluated at the equilibrium points in order to classify
them. From the form they take we can see two possible cases
(depending on whether the term inside the square root is
positive or negative): a saddle point or a centre.

6.2.1. Case 1: Equilibrium Point (54). The eigenvalues of 𝐴 at
equilibrium point (54) are

𝜆1 = −2√N𝑟 (𝑟∗ − 1) 𝜃3/2𝑎 ,
𝜆2 = 2√N𝑟 (𝑟∗ − 1) 𝜃3/2𝑎 . (57)

We can see that this equilibrium point (given the ranges
for the relevant parameter values) represents a saddle point
which is unstable; see Figure 5(b).

Coddington and Levinson [50] have shown that if at least
one eigenvalue of 𝐴 has a real part which is positive, then
upon f(𝜃, 𝑟) satisfying the requirement that, given any 𝜖 > 0,
there exist 𝜎 andR such that

f (𝜃, 𝑟) ≦ 𝜖 󵄨󵄨󵄨󵄨𝜃󵄨󵄨󵄨󵄨 (󵄨󵄨󵄨󵄨𝜃󵄨󵄨󵄨󵄨 ≦ 𝜎, 𝑟 ≧ R) , (58)

the solution 𝜃 = 0 of (52) is not stable. In our case, we find
that for the equilibrium point (0, 0) at least one eigenvalue of𝐴 is positive and furthermore

f (𝜃, 𝑟) = [[[
0 00 1 − 𝑟∗𝑟 (𝑟∗ − 1) + 1]]] [𝜃1𝜃2] . (59)

We need to show that |((1−𝑟∗)/(𝑟(𝑟∗ −1)+1))𝜃2| ≦ 𝜖|𝜃2|.
In an attempt to do so, we maximise the term on the left of
the inequality; that is, we consider 𝑟 = 0 such that󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1 − 𝑟∗𝑟 (𝑟∗ − 1) + 1𝜃2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≦ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1 − 𝑟∗𝑟 (𝑟∗ − 1) + 1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜃2󵄨󵄨󵄨󵄨

≦ 󵄨󵄨󵄨󵄨1 − 𝑟∗󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜃2󵄨󵄨󵄨󵄨 = 𝜖 󵄨󵄨󵄨󵄨𝜃2󵄨󵄨󵄨󵄨 , (60)

where, given that 0 < 1 − 𝑟∗ < 1, we define 0 < 𝜖 < 1. This
proves our requirement (58), confirming that equilibrium
point (54) is not stable.

6.2.2. Case 2: Equilibrium Point (55). The eigenvalues of 𝐴 at
this equilibrium point are lengthy for arbitrary values ofN𝑐,
N𝑟, 𝑟∗, and 𝜃𝑎. However, as pointed out above, the second
case needs to be forN𝑐𝜃1 + 2N𝑟𝜃31 + 6N𝑟𝜃21𝜃𝑎 + 6N𝑟𝜃1𝜃2𝑎 +2N𝑟𝜃3𝑎 < 0. A variety of values were considered for the
parameters N𝑐, N𝑟, 𝑟∗, and 𝜃𝑎, all leading to eigenvalues of
the form expected, which are𝜆1 = 𝜇𝑖,𝜆2 = −𝜇𝑖,

where 𝑖2 = −1, (61)
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providing us with a stable centre; see Figure 5(a). At this stage
we note that this case requires 𝜃1 = 𝜃 < 0 which is not
physically relevant.

6.3. Consideration of Viability of Linearised System. In the
previous subsection we were able to determine the equilib-
rium points and classify them. We will now consider the
feasibility of the dynamics of this linearised systemdescribing
the nonlinear dynamics of the system under discussion.
Furthermore, we expand our stability analysis to consider
the physical significance of the nonlinear terms and the
degree, if at all, to which they impact on the scheme’s
stability. This analysis has been used by Charrier-Mojtabi et
al. [51] in the study of Soret-driven convection in a horizontal
porous layer. Furthermore, Patel and Meher [52] performed
a stability analysis via the fixed point theoremmethod for the
Adomian decomposition Sumudu transformation method,
when solving for the heat transfer in a solid and porous fin
with temperature dependent internal heat generation.

In order to employ a linearisation approach to study the
dynamics of this nonlinear nonautonomous system we con-
sider a Taylor series expansion of F[∙] near the equilibrium
point 𝜃 ≈ Θ𝑒 [53]. This may be constructed as follows:

̇𝜃 (𝑡)󵄨󵄨󵄨󵄨󵄨𝜃≈Θ𝑒 = F (𝜃, 𝑟)󵄨󵄨󵄨󵄨𝜃≈Θ𝑒
= F (Θ𝑒, 𝑟) + 𝜕F (𝜃, 𝑟)𝜕𝜃 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜃≈Θ𝑒 (𝜃 − Θ𝑒)

+ higher order terms,
(62)

where we need to ensure that the higher order terms (h.o.t.)
are small enough for 𝜃 close to Θ𝑒, the equilibrium point, for
all 𝑟. A commonly used criterion based on the 𝐿2-norm is

sup
󵄩󵄩󵄩󵄩Fh.o.t. (𝜃, 𝑟)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜃󵄩󵄩󵄩󵄩 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨|𝜃|→Θ𝑒 ≈ 0 ∀𝑟, (63)

which specifies that the higher order terms (h.o.t.) of the
Taylor series expansion are approximated by zero at the
relevant equilibrium point; this allows us to approximate the
nonlinear nonautonomous system by a linearised system.

In order to consider the higher order terms for the
equilibrium point Θ𝑒 (54) we recall that

𝐹𝑖 (𝑥) = 𝐹𝑖 (𝑥0) + 𝜕𝐹𝑖𝜕𝑥𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥0 (𝑥𝑗 − 𝑥0)

+ 12 𝜕2𝐹𝑖𝜕𝑥𝑗𝜕𝑥𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥0 (𝑥𝑗 − 𝑥0) (𝑥𝑘 − 𝑥0) + ⋅ ⋅ ⋅ , (64)

which for our system (50) provides us with the following
higher order terms (1/2!)𝜃𝑇H𝜃 + ⋅ ⋅ ⋅ , whereH represents the
Hermitian matrices:

𝐻 (𝐹1) = [[[[[
𝜕2𝐹1𝜕𝜃21 𝜕2𝐹1𝜕𝜃1𝜕𝜃2𝜕2𝐹1𝜕𝜃2𝜕𝜃1 𝜕2𝐹1𝜕𝜃22

]]]]]
= [0 00 0] ,

𝐻 (𝐹2) = [[[[[
𝜕2𝐹2𝜕𝜃21 𝜕2𝐹2𝜕𝜃1𝜕𝜃2𝜕2𝐹2𝜕𝜃2𝜕𝜃1 𝜕2𝐹2𝜕𝜃22

]]]]]
= [12N𝑟 (𝑟∗ − 1)2 (𝜃1 + 𝜃𝑎)2 + 2Nc (𝑟∗ − 1)2 00 0] .

(65)

We are interested in the equilibrium point Θ𝑒 = 0 (54)
due to its physical significance. Thus we now consider |𝜃| →Θ𝑒 = 0, providing

𝐻 (𝐹2) = [12N𝑟 (𝑟∗ − 1)2 𝜃2𝑎 + 2N𝑐 (𝑟∗ − 1)2 00 0] , (66)

which implies that 12N𝑟(𝑟∗ − 1)2𝜃2𝑎 + 2N𝑐(𝑟∗ − 1)2 = (𝑟∗ −1)2(12N𝑟𝜃2𝑎 + 2N𝑐) should tend to 0 or be approximately 0
in order for us to consider the dynamics of the linear system
as a guide for those of the nonlinear nonautonomous system.
Thus, given that 𝑟∗ ̸= 1 we need 12N𝑟𝑈2𝑎 + 2N𝑐 ≈ 0 such that

N𝑟 ≈ −N𝑐6𝜃2𝑎 , (67)

which is unrealistic. The only manner in which (67) could
hold is if both parameters were to approximate zero; that is,
N𝑐,N𝑟 ≈ 0. Thus, we conclude that the higher order terms
have an influence on the stability of the system and cannot be
ignored; if we are to engage with the linear system as a means
of analysis then we can only do so for small values ofN𝑐 and
N𝑟. It is for this reason that the phase portraits presented are
forN𝑐 = 0.01, 0.1 andN𝑟 = 1.
6.4. Remarks. We find that for 𝜃1 = 𝜃2 = 0 we are in fact
referring to the point where 𝜃 = 𝜃󸀠 = 0, which is a point
that would be located at the origin 𝑟 = 0 (see the boundary
conditions).Wefind as eitherN𝑟 → ∞ orN𝑐 → ∞ that 𝜃 →0 at the point where 𝜃󸀠(0) = 0.Thus asN𝑟 andN𝑐 increase we
would have a situation which reflects this equilibrium point,
albeit a rare case.

Under these circumstances the solutions obtained via
the CN scheme provide physically meaningless solutions.
We obtain negative temperature values, oscillations in the
solutions, and particularly exaggerated negative temperature
values near 𝑟 = 1. For the CN scheme we note that this
behaviour occurs at lower values of N𝑐 than N𝑟, indicating
once again the more prominent impact the former parameter
has on the behaviour of the scheme. In a similar fashion
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the CNNR scheme also produces negative temperature values
for large values of N𝑟 and N𝑐, particularly near 𝑟 = 1.
Increasing 𝜃𝑎 we find that the value ofN𝑟 for whichwe obtain
unrealistic temperature profiles diminishes in magnitude,
and we observe severe oscillations and negative temperature
values. In turn, implementing large values of 𝜃𝑎 with the same
value now assigned to N𝑐 does not lead to such physically
unreasonable behaviour; we are in fact able to obtain realistic
solutions. Hence an increase in the parameter values of 𝜃𝑎
and N𝑟 when employing the CNNR scheme has a noticeable
impact on the stability of the scheme, whereas the buoyancy
force’s influence is diminished in comparison.

The behaviour of the solutions obtained for large values
of the radiation and convection parameters for either scheme
make physical sense.TheparameterN𝑟 serves as the radiative
sink and as such large values thereof wouldmean that the sur-
face radiation heat transfer would decrease the temperature
unrealistically. SimilarlyN𝑐, which is the convective heat loss,
would also cause a severe drop in the temperature. Thus, the
instability of the equilibrium point (0, 0) can be verified via
these dynamics and match the results obtained pertaining to
the higher order terms of the Taylor series expansion: only if
we assume that N𝑟 and N𝑐 are small, will the linear system
approximate the nonlinear system.

7. Alternate Nondimensionalisation

The nondimensionalisation employed in Darvishi et al. [2] is
given as follows:

𝜃 = 𝑇𝑇𝑏 ,𝜃𝑎 = 𝑇𝑎𝑇𝑏 ,𝑟 = 𝑟𝑟𝑏 ,𝑟∗ = 𝑟𝑡𝑟𝑏 ,
N𝑐 = 𝜌𝑓𝐶𝑝,𝑓𝐾𝑔𝛽𝑓𝑟2𝑏𝑇𝑏𝑉𝑓𝑘eff 𝑠 ,
N𝑟 = 2𝜖𝜎𝐹𝑓−𝑎𝑟2𝑏𝑇3𝑏𝑘eff 𝑠 .

(68)

Given that we are considering the time dependent case we
also incorporate

𝜏 = 𝑘eff 𝑡𝜌𝐶V𝑟2𝑏 , (69)

providing the following equation for consideration:𝜕𝜃𝜕𝜏 = 1𝑟 𝜕𝜕𝑟 (𝑟𝜕𝜃𝜕𝑟 ) − N𝑐 (𝜃 − 𝜃𝑎)2 − N𝑟 (𝜃4 − 𝜃4𝑎) , (70)

where we have once again dropped the hat on 𝑟 for conve-
nience, 𝑟∗ > 1 is defined as 𝑟𝑡/𝑟𝑏, and the parametersN𝑐 and
N𝑟 are stated as per (68).

Employing the nondimensional transformations given by
(68) we obtain the following boundary conditions:𝑑𝜃𝑑𝑟 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟∗ = 0,

𝜃 (1, 𝜏) = 1, (71)

such that 𝑟 ∈ [1, 𝑟∗]. We use the step sizes Δ𝑟 = 0.01 andΔ𝜏 = 0.00001 due to the domain of 𝑟.The numerical solutions
obtained mirror those provided above. The only difference is
the behaviour of the solutions for 𝜃𝑎; we now find that they
are consistent with [2] as expected. Once more, the addition
of the predictor-corrector increases the computational time
required to reach the steady state; as such we can again
conclude that the Crank-Nicolson scheme performs best out
of the two numerical methods considered.

In order to consider the dynamics of the equation we
structure the system of first-order ordinary differential equa-
tions as before:̇𝜃1 = 𝜃2,̇𝜃2 = −𝜃2𝑟 + N𝑐 (𝜃1 − 𝜃𝑎)2 + N𝑟 (𝜃41 − 𝜃4𝑎) . (72)

It must be noted that we consider the case where 𝑟 = 𝑟∗;
this is due to the physical relevance placed on the dynamics
at the fin tip. We once again structure this system as per the
work of Coddington and Levinson [50]:𝜃̇ = 𝐴𝜃 + f (𝜃, 𝑟) , (73)

so that we may employ theorems for the stability of fixed
points of the system by considering the eigenvalues of 𝐴. We
obtain the equilibrium points (𝜃1, 𝜃2):

(𝜃𝑎, 0) , (74)

( 2/3√5.19615√N3𝑐N
3
𝑟 + 14.N2𝑐N4𝑟𝜃2𝑎 − 12.N𝑐N5𝑟𝜃4𝑎 + 4.N6𝑟𝜃6𝑎 + 18.N𝑐N2𝑟𝜃𝑎 − 10.N3𝑟𝜃3𝑎 − (3.N𝑐N𝑟 + 2.N2𝑟𝜃2𝑎)

3N𝑟 1/3√5.19615√N3𝑐N
3
𝑟 + 14.N2𝑐N4𝑟𝜃2𝑎 − 12.N𝑐N5𝑟𝜃4𝑎 + 4.N6𝑟𝜃6𝑎 + 18.N𝑐N2𝑟𝜃𝑎 − 10.N3𝑟𝜃3𝑎

− 𝜃𝑎3 , 0) .
(75)
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Figure 6: Phase plots indicating the trajectories around the equilibrium points (75) for 𝜃𝑎 = 0.6, 𝑟∗ = 1.75,N𝑐 = 0.001, andN𝑟 = 0.01. (a)
is a closer view of the second equilibrium point for the alternate nondimensionalisation.
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Figure 7: Phase plots indicating the trajectories around the equilibrium points (75) for 𝜃𝑎 = 0.6, 𝑟∗ = 1.75,N𝑐 = 100, andN𝑟 = 100. (a) is a
closer view of the second equilibrium point for the alternate nondimensionalisation.

In considering the eigenvalues of 𝐴 from (73), we can
write them with general parameter values as follows:

𝜆1 = −√2√N𝑐𝜃1 + 2N𝑟𝜃31 − N𝑐𝜃𝑎,
𝜆2 = √2√N𝑐𝜃1 + 2N𝑟𝜃31 − N𝑐𝜃𝑎, (76)

to be evaluated at the equilibrium points we want to classify.
Again as per the work conducted above we have two cases: a
saddle point or a centre.

7.1. Case 1: Equilibrium Point (74). The eigenvalues of 𝐴 at
equilibrium point (74) are𝜆1 = −2√N𝑟𝜃3/2𝑎 ,

𝜆2 = 2√N𝑟𝜃3/2𝑎 , (77)

which represent an unstable saddle point; see Figures 6(b)
and 7(b) corresponding to the saddle point obtained for the
equilibrium point (0, 0) for the previous nondimensionalisa-
tion.
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This comparison to the equilibrium point (0, 0) obtained
via the previous nondimensionalisation is important given
the numerical solutions we obtain for certain values of 𝜃𝑎.
While for the initial nondimensionalised equation consid-
ered we were able to obtain solutions (whose behaviour
provided sensible insight into the problem) for a range of
values of 𝜃𝑎, wewere unable to do so in this instance. For 𝜃𝑎 →1we found that we were unable to obtain numerical solutions
for certain values ofN𝑐 andN𝑟. In order to understand why
this is the case, we consider the impact of the higher order
terms as done before. We obtain the following:

𝐻 (𝐹1) = [[[[[
𝜕2𝐹1𝜕𝜃21 𝜕2𝐹1𝜕𝜃1𝜕𝜃2𝜕2𝐹1𝜕𝜃2𝜕𝜃1 𝜕2𝐹1𝜕𝜃22

]]]]]
= [0 00 0] ,

𝐻 (𝐹2) = [[[[[
𝜕2𝐹2𝜕𝜃21 𝜕2𝐹2𝜕𝜃1𝜕𝜃2𝜕2𝐹2𝜕𝜃2𝜕𝜃1 𝜕2𝐹2𝜕𝜃22

]]]]]
= [12N𝑟𝜃21 + 2N𝑐 00 0] .

(78)

Now as |𝜃| → (𝜃𝑎, 0), we have
𝐻 (𝐹2) = [12N𝑟𝜃2𝑎 + 2N𝑐 00 0] , (79)

which means that for the linear system to approximate the
nonlinear dynamics of the system we now require N𝑐 ≈ 0
and eitherN𝑟 or 𝜃𝑎 to ≈0. We find that once we have defined
these parameters to be relatively small we were able to obtain
solutions for the equation under consideration (70) without
any difficulty for both the CN and CNNR schemes.

In considering the CN scheme, we observe that for the
case N𝑐 ⪅ 5 and 𝜃𝑎 < 1 we were able to obtain solutions as
N𝑟 → ∞. Once 𝜃𝑎 → 1 we found that there were values for
N𝑐 and N𝑟 (not deemed large in magnitude) for which we
could not obtain solutions. In particular we noticed that as
N𝑟 → ∞ with 𝜃𝑎 → 1 the temperature profiles oscillated,
often attaining negative temperature values. The moment we
diminished the value of the ambient temperature 𝜃𝑎 we were
able to obtain realistic solutions once more. Furthermore, for
reasonably small values ofN𝑟 and 𝜃𝑎 we found that for values
of N𝑐 which could not be deemed excessively high (N𝑐 ⪆40) we were unable to obtain solutions to our problem. As
N𝑐 → ∞ we needed N𝑟 and 𝜃𝑎 to decrease in value in a
comparative fashion: for N𝑐 = 100 with N𝑟 = 0.5 we could
not obtain a solution to 𝜃𝑎 = 0.8 but we could do so for 𝜃𝑎 =0.1. As such, the impact of the convection parameter N𝑐 on
the ability of the CN scheme to obtain coherent solutions is
once again confirmed.

With regard to the CNNR scheme we find that as N𝑐 →∞ for small values of N𝑟 and 𝜃𝑎 the scheme is unable to
obtain solutions. Furthermore, as N𝑟 → ∞ and 𝜃𝑎 → 1

we are unable to obtain solutions for small values of N𝑐;
in particular we found oscillatory behaviour at 𝑟 = 1.
For this scheme isolating the parameter which played the
dominant role in determining the stability of the scheme
was very difficult. The structure of (70) is such that there is
an intricate interaction between the three parameters. This
makes it difficult to isolate, under all circumstances, whether
solutions can be obtained or not, unless the parameters N𝑐,
N𝑟, and 𝜃𝑎 are chosen to be small.

Given the fact thatwe obtained an unstable saddle point at
this equilibrium value, we can now via the analysis conducted
here confirm that for this problem structure there are certain
values of 𝜃𝑎 for which limitations are placed uponN𝑐,N𝑟 in
order to obtain solutions. We note here that the behaviour of
this equilibrium point matches that of (54) considered for the
original nondimensionalisation. Once more, it comments on
unstable behaviour at the fin tip under very specific values of𝜃 and 𝜃󸀠.
7.2. Case 2: Equilibrium Point (75). The eigenvalues of 𝐴 at
this equilibrium point are lengthy for arbitrary values of
N𝑐, N𝑟, 𝑟∗, and 𝜃𝑎. However, as before we realise that the
eigenvalues would have the form𝜆1 = 𝜇𝑖,𝜆2 = −𝜇𝑖,

where 𝑖2 = −1, (80)

providing us with a stable centre; see Figures 6(a) and
7(a). For small values of N𝑐 and N𝑟 this equilibrium point
provides a case which is not of any physical relevance. When
we increase the values of these parameters we observe that
since 𝜃1 = 𝜃 > 0 we indeed have a physically relevant
equilibrium point. We can in this fashion confirm that the
boundary dynamics are at the fin tip (where 𝜃2 = 𝜃󸀠 =0), while the temperature is such that 𝜃1 = 𝜃 < 1; we
indeed have stable behaviour as would be expected. We
notice however that the value of 𝜃 at which this occurs is
less than the value at which the equilibrium point discussed
under Case 1 (where the equilibrium point is dependent
on the ambient temperature) is observed. This provides
us with the understanding that at the fin tip temperature
values less than 𝜃𝑎 provide stable dynamics (Case 2: centre),
whereas an increase in the temperature at that point starts to
lead to unstable dynamics where stable behaviour becomes
dependent on the value of the gradient 𝜃2 = 𝜃󸀠 (Case 1: saddle
point).

8. Conclusion

We employed the Crank-Nicolson method with and with-
out the Newton-Raphson predictor-corrector (employing
Usmani’s method for the former) to solve a model describing
the heat transfer in a porous radial fin. We show that the
results obtained via the Crank-Nicolson scheme match those
in the work by Darvishi et al. [2]; the Crank-Nicolson
method, incorporating the Newton-Raphson and Usmani
method, and the DTM do not match these results even
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though the behaviour observed is appropriate and compara-
ble.

We obtain semianalytical steady state solutions via the
DTM which provide a guide for the numerical solutions
obtained. We note that in order to obtain the relevant
accuracy for this method a large number of terms would
need to be employed (as per the work by Darvishi et al. [2]
and Aziz et al. [29], e.g.); however the required memory to
do so becomes a limiting factor. The accuracy of the Crank-
Nicolson scheme when compared to the work by Darvishi
et al. [2] meant that it was the most appropriate one to
consider in terms of an analysis of the scheme’s stability and
the dynamics of the steady state system.

In conducting a von Neumann stability analysis for
the linear Crank-Nicolson scheme we obtain unconditional
stability. However, the presence of nonlinear sink terms
necessitated an investigation into the impact they may have
on the stability of the scheme and hence the validity of the
solutions obtained.Wefind that the onlymanner inwhich the
linearisation of the system of first-order ordinary differential
equations (obtained from the steady state equation) is able
to describe the dynamics of the nonlinear system is if N𝑟
and N𝑐 approximate zero, that is, are very small. Thus, we
conclude that the higher order terms (and hence nonlinear
sink terms) have an influence on the stability of the system
and cannot be ignored.

Furthermore, via our analysis, we could ascertain the
impact of N𝑟 and N𝑐, showing that as they tend to infinity
erratic and unstable behaviour may be observed at the
equilibrium point which represents the fin tip (𝜃 → 0,𝜃󸀠(0) = 0). More interestingly, we were able to show that the
convection parameter has a more prominent impact on the
stability of the solutions obtained via theCN scheme, whereas
the radiative parameter N𝑟 and the ambient temperature
impact more severely on the stability of the CNNR scheme.
This behaviour is sensible given the nature of these sink terms.
Hence, the dynamics at the fin tip can be said to be stable in
general since an instance where the parameters would obtain
such values leading to a case where the equilibrium point is
representative of the values of the necessary temperature and
temperature gradient is rare. Under the circumstances at the
fin tip where 𝜃 > 0 and 𝜃󸀠(0) = 0 we observe that we do have
stable dynamics (see Figure 5(b)).

We also compared the dynamics between the nondimen-
sionalised equation introduced here and that considered in
[2]. Considering the second form of nondimensionalisation,
the equilibrium point (𝜃𝑎, 0) is found to be unstable as
well. This case would correspond to an instance where the
tip temperature is equated to the ambient temperature (to
compare to the alternate case, we previously had an ambient
temperature which corresponded to zero so this equilibrium
point is equivalent to the one mentioned in the paragraph
above). As such the dynamics at the fin tip can again
be considered to be unstable under certain circumstances;
our numerical solutions confirmed this and displayed the
intricate interactions between the relevant parameters. We
found that the buoyancy force had a more dominant role
to play in the schemes’ ability to obtain solutions. This

seems reasonable given the nature of the higher order terms
obtained.

The interesting additional insight with regard to the latter
nondimensionalisation was that for larger values of N𝑟 and
N𝑐 we find that 𝜃1 = 𝜃 > 0, which provided a second physi-
cally relevant equilibrium point.The dynamical analysis con-
ducted assisted us in confirming that the boundary dynamics
at the fin tip, that is, for 0 < 𝜃 < 1 and 𝜃󸀠 = 0, are indeed
stable. Given the other equilibriumpoint, it would seemhow-
ever that for cases where 𝜃 = 𝜃𝑎 we would revert to unstable
behaviour at the fin tip.What is interesting to note is that since
in the latter nondimensionalised equation 𝜃𝑎 engages with
both the buoyancy force/convection parameter and the radi-
ation parameter in the equation, the dynamics aremore intri-
cate. As the convection increases, small values of the radiation
parameter lead to no solution.Then as the latter increases the
solution will achieve the ambient temperature at the fin tip.

For both nondimensionalised equations we discovered
that under certain circumstances there could be unstable
behaviour at the fin tip; the convection and radiation param-
eters as well as the ambient temperature have a role to play
regarding the stability and effectiveness of the numerical
scheme employed. Future research will aim to establish the
distinct manner in which these parameters interact, so that
we may more fully understand the impact of the parameters
on solution accuracy and stability.

Nomenclature𝐶𝑝,𝑓: Specific heat of the ambient fluid𝐹𝑓−𝑎: Shape factor for radiation heat transfer𝐷𝑎: Darcy number𝑔: Acceleration due to gravity𝑘eff : Effective thermal conductivity of porous fin𝑘𝑓: Thermal conductivity of ambient fluid𝐾𝑟: Thermal conductivity ratio
N𝑐: Buoyancy or natural convection parameter𝐿: Auxiliary linear operator
N𝑟: Radiation parameter𝑞: Base heat flow𝐿: Length of the fin𝑄: Nondimensional base heat flow𝑟: Radial coordinate𝑟𝑏: Base radius𝑟𝑡: Tip radius𝑟: Nondimensional radius𝑟∗: Nondimensional ratio of the tip radius to the

base radius𝑠: Fin thickness𝑇: Local fin temperature𝑇𝑎: Ambient temperature𝑇𝑏: Base temperature.

Greek Symbols𝛼𝑓: Thermal diffusivity of ambient fluid𝛽𝑓: Volumetric thermal expansion coefficient
of the ambient fluid𝜃: Nondimensional temperature𝜖: Surface emissivity of fin
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𝜎: Stefan-Boltzmann constant
V𝑓: Kinematic viscosity of the ambient fluid𝜌𝑓: Density of the ambient fluid𝜃𝑎: Nondimensional ambient temperature.
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